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 

Abstract — Despite fluorescent cell-labelling being widely 

employed in biomedical studies, some of its drawbacks are 

inevitable, with unsuitable fluorescent probes or probes inducing 

a functional change being the main limitations. Consequently, the 

demand for and development of label-free methodologies to 

classify cells is strong and its impact on precision medicine is 

relevant. Towards this end, high-throughput techniques for cell 

mechanical phenotyping have been proposed to get a 

multidimensional biophysical characterization of single cells. 

With this motivation, our goal here is to investigate the extent to 

which an unsupervised machine learning methodology, which is 

applied exclusively on morpho-rheological markers obtained by 

real-time deformability and fluorescence cytometry (RT-FDC), 

can address the difficult task of providing label-free 

discrimination of reticulocytes from mature red blood cells. We 

focused on this problem, since the characterization of 

reticulocytes (their percentage and cellular features) in the blood 

is vital in multiple human disease conditions, especially 

bone-marrow disorders such as anemia and leukemia. Our 

approach reports promising label-free results in the classification 

of reticulocytes from mature red blood cells, and it represents a 

step forward in the development of high-throughput 

morpho-rheological-based methodologies for the computational 

categorization of single cells. Besides, our methodology can be an 

alternative but also a complementary method to integrate with 

existing cell-labelling techniques. 

Index Terms — fluorescence marker, cell mechanics, real-time 

deformability and fluorescence cytometry, unsupervised machine 

learning, PC-corr, mature red blood cell, reticulocyte, marker 

prediction 
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I. INTRODUCTION 

N biology, a fluorescent tag is a molecule that is chemically 

bound to aid in the labelling and detection of a biomolecule, 

and therefore serves as a label or probe. Despite the great 

success of fluorescent labelling, some of its shortcomings are 

inevitable. Some probes/labels are incompatible with live cell 

analysis, for example, antibody labelling against histone 

modifications[1], or fluorescent reporters for actin are excluded 

from specific filament structures during filament assembly, 

resulting in failed signal detection[2]. Even if live cell reporters 

are available[3], these may have confounding effects on the 

cells, such as the case of inducing single-strand DNA breaks[4] 

or impairing chromatin organization and leading to histone 

dissociation[5]. Besides, in some cases, the label can affect 

protein functions, or can be toxic and sometimes interfere with 

normal biological processes[6]. Therefore, an assay that 

reduces the number of, or even eliminates fluorescent labels 

required to identify cell phenotypes, is particularly attractive. 

The call for label-free assay coincides with cell mechanical 

characterization. Cell mechanical properties are very often 

related to cell state and function, thus they can serve as an 

intrinsic biophysical marker[7]. As a powerful tool, cell 

mechanics can be used to characterize cells, to monitor their 

mechanical behaviour and to diagnose pathological 

alterations[8]. Real-time deformability and fluorescence 

cytometry (RT-FDC) is a microfluidic high-throughput method 

for morpho-rheological characterization of single cells[9]. For 

each cell, multiple morpho-rheological parameters are recorded 

in real-time and then analysed on-the-fly or in a post-processing 

step. In addition, also fluorescence detection and even 1-D 

fluorescence imaging can be performed, and the information 

can be correlated with the label-free morpho-rheological 

characterization. 

In this study, we investigated how to predict cell type 

without fluorescence labelling by using the RT-FDC data on a 

case study with computational approach. To be more specific, 

our main aims are two: 1) to investigate the problem of 

computational classification of mature red blood cells 

(mRBCs) and reticulocytes (RETs) - derived from human 
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blood - considering only morpho -rheological cell features. 2) 

to investigate the extent to which a basic unsupervised and 

linear approach performs (in comparison to supervised 

approaches) to discriminate mRBCs and reticulocytes (RETs) 

on the exclusive basis of morpho-rheological phenotype data 

obtained from RT-FDC. We focused on this classification task 

because the investigation of RETs (their percentage and 

cellular features) in the blood is an important indicator to 

differentiate between multiple human diseases[10]. As 

reticulocyte count is an important sign of erythropoietic 

activity, it can help e.g. to evaluate different types of anaemia, 

which is a deficiency in the number or quality of red blood 

cells. Whereas in acute bleeding or in hemolysis the 

reticulocyte count is increased (or stable), a low reticulocyte 

count can indicate dysplastic or aplastic bone marrow 

disorders, resulting in an impaired erythropoiesis. In addition to 

quantitative changes, the RETs can change their mechanical 

properties and become progressively more deformable as they 

mature towards their normal state, a characteristic that 

facilitates their release from the functional healthy bone 

marrow[11].  

