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Abstract—In this paper we demonstrate predicting electroen-
cephalography (EEG) features from acoustic features using
recurrent neural network (RNN) based regression model and
generative adversarial network (GAN). We predict various types
of EEG features from acoustic features. We compare our results
with the previously studied problem on speech synthesis using
EEG and our results demonstrate that EEG features can be
generated from acoustic features with lower root mean square
error (RMSE), normalized RMSE values compared to generating
acoustic features from EEG features (ie: speech synthesis using
EEG) when tested using the same data sets.

Index Terms—electroencephalography (EEG), deep learning

I. INTRODUCTION

Electroencephalography (EEG) is a non invasive way of
measuring electrical activity of human brain. EEG sensors are
placed on the scalp of a subject to obtain the EEG recordings.
The references [1]–[3] demonstrate that EEG features can be
used to perform isolated and continuous speech recognition
where EEG signals recorded while subjects were speaking
or listening, are translated to text using automatic speech
recognition (ASR) models. In [4] authors demonstrated syn-
thesizing speech from invasive electrocorticography (ECoG)
signals using deep learning models. Similarly in [2], [5]
authors demonstrated synthesizing speech from EEG signals
using deep learning models. In [2], [5] authors demonstrated
results using different types of EEG feature sets. Speech
synthesis and speech recognition using EEG features might
help people with speaking disabilities or people who are not
able to speak with speech restoration.

In this paper we are interested in investigating whether it
is possible to predict EEG features from acoustic features.
This problem can be formulated as an inverse problem of
EEG based speech synthesis. In EEG based speech synthe-
sis, acoustic features are predicted from EEG features as
demonstrated by the work explained in references [2], [5].
Predicting EEG features or signatures from unique acoustic
patters might help in better understanding of how human brain
process speech perception and production. Recording EEG
signals in a laboratory is a time consuming and expensive

*Equal author contribution

process which requires the use of specialized EEG sensors and
amplifiers, thus having a computer model which can generate
EEG features from acoustic features might also help with
speeding up the EEG data collection process as it is much
easier to record speech or audio signal, especially for the
task of collecting EEG data for performing speech recognition
experiments.

In [6] authors demonstrated medical time series generation
using conditional generative adversarial networks [7] for toy
data sets. Other related work include the reference [8] where
authors demonstrated generating EEG for motor task using
wasserstein generative adversarial networks [9]. Similarly in
[10] authors generate synthetic EEG using various generative
models for the task of steady state visual evoked potential
classification. In [11] authors demonstrated EEG data augmen-
tation for the task of emotion recognition. Our work focuses
only on generating EEG features from acoustic features.

We first performed experiments using the model used by
authors in [5] and then we tried performing experiments using
generative adversarial networks (GAN) [12]. In this work we
predict various EEG feature sets introduced by authors in
[2] from acoustic features extracted from the speech of the
subjects as well as from acoustic features extracted from the
utterances that the subjects were listening.

Our results demonstrate that predicting EEG features from
acoustic features seem to be easier compared to predicting
acoustic features from EEG features as the root mean square
error (RMSE) values during test time where much lower for
predicting EEG features from acoustic features compared to
it’s inverse problem when tested using the same data sets.
To the best of our knowledge this is the first time predicting
EEG features from acoustic features is demonstrated using
deep learning models.

II. REGRESSION AND GAN MODEL

The regression model we used in this work was very similar
to the ones used by the authors in [5]. We used the exact
training parameters used by authors in [5] for setting values
for batch size, number of training epochs, learning rate etc.
In [5] authors used only gated recurrent unit (GRU) [13]
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layers in their model but in this work we also tried performing
experiments using Bi directional GRU layers where a forward
GRU and backward GRU layer outputs are concatenated to
produce the output of the bi directional GRU layer. The
architecture of our regression model is described in Figure 1.
The model takes acoustic features or mel-frequency cepstral
coefficients (MFCC) of dimension 13 as input and outputs
EEG features of a specific dimension at every time step. The
dimension of the EEG features outputted depends on the EEG
feature set used during training, as each EEG feature set had a
different dimension value. The time distributed dense layer in
the model has number of hidden units equal to the dimension
of the EEG feature set used. The mean squared error (MSE)
function was used as the regression loss function for the model.
The Figure 4 shows the training convergence for the regression
model when Bi directional GRU layers were used. There were
two Bi-GRU layers with 256 and 128 hidden units respectively.

