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The mathematics of Bitcoin

Cyril Grunspan (De Vinci Research Center, Paris, France)
Ricardo Pérez-Marco (CNRS, IMJ-PRG, Sorbonne Université, Paris, France)

1 Introduction to Bitcoin.

Bitcoin is a new decentralized payment network that started
operating in January 2009. This new technology was created
by a pseudonymous author, or group of authors, called Satoshi
Nakamoto in an article that was publically released [1] in the
cypherpunk mailing list. The cypherpunks are anarchists and
cryptographers that who have been concerned with personal
privacy in the Internet since the 90’s. This article follows on
a general presentation of Bitcoin by the second author [2].
We refer to this previous article for general background. Here
we focuss on mathematics being a feature of the security and
effectiveness of Bitcoin protocol.

Roughly speaking the Bitcoin’s protocol is a mathematical
algorithm on a network which manages transaction data and
builds majority consensus among the participants. Thus, if a
majority of the participants are honest, then we get an hon-
est automatic consensus. Its main feature is decentralization,
which means that no organization or central structure is in
charge. The nodes of the network are voluntary participants
that enjoy equal rights and obligations. The network is open
and anyone can participate. Once launched the network is re-
silient and unstopable. It has been functioning permanently
without significant interruption since january 2009.

The code and development are open. The same code has
been reused and modified to create hundreds of other cryp-
tocurrencies based on the same principles. The security of the
network relies on strong cryptography (several orders of mag-
nitude stronger than the cryptography used in classical finan-
cial services). For example, classical hash functions (SHA256,
RIPEMD-160) and elliptic curve digital signatures algorithm
(ECDSA) are employed. The cryptography used is very stan-
dard and well known, so we will dwell on the mathematics
of these cryptographic tools, but interesting cryptographical
research is motivated by the special features of other cryp-
tocurrencies.

Nodes and mining.

The Bitcoin network is composed by nodes, that corre-
spond to the Bitcoin program running on different machines,
that communicate with their neighbourds. Properly format-
ted Bitcoin transactions flood the network, and are checked,
broadcasted and validated continuously by the nodes which
follow a precise set of rules. There is no way to force the
nodes to follow these rules. Incentives are created so that
any divergence from the rules is economically penalised, thus
creating a virtuous cycle. In this way, the network is a com-
plex Dynamical System and it is far from obvious that it is
stable. The stability of this system is a very interesting and
fundamental mathematical problem. In its study we will en-
counter special functions, martingale theory, Markov chains,
Dyck words, etc.

Nodes in the network broadcast transactions and can par-
ticipate in their validation. The process of validating transac-

Figure 1: The Bitcoin logo.

tions is also called “mining” because it is related to the pro-
duction of new bitcoins. The intuition behind Bitcoin is that
of a sort of “electronic gold” and the rate of production of
bitcoins is implemented in the protocol rules. On average ev-
ery 10 minutes a block of transactions is validated and new
bitcoins are minted in a special transaction without bitcoin
input, called the coinbase transaction. At the beginning 50 B
were created in each block, and about every 4 years (more
precisely, every 210 000 blocks), the production is divided
by 2. This event is called a “halving”. So far, we had two
halvings, and the production is currently set at 12.5 B per
10 minutes, or 1 800 B per day. The next halving will oc-
cur on May 2020. This geometric decrease of the production
limits the total amount of bitcoins to 21 millions. Currently,
about 18 millions have already been created. Each block con-
taining the validated transactions can contain about 3 to 4
thousand transactions and has a size of about 1 Mb. These
blocks are linked together cryptographically, and the set of
all these blocks forms the “blockchain” that contains the full
history of Bitcoin transactions. This data is stored efficiently,
and the current blockchain is only about 260.000 Mb. The
cryptographical link between blocks is provided by the min-
ing/validation procedure that is based on a hash function and
a “Proof-of-Work”. It costs computation power to validate a
block and this is what ensures that the data cannot be tam-
pered or corrupted. In order to modify a single bit of a block,
we must redo all computations that has been used to build all
the subsequent blocks until the last current one. Currently the
computation power needed to change only the last few blocks
of the more than 600 thousands composing the blockchain is
beyond the capabilities of any state or company.

