{"nl": {"description": "Consider a playoff tournament where $$$2^n$$$ athletes compete. The athletes are numbered from $$$1$$$ to $$$2^n$$$.The tournament is held in $$$n$$$ stages. In each stage, the athletes are split into pairs in such a way that each athlete belongs exactly to one pair. In each pair, the athletes compete against each other, and exactly one of them wins. The winner of each pair advances to the next stage, the athlete who was defeated gets eliminated from the tournament.The pairs are formed as follows: in the first stage, athlete $$$1$$$ competes against athlete $$$2$$$; $$$3$$$ competes against $$$4$$$; $$$5$$$ competes against $$$6$$$, and so on; in the second stage, the winner of the match \"$$$1$$$\u2013$$$2$$$\" competes against the winner of the match \"$$$3$$$\u2013$$$4$$$\"; the winner of the match \"$$$5$$$\u2013$$$6$$$\" competes against the winner of the match \"$$$7$$$\u2013$$$8$$$\", and so on; the next stages are held according to the same rules. When athletes $$$x$$$ and $$$y$$$ compete, the winner is decided as follows: if $$$x+y$$$ is odd, the athlete with the lower index wins (i.\u2009e. if $$$x < y$$$, then $$$x$$$ wins, otherwise $$$y$$$ wins); if $$$x+y$$$ is even, the athlete with the higher index wins. The following picture describes the way the tournament with $$$n = 3$$$ goes. Your task is the following one: given the integer $$$n$$$, determine the index of the athlete who wins the tournament.", "input_spec": "The first line contains one integer $$$t$$$ ($$$1 \\le t \\le 30$$$) \u2014 the number of test cases. Each test case consists of one line containing one integer $$$n$$$ ($$$1 \\le n \\le 30$$$).", "output_spec": "For each test case, print one integer \u2014 the index of the winner of the tournament.", "sample_inputs": ["2\n3\n1"], "sample_outputs": ["7\n1"], "notes": "NoteThe case $$$n = 3$$$ is shown in the picture from the statement.If $$$n = 1$$$, then there's only one match between athletes $$$1$$$ and $$$2$$$. Since $$$1 + 2 = 3$$$ is an odd number, the athlete with the lower index wins. So, the athlete $$$1$$$ is the winner."}, "src_uid": "d5e66e34601cad6d78c3f02898fa09f4"} {"nl": {"description": "Kolya loves putting gnomes at the circle table and giving them coins, and Tanya loves studying triplets of gnomes, sitting in the vertexes of an equilateral triangle.More formally, there are 3n gnomes sitting in a circle. Each gnome can have from 1 to 3 coins. Let's number the places in the order they occur in the circle by numbers from 0 to 3n\u2009-\u20091, let the gnome sitting on the i-th place have ai coins. If there is an integer i (0\u2009\u2264\u2009i\u2009<\u2009n) such that ai\u2009+\u2009ai\u2009+\u2009n\u2009+\u2009ai\u2009+\u20092n\u2009\u2260\u20096, then Tanya is satisfied. Count the number of ways to choose ai so that Tanya is satisfied. As there can be many ways of distributing coins, print the remainder of this number modulo 109\u2009+\u20097. Two ways, a and b, are considered distinct if there is index i (0\u2009\u2264\u2009i\u2009<\u20093n), such that ai\u2009\u2260\u2009bi (that is, some gnome got different number of coins in these two ways).", "input_spec": "A single line contains number n (1\u2009\u2264\u2009n\u2009\u2264\u2009105) \u2014 the number of the gnomes divided by three.", "output_spec": "Print a single number \u2014 the remainder of the number of variants of distributing coins that satisfy Tanya modulo 109\u2009+\u20097.", "sample_inputs": ["1", "2"], "sample_outputs": ["20", "680"], "notes": "Note20 ways for n\u2009=\u20091 (gnome with index 0 sits on the top of the triangle, gnome 1 on the right vertex, gnome 2 on the left vertex): "}, "src_uid": "eae87ec16c284f324d86b7e65fda093c"} {"nl": {"description": "You have a fraction . You need to find the first occurrence of digit c into decimal notation of the fraction after decimal point.", "input_spec": "The first contains three single positive integers a, b, c (1\u2009\u2264\u2009a\u2009<\u2009b\u2009\u2264\u2009105, 0\u2009\u2264\u2009c\u2009\u2264\u20099).", "output_spec": "Print position of the first occurrence of digit c into the fraction. Positions are numbered from 1 after decimal point. It there is no such position, print -1.", "sample_inputs": ["1 2 0", "2 3 7"], "sample_outputs": ["2", "-1"], "notes": "NoteThe fraction in the first example has the following decimal notation: . The first zero stands on second position.The fraction in the second example has the following decimal notation: . There is no digit 7 in decimal notation of the fraction. "}, "src_uid": "0bc7bf67b96e2898cfd8d129ad486910"} {"nl": {"description": "A bus moves along the coordinate line Ox from the point x\u2009=\u20090 to the point x\u2009=\u2009a. After starting from the point x\u2009=\u20090, it reaches the point x\u2009=\u2009a, immediately turns back and then moves to the point x\u2009=\u20090. After returning to the point x\u2009=\u20090 it immediately goes back to the point x\u2009=\u2009a and so on. Thus, the bus moves from x\u2009=\u20090 to x\u2009=\u2009a and back. Moving from the point x\u2009=\u20090 to x\u2009=\u2009a or from the point x\u2009=\u2009a to x\u2009=\u20090 is called a bus journey. In total, the bus must make k journeys.The petrol tank of the bus can hold b liters of gasoline. To pass a single unit of distance the bus needs to spend exactly one liter of gasoline. The bus starts its first journey with a full petrol tank.There is a gas station in point x\u2009=\u2009f. This point is between points x\u2009=\u20090 and x\u2009=\u2009a. There are no other gas stations on the bus route. While passing by a gas station in either direction the bus can stop and completely refuel its tank. Thus, after stopping to refuel the tank will contain b liters of gasoline.What is the minimum number of times the bus needs to refuel at the point x\u2009=\u2009f to make k journeys? The first journey starts in the point x\u2009=\u20090.", "input_spec": "The first line contains four integers a, b, f, k (0\u2009<\u2009f\u2009<\u2009a\u2009\u2264\u2009106, 1\u2009\u2264\u2009b\u2009\u2264\u2009109, 1\u2009\u2264\u2009k\u2009\u2264\u2009104) \u2014 the endpoint of the first bus journey, the capacity of the fuel tank of the bus, the point where the gas station is located, and the required number of journeys.", "output_spec": "Print the minimum number of times the bus needs to refuel to make k journeys. If it is impossible for the bus to make k journeys, print -1.", "sample_inputs": ["6 9 2 4", "6 10 2 4", "6 5 4 3"], "sample_outputs": ["4", "2", "-1"], "notes": "NoteIn the first example the bus needs to refuel during each journey.In the second example the bus can pass 10 units of distance without refueling. So the bus makes the whole first journey, passes 4 units of the distance of the second journey and arrives at the point with the gas station. Then it can refuel its tank, finish the second journey and pass 2 units of distance from the third journey. In this case, it will again arrive at the point with the gas station. Further, he can refill the tank up to 10 liters to finish the third journey and ride all the way of the fourth journey. At the end of the journey the tank will be empty. In the third example the bus can not make all 3 journeys because if it refuels during the second journey, the tanks will contain only 5 liters of gasoline, but the bus needs to pass 8 units of distance until next refueling."}, "src_uid": "283aff24320c6518e8518d4b045e1eca"} {"nl": {"description": "There are n stones on the table in a row, each of them can be red, green or blue. Count the minimum number of stones to take from the table so that any two neighboring stones had different colors. Stones in a row are considered neighboring if there are no other stones between them.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u200950) \u2014 the number of stones on the table. The next line contains string s, which represents the colors of the stones. We'll consider the stones in the row numbered from 1 to n from left to right. Then the i-th character s equals \"R\", if the i-th stone is red, \"G\", if it's green and \"B\", if it's blue.", "output_spec": "Print a single integer \u2014 the answer to the problem.", "sample_inputs": ["3\nRRG", "5\nRRRRR", "4\nBRBG"], "sample_outputs": ["1", "4", "0"], "notes": null}, "src_uid": "d561436e2ddc9074b98ebbe49b9e27b8"} {"nl": {"description": "InputThe input contains a single integer a (0\u2009\u2264\u2009a\u2009\u2264\u200935).OutputOutput a single integer.ExamplesInput3Output8Input10Output1024", "input_spec": "The input contains a single integer a (0\u2009\u2264\u2009a\u2009\u2264\u200935).", "output_spec": "Output a single integer.", "sample_inputs": ["3", "10"], "sample_outputs": ["8", "1024"], "notes": null}, "src_uid": "76f6ebfaeea789952c931d65c6a5fdff"} {"nl": {"description": "You will receive 3 points for solving this problem.Manao is designing the genetic code for a new type of algae to efficiently produce fuel. Specifically, Manao is focusing on a stretch of DNA that encodes one protein. The stretch of DNA is represented by a string containing only the characters 'A', 'T', 'G' and 'C'.Manao has determined that if the stretch of DNA contains a maximal sequence of consecutive identical nucleotides that is of even length, then the protein will be nonfunctional. For example, consider a protein described by DNA string \"GTTAAAG\". It contains four maximal sequences of consecutive identical nucleotides: \"G\", \"TT\", \"AAA\", and \"G\". The protein is nonfunctional because sequence \"TT\" has even length.Manao is trying to obtain a functional protein from the protein he currently has. Manao can insert additional nucleotides into the DNA stretch. Each additional nucleotide is a character from the set {'A', 'T', 'G', 'C'}. Manao wants to determine the minimum number of insertions necessary to make the DNA encode a functional protein.", "input_spec": "The input consists of a single line, containing a string s of length n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). Each character of s will be from the set {'A', 'T', 'G', 'C'}. This problem doesn't have subproblems. You will get 3 points for the correct submission.", "output_spec": "The program should print on one line a single integer representing the minimum number of 'A', 'T', 'G', 'C' characters that are required to be inserted into the input string in order to make all runs of identical characters have odd length.", "sample_inputs": ["GTTAAAG", "AACCAACCAAAAC"], "sample_outputs": ["1", "5"], "notes": "NoteIn the first example, it is sufficient to insert a single nucleotide of any type between the two 'T's in the sequence to restore the functionality of the protein."}, "src_uid": "8b26ca1ca2b28166c3d25dceb1f3d49f"} {"nl": {"description": "Once Volodya was at the museum and saw a regular chessboard as a museum piece. And there were only four chess pieces on it: two white rooks, a white king and a black king. \"Aha, blacks certainly didn't win!\", \u2014 Volodya said and was right for sure. And your task is to say whether whites had won or not.Pieces on the chessboard are guaranteed to represent a correct position (every piece occupies one cell, no two pieces occupy the same cell and kings cannot take each other). Thus, your task is only to decide whether whites mate blacks. We would remind you that it means that the black king can be taken by one of the opponent's pieces at the moment and also it cannot move to an unbeaten position. A rook moves vertically or horizontally by any number of free cells (assuming there are no other pieces on its path), a king \u2014 to the adjacent cells (either by corner or by side). Certainly, pieces cannot leave the board. The black king might be able to take opponent's rooks at his turn (see sample 3).", "input_spec": "The input contains 4 space-separated piece positions: positions of the two rooks, the white king and the black king. Each position on 8\u2009\u00d7\u20098 chessboard is denoted by two symbols \u2014 ('a' - 'h') and ('1' - '8') \u2014 which stand for horizontal and vertical coordinates of the cell occupied by the piece. It is guaranteed, that no two pieces occupy the same cell, and kings cannot take each other.", "output_spec": "Output should contain one word: \"CHECKMATE\" if whites mate blacks, and \"OTHER\" otherwise.", "sample_inputs": ["a6 b4 c8 a8", "a6 c4 b6 b8", "a2 b1 a3 a1"], "sample_outputs": ["CHECKMATE", "OTHER", "OTHER"], "notes": null}, "src_uid": "5d05af36c7ccb0cd26a4ab45966b28a3"} {"nl": {"description": "Jack is working on his jumping skills recently. Currently he's located at point zero of the number line. He would like to get to the point x. In order to train, he has decided that he'll first jump by only one unit, and each subsequent jump will be exactly one longer than the previous one. He can go either left or right with each jump. He wonders how many jumps he needs to reach x.", "input_spec": "The input data consists of only one integer x (\u2009-\u2009109\u2009\u2264\u2009x\u2009\u2264\u2009109).", "output_spec": "Output the minimal number of jumps that Jack requires to reach x.", "sample_inputs": ["2", "6", "0"], "sample_outputs": ["3", "3", "0"], "notes": null}, "src_uid": "18644c9df41b9960594fdca27f1d2fec"} {"nl": {"description": "Little girl Alyona is in a shop to buy some copybooks for school. She study four subjects so she wants to have equal number of copybooks for each of the subjects. There are three types of copybook's packs in the shop: it is possible to buy one copybook for a rubles, a pack of two copybooks for b rubles, and a pack of three copybooks for c rubles. Alyona already has n copybooks.What is the minimum amount of rubles she should pay to buy such number of copybooks k that n\u2009+\u2009k is divisible by 4? There are infinitely many packs of any type in the shop. Alyona can buy packs of different type in the same purchase.", "input_spec": "The only line contains 4 integers n, a, b, c (1\u2009\u2264\u2009n,\u2009a,\u2009b,\u2009c\u2009\u2264\u2009109).", "output_spec": "Print the minimum amount of rubles she should pay to buy such number of copybooks k that n\u2009+\u2009k is divisible by 4.", "sample_inputs": ["1 1 3 4", "6 2 1 1", "4 4 4 4", "999999999 1000000000 1000000000 1000000000"], "sample_outputs": ["3", "1", "0", "1000000000"], "notes": "NoteIn the first example Alyona can buy 3 packs of 1 copybook for 3a\u2009=\u20093 rubles in total. After that she will have 4 copybooks which she can split between the subjects equally. In the second example Alyuna can buy a pack of 2 copybooks for b\u2009=\u20091 ruble. She will have 8 copybooks in total.In the third example Alyona can split the copybooks she already has between the 4 subject equally, so she doesn't need to buy anything.In the fourth example Alyona should buy one pack of one copybook."}, "src_uid": "c74537b7e2032c1d928717dfe15ccfb8"} {"nl": {"description": "George woke up and saw the current time s on the digital clock. Besides, George knows that he has slept for time t. Help George! Write a program that will, given time s and t, determine the time p when George went to bed. Note that George could have gone to bed yesterday relatively to the current time (see the second test sample). ", "input_spec": "The first line contains current time s as a string in the format \"hh:mm\". The second line contains time t in the format \"hh:mm\" \u2014 the duration of George's sleep. It is guaranteed that the input contains the correct time in the 24-hour format, that is, 00\u2009\u2264\u2009hh\u2009\u2264\u200923, 00\u2009\u2264\u2009mm\u2009\u2264\u200959.", "output_spec": "In the single line print time p \u2014 the time George went to bed in the format similar to the format of the time in the input.", "sample_inputs": ["05:50\n05:44", "00:00\n01:00", "00:01\n00:00"], "sample_outputs": ["00:06", "23:00", "00:01"], "notes": "NoteIn the first sample George went to bed at \"00:06\". Note that you should print the time only in the format \"00:06\". That's why answers \"0:06\", \"00:6\" and others will be considered incorrect. In the second sample, George went to bed yesterday.In the third sample, George didn't do to bed at all."}, "src_uid": "595c4a628c261104c8eedad767e85775"} {"nl": {"description": "Luke Skywalker got locked up in a rubbish shredder between two presses. R2D2 is already working on his rescue, but Luke needs to stay alive as long as possible. For simplicity we will assume that everything happens on a straight line, the presses are initially at coordinates 0 and L, and they move towards each other with speed v1 and v2, respectively. Luke has width d and is able to choose any position between the presses. Luke dies as soon as the distance between the presses is less than his width. Your task is to determine for how long Luke can stay alive.", "input_spec": "The first line of the input contains four integers d, L, v1, v2 (1\u2009\u2264\u2009d,\u2009L,\u2009v1,\u2009v2\u2009\u2264\u200910\u2009000,\u2009d\u2009<\u2009L)\u00a0\u2014 Luke's width, the initial position of the second press and the speed of the first and second presses, respectively.", "output_spec": "Print a single real value\u00a0\u2014 the maximum period of time Luke can stay alive for. Your answer will be considered correct if its absolute or relative error does not exceed 10\u2009-\u20096. Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .", "sample_inputs": ["2 6 2 2", "1 9 1 2"], "sample_outputs": ["1.00000000000000000000", "2.66666666666666650000"], "notes": "NoteIn the first sample Luke should stay exactly in the middle of the segment, that is at coordinates [2;4], as the presses move with the same speed.In the second sample he needs to occupy the position . In this case both presses move to his edges at the same time."}, "src_uid": "f34f3f974a21144b9f6e8615c41830f5"} {"nl": {"description": "Amr loves Geometry. One day he came up with a very interesting problem.Amr has a circle of radius r and center in point (x,\u2009y). He wants the circle center to be in new position (x',\u2009y').In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.Help Amr to achieve his goal in minimum number of steps.", "input_spec": "Input consists of 5 space-separated integers r, x, y, x' y' (1\u2009\u2264\u2009r\u2009\u2264\u2009105, \u2009-\u2009105\u2009\u2264\u2009x,\u2009y,\u2009x',\u2009y'\u2009\u2264\u2009105), circle radius, coordinates of original center of the circle and coordinates of destination center of the circle respectively.", "output_spec": "Output a single integer \u2014 minimum number of steps required to move the center of the circle to the destination point.", "sample_inputs": ["2 0 0 0 4", "1 1 1 4 4", "4 5 6 5 6"], "sample_outputs": ["1", "3", "0"], "notes": "NoteIn the first sample test the optimal way is to put a pin at point (0,\u20092) and rotate the circle by 180 degrees counter-clockwise (or clockwise, no matter)."}, "src_uid": "698da80c7d24252b57cca4e4f0ca7031"} {"nl": {"description": "Alice and Bob are decorating a Christmas Tree. Alice wants only $$$3$$$ types of ornaments to be used on the Christmas Tree: yellow, blue and red. They have $$$y$$$ yellow ornaments, $$$b$$$ blue ornaments and $$$r$$$ red ornaments.In Bob's opinion, a Christmas Tree will be beautiful if: the number of blue ornaments used is greater by exactly $$$1$$$ than the number of yellow ornaments, and the number of red ornaments used is greater by exactly $$$1$$$ than the number of blue ornaments. That is, if they have $$$8$$$ yellow ornaments, $$$13$$$ blue ornaments and $$$9$$$ red ornaments, we can choose $$$4$$$ yellow, $$$5$$$ blue and $$$6$$$ red ornaments ($$$5=4+1$$$ and $$$6=5+1$$$).Alice wants to choose as many ornaments as possible, but she also wants the Christmas Tree to be beautiful according to Bob's opinion.In the example two paragraphs above, we would choose $$$7$$$ yellow, $$$8$$$ blue and $$$9$$$ red ornaments. If we do it, we will use $$$7+8+9=24$$$ ornaments. That is the maximum number.Since Alice and Bob are busy with preparing food to the New Year's Eve, they are asking you to find out the maximum number of ornaments that can be used in their beautiful Christmas Tree! It is guaranteed that it is possible to choose at least $$$6$$$ ($$$1+2+3=6$$$) ornaments.", "input_spec": "The only line contains three integers $$$y$$$, $$$b$$$, $$$r$$$ ($$$1 \\leq y \\leq 100$$$, $$$2 \\leq b \\leq 100$$$, $$$3 \\leq r \\leq 100$$$)\u00a0\u2014 the number of yellow, blue and red ornaments. It is guaranteed that it is possible to choose at least $$$6$$$ ($$$1+2+3=6$$$) ornaments.", "output_spec": "Print one number\u00a0\u2014 the maximum number of ornaments that can be used. ", "sample_inputs": ["8 13 9", "13 3 6"], "sample_outputs": ["24", "9"], "notes": "NoteIn the first example, the answer is $$$7+8+9=24$$$.In the second example, the answer is $$$2+3+4=9$$$."}, "src_uid": "03ac8efe10de17590e1ae151a7bae1a5"} {"nl": {"description": "Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball.Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.).Let's number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly n movements were made by the operator and the ball was under shell x at the end. Now he wonders, what was the initial position of the ball?", "input_spec": "The first line of the input contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092\u00b7109)\u00a0\u2014 the number of movements made by the operator. The second line contains a single integer x (0\u2009\u2264\u2009x\u2009\u2264\u20092)\u00a0\u2014 the index of the shell where the ball was found after n movements.", "output_spec": "Print one integer from 0 to 2\u00a0\u2014 the index of the shell where the ball was initially placed.", "sample_inputs": ["4\n2", "1\n1"], "sample_outputs": ["1", "0"], "notes": "NoteIn the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell. "}, "src_uid": "7853e03d520cd71571a6079cdfc4c4b0"} {"nl": {"description": "A flea is sitting at one of the n hassocks, arranged in a circle, at the moment. After minute number k the flea jumps through k\u2009-\u20091 hasso\u0441ks (clockwise). For example, after the first minute the flea jumps to the neighboring hassock. You should answer: will the flea visit all the hassocks or not. We assume that flea has infinitely much time for this jumping.", "input_spec": "The only line contains single integer: 1\u2009\u2264\u2009n\u2009\u2264\u20091000 \u2014 number of hassocks.", "output_spec": "Output \"YES\" if all the hassocks will be visited and \"NO\" otherwise.", "sample_inputs": ["1", "3"], "sample_outputs": ["YES", "NO"], "notes": null}, "src_uid": "4bd174a997707ed3a368bd0f2424590f"} {"nl": {"description": "You're given a string of lower-case Latin letters. Your task is to find the length of its longest substring that can be met in the string at least twice. These occurrences can overlap (see sample test 2).", "input_spec": "The first input line contains the string. It's guaranteed, that the string is non-empty, consists of lower-case Latin letters, and its length doesn't exceed 100.", "output_spec": "Output one number \u2014 length of the longest substring that can be met in the string at least twice.", "sample_inputs": ["abcd", "ababa", "zzz"], "sample_outputs": ["0", "3", "2"], "notes": null}, "src_uid": "13b5cf94f2fabd053375a5ccf3fd44c7"} {"nl": {"description": "On the planet Mars a year lasts exactly n days (there are no leap years on Mars). But Martians have the same weeks as earthlings\u00a0\u2014 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars.", "input_spec": "The first line of the input contains a positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091\u2009000\u2009000)\u00a0\u2014 the number of days in a year on Mars.", "output_spec": "Print two integers\u00a0\u2014 the minimum possible and the maximum possible number of days off per year on Mars.", "sample_inputs": ["14", "2"], "sample_outputs": ["4 4", "0 2"], "notes": "NoteIn the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off .In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off."