|
import collections
|
|
import json
|
|
import os
|
|
|
|
import datasets
|
|
|
|
|
|
_HOMEPAGE = "https://universe.roboflow.com/harish-madhavan/resistordataset/dataset/1"
|
|
_LICENSE = "CC BY 4.0"
|
|
_CITATION = """\
|
|
@misc{
|
|
resistordataset_dataset,
|
|
title = { ResistorDataset Dataset },
|
|
type = { Open Source Dataset },
|
|
author = { Harish Madhavan },
|
|
howpublished = { \\url{ https://universe.roboflow.com/harish-madhavan/resistordataset } },
|
|
url = { https://universe.roboflow.com/harish-madhavan/resistordataset },
|
|
journal = { Roboflow Universe },
|
|
publisher = { Roboflow },
|
|
year = { 2022 },
|
|
month = { sep },
|
|
note = { visited on 2024-07-16 },
|
|
}
|
|
"""
|
|
_CATEGORIES = ['resistor']
|
|
_ANNOTATION_FILENAME = "_annotations.coco.json"
|
|
|
|
|
|
class RESISTORDATASETConfig(datasets.BuilderConfig):
|
|
"""Builder Config for resistordataset"""
|
|
|
|
def __init__(self, data_urls, **kwargs):
|
|
"""
|
|
BuilderConfig for resistordataset.
|
|
|
|
Args:
|
|
data_urls: `dict`, name to url to download the zip file from.
|
|
**kwargs: keyword arguments forwarded to super.
|
|
"""
|
|
super(RESISTORDATASETConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
|
|
self.data_urls = data_urls
|
|
|
|
|
|
class RESISTORDATASET(datasets.GeneratorBasedBuilder):
|
|
"""resistordataset object detection dataset"""
|
|
|
|
VERSION = datasets.Version("1.0.0")
|
|
BUILDER_CONFIGS = [
|
|
RESISTORDATASETConfig(
|
|
name="full",
|
|
description="Full version of resistordataset dataset.",
|
|
data_urls={
|
|
"train": "https://huggingface.co/datasets/MithatGuner/resistordataset/resolve/main/data/train.zip",
|
|
"validation": "https://huggingface.co/datasets/MithatGuner/resistordataset/resolve/main/data/valid.zip",
|
|
"test": "https://huggingface.co/datasets/MithatGuner/resistordataset/resolve/main/data/test.zip",
|
|
},
|
|
),
|
|
RESISTORDATASETConfig(
|
|
name="mini",
|
|
description="Mini version of resistordataset dataset.",
|
|
data_urls={
|
|
"train": "https://huggingface.co/datasets/MithatGuner/resistordataset/resolve/main/data/valid-mini.zip",
|
|
"validation": "https://huggingface.co/datasets/MithatGuner/resistordataset/resolve/main/data/valid-mini.zip",
|
|
"test": "https://huggingface.co/datasets/MithatGuner/resistordataset/resolve/main/data/valid-mini.zip",
|
|
},
|
|
)
|
|
]
|
|
|
|
def _info(self):
|
|
features = datasets.Features(
|
|
{
|
|
"image_id": datasets.Value("int64"),
|
|
"image": datasets.Image(),
|
|
"width": datasets.Value("int32"),
|
|
"height": datasets.Value("int32"),
|
|
"objects": datasets.Sequence(
|
|
{
|
|
"id": datasets.Value("int64"),
|
|
"area": datasets.Value("int64"),
|
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
|
"category": datasets.ClassLabel(names=_CATEGORIES),
|
|
}
|
|
),
|
|
}
|
|
)
|
|
return datasets.DatasetInfo(
|
|
features=features,
|
|
homepage=_HOMEPAGE,
|
|
citation=_CITATION,
|
|
license=_LICENSE,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
data_files = dl_manager.download_and_extract(self.config.data_urls)
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"folder_dir": data_files["train"],
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={
|
|
"folder_dir": data_files["validation"],
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={
|
|
"folder_dir": data_files["test"],
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, folder_dir):
|
|
def process_annot(annot, category_id_to_category):
|
|
return {
|
|
"id": annot["id"],
|
|
"area": annot["area"],
|
|
"bbox": annot["bbox"],
|
|
"category": category_id_to_category[annot["category_id"]],
|
|
}
|
|
|
|
image_id_to_image = {}
|
|
idx = 0
|
|
|
|
annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
|
|
with open(annotation_filepath, "r") as f:
|
|
annotations = json.load(f)
|
|
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
|
|
image_id_to_annotations = collections.defaultdict(list)
|
|
for annot in annotations["annotations"]:
|
|
image_id_to_annotations[annot["image_id"]].append(annot)
|
|
filename_to_image = {image["file_name"]: image for image in annotations["images"]}
|
|
|
|
for filename in os.listdir(folder_dir):
|
|
filepath = os.path.join(folder_dir, filename)
|
|
if filename in filename_to_image:
|
|
image = filename_to_image[filename]
|
|
objects = [
|
|
process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
|
|
]
|
|
with open(filepath, "rb") as f:
|
|
image_bytes = f.read()
|
|
yield idx, {
|
|
"image_id": image["id"],
|
|
"image": {"path": filepath, "bytes": image_bytes},
|
|
"width": image["width"],
|
|
"height": image["height"],
|
|
"objects": objects,
|
|
}
|
|
idx += 1
|
|
|