The mining/validation procedure is a sort of decentralized
lottery. A miner (this is a node engaging in validating trans-
actions) packs together a block of floating not yet validated
transactions, and builds a header of this block that contains a
hash of the previous block header. The hash algorithm used
is SHA-256 (iterated twice) that outputs 256 bits. Mathemat-
ically, a hash function is a deterministic one way function:
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It is easy to compute, but practically impossible to find pre-
images, or collisions (two files giving the same output). Also
it enjoys pseudo-random properties, that is, if we change a
bit of the input, the bits of the output behave as uncorrelated
random variables taking the values 0 and 1 with equal proba-
bilities. The mining procedure consists of finding a hash that
is below a pre-fixed threshold, which is called the difficulty.
The difficulty is updated every two weeks (or more precisely
every 2016 blocks) so that the rate of validation remains at 1
block per 10 minutes. The pseudo-random properties of the
hash function ensure that the only way to find this hash is
to probe many hashes by changing a parameter in the header
(the nonce). The first miner to find a solution makes the block
public, and the network adopts the block as the last block in
the blockchain.

It can happen that two blocks are simultaneously validated
in different parts of the network. Then a competition fol-
lows between the two candidates, and the first one to have
a mined block on top of it wins. The other one is discarded
and is called an orphan block. The blockchain with the larger
amount of work (which is in general the longer one) is adopted
by the nodes.

When a transaction is included in the last block of the blockchain,
we say that it has one confirmation. Any extra block mined on
top of this one gives another confirmation to the transaction
and engraves it further inside the blockchain.

This apparently complicated procedure is necessary to en-
sure that neither the network nor the blockchain cannot be
corrupted. Any participant must commit some computer power
in order to participate in the decision of validation. The main
obstacle for the invention of a decentralised currency was to
prevent double spend without a central accounting authority.
Hence, the first mathematical problem than Nakamoto con-
siders in his founding article [1] is to estimate the probability
of a double spend. In the following we consider this and other
stability problems, and prove mathematically the (almost gen-
eral) stability of the mining rules.

2 The mining model.

We consider a miner with a fraction 0 < p ≤ 1 of the to-
tal hashrate. His profit comes from the block rewards of his
validated blocks. It is important to know the probability of
success when mining a block. The average number of blocks
per unit of time that he succeeds mining is proportional to his
hashrate p. The whole network takes on average τ0 = 10 min
to validate a block, hence our miner takes on average t0 =

τ0
p .

We consider the random variable T giving the time between
blocks mined by our miner. The pseudo-random properties
of the hash function shows that mining is a Markov process,
that is, memoryless. It is then an elementary exercise to show
from this property that T follows an exponential distribution,

fτ(t) = αe−αt

where α = 1/t0 = 1/E[T]. If the miner starts mining at t = 0,
and if we denote T1 the time needed to mine a first block,
then T2, . . . ,Tn the inter-block mining times of successive
blocks, then the Markov property shows that the random vari-
ables T1,T2, . . . ,Tn are independent and are all identically

distributed following the same exponential law. Therefore,
the time needed to discover n blocks is

Sn = T1 + T2 + . . . + Tn .

The random variable Sn follows the n-convolution of the ex-
ponential distribution and, as is well known, this gives a Gamma
distribution with parameters (n, α),

fSn (t) =
αn

(n − 1)!
tn−1e−αt

with cumulative distribution

FSn (t) =

∫ t

0
fSn (u)du = 1 − e−αt

n−1∑
k=0

(αt)k

k!
.

From this we conclude that if N(t) is the process counting the
number of blocks validated at time t > 0, N(t) = max{n ≥
0; Sn < t}, then we have

P[N(t) = n] = FSn (t) − FSn+1 (t) =
(αt)n

n!
e−αt ,

and N(t) follows a Poisson law with mean value αt. This re-
sult is classical, and the mathematics of Bitcoin mining, as
well as other crypto-currencies with validation based on proof
of work, are Poisson distributions.

