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A NONLINEAR EXTENSION OF KOROVKIN’S THEOREM

SORIN G. GAL AND CONSTANTIN P. NICULESCU

Dedicated to Professor Nicolae Dinculeanu, on the occasion of his 95th birthday.

Abstract. In this paper we extend the classical Korovkin theorems to the

framework of comonotone additive, sublinear and monotone operators. Based
on the theory of Choquet capacities, several concrete examples illustrating our
results are also discussed.

1. Introduction

One of the most elegant results in the theory of approximation is Korovkin’s
theorem, that provides a generalization of the well-known proof of Weierstrass’s
classical approximation theorem as was given by Bernstein.

Theorem 1. (Korovkin [18], [19]) Let (Ln)n be a sequence of positive linear opera-

tors that map C([0, 1]) into itself. Suppose that the sequence (Ln(f))n converges to

f uniformly on [0, 1] for each of the test functions 1, x and x2. Then this sequence

converges to f uniformly on [0, 1] for every f ∈ C([0, 1]).

Simple examples show that the assumption concerning the positivity of the op-
erators Ln cannot be dropped. What about the assumption on their linearity?

Over the years, many generalizations of Theorem 1 appeared, in a variety of
settings including important Banach function spaces. A nice account on the present
state of art is offered by the authoritative monograph of Altomare and Campiti [3]
and the excellent survey of Altomare [2]. The literature concerning the subject
of Korovkin type theorems is really huge, a search on Google offering more than
26,000 results. However, except for Theorem 2.7 in the 1973 paper of Bauer [4],
the extension of this theory beyond the framework of linear functional analysis
remained largely unexplored.

Inspired by the Choquet theory of integrability with respect to a nonadditive
measure, we will prove in this paper that the restriction to the class of positive linear
operators can be relaxed by considering operators that verify a mix of conditions
characteristic for Choquet’s integral.

As usually, for X a Hausdorff topological space we will denote by F(X) the
vector lattice of all real-valued functions defined on X endowed with the pointwise
ordering. Two important vector sublattices of it are

C(X) = {f ∈ F(X) : f continuous}
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and

Cb(X) = {f ∈ F(X) : f continuous and bounded} .
With respect to the the sup norm, Cb(X) becomes a Banach lattice. See [22] for
the theory of these spaces.

Suppose that X and Y are two Hausdorff topological spaces and E and F are
respectively vector sublattices of C(X) and C(Y ). An operator T : E → F is called:

- sublinear if it is both subadditive, that is,

T (f + g) ≤ T (f) + T (g) for all f, g ∈ E,

and positively homogeneous, that is,

T (af) = aT (f) for all a ≥ 0 and f ∈ E;

- monotonic if f ≤ g in E implies T (f) ≤ T (g);
- comonotonic additive if T (f+g) = T (f)+T (g) whenever the functions f, g ∈ E

are comonotone in the sense that

(f(s)− f(t)) · (g(s)− g(t)) ≥ 0 for all s, t ∈ X.

Our main result extends Korovkin’s results to the framework of operators acting
on vector lattices of functions of several variables that play the properties of sublin-
earity, monotonicity and comonotonic additivity. We use families of test functions
including the canonical projections on R

N ,

prk : (x1, ..., xN ) → xk, k = 1, ..., N.

Theorem 2. (The nonlinear extension of Korovkin’s theorem: the several variables
case) Suppose that X is a locally compact subset of the Euclidean space R

N and E
is a vector sublattice of F(X) that contains the test functions 1, ± pr1, ..., ± prN
and

∑N
k=1 pr

2
k.

(i) If (Tn)n is a sequence of monotone and sublinear operators from E into E
such that

(1.1) lim
n→∞

Tn(f) = f uniformly on the compact subsets of X

for each of the 2N + 2 aforementioned test functions, then the property (1.1) also

holds for all nonnegative functions f in E ∩Cb(X).
(ii) If, in addition, each operator Tn is comonotone additive, then (Tn(f))n

converges to f uniformly on the compact subsets of X, for every f ∈ E ∩Cb (X).
Notice that in both cases (i) and (ii) the family of testing functions can be reduced

to 1, − pr1, ..., − prN and
∑N

k=1 pr
2
k when K is included in the positive cone of RN .

Also, the convergence of (Tn(f))n to f is uniform on X when f ∈ E is uniformly

continuous and bounded on X.