Mature human red blood cells are characterized by the lack of a 

nucleus and consequently the absence of transcriptional 

activity, so that neither DNA nor RNA is typically present in 

these cells. In contrast, immature red blood cells can be 

identified by the presence of remaining amounts of nucleic 

acid, which can be labeled and detected using intercalating dyes 

such as Hoechst, DAPI or syto13. Indeed, staining of RNA in 

reticulocytes is a (gold-)standard procedure in clinical blood 

counts. Here, Nucleic acid dye, syto 13, is used as a fluorescent 

probe for the ground-truth label information to evaluate our 

classification performance. We controlled factors associated 

with fluorescence label issues in order to generate a bona-fide 

dataset. These data were obtained with a high level of 

confidence and low noise because the fluorescence labels were 

adopted according to standard procedures which ensure the 

respect of staining ability. In our presented pipeline, we 

adopted a robust unsupervised machine learning procedure and 

used the PC-corr[12] algorithm to extract the most 

discriminative markers and their correlations, which were used 

subsequently to classify mRBCs and RETs. Since the number 

of RETs in the blood is much smaller than the number of 

mRBCs, this classification task represents a challenging 

benchmark to test the proposed machine learning procedure. In 

addition, label-free classification of mRBCs and RETs based 

on cell morpho-rheological markers is a very complicated task, 

and as far as we know there is not any literature on the 

application of machine learning to this problem, therefore this 

represents also an innovative topic to consider for precision 

medicine. We successfully infer a robust combinatorial-marker 

(a single composed-marker that is defined as mathematical 

combination of several morpho-rheological markers) and 

define an appropriate marker threshold that can offer 

two-group-classification (mRBCs or RETs) of uncategorized 

cells with acceptable accuracy. The workflow presented 

hereafter can be generalized and applied to identify other 

cellular phenotypes (e.g., healthy vs cancer cell, marker 

positive vs marker negative cell) starting from 

multidimensional cell-mechanical measures. 

II. METHODOLOGY 

A. Ethical Statement 

With ethical approval for the study (EK89032013) from the 

ethics committee of the Technische Universität Dresden, we 

obtained blood from healthy donors with their informed 

consent in accordance with the guidelines of good practice and 

the Declaration of Helsinki. However, they are regarded as 

three potential patients for research purpose who will go for 

blood check in this study. Indeed, any patient who needs a 

diagnosis can be healthy or pathological. 

B. Data collection and generation of training and validation 

set 

Capillary blood was collected after finger prick from three 

donors (P1, P2, P3) with a 21G, 1.8 mm safety-lancet (Sarstedt 

AG & Co.). A volume of 2 µl blood was diluted in 1mL of 0.5% 

methyl cellulose complemented with 2.5 µM syto13 nucleic 

acid stain (Thermo Fisher Scientific Inc., S7575) and incubated 

5 minutes at room temperature. RETs contain some RNA in the 

cytosol that they completely lose during maturation towards 

mRBCs, therefore they can be distinguished by RNA content. 

RNA staining enables measurement of RNA content which is 

related to the maturity of the red blood cells since they lose 

RNA gradually over a time of ca. one day[13]. Afterwards, all 

samples were measured by RT-FDC, which not only detects the 

mechanical phenotype of each individual cell (normal 

RT-DC[14], [15],  characterized by ten features: area, area 

ratio, aspect, brightness, brightness standard deviation, 

deformation, inertia ratio, inertia ratio raw, x-size and y-size; 

see next section for more details about their descriptions) but 

also simultaneously gather its fluorescence intensity in a 

manner similar to flow cytometry. This directly correlates 

mechanical data with fluorescence data based on nucleic acid 

staining. There is a natural unbalanced cell-group composition 

in each donor, i.e., the percentage of RETs is much smaller than 

mRBCs. Since sample P1 contained more RETs in comparison 

to P2 and P3, we decided to adopt it for deriving the training 

set. Therefore, considering P1 donor, which comprises of 

15,763 mRBCs and 357 RETs, 10,763 mRBCs and 257 RETs 

were used to create the training set named P1-partition1. The 

remaining 5,000 mRBCs and 100 RETs were used to create the 

independent internal (we use the word internal because the 

validation is based on cells coming from the same donor used 

for training) validation set, named P1-partition2. The other two 

donors, P2 and P3, were taken as independent external (because 

the cells are derived from donors different from the one adopted 

for training) validation sets, which contains 16,671 mRBCs & 

145 RETs, and 15,511 mRBCs & 103 RETs, respectively. To 

facilitate replication of the results, these data are available for 

open access as supplementary data. 
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C. Descriptions of the ten morpho-rheological features 

RT-DC detects the morpho-rheological properties of each 

single cell, which goes through the microfluidic channel, and 

represents them with ten numerical features: 

1. area: the cell’s cross-sectional area derived from the 

contour. 

2. area ratio: the ratio between the area of the convex hull 

of the cell’s contour and the area of the cell’s contour 

3. x-size: the maximal axial-length of the cell suspended 

in the flow that pass through the channel along the 

horizontal dimension 

4. y-size: the maximal axial-length of the cell suspended 

in the flow that pass through the channel along the 

vertical dimension 

5. aspect ratio: x-size/y-size 

6. brightness: the average brightness value of the pixels 

inside cell’s contour 

7. brightness standard deviation: standard deviation of 

the pixels’ brightness values inside cell’s contour 

8. deformation: the deformation of a cell is defined as D 

= 1 – c, where c is the circularity of the contour. 

Circularity is defined as: 𝑐 =
2√𝜋 𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 

9. inertia ratio: ratio of the image moments[16] of the 

convex hull of the contour. This parameter is similar 

to the aspect ratio but has sub-pixel accuracy. 

10. inertia ratio raw: same as above but for the raw 

contour (no convex hull applied) 

 

D. Unsupervised dimension reduction machine learning 

procedure  

We adopted PCA, which is a machine learning method for 

unsupervised linear and parameter-free dimension reduction. 