3 The double spend problem.

The first crucial mathematical problem that deserves atten-
tion in the Bitcoin protocol is the possibility of realisation of
a double spend. This was the major obstacle to overcome
for the invention of decentralized cryptocurrencies, thus it is
not surprising that Nakamoto addresses this problem in Sec-
tion 11 of his founding article [1]. He considers the situation
where a malicious miner makes a payment, then in secret tries
to validate a second conflicting transaction in a new block ,
from the same address, but to a new address that he controls,
which allows him to recover the funds.

For this, once the first transaction has been validated in
a block in the official blockchain and the vendor delivered
the goods (the vendor will not deliver unless some confirma-
tions are visible), the only possibility consists in rewriting the
blockchain from that block. This is feasible if he controls a
majority of the hashrate, that is, if his relative hashrate q sat-
isfies q > 1/2, because then he is able to mine faster than
the rest of the network, and he can rewrite the last end of the
blockchain as he desires. This is the reason why a decen-
tralised mining is necessary so that no one controls more than
half of the mining power. But even when 0 < q < 1/2 he can
try to attempt a double spend, and will succeed with a non-
zero probability. The first mathematical problem consists of
computing the probability that the malicious miner succeeds
in rewriting the last n ≥ 1 blocks. We assume that the remain-
ing relative hashrate, p = 1 − q, consists of honest miners
following the protocol rules.

This problem is similar to the classical gambler’s ruin prob-
lem. Nakamoto observes that the probaility to catch-up n
blocks is

qn =

(
q
p

)n

(Nakamoto)
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The modelization of mining shows that the processes N(t) and
N′(t) counting the number of mined blocks at time t by the
honest and malicious miners, respectively, are independent
Poisson processes with respective parameters α et α′ satisfy-
ing

p =
α

α + α′
, q =

α′

α + α′
.

The random variable Xn = N′(Sn) of the number of blocks
mined by the attacker when the honest miners have mined
their n-th block follows a negative binomial variable with pa-
rameters (n, p) ([3]), thus, for an integer k ≥ 1 we have

P[Xn = k] = pkqk
(
k + n − 1

k

)
.

Nakamoto, in section 11 of [1], approximates abusively Xn =

N′(Sn) by N′(tn) where

tn = E[Sn] = nE[T] =
nτ0

p

This means that he considers the classical approximation of a
negative binomial variable by a Poisson variable. Rosenfeld
observes in [4] that the negative binomial variable seems to be
a better approximation. We proved in [3] that this was indeed
the case and we could find the exact formula for the double
spend probability after z confirmations (z is the classical no-
tation used by Nakamoto for the number of confirmations).

Theorem 1 ([3], 2017). After z confirmations, the probabil-
ity of success of a double spend by attackers with a relative
hashrate of 0 < q < 1/2 is

P(z) = I4pq(z, 1/2)

where Ix(a, b) is the incomplete regularized beta function

Ix(a, b) =
Γ(a + b)
Γ(a)Γ(b)

∫ x

0
ta−1(1 − t)b−1 dt .

Bitcoin security depends on this probability computation.
It is not just a theoretical result. It allows the estimation of
the risk of a transaction to be reversed and the number of con-
firmations required to consider it definitive. For example, if
q = 0.1, after 6 confirmations, the probability of a double
spend is smaller than 1% (for complete tables see [5]).

In his founding article, Nakamoto tries to compute this
probability from his approximate argument and runs a nu-
merical simulation. He convinced himself that the probability
converges exponentially to 0 when the number of confirma-
tions z goes to infinite (as he states “we can see the probabil-
ity drop off exponentially with z”). The numerical simulation
is not a proof, but we can read this statement repeated over
and over, but never proved before 2017. With the previous
exact formula, using classical methods (Watson Lemma), we
can prove the following Corollary:

Corollary 1. Let s = 4pq < 1. When z→ +∞ the probability
P(z) decays exponentially, and, more precisely,

P(z) ∼
sz

√
π(1 − s)z

.

Figure 2: Probabilities P(z, κ) for q = 0.1 and distinct values of z.