}, "src_uid": "8152daefb04dfa3e1a53f0a501544c35"} {"nl": {"description": "InputThe input consists of a single string of uppercase letters A-Z. The length of the string is between 1 and 10 characters, inclusive.OutputOutput \"YES\" or \"NO\".ExamplesInput\nNEAT\nOutput\nYES\nInput\nWORD\nOutput\nNO\nInput\nCODER\nOutput\nNO\nInput\nAPRILFOOL\nOutput\nNO\nInput\nAI\nOutput\nYES\nInput\nJUROR\nOutput\nYES\nInput\nYES\nOutput\nNO\n", "input_spec": "The input consists of a single string of uppercase letters A-Z. The length of the string is between 1 and 10 characters, inclusive.", "output_spec": "Output \"YES\" or \"NO\".", "sample_inputs": ["NEAT", "WORD", "CODER", "APRILFOOL", "AI", "JUROR", "YES"], "sample_outputs": ["YES", "NO", "NO", "NO", "YES", "YES", "NO"], "notes": null}, "src_uid": "15008dcb8dc8506c39aef0e3d8fca70c"} {"nl": {"description": "As you may know, MemSQL has American offices in both San Francisco and Seattle. Being a manager in the company, you travel a lot between the two cities, always by plane.You prefer flying from Seattle to San Francisco than in the other direction, because it's warmer in San Francisco. You are so busy that you don't remember the number of flights you have made in either direction. However, for each of the last n days you know whether you were in San Francisco office or in Seattle office. You always fly at nights, so you never were at both offices on the same day. Given this information, determine if you flew more times from Seattle to San Francisco during the last n days, or not.", "input_spec": "The first line of input contains single integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of days. The second line contains a string of length n consisting of only capital 'S' and 'F' letters. If the i-th letter is 'S', then you were in Seattle office on that day. Otherwise you were in San Francisco. The days are given in chronological order, i.e. today is the last day in this sequence.", "output_spec": "Print \"YES\" if you flew more times from Seattle to San Francisco, and \"NO\" otherwise. You can print each letter in any case (upper or lower).", "sample_inputs": ["4\nFSSF", "2\nSF", "10\nFFFFFFFFFF", "10\nSSFFSFFSFF"], "sample_outputs": ["NO", "YES", "NO", "YES"], "notes": "NoteIn the first example you were initially at San Francisco, then flew to Seattle, were there for two days and returned to San Francisco. You made one flight in each direction, so the answer is \"NO\".In the second example you just flew from Seattle to San Francisco, so the answer is \"YES\".In the third example you stayed the whole period in San Francisco, so the answer is \"NO\".In the fourth example if you replace 'S' with ones, and 'F' with zeros, you'll get the first few digits of \u03c0 in binary representation. Not very useful information though."}, "src_uid": "ab8a2070ea758d118b3c09ee165d9517"} {"nl": {"description": "Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015.Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016.Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month.Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.", "input_spec": "The only line of the input is in one of the following two formats: \"x of week\" where x (1\u2009\u2264\u2009x\u2009\u2264\u20097) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. \"x of month\" where x (1\u2009\u2264\u2009x\u2009\u2264\u200931) denotes the day of the month. ", "output_spec": "Print one integer\u00a0\u2014 the number of candies Limak will save in the year 2016.", "sample_inputs": ["4 of week", "30 of month"], "sample_outputs": ["52", "11"], "notes": "NotePolar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to \u2013 https://en.wikipedia.org/wiki/Gregorian_calendar. The week starts with Monday.In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total.In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016\u00a0\u2014 all months but February. It means that Limak will save 11 candies in total."}, "src_uid": "9b8543c1ae3666e6c163d268fdbeef6b"} {"nl": {"description": "There are n students who have taken part in an olympiad. Now it's time to award the students.Some of them will receive diplomas, some wiil get certificates, and others won't receive anything. Students with diplomas and certificates are called winners. But there are some rules of counting the number of diplomas and certificates. The number of certificates must be exactly k times greater than the number of diplomas. The number of winners must not be greater than half of the number of all students (i.e. not be greater than half of n). It's possible that there are no winners.You have to identify the maximum possible number of winners, according to these rules. Also for this case you have to calculate the number of students with diplomas, the number of students with certificates and the number of students who are not winners.", "input_spec": "The first (and the only) line of input contains two integers n and k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u20091012), where n is the number of students and k is the ratio between the number of certificates and the number of diplomas.", "output_spec": "Output three numbers: the number of students with diplomas, the number of students with certificates and the number of students who are not winners in case when the number of winners is maximum possible. It's possible that there are no winners.", "sample_inputs": ["18 2", "9 10", "1000000000000 5", "1000000000000 499999999999"], "sample_outputs": ["3 6 9", "0 0 9", "83333333333 416666666665 500000000002", "1 499999999999 500000000000"], "notes": null}, "src_uid": "405a70c3b3f1561a9546910ab3fb5c80"} {"nl": {"description": "You are given a string s consisting of |s| small english letters.In one move you can replace any character of this string to the next character in alphabetical order (a will be replaced with b, s will be replaced with t, etc.). You cannot replace letter z with any other letter.Your target is to make some number of moves (not necessary minimal) to get string abcdefghijklmnopqrstuvwxyz (english alphabet) as a subsequence. Subsequence of the string is the string that is obtained by deleting characters at some positions. You need to print the string that will be obtained from the given string and will be contain english alphabet as a subsequence or say that it is impossible.", "input_spec": "The only one line of the input consisting of the string s consisting of |s| (1\u2009\u2264\u2009|s|\u2009\u2264\u2009105) small english letters.", "output_spec": "If you can get a string that can be obtained from the given string and will contain english alphabet as a subsequence, print it. Otherwise print \u00ab-1\u00bb (without quotes).", "sample_inputs": ["aacceeggiikkmmooqqssuuwwyy", "thereisnoanswer"], "sample_outputs": ["abcdefghijklmnopqrstuvwxyz", "-1"], "notes": null}, "src_uid": "f8ad543d499bcc0da0121a71a26db854"} {"nl": {"description": "You can not just take the file and send it. When Polycarp trying to send a file in the social network \"Codehorses\", he encountered an unexpected problem. If the name of the file contains three or more \"x\" (lowercase Latin letters \"x\") in a row, the system considers that the file content does not correspond to the social network topic. In this case, the file is not sent and an error message is displayed.Determine the minimum number of characters to remove from the file name so after that the name does not contain \"xxx\" as a substring. Print 0 if the file name does not initially contain a forbidden substring \"xxx\".You can delete characters in arbitrary positions (not necessarily consecutive). If you delete a character, then the length of a string is reduced by $$$1$$$. For example, if you delete the character in the position $$$2$$$ from the string \"exxxii\", then the resulting string is \"exxii\".", "input_spec": "The first line contains integer $$$n$$$ $$$(3 \\le n \\le 100)$$$ \u2014 the length of the file name. The second line contains a string of length $$$n$$$ consisting of lowercase Latin letters only \u2014 the file name.", "output_spec": "Print the minimum number of characters to remove from the file name so after that the name does not contain \"xxx\" as a substring. If initially the file name dost not contain a forbidden substring \"xxx\", print 0.", "sample_inputs": ["6\nxxxiii", "5\nxxoxx", "10\nxxxxxxxxxx"], "sample_outputs": ["1", "0", "8"], "notes": "NoteIn the first example Polycarp tried to send a file with name contains number $$$33$$$, written in Roman numerals. But he can not just send the file, because it name contains three letters \"x\" in a row. To send the file he needs to remove any one of this letters."}, "src_uid": "8de14db41d0acee116bd5d8079cb2b02"} {"nl": {"description": "Vitaly is a diligent student who never missed a lesson in his five years of studying in the university. He always does his homework on time and passes his exams in time. During the last lesson the teacher has provided two strings s and t to Vitaly. The strings have the same length, they consist of lowercase English letters, string s is lexicographically smaller than string t. Vitaly wondered if there is such string that is lexicographically larger than string s and at the same is lexicographically smaller than string t. This string should also consist of lowercase English letters and have the length equal to the lengths of strings s and t. Let's help Vitaly solve this easy problem!", "input_spec": "The first line contains string s (1\u2009\u2264\u2009|s|\u2009\u2264\u2009100), consisting of lowercase English letters. Here, |s| denotes the length of the string. The second line contains string t (|t|\u2009=\u2009|s|), consisting of lowercase English letters. It is guaranteed that the lengths of strings s and t are the same and string s is lexicographically less than string t.", "output_spec": "If the string that meets the given requirements doesn't exist, print a single string \"No such string\" (without the quotes). If such string exists, print it. If there are multiple valid strings, you may print any of them.", "sample_inputs": ["a\nc", "aaa\nzzz", "abcdefg\nabcdefh"], "sample_outputs": ["b", "kkk", "No such string"], "notes": "NoteString s\u2009=\u2009s1s2... sn is said to be lexicographically smaller than t\u2009=\u2009t1t2... tn, if there exists such i, that s1\u2009=\u2009t1,\u2009s2\u2009=\u2009t2,\u2009... si\u2009-\u20091\u2009=\u2009ti\u2009-\u20091,\u2009si\u2009<\u2009ti."}, "src_uid": "47618510d2a17b1cc1e6a688201d51a3"} {"nl": {"description": "Polycarp takes part in a quadcopter competition. According to the rules a flying robot should: start the race from some point of a field, go around the flag, close cycle returning back to the starting point. Polycarp knows the coordinates of the starting point (x1,\u2009y1) and the coordinates of the point where the flag is situated (x2,\u2009y2). Polycarp\u2019s quadcopter can fly only parallel to the sides of the field each tick changing exactly one coordinate by 1. It means that in one tick the quadcopter can fly from the point (x,\u2009y) to any of four points: (x\u2009-\u20091,\u2009y), (x\u2009+\u20091,\u2009y), (x,\u2009y\u2009-\u20091) or (x,\u2009y\u2009+\u20091).Thus the quadcopter path is a closed cycle starting and finishing in (x1,\u2009y1) and containing the point (x2,\u2009y2) strictly inside. The picture corresponds to the first example: the starting (and finishing) point is in (1,\u20095) and the flag is in (5,\u20092). What is the minimal length of the quadcopter path?", "input_spec": "The first line contains two integer numbers x1 and y1 (\u2009-\u2009100\u2009\u2264\u2009x1,\u2009y1\u2009\u2264\u2009100) \u2014 coordinates of the quadcopter starting (and finishing) point. The second line contains two integer numbers x2 and y2 (\u2009-\u2009100\u2009\u2264\u2009x2,\u2009y2\u2009\u2264\u2009100) \u2014 coordinates of the flag. It is guaranteed that the quadcopter starting point and the flag do not coincide.", "output_spec": "Print the length of minimal path of the quadcopter to surround the flag and return back.", "sample_inputs": ["1 5\n5 2", "0 1\n0 0"], "sample_outputs": ["18", "8"], "notes": null}, "src_uid": "f54ce13fb92e51ebd5e82ffbdd1acbed"} {"nl": {"description": "\"Contestant who earns a score equal to or greater than the k-th place finisher's score will advance to the next round, as long as the contestant earns a positive score...\" \u2014 an excerpt from contest rules.A total of n participants took part in the contest (n\u2009\u2265\u2009k), and you already know their scores. Calculate how many participants will advance to the next round.", "input_spec": "The first line of the input contains two integers n and k (1\u2009\u2264\u2009k\u2009\u2264\u2009n\u2009\u2264\u200950) separated by a single space. The second line contains n space-separated integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u2009100), where ai is the score earned by the participant who got the i-th place. The given sequence is non-increasing (that is, for all i from 1 to n\u2009-\u20091 the following condition is fulfilled: ai\u2009\u2265\u2009ai\u2009+\u20091).", "output_spec": "Output the number of participants who advance to the next round.", "sample_inputs": ["8 5\n10 9 8 7 7 7 5 5", "4 2\n0 0 0 0"], "sample_outputs": ["6", "0"], "notes": "NoteIn the first example the participant on the 5th place earned 7 points. As the participant on the 6th place also earned 7 points, there are 6 advancers.In the second example nobody got a positive score."}, "src_uid": "193ec1226ffe07522caf63e84a7d007f"} {"nl": {"description": "The hero of our story, Valera, and his best friend Arcady are still in school, and therefore they spend all the free time playing turn-based strategy \"GAGA: Go And Go Again\". The gameplay is as follows. There are two armies on the playing field each of which consists of n men (n is always even). The current player specifies for each of her soldiers an enemy's soldier he will shoot (a target) and then all the player's soldiers shot simultaneously. This is a game world, and so each soldier shoots perfectly, that is he absolutely always hits the specified target. If an enemy soldier is hit, he will surely die. It may happen that several soldiers had been indicated the same target. Killed soldiers do not participate in the game anymore. The game \"GAGA\" consists of three steps: first Valera makes a move, then Arcady, then Valera again and the game ends. You are asked to calculate the maximum total number of soldiers that may be killed during the game. ", "input_spec": "The input data consist of a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009108, n is even). Please note that before the game starts there are 2n soldiers on the fields. ", "output_spec": "Print a single number \u2014 a maximum total number of soldiers that could be killed in the course of the game in three turns.", "sample_inputs": ["2", "4"], "sample_outputs": ["3", "6"], "notes": "NoteThe first sample test:1) Valera's soldiers 1 and 2 shoot at Arcady's soldier 1.2) Arcady's soldier 2 shoots at Valera's soldier 1.3) Valera's soldier 1 shoots at Arcady's soldier 2.There are 3 soldiers killed in total: Valera's soldier 1 and Arcady's soldiers 1 and 2."}, "src_uid": "031e53952e76cff8fdc0988bb0d3239c"} {"nl": {"description": "Polycarp has just invented a new binary protocol for data transmission. He is encoding positive integer decimal number to binary string using following algorithm: Each digit is represented with number of '1' characters equal to the value of that digit (for 0 it is zero ones). Digits are written one by one in order corresponding to number and separated by single '0' character. Though Polycarp learnt how to encode the numbers, he has no idea how to decode them back. Help him calculate the decoded number.", "input_spec": "The first line contains one integer number n (1\u2009\u2264\u2009n\u2009\u2264\u200989) \u2014 length of the string s. The second line contains string s \u2014 sequence of '0' and '1' characters, number in its encoded format. It is guaranteed that the number corresponding to the string is positive and doesn't exceed 109. The string always starts with '1'.", "output_spec": "Print the decoded number.", "sample_inputs": ["3\n111", "9\n110011101"], "sample_outputs": ["3", "2031"], "notes": null}, "src_uid": "a4b3da4cb9b6a7ed0a33a862e940cafa"} {"nl": {"description": "Bizon the Champion is called the Champion for a reason. Bizon the Champion has recently got a present \u2014 a new glass cupboard with n shelves and he decided to put all his presents there. All the presents can be divided into two types: medals and cups. Bizon the Champion has a1 first prize cups, a2 second prize cups and a3 third prize cups. Besides, he has b1 first prize medals, b2 second prize medals and b3 third prize medals. Naturally, the rewards in the cupboard must look good, that's why Bizon the Champion decided to follow the rules: any shelf cannot contain both cups and medals at the same time; no shelf can contain more than five cups; no shelf can have more than ten medals. Help Bizon the Champion find out if we can put all the rewards so that all the conditions are fulfilled.", "input_spec": "The first line contains integers a1, a2 and a3 (0\u2009\u2264\u2009a1,\u2009a2,\u2009a3\u2009\u2264\u2009100). The second line contains integers b1, b2 and b3 (0\u2009\u2264\u2009b1,\u2009b2,\u2009b3\u2009\u2264\u2009100). The third line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). The numbers in the lines are separated by single spaces.", "output_spec": "Print \"YES\" (without the quotes) if all the rewards can be put on the shelves in the described manner. Otherwise, print \"NO\" (without the quotes).", "sample_inputs": ["1 1 1\n1 1 1\n4", "1 1 3\n2 3 4\n2", "1 0 0\n1 0 0\n1"], "sample_outputs": ["YES", "YES", "NO"], "notes": null}, "src_uid": "fe6301816dea7d9cea1c3a06a7d1ea7e"} {"nl": {"description": "You are given two lists of non-zero digits.Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?", "input_spec": "The first line contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20099) \u2014 the lengths of the first and the second lists, respectively. The second line contains n distinct digits a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u20099) \u2014 the elements of the first list. The third line contains m distinct digits b1,\u2009b2,\u2009...,\u2009bm (1\u2009\u2264\u2009bi\u2009\u2264\u20099) \u2014 the elements of the second list.", "output_spec": "Print the smallest pretty integer.", "sample_inputs": ["2 3\n4 2\n5 7 6", "8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1"], "sample_outputs": ["25", "1"], "notes": "NoteIn the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list.In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer."}, "src_uid": "3a0c1b6d710fd8f0b6daf420255d76ee"} {"nl": {"description": "Translator's note: in Russia's most widespread grading system, there are four grades: 5, 4, 3, 2, the higher the better, roughly corresponding to A, B, C and F respectively in American grading system.The term is coming to an end and students start thinking about their grades. Today, a professor told his students that the grades for his course would be given out automatically \u00a0\u2014 he would calculate the simple average (arithmetic mean) of all grades given out for lab works this term and round to the nearest integer. The rounding would be done in favour of the student\u00a0\u2014 $$$4.5$$$ would be rounded up to $$$5$$$ (as in example 3), but $$$4.4$$$ would be rounded down to $$$4$$$.This does not bode well for Vasya who didn't think those lab works would influence anything, so he may receive a grade worse than $$$5$$$ (maybe even the dreaded $$$2$$$). However, the professor allowed him to redo some of his works of Vasya's choosing to increase his average grade. Vasya wants to redo as as few lab works as possible in order to get $$$5$$$ for the course. Of course, Vasya will get $$$5$$$ for the lab works he chooses to redo.Help Vasya\u00a0\u2014 calculate the minimum amount of lab works Vasya has to redo.", "input_spec": "The first line contains a single integer $$$n$$$\u00a0\u2014 the number of Vasya's grades ($$$1 \\leq n \\leq 100$$$). The second line contains $$$n$$$ integers from $$$2$$$ to $$$5$$$\u00a0\u2014 Vasya's grades for his lab works.", "output_spec": "Output a single integer\u00a0\u2014 the minimum amount of lab works that Vasya has to redo. It can be shown that Vasya can always redo enough lab works to get a $$$5$$$.", "sample_inputs": ["3\n4 4 4", "4\n5 4 5 5", "4\n5 3 3 5"], "sample_outputs": ["2", "0", "1"], "notes": "NoteIn the first sample, it is enough to redo two lab works to make two $$$4$$$s into $$$5$$$s.In the second sample, Vasya's average is already $$$4.75$$$ so he doesn't have to redo anything to get a $$$5$$$.In the second sample Vasya has to redo one lab work to get rid of one of the $$$3$$$s, that will make the average exactly $$$4.5$$$ so the final grade would be $$$5$$$."}, "src_uid": "715608282b27a0a25b66f08574a6d5bd"} {"nl": {"description": "Hongcow is learning to spell! One day, his teacher gives him a word that he needs to learn to spell. Being a dutiful student, he immediately learns how to spell the word.Hongcow has decided to try to make new words from this one. He starts by taking the word he just learned how to spell, and moves the last character of the word to the beginning of the word. He calls this a cyclic shift. He can apply cyclic shift many times. For example, consecutively applying cyclic shift operation to the word \"abracadabra\" Hongcow will get words \"aabracadabr\", \"raabracadab\" and so on.Hongcow is now wondering how many distinct words he can generate by doing the cyclic shift arbitrarily many times. The initial string is also counted.", "input_spec": "The first line of input will be a single string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200950), the word Hongcow initially learns how to spell. The string s consists only of lowercase English letters ('a'\u2013'z').", "output_spec": "Output a single integer equal to the number of distinct strings that Hongcow can obtain by applying the cyclic shift arbitrarily many times to the given string.", "sample_inputs": ["abcd", "bbb", "yzyz"], "sample_outputs": ["4", "1", "2"], "notes": "NoteFor the first sample, the strings Hongcow can generate are \"abcd\", \"dabc\", \"cdab\", and \"bcda\".For the second sample, no matter how many times Hongcow does the cyclic shift, Hongcow can only generate \"bbb\".For the third sample, the two strings Hongcow can generate are \"yzyz\" and \"zyzy\"."