Generative adversarial network (GAN) [12] consists of two
networks namely the generator model and the discriminator
model which are trained simultaneously. The generator model
learns to generate data from a latent space and the discrim-
inator model evaluates whether the data generated by the
generator is fake or is from true data distribution. The training
objective of the generator is to fool the discriminator. The main
motivation behind trying to perform experiments using GAN
was in the case of GAN the loss function is learned where
as in regression a fixed loss function (MSE) is used. However
GAN models are extremely difficult to train.

Our generator model, as shown in Figure 2, consists of two
layers of Bi-GRU with 256, 128 hidden units respectively in
each layer followed by a time distributed dense layer with
hidden units equal to the dimension of EEG feature set. During
training, real MFCC features with dimension 13 from training
set are fed into the generator model and the generator outputs
a vector of dimension equal to EEG feature set dimension,
which can be considered as fake EEG.

The discriminator model, as described in Figure 3, consists
of two single layered Bi-GRU with 256, 128 hidden units
connected in parallel. At each training step a pair of inputs are
fed into the discriminator. The discriminator takes (real MFCC
features, fake EEG) and (real MFCC features, real EEG) pairs.
The outputs of the two parallel Bi-GRU’s are concatenated and
then fed to a GRU layer with 128 hidden units. The last time
step of the GRU layer is fed into the dense layer with sigmoid
activation function.

In order to define the loss functions for both our generator
and discriminator model let us first define few terms. Let Psf

be the sigmoid output of the discriminator for (real MFCC fea-
tures, fake EEG) input pair and let Pse be the sigmoid output
of the discriminator for (real MFCC features, real EEG) input
pair during training time. Then we can define the loss function
of generator as − log(Psf )+ (realEEG− fakeEEG)2 ∗ 0.5
and loss function of discriminator as − log(Pse)−log(1−Psf ).
The weights of Bi-GRU layers in the generator model were
initialized with weights of the regression model for easier
training. During test time, the trained generator model takes

acoustic features or MFCC from test set as input and produces
EEG features as output.

The Figure 6 shows the generator model training loss and
Figure 7 shows the discriminator model training loss. The
GAN model was trained for 200 epochs using adam optimizer
with a batch size of 32.

Fig. 1. Regression Model

Fig. 2. Generator in GAN Model



Fig. 3. Discriminator in GAN Model

Fig. 4. Bi-GRU training loss convergence

III. DATA SETS USED FOR PERFORMING EXPERIMENTS

We used the data set used by authors in [5] for performing
experiments. The data set contains the simultaneous speech
and EEG recording for four subjects. For each subject we
used 80% of the data as the training set, 10% as validation
set and remaining 10% as test set. This was the main data set
used in this work for comparisons. More details of the data
set is covered in [5]. We will refer this data set as data set A
in this paper.

We also performed some experiments using data set B
used by authors in [2]. For this data set we didn’t perform
experiments for each subject instead we used 80% of the total
data as training set, 10% as validation set and remaining 10%
as test set. More details of the data set is covered in [2]. We
will refer this data set as data set B in this paper. The train-test
split was done randomly.

Fig. 5. EEG channel locations for the cap used in our experiments

Fig. 6. Generator training loss

The EEG data used in these data sets were recorded using
wet EEG electrodes. In total 32 EEG sensors were used
including one electrode as ground as shown in Figure 5. The
Brain Product’s ActiChamp EEG amplifier was used in the
experiments to collect data.