We performed unsupervised analysis instead of a  supervised 

one, because it is less prone to overfitting as shown in previous 

studies[12], [17], [18]. 10,000 resampled datasets were 

generated from the original training set (P1-Partition 1), each of 

which was obtained by randomly selecting 200 mRBCs and 

200 RETs. We will refer here and in the remainder of the text to 

this as class-balance procedure. PCA was used to project the 

data into the first three dimensions of embedding (the first three 

principal components). We considered only the first three 

dimensions of embedding since, in general, they form a reduced 

3D space of representation to the original multidimensional 

data, where the patterns associated with the major data 

variability are compressed. This procedure was repeated 10,000 

times, one for each of the resampled datasets. We created 

balanced datasets because PCA is a data-driven approach and 

the unbalanced datasets would impair its performance since 

learning algorithms often fail to generalize inductive rules over 

the sample space when presented with this form of 

imbalance[19]. We stress that the procedure to project the data 

is based on unsupervised dimensional reduction learning 

because we never used the labels to learn the multivariate 

transformation that projects the data onto the low-dimensional 

space.  

Next, we considered the labels of the samples (without 

performing any learning procedure) just to reveal the extent to 

which the PC1, PC2 and PC3 are able to discriminate the two 

sample classes. For this, we used the p-value obtained by 

Mann–Whitney U test[20] and AUC-ROC to evaluate the 

mRBCs vs RETs separation on each single dimension, and then 

summarized the mean p-value and the mean AUC-ROC by 

considering the 10,000 resampled datasets (Table I). 

 

E. PC-corr discriminative networks and combinatorial 

marker design 

PC-corr[12] is an algorithm able to enlighten discriminative 

network functional modules associated with the most 

discriminant dimension of PCA, which in our case was PC2. 

We applied the PC-corr algorithm to each of the 10,000 datasets 

and we considered the mean discriminative networks (obtained 

as mean of 10,000 networks) associated with the PC2 

separation. We applied a cut-off of 0.6 (see Results section C. 

for more detail) on the weights of this mean discriminative 

network to extract the modules of PC2-related-features and we 

detected a unique discriminative network module composed by 

three morpho-rheological-features (Fig.2A). Then, the features 

that are engaged in the module of highest association with the 

PCA discrimination can be mathematically combined (using 

their mean) to offer a unique value that is named the 

combinatorial marker. As clarified in the result section, we 

considered all the possible combinations of the three 

morpho-rheological-features in order to design potential 

combinatorial markers to test in the validations. Hence, we 

designed four candidate combinatorial markers based on the 

three scaled (using z-score transformation) individual features: 

the mean of area, y-size and x-size; the mean of area and y-size; 

the mean of area and x-size; the mean of y-size and x-size. 

 

F. Validation of the designed combinatorial markers 

The validation set P1-partition2, which is composed of 5,000 

mRBCs and 100 RETs, was used to create 10,000 resampled 

datasets. We randomly selected 100 samples from the 5000 

mRBCs and merged them with the unique 100 RETs for each 

resampling population.  We used the p-value obtained by 

Mann–Whitney U test and AUC-ROC to evaluate the 

classification performance of the combinatorial markers and 

the single markers. The mean p-value and mean AUC-ROC 

were calculated based on the 10,000 resampled datasets (Table 

II). 

We clarify that the learning of the combinatorial feature 

selection on the P1-partion1 dataset is data-driven and 

unsupervised by performing the PCA and the discriminative 

network analysis by PC-corr. However, in the next section we 

describe how to supervisedly detect the optimal operator point 

(marker threshold) of this marker for the further class 

prediction on the validation datasets. Therefore, the word 

unsupervised in the remainder of the article refers to the way we 

build the marker and not to the way we select the marker 

threshold. 
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G. Marker threshold learning and evaluation 

We used the P1-partition1 as the training set to get the 

optimal operator point (which is the point on the ROC curve 

that offers the highest AUC for the classification of the two 

different categories of cells) for the combinatorial markers 

obtained as the mean of area and y-size. In this case we used a 

supervised procedure (which is a hypothesis-driven procedure 

that exploits the training set labels to learn a threshold) and 

therefore we had to employ a 10-fold cross-validation (first 

divide the training set to ten partitions, use the nine partitions to 

learn the optimal operator point, and test it on the remaining 

one partition to get its performance according to AUC-ROC). 

This 10-fold cross-validation procedure was repeated ten times. 

Each time the ten partitions were created independently at 

random starting from the original training set (including 10,763 

mRBCs and 257 RETs), but in this case, we preserved the 

original count ratio of mRBCs and RETs (10,763/257=41.9) in 

every partition. This means that we did not balance the training 

dataset by considering the same amount of mRBCs and RETs, 

because the procedure of learning the marker threshold is 

supervised and hypothesis-driven and we wanted that the 

optimal operator point (the marker threshold used to decide 

whether a cell belongs to mRBC or RET) could be learned 

considering the natural cell unbalance occurring in the blood 

samples. As a second option, we implemented the same 

cross-validation procedure above, but for each step we applied 

a class-balance procedure, such as we did for the unsupervised 

dimension reduction projection with mRBC resampling. This 

means that each cross-validation fold was composed of 257 

mRBCs (sampled uniformly at random from the 10,763) and 

257 RETs. Unfortunately, class-balance learning offered poor 

results (data not shown). This bad performance of the 

class-balance procedure is motivated by the fact that here the 

learning of a pure threshold for a marker value, and not a model 

to create the marker itself, is implemented. Therefore, the 

original cell-ratio offers advantages to learn the marker 

threshold value. 