The details of this result make the objective of Section 2.
Theorem 2 extends not only Korovkin’s original result (which represents the

particular case where N = 1, K = [0, 1], all operators Tn are linear bounded and
monotone, and the function pr1 is the identity of K) but also the several variable
version of it due to due to Volkov [25]. It encompasses also the technique of smooth-
ing kernels, in particular Weierstrass’ argument for the Weierstrass approximation
theorem: for every bounded uniformly continuous function f : R → R,

(Whf) (t) =
1

h
√
π

∫

∞

−∞

f(s)e−(s−t)2/h2

ds −→ f(t)
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uniformly on R as h → 0.
Applications of Theorem 2 in the nonlinear setting are presented in Section 3.

They are all based on Choquet’s theory on integration with respect to a capacity.
Indeed, this theory, which was initiated by Choquet [6], [7] in the early 1950s, rep-
resents a major source of comonotonic additive, sublinear and monotone operators.

It is worth mentioning that nowadays Choquet’s theory provides powerful tools
in decision making under risk and uncertainty, game theory, ergodic theory, pattern
recognition, interpolation theory and very recently on transport under uncertainty.
See Adams [1], Denneberg [8], Föllmer and Schied [9], Wang and Klir [26], Wang
and Yan [27], Gal and Niculescu [13] as well as the references therein.

For the convenience of reader we summarized in the Appendix at the end of this
paper some basic facts concerning this theory.

Some nonlinear extension of Korovkin’s theorem within the framework of com-
pact spaces are presented in Section 4.

2. Proof of Theorem 2

Before to detail the proof of Theorem 2 some preliminary remarks on the behavior
of operators T : Cb(X) → Cb(Y ) are necessary.

If T is subadditive and monotone, then it verifies the inequality

(2.1) |T (f)− T (g)| ≤ T (|f − g|) for all f, g.

Indeed, f ≤ g + |f − g| yields T (f) ≤ T (g) + T (|f − g|) , i.e., T (f) − T (g) ≤
T (|f − g|), and interchanging the role of f and g we infer that − (T (f)− T (g)) ≤
T (|f − g|) .

If T is linear, then the property of monotonicity is equivalent to that of positivity,
whose meaning is

T (f) ≥ 0 for all f ≥ 0.

If the operator T is monotone and positively homogeneous then necessarily

T (0) = 0.

Every positively homogeneous and comonotonic additive operator T verifies the
formula

(2.2) T (f + a · 1) = T (f) + aT (1) for all f and all a ∈ [0,∞);

indeed, f is comonotonic to any constant function.

Proof of Theorem 2. (i) In order to make more easier the handling of the test func-
tions we denote

e0 = 1, ek = prk (k = 1, ...N) and eN+1 =

N
∑

k=1

pr2k .

Replacing each operator Tn by Tn/Tn(e0), we may assume that Tn(e0) = 1 for
all n.

Let f ∈ E ∩ Cb(Ω) and let K be a compact subset of X. Then for every ε > 0

there is δ̃ > 0 such that

|f(s)− f(t)| ≤ ε for every t ∈ K and s ∈ X with ‖s− t‖ ≤ δ̃;

this can be easily proved by reductio ad absurdum.
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If ‖s− t‖ ≥ δ̃, then

|f(s)− f(t)| ≤ 2‖f‖∞
δ̃2

· ‖s− t‖2,

so that letting δ = 2‖f‖∞/δ̃2 we obtain the estimate

(2.3) |f(s)− f(t)| ≤ ε+ δ · ‖s− t‖2

for all t ∈ K and s ∈ X. Since K is a compact set, it can embedded into an
N -dimensional cube [a, b]N for suitable b ≥ 0 ≥ a and the estimate (2.3) yields

|f(s)− f(t)e0| ≤ εe0

+ δ(ε)

[

e2N+1(s) + 2

N
∑

k=1

(ek(t)− a) (−ek(s))

−2a

N
∑

k=1

ek(s) + ‖t‖2 e0(s)
]

.