One can obtain higher order asymptotics in the classical
way, or by using equivalent combinatorical methods as in [6]

We can be more precise by looking at the time it takes to the
honest network to mine z blocks. A longer duration than the
average τ1 = zτ0 leaves extra time for the attacker to build his
replacement blockchain, and with this conditional knowledge
the probability changes. If we define κ = τ1

zτ0
, we can com-

pute this probability P(z, κ) and we can also obtain an exact
formula using the regularized incomplete Gamma function

Q(s, x) =
Γ(s, x)
Γ(x)

where

Γ(s, x) =

∫ +∞

x
ts−1e−t dt

is the incomplete Gamma function.

Theorem 2. We have

P(z, κ) = 1 − Q(z, κ z q/p) +

(
q
p

)z

eκ z p−q
p Q(z, κ z) ,

Figure 2 shows the graphs of κ 7→ P(z, κ) for different val-
ues of z.

4 Mining profitability.

After the study of the security of the protocol, the next im-
portant problem is its stability. For a decentralized protocol it
is fundamental that the interests of the individuals are prop-
erly aligned with the protocol rules. In particular, the max-
imal gain of miners should be achieved when following the
protocol rules. This is far from obvious, and we know from
the study of unstable Dynamical Systems that this is hard to
achieve. It is somewhat surprising that this has been empiri-
cally verified since Bitcoin’s inception.

For example, it is by no means obvious that is in the best
interest of a miner to publish immediately a block that he has
validated. He can keep it secret and secretly push his advan-
tage, but then he runs the risk that another miner publishes a
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validated block and the public blockchain adopts it thus loos-
ing his reward. This type of scenario has been discussed since
2012 in bitcointalk forum, created by Nakamoto in 2010.

To answer this question, we first need to develop a proper
profitability model. As in any business, mining profitability
is accounted by the “Profit and Loss” per unit of time. The
profits of a miner come from the block rewards that include
the coinbase reward in new bitcoins created, and the transac-
tion fees of the transactions in the block. The profitability at
instant t > 0 is given by

PL(t) =
R(t) − C(t)

t

where R(t) and C(t) represent, respectively, the rewards and
the cost of the mining operation up to time t. If we don’t
consider transaction fees we have

R(t) = N(t) b

where b > 0 is the coinbase reward. If we include transaction
fees, the last equation remains true taking the average reward
using the classical Wald Theorem.

The random variable C(t) representing the cost of min-
ing operations is far more complex to determine since it de-
pends on external factors (as electricity costs, mining hard-
ware costs, geographic location, currency exchange rate, etc).
But, fortunately, we don’t need it in the comparison the prof-
itability of different mining strategies as we explain next.

The mining activity is a repetitive and the miners returns to
the same initial state after some time, for instant, start mining
a fresh block. A mining strategy is composed by cycles where
the miner invariably returns to the initial state. It is a “game
with repetition” similar to those employed by profit gamblers
in casino games (when they can spot a weakness that makes
the game profitable). For example, an honest miner starts a
cycle each time the network, he or someone else, has vali-
dated a new block.

We denote by τ the duration of the cycle, and we are in-
terested in integrable strategies for which E[τ] < +∞ (this
means that the cycles almost surely end up in finite time).
Then it is easy to check, using the law of large numbers and
Wald Theorem, that the long term profitability is given a.s. by
the limit

PL∞ = lim
t→+∞

R(t) − C(t)
t

=
E[R] − E[C]
E[τ]

As observed before the second cost term is hard to compute,
but the revenue term, that we call revenue ratio, is in general
computable

Γ =
E[R]
E[τ]

For example, for an honest miner we have E[R] = p.0 + q.b =

qb and E[τ] = τ0, and therefore

ΓH =
qb
τ0

We have the fundamental Theorem on comparison of min-
ing strategies with the same cost ratio. This is the case when
both strategies use the full mining power at all time.