We obtained an array with 100 values, with each element 

specifying the optimal operator point generated by the 

respective iteration of the cross-validation procedure. By taking 

the median of the 100 results, which turned out to be more 

robust in comparison with taking average due to outliers, we 

estimated the overall optimal operator point value, which was 

considered as the most appropriate marker threshold. We used 

the learned marker threshold to predict the fluorescence 

classification in the validations of P1-partition2, P2 and P3 in 

two ways, and we evaluated the effectiveness of the 

combinatorial marker and its threshold in prediction using 

accuracy, sensitivity, specificity, AUC-ROC and precision. In 

the first way, we used these datasets by considering the natural 

unbalanced composition of mRBCs and RETs. More precisely, 

we firstly z-score-scaled each dataset and then classified each 

cell by comparing the learned threshold with its mean of 

z-score-scaled area and the z-score-scaled y-size, and computed 

the performance using the five abovementioned performance 

measures (Table III) and compared with the supervised 

machine learning methods described in the next section (Table 

IV). In the second way, we adopted the 10,000 times 

resampling by each time randomly taking the same amount of 

mRBCs with RETs in the investigated dataset (100 for 

P1-partition2, 145 for P2 and 103 for P3), and computed the 

final performance by taking the average precision (Figure 3) of 

the obtained 10,000 results. Also in this case comparison with 

the supervised machine learning methods was provided.  

 

H. Other supervised machine learning methods 

The procedure to obtain the results for the supervised analysis 

was implemented as follows. First of all, a selection of the most 

important features for the segregation between classes was 

carried out by means of a machine learning strategy called 

feature selection. As we did for the learning of the marker 

threshold in our proposed method (see section G. above), also 

here we preserved the original count ratio of mRBCs and RETs 

(10,763/257=41.9) in every cross-validation fold. However, 

considering that here we learn an entire model and not only a 

threshold value, we obtained poor results (data not shown) and 

therefore we moved to adopt a class-balance procedure. In 

practice, for each machine learning, we trained 10 models. 

Figure 1: Study workflow. Blood samples were taken from three potential patients and measured using RT-FDC. The output in 

this case was ten morpho-rheological features together with classification information of each single cell resulting from the 

fluorescence signal. P1-partion1 was used for training purpose, while P1-partion2, P2 and P3 were used for validation. 
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Each model was trained with 10-fold cross-validation, and each 

fold was composed of 257 mRBCs (sampled uniformly at 

random from the 10,763) and 257 RETs. Then, the average 

model (obtained by averaging internally the parameter settings 

of each machine learning) of each machine learning was 

considered for prediction. Elastic net is a well-known algorithm 

that can be used for this purpose[21]. It needs a parameter 

called alpha that combines the L1 and L2 penalties of lasso and 

ridge regularization methods at different proportions. The alpha 

value was automatically tuned by changing its value from 0.1 

until 0.9 in steps of 0.1 and the one that gave the highest 

AUC-ROC performance between the two classes (RETs and 

mRBCs), that is 0.5, was used as a parameter in Elastic net. On 

the other hand, Gini index [22] is a criterion used as feature 

selection for random forest (RF) and helps to determine which 

features are the most important to split the classes of the 

dataset, by giving them a score depending on how many trees of 

the random forest they were selected as a split criterion. 

Another feature selection strategy, and used in this case for 

Support vector Machine (SVM), is called recursive feature 

elimination (RFE). It works with the help of an external 

estimator, in this case SVM, that assigns weights to the features 

to recursively prune them until a desire number of features is 

eventually reached. The last feature selection strategy is 

intrinsically used for partial least square discriminant analysis 

(PLSDA) and was carried out by calculating the regression 

coefficients of partial least squares (PLS) and ranking them 

according to the number of latent variants for PLS.   

In order to reduce overfitting in the feature selection, all feature 

selection algorithms were carried out ten times in a 10-fold 

cross validation (CV) procedure (a total of 100 iterations). The 

feature selection consists of two steps. The first step is to 

compute the final number (of selected features) which is fixed 

to the average number (that we call m) selected for each CV 

step. The second step is to determine the m final features to 

select. This is implemented by assigning to each feature an 

average weight obtained as the average across the weights 

gained in the CV steps, and then by selecting the m features 

with the highest average weights in the CV steps. Specifically, 

elastic net selected 7 features (area, aspect ratio, brightness, 

brightness SD, deformation, inertia ratio and y-size), while Gini 

index selected 5 (area, area ratio, brightness, brightness SD and 

inertia ratio), as well as RFE (area, area ratio, deformation, 

inertia ratio and y-size) and PLSDA (aspect, inertia ratio, 

inertia ratio raw, x-size and y-size). 

Once the predictors (features) were chosen, the machine 

learning models were created in a 10-fold CV step. SVM 

models (features selected from elastic net and RFE) were 

produced with the auto optimization of hyperparameters, and 

with linear and non-linear (RBF) kernels. The RF model 

(features selected from Gini index) contains five hundred 

decision trees and was generated with the default parameters 

(fraction of input data to sample with replacement: 1; minimum 

number of observations per tree leaf: 1; number of variables to 

select at random for each decision split: 3 [that is 

approximatively the square root of the number of variables, 

which in this case is 10]) as well as PLSDA (default parameter 

is only the tolerant of convergence: 1E-10) and Logistic 

Regression (features selection method: elastic net; default 

parameters are the Model – we used the nominal model - and 

the Link function - we used logit function). 