}, "src_uid": "8909ac99ed4ab2ee4d681ec864c7831e"} {"nl": {"description": "Two friends are on the coordinate axis Ox in points with integer coordinates. One of them is in the point x1\u2009=\u2009a, another one is in the point x2\u2009=\u2009b. Each of the friends can move by one along the line in any direction unlimited number of times. When a friend moves, the tiredness of a friend changes according to the following rules: the first move increases the tiredness by 1, the second move increases the tiredness by 2, the third\u00a0\u2014 by 3 and so on. For example, if a friend moves first to the left, then to the right (returning to the same point), and then again to the left his tiredness becomes equal to 1\u2009+\u20092\u2009+\u20093\u2009=\u20096.The friends want to meet in a integer point. Determine the minimum total tiredness they should gain, if they meet in the same point.", "input_spec": "The first line contains a single integer a (1\u2009\u2264\u2009a\u2009\u2264\u20091000) \u2014 the initial position of the first friend. The second line contains a single integer b (1\u2009\u2264\u2009b\u2009\u2264\u20091000) \u2014 the initial position of the second friend. It is guaranteed that a\u2009\u2260\u2009b.", "output_spec": "Print the minimum possible total tiredness if the friends meet in the same point.", "sample_inputs": ["3\n4", "101\n99", "5\n10"], "sample_outputs": ["1", "2", "9"], "notes": "NoteIn the first example the first friend should move by one to the right (then the meeting happens at point 4), or the second friend should move by one to the left (then the meeting happens at point 3). In both cases, the total tiredness becomes 1.In the second example the first friend should move by one to the left, and the second friend should move by one to the right. Then they meet in the point 100, and the total tiredness becomes 1\u2009+\u20091\u2009=\u20092.In the third example one of the optimal ways is the following. The first friend should move three times to the right, and the second friend \u2014 two times to the left. Thus the friends meet in the point 8, and the total tiredness becomes 1\u2009+\u20092\u2009+\u20093\u2009+\u20091\u2009+\u20092\u2009=\u20099."}, "src_uid": "d3f2c6886ed104d7baba8dd7b70058da"} {"nl": {"description": "Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.", "input_spec": "The first input line contains a non-empty string consisting of characters \"0\" and \"1\", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.", "output_spec": "Print \"YES\" if the situation is dangerous. Otherwise, print \"NO\".", "sample_inputs": ["001001", "1000000001"], "sample_outputs": ["NO", "YES"], "notes": null}, "src_uid": "ed9a763362abc6ed40356731f1036b38"} {"nl": {"description": "After making bad dives into swimming pools, Wilbur wants to build a swimming pool in the shape of a rectangle in his backyard. He has set up coordinate axes, and he wants the sides of the rectangle to be parallel to them. Of course, the area of the rectangle must be positive. Wilbur had all four vertices of the planned pool written on a paper, until his friend came along and erased some of the vertices.Now Wilbur is wondering, if the remaining n vertices of the initial rectangle give enough information to restore the area of the planned swimming pool.", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20094)\u00a0\u2014 the number of vertices that were not erased by Wilbur's friend. Each of the following n lines contains two integers xi and yi (\u2009-\u20091000\u2009\u2264\u2009xi,\u2009yi\u2009\u2264\u20091000)\u00a0\u2014the coordinates of the i-th vertex that remains. Vertices are given in an arbitrary order. It's guaranteed that these points are distinct vertices of some rectangle, that has positive area and which sides are parallel to the coordinate axes.", "output_spec": "Print the area of the initial rectangle if it could be uniquely determined by the points remaining. Otherwise, print \u2009-\u20091. ", "sample_inputs": ["2\n0 0\n1 1", "1\n1 1"], "sample_outputs": ["1", "-1"], "notes": "NoteIn the first sample, two opposite corners of the initial rectangle are given, and that gives enough information to say that the rectangle is actually a unit square.In the second sample there is only one vertex left and this is definitely not enough to uniquely define the area."}, "src_uid": "ba49b6c001bb472635f14ec62233210e"} {"nl": {"description": "Pak Chanek has a grid that has $$$N$$$ rows and $$$M$$$ columns. Each row is numbered from $$$1$$$ to $$$N$$$ from top to bottom. Each column is numbered from $$$1$$$ to $$$M$$$ from left to right.Each tile in the grid contains a number. The numbers are arranged as follows: Row $$$1$$$ contains integers from $$$1$$$ to $$$M$$$ from left to right. Row $$$2$$$ contains integers from $$$M+1$$$ to $$$2 \\times M$$$ from left to right. Row $$$3$$$ contains integers from $$$2 \\times M+1$$$ to $$$3 \\times M$$$ from left to right. And so on until row $$$N$$$. A domino is defined as two different tiles in the grid that touch by their sides. A domino is said to be tight if and only if the two numbers in the domino have a difference of exactly $$$1$$$. Count the number of distinct tight dominoes in the grid.Two dominoes are said to be distinct if and only if there exists at least one tile that is in one domino, but not in the other.", "input_spec": "The only line contains two integers $$$N$$$ and $$$M$$$ ($$$1 \\leq N, M \\leq 10^9$$$) \u2014 the number of rows and columns in the grid.", "output_spec": "An integer representing the number of distinct tight dominoes in the grid.", "sample_inputs": ["3 4", "2 1"], "sample_outputs": ["9", "1"], "notes": "NoteThe picture below is the grid that Pak Chanek has in the first example. The picture below is an example of a tight domino in the grid. "}, "src_uid": "a91aab4c0618d036c81022232814ef44"} {"nl": {"description": "Mary has just graduated from one well-known University and is now attending celebration party. Students like to dream of a beautiful life, so they used champagne glasses to construct a small pyramid. The height of the pyramid is n. The top level consists of only 1 glass, that stands on 2 glasses on the second level (counting from the top), then 3 glasses on the third level and so on.The bottom level consists of n glasses.Vlad has seen in the movies many times how the champagne beautifully flows from top levels to bottom ones, filling all the glasses simultaneously. So he took a bottle and started to pour it in the glass located at the top of the pyramid.Each second, Vlad pours to the top glass the amount of champagne equal to the size of exactly one glass. If the glass is already full, but there is some champagne flowing in it, then it pours over the edge of the glass and is equally distributed over two glasses standing under. If the overflowed glass is at the bottom level, then the champagne pours on the table. For the purpose of this problem we consider that champagne is distributed among pyramid glasses immediately. Vlad is interested in the number of completely full glasses if he stops pouring champagne in t seconds.Pictures below illustrate the pyramid consisting of three levels. ", "input_spec": "The only line of the input contains two integers n and t (1\u2009\u2264\u2009n\u2009\u2264\u200910,\u20090\u2009\u2264\u2009t\u2009\u2264\u200910\u2009000)\u00a0\u2014 the height of the pyramid and the number of seconds Vlad will be pouring champagne from the bottle.", "output_spec": "Print the single integer\u00a0\u2014 the number of completely full glasses after t seconds.", "sample_inputs": ["3 5", "4 8"], "sample_outputs": ["4", "6"], "notes": "NoteIn the first sample, the glasses full after 5 seconds are: the top glass, both glasses on the second level and the middle glass at the bottom level. Left and right glasses of the bottom level will be half-empty."}, "src_uid": "b2b49b7f6e3279d435766085958fb69d"} {"nl": {"description": "Vitya has just started learning Berlanese language. It is known that Berlanese uses the Latin alphabet. Vowel letters are \"a\", \"o\", \"u\", \"i\", and \"e\". Other letters are consonant.In Berlanese, there has to be a vowel after every consonant, but there can be any letter after any vowel. The only exception is a consonant \"n\"; after this letter, there can be any letter (not only a vowel) or there can be no letter at all. For example, the words \"harakiri\", \"yupie\", \"man\", and \"nbo\" are Berlanese while the words \"horse\", \"king\", \"my\", and \"nz\" are not.Help Vitya find out if a word $$$s$$$ is Berlanese.", "input_spec": "The first line of the input contains the string $$$s$$$ consisting of $$$|s|$$$ ($$$1\\leq |s|\\leq 100$$$) lowercase Latin letters.", "output_spec": "Print \"YES\" (without quotes) if there is a vowel after every consonant except \"n\", otherwise print \"NO\". You can print each letter in any case (upper or lower).", "sample_inputs": ["sumimasen", "ninja", "codeforces"], "sample_outputs": ["YES", "YES", "NO"], "notes": "NoteIn the first and second samples, a vowel goes after each consonant except \"n\", so the word is Berlanese.In the third sample, the consonant \"c\" goes after the consonant \"r\", and the consonant \"s\" stands on the end, so the word is not Berlanese."}, "src_uid": "a83144ba7d4906b7692456f27b0ef7d4"} {"nl": {"description": "Kicker (table football) is a board game based on football, in which players control the footballers' figures mounted on rods by using bars to get the ball into the opponent's goal. When playing two on two, one player of each team controls the goalkeeper and the full-backs (plays defence), the other player controls the half-backs and forwards (plays attack).Two teams of company Q decided to battle each other. Let's enumerate players from both teams by integers from 1 to 4. The first and second player play in the first team, the third and the fourth one play in the second team. For each of the four players we know their game skills in defence and attack. The defence skill of the i-th player is ai, the attack skill is bi.Before the game, the teams determine how they will play. First the players of the first team decide who will play in the attack, and who will play in the defence. Then the second team players do the same, based on the choice of their opponents.We will define a team's defence as the defence skill of player of the team who plays defence. Similarly, a team's attack is the attack skill of the player of the team who plays attack. We assume that one team is guaranteed to beat the other one, if its defence is strictly greater than the opponent's attack and its attack is strictly greater than the opponent's defence.The teams of company Q know each other's strengths and therefore arrange their teams optimally. Identify the team that is guaranteed to win (if both teams act optimally) or tell that there is no such team.", "input_spec": "The input contain the players' description in four lines. The i-th line contains two space-separated integers ai and bi (1\u2009\u2264\u2009ai,\u2009bi\u2009\u2264\u2009100) \u2014 the defence and the attack skill of the i-th player, correspondingly.", "output_spec": "If the first team can win, print phrase \"Team 1\" (without the quotes), if the second team can win, print phrase \"Team 2\" (without the quotes). If no of the teams can definitely win, print \"Draw\" (without the quotes).", "sample_inputs": ["1 100\n100 1\n99 99\n99 99", "1 1\n2 2\n3 3\n2 2", "3 3\n2 2\n1 1\n2 2"], "sample_outputs": ["Team 1", "Team 2", "Draw"], "notes": "NoteLet consider the first test sample. The first team can definitely win if it will choose the following arrangement: the first player plays attack, the second player plays defence.Consider the second sample. The order of the choosing roles for players makes sense in this sample. As the members of the first team choose first, the members of the second team can beat them (because they know the exact defence value and attack value of the first team)."}, "src_uid": "1a70ed6f58028a7c7a86e73c28ff245f"} {"nl": {"description": "Dreamoon wants to climb up a stair of n steps. He can climb 1 or 2 steps at each move. Dreamoon wants the number of moves to be a multiple of an integer m. What is the minimal number of moves making him climb to the top of the stairs that satisfies his condition?", "input_spec": "The single line contains two space separated integers n, m (0\u2009<\u2009n\u2009\u2264\u200910000,\u20091\u2009<\u2009m\u2009\u2264\u200910).", "output_spec": "Print a single integer \u2014 the minimal number of moves being a multiple of m. If there is no way he can climb satisfying condition print \u2009-\u20091 instead.", "sample_inputs": ["10 2", "3 5"], "sample_outputs": ["6", "-1"], "notes": "NoteFor the first sample, Dreamoon could climb in 6 moves with following sequence of steps: {2, 2, 2, 2, 1, 1}.For the second sample, there are only three valid sequence of steps {2, 1}, {1, 2}, {1, 1, 1} with 2, 2, and 3 steps respectively. All these numbers are not multiples of 5."}, "src_uid": "0fa526ebc0b4fa3a5866c7c5b3a4656f"} {"nl": {"description": "The circle line of the Roflanpolis subway has $$$n$$$ stations.There are two parallel routes in the subway. The first one visits stations in order $$$1 \\to 2 \\to \\ldots \\to n \\to 1 \\to 2 \\to \\ldots$$$ (so the next stop after station $$$x$$$ is equal to $$$(x+1)$$$ if $$$x < n$$$ and $$$1$$$ otherwise). The second route visits stations in order $$$n \\to (n-1) \\to \\ldots \\to 1 \\to n \\to (n-1) \\to \\ldots$$$ (so the next stop after station $$$x$$$ is equal to $$$(x-1)$$$ if $$$x>1$$$ and $$$n$$$ otherwise). All trains depart their stations simultaneously, and it takes exactly $$$1$$$ minute to arrive at the next station.Two toads live in this city, their names are Daniel and Vlad.Daniel is currently in a train of the first route at station $$$a$$$ and will exit the subway when his train reaches station $$$x$$$.Coincidentally, Vlad is currently in a train of the second route at station $$$b$$$ and he will exit the subway when his train reaches station $$$y$$$.Surprisingly, all numbers $$$a,x,b,y$$$ are distinct.Toad Ilya asks you to check if Daniel and Vlad will ever be at the same station at the same time during their journey. In other words, check if there is a moment when their trains stop at the same station. Note that this includes the moments when Daniel or Vlad enter or leave the subway.", "input_spec": "The first line contains five space-separated integers $$$n$$$, $$$a$$$, $$$x$$$, $$$b$$$, $$$y$$$ ($$$4 \\leq n \\leq 100$$$, $$$1 \\leq a, x, b, y \\leq n$$$, all numbers among $$$a$$$, $$$x$$$, $$$b$$$, $$$y$$$ are distinct)\u00a0\u2014 the number of stations in Roflanpolis, Daniel's start station, Daniel's finish station, Vlad's start station and Vlad's finish station, respectively.", "output_spec": "Output \"YES\" if there is a time moment when Vlad and Daniel are at the same station, and \"NO\" otherwise. You can print each letter in any case (upper or lower).", "sample_inputs": ["5 1 4 3 2", "10 2 1 9 10"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example, Daniel and Vlad start at the stations $$$(1, 3)$$$. One minute later they are at stations $$$(2, 2)$$$. They are at the same station at this moment. Note that Vlad leaves the subway right after that.Consider the second example, let's look at the stations Vlad and Daniel are at. They are: initially $$$(2, 9)$$$, after $$$1$$$ minute $$$(3, 8)$$$, after $$$2$$$ minutes $$$(4, 7)$$$, after $$$3$$$ minutes $$$(5, 6)$$$, after $$$4$$$ minutes $$$(6, 5)$$$, after $$$5$$$ minutes $$$(7, 4)$$$, after $$$6$$$ minutes $$$(8, 3)$$$, after $$$7$$$ minutes $$$(9, 2)$$$, after $$$8$$$ minutes $$$(10, 1)$$$, after $$$9$$$ minutes $$$(1, 10)$$$. After that, they both leave the subway because they are at their finish stations, so there is no moment when they both are at the same station."}, "src_uid": "5b889751f82c9f32f223cdee0c0095e4"} {"nl": {"description": "Kurt reaches nirvana when he finds the product of all the digits of some positive integer. Greater value of the product makes the nirvana deeper.Help Kurt find the maximum possible product of digits among all integers from $$$1$$$ to $$$n$$$.", "input_spec": "The only input line contains the integer $$$n$$$ ($$$1 \\le n \\le 2\\cdot10^9$$$).", "output_spec": "Print the maximum product of digits among all integers from $$$1$$$ to $$$n$$$.", "sample_inputs": ["390", "7", "1000000000"], "sample_outputs": ["216", "7", "387420489"], "notes": "NoteIn the first example the maximum product is achieved for $$$389$$$ (the product of digits is $$$3\\cdot8\\cdot9=216$$$).In the second example the maximum product is achieved for $$$7$$$ (the product of digits is $$$7$$$).In the third example the maximum product is achieved for $$$999999999$$$ (the product of digits is $$$9^9=387420489$$$)."}, "src_uid": "38690bd32e7d0b314f701f138ce19dfb"} {"nl": {"description": "Nicholas has an array a that contains n distinct integers from 1 to n. In other words, Nicholas has a permutation of size n.Nicholas want the minimum element (integer 1) and the maximum element (integer n) to be as far as possible from each other. He wants to perform exactly one swap in order to maximize the distance between the minimum and the maximum elements. The distance between two elements is considered to be equal to the absolute difference between their positions.", "input_spec": "The first line of the input contains a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the size of the permutation. The second line of the input contains n distinct integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009n), where ai is equal to the element at the i-th position.", "output_spec": "Print a single integer\u00a0\u2014 the maximum possible distance between the minimum and the maximum elements Nicholas can achieve by performing exactly one swap.", "sample_inputs": ["5\n4 5 1 3 2", "7\n1 6 5 3 4 7 2", "6\n6 5 4 3 2 1"], "sample_outputs": ["3", "6", "5"], "notes": "NoteIn the first sample, one may obtain the optimal answer by swapping elements 1 and 2.In the second sample, the minimum and the maximum elements will be located in the opposite ends of the array if we swap 7 and 2.In the third sample, the distance between the minimum and the maximum elements is already maximum possible, so we just perform some unnecessary swap, for example, one can swap 5 and 2."}, "src_uid": "1d2b81ce842f8c97656d96bddff4e8b4"} {"nl": {"description": "Vasily has a number a, which he wants to turn into a number b. For this purpose, he can do two types of operations: multiply the current number by 2 (that is, replace the number x by 2\u00b7x); append the digit 1 to the right of current number (that is, replace the number x by 10\u00b7x\u2009+\u20091). You need to help Vasily to transform the number a into the number b using only the operations described above, or find that it is impossible.Note that in this task you are not required to minimize the number of operations. It suffices to find any way to transform a into b.", "input_spec": "The first line contains two positive integers a and b (1\u2009\u2264\u2009a\u2009<\u2009b\u2009\u2264\u2009109)\u00a0\u2014 the number which Vasily has and the number he wants to have.", "output_spec": "If there is no way to get b from a, print \"NO\" (without quotes). Otherwise print three lines. On the first line print \"YES\" (without quotes). The second line should contain single integer k\u00a0\u2014 the length of the transformation sequence. On the third line print the sequence of transformations x1,\u2009x2,\u2009...,\u2009xk, where: x1 should be equal to a, xk should be equal to b, xi should be obtained from xi\u2009-\u20091 using any of two described operations (1\u2009<\u2009i\u2009\u2264\u2009k). If there are multiple answers, print any of them.", "sample_inputs": ["2 162", "4 42", "100 40021"], "sample_outputs": ["YES\n5\n2 4 8 81 162", "NO", "YES\n5\n100 200 2001 4002 40021"], "notes": null}, "src_uid": "fc3adb1a9a7f1122b567b4d8afd7b3f3"} {"nl": {"description": "The end of the school year is near and Ms. Manana, the teacher, will soon have to say goodbye to a yet another class. She decided to prepare a goodbye present for her n students and give each of them a jigsaw puzzle (which, as wikipedia states, is a tiling puzzle that requires the assembly of numerous small, often oddly shaped, interlocking and tessellating pieces).The shop assistant told the teacher that there are m puzzles in the shop, but they might differ in difficulty and size. Specifically, the first jigsaw puzzle consists of f1 pieces, the second one consists of f2 pieces and so on.Ms. Manana doesn't want to upset the children, so she decided that the difference between the numbers of pieces in her presents must be as small as possible. Let A be the number of pieces in the largest puzzle that the teacher buys and B be the number of pieces in the smallest such puzzle. She wants to choose such n puzzles that A\u2009-\u2009B is minimum possible. Help the teacher and find the least possible value of A\u2009-\u2009B.", "input_spec": "The first line contains space-separated integers n and m (2\u2009\u2264\u2009n\u2009\u2264\u2009m\u2009\u2264\u200950). The second line contains m space-separated integers f1,\u2009f2,\u2009...,\u2009fm (4\u2009\u2264\u2009fi\u2009\u2264\u20091000) \u2014 the quantities of pieces in the puzzles sold in the shop.", "output_spec": "Print a single integer \u2014 the least possible difference the teacher can obtain.", "sample_inputs": ["4 6\n10 12 10 7 5 22"], "sample_outputs": ["5"], "notes": "NoteSample 1. The class has 4 students. The shop sells 6 puzzles. If Ms. Manana buys the first four puzzles consisting of 10, 12, 10 and 7 pieces correspondingly, then the difference between the sizes of the largest and the smallest puzzle will be equal to 5. It is impossible to obtain a smaller difference. Note that the teacher can also buy puzzles 1, 3, 4 and 5 to obtain the difference 5."