Theorem 3 ([7], 2018). We consider two mining strategies
ξ and η with the same cost by unit of time. Then ξ is more
profitable than η if and only if

Γη ≤ Γξ

5 Protocol stability.

We can now mathematically study the protocol stability. The
following remarkable result (remarkable because it is hard to
imagine how Nakamoto could have foreseen it) validates the
proper adjustment of the protocol:

Theorem 4 ([7], 2018). In absence of difficulty adjustment,
the optimal mining strategy is to publish immediately all mined
blocks as soon as they are discovered.

We remind that the difficulty of mining adjusts in about
every two weeks, so at the same time we spot a weakness of
the protocol that we discuss below.

This Theorem holds true for any hashrate of the miner and
without any assumption of the type of miners present in the
network. It changes nothing that eventually there are some
dishonest miners in the network.

The proof is simple and is a good example of the power of
martingale techniques. For a constant difficulty, the average
speed of block discovery remains constant and the counting
process N(t) is a Poisson process with intensity α =

p
τ0

where
p is the relative hashrate of the miner. The cycle duration τ is
a stopping time and the revenue per cycle equals to R = N (τ).
Its mean value is then obtained using Doob’s stopping time to
the martingale N(t) − αt. Finally we get Γ ≤ ΓH .

But the Bitcoin protocol does have a difficulty adjustment
algorithm that is necessary, in particular during the develop-
ment phase. Theorem 4 shows that this is the only vector
of attack. This difficulty adjustment provides a steady mon-
etary creation and ensures that the interblock validation time
stays at around 10 minutes. A minimum delay is necessary
to allow a good synchronization of all network nodes. If the
hashrate accelerates without a difficulty adjustment, then the
nodes will desynchronise, and many competing blockchains
will appear leaving a chaotic state.

6 Profitability of rogue strategies.

In view of Theorems 3 and 4, and in order to decide if a min-
ing strategy is more profitable than the honest strategy, we
only need to compute the revenue ratio Γ with the difficulty
adjustment integrated. Selfish mining (SM strategy 1) is an
example of rogue strategy. Instead of publishing a new block,
the miner keeps the block secret and tries to build a longer
blockchain increasing its advantage. When he makes it pub-
lic, he will orphan the last mined honest blocks and will reap
the rewards. To be precise, the attack cycles are defined as
follows: the miner starts mining a new block on top of the
official blockchain. If an honest miner finds a block first, then
the cycle ends and he starts over. Otherwise, when he is the
first to find a block, he keeps mining on top of it and keeping it
secret. If before he mines a second block the honest network
mines one public block, then he publishes his block immedi-
ately, thus trying to get a maximum proportion 0 < γ < 1
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of honest miners adopting his block. The propagation is not
instantaneous and the efficiency depends on the new parame-
ter γ which represents his good connectivity to the network.
A competition follows, and if the next block is mined on top
of the honest block, then the selfish miner looses the rewards
of this block and the attack cycle ends. If he, or his allied
honest miners, mine the next block, then they publish it and
the attack cycle ends again. If the attacker succeeds in mining
two consecutive secret blocks at the beginning, then he con-
tinues working on his secret blockchain until he has only one
block of advantage with respect to the public blockchain. In
that case, he doesn’t run any risk of being joined by the pub-
lic blockchain and publishes all his secret blockchain, thus
reaping all the rewards and ending the attack cycle again. In
few words, the rogue miner spends most of his time replacing
honest blocks by those that he mined in advance and kept se-
cret. The mean duration E[τ] of the attack cycle is obtained
as a variation of the following result about Poisson processes.

Proposition 5 (Poisson races). Let N and N′ be two indepen-
dent Poisson processes with respective parameters α and α′,
with α′ < α and N(0) = N′(0) = 0. Then, the stopping time

σ = inf{t > 0; N(t) = N′(t) + 1}

is almost surely finite, and we have

E[σ] =
1

α − α′
, E[N′(σ)] =

α′

α − α′
, E[N(σ)] =

α

α − α′
.