Taking into account the formula (2.1) and the fact that the operators Tn are sub-
additive and positively homogeneous, we infer that

|Tn(f)(s)− f(t)| = |Tn(f)(s)− Tn(f(t)e0)(s)| ≤ Tn (|f(s)− f(t)e0|)

≤ ε+ δ(ε)

[

Tn(e
2
N+1)(s) + 2

N
∑

k=1

(ek(t)− a)Tn(−ek)(s)

−2a
N
∑

k=1

Tn (ek)(s)) + ‖t‖2
]

for every n ∈ N and s, t ∈ K. Here we used the assumption that f is nonnegative.
By our hypothesis,

Tn(e
2
N+1)(s) + 2

N
∑

k=1

(ek(s)− a)Tn(−ek)(s)− 2a

N
∑

k=1

Tn (ek)(s)) + ‖s‖2 → 0

uniformly on K as n → ∞. Therefore

lim sup
n→∞

|Tn(f)(s)− f(s)| ≤ ε

whence we conclude that Tn(f) → f uniformly on K because ε was arbitrarily
fixed.

(ii) Suppose in addition that each operator Tn is also comonotone additive.
According to the assertion (i),

Tn(f + ‖f‖e0) → f + ‖f‖e0, uniformly on K.

Since a constant function is comonotone with any arbitrary function, using the
comonotone additivity of Tn it follows that Tn(f + ‖f‖e0) = Tn(f) + ‖f‖ · Tn(e0).
Therefore Tn(f) → f uniformly on K. �
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When K is included in the positive cone of RN , it can embedded into an N -
dimensional cube [0, b]N for a suitable b > 0 and the estimate (2.3) yields

|f(s)− f(t)e0| ≤ εe0

+ δ(ε)

[

e2N+1(s) + 2

N
∑

k=1

ek(t) (−ek(s)) + ‖t‖2 e0(s)
]

.

Proceeding as above, we infer that

|Tn(f)(s)− f(t)|

≤ ε+ δ(ε)

[

Tn(e
2
N+1)(s) + 2

N
∑

k=1

ek(t)Tn(−ek)(s) + ‖t‖2
]

for every n ∈ N and s, t ∈ K, provided that f ≥ 0. As a consequence, in both cases
(i) and (ii) the family of testing functions can be reduced to e0,−e1, ...,−eN and
eN+1.

When dealing with functions f ∈ E uniformly continuous and bounded on X,
an inspection of the argument above shows that f verifies an estimate of the form
(2.3) for all s, t ∈ X , a fact that implies the convergence of (Tn(f))n to f uniformly
on X .

3. Applications of Theorem 2

We will next discuss several examples of operators illustrating Theorem 2. They
are all based on Choquet’s theory of integration with respect to a capacity µ, in
our case the restriction of the monotone and submodular capacity

µ(A) = (L(A))1/2

to various compact subintervals of R; here L denotes the Lebesgue measure on real
line. The necessary background on Choquet’s theory is provided by the Appendix
at the end of this paper.

The 1-dimensional case of Theorem 2 is illustrated by the following three families
of nonlinear operators, first considered in [11]:

- the Bernstein-Kantorovich-Choquet operators act on C([0, 1]) by the formula

Kn,µ(f)(x) =

n
∑

k=0

(C)
∫ (k+1)/(n+1)

k/(n+1)
f(t)dµ

µ([k/(n+ 1), (k + 1)/(n+ 1)])
·
(

n

k

)

xk(1− x)n−k;

- the Szász-Mirakjan-Kantorovich-Choquet operators act on C([0,∞)) by the
formula

Sn,µ(f)(x) = e−nx
∞
∑

k=0

(C)
∫ (k+1)/n

k/n
f(t)dµ

µ([k/n, (k + 1)/n])
· (nx)

k

k!
;

- the Baskakov-Kantorovich-Choquet operators act on C([0,∞)) by the formula

Vn,µ(f)(x) =
∞
∑

k=0

(C)
∫ (k+1)/n

k/n f(t)dµ

µ([k/n, (k + 1)/n])
·
(

n+ k − 1

k

)

xk

(1 + x)n+k
.

Since the Choquet integral with respect to a submodular capacity µ is comono-
tone additive, sublinear and monotone, it follows that all above operators also have
these properties.
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Clearly, Kn,µ(e0)(x) = 1 and by Corollary 3.6 (i) in [11] we immediately get that
Kn,µ(e2)(x) → e2(x) uniformly on [0, 1]. Again by Corollary 3.6 (i), it follows that
Kn,µ(1 − e1)(x) → 1− e1, uniformly on [0, 1]. Since Kn,µ is comonotone additive,

Kn,µ(1− e1)(x) = Kn,µ(e0)(x) +Kn,µ(−e1)(x),

which implies that Kn,µ(−e1) → −e1 uniformly on [0, 1]. Therefore the operators
Kn,µ satisfy the hypothesis of Theorem 2, whence the conclusion

Kn,µ(f)(x) → f(x) uniformly for every f ∈ C([0, 1]).