}, "src_uid": "7830aabb0663e645d54004063746e47f"} {"nl": {"description": "Tokitsukaze is one of the characters in the game \"Kantai Collection\". In this game, every character has a common attribute\u00a0\u2014 health points, shortened to HP.In general, different values of HP are grouped into $$$4$$$ categories: Category $$$A$$$ if HP is in the form of $$$(4 n + 1)$$$, that is, when divided by $$$4$$$, the remainder is $$$1$$$; Category $$$B$$$ if HP is in the form of $$$(4 n + 3)$$$, that is, when divided by $$$4$$$, the remainder is $$$3$$$; Category $$$C$$$ if HP is in the form of $$$(4 n + 2)$$$, that is, when divided by $$$4$$$, the remainder is $$$2$$$; Category $$$D$$$ if HP is in the form of $$$4 n$$$, that is, when divided by $$$4$$$, the remainder is $$$0$$$. The above-mentioned $$$n$$$ can be any integer.These $$$4$$$ categories ordered from highest to lowest as $$$A > B > C > D$$$, which means category $$$A$$$ is the highest and category $$$D$$$ is the lowest.While playing the game, players can increase the HP of the character. Now, Tokitsukaze wants you to increase her HP by at most $$$2$$$ (that is, either by $$$0$$$, $$$1$$$ or $$$2$$$). How much should she increase her HP so that it has the highest possible category?", "input_spec": "The only line contains a single integer $$$x$$$ ($$$30 \\leq x \\leq 100$$$)\u00a0\u2014 the value Tokitsukaze's HP currently.", "output_spec": "Print an integer $$$a$$$ ($$$0 \\leq a \\leq 2$$$) and an uppercase letter $$$b$$$ ($$$b \\in \\lbrace A, B, C, D \\rbrace$$$), representing that the best way is to increase her HP by $$$a$$$, and then the category becomes $$$b$$$. Note that the output characters are case-sensitive.", "sample_inputs": ["33", "98"], "sample_outputs": ["0 A", "1 B"], "notes": "NoteFor the first example, the category of Tokitsukaze's HP is already $$$A$$$, so you don't need to enhance her ability.For the second example: If you don't increase her HP, its value is still $$$98$$$, which equals to $$$(4 \\times 24 + 2)$$$, and its category is $$$C$$$. If you increase her HP by $$$1$$$, its value becomes $$$99$$$, which equals to $$$(4 \\times 24 + 3)$$$, and its category becomes $$$B$$$. If you increase her HP by $$$2$$$, its value becomes $$$100$$$, which equals to $$$(4 \\times 25)$$$, and its category becomes $$$D$$$. Therefore, the best way is to increase her HP by $$$1$$$ so that the category of her HP becomes $$$B$$$."}, "src_uid": "488e809bd0c55531b0b47f577996627e"} {"nl": {"description": "During the break the schoolchildren, boys and girls, formed a queue of n people in the canteen. Initially the children stood in the order they entered the canteen. However, after a while the boys started feeling awkward for standing in front of the girls in the queue and they started letting the girls move forward each second. Let's describe the process more precisely. Let's say that the positions in the queue are sequentially numbered by integers from 1 to n, at that the person in the position number 1 is served first. Then, if at time x a boy stands on the i-th position and a girl stands on the (i\u2009+\u20091)-th position, then at time x\u2009+\u20091 the i-th position will have a girl and the (i\u2009+\u20091)-th position will have a boy. The time is given in seconds.You've got the initial position of the children, at the initial moment of time. Determine the way the queue is going to look after t seconds.", "input_spec": "The first line contains two integers n and t (1\u2009\u2264\u2009n,\u2009t\u2009\u2264\u200950), which represent the number of children in the queue and the time after which the queue will transform into the arrangement you need to find. The next line contains string s, which represents the schoolchildren's initial arrangement. If the i-th position in the queue contains a boy, then the i-th character of string s equals \"B\", otherwise the i-th character equals \"G\".", "output_spec": "Print string a, which describes the arrangement after t seconds. If the i-th position has a boy after the needed time, then the i-th character a must equal \"B\", otherwise it must equal \"G\".", "sample_inputs": ["5 1\nBGGBG", "5 2\nBGGBG", "4 1\nGGGB"], "sample_outputs": ["GBGGB", "GGBGB", "GGGB"], "notes": null}, "src_uid": "964ed316c6e6715120039b0219cc653a"} {"nl": {"description": "Little girl Tanya is learning how to decrease a number by one, but she does it wrong with a number consisting of two or more digits. Tanya subtracts one from a number by the following algorithm: if the last digit of the number is non-zero, she decreases the number by one; if the last digit of the number is zero, she divides the number by 10 (i.e. removes the last digit). You are given an integer number $$$n$$$. Tanya will subtract one from it $$$k$$$ times. Your task is to print the result after all $$$k$$$ subtractions.It is guaranteed that the result will be positive integer number.", "input_spec": "The first line of the input contains two integer numbers $$$n$$$ and $$$k$$$ ($$$2 \\le n \\le 10^9$$$, $$$1 \\le k \\le 50$$$) \u2014 the number from which Tanya will subtract and the number of subtractions correspondingly.", "output_spec": "Print one integer number \u2014 the result of the decreasing $$$n$$$ by one $$$k$$$ times. It is guaranteed that the result will be positive integer number. ", "sample_inputs": ["512 4", "1000000000 9"], "sample_outputs": ["50", "1"], "notes": "NoteThe first example corresponds to the following sequence: $$$512 \\rightarrow 511 \\rightarrow 510 \\rightarrow 51 \\rightarrow 50$$$."}, "src_uid": "064162604284ce252b88050b4174ba55"} {"nl": {"description": "Greatest common divisor GCD(a,\u2009b) of two positive integers a and b is equal to the biggest integer d such that both integers a and b are divisible by d. There are many efficient algorithms to find greatest common divisor GCD(a,\u2009b), for example, Euclid algorithm. Formally, find the biggest integer d, such that all integers a,\u2009a\u2009+\u20091,\u2009a\u2009+\u20092,\u2009...,\u2009b are divisible by d. To make the problem even more complicated we allow a and b to be up to googol, 10100\u00a0\u2014 such number do not fit even in 64-bit integer type!", "input_spec": "The only line of the input contains two integers a and b (1\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u200910100).", "output_spec": "Output one integer\u00a0\u2014 greatest common divisor of all integers from a to b inclusive.", "sample_inputs": ["1 2", "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576"], "sample_outputs": ["1", "61803398874989484820458683436563811772030917980576"], "notes": null}, "src_uid": "9c5b6d8a20414d160069010b2965b896"} {"nl": {"description": "Galois is one of the strongest chess players of Byteforces. He has even invented a new variant of chess, which he named \u00abPawnChess\u00bb.This new game is played on a board consisting of 8 rows and 8 columns. At the beginning of every game some black and white pawns are placed on the board. The number of black pawns placed is not necessarily equal to the number of white pawns placed. Lets enumerate rows and columns with integers from 1 to 8. Rows are numbered from top to bottom, while columns are numbered from left to right. Now we denote as (r,\u2009c) the cell located at the row r and at the column c.There are always two players A and B playing the game. Player A plays with white pawns, while player B plays with black ones. The goal of player A is to put any of his pawns to the row 1, while player B tries to put any of his pawns to the row 8. As soon as any of the players completes his goal the game finishes immediately and the succeeded player is declared a winner.Player A moves first and then they alternate turns. On his move player A must choose exactly one white pawn and move it one step upward and player B (at his turn) must choose exactly one black pawn and move it one step down. Any move is possible only if the targeted cell is empty. It's guaranteed that for any scenario of the game there will always be at least one move available for any of the players.Moving upward means that the pawn located in (r,\u2009c) will go to the cell (r\u2009-\u20091,\u2009c), while moving down means the pawn located in (r,\u2009c) will go to the cell (r\u2009+\u20091,\u2009c). Again, the corresponding cell must be empty, i.e. not occupied by any other pawn of any color.Given the initial disposition of the board, determine who wins the game if both players play optimally. Note that there will always be a winner due to the restriction that for any game scenario both players will have some moves available.", "input_spec": "The input consists of the board description given in eight lines, each line contains eight characters. Character 'B' is used to denote a black pawn, and character 'W' represents a white pawn. Empty cell is marked with '.'. It's guaranteed that there will not be white pawns on the first row neither black pawns on the last row.", "output_spec": "Print 'A' if player A wins the game on the given board, and 'B' if player B will claim the victory. Again, it's guaranteed that there will always be a winner on the given board.", "sample_inputs": ["........\n........\n.B....B.\n....W...\n........\n..W.....\n........\n........", "..B.....\n..W.....\n......B.\n........\n.....W..\n......B.\n........\n........"], "sample_outputs": ["A", "B"], "notes": "NoteIn the first sample player A is able to complete his goal in 3 steps by always moving a pawn initially located at (4,\u20095). Player B needs at least 5 steps for any of his pawns to reach the row 8. Hence, player A will be the winner."}, "src_uid": "0ddc839e17dee20e1a954c1289de7fbd"} {"nl": {"description": "The math faculty of Berland State University has suffered the sudden drop in the math skills of enrolling students. This year the highest grade on the entrance math test was 8. Out of 100! Thus, the decision was made to make the test easier.Future students will be asked just a single question. They are given a sequence of integer numbers $$$a_1, a_2, \\dots, a_n$$$, each number is from $$$1$$$ to $$$3$$$ and $$$a_i \\ne a_{i + 1}$$$ for each valid $$$i$$$. The $$$i$$$-th number represents a type of the $$$i$$$-th figure: circle; isosceles triangle with the length of height equal to the length of base; square. The figures of the given sequence are placed somewhere on a Cartesian plane in such a way that: $$$(i + 1)$$$-th figure is inscribed into the $$$i$$$-th one; each triangle base is parallel to OX; the triangle is oriented in such a way that the vertex opposite to its base is at the top; each square sides are parallel to the axes; for each $$$i$$$ from $$$2$$$ to $$$n$$$ figure $$$i$$$ has the maximum possible length of side for triangle and square and maximum radius for circle. Note that the construction is unique for some fixed position and size of just the first figure.The task is to calculate the number of distinct points (not necessarily with integer coordinates) where figures touch. The trick is, however, that the number is sometimes infinite. But that won't make the task difficult for you, will it?So can you pass the math test and enroll into Berland State University?", "input_spec": "The first line contains a single integer $$$n$$$ ($$$2 \\le n \\le 100$$$) \u2014 the number of figures. The second line contains $$$n$$$ integer numbers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 3$$$, $$$a_i \\ne a_{i + 1}$$$) \u2014 types of the figures.", "output_spec": "The first line should contain either the word \"Infinite\" if the number of distinct points where figures touch is infinite or \"Finite\" otherwise. If the number is finite than print it in the second line. It's guaranteed that the number fits into 32-bit integer type.", "sample_inputs": ["3\n2 1 3", "3\n1 2 3"], "sample_outputs": ["Finite\n7", "Infinite"], "notes": "NoteHere are the glorious pictures for the examples. Note that the triangle is not equilateral but just isosceles with the length of height equal to the length of base. Thus it fits into a square in a unique way.The distinct points where figures touch are marked red.In the second example the triangle and the square touch each other for the whole segment, it contains infinite number of points. "}, "src_uid": "6c8f028f655cc77b05ed89a668273702"} {"nl": {"description": "Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a \"Double Cola\" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum.For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny.Write a program that will print the name of a man who will drink the n-th can.Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon.", "input_spec": "The input data consist of a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers.", "output_spec": "Print the single line \u2014 the name of the person who drinks the n-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: \"Sheldon\", \"Leonard\", \"Penny\", \"Rajesh\", \"Howard\" (without the quotes). In that order precisely the friends are in the queue initially.", "sample_inputs": ["1", "6", "1802"], "sample_outputs": ["Sheldon", "Sheldon", "Penny"], "notes": null}, "src_uid": "023b169765e81d896cdc1184e5a82b22"} {"nl": {"description": "There are n shovels in Polycarp's shop. The i-th shovel costs i burles, that is, the first shovel costs 1 burle, the second shovel costs 2 burles, the third shovel costs 3 burles, and so on. Polycarps wants to sell shovels in pairs.Visitors are more likely to buy a pair of shovels if their total cost ends with several 9s. Because of this, Polycarp wants to choose a pair of shovels to sell in such a way that the sum of their costs ends with maximum possible number of nines. For example, if he chooses shovels with costs 12345 and 37454, their total cost is 49799, it ends with two nines.You are to compute the number of pairs of shovels such that their total cost ends with maximum possible number of nines. Two pairs are considered different if there is a shovel presented in one pair, but not in the other.", "input_spec": "The first line contains a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009109) \u2014 the number of shovels in Polycarp's shop.", "output_spec": "Print the number of pairs of shovels such that their total cost ends with maximum possible number of nines. Note that it is possible that the largest number of 9s at the end is 0, then you should count all such ways. It is guaranteed that for every n\u2009\u2264\u2009109 the answer doesn't exceed 2\u00b7109.", "sample_inputs": ["7", "14", "50"], "sample_outputs": ["3", "9", "1"], "notes": "NoteIn the first example the maximum possible number of nines at the end is one. Polycarp cah choose the following pairs of shovels for that purpose: 2 and 7; 3 and 6; 4 and 5. In the second example the maximum number of nines at the end of total cost of two shovels is one. The following pairs of shovels suit Polycarp: 1 and 8; 2 and 7; 3 and 6; 4 and 5; 5 and 14; 6 and 13; 7 and 12; 8 and 11; 9 and 10. In the third example it is necessary to choose shovels 49 and 50, because the sum of their cost is 99, that means that the total number of nines is equal to two, which is maximum possible for n\u2009=\u200950."}, "src_uid": "c20744c44269ae0779c5f549afd2e3f2"} {"nl": {"description": "A number is called quasibinary if its decimal representation contains only digits 0 or 1. For example, numbers 0, 1, 101, 110011\u00a0\u2014 are quasibinary and numbers 2, 12, 900 are not.You are given a positive integer n. Represent it as a sum of minimum number of quasibinary numbers.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009106).", "output_spec": "In the first line print a single integer k\u00a0\u2014 the minimum number of numbers in the representation of number n as a sum of quasibinary numbers. In the second line print k numbers \u2014 the elements of the sum. All these numbers should be quasibinary according to the definition above, their sum should equal n. Do not have to print the leading zeroes in the numbers. The order of numbers doesn't matter. If there are multiple possible representations, you are allowed to print any of them.", "sample_inputs": ["9", "32"], "sample_outputs": ["9\n1 1 1 1 1 1 1 1 1", "3\n10 11 11"], "notes": null}, "src_uid": "033068c5e16d25f09039e29c88474275"} {"nl": {"description": "Soon a school Olympiad in Informatics will be held in Berland, n schoolchildren will participate there.At a meeting of the jury of the Olympiad it was decided that each of the n participants, depending on the results, will get a diploma of the first, second or third degree. Thus, each student will receive exactly one diploma.They also decided that there must be given at least min1 and at most max1 diplomas of the first degree, at least min2 and at most max2 diplomas of the second degree, and at least min3 and at most max3 diplomas of the third degree.After some discussion it was decided to choose from all the options of distributing diplomas satisfying these limitations the one that maximizes the number of participants who receive diplomas of the first degree. Of all these options they select the one which maximizes the number of the participants who receive diplomas of the second degree. If there are multiple of these options, they select the option that maximizes the number of diplomas of the third degree.Choosing the best option of distributing certificates was entrusted to Ilya, one of the best programmers of Berland. However, he found more important things to do, so it is your task now to choose the best option of distributing of diplomas, based on the described limitations.It is guaranteed that the described limitations are such that there is a way to choose such an option of distributing diplomas that all n participants of the Olympiad will receive a diploma of some degree.", "input_spec": "The first line of the input contains a single integer n (3\u2009\u2264\u2009n\u2009\u2264\u20093\u00b7106)\u00a0\u2014\u00a0the number of schoolchildren who will participate in the Olympiad. The next line of the input contains two integers min1 and max1 (1\u2009\u2264\u2009min1\u2009\u2264\u2009max1\u2009\u2264\u2009106)\u00a0\u2014\u00a0the minimum and maximum limits on the number of diplomas of the first degree that can be distributed. The third line of the input contains two integers min2 and max2 (1\u2009\u2264\u2009min2\u2009\u2264\u2009max2\u2009\u2264\u2009106)\u00a0\u2014\u00a0the minimum and maximum limits on the number of diplomas of the second degree that can be distributed. The next line of the input contains two integers min3 and max3 (1\u2009\u2264\u2009min3\u2009\u2264\u2009max3\u2009\u2264\u2009106)\u00a0\u2014\u00a0the minimum and maximum limits on the number of diplomas of the third degree that can be distributed. It is guaranteed that min1\u2009+\u2009min2\u2009+\u2009min3\u2009\u2264\u2009n\u2009\u2264\u2009max1\u2009+\u2009max2\u2009+\u2009max3.", "output_spec": "In the first line of the output print three numbers, showing how many diplomas of the first, second and third degree will be given to students in the optimal variant of distributing diplomas. The optimal variant of distributing diplomas is the one that maximizes the number of students who receive diplomas of the first degree. Of all the suitable options, the best one is the one which maximizes the number of participants who receive diplomas of the second degree. If there are several of these options, the best one is the one that maximizes the number of diplomas of the third degree.", "sample_inputs": ["6\n1 5\n2 6\n3 7", "10\n1 2\n1 3\n1 5", "6\n1 3\n2 2\n2 2"], "sample_outputs": ["1 2 3", "2 3 5", "2 2 2"], "notes": null}, "src_uid": "3cd092b6507079518cf206deab21cf97"} {"nl": {"description": "Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path.You are given l and r. For all integers from l to r, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times.Solve the problem to show that it's not a NP problem.", "input_spec": "The first line contains two integers l and r (2\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u2009109).", "output_spec": "Print single integer, the integer that appears maximum number of times in the divisors. If there are multiple answers, print any of them.", "sample_inputs": ["19 29", "3 6"], "sample_outputs": ["2", "3"], "notes": "NoteDefinition of a divisor: https://www.mathsisfun.com/definitions/divisor-of-an-integer-.htmlThe first example: from 19 to 29 these numbers are divisible by 2: {20,\u200922,\u200924,\u200926,\u200928}.The second example: from 3 to 6 these numbers are divisible by 3: {3,\u20096}."}, "src_uid": "a8d992ab26a528f0be327c93fb499c15"} {"nl": {"description": "Mad scientist Mike is busy carrying out experiments in chemistry. Today he will attempt to join three atoms into one molecule.A molecule consists of atoms, with some pairs of atoms connected by atomic bonds. Each atom has a valence number \u2014 the number of bonds the atom must form with other atoms. An atom can form one or multiple bonds with any other atom, but it cannot form a bond with itself. The number of bonds of an atom in the molecule must be equal to its valence number. Mike knows valence numbers of the three atoms. Find a molecule that can be built from these atoms according to the stated rules, or determine that it is impossible.", "input_spec": "The single line of the input contains three space-separated integers a, b and c (1\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u2009106) \u2014 the valence numbers of the given atoms.", "output_spec": "If such a molecule can be built, print three space-separated integers \u2014 the number of bonds between the 1-st and the 2-nd, the 2-nd and the 3-rd, the 3-rd and the 1-st atoms, correspondingly. If there are multiple solutions, output any of them. If there is no solution, print \"Impossible\" (without the quotes).", "sample_inputs": ["1 1 2", "3 4 5", "4 1 1"], "sample_outputs": ["0 1 1", "1 3 2", "Impossible"], "notes": "NoteThe first sample corresponds to the first figure. There are no bonds between atoms 1 and 2 in this case.The second sample corresponds to the second figure. There is one or more bonds between each pair of atoms.The third sample corresponds to the third figure. There is no solution, because an atom cannot form bonds with itself.The configuration in the fourth figure is impossible as each atom must have at least one atomic bond."