The proof is a simple application of Doob’s Stopping Time
Theorem. Here, N and N′ are the counting processes of blocks
mined by the honest miners and the attacker. To finish, we
must compute the intensities α and α′. At the beginning we
have α = α0 =

p
τ0

and α′ = α′0 =
q
τ0

where p is the ap-
parent hashrate of the honest miners and q the one of the at-
tacker. But the existence of a selfish miner perturbs the net-
work and slows down the production of blocks. Instead of
having one block for each period τ0, the progression of the
official blockchain is of E[N(τ) ∨ N′(τ)] blocks during E[τ].
After validation of 2016 official blocks, this triggers a diffi-
culty adjustment that can be important. The new difficulty is
obtained from the old one by multiplication by a factor δ < 1
given by

δ =
E[N(τ) ∨ N′(τ)] τ0

E[τ]
After the difficulty adjustment, the new mining parameters
are α = α1 =

α0
δ

and α′ = α′1 =
α′0
δ

. The stopping time τ and
the parameter δ can be computed using the relation |N(τ) −
N′(τ)| = 1. This can be used to compute the revenue ratio
of the strategy [7]. This analysis can also checked by mining
simulators.

An alternative procedure consists in modelling the network
by a Markov chain where the different states correspond to
different degree of progress of the selfish miner. Each transi-
tion corresponds to a revenue increase π and π′ for the honest
and selfish miner. By another application of the Law of Large
Numbers we prove that the long term apparent hashrate of
the strategy, defined as the proportion of mined blocks by the
selfish miner compared to the total number of blocks, is given
by the formula

q′ =
E[π′]

E[π] + E[π′]

The expectation is taken relative to the stationnary proba-
bility that exists because the Markov chain is transitive and
recurrent. Indeed, the Markov chain is essentially a random
walk on N partially reflexive on 0. The computation of this
stationnary probability proves the following Theorem:

Theorem 6 ([8], 2014). The apparent hashrate of the selfish
miner is

q′ =
((1 + pq)(p − q) + pq)q − (1 − γ)p2q(p − q)

p2q + p − q

The results from [7] and [8] obtained by these different
methods, are compatible. The revenue ratio Γ1 and the ap-
parent hashrate q′ are related by the following equation

Γ1 = q′
b
τ0

But the first analysis is finer since it does explain the change
of profitability regime after the difficulty adjustment. In par-
ticular, it allows to compute the duration before running into
profitability for the attacker. The selfish miner starts by los-
ing money, then after the difficulty adjustment that favors him,
starts making profits. For example, with q = 0.1 and γ = 0.9,
he needs to wait 10 weeks in order to be profitable. This partly
explains why such an attack has never been observed in the
Bitcoin network.

Theorem 3 gives an explicit semi-algebraic condition on
the parameters, namely q′ > q, that determines the values of
the parameters q and γ for which the selfish mining strategy
is more profitable than honest mining.

Theorem 4 shows that the achilles’ heel of the protocole is
the difficulty adjustment formula. This formula is supposed to
contain the information about the total hashrate, but in reality
it ignores the orphan blocks. The authors proposed a solu-
tion that incorporates this count, and this solves the stability
problem of the protocol [7].

There are other possible block-withholding strategies that
are variations of the above strategy [9]. These are more agres-
sive strategies. In the initial situation where the attacker suc-
ceeds to be two blocks ahead, instead of publishing the whole
secret chain when he is only one block ahead, he can wait to
be caught-up to release his blocks and then starts a final com-
petition between the two competing chains. The attack cycle
ends when the outcome is decided. This is the “Lead Stubborn
Mining” (LSM, strategy 2). In this strategy it is important that
the miner regularly publishes his secret blocks with the same
height of the official blockchain, to attract part of the honest
miners in order to take out hashrate from the pool of honest
miners. Also in this way, even if he looses the final compe-
tition he will succeed in incorporating some of his blocks in
the official blockchain and reap the corresponding rewards.

Another even more agressive variation consists in waiting
not to be caught up but to be behind one block. This is the
"Equal Fork Stubborn Mining Strategy" (EFSM, strategy 3).
Here again, it is important to publish secret blocks regularly.
Finally, the authors have considered another more agressive
variation where the stubborn miner follows EFSM but then
doesn’t stop when he is one block behind. He keeps on mining
until his delay becomes greater than a threshold A or until he



Newsletter of the EMS – Manuscript Page 6

Figure 3: Comparison of HM, SM, LSM, EFSM and A-TSM.

successfully comes from behind, catches-up and finally takes
the advantage over the official blockchain.