Similarly, one can show that the operators Sn,µ and Vn,µ satisfy the hypothesis of
Theorem 2 for N = 1 and X = [0,+∞). In the first case, notice that the condition
Sn,µ(e0) = e0 is trivial. The convergence of the sequence of functions Sn,µ(e2)(x)

will be settled by computing the integrals
√
n · (C)

∫ (k+1)/n

k/n t2dµ. We have

√
n · (C)

∫ (k+1)/n

k/n

t2dµ =
√
n

∫

∞

0

µ({t ∈ [k/n, (k + 1)/n] : t ≥ √
α})dα

=
√
n

∫ ((k+1)/n)2

0

µ({t ∈ [k/n, (k + 1)/n] : t ≥ √
α})dα

=
√
n

∫ (k/n)2

0

µ({t ∈ [k/n, (k + 1)/n] : t ≥ √
α})dα

+
√
n

∫ ((k+1)/n)2

(k/n)2
µ({t ∈ [k/n, (k + 1)/n] : t ≥ √

α})dα

=
√
n ·
(

k

n

)2

· 1√
n
+
√
n ·
∫ ((k+1)/n)2

(k/n)2

√

(k + 1)/n−√
αdα

=

(

k

n

)2

+
√
n ·
∫ 1/n

0

β1/2((k + 1)/n− β)dβ

=

(

k

n

)2

+
√
n · 2(k + 1)

n
· 2
3
· β3/2|1/n0 − 2

√
n · 2

5
β5/2|1/n0

=
1

15n2

(

15k2 + 20k + 8
)

.

This immediately implies

Sn,µ(e2)(x) = Sn(e2)(x) +
4

3n
Sn(e1)(x) +

4

3n2
− 4

5n2
→ e2(x),

uniformly on every compact subinterval [0, a]. Here Sn denotes the classical Szász-
Mirakjan-Kantorovich operator, associated to the Lebesgue measure.
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It remains to show that Sn,µ(−e1)(x) → −e1(x), uniformly on every compact
subinterval [0, a]. For this goal we have to perform the following computation:

√
n·(C)

∫ (k+1)/n

k/n

(−t)dµ =

∫ 0

−∞

{

µ({ω ∈ [k/n, (k + 1)/n] : −ω ≥ α})− 1√
n

}

dα

=
√
n

∫ 0

−k/n

{

µ({ω ∈ [k/n, (k + 1)/n] : ω ≤ −α})− 1√
n

}

dα

+
√
n

∫

−k/n

−(k+1)/n

{

µ({ω ∈ [k/n, (k + 1)/n] : ω ≤ −α})− 1√
n

}

dα

= −k

n
+
√
n ·
∫

−k/n

−(k+1)/n

(

√

−α− k/n− 1√
n

)

dα

= −k

n
+
√
n

∫ (k+1)/n

k/n

√

β − k/ndβ − 1

n

= −k

n
+
√
n

∫ 1/n

0

β1/2dβ − 1

n
= −3k + 1

3n
.

Consequently

Sn,µ(−e1)(x) = Sn(−e1)(x)−
1

n
→ −x,

uniformly on any compact interval [0, a].
In a similar way, one can be prove that the Baskakov-Kantorovich-Choquet op-

erators Vn,µ satisfy the hypothesis of Theorem 2.
The several variables framework can be illustrated by the following special type

of Bernstein-Durrmeyer-Choquet operators (see [14] for the general case) that act
on the space of continuous functions defined on the N -simplex

∆N = {(x1, ..., xN ) : 0 ≤ x1, ..., xN ≤ 1, 0 ≤ x1 + · · ·+ xN ≤ 1}
via the formulas

Mn,µ(f)(x) = Bn(f)(x)− f(x) + xn
N

[

(C)
∫

∆N

f(t1, ...tN )tnNdµ

(C)
∫

∆N

tnNdµ
− f(0, ..., 0, 1)

]

.