}, "src_uid": "b3b986fddc3770fed64b878fa42ab1bc"} {"nl": {"description": "Vasya plays the sleuth with his friends. The rules of the game are as follows: those who play for the first time, that is Vasya is the sleuth, he should investigate a \"crime\" and find out what is happening. He can ask any questions whatsoever that can be answered with \"Yes\" or \"No\". All the rest agree beforehand to answer the questions like that: if the question\u2019s last letter is a vowel, they answer \"Yes\" and if the last letter is a consonant, they answer \"No\". Of course, the sleuth knows nothing about it and his task is to understand that.Unfortunately, Vasya is not very smart. After 5 hours of endless stupid questions everybody except Vasya got bored. That\u2019s why Vasya\u2019s friends ask you to write a program that would give answers instead of them.The English alphabet vowels are: A, E, I, O, U, YThe English alphabet consonants are: B, C, D, F, G, H, J, K, L, M, N, P, Q, R, S, T, V, W, X, Z", "input_spec": "The single line contains a question represented by a non-empty line consisting of large and small Latin letters, spaces and a question mark. The line length does not exceed 100. It is guaranteed that the question mark occurs exactly once in the line \u2014 as the last symbol and that the line contains at least one letter.", "output_spec": "Print answer for the question in a single line: YES if the answer is \"Yes\", NO if the answer is \"No\". Remember that in the reply to the question the last letter, not the last character counts. I. e. the spaces and the question mark do not count as letters.", "sample_inputs": ["Is it a melon?", "Is it an apple?", "Is it a banana ?", "Is it an apple and a banana simultaneouSLY?"], "sample_outputs": ["NO", "YES", "YES", "YES"], "notes": null}, "src_uid": "dea7eb04e086a4c1b3924eff255b9648"} {"nl": {"description": "Tattah is asleep if and only if Tattah is attending a lecture. This is a well-known formula among Tattah's colleagues.On a Wednesday afternoon, Tattah was attending Professor HH's lecture. At 12:21, right before falling asleep, he was staring at the digital watch around Saher's wrist. He noticed that the digits on the clock were the same when read from both directions i.e. a palindrome.In his sleep, he started dreaming about such rare moments of the day when the time displayed on a digital clock is a palindrome. As soon as he woke up, he felt destined to write a program that finds the next such moment.However, he still hasn't mastered the skill of programming while sleeping, so your task is to help him.", "input_spec": "The first and only line of the input starts with a string with the format \"HH:MM\" where \"HH\" is from \"00\" to \"23\" and \"MM\" is from \"00\" to \"59\". Both \"HH\" and \"MM\" have exactly two digits.", "output_spec": "Print the palindromic time of day that comes soonest after the time given in the input. If the input time is palindromic, output the soonest palindromic time after the input time.", "sample_inputs": ["12:21", "23:59"], "sample_outputs": ["13:31", "00:00"], "notes": null}, "src_uid": "158eae916daa3e0162d4eac0426fa87f"} {"nl": {"description": "The following problem is well-known: given integers n and m, calculate , where 2n\u2009=\u20092\u00b72\u00b7...\u00b72 (n factors), and denotes the remainder of division of x by y.You are asked to solve the \"reverse\" problem. Given integers n and m, calculate . ", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009108). The second line contains a single integer m (1\u2009\u2264\u2009m\u2009\u2264\u2009108).", "output_spec": "Output a single integer\u00a0\u2014 the value of .", "sample_inputs": ["4\n42", "1\n58", "98765432\n23456789"], "sample_outputs": ["10", "0", "23456789"], "notes": "NoteIn the first example, the remainder of division of 42 by 24\u2009=\u200916 is equal to 10.In the second example, 58 is divisible by 21\u2009=\u20092 without remainder, and the answer is 0."}, "src_uid": "c649052b549126e600691931b512022f"} {"nl": {"description": "Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.The first player wrote number a, the second player wrote number b. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?", "input_spec": "The single line contains two integers a and b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u20096)\u00a0\u2014 the numbers written on the paper by the first and second player, correspondingly.", "output_spec": "Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.", "sample_inputs": ["2 5", "2 4"], "sample_outputs": ["3 0 3", "2 1 3"], "notes": "NoteThe dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.You can assume that number a is closer to number x than number b, if |a\u2009-\u2009x|\u2009<\u2009|b\u2009-\u2009x|."}, "src_uid": "504b8aae3a3abedf873a3b8b127c5dd8"} {"nl": {"description": "One day the Codeforces round author sat exams. He had n exams and he needed to get an integer from 2 to 5 for each exam. He will have to re-sit each failed exam, i.e. the exam that gets mark 2. The author would need to spend too much time and effort to make the sum of his marks strictly more than k. That could have spoilt the Codeforces round. On the other hand, if the sum of his marks is strictly less than k, the author's mum won't be pleased at all. The Codeforces authors are very smart and they always get the mark they choose themselves. Also, the Codeforces authors just hate re-sitting exams. Help the author and find the minimum number of exams he will have to re-sit if he passes the exams in the way that makes the sum of marks for all n exams equal exactly k.", "input_spec": "The single input line contains space-separated integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u200950, 1\u2009\u2264\u2009k\u2009\u2264\u2009250) \u2014 the number of exams and the required sum of marks. It is guaranteed that there exists a way to pass n exams in the way that makes the sum of marks equal exactly k.", "output_spec": "Print the single number \u2014 the minimum number of exams that the author will get a 2 for, considering that the sum of marks for all exams must equal k.", "sample_inputs": ["4 8", "4 10", "1 3"], "sample_outputs": ["4", "2", "0"], "notes": "NoteIn the first sample the author has to get a 2 for all his exams.In the second sample he should get a 3 for two exams and a 2 for two more.In the third sample he should get a 3 for one exam."}, "src_uid": "5a5e46042c3f18529a03cb5c868df7e8"} {"nl": {"description": "Limak is a little polar bear. Polar bears hate long strings and thus they like to compress them. You should also know that Limak is so young that he knows only first six letters of the English alphabet: 'a', 'b', 'c', 'd', 'e' and 'f'.You are given a set of q possible operations. Limak can perform them in any order, any operation may be applied any number of times. The i-th operation is described by a string ai of length two and a string bi of length one. No two of q possible operations have the same string ai.When Limak has a string s he can perform the i-th operation on s if the first two letters of s match a two-letter string ai. Performing the i-th operation removes first two letters of s and inserts there a string bi. See the notes section for further clarification.You may note that performing an operation decreases the length of a string s exactly by 1. Also, for some sets of operations there may be a string that cannot be compressed any further, because the first two letters don't match any ai.Limak wants to start with a string of length n and perform n\u2009-\u20091 operations to finally get a one-letter string \"a\". In how many ways can he choose the starting string to be able to get \"a\"? Remember that Limak can use only letters he knows.", "input_spec": "The first line contains two integers n and q (2\u2009\u2264\u2009n\u2009\u2264\u20096, 1\u2009\u2264\u2009q\u2009\u2264\u200936)\u00a0\u2014 the length of the initial string and the number of available operations. The next q lines describe the possible operations. The i-th of them contains two strings ai and bi (|ai|\u2009=\u20092,\u2009|bi|\u2009=\u20091). It's guaranteed that ai\u2009\u2260\u2009aj for i\u2009\u2260\u2009j and that all ai and bi consist of only first six lowercase English letters.", "output_spec": "Print the number of strings of length n that Limak will be able to transform to string \"a\" by applying only operations given in the input.", "sample_inputs": ["3 5\nab a\ncc c\nca a\nee c\nff d", "2 8\naf e\ndc d\ncc f\nbc b\nda b\neb a\nbb b\nff c", "6 2\nbb a\nba a"], "sample_outputs": ["4", "1", "0"], "notes": "NoteIn the first sample, we count initial strings of length 3 from which Limak can get a required string \"a\". There are 4 such strings: \"abb\", \"cab\", \"cca\", \"eea\". The first one Limak can compress using operation 1 two times (changing \"ab\" to a single \"a\"). The first operation would change \"abb\" to \"ab\" and the second operation would change \"ab\" to \"a\".Other three strings may be compressed as follows: \"cab\" \"ab\" \"a\" \"cca\" \"ca\" \"a\" \"eea\" \"ca\" \"a\" In the second sample, the only correct initial string is \"eb\" because it can be immediately compressed to \"a\"."}, "src_uid": "c42abec29bfd17de3f43385fa6bea534"} {"nl": {"description": "Tomorrow Peter has a Biology exam. He does not like this subject much, but d days ago he learnt that he would have to take this exam. Peter's strict parents made him prepare for the exam immediately, for this purpose he has to study not less than minTimei and not more than maxTimei hours per each i-th day. Moreover, they warned Peter that a day before the exam they would check how he has followed their instructions.So, today is the day when Peter's parents ask him to show the timetable of his preparatory studies. But the boy has counted only the sum of hours sumTime spent him on preparation, and now he wants to know if he can show his parents a timetable s\u0441hedule with d numbers, where each number s\u0441hedulei stands for the time in hours spent by Peter each i-th day on biology studies, and satisfying the limitations imposed by his parents, and at the same time the sum total of all schedulei should equal to sumTime.", "input_spec": "The first input line contains two integer numbers d,\u2009sumTime (1\u2009\u2264\u2009d\u2009\u2264\u200930,\u20090\u2009\u2264\u2009sumTime\u2009\u2264\u2009240) \u2014 the amount of days, during which Peter studied, and the total amount of hours, spent on preparation. Each of the following d lines contains two integer numbers minTimei,\u2009maxTimei (0\u2009\u2264\u2009minTimei\u2009\u2264\u2009maxTimei\u2009\u2264\u20098), separated by a space \u2014 minimum and maximum amount of hours that Peter could spent in the i-th day.", "output_spec": "In the first line print YES, and in the second line print d numbers (separated by a space), each of the numbers \u2014 amount of hours, spent by Peter on preparation in the corresponding day, if he followed his parents' instructions; or print NO in the unique line. If there are many solutions, print any of them.", "sample_inputs": ["1 48\n5 7", "2 5\n0 1\n3 5"], "sample_outputs": ["NO", "YES\n1 4"], "notes": null}, "src_uid": "f48ff06e65b70f49eee3d7cba5a6aed0"} {"nl": {"description": "Little Petya wanted to give an April Fools Day present to some scientists. After some hesitation he decided to give them the array that he got as a present in Codeforces Round #153 (Div.2). The scientists rejoiced at the gift and decided to put some important facts to this array. Here are the first few of the facts: The highest mountain above sea level in the world is Mount Everest. Its peak rises to 8848 m. The largest board game tournament consisted of 958 participants playing chapaev. The largest online maths competition consisted of 12766 participants. The Nile is credited as the longest river in the world. From its farthest stream in Burundi, it extends 6695 km in length. While not in flood, the main stretches of the Amazon river in South America can reach widths of up to 1100 km at its widest points. Angel Falls is the highest waterfall. Its greatest single drop measures 807 m. The Hotel Everest View above Namche, Nepal \u2014 the village closest to Everest base camp \u2013 is at a record height of 31962 m Uranium is the heaviest of all the naturally occurring elements. Its most common isotope has a nucleus containing 146 neutrons. The coldest permanently inhabited place is the Siberian village of Oymyakon, where the temperature of -68\u00b0C was registered in the twentieth century. The longest snake held in captivity is over 25 feet long. Its name is Medusa. Colonel Meow holds the world record for longest fur on a cat \u2014 almost 134 centimeters. Sea otters can have up to 10000 hairs per square inch. This is the most dense fur in the animal kingdom. The largest state of USA is Alaska; its area is 663268 square miles Alaska has a longer coastline than all of the other 49 U.S. States put together: it is 154103 miles long. Lake Baikal is the largest freshwater lake in the world. It reaches 1642\u00a0meters in depth and contains around one-fifth of the world\u2019s unfrozen fresh water. The most colorful national flag is the one of Turkmenistan, with 106 colors. ", "input_spec": "The input will contain a single integer between 1 and 16.", "output_spec": "Output a single integer.", "sample_inputs": ["1", "7"], "sample_outputs": ["1", "0"], "notes": null}, "src_uid": "6f9767b63a01424f939d85b597cf42f3"} {"nl": {"description": "Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled \"a\" to \"z\", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some \"special edition\" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has?Please help Haruhi solve this problem.", "input_spec": "The first line of input will be a single string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200920). String s consists only of lowercase English letters. ", "output_spec": "Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make.", "sample_inputs": ["a", "hi"], "sample_outputs": ["51", "76"], "notes": "NoteIn the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets. "}, "src_uid": "556684d96d78264ad07c0cdd3b784bc9"} {"nl": {"description": "Recently, Vladimir got bad mark in algebra again. To avoid such unpleasant events in future he decided to train his arithmetic skills. He wrote four integer numbers a, b, c, d on the blackboard. During each of the next three minutes he took two numbers from the blackboard (not necessarily adjacent) and replaced them with their sum or their product. In the end he got one number. Unfortunately, due to the awful memory he forgot that number, but he remembers four original numbers, sequence of the operations and his surprise because of the very small result. Help Vladimir remember the forgotten number: find the smallest number that can be obtained from the original numbers by the given sequence of operations.", "input_spec": "First line contains four integers separated by space: 0\u2009\u2264\u2009a,\u2009b,\u2009c,\u2009d\u2009\u2264\u20091000 \u2014 the original numbers. Second line contains three signs ('+' or '*' each) separated by space \u2014 the sequence of the operations in the order of performing. ('+' stands for addition, '*' \u2014 multiplication)", "output_spec": "Output one integer number \u2014 the minimal result which can be obtained. Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).", "sample_inputs": ["1 1 1 1\n+ + *", "2 2 2 2\n* * +", "1 2 3 4\n* + +"], "sample_outputs": ["3", "8", "9"], "notes": null}, "src_uid": "7a66fae63d9b27e444d84447012e484c"} {"nl": {"description": "Nikolay has a lemons, b apples and c pears. He decided to cook a compote. According to the recipe the fruits should be in the ratio 1:\u20092:\u20094. It means that for each lemon in the compote should be exactly 2 apples and exactly 4 pears. You can't crumble up, break up or cut these fruits into pieces. These fruits\u00a0\u2014 lemons, apples and pears\u00a0\u2014 should be put in the compote as whole fruits.Your task is to determine the maximum total number of lemons, apples and pears from which Nikolay can cook the compote. It is possible that Nikolay can't use any fruits, in this case print 0. ", "input_spec": "The first line contains the positive integer a (1\u2009\u2264\u2009a\u2009\u2264\u20091000)\u00a0\u2014 the number of lemons Nikolay has. The second line contains the positive integer b (1\u2009\u2264\u2009b\u2009\u2264\u20091000)\u00a0\u2014 the number of apples Nikolay has. The third line contains the positive integer c (1\u2009\u2264\u2009c\u2009\u2264\u20091000)\u00a0\u2014 the number of pears Nikolay has.", "output_spec": "Print the maximum total number of lemons, apples and pears from which Nikolay can cook the compote.", "sample_inputs": ["2\n5\n7", "4\n7\n13", "2\n3\n2"], "sample_outputs": ["7", "21", "0"], "notes": "NoteIn the first example Nikolay can use 1 lemon, 2 apples and 4 pears, so the answer is 1\u2009+\u20092\u2009+\u20094\u2009=\u20097.In the second example Nikolay can use 3 lemons, 6 apples and 12 pears, so the answer is 3\u2009+\u20096\u2009+\u200912\u2009=\u200921.In the third example Nikolay don't have enough pears to cook any compote, so the answer is 0. "}, "src_uid": "82a4a60eac90765fb62f2a77d2305c01"} {"nl": {"description": "The Easter Rabbit laid n eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: Each of the seven colors should be used to paint at least one egg. Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible.", "input_spec": "The only line contains an integer n \u2014 the amount of eggs (7\u2009\u2264\u2009n\u2009\u2264\u2009100).", "output_spec": "Print one line consisting of n characters. The i-th character should describe the color of the i-th egg in the order they lie in the circle. The colors should be represented as follows: \"R\" stands for red, \"O\" stands for orange, \"Y\" stands for yellow, \"G\" stands for green, \"B\" stands for blue, \"I\" stands for indigo, \"V\" stands for violet. If there are several answers, print any of them.", "sample_inputs": ["8", "13"], "sample_outputs": ["ROYGRBIV", "ROYGBIVGBIVYG"], "notes": "NoteThe way the eggs will be painted in the first sample is shown on the picture: "}, "src_uid": "dc3817c71b1fa5606f316e5e94732296"} {"nl": {"description": "Manao has a monitor. The screen of the monitor has horizontal to vertical length ratio a:b. Now he is going to watch a movie. The movie's frame has horizontal to vertical length ratio c:d. Manao adjusts the view in such a way that the movie preserves the original frame ratio, but also occupies as much space on the screen as possible and fits within it completely. Thus, he may have to zoom the movie in or out, but Manao will always change the frame proportionally in both dimensions.Calculate the ratio of empty screen (the part of the screen not occupied by the movie) to the total screen size. Print the answer as an irreducible fraction p\u2009/\u2009q.", "input_spec": "A single line contains four space-separated integers a, b, c, d (1\u2009\u2264\u2009a,\u2009b,\u2009c,\u2009d\u2009\u2264\u20091000).", "output_spec": "Print the answer to the problem as \"p/q\", where p is a non-negative integer, q is a positive integer and numbers p and q don't have a common divisor larger than 1.", "sample_inputs": ["1 1 3 2", "4 3 2 2"], "sample_outputs": ["1/3", "1/4"], "notes": "NoteSample 1. Manao's monitor has a square screen. The movie has 3:2 horizontal to vertical length ratio. Obviously, the movie occupies most of the screen if the width of the picture coincides with the width of the screen. In this case, only 2/3 of the monitor will project the movie in the horizontal dimension: Sample 2. This time the monitor's width is 4/3 times larger than its height and the movie's frame is square. In this case, the picture must take up the whole monitor in the vertical dimension and only 3/4 in the horizontal dimension: "}, "src_uid": "b0f435fc2f7334aee0d07524bc37cb1e"} {"nl": {"description": "There is a building consisting of $$$10~000$$$ apartments numbered from $$$1$$$ to $$$10~000$$$, inclusive.Call an apartment boring, if its number consists of the same digit. Examples of boring apartments are $$$11, 2, 777, 9999$$$ and so on.Our character is a troublemaker, and he calls the intercoms of all boring apartments, till someone answers the call, in the following order: First he calls all apartments consisting of digit $$$1$$$, in increasing order ($$$1, 11, 111, 1111$$$). Next he calls all apartments consisting of digit $$$2$$$, in increasing order ($$$2, 22, 222, 2222$$$) And so on. The resident of the boring apartment $$$x$$$ answers the call, and our character stops calling anyone further.Our character wants to know how many digits he pressed in total and your task is to help him to count the total number of keypresses.For example, if the resident of boring apartment $$$22$$$ answered, then our character called apartments with numbers $$$1, 11, 111, 1111, 2, 22$$$ and the total number of digits he pressed is $$$1 + 2 + 3 + 4 + 1 + 2 = 13$$$.You have to answer $$$t$$$ independent test cases.", "input_spec": "The first line of the input contains one integer $$$t$$$ ($$$1 \\le t \\le 36$$$) \u2014 the number of test cases. The only line of the test case contains one integer $$$x$$$ ($$$1 \\le x \\le 9999$$$) \u2014 the apartment number of the resident who answered the call. It is guaranteed that $$$x$$$ consists of the same digit.", "output_spec": "For each test case, print the answer: how many digits our character pressed in total.", "sample_inputs": ["4\n22\n9999\n1\n777"], "sample_outputs": ["13\n90\n1\n66"], "notes": null}, "src_uid": "289a55128be89bb86a002d218d31b57f"} {"nl": {"description": "Polycarp invited all his friends to the tea party to celebrate the holiday. He has n cups, one for each of his n friends, with volumes a1,\u2009a2,\u2009...,\u2009an. His teapot stores w milliliters of tea (w\u2009\u2264\u2009a1\u2009+\u2009a2\u2009+\u2009...\u2009+\u2009an). Polycarp wants to pour tea in cups in such a way that: Every cup will contain tea for at least half of its volume Every cup will contain integer number of milliliters of tea All the tea from the teapot will be poured into cups All friends will be satisfied. Friend with cup i won't be satisfied, if there exists such cup j that cup i contains less tea than cup j but ai\u2009>\u2009aj.For each cup output how many milliliters of tea should be poured in it. If it's impossible to pour all the tea and satisfy all conditions then output -1.", "input_spec": "The first line contains two integer numbers n and w (1\u2009\u2264\u2009n\u2009\u2264\u2009100, ). The second line contains n numbers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009100).", "output_spec": "Output how many milliliters of tea every cup should contain. If there are multiple answers, print any of them. If it's impossible to pour all the tea and satisfy all conditions then output -1.", "sample_inputs": ["2 10\n8 7", "4 4\n1 1 1 1", "3 10\n9 8 10"], "sample_outputs": ["6 4", "1 1 1 1", "-1"], "notes": "NoteIn the third example you should pour to the first cup at least 5 milliliters, to the second one at least 4, to the third one at least 5. It sums up to 14, which is greater than 10 milliliters available."}, "src_uid": "5d3bb9e03f4c5c8ecb6233bd5f90f3a3"} {"nl": {"description": "Right now she actually isn't. But she will be, if you don't solve this problem.You are given integers n, k, A and B. There is a number x, which is initially equal to n. You are allowed to perform two types of operations: Subtract 1 from x. This operation costs you A coins. Divide x by k. Can be performed only if x is divisible by k. This operation costs you B coins. What is the minimum amount of coins you have to pay to make x equal to 1?", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092\u00b7109). The second line contains a single integer k (1\u2009\u2264\u2009k\u2009\u2264\u20092\u00b7109). The third line contains a single integer A (1\u2009\u2264\u2009A\u2009\u2264\u20092\u00b7109). The fourth line contains a single integer B (1\u2009\u2264\u2009B\u2009\u2264\u20092\u00b7109).", "output_spec": "Output a single integer\u00a0\u2014 the minimum amount of coins you have to pay to make x equal to 1.", "sample_inputs": ["9\n2\n3\n1", "5\n5\n2\n20", "19\n3\n4\n2"], "sample_outputs": ["6", "8", "12"], "notes": "NoteIn the first testcase, the optimal strategy is as follows: Subtract 1 from x (9\u2009\u2192\u20098) paying 3 coins. Divide x by 2 (8\u2009\u2192\u20094) paying 1 coin. Divide x by 2 (4\u2009\u2192\u20092) paying 1 coin. Divide x by 2 (2\u2009\u2192\u20091) paying 1 coin. The total cost is 6 coins.In the second test case the optimal strategy is to subtract 1 from x 4 times paying 8 coins in total."