 

III. RESULTS 

A. Study workflow 

The overall study workflow is represented in Figure 1. The 

goal of this study is to investigate the ability to classify mature 

red blood cells (mRBCs) and reticulocytes (RETs) present in 

the blood of an individual (a patient who needs a diagnosis and 

could be healthy or pathological), considering only 

morpho-rheological cell features for the prediction. Hence, we 

emphasize that the fluorescence probe is used only for testing 

the performance of the prediction. The first step in the study 

workflow was to acquire the data from RT-FDC setup (see 

Methods), which can be used to analyse the presence and 

prevalence of all major blood cell types, as well as their 

morpho-rheological features, directly in whole blood[23]. In 

addition, it can measure the fluorescence intensity of each 

single cell just as in a conventional flow cytometer. The output 

is a 2D data matrix, where each row represents a different 

single cell found in the blood and the columns report for each 

single cell the respective morpho-rheological values (area, 

x-size, y-size, etc.) and the corresponding fluorescence 

intensity that is used to classify cells into mRBCs or RETs. We 

then proceeded to the unsupervised machine learning by means 

of PCA using P1-partion1 as training set, with the aim to find 

the best discriminative dimension by evaluating the separation 

of the mRBCs and RETs on the first three embedded 

dimensions. Afterwards, we applied PC-corr algorithm based 

on the learned best discriminative dimension to detect the 

discriminative network functional modules that can be used to 

design the combinatorial marker (because it is a combination of 

single morpho-rheological markers) for the classification of the 

two group of cells. To learn the optimal operator point that can 

be later used for testing, we applied 10-fold cross validation for 

10 times to find the combinatorial marker threshold by using 

P1-partion1. Finally, we tested the performances of our defined 

combinatorial maker in combination with the learned optimal 

operator point on three independent datasets, the internal 

validation dataset P1-partition2 and the external validation 

datasets P2 and P3 with potential patient validation and cross 

validation. 

 

B. Unsupervised dimension reduction analysis by PCA and its 

evaluation 

Due to the natural biological unbalance of mRBCs (90% to 

95% of blood cells) against RETs (0.5% to 1.4%) in the blood 

of healthy adult donors[24], and also to prevent dataset 

overfitting, we performed the unsupervised learning on the 

P1-partition1 dataset by using a resampling procedure, which 

generated from P1-partion1 a total of 10,000 new resampled 

datasets (see section D of Methodology for detail). The final 

p-value and AUC-ROC are reported in Table I, and an example 

PCA results from the 10,000 performed PCA is shown in 
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Supplementary Figure 1, both of which clearly indicate that the 

second dimension (PC2) of PCA reveals the most significant 

discrimination, regardless of the measure (p-value or 

AUC-ROC) used to assess the two-group separation.  

 

TABLE I  

Evaluation of Unsupervised Machine Learning Dimension 

Reduction 

PCA 

dimension 

mean 

p-value 

mean 

AUC-ROC 

PC2 2.17E-13 0.76 

PC1 3.67E-03 0.61 

PC3 2.15E-02 0.60 

 

Therefore, PC2 weights can be used to apply the PC-corr 

algorithm, which is able to extract a network composed of 

feature modules (in this case morpho-rheological measures) 

related to the two groups separation. We would like to 

emphasize that the PC-corr algorithm is not a univariate 

approach that selects single features independently from each 

other, but instead it is able to perform a multivariate 

prioritization that emphasizes a cohort of feature-interactions 

that are most discriminative according to a PCA dimension. 

This cohort of discriminative feature-interactions generally 

tends to form one or multiple discriminative network modules 

that — as we will illustrate in the following section — can be 

used for designing combinatorial markers. 

 

C. PC-corr discriminative module and combinatorial marker 

design 

We applied the PC-corr algorithm to each of the 10,000 

resampled datasets and we considered the mean discriminative 

network (obtained as mean of 10,000 networks) associated with 

the PC2 separation. We applied a cut-off of 0.6 on the weights 

of this mean discriminative network to extract the modules of 

PC2-related-features. We chose the threshold of 0.6 so that 

extracted features have at least Pearson Correlation of 0.6 

between them, and it is the highest cut-off that ensure the node 

connectivity, which means, there are only unconnected singular 

nodes with higher cut-offs (data not shown). We detected a 

unique discriminative network module composed of three 

morpho-rheological features (Fig. 2A). The “area” is the 

cross-sectional area, outlined by the blue contour in Fig. 2B. 

The “y-size” is the maximal vertical (perpendicular to flow 

direction) extension of the cell suspended in the liquid passing 

through the channel, while “x-size” is the maximal horizontal 

extension of the cell (Fig. 2B). PC-corr also discloses the 

positive correlations between the discovered features, which 

are represented by red edges in the network (Fig. 2A). From the 

ten features available, the PC-corr algorithm helps to unveil 

those that we should use to design the candidate combinatorial 

markers. We designed four candidate combinatorial markers, 

considering the three PC-corr selected and scaled (using 

z-score transformation) features: the mean of area, y-size and 

x-size; the mean of area and y-size; the mean of area and x-size; 

and the mean of y-size and x-size. In the next section we will 

discuss the performance evaluation and validation of these four 

markers, in comparison to all the original ten 

morpho-rheological features. 

D. Validation of the designed combinatorial markers 

To independently evaluate the classification ability of the 

four combinatorial markers proposed in the previous section, 

we considered their performance on the P1-partition2 dataset, 

which had not been used for learning the markers. The 

measures used for the evaluation are the Mann-Whitney 

p-value and AUC-ROC, and the results obtained for each of the 

four proposed markers and for each of the ten original single 

features are reported in Table II. Also, in this case we 

considered the mean performance over 10,000 resampled 

datasets, containing equal number of mRBCs and RETs (please 

refer to the methods for details). We discovered that the 

combination of area and y-size as a unique marker yields the 

best result. As a comparison, we also calculated the 

performance offered by the original ten features individually. 