This strategy seems desperate, because the official blockchain
progress is faster, on average. But in case of catching-up the
selfish miner wins the jackpot of all the blocks he replaces.
This is the “A-Trailing Mining” strategy (A-TM, strategy 4).
The authors of [9] conduct a numerical study of profitability
by running a Montecarlo simulation and compare the prof-
itability of the different strategies for different parameter val-
ues (q, γ). But we can find closed form formulas for the rev-
enue ratio of all these strategies using the precedent martin-
gale approach.

Theorem 7. ([7, 10, 11, 12]) We have

Γ1

ΓH
=

(1 + pq)(p − q) + pq − (1 − γ)p2(p − q)
p2q + p − q

Γ2

ΓH
=

p + pq − q2

p + pq − q
−

p(p − q) f (γ, p, q)
p + pq − q

Γ3

ΓH
=

1
p
−

p − q
pq

f (γ, p, q)

Γ4

ΓH
=

1 +
(1−γ)p(p−q)

(p+pq−q2)[A+1]

((
[A − 1] + 1

p
PA(λ)
[A+1]

)
λ2 − 2√

1−4(1−γ)pq+p−q

)
p+pq−q
p+pq−q2 +

(1−γ)pq
p+pq−q2 (A + λ)

(
1

[A+1] −
1

A+λ

)
with

f (γ, p, q) =
1 − γ
γ
·

(
1 −

1
2q

(1 −
√

1 − 4(1 − γ)pq)
)

and λ = q/p, [n] = 1−λn

1−λ pour n ∈ N, PA(λ) = 1−AλA−1+AλA+1−λ2A

(1−λ)3

We can plot the parameter regions where each startegy is
the best one (Figure 3). The Catalan numbers appear naturally
in the computations.

Cn =
1

2n + 1

(
2n
n

)
=

(2n)!
n!(n + 1)!

.

For this reason their generating function appears in the for-
mulas

C(x) =

+∞∑
n=0

Cnxn =
1 −
√

1 − 4x
2x

We observe that
√

1 − 4pq = p − q and C(pq) = 1/p, and
this justifies the definition of new probability distributions
that arise in the proofs.

Definition 8. A discrete random variable X taking integer val-
ues follows a Catalan distribution of the first type if we have,
for n ≥ 0,

P[X = n] = Cn p(pq)n .

It follows a Catalan distribution of the second type if P[X =

0] = p and for n ≥ 1,

P[X = n] = Cn−1(pq)n .

It follows a Catalan distribution of the third type if P[X = 0] =

p, P[X = 1] = pq + pq2 and for n ≥ 2,

P[X = n] = pq2Cn−1(pq)n−1 .

7 Dyck words.

We can recover this results by a direct combinatorical ap-
proach representing each attack cycle by a Dyck word.

Definition 9. A Dyck word is a word built from the two letter
alphabet {S ,H} which contains as many S letters as H letters,
and such that any prefix word contains more or equal S letters
than H letters. We denote D the set of Dyck words, and for
n ≥ 0,Dn the subset of Dyck worlds of length 2n.

The relation to Catalan numbers is classical: the cardinal
of Dn is Cn. We can encode attack cycles by a chronologic
succession of block discoveries (disregarding if the blocks are
made public or not). For a selfish block we use the letter S (for
“selfish”) and for the honest blocks the letter H (for “honest”).

The link between the selfish mining strategy and Dyck words
is given by the following proposition:

Proposition 10. The attack cycles of the SM strategy are H,
SHH, SHS, and SSwH where w ∈ D.