}, "src_uid": "f838fae7c98bf51cfa0b9bd158650b10"} {"nl": {"description": "There are n cities in Bearland, numbered 1 through n. Cities are arranged in one long row. The distance between cities i and j is equal to |i\u2009-\u2009j|.Limak is a police officer. He lives in a city a. His job is to catch criminals. It's hard because he doesn't know in which cities criminals are. Though, he knows that there is at most one criminal in each city.Limak is going to use a BCD (Bear Criminal Detector). The BCD will tell Limak how many criminals there are for every distance from a city a. After that, Limak can catch a criminal in each city for which he is sure that there must be a criminal.You know in which cities criminals are. Count the number of criminals Limak will catch, after he uses the BCD.", "input_spec": "The first line of the input contains two integers n and a (1\u2009\u2264\u2009a\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of cities and the index of city where Limak lives. The second line contains n integers t1,\u2009t2,\u2009...,\u2009tn (0\u2009\u2264\u2009ti\u2009\u2264\u20091). There are ti criminals in the i-th city.", "output_spec": "Print the number of criminals Limak will catch.", "sample_inputs": ["6 3\n1 1 1 0 1 0", "5 2\n0 0 0 1 0"], "sample_outputs": ["3", "1"], "notes": "NoteIn the first sample, there are six cities and Limak lives in the third one (blue arrow below). Criminals are in cities marked red. Using the BCD gives Limak the following information: There is one criminal at distance 0 from the third city\u00a0\u2014 Limak is sure that this criminal is exactly in the third city. There is one criminal at distance 1 from the third city\u00a0\u2014 Limak doesn't know if a criminal is in the second or fourth city. There are two criminals at distance 2 from the third city\u00a0\u2014 Limak is sure that there is one criminal in the first city and one in the fifth city. There are zero criminals for every greater distance. So, Limak will catch criminals in cities 1, 3 and 5, that is 3 criminals in total.In the second sample (drawing below), the BCD gives Limak the information that there is one criminal at distance 2 from Limak's city. There is only one city at distance 2 so Limak is sure where a criminal is. "}, "src_uid": "4840d571d4ce6e1096bb678b6c100ae5"} {"nl": {"description": "There are three doors in front of you, numbered from $$$1$$$ to $$$3$$$ from left to right. Each door has a lock on it, which can only be opened with a key with the same number on it as the number on the door.There are three keys\u00a0\u2014 one for each door. Two of them are hidden behind the doors, so that there is no more than one key behind each door. So two doors have one key behind them, one door doesn't have a key behind it. To obtain a key hidden behind a door, you should first unlock that door. The remaining key is in your hands.Can you open all the doors?", "input_spec": "The first line contains a single integer $$$t$$$ ($$$1 \\le t \\le 18$$$)\u00a0\u2014 the number of testcases. The first line of each testcase contains a single integer $$$x$$$ ($$$1 \\le x \\le 3$$$)\u00a0\u2014 the number on the key in your hands. The second line contains three integers $$$a, b$$$ and $$$c$$$ ($$$0 \\le a, b, c \\le 3$$$)\u00a0\u2014 the number on the key behind each of the doors. If there is no key behind the door, the number is equal to $$$0$$$. Values $$$1, 2$$$ and $$$3$$$ appear exactly once among $$$x, a, b$$$ and $$$c$$$.", "output_spec": "For each testcase, print \"YES\" if you can open all the doors. Otherwise, print \"NO\".", "sample_inputs": ["4\n\n3\n\n0 1 2\n\n1\n\n0 3 2\n\n2\n\n3 1 0\n\n2\n\n1 3 0"], "sample_outputs": ["YES\nNO\nYES\nNO"], "notes": null}, "src_uid": "5cd113a30bbbb93d8620a483d4da0349"} {"nl": {"description": "When Petya went to school, he got interested in large numbers and what they were called in ancient times. For instance, he learned that the Russian word \"tma\" (which now means \"too much to be counted\") used to stand for a thousand and \"tma tmyschaya\" (which literally means \"the tma of tmas\") used to stand for a million.Petya wanted to modernize the words we use for numbers and invented a word petricium that represents number k. Moreover, petricium la petricium stands for number k2, petricium la petricium la petricium stands for k3 and so on. All numbers of this form are called petriciumus cifera, and the number's importance is the number of articles la in its title.Petya's invention brought on a challenge that needed to be solved quickly: does some number l belong to the set petriciumus cifera? As Petya is a very busy schoolboy he needs to automate the process, he asked you to solve it.", "input_spec": "The first input line contains integer number k, the second line contains integer number l (2\u2009\u2264\u2009k,\u2009l\u2009\u2264\u2009231\u2009-\u20091).", "output_spec": "You should print in the first line of the output \"YES\", if the number belongs to the set petriciumus cifera and otherwise print \"NO\". If the number belongs to the set, then print on the seconds line the only number \u2014 the importance of number l.", "sample_inputs": ["5\n25", "3\n8"], "sample_outputs": ["YES\n1", "NO"], "notes": null}, "src_uid": "8ce89b754aa4080e7c3b2c3b10f4be46"} {"nl": {"description": "After winning gold and silver in IOI 2014, Akshat and Malvika want to have some fun. Now they are playing a game on a grid made of n horizontal and m vertical sticks.An intersection point is any point on the grid which is formed by the intersection of one horizontal stick and one vertical stick.In the grid shown below, n\u2009=\u20093 and m\u2009=\u20093. There are n\u2009+\u2009m\u2009=\u20096 sticks in total (horizontal sticks are shown in red and vertical sticks are shown in green). There are n\u00b7m\u2009=\u20099 intersection points, numbered from 1 to 9. The rules of the game are very simple. The players move in turns. Akshat won gold, so he makes the first move. During his/her move, a player must choose any remaining intersection point and remove from the grid all sticks which pass through this point. A player will lose the game if he/she cannot make a move (i.e. there are no intersection points remaining on the grid at his/her move).Assume that both players play optimally. Who will win the game?", "input_spec": "The first line of input contains two space-separated integers, n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100).", "output_spec": "Print a single line containing \"Akshat\" or \"Malvika\" (without the quotes), depending on the winner of the game.", "sample_inputs": ["2 2", "2 3", "3 3"], "sample_outputs": ["Malvika", "Malvika", "Akshat"], "notes": "NoteExplanation of the first sample:The grid has four intersection points, numbered from 1 to 4. If Akshat chooses intersection point 1, then he will remove two sticks (1\u2009-\u20092 and 1\u2009-\u20093). The resulting grid will look like this. Now there is only one remaining intersection point (i.e. 4). Malvika must choose it and remove both remaining sticks. After her move the grid will be empty.In the empty grid, Akshat cannot make any move, hence he will lose.Since all 4 intersection points of the grid are equivalent, Akshat will lose no matter which one he picks."}, "src_uid": "a4b9ce9c9f170a729a97af13e81b5fe4"} {"nl": {"description": "Recently you have received two positive integer numbers $$$x$$$ and $$$y$$$. You forgot them, but you remembered a shuffled list containing all divisors of $$$x$$$ (including $$$1$$$ and $$$x$$$) and all divisors of $$$y$$$ (including $$$1$$$ and $$$y$$$). If $$$d$$$ is a divisor of both numbers $$$x$$$ and $$$y$$$ at the same time, there are two occurrences of $$$d$$$ in the list.For example, if $$$x=4$$$ and $$$y=6$$$ then the given list can be any permutation of the list $$$[1, 2, 4, 1, 2, 3, 6]$$$. Some of the possible lists are: $$$[1, 1, 2, 4, 6, 3, 2]$$$, $$$[4, 6, 1, 1, 2, 3, 2]$$$ or $$$[1, 6, 3, 2, 4, 1, 2]$$$.Your problem is to restore suitable positive integer numbers $$$x$$$ and $$$y$$$ that would yield the same list of divisors (possibly in different order).It is guaranteed that the answer exists, i.e. the given list of divisors corresponds to some positive integers $$$x$$$ and $$$y$$$.", "input_spec": "The first line contains one integer $$$n$$$ ($$$2 \\le n \\le 128$$$) \u2014 the number of divisors of $$$x$$$ and $$$y$$$. The second line of the input contains $$$n$$$ integers $$$d_1, d_2, \\dots, d_n$$$ ($$$1 \\le d_i \\le 10^4$$$), where $$$d_i$$$ is either divisor of $$$x$$$ or divisor of $$$y$$$. If a number is divisor of both numbers $$$x$$$ and $$$y$$$ then there are two copies of this number in the list.", "output_spec": "Print two positive integer numbers $$$x$$$ and $$$y$$$ \u2014 such numbers that merged list of their divisors is the permutation of the given list of integers. It is guaranteed that the answer exists.", "sample_inputs": ["10\n10 2 8 1 2 4 1 20 4 5"], "sample_outputs": ["20 8"], "notes": null}, "src_uid": "868407df0a93085057d06367aecaf9be"} {"nl": {"description": "Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it: deletes all the vowels, inserts a character \".\" before each consonant, replaces all uppercase consonants with corresponding lowercase ones. Vowels are letters \"A\", \"O\", \"Y\", \"E\", \"U\", \"I\", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.Help Petya cope with this easy task.", "input_spec": "The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.", "output_spec": "Print the resulting string. It is guaranteed that this string is not empty.", "sample_inputs": ["tour", "Codeforces", "aBAcAba"], "sample_outputs": [".t.r", ".c.d.f.r.c.s", ".b.c.b"], "notes": null}, "src_uid": "db9520e85b3e9186dd3a09ff8d1e8c1b"} {"nl": {"description": "Masha has three sticks of length $$$a$$$, $$$b$$$ and $$$c$$$ centimeters respectively. In one minute Masha can pick one arbitrary stick and increase its length by one centimeter. She is not allowed to break sticks.What is the minimum number of minutes she needs to spend increasing the stick's length in order to be able to assemble a triangle of positive area. Sticks should be used as triangle's sides (one stick for one side) and their endpoints should be located at triangle's vertices.", "input_spec": "The only line contains tree integers $$$a$$$, $$$b$$$ and $$$c$$$ ($$$1 \\leq a, b, c \\leq 100$$$)\u00a0\u2014 the lengths of sticks Masha possesses.", "output_spec": "Print a single integer\u00a0\u2014 the minimum number of minutes that Masha needs to spend in order to be able to make the triangle of positive area from her sticks.", "sample_inputs": ["3 4 5", "2 5 3", "100 10 10"], "sample_outputs": ["0", "1", "81"], "notes": "NoteIn the first example, Masha can make a triangle from the sticks without increasing the length of any of them.In the second example, Masha can't make a triangle of positive area from the sticks she has at the beginning, but she can spend one minute to increase the length $$$2$$$ centimeter stick by one and after that form a triangle with sides $$$3$$$, $$$3$$$ and $$$5$$$ centimeters.In the third example, Masha can take $$$33$$$ minutes to increase one of the $$$10$$$ centimeters sticks by $$$33$$$ centimeters, and after that take $$$48$$$ minutes to increase another $$$10$$$ centimeters stick by $$$48$$$ centimeters. This way she can form a triangle with lengths $$$43$$$, $$$58$$$ and $$$100$$$ centimeters in $$$81$$$ minutes. One can show that it is impossible to get a valid triangle faster."}, "src_uid": "3dc56bc08606a39dd9ca40a43c452f09"} {"nl": {"description": "Alice has a string $$$s$$$. She really likes the letter \"a\". She calls a string good if strictly more than half of the characters in that string are \"a\"s. For example \"aaabb\", \"axaa\" are good strings, and \"baca\", \"awwwa\", \"\" (empty string) are not.Alice can erase some characters from her string $$$s$$$. She would like to know what is the longest string remaining after erasing some characters (possibly zero) to get a good string. It is guaranteed that the string has at least one \"a\" in it, so the answer always exists.", "input_spec": "The first line contains a string $$$s$$$ ($$$1 \\leq |s| \\leq 50$$$) consisting of lowercase English letters. It is guaranteed that there is at least one \"a\" in $$$s$$$.", "output_spec": "Print a single integer, the length of the longest good string that Alice can get after erasing some characters from $$$s$$$.", "sample_inputs": ["xaxxxxa", "aaabaa"], "sample_outputs": ["3", "6"], "notes": "NoteIn the first example, it's enough to erase any four of the \"x\"s. The answer is $$$3$$$ since that is the maximum number of characters that can remain.In the second example, we don't need to erase any characters."}, "src_uid": "84cb9ad2ae3ba7e912920d7feb4f6219"} {"nl": {"description": "Anadi has a set of dominoes. Every domino has two parts, and each part contains some dots. For every $$$a$$$ and $$$b$$$ such that $$$1 \\leq a \\leq b \\leq 6$$$, there is exactly one domino with $$$a$$$ dots on one half and $$$b$$$ dots on the other half. The set contains exactly $$$21$$$ dominoes. Here is an exact illustration of his set: Also, Anadi has an undirected graph without self-loops and multiple edges. He wants to choose some dominoes and place them on the edges of this graph. He can use at most one domino of each type. Each edge can fit at most one domino. It's not necessary to place a domino on each edge of the graph.When placing a domino on an edge, he also chooses its direction. In other words, one half of any placed domino must be directed toward one of the endpoints of the edge and the other half must be directed toward the other endpoint. There's a catch: if there are multiple halves of dominoes directed toward the same vertex, each of these halves must contain the same number of dots.How many dominoes at most can Anadi place on the edges of his graph?", "input_spec": "The first line contains two integers $$$n$$$ and $$$m$$$ ($$$1 \\leq n \\leq 7$$$, $$$0 \\leq m \\leq \\frac{n\\cdot(n-1)}{2}$$$) \u2014 the number of vertices and the number of edges in the graph. The next $$$m$$$ lines contain two integers each. Integers in the $$$i$$$-th line are $$$a_i$$$ and $$$b_i$$$ ($$$1 \\leq a, b \\leq n$$$, $$$a \\neq b$$$) and denote that there is an edge which connects vertices $$$a_i$$$ and $$$b_i$$$. The graph might be disconnected. It's however guaranteed that the graph doesn't contain any self-loops, and that there is at most one edge between any pair of vertices.", "output_spec": "Output one integer which denotes the maximum number of dominoes which Anadi can place on the edges of the graph.", "sample_inputs": ["4 4\n1 2\n2 3\n3 4\n4 1", "7 0", "3 1\n1 3", "7 21\n1 2\n1 3\n1 4\n1 5\n1 6\n1 7\n2 3\n2 4\n2 5\n2 6\n2 7\n3 4\n3 5\n3 6\n3 7\n4 5\n4 6\n4 7\n5 6\n5 7\n6 7"], "sample_outputs": ["4", "0", "1", "16"], "notes": "NoteHere is an illustration of Anadi's graph from the first sample test: And here is one of the ways to place a domino on each of its edges: Note that each vertex is faced by the halves of dominoes with the same number of dots. For instance, all halves directed toward vertex $$$1$$$ have three dots."}, "src_uid": "11e6559cfb71b8f6ca88242094b17a2b"} {"nl": {"description": "Recently Vasya found a golden ticket \u2014 a sequence which consists of $$$n$$$ digits $$$a_1a_2\\dots a_n$$$. Vasya considers a ticket to be lucky if it can be divided into two or more non-intersecting segments with equal sums. For example, ticket $$$350178$$$ is lucky since it can be divided into three segments $$$350$$$, $$$17$$$ and $$$8$$$: $$$3+5+0=1+7=8$$$. Note that each digit of sequence should belong to exactly one segment.Help Vasya! Tell him if the golden ticket he found is lucky or not.", "input_spec": "The first line contains one integer $$$n$$$ ($$$2 \\le n \\le 100$$$) \u2014 the number of digits in the ticket. The second line contains $$$n$$$ digits $$$a_1 a_2 \\dots a_n$$$ ($$$0 \\le a_i \\le 9$$$) \u2014 the golden ticket. Digits are printed without spaces.", "output_spec": "If the golden ticket is lucky then print \"YES\", otherwise print \"NO\" (both case insensitive).", "sample_inputs": ["5\n73452", "4\n1248"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example the ticket can be divided into $$$7$$$, $$$34$$$ and $$$52$$$: $$$7=3+4=5+2$$$.In the second example it is impossible to divide ticket into segments with equal sum."}, "src_uid": "410296a01b97a0a39b6683569c84d56c"} {"nl": {"description": "In Berland a money reform is being prepared. New coins are being introduced. After long economic calculations was decided that the most expensive coin should possess the denomination of exactly n Berland dollars. Also the following restriction has been introduced for comfort: the denomination of each coin should be divisible by the denomination of any cheaper coin. It is known that among all the possible variants the variant with the largest number of new coins will be chosen. Find this variant. Print in the order of decreasing of the coins' denominations.", "input_spec": "The first and only line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009106) which represents the denomination of the most expensive coin. ", "output_spec": "Print the denominations of all the coins in the order of decreasing. The number of coins must be the largest possible (with the given denomination n of the most expensive coin). Also, the denomination of every coin must be divisible by the denomination of any cheaper coin. Naturally, the denominations of all the coins should be different. If there are several solutins to that problem, print any of them.", "sample_inputs": ["10", "4", "3"], "sample_outputs": ["10 5 1", "4 2 1", "3 1"], "notes": null}, "src_uid": "2fc946bb72f56b6d86eabfaf60f9fa63"} {"nl": {"description": "The Holmes children are fighting over who amongst them is the cleverest.Mycroft asked Sherlock and Eurus to find value of f(n), where f(1)\u2009=\u20091 and for n\u2009\u2265\u20092, f(n) is the number of distinct ordered positive integer pairs (x,\u2009y) that satisfy x\u2009+\u2009y\u2009=\u2009n and gcd(x,\u2009y)\u2009=\u20091. The integer gcd(a,\u2009b) is the greatest common divisor of a and b.Sherlock said that solving this was child's play and asked Mycroft to instead get the value of . Summation is done over all positive integers d that divide n.Eurus was quietly observing all this and finally came up with her problem to astonish both Sherlock and Mycroft.She defined a k-composite function Fk(n) recursively as follows:She wants them to tell the value of Fk(n) modulo 1000000007.", "input_spec": "A single line of input contains two space separated integers n (1\u2009\u2264\u2009n\u2009\u2264\u20091012) and k (1\u2009\u2264\u2009k\u2009\u2264\u20091012) indicating that Eurus asks Sherlock and Mycroft to find the value of Fk(n) modulo 1000000007.", "output_spec": "Output a single integer\u00a0\u2014 the value of Fk(n) modulo 1000000007.", "sample_inputs": ["7 1", "10 2"], "sample_outputs": ["6", "4"], "notes": "NoteIn the first case, there are 6 distinct ordered pairs (1,\u20096), (2,\u20095), (3,\u20094), (4,\u20093), (5,\u20092) and (6,\u20091) satisfying x\u2009+\u2009y\u2009=\u20097 and gcd(x,\u2009y)\u2009=\u20091. Hence, f(7)\u2009=\u20096. So, F1(7)\u2009=\u2009f(g(7))\u2009=\u2009f(f(7)\u2009+\u2009f(1))\u2009=\u2009f(6\u2009+\u20091)\u2009=\u2009f(7)\u2009=\u20096."}, "src_uid": "0591ade5f9a69afcbecd80402493f975"} {"nl": {"description": "User ainta is making a web site. This time he is going to make a navigation of the pages. In his site, there are n pages numbered by integers from 1 to n. Assume that somebody is on the p-th page now. The navigation will look like this: << p\u2009-\u2009k p\u2009-\u2009k\u2009+\u20091 ... p\u2009-\u20091 (p) p\u2009+\u20091 ... p\u2009+\u2009k\u2009-\u20091 p\u2009+\u2009k >> When someone clicks the button \"<<\" he is redirected to page 1, and when someone clicks the button \">>\" he is redirected to page n. Of course if someone clicks on a number, he is redirected to the corresponding page.There are some conditions in the navigation: If page 1 is in the navigation, the button \"<<\" must not be printed. If page n is in the navigation, the button \">>\" must not be printed. If the page number is smaller than 1 or greater than n, it must not be printed. \u00a0You can see some examples of the navigations. Make a program that prints the navigation.", "input_spec": "The first and the only line contains three integers n, p, k (3\u2009\u2264\u2009n\u2009\u2264\u2009100; 1\u2009\u2264\u2009p\u2009\u2264\u2009n; 1\u2009\u2264\u2009k\u2009\u2264\u2009n)", "output_spec": "Print the proper navigation. Follow the format of the output from the test samples.", "sample_inputs": ["17 5 2", "6 5 2", "6 1 2", "6 2 2", "9 6 3", "10 6 3", "8 5 4"], "sample_outputs": ["<< 3 4 (5) 6 7 >>", "<< 3 4 (5) 6", "(1) 2 3 >>", "1 (2) 3 4 >>", "<< 3 4 5 (6) 7 8 9", "<< 3 4 5 (6) 7 8 9 >>", "1 2 3 4 (5) 6 7 8"], "notes": null}, "src_uid": "526e2cce272e42a3220e33149b1c9c84"} {"nl": {"description": "User ainta has a stack of n red and blue balls. He can apply a certain operation which changes the colors of the balls inside the stack. While the top ball inside the stack is red, pop the ball from the top of the stack. Then replace the blue ball on the top with a red ball. And finally push some blue balls to the stack until the stack has total of n balls inside. \u00a0If there are no blue balls inside the stack, ainta can't apply this operation. Given the initial state of the stack, ainta wants to know the maximum number of operations he can repeatedly apply.", "input_spec": "The first line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u200950) \u2014 the number of balls inside the stack. The second line contains a string s (|s|\u2009=\u2009n) describing the initial state of the stack. The i-th character of the string s denotes the color of the i-th ball (we'll number the balls from top to bottom of the stack). If the character is \"R\", the color is red. If the character is \"B\", the color is blue.", "output_spec": "Print the maximum number of operations ainta can repeatedly apply. Please, do not write the %lld specifier to read or write 64-bit integers in \u0421++. It is preferred to use the cin, cout streams or the %I64d specifier.", "sample_inputs": ["3\nRBR", "4\nRBBR", "5\nRBBRR"], "sample_outputs": ["2", "6", "6"], "notes": "NoteThe first example is depicted below.The explanation how user ainta applies the first operation. He pops out one red ball, changes the color of the ball in the middle from blue to red, and pushes one blue ball. The explanation how user ainta applies the second operation. He will not pop out red balls, he simply changes the color of the ball on the top from blue to red. From now on, ainta can't apply any operation because there are no blue balls inside the stack. ainta applied two operations, so the answer is 2.The second example is depicted below. The blue arrow denotes a single operation. "}, "src_uid": "d86a1b5bf9fe9a985f7b030fedd29d58"} {"nl": {"description": "Little Chris is bored during his physics lessons (too easy), so he has built a toy box to keep himself occupied. The box is special, since it has the ability to change gravity.There are n columns of toy cubes in the box arranged in a line. The i-th column contains ai cubes. At first, the gravity in the box is pulling the cubes downwards. When Chris switches the gravity, it begins to pull all the cubes to the right side of the box. The figure shows the initial and final configurations of the cubes in the box: the cubes that have changed their position are highlighted with orange. Given the initial configuration of the toy cubes in the box, find the amounts of cubes in each of the n columns after the gravity switch!", "input_spec": "The first line of input contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100), the number of the columns in the box. The next line contains n space-separated integer numbers. The i-th number ai (1\u2009\u2264\u2009ai\u2009\u2264\u2009100) denotes the number of cubes in the i-th column.", "output_spec": "Output n integer numbers separated by spaces, where the i-th number is the amount of cubes in the i-th column after the gravity switch.", "sample_inputs": ["4\n3 2 1 2", "3\n2 3 8"], "sample_outputs": ["1 2 2 3", "2 3 8"], "notes": "NoteThe first example case is shown on the figure. The top cube of the first column falls to the top of the last column; the top cube of the second column falls to the top of the third column; the middle cube of the first column falls to the top of the second column.In the second example case the gravity switch does not change the heights of the columns."