IV. EEG FEATURE EXTRACTION DETAILS

We followed the same preprocessing methods used by
authors in [1]–[3], [5] for preprocessing EEG and speech data.

EEG signals were sampled at 1000Hz and a fourth order
IIR band pass filter with cut off frequencies 0.1Hz and 70Hz
was applied. A notch filter with cut off frequency 60 Hz
was used to remove the power line noise. The EEGlab’s
[14] Independent component analysis (ICA) toolbox was used
to remove biological signal artifacts like electrocardiography
(ECG), electromyography (EMG), electrooculography (EOG)
etc from the EEG signals. We then extracted the three EEG
feature sets explained by authors in [2]. The details of each
EEG feature set are covered in [2]. Each EEG feature set was
extracted at a sampling frequency of 100 Hz for each EEG
channel [3].

The recorded speech signal was sampled at 16KHz fre-
quency. We extracted mel-frequency cepstral coefficients
(MFCC) of dimension 13 as features for speech signal. The
MFCC features were also sampled at 100Hz same as the
sampling frequency of EEG features.



Fig. 7. Discriminator training loss

V. EEG FEATURE DIMENSION REDUCTION ALGORITHM
DETAILS

By following the dimension reduction methods used by
authors in [2] we reduced EEG feature set 1 to a dimension
of 30, EEG feature set 2 was reduced to a dimension of 50
using kernel principal component analysis (KPCA) [15] and
EEG feature set 3 was kept at original dimension of 93. More
details of explained variance plots used to identify the right
feature dimensions are covered in [2].

VI. RESULTS

We computed root mean squared error (RMSE) between
the predicted EEG during test time and ground truth EEG
from test set as the major performance metric to evaluate the
performance of the models during test time for Data set A per
subject and for Data set B.

Tables I,II,III and IV shows the results obtained for predict-
ing various listen EEG feature sets from acoustic features for
the four subjects belonging to Data set A using GRU and Bi-
GRU regression models during test time. Listen EEG refers
to the EEG signals recorded while subjects were listening to
the utterances.

Tables V,VI,VII and VIII shows the results obtained for
predicting various spoken EEG feature sets from acoustic
features for the four subjects belonging to Data set A using
GRU and Bi-GRU regression models during test time. Spoken
EEG refers to the EEG signals recorded while subjects were
speaking out loud the utterances.

We observed that RMSE values were comparable for differ-
ent EEG feature sets and both GRU, Bi-GRU layers demon-
strated similar results. We also computed normalized RMSE as
defined by authors in [5] and observed an average normalized
RMSE of 0.00068 for spoken condition for each subject and an
average normalized RMSE of 0.0006 for listen condition for
each subject belonging to Data set A. Our results demonstrate
that the test time average RMSE and normalized RMSE values
were significantly lower than values obtained by authors in
[5] where they were predicting acoustic features from EEG
features. These results demonstrate it is easier for a deep model
to learn the mapping from acoustic features to EEG features

rather than trying to learn the mapping from EEG to acoustic
features.

When we performed experiments using GAN model on data
set A for each subject during test time we observed an average
RMSE of 0.36 for spoken, listen condition for each EEG
feature set. Thus the GRU and Bi-GRU regression models
outperformed GAN for predicting EEG features from acoustic
features. Even though we added regularization terms to the loss
function of the generator in our GAN model, it still didn’t
help to outperform regression models. Hypothetically GAN
should have demonstrated better results than regression model
as GAN also learns the loss function. Our results demonstrate
the extreme difficulty of training GAN for sequence generation
task. The results presented by authors in [2] also demonstrate
that RNN models outperformed GAN for the task of predicting
acoustic features from EEG features.

We performed experiments using GRU regression model for
Data set B and observed an average RMSE of 0.23 for spoken,
listen condition for each EEG feature set during test time. The
observed average RMSE was again much lower compared to
the RMSE values obtained by authors in [2] where they tried
predicting acoustic features from EEG features using the same
Data set B.