Taken together, these results prove that a combinatorial 

selection of the features using PC-corr can tremendously 

Figure 2. A) Discriminative network module detected by PC-corr and related with PC2 discrimination (cut-off = 0.6). B) Image  

of a red blood cell flowing in the RT-FDC channel, including illustrations of “area” (bounded by the blue contour), “x-size” and 

y-size”. 
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improve the design of the final candidate markers. 

Interestingly, PC-corr pointed out a discriminative module 

composed by two interactions between three features: 1) area 

and y-size; and 2) area and x-size. Our validation in Table II 

disclosed that area and y-size alone are very discriminative 

features (AUC: 0.73 and 0.76 respectively), whereas x-size is a 

poor discriminative feature (AUC: 0.52). The question remains, 

why PC-corr included also x-size in the discriminative module? 

The answer is that although singularly x-size is a poor 

discriminative feature, PC-corr suggests not only 

discriminative associations between features, but also 

mechanistic relations between features in the module. In fact, 

the area is by definition a function of x-size and y-size, and 

PC-corr successfully infers this from the data independently 

from the single discriminative power of each feature. This 

result is possible because PC-corr is a multivariate approach 

and offers results different from univariate analysis approaches 

(which test single features), as extensively discussed in the 

article of Ciucci et al. [12].  

 

Table II 

Classification Performance of the Candidate Markers and 

The Ten Single Features on The P1-partition2 Validation 

Dataset. The precise meaning of each feature is given in the 

methods section. 

Marker 

mean 

 p-value 

mean  

AUC-ROC 

Average (area and y-size) 1.47E-09 0.78 

y-size 1.55E-08 0.76 

area 1.54E-06 0.73 

Average (area, x-size and y-size) 1.80E-06 0.73 

Average (x-size and y-size) 5.71E-06 0.72 

inertia ratio 2.69E-04 0.68 

inertia ratio raw 3.67E-04 0.67 

aspect 7.13E-04 0.66 

deformation 3.70E-03 0.64 

brightness 5.21E-03 0.64 

Average (area and x-size) 9.10E-03 0.63 

area ratio 1.70E-01 0.57 

x-size 6.08E-01 0.52 

brightness standard deviation 6.27E-01 0.52 

E. Marker threshold learning and evaluation 

Let us suppose that the morpho-rheological measures of the 

cell population of a new individual are provided, and that we 

are interested in applying the combinatorial marker based on 

the area and y-size (which provided the best performance in the 

previous evaluation) in order to classify mRBCs and RETs. 

Yet, what we miss is a threshold for the combinatorial marker 

so that we can use it to predict new unknown cell’s class. In 

order to learn a proper marker threshold, we used again the 

P1-partition1 (previously adopted to learn the discriminative 

module) and selected as best threshold the one that corresponds 

to the optimal operator point (see section G of Methodology for 

detail). According to this procedure, we found that 0.51 was the 

best threshold for the designed marker, computed as the mean 

of the z-score-scaled area and of the z-score-scaled y-size. 

After learning the marker threshold on the P1-partition1, we 

validated its performance on three independent datasets: 

P1-partition2, P2 and P3. The rationale is to simulate a real 

scenario where the cell morpho-rheological features of three 

new patients (which we called P1-partion2, P2 and P3 and were 

never used during learning of the marker threshold) were 

analyzed with our marker. By applying the marker threshold, 

we computed for each of these potential patients the ability of 

our marker to predict the true label information (fluorescent 

probe labels are regarded as ground-truth in this study). In this 

particular validation, conceptually it does not make sense in our 

opinion to make a cross-validation, because we are evaluating a 

real scenario where three patients are going to the doctor and 

we compute for each of them the performance of our marker in 

comparison to ground-truth fluorescent probe. The result of this 

emulation of a realistic clinical estimation are provided in Table 

III and Supplementary Figure 2, where we display all the main 

statistics for evaluation of the classification of the cell types 

(mRBCs vs. RETs) of the three potential patients. However, 

since it could be also interesting to assess the performance of 

the investigated markers with 10-fold cross-validation on the 3 

validation (patients) independent datasets, these results are 

provided in Suppl. Table I represented with the average 

performance on the 10 folds. We found that the overall 

accuracy on the three datasets is at the level of 0.74 and the 

overall AUC-ROC is around 0.70 (for P2, it reaches 0.76) with 

both patient validation and cross validation (Table III and 

Suppl. Table I). In general, AUC<0.6 is regarded as poor, while 

it is considered as acceptable if 0.7<AUC<0.8[25]. Therefore, 

the results here indicate that the designed combinatorial marker 

(based on area and y-size) together with the learned threshold 

can offer an acceptable classification performance on the 

independent validations, both internal and external. On the 

other hand, we could notice that the level of precision is very 

low (no higher than 0.05, please refer to Table III last row). 

This can be seen from the fact that, although the designed 

marker (and the respective threshold) can achieve an acceptable 

performance in correctly detecting RETs, on the other hand it 

makes a relevant false positive error by wrongly classifying a 

portion of mRBCs as RETs. This portion of wrongly classified 

mRBCs (which generate false positives) is small in comparison 

to the total amount of mRBCs, hence the overall specificity is 

around 0.74 (Table III), which is a relatively good value. 