}, "src_uid": "ae20712265d4adf293e75d016b4b82d8"} {"nl": {"description": "Pak Chanek plans to build a garage. He wants the garage to consist of a square and a right triangle that are arranged like the following illustration. Define $$$a$$$ and $$$b$$$ as the lengths of two of the sides in the right triangle as shown in the illustration. An integer $$$x$$$ is suitable if and only if we can construct a garage with assigning positive integer values for the lengths $$$a$$$ and $$$b$$$ ($$$a<b$$$) so that the area of the square at the bottom is exactly $$$x$$$. As a good friend of Pak Chanek, you are asked to help him find the $$$N$$$-th smallest suitable number.", "input_spec": "The only line contains a single integer $$$N$$$ ($$$1 \\leq N \\leq 10^9$$$).", "output_spec": "An integer that represents the $$$N$$$-th smallest suitable number.", "sample_inputs": ["3"], "sample_outputs": ["7"], "notes": "NoteThe $$$3$$$-rd smallest suitable number is $$$7$$$. A square area of $$$7$$$ can be obtained by assigning $$$a=3$$$ and $$$b=4$$$."}, "src_uid": "d0a8604b78ba19ab769fd1ec90a72e4e"} {"nl": {"description": "Where do odds begin, and where do they end? Where does hope emerge, and will they ever break?Given an integer sequence a1,\u2009a2,\u2009...,\u2009an of length n. Decide whether it is possible to divide it into an odd number of non-empty subsegments, the each of which has an odd length and begins and ends with odd numbers.A subsegment is a contiguous slice of the whole sequence. For example, {3,\u20094,\u20095} and {1} are subsegments of sequence {1,\u20092,\u20093,\u20094,\u20095,\u20096}, while {1,\u20092,\u20094} and {7} are not.", "input_spec": "The first line of input contains a non-negative integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the length of the sequence. The second line contains n space-separated non-negative integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u2009100) \u2014 the elements of the sequence.", "output_spec": "Output \"Yes\" if it's possible to fulfill the requirements, and \"No\" otherwise. You can output each letter in any case (upper or lower).", "sample_inputs": ["3\n1 3 5", "5\n1 0 1 5 1", "3\n4 3 1", "4\n3 9 9 3"], "sample_outputs": ["Yes", "Yes", "No", "No"], "notes": "NoteIn the first example, divide the sequence into 1 subsegment: {1,\u20093,\u20095} and the requirements will be met.In the second example, divide the sequence into 3 subsegments: {1,\u20090,\u20091}, {5}, {1}.In the third example, one of the subsegments must start with 4 which is an even number, thus the requirements cannot be met.In the fourth example, the sequence can be divided into 2 subsegments: {3,\u20099,\u20099}, {3}, but this is not a valid solution because 2 is an even number."}, "src_uid": "2b8c2deb5d7e49e8e3ededabfd4427db"} {"nl": {"description": "You are given names of two days of the week.Please, determine whether it is possible that during some non-leap year the first day of some month was equal to the first day of the week you are given, while the first day of the next month was equal to the second day of the week you are given. Both months should belong to one year.In this problem, we consider the Gregorian calendar to be used. The number of months in this calendar is equal to 12. The number of days in months during any non-leap year is: 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31.Names of the days of the week are given with lowercase English letters: \"monday\", \"tuesday\", \"wednesday\", \"thursday\", \"friday\", \"saturday\", \"sunday\".", "input_spec": "The input consists of two lines, each of them containing the name of exactly one day of the week. It's guaranteed that each string in the input is from the set \"monday\", \"tuesday\", \"wednesday\", \"thursday\", \"friday\", \"saturday\", \"sunday\".", "output_spec": "Print \"YES\" (without quotes) if such situation is possible during some non-leap year. Otherwise, print \"NO\" (without quotes).", "sample_inputs": ["monday\ntuesday", "sunday\nsunday", "saturday\ntuesday"], "sample_outputs": ["NO", "YES", "YES"], "notes": "NoteIn the second sample, one can consider February 1 and March 1 of year 2015. Both these days were Sundays.In the third sample, one can consider July 1 and August 1 of year 2017. First of these two days is Saturday, while the second one is Tuesday."}, "src_uid": "2a75f68a7374b90b80bb362c6ead9a35"} {"nl": {"description": "Vasya studies positional numeral systems. Unfortunately, he often forgets to write the base of notation in which the expression is written. Once he saw a note in his notebook saying a\u2009+\u2009b\u2009=\u2009?, and that the base of the positional notation wasn\u2019t written anywhere. Now Vasya has to choose a base p and regard the expression as written in the base p positional notation. Vasya understood that he can get different results with different bases, and some bases are even invalid. For example, expression 78\u2009+\u200987 in the base 16 positional notation is equal to FF16, in the base 15 positional notation it is equal to 11015, in the base 10 one \u2014 to 16510, in the base 9 one \u2014 to 1769, and in the base 8 or lesser-based positional notations the expression is invalid as all the numbers should be strictly less than the positional notation base. Vasya got interested in what is the length of the longest possible expression value. Help him to find this length.The length of a number should be understood as the number of numeric characters in it. For example, the length of the longest answer for 78\u2009+\u200987\u2009=\u2009? is 3. It is calculated like that in the base 15 (11015), base 10 (16510), base 9 (1769) positional notations, for example, and in some other ones.", "input_spec": "The first letter contains two space-separated numbers a and b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u20091000) which represent the given summands.", "output_spec": "Print a single number \u2014 the length of the longest answer.", "sample_inputs": ["78 87", "1 1"], "sample_outputs": ["3", "2"], "notes": null}, "src_uid": "8ccfb9b1fef6a992177cc49bd56fab7b"} {"nl": {"description": "Little Petya is learning to play chess. He has already learned how to move a king, a rook and a bishop. Let us remind you the rules of moving chess pieces. A chessboard is 64 square fields organized into an 8\u2009\u00d7\u20098 table. A field is represented by a pair of integers (r,\u2009c) \u2014 the number of the row and the number of the column (in a classical game the columns are traditionally indexed by letters). Each chess piece takes up exactly one field. To make a move is to move a chess piece, the pieces move by the following rules: A rook moves any number of fields horizontally or vertically. A bishop moves any number of fields diagonally. A king moves one field in any direction \u2014 horizontally, vertically or diagonally. The pieces move like that Petya is thinking about the following problem: what minimum number of moves is needed for each of these pieces to move from field (r1,\u2009c1) to field (r2,\u2009c2)? At that, we assume that there are no more pieces besides this one on the board. Help him solve this problem.", "input_spec": "The input contains four integers r1,\u2009c1,\u2009r2,\u2009c2 (1\u2009\u2264\u2009r1,\u2009c1,\u2009r2,\u2009c2\u2009\u2264\u20098) \u2014 the coordinates of the starting and the final field. The starting field doesn't coincide with the final one. You can assume that the chessboard rows are numbered from top to bottom 1 through 8, and the columns are numbered from left to right 1 through 8.", "output_spec": "Print three space-separated integers: the minimum number of moves the rook, the bishop and the king (in this order) is needed to move from field (r1,\u2009c1) to field (r2,\u2009c2). If a piece cannot make such a move, print a 0 instead of the corresponding number.", "sample_inputs": ["4 3 1 6", "5 5 5 6"], "sample_outputs": ["2 1 3", "1 0 1"], "notes": null}, "src_uid": "7dbf58806db185f0fe70c00b60973f4b"} {"nl": {"description": "From beginning till end, this message has been waiting to be conveyed.For a given unordered multiset of n lowercase English letters (\"multi\" means that a letter may appear more than once), we treat all letters as strings of length 1, and repeat the following operation n\u2009-\u20091 times: Remove any two elements s and t from the set, and add their concatenation s\u2009+\u2009t to the set. The cost of such operation is defined to be , where f(s,\u2009c) denotes the number of times character c appears in string s.Given a non-negative integer k, construct any valid non-empty set of no more than 100\u2009000 letters, such that the minimum accumulative cost of the whole process is exactly k. It can be shown that a solution always exists.", "input_spec": "The first and only line of input contains a non-negative integer k (0\u2009\u2264\u2009k\u2009\u2264\u2009100\u2009000) \u2014 the required minimum cost.", "output_spec": "Output a non-empty string of no more than 100\u2009000 lowercase English letters \u2014 any multiset satisfying the requirements, concatenated to be a string. Note that the printed string doesn't need to be the final concatenated string. It only needs to represent an unordered multiset of letters.", "sample_inputs": ["12", "3"], "sample_outputs": ["abababab", "codeforces"], "notes": "NoteFor the multiset {'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b'}, one of the ways to complete the process is as follows: {\"ab\", \"a\", \"b\", \"a\", \"b\", \"a\", \"b\"}, with a cost of 0; {\"aba\", \"b\", \"a\", \"b\", \"a\", \"b\"}, with a cost of 1; {\"abab\", \"a\", \"b\", \"a\", \"b\"}, with a cost of 1; {\"abab\", \"ab\", \"a\", \"b\"}, with a cost of 0; {\"abab\", \"aba\", \"b\"}, with a cost of 1; {\"abab\", \"abab\"}, with a cost of 1; {\"abababab\"}, with a cost of 8. The total cost is 12, and it can be proved to be the minimum cost of the process."}, "src_uid": "b991c064562704b6106a6ff2a297e64a"} {"nl": {"description": "Petya studies positional notations. He has already learned to add and subtract numbers in the systems of notations with different radices and has moved on to a more complicated action \u2014 multiplication. To multiply large numbers one has to learn the multiplication table. Unfortunately, in the second grade students learn only the multiplication table of decimals (and some students even learn it in the first grade). Help Petya make a multiplication table for numbers in the system of notations with the radix k.", "input_spec": "The first line contains a single integer k (2\u2009\u2264\u2009k\u2009\u2264\u200910) \u2014 the radix of the system.", "output_spec": "Output the multiplication table for the system of notations with the radix k. The table must contain k\u2009-\u20091 rows and k\u2009-\u20091 columns. The element on the crossing of the i-th row and the j-th column is equal to the product of i and j in the system of notations with the radix k. Each line may have any number of spaces between the numbers (the extra spaces in the samples are put for clarity).", "sample_inputs": ["10", "3"], "sample_outputs": ["1 2 3 4 5 6 7 8 9\n2 4 6 8 10 12 14 16 18\n3 6 9 12 15 18 21 24 27\n4 8 12 16 20 24 28 32 36\n5 10 15 20 25 30 35 40 45\n6 12 18 24 30 36 42 48 54\n7 14 21 28 35 42 49 56 63\n8 16 24 32 40 48 56 64 72\n9 18 27 36 45 54 63 72 81", "1 2\n2 11"], "notes": null}, "src_uid": "a705144ace798d6b41068aa284d99050"} {"nl": {"description": "Absent-minded Masha got set of n cubes for her birthday.At each of 6 faces of each cube, there is exactly one digit from 0 to 9. Masha became interested what is the largest natural x such she can make using her new cubes all integers from 1 to x.To make a number Masha can rotate her cubes and put them in a row. After that, she looks at upper faces of cubes from left to right and reads the number.The number can't contain leading zeros. It's not required to use all cubes to build a number.Pay attention: Masha can't make digit 6 from digit 9 and vice-versa using cube rotations.", "input_spec": "In first line integer n is given (1\u2009\u2264\u2009n\u2009\u2264\u20093)\u00a0\u2014 the number of cubes, Masha got for her birthday. Each of next n lines contains 6 integers aij (0\u2009\u2264\u2009aij\u2009\u2264\u20099)\u00a0\u2014 number on j-th face of i-th cube.", "output_spec": "Print single integer\u00a0\u2014 maximum number x such Masha can make any integers from 1 to x using her cubes or 0 if Masha can't make even 1.", "sample_inputs": ["3\n0 1 2 3 4 5\n6 7 8 9 0 1\n2 3 4 5 6 7", "3\n0 1 3 5 6 8\n1 2 4 5 7 8\n2 3 4 6 7 9"], "sample_outputs": ["87", "98"], "notes": "NoteIn the first test case, Masha can build all numbers from 1 to 87, but she can't make 88 because there are no two cubes with digit 8."}, "src_uid": "20aa53bffdfd47b4e853091ee6b11a4b"} {"nl": {"description": "Consider the infinite sequence of integers: 1,\u20091,\u20092,\u20091,\u20092,\u20093,\u20091,\u20092,\u20093,\u20094,\u20091,\u20092,\u20093,\u20094,\u20095.... The sequence is built in the following way: at first the number 1 is written out, then the numbers from 1 to 2, then the numbers from 1 to 3, then the numbers from 1 to 4 and so on. Note that the sequence contains numbers, not digits. For example number 10 first appears in the sequence in position 55 (the elements are numerated from one).Find the number on the n-th position of the sequence.", "input_spec": "The only line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091014) \u2014 the position of the number to find. Note that the given number is too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.", "output_spec": "Print the element in the n-th position of the sequence (the elements are numerated from one).", "sample_inputs": ["3", "5", "10", "55", "56"], "sample_outputs": ["2", "2", "4", "10", "1"], "notes": null}, "src_uid": "1db5631847085815461c617854b08ee5"} {"nl": {"description": "Luba thinks about watering her garden. The garden can be represented as a segment of length k. Luba has got n buckets, the i-th bucket allows her to water some continuous subsegment of garden of length exactly ai each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length ai if she chooses the i-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.See the examples for better understanding.", "input_spec": "The first line of input contains two integer numbers n and k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u2009100) \u2014 the number of buckets and the length of the garden, respectively. The second line of input contains n integer numbers ai (1\u2009\u2264\u2009ai\u2009\u2264\u2009100) \u2014 the length of the segment that can be watered by the i-th bucket in one hour. It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.", "output_spec": "Print one integer number \u2014 the minimum number of hours required to water the garden.", "sample_inputs": ["3 6\n2 3 5", "6 7\n1 2 3 4 5 6"], "sample_outputs": ["2", "7"], "notes": "NoteIn the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.In the second test we can choose only the bucket that allows us to water the segment of length 1."}, "src_uid": "80520be9916045aca3a7de7bc925af1f"} {"nl": {"description": "\"QAQ\" is a word to denote an expression of crying. Imagine \"Q\" as eyes with tears and \"A\" as a mouth.Now Diamond has given Bort a string consisting of only uppercase English letters of length n. There is a great number of \"QAQ\" in the string (Diamond is so cute!). illustration by \u732b\u5c4b https://twitter.com/nekoyaliu Bort wants to know how many subsequences \"QAQ\" are in the string Diamond has given. Note that the letters \"QAQ\" don't have to be consecutive, but the order of letters should be exact.", "input_spec": "The only line contains a string of length n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). It's guaranteed that the string only contains uppercase English letters.", "output_spec": "Print a single integer\u00a0\u2014 the number of subsequences \"QAQ\" in the string.", "sample_inputs": ["QAQAQYSYIOIWIN", "QAQQQZZYNOIWIN"], "sample_outputs": ["4", "3"], "notes": "NoteIn the first example there are 4 subsequences \"QAQ\": \"QAQAQYSYIOIWIN\", \"QAQAQYSYIOIWIN\", \"QAQAQYSYIOIWIN\", \"QAQAQYSYIOIWIN\"."}, "src_uid": "8aef4947322438664bd8610632fe0947"} {"nl": {"description": "Little Sofia is in fourth grade. Today in the geometry lesson she learned about segments and squares. On the way home, she decided to draw $$$n$$$ squares in the snow with a side length of $$$1$$$. For simplicity, we assume that Sofia lives on a plane and can draw only segments of length $$$1$$$, parallel to the coordinate axes, with vertices at integer points.In order to draw a segment, Sofia proceeds as follows. If she wants to draw a vertical segment with the coordinates of the ends $$$(x, y)$$$ and $$$(x, y+1)$$$. Then Sofia looks if there is already a drawn segment with the coordinates of the ends $$$(x', y)$$$ and $$$(x', y+1)$$$ for some $$$x'$$$. If such a segment exists, then Sofia quickly draws a new segment, using the old one as a guideline. If there is no such segment, then Sofia has to take a ruler and measure a new segment for a long time. Same thing happens when Sofia wants to draw a horizontal segment, but only now she checks for the existence of a segment with the same coordinates $$$x$$$, $$$x+1$$$ and the differing coordinate $$$y$$$.For example, if Sofia needs to draw one square, she will have to draw two segments using a ruler: After that, she can draw the remaining two segments, using the first two as a guide: If Sofia needs to draw two squares, she will have to draw three segments using a ruler: After that, she can draw the remaining four segments, using the first three as a guide: Sofia is in a hurry, so she wants to minimize the number of segments that she will have to draw with a ruler without a guide. Help her find this minimum number.", "input_spec": "The only line of input contains a single integer $$$n$$$ ($$$1 \\le n \\le 10^{9}$$$), the number of squares that Sofia wants to draw.", "output_spec": "Print single integer, the minimum number of segments that Sofia will have to draw with a ruler without a guide in order to draw $$$n$$$ squares in the manner described above.", "sample_inputs": ["1", "2", "4"], "sample_outputs": ["2", "3", "4"], "notes": null}, "src_uid": "eb8212aec951f8f69b084446da73eaf7"} {"nl": {"description": "Valera the horse lives on a plane. The Cartesian coordinate system is defined on this plane. Also an infinite spiral is painted on the plane. The spiral consists of segments: [(0,\u20090),\u2009(1,\u20090)], [(1,\u20090),\u2009(1,\u20091)], [(1,\u20091),\u2009(\u2009-\u20091,\u20091)], [(\u2009-\u20091,\u20091),\u2009(\u2009-\u20091,\u2009\u2009-\u20091)], [(\u2009-\u20091,\u2009\u2009-\u20091),\u2009(2,\u2009\u2009-\u20091)], [(2,\u2009\u2009-\u20091),\u2009(2,\u20092)] and so on. Thus, this infinite spiral passes through each integer point of the plane.Valera the horse lives on the plane at coordinates (0,\u20090). He wants to walk along the spiral to point (x,\u2009y). Valera the horse has four legs, so he finds turning very difficult. Count how many times he will have to turn if he goes along a spiral from point (0,\u20090) to point (x,\u2009y).", "input_spec": "The first line contains two space-separated integers x and y (|x|,\u2009|y|\u2009\u2264\u2009100).", "output_spec": "Print a single integer, showing how many times Valera has to turn.", "sample_inputs": ["0 0", "1 0", "0 1", "-1 -1"], "sample_outputs": ["0", "0", "2", "3"], "notes": null}, "src_uid": "2fb2a129e01efc03cfc3ad91dac88382"} {"nl": {"description": "Buses run between the cities A and B, the first one is at 05:00 AM and the last one departs not later than at 11:59 PM. A bus from the city A departs every a minutes and arrives to the city B in a ta minutes, and a bus from the city B departs every b minutes and arrives to the city A in a tb minutes.The driver Simion wants to make his job diverse, so he counts the buses going towards him. Simion doesn't count the buses he meet at the start and finish.You know the time when Simion departed from the city A to the city B. Calculate the number of buses Simion will meet to be sure in his counting.", "input_spec": "The first line contains two integers a,\u2009ta (1\u2009\u2264\u2009a,\u2009ta\u2009\u2264\u2009120) \u2014 the frequency of the buses from the city A to the city B and the travel time. Both values are given in minutes. The second line contains two integers b,\u2009tb (1\u2009\u2264\u2009b,\u2009tb\u2009\u2264\u2009120) \u2014 the frequency of the buses from the city B to the city A and the travel time. Both values are given in minutes. The last line contains the departure time of Simion from the city A in the format hh:mm. It is guaranteed that there are a bus from the city A at that time. Note that the hours and the minutes are given with exactly two digits.", "output_spec": "Print the only integer z \u2014 the number of buses Simion will meet on the way. Note that you should not count the encounters in cities A and B.", "sample_inputs": ["10 30\n10 35\n05:20", "60 120\n24 100\n13:00"], "sample_outputs": ["5", "9"], "notes": "NoteIn the first example Simion departs form the city A at 05:20 AM and arrives to the city B at 05:50 AM. He will meet the first 5 buses from the city B that departed in the period [05:00 AM - 05:40 AM]. Also Simion will meet a bus in the city B at 05:50 AM, but he will not count it.Also note that the first encounter will be between 05:26 AM and 05:27 AM (if we suggest that the buses are go with the sustained speed)."