Here x = (x1, ..., xN ), Bn(f)(x) is the multivariate Bernstein polynomial and µ =√LN , where LN is the N -dimensional Lebesgue measure. The fact that these
operators verify the hypotheses of Theorem 2 is an exercise left to the reader.

4. The case of spaces of functions defined on compact spaces

The alert reader has probably already noticed that the basic clue in the proof of
Theorem 2 is the estimate (2.3), characterized in [21] (see also [20]) as a property
of absolute continuity. This estimate occurs in the larger context of spaces C(M),
where M is a metric space on which is defined a separating function, that is, a
nonnegative continuous function γ : M ×M → R such that

γ(s, t) = 0 implies s = t.

If M is a compact subset of RN , and f1, ..., fm ∈ C(M) is a family of functions
which separates the points of M (in particular this is the case of the coordinate
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functions pr1, ..., prN ), then

(4.1) γ(s, t) =

m
∑

k=1

(fk(s)− fk(t))
2

is a separating function.

Lemma 1. (See [21]) If K is a compact metric space, and γ : K × K → R is

a separating function, then any real-valued continuous function f defined on K
verifies an estimate of the following form

|f(s)− f(t)| ≤ ε+ δ(ε)γ(s, t) for all s, t ∈ K.

The separating functions play an important role in obtaining Korovkin-type
theorems. A sample is as follows:

Theorem 3. Suppose that K is a compact metric space and γ is a separating

function for M. If Tn : C(K) → C(K) (n ∈ N) is a sequence of comonotone

additive, sublinear and monotone operators such that Tn(1) → 1 uniformly and

(4.2) Tn(γ(·, t))(t) → 0 uniformly in t,

then Tn(f) → f uniformly for each f ∈ C(K).

The details are similar to that used for Theorem 2, so they will be omitted.
In a similar way one can prove the following nonlinear extension of the Korovkin

type theorem (due in the linear case to Schempp [23] and Grossman [17]):

Theorem 4. Let X be a compact Hausdorff space and F a subset of C(X) that

separates the points of X. If (Tn)n is a sequence of comonotonic additive, sublin-

ear and monotone operators that map C(X) into C(X) and satisfy the conditions

limn→∞ Tn(f
k) = fk for each f in F and k = 0, 1, 2, then

lim
n→∞

Tn(f) = f,

for every f in C(X).

5. Appendix. Some basic facts on capacities and Choquet integral

For the convenience of the reader we will briefly recall in this section some basic
facts concerning the mathematical concept of capacity and the integral associated
to it. Full details are to be found in the books of Denneberg [8], Grabisch [16] and
Wang and Klir [26].

Let (X,A) be an arbitrarily fixed measurable space, consisting of a nonempty
abstract set X and a σ-algebra A of subsets of X.

Definition 1. A set function µ : A → [0,∞) is called a capacity if µ(∅) = 0 and

µ(A) ≤ µ(B) for all A,B ∈ A, with A ⊂ B

A capacity is called normalized if µ(X) = 1;

An important class of normalized capacities is that of probability measures (that
is, the capacities playing the property of σ-additivity). Probability distortions
represents a major source of nonadditive capacities. Technically, one start with a
probability measure P : A →[0, 1] and applies to it a distortion u : [0, 1] → [0, 1],
that is, a nondecreasing and continuous function such that u(0) = 0 and u(1) = 1;for
example, one may chose u(t) = ta with α > 0.The distorted probability µ = u(P ) is a
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capacity with the remarkable property of being continuous by descending sequences,
that is,

lim
n→∞

µ(An) = µ

(

∞
⋂

n=1

An

)

for every nonincreasing sequence (An)n of sets in A. Upper continuity of a capacity
is a generalization of countable additivity of an additive measure. Indeed, if µ is
an additive capacity, then upper continuity is the same with countable additivity.
When the distortion u is concave (for example, when u(t) = ta with 0 < α < 1),
then µ is also submodular in the sense that

µ(A ∪B) + µ(A ∩B) ≤ µ(A) + µ(B) for all A,B ∈ A.

Another simple technique of constructing normalized submodular capacities µ
on a measurable space (X,A) is by allocating to it a probability space (Y,B, P ) via
a map ρ : A → B such that

ρ(∅) = ∅, ρ(X) = Y and

ρ
(

⋂∞

n=1
An

)

=
⋂∞

n=1
ρ(An) for every sequence of sets An ∈ A.

This allows us to define µ by the formula

µ(A) = 1− P (ρ(X\A)) .