At the end of the cycle, we can summarise and count the
total number of official blocks, say L, and how many of these
blocks were mined by the attacker, say Z. Then, for strategy 1
(SM), the random variable L−1 follows a Catalan distribution
of the third type, and except for some particular cases (when
L < 3), we always have L = Z. The apparent hashrate q′ is
then given by the formula:

q′ =
E[Z]
E[L]

We can then directly recover Theorem 6 by this simpler com-
binatorical procedure [12]. The other rogue strategies can be
studied in a similar way. The Catalan distribution of the first
type arises in the study of the strategy EFSM (strategy 3), and
the one of the second type for the strategy LSM (strategy 2).
We can then recover all the results given by the Markov chain
analysis. Unfortunately we cannot recover the more finer re-
sults obtained by martingales techniques.

This sort analysis applies to other Proof-of-Work cryptocur-
rencies, and to Ethereum that has a more complex reward sys-
tem and a different difficulty adjustment formula [13].
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8 Nakamoto double spend revisited.

We come back to the fundamental double spend problem from
Nakamoto Bitcoin paper discussed in section 3. In that sec-
tion, we computed the probability of success of a double spend.
But now, with the profitability model knowledge from section
4, we can study its profitability and get better estimates on the
number of confirmations that are safe to consider a paiement
definitive. The double spend strategy as presented in [1] is un-
sound because there is a non-zero probability of failure and in
that case, if we keep mining in the hope of catching-up from
far behind the official blockchain, we have a positive proba-
bility of total ruin. Also the strategy is not integrable since
the expected duration of the attack is infinite. Thus, we must
obviously put a threshold to the unfavorable situation where
we are lagging far behind the official blockchain.

We assume that the number of confirmations requested by
the recipient of the transaction is z and we assume that we are
never behind A ≥ z blocks of the official blockchain. This
defines an integrable strategy, The A-Nakamoto double spend
strategy. Putting aside technical details about premining, the
probability of success of this strategy is a modification of the
probability from Theorem 1

Theorem 11 ([14], 2019). After z confirmations, the proba-
bility of success of an A-Nakamoto double spend is

PA(z) =
P(z) − λA

1 − λA

where P(z) is the probability from Theorem 1 and λ = q/p.

If v is the amount to double spend, then we can compute
the revenue ratio ΓA = E[R]/E[τ].

Theorem 12 ([14], 2019). With the previous notations, the
expected revenue and the expected duration of the A-Nakamoto
double spend strategy is

E[RA]/b =
qz
2p

I4pq(z, 1/2) −
AλA

p(1 − λ)3[A]2 I(p−q)2 (1/2, z)

+
2 − λ + λA+1

(1 − λ)2[A]
pz−1qz

B(z, z)
+ PA(z)

( v
b

+ 1
)

E[TA]/τ0 =
z

2p
I4pq(z, 1/2) +

A
p(1 − λ)2[A]

I(p−q)2 (1/2, z)

−
pz−1qz

p(1 − λ) B(z, z)
+

1
q

with the notation [n] = 1−λn

1−λ for an integer n ≥ 0, and B is the
classical Beta function.

In principle a powerful miner does not have an interest in
participating in a large double spend, since doing so will un-
dermine the foundations of his business. For a small miner
with relative hashrate 0 < q << 1 we can estimate the min-
imal amount of a double spend to be profitable. For this we
only need to use the inequality from Theorem 3, ΓA ≥ ΓH =

qb/τ0, and take the asymptotics q → 0 (with A and z being
fixed, but the final result turns out to be independent of A).

Corollary 13. When q → 0 the minimal amount v for an
Nakamoto double spend with z ≥ 1 confirmations is

v ≥
q−z

2
(

2z−1
z

) b = v0 .

Figure 4: Graph of ΓA, for z = 2, v = b and A = 3, 5, 10.

For example, in practice, with a 10% hashrate, q = 0.01,
and only one confirmation, z = 1, we need to double spend
more than v0/b = 50 coinbases. With the actual coinbase
reward of b = 12.5 B bitcoins and the actual prize over 8.300
euros, this represents more than 5 millions euros.

Hence for all practical purposes and normal amount trans-
actions, only one confirmation is enough to consider the trans-
action definitive.

Conclusions. Bitcoin provides a good example of the uni-
versality of Mathematical applications and its potential to im-
pact our society. With the glimpse we have given, we hope to
have convinced our colleagues that the Bitcoin protocol also
motivates some exciting Mathematics.
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