However, since the dataset is unbalanced and the fraction of 

RETs is significantly smaller than mRBCs, even a small 

fraction of wrongly assigned mRBCs — since it is much larger 

than the total RETs – can cause a significant drop in precision. 

In order to demonstrate that the low precision is only due to the 

‘over-representation’ of mRBCs and that the marker and 
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threshold inferred are valid, we repeated the same validation 

analysis done in Table III considering mRBCs sampled at 

random in an equal amount to RETs (see Methods for details). 
The results reported in Figure 3 demonstrate that if, in the 

independent validation phase, we reduce the naturally 

occurring over-representation of mRBCs — using a procedure 

that is not biased, since it exploits a class-balance procedure 

based on random uniform mRBC sampling — then the level of 

precision increases drastically. Indeed, PC-corr marker 

increases precision from less than 0.05 (Table III, last line) to 

more than 0.82 (Figure 3, first bar in each plot). This shows that 

the low levels of precision do not originate from a learning error 

of the combinatorial marker and threshold, but from the 

over-representation (which can be interpreted as a sort of 

‘oversampling’) of mRBCs in comparison to RETs. In practice, 

the low precision is generated by the fact that mRBCs are more 

abundantly represented in the dataset than RETs. This implies 

that, although the threshold is correct, the amount of mRBCs 

that pass the threshold assuming values similar to RETs is 

minor in comparison to the total amount of mRBCs. But it is 

still remarkable in comparison to the few total RETs present in 

the dataset. Taken together these results suggest that we mainly 

demonstrate the validity of the proposed unsupervised analysis 

pipeline as a proof of concept. For real-world application, 

higher level of precision is required, and the problem of 

unbalanced cell’s cohorts should be adequately addressed in 

future studies. 

 

Table III 

Validation Of The Proposed Morpho-Rheological Marker 

And Its Threshold On Three Independent Datasets 

 

Performance 

Internal 

validation 

based on 

P1-partion2 

External 

validation 

based on P2 

External 

validation 

based on P3 

Accuracy 0.74  0.74  0.74  

Sensitivity 0.65  0.77  0.63  

Specificity 0.75  0.74  0.74  

AUC-ROC 0.70  0.76  0.69  

Precision 0.05  0.03  0.02  

 

Finally, since the method used as reference for ab-initio 

labelling of the cells is based on fluorescence, we cannot assert 

that the mRBCs that pass the threshold assuming values of the 

proposed morpho-rheological marker similar to RETs are in 

general incorrectly assigned. In fact, to be more correct, we can 

only assert that there is a disagreement between our 

morpho-rheological marker assignment and the fluorescent 

assignment. Therefore, we can speculate that these mRBC 

cells, which are RET-like according to our morpho-rheological 

marker and not-RET-like according to fluorescence, should be 

investigated with more attention in future studies, because they 

might hide a cell sub-population in a ‘gray area’ that lies 

between mature red blood cells (mRBCs) and reticulocytes 

(RETs), which are immature red blood cells. A dichotomic 

separation between mRBCs and RETs might be 

over-simplistic, and a more truthful cell-phenotype landscape 

might consist of a fuzzy scenario populated also by 

intermediate and transition states. In fact, modern blood 

counters do distinguish different subpopulations of 

reticulocytes by their level of fluorescence. However, for the 

given measurements with the given gates, total reticulocyte 

numbers are in agreement with standard blood count performed 

at the university hospital. 
 

 
 

Figure 3. Mean precision performance of evaluated methods 

for an independent validation class-balanced scenario using 

10,000 permutations of random uniform mRBC sampling. The 

bar color is associated with the number of features used to train 

the respective model. Light blue used two features; gray used 

five features; blue used seven features. The red whiskers report 

the standard deviation. A) Performance in internal validation 

P1-partition 2 data. B) Performance in external validation P2 

data. C) Performance in external validation P3 data. 
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F. Performance comparison with supervised approach 

  The motivation for this unsupervised approach is the fact that 

the data are highly unbalanced, with 10,763 mRBCs (negative 

class) versus 257 RETs (positive class) for the machine 

learning model generation. It is known that regular supervised 

methods do not work well in these scenarios because they tend 

to predict new samples as the majority class in the training set, 

since these models try to optimize by accuracy.  Moreover, 

Smialowki and colleagues demonstrated that PCA-based 

feature selection was more robust and less prone to overfitting 

in their study [17]. However, in order to quantitatively evaluate 

the extent to which our approach (which is based on 

unsupervised learning in the first part) offers better results, we 

compared it with the following supervised machine learning 

methods (which were trained according to the class-balance 

strategy reported in the methods section H): Support Vector 

Machine (SVM), Linear Regression (LR), Random Forest (RF) 

and Partial Least Squares Discriminant Analysis (PLSDA) 

using different feature selection strategies such as Gini index 

(for RF), Recursive Feature Elimination (for SVM) and elastic 

net (for LR and SVM). In addition, Elastic Net was also used as 

an all-in-one feature selection and classification method. Thus, 

we compared in total 6 supervised models versus our approach. 

The results which show the performance in validation of the 

other MLs on three independent datasets is reported in Suppl. 

Table II, which should be compared with Table III for PC-corr. 