See Shafer [24] for details.
The next concept of integrability with respect to a capacity refers to the whole

class of random variables, that is, to all functions f : X → R such that f−1(A) ∈ A
for every Borel subset A of R.

Definition 2. The Choquet integral of a random variable f with respect to the

capacity µ is defined as the sum of two Riemann improper integrals,

(C)

∫

X

fdµ =

∫ +∞

0

µ ({x ∈ X : f(x) ≥ t})dt

+

∫ 0

−∞

[µ ({x ∈ X : f(x) ≥ t})− µ(X)] dt,

Accordingly, f is said to be Choquet integrable if both integrals above are finite.

If f ≥ 0, then the last integral in the formula appearing in Definition 2 is 0.
The inequality sign ≥ in the above two integrands can be replaced by >; see

[26], Theorem 11.1, p. 226.
Every bounded random variable is Choquet integrable. The Choquet integral

coincides with the Lebesgue integral when the underlying set function µ is a σ-
additive measure.

The integral of a function f : X → R on a set A ∈ A is defined by the formula

(C)

∫

A

fdµ = (C)

∫

X

fdµA

where µA is the capacity defined by µA(B) = µ(B ∩ A) for all B ∈ A.
We next summarize some basic properties of the Choquet integral.
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Remark 1. (a) If µ : A → [0,∞) is a capacity, then the associated Choquet integral

is a functional on the space of all bounded random variables such that:

f ≥ 0 implies (C)

∫

A

fdµ ≥ 0 (positivity)

f ≤ g implies (C)

∫

A

fdµ ≤ (C)

∫

A

gdµ (monotonicity)

(C)

∫

A

afdµ = a ·
(

(C)

∫

A

fdµ

)

for a ≥ 0 (positive homogeneity)

(C)

∫

A

1 · dµ(t) = µ(A) (calibration);

see [8], Proposition 5.1 (ii), p. 64, for a proof of the property of positive homogene-

ity.

(b) In general, the Choquet integral is not additive but, if the bounded random

variables f and g are comonotonic, then

(C)

∫

A

(f + g)dµ = (C)

∫

A

fdµ+ (Ch)

∫

A

gdµ.

This is usually referred to as the property of comonotonic additivity and was first

noticed by Delacherie [10]. An immediate consequence is the property of translation

invariance,

(C)

∫

A

(f + c)dµ = (C)

∫

A

fdµ+ c · µ(A)

for all c ∈ R and all bounded random variables f. For details, see [8], Proposition
5.1, (vi), p. 65.

(c) If µ is an upper continuous capacity, then the Choquet integral is upper con-

tinuous in the sense that

lim
n→∞

(

(C)

∫

A

fndµ

)

= (C)

∫

A

fdµ

whenever (fn)n is a nonincreasing sequence of bounded random variables that con-

verges pointwise to the bounded variable f. This is a consequence of the Bepo Levi

monotone convergence theorem from the theory of Lebesgue integral.
(d) Suppose that µ is a submodular capacity. Then the associated Choquet integral

is a subadditive functional, that is,

(C)

∫

A

(f + g)dµ ≤ (C)

∫

A

fdµ+ (C)

∫

A

gdµ

for all bounded random variables f and g. See [8], Corollary 6.4, p. 78. and

Corollary 13.4, p. 161. It is also a submodular functional in the sense that

(C)

∫

A

sup {f, g} dµ+ (C)

∫

A

inf{f, g}dµ ≤ (C)

∫

A

fdµ+ (C)

∫

A

gdµ

for all bounded random variables f and g. See [5], Theorem 13 (c).

A characterization of Choquet integral in terms of additivity on comonotonic
functions is provided by the following analogue of the Riesz representation theorem.
See Zhou [28], Theorem 1 and Lemma 3, for a simple (and more general) argument.
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Theorem 5. Suppose that I : C(X) → R is a comonotonically additive and mono-

tone functional with I(1) = 1. Then it is also upper continuous and there exists a

unique upper continuous normalized capacity µ : B(X) → [0, 1] such that I coincides

with the Choquet integral associated to it.

On the other hand, according to Remark 1, the Choquet integral associated to

any upper continuous capacity is a comonotonically additive, monotone and upper

continuous functional.

Notice that under the assumptions of Theorem 5, the capacity µ is submodular
if and only if the functional I is submodular.
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