Another interesting observation we noted was that in case
of the test time results demonstrated by authors in [5], the
RMSE values for predicting acoustic features from EEG varied
among subjects whereas in our results we observed that RMSE
values during test time remained almost constant among the
four subjects belonging to Data set A indicating our model
was able to generalize better for all the four subjects and it
also indicates the deep learning model can learn acoustic to
EEG mapping easily compared to learning the mapping from
EEG to acoustic features.

EEG
Feature
Set

Average
RMSE
GRU
Model

Average
RMSE
Bi-GRU
Model

Set 1 0.23 0.23
Set 2 0.20 0.206
Set 3 0.19 0.193

TABLE I
RESULTS FOR PREDICTING LISTEN EEG FROM LISTEN MFCC FOR

SUBJECT 1 DATA SET A

EEG
Feature
Set

Average
RMSE
GRU
Model

Average
RMSE
Bi-GRU
Model

Set 1 0.22 0.22
Set 2 0.20 0.21
Set 3 0.19 0.19

TABLE II
RESULTS FOR PREDICTING LISTEN EEG FROM LISTEN MFCC FOR

SUBJECT 2 DATA SET A

VII. CONCLUSION AND FUTURE WORK

In this paper we demonstrated predicting various EEG
feature sets from acoustic features with very low RMSE and



EEG
Feature
Set

Average
RMSE
GRU
Model

Average
RMSE
Bi-GRU
Model

Set 1 0.23 0.23
Set 2 0.21 0.21
Set 3 0.19 0.19

TABLE III
RESULTS FOR PREDICTING LISTEN EEG FROM LISTEN MFCC FOR

SUBJECT 3 DATA SET A

EEG
Feature
Set

Average
RMSE
GRU
Model

Average
RMSE
Bi-GRU
Model

Set 1 0.25 0.25
Set 2 0.23 0.23
Set 3 0.21 0.21

TABLE IV
RESULTS FOR PREDICTING LISTEN EEG FROM LISTEN MFCC FOR

SUBJECT 4 DATA SET A

EEG
Feature
Set

Average
RMSE
GRU
Model

Average
RMSE
Bi-GRU
Model

Set 1 0.23 0.23
Set 2 0.21 0.21
Set 3 0.20 0.20

TABLE V
RESULTS FOR PREDICTING SPOKEN EEG FROM SPOKEN MFCC FOR

SUBJECT 1 DATA SET A

EEG
Feature
Set

Average
RMSE
GRU
Model

Average
RMSE
Bi-GRU
Model

Set 1 0.23 0.23
Set 2 0.22 0.22
Set 3 0.21 0.21

TABLE VI
RESULTS FOR PREDICTING SPOKEN EEG FROM SPOKEN MFCC FOR

SUBJECT 2 DATA SET A

EEG
Feature
Set

Average
RMSE
GRU
Model

Average
RMSE
Bi-GRU
Model

Set 1 0.24 0.24
Set 2 0.23 0.23
Set 3 0.21 0.21

TABLE VII
RESULTS FOR PREDICTING SPOKEN EEG FROM SPOKEN MFCC FOR

SUBJECT 3 DATA SET A

EEG
Feature
Set

Average
RMSE
GRU
Model

Average
RMSE
Bi-GRU
Model

Set 1 0.24 0.24
Set 2 0.22 0.22
Set 3 0.21 0.21

TABLE VIII
RESULTS FOR PREDICTING SPOKEN EEG FROM SPOKEN MFCC FOR

SUBJECT 4 DATA SET A

normalized RMSE values during test time. To the best of
our knowledge this is the first time predicting EEG features
from acoustic features is demonstrated using deep models. Our
results demonstrate it is easier for a deep model to learn the
mapping from acoustic to EEG features rather than trying to
map the inverse.

The future work will focus on validating the results on a
larger data set with more number of subjects and developing
strategies to improve the training of GAN for the task of
generating EEG features from acoustic features.

Our future work will also focus on using these results to
better understand the underlying science behind human brain’s
ability to perform speech perception and production.
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