In order to simplify this investigation, we created a Table IV 

that summarizes the contrast between PC-corr combinatorial 

marker (based only on the average of two measures) and the 

other MLs combinatorial markers (based in general on models 

that adopt from 5 to 7 features, according to supervised feature 

selection). The comparison consists in counting how many 

times PC-corr performs better than the other methods 

considering 5 different evaluation measures in 3 independent 

validation sets (15 evaluations in total). Remarkably, from 

Table IV emerges that PC-corr using only two features 

provided a performance comparable and often higher (in 5 of 

the 6 comparisons) than more complicated models based on 

different machine learning rationales which use 5 to 7 features. 

In addition, in Figure 3 we compare the precision increase of 

our method versus the increase of the other MLs, when the 

validation on the three independent datasets is balanced by 

random uniform mRBC sampling. The extensive comparison 

provided here demonstrates that our proposed method is well 

performing in this challenging classification task also in 

comparison to state-of-the-art supervised methods. Taken 

together, the advantage of PC-corr is twofold: (i) it offers, using 

only two features, comparable performance to state-of-the-art 

methods that need from 5 to 7 features; (ii) it provides 

remarkable higher precision performance in comparison to 

state-of-the-art methods (Figure 3) when the datasets are 

balanced by random uniform mRBC sampling. 

 

Table IV 

Comparison Of Performance Between PC-corr Based 

Marker Vs Other Machine Learning Based Markers On 

Three Independent Datasets. The first column indicates the 

ML-based combinatorial markers based on the number of 

features indicated in brackets. The second column indicates the 

number of cases in which (comparing Table III of PC-corr 

validation with the respective tables of the ML-methods 

reported in Suppl. Table II) ML-methods perform better than 

PC-corr. The third column indicates the number of cases in 

which PC-corr (whose combinatorial marker is based on two 

features, which is the value reported in brackets near PC-corr 

name) performs better than other MLs. The fourth column 

reports the number of cases that are tied. Bold characters 

emphasize the number of times that a method performs better 

than PC-corr or vice versa. Remarkably, PC-corr performs 

better in 5 of the 6 comparisons. 

 
Methods # Higher 

Values 

PC-corr-based 

(2) 

Tied 

SVM EN (7) 6 5 4 

LR-EN (7) 6 7 2 

RF-Gini (5) 5 8 2 

SVM RFE (5) 4 10 1 

EN (7) 4 10 1 

PLSDA (5) 3 12 0 

 

IV. DISCUSSION 

RT-FDC is a powerful microfluidic technique[9] for the 

morpho-rheological characterization of cells and its correlation 

with conventional fluorescence-based analysis. Its 

high-throughput capability allows for efficient measurements 

also in cases with scarce populations such as reticulocytes. In 

this study, we demonstrated that the morpho-rheological 

features obtained with RT-FDC can be exploited to develop 

promising label-free combinatorial markers for cell biology 

research. First, we proposed a general computational and 

unsupervised machine learning framework for the design of 

combinatorial morpho-rheological markers and the 

marker-threshold definition. Our aim was to explore the 

potential and limitations of using a basic unsupervised and 

linear approach. We were interested in defining a baseline that 

could suggest what is possible to achieve using a simple and 

easily interpretable combination of morpho-rheological 

features to design a combinatorial marker for direct cell 

classification. 

Our computational framework was proven in multiple 

independent validations to be able to provide acceptable 

performance when applied to a challenging 

(unbalanced-dataset) classification task such as the one to 

classify mRBCs vs RETs. This result is very promising and we 

hope that future studies investigate and address the current 

limitation of the methodology. Despite the acceptable level of 

classification, RETs are detected with low precision which, in 

combination with their naturally low prevalence, is problematic 

for some real-world applications. A significant number of cells, 

classified as mRBCs by their lack of RNA content staining, are 

falsely assigned to the RET population. This disagreement 

between the morpho-rheological and the fluorescence-based 
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cell assignment, needs further investigation because it might 

indicate an error of detection. More interestingly, it could also 

suggest the presence of hidden, uncategorized sub-populations 

of cells.   

Although the methods and findings provided here need 

further investigation to be used in clinical applications, they 

demonstrate the predictive potential of morpho-rheological 

phenotyping for computational-driven cell 

characterization/classification.  Therefore, we expect that this 

study could contribute to the definition of new standards of 

analysis in precision and systems biomedicine.   

Since this study was intended to evaluate how to implement a 

basic unsupervised and linear approach to discriminate mature 

RBCs and reticulocytes in the blood of an individual by using 

morpho-rheological phenotype data obtained from RT-FDC, 

future studies might go beyond this and investigate: i) more 

advanced approaches based on nonlinear machine learning 

directly on morpho-rheological data; and ii) deep learning 

techniques applied directly on the image samples, which could 

improve the performance of the classification without the 

pre-processing step to extract morpho-rheological features 

from the images. 

 

V. CONCLUSION 

We propose an interdisciplinary study that deals with cell 

labeling from a different perspective by combining biophysics 

with machine intelligence tools. We started with a newly 

developed high-throughput single cell mechanics measurement 

technology, named real-time deformability and fluorescence 

cytometry (RT-FDC), and then we applied unsupervised 

machine learning to predict the labels of single cells, in 

particular we consider the task to discriminate and classify 

mature red blood cells against reticulocytes, which are 

immature red blood cell. We focus our study on this specific 

task because the investigation of reticulocytes (their percentage 

and cellular features) in the blood is important to quantitatively 

evaluate conditions that affect RBCs, such as anemia or bone 

marrow disorders. Our results suggest that the proposed 

machine intelligence data-driven methodology can provide 

promising results for the morpho-rheological-based prediction 

of red blood cells, therefore it can point out a new 

complementary direction to fluorescent cell labeling. 
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