}, "src_uid": "1c4cf1c3cb464a483511a8a61f8685a7"} {"nl": {"description": "Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words \"WUB\" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including \"WUB\", in one string and plays the song at the club.For example, a song with words \"I AM X\" can transform into a dubstep remix as \"WUBWUBIWUBAMWUBWUBX\" and cannot transform into \"WUBWUBIAMWUBX\".Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.", "input_spec": "The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring \"WUB\" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.", "output_spec": "Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.", "sample_inputs": ["WUBWUBABCWUB", "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB"], "sample_outputs": ["ABC", "WE ARE THE CHAMPIONS MY FRIEND"], "notes": "NoteIn the first sample: \"WUBWUBABCWUB\" = \"WUB\" + \"WUB\" + \"ABC\" + \"WUB\". That means that the song originally consisted of a single word \"ABC\", and all words \"WUB\" were added by Vasya.In the second sample Vasya added a single word \"WUB\" between all neighbouring words, in the beginning and in the end, except for words \"ARE\" and \"THE\" \u2014 between them Vasya added two \"WUB\"."}, "src_uid": "edede580da1395fe459a480f6a0a548d"} {"nl": {"description": "You have two positive integers w and h. Your task is to count the number of rhombi which have the following properties: Have positive area. With vertices at integer points. All vertices of the rhombi are located inside or on the border of the rectangle with vertices at points (0,\u20090), (w,\u20090), (w,\u2009h), (0,\u2009h). In other words, for all vertices (xi,\u2009yi) of the rhombus the following conditions should fulfill: 0\u2009\u2264\u2009xi\u2009\u2264\u2009w and 0\u2009\u2264\u2009yi\u2009\u2264\u2009h. Its diagonals are parallel to the axis. Count the number of such rhombi.Let us remind you that a rhombus is a quadrilateral whose four sides all have the same length.", "input_spec": "The first line contains two integers w and h (1\u2009\u2264\u2009w,\u2009h\u2009\u2264\u20094000) \u2014 the rectangle's sizes.", "output_spec": "Print a single number \u2014 the number of sought rhombi. Please do not use the %lld specifier to read or write 64-bit integers in \u0421++. It is preferred to use cin, cout streams or the %I64d specifier.", "sample_inputs": ["2 2", "1 2"], "sample_outputs": ["1", "0"], "notes": "NoteIn the first example there exists only one such rhombus. Its vertices are located at points (1,\u20090), (2,\u20091), (1,\u20092), (0,\u20091)."}, "src_uid": "42454dcf7d073bf12030367eb094eb8c"} {"nl": {"description": "Luba has a ticket consisting of 6 digits. In one move she can choose digit in any position and replace it with arbitrary digit. She wants to know the minimum number of digits she needs to replace in order to make the ticket lucky.The ticket is considered lucky if the sum of first three digits equals to the sum of last three digits.", "input_spec": "You are given a string consisting of 6 characters (all characters are digits from 0 to 9) \u2014 this string denotes Luba's ticket. The ticket can start with the digit 0.", "output_spec": "Print one number \u2014 the minimum possible number of digits Luba needs to replace to make the ticket lucky.", "sample_inputs": ["000000", "123456", "111000"], "sample_outputs": ["0", "2", "1"], "notes": "NoteIn the first example the ticket is already lucky, so the answer is 0.In the second example Luba can replace 4 and 5 with zeroes, and the ticket will become lucky. It's easy to see that at least two replacements are required.In the third example Luba can replace any zero with 3. It's easy to see that at least one replacement is required."}, "src_uid": "09601fd1742ffdc9f822950f1d3e8494"} {"nl": {"description": "Vasya has n days of vacations! So he decided to improve his IT skills and do sport. Vasya knows the following information about each of this n days: whether that gym opened and whether a contest was carried out in the Internet on that day. For the i-th day there are four options: on this day the gym is closed and the contest is not carried out; on this day the gym is closed and the contest is carried out; on this day the gym is open and the contest is not carried out; on this day the gym is open and the contest is carried out. On each of days Vasya can either have a rest or write the contest (if it is carried out on this day), or do sport (if the gym is open on this day).Find the minimum number of days on which Vasya will have a rest (it means, he will not do sport and write the contest at the same time). The only limitation that Vasya has \u2014 he does not want to do the same activity on two consecutive days: it means, he will not do sport on two consecutive days, and write the contest on two consecutive days.", "input_spec": "The first line contains a positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of days of Vasya's vacations. The second line contains the sequence of integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u20093) separated by space, where: ai equals 0, if on the i-th day of vacations the gym is closed and the contest is not carried out; ai equals 1, if on the i-th day of vacations the gym is closed, but the contest is carried out; ai equals 2, if on the i-th day of vacations the gym is open and the contest is not carried out; ai equals 3, if on the i-th day of vacations the gym is open and the contest is carried out.", "output_spec": "Print the minimum possible number of days on which Vasya will have a rest. Remember that Vasya refuses: to do sport on any two consecutive days, to write the contest on any two consecutive days. ", "sample_inputs": ["4\n1 3 2 0", "7\n1 3 3 2 1 2 3", "2\n2 2"], "sample_outputs": ["2", "0", "1"], "notes": "NoteIn the first test Vasya can write the contest on the day number 1 and do sport on the day number 3. Thus, he will have a rest for only 2 days.In the second test Vasya should write contests on days number 1, 3, 5 and 7, in other days do sport. Thus, he will not have a rest for a single day.In the third test Vasya can do sport either on a day number 1 or number 2. He can not do sport in two days, because it will be contrary to the his limitation. Thus, he will have a rest for only one day."}, "src_uid": "08f1ba79ced688958695a7cfcfdda035"} {"nl": {"description": "You are given a rectangular cake, represented as an r\u2009\u00d7\u2009c grid. Each cell either has an evil strawberry, or is empty. For example, a 3\u2009\u00d7\u20094 cake may look as follows: The cakeminator is going to eat the cake! Each time he eats, he chooses a row or a column that does not contain any evil strawberries and contains at least one cake cell that has not been eaten before, and eats all the cake cells there. He may decide to eat any number of times.Please output the maximum number of cake cells that the cakeminator can eat.", "input_spec": "The first line contains two integers r and c (2\u2009\u2264\u2009r,\u2009c\u2009\u2264\u200910), denoting the number of rows and the number of columns of the cake. The next r lines each contains c characters \u2014 the j-th character of the i-th line denotes the content of the cell at row i and column j, and is either one of these: '.' character denotes a cake cell with no evil strawberry; 'S' character denotes a cake cell with an evil strawberry. ", "output_spec": "Output the maximum number of cake cells that the cakeminator can eat.", "sample_inputs": ["3 4\nS...\n....\n..S."], "sample_outputs": ["8"], "notes": "NoteFor the first example, one possible way to eat the maximum number of cake cells is as follows (perform 3 eats). "}, "src_uid": "ebaf7d89c623d006a6f1ffd025892102"} {"nl": {"description": "Hideo Kojima has just quit his job at Konami. Now he is going to find a new place to work. Despite being such a well-known person, he still needs a CV to apply for a job.During all his career Hideo has produced n games. Some of them were successful, some were not. Hideo wants to remove several of them (possibly zero) from his CV to make a better impression on employers. As a result there should be no unsuccessful game which comes right after successful one in his CV.More formally, you are given an array s1,\u2009s2,\u2009...,\u2009sn of zeros and ones. Zero corresponds to an unsuccessful game, one \u2014 to a successful one. Games are given in order they were produced, and Hideo can't swap these values. He should remove some elements from this array in such a way that no zero comes right after one.Besides that, Hideo still wants to mention as much games in his CV as possible. Help this genius of a man determine the maximum number of games he can leave in his CV.", "input_spec": "The first line contains one integer number n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). The second line contains n space-separated integer numbers s1,\u2009s2,\u2009...,\u2009sn (0\u2009\u2264\u2009si\u2009\u2264\u20091). 0 corresponds to an unsuccessful game, 1 \u2014 to a successful one.", "output_spec": "Print one integer \u2014 the maximum number of games Hideo can leave in his CV so that no unsuccessful game comes after a successful one.", "sample_inputs": ["4\n1 1 0 1", "6\n0 1 0 0 1 0", "1\n0"], "sample_outputs": ["3", "4", "1"], "notes": null}, "src_uid": "c7b1f0b40e310f99936d1c33e4816b95"} {"nl": {"description": "Nothing has changed since the last round. Dima and Inna still love each other and want to be together. They've made a deal with Seryozha and now they need to make a deal with the dorm guards...There are four guardposts in Dima's dorm. Each post contains two guards (in Russia they are usually elderly women). You can bribe a guard by a chocolate bar or a box of juice. For each guard you know the minimum price of the chocolate bar she can accept as a gift and the minimum price of the box of juice she can accept as a gift. If a chocolate bar for some guard costs less than the minimum chocolate bar price for this guard is, or if a box of juice for some guard costs less than the minimum box of juice price for this guard is, then the guard doesn't accept such a gift.In order to pass through a guardpost, one needs to bribe both guards.The shop has an unlimited amount of juice and chocolate of any price starting with 1. Dima wants to choose some guardpost, buy one gift for each guard from the guardpost and spend exactly n rubles on it.Help him choose a post through which he can safely sneak Inna or otherwise say that this is impossible. Mind you, Inna would be very sorry to hear that!", "input_spec": "The first line of the input contains integer n\u00a0(1\u2009\u2264\u2009n\u2009\u2264\u2009105) \u2014 the money Dima wants to spend. Then follow four lines describing the guardposts. Each line contains four integers a,\u2009b,\u2009c,\u2009d\u00a0(1\u2009\u2264\u2009a,\u2009b,\u2009c,\u2009d\u2009\u2264\u2009105) \u2014 the minimum price of the chocolate and the minimum price of the juice for the first guard and the minimum price of the chocolate and the minimum price of the juice for the second guard, correspondingly.", "output_spec": "In a single line of the output print three space-separated integers: the number of the guardpost, the cost of the first present and the cost of the second present. If there is no guardpost Dima can sneak Inna through at such conditions, print -1 in a single line. The guardposts are numbered from 1 to 4 according to the order given in the input. If there are multiple solutions, you can print any of them.", "sample_inputs": ["10\n5 6 5 6\n6 6 7 7\n5 8 6 6\n9 9 9 9", "10\n6 6 6 6\n7 7 7 7\n4 4 4 4\n8 8 8 8", "5\n3 3 3 3\n3 3 3 3\n3 3 3 3\n3 3 3 3"], "sample_outputs": ["1 5 5", "3 4 6", "-1"], "notes": "NoteExplanation of the first example.The only way to spend 10 rubles to buy the gifts that won't be less than the minimum prices is to buy two 5 ruble chocolates to both guards from the first guardpost.Explanation of the second example.Dima needs 12 rubles for the first guardpost, 14 for the second one, 16 for the fourth one. So the only guardpost we can sneak through is the third one. So, Dima can buy 4 ruble chocolate for the first guard and 6 ruble juice of the second guard."}, "src_uid": "6e7ee0da980beb99ca49a5ddd04089a5"} {"nl": {"description": "Gerald is very particular to eight point sets. He thinks that any decent eight point set must consist of all pairwise intersections of three distinct integer vertical straight lines and three distinct integer horizontal straight lines, except for the average of these nine points. In other words, there must be three integers x1,\u2009x2,\u2009x3 and three more integers y1,\u2009y2,\u2009y3, such that x1\u2009<\u2009x2\u2009<\u2009x3, y1\u2009<\u2009y2\u2009<\u2009y3 and the eight point set consists of all points (xi,\u2009yj) (1\u2009\u2264\u2009i,\u2009j\u2009\u2264\u20093), except for point (x2,\u2009y2).You have a set of eight points. Find out if Gerald can use this set?", "input_spec": "The input consists of eight lines, the i-th line contains two space-separated integers xi and yi (0\u2009\u2264\u2009xi,\u2009yi\u2009\u2264\u2009106). You do not have any other conditions for these points.", "output_spec": "In a single line print word \"respectable\", if the given set of points corresponds to Gerald's decency rules, and \"ugly\" otherwise.", "sample_inputs": ["0 0\n0 1\n0 2\n1 0\n1 2\n2 0\n2 1\n2 2", "0 0\n1 0\n2 0\n3 0\n4 0\n5 0\n6 0\n7 0", "1 1\n1 2\n1 3\n2 1\n2 2\n2 3\n3 1\n3 2"], "sample_outputs": ["respectable", "ugly", "ugly"], "notes": null}, "src_uid": "f3c96123334534056f26b96f90886807"} {"nl": {"description": "HAII HAS A TUXGIMMEH TUXI HAS A FOO ITS 0I HAS A BAR ITS 0I HAS A BAZ ITS 0I HAS A QUZ ITS 1TUX IS NOW A NUMBRIM IN YR LOOP NERFIN YR TUX TIL BOTH SAEM TUX AN 0I HAS A PURGIMMEH PURPUR IS NOW A NUMBRFOO R SUM OF FOO AN PURBAR R SUM OF BAR AN 1BOTH SAEM BIGGR OF PRODUKT OF FOO AN QUZ AN PRODUKT OF BAR BAZ AN PRODUKT OF FOO AN QUZO RLY?YA RLYBAZ R FOOQUZ R BAROICIM OUTTA YR LOOPBAZ IS NOW A NUMBARVISIBLE SMOOSH QUOSHUNT OF BAZ QUZKTHXBYE", "input_spec": "The input contains between 1 and 10 lines, i-th line contains an integer number xi (0\u2009\u2264\u2009xi\u2009\u2264\u20099).", "output_spec": "Output a single real number. The answer is considered to be correct if its absolute or relative error does not exceed 10\u2009-\u20094.", "sample_inputs": ["3\n0\n1\n1"], "sample_outputs": ["0.666667"], "notes": null}, "src_uid": "32fc378a310ca15598377f7b638eaf26"} {"nl": {"description": "One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular a mm \u2009\u00d7\u2009 b mm sheet of paper (a\u2009>\u2009b). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part. After making a paper ship from the square piece, Vasya looked on the remaining (a\u2009-\u2009b) mm \u2009\u00d7\u2009 b mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop.Can you determine how many ships Vasya will make during the lesson?", "input_spec": "The first line of the input contains two integers a, b (1\u2009\u2264\u2009b\u2009<\u2009a\u2009\u2264\u20091012) \u2014 the sizes of the original sheet of paper.", "output_spec": "Print a single integer \u2014 the number of ships that Vasya will make.", "sample_inputs": ["2 1", "10 7", "1000000000000 1"], "sample_outputs": ["2", "6", "1000000000000"], "notes": "NotePictures to the first and second sample test. "}, "src_uid": "ce698a0eb3f5b82de58feb177ce43b83"} {"nl": {"description": "Igor K. always used to trust his favorite Kashpirovsky Antivirus. That is why he didn't hesitate to download the link one of his groupmates sent him via QIP Infinium. The link was said to contain \"some real funny stuff about swine influenza\". The antivirus had no objections and Igor K. run the flash application he had downloaded. Immediately his QIP Infinium said: \"invalid login/password\".Igor K. entered the ISQ from his additional account and looked at the info of his main one. His name and surname changed to \"H1N1\" and \"Infected\" correspondingly, and the \"Additional Information\" field contained a strange-looking binary code 80 characters in length, consisting of zeroes and ones. \"I've been hacked\" \u2014 thought Igor K. and run the Internet Exploiter browser to quickly type his favourite search engine's address.Soon he learned that it really was a virus that changed ISQ users' passwords. Fortunately, he soon found out that the binary code was actually the encrypted password where each group of 10 characters stood for one decimal digit. Accordingly, the original password consisted of 8 decimal digits.Help Igor K. restore his ISQ account by the encrypted password and encryption specification.", "input_spec": "The input data contains 11 lines. The first line represents the binary code 80 characters in length. That is the code written in Igor K.'s ISQ account's info. Next 10 lines contain pairwise distinct binary codes 10 characters in length, corresponding to numbers 0, 1, ..., 9.", "output_spec": "Print one line containing 8 characters \u2014 The password to Igor K.'s ISQ account. It is guaranteed that the solution exists.", "sample_inputs": ["01001100100101100000010110001001011001000101100110010110100001011010100101101100\n0100110000\n0100110010\n0101100000\n0101100010\n0101100100\n0101100110\n0101101000\n0101101010\n0101101100\n0101101110", "10101101111001000010100100011010101101110010110111011000100011011110010110001000\n1001000010\n1101111001\n1001000110\n1010110111\n0010110111\n1101001101\n1011000001\n1110010101\n1011011000\n0110001000"], "sample_outputs": ["12345678", "30234919"], "notes": null}, "src_uid": "0f4f7ca388dd1b2192436c67f9ac74d9"} {"nl": {"description": "A little bear Limak plays a game. He has five cards. There is one number written on each card. Each number is a positive integer.Limak can discard (throw out) some cards. His goal is to minimize the sum of numbers written on remaining (not discarded) cards.He is allowed to at most once discard two or three cards with the same number. Of course, he won't discard cards if it's impossible to choose two or three cards with the same number.Given five numbers written on cards, cay you find the minimum sum of numbers on remaining cards?", "input_spec": "The only line of the input contains five integers t1, t2, t3, t4 and t5 (1\u2009\u2264\u2009ti\u2009\u2264\u2009100)\u00a0\u2014 numbers written on cards.", "output_spec": "Print the minimum possible sum of numbers written on remaining cards.", "sample_inputs": ["7 3 7 3 20", "7 9 3 1 8", "10 10 10 10 10"], "sample_outputs": ["26", "28", "20"], "notes": "NoteIn the first sample, Limak has cards with numbers 7, 3, 7, 3 and 20. Limak can do one of the following. Do nothing and the sum would be 7\u2009+\u20093\u2009+\u20097\u2009+\u20093\u2009+\u200920\u2009=\u200940. Remove two cards with a number 7. The remaining sum would be 3\u2009+\u20093\u2009+\u200920\u2009=\u200926. Remove two cards with a number 3. The remaining sum would be 7\u2009+\u20097\u2009+\u200920\u2009=\u200934. You are asked to minimize the sum so the answer is 26.In the second sample, it's impossible to find two or three cards with the same number. Hence, Limak does nothing and the sum is 7\u2009+\u20099\u2009+\u20091\u2009+\u20093\u2009+\u20098\u2009=\u200928.In the third sample, all cards have the same number. It's optimal to discard any three cards. The sum of two remaining numbers is 10\u2009+\u200910\u2009=\u200920."}, "src_uid": "a9c17ce5fd5f39ffd70917127ce3408a"} {"nl": {"description": "From \"ftying rats\" to urban saniwation workers - can synthetic biology tronsform how we think of pigeons? The upiquitous pigeon has long been viewed as vermin - spleading disease, scavenging through trush, and defecating in populous urban spases. Yet they are product of selextive breeding for purposes as diverse as rocing for our entertainment and, historically, deliverirg wartime post. Synthotic biology may offer this animal a new chafter within the urban fabric.Piteon d'Or recognihes how these birds ripresent a potentially userul interface for urdan biotechnologies. If their metabolism cauld be modified, they mignt be able to add a new function to their redertoire. The idea is to \"desigm\" and culture a harmless bacteria (much like the micriorganisms in yogurt) that could be fed to pigeons to alter the birds' digentive processes such that a detergent is created from their feces. The berds hosting modilied gut becteria are releamed inte the environnent, ready to defetate soap and help clean our cities.", "input_spec": "The first line of input data contains a single integer $$$n$$$ ($$$5 \\le n \\le 10$$$). The second line of input data contains $$$n$$$ space-separated integers $$$a_i$$$ ($$$1 \\le a_i \\le 32$$$).", "output_spec": "Output a single integer.", "sample_inputs": ["5\n1 2 3 4 5"], "sample_outputs": ["4"], "notes": "NoteWe did not proofread this statement at all."}, "src_uid": "a9eb85dfaa3c50ed488d41da4f29c697"} {"nl": {"description": "InputThe input contains a single integer $$$a$$$ ($$$1 \\le a \\le 99$$$).OutputOutput \"YES\" or \"NO\".ExamplesInput\n5\nOutput\nYES\nInput\n13\nOutput\nNO\nInput\n24\nOutput\nNO\nInput\n46\nOutput\nYES\n", "input_spec": "The input contains a single integer $$$a$$$ ($$$1 \\le a \\le 99$$$).", "output_spec": "Output \"YES\" or \"NO\".", "sample_inputs": ["5", "13", "24", "46"], "sample_outputs": ["YES", "NO", "NO", "YES"], "notes": null}, "src_uid": "821529a4644b74483bcdf80fc318d1f8"} {"nl": {"description": "Polycarp knows that if the sum of the digits of a number is divisible by $$$3$$$, then the number itself is divisible by $$$3$$$. He assumes that the numbers, the sum of the digits of which is divisible by $$$4$$$, are also somewhat interesting. Thus, he considers a positive integer $$$n$$$ interesting if its sum of digits is divisible by $$$4$$$.Help Polycarp find the nearest larger or equal interesting number for the given number $$$a$$$. That is, find the interesting number $$$n$$$ such that $$$n \\ge a$$$ and $$$n$$$ is minimal.", "input_spec": "The only line in the input contains an integer $$$a$$$ ($$$1 \\le a \\le 1000$$$).", "output_spec": "Print the nearest greater or equal interesting number for the given number $$$a$$$. In other words, print the interesting number $$$n$$$ such that $$$n \\ge a$$$ and $$$n$$$ is minimal.", "sample_inputs": ["432", "99", "237", "42"], "sample_outputs": ["435", "103", "237", "44"], "notes": null}, "src_uid": "bb6fb9516b2c55d1ee47a30d423562d7"} {"nl": {"description": "Our good friend Mole is trying to code a big message. He is typing on an unusual keyboard with characters arranged in following way:qwertyuiopasdfghjkl;zxcvbnm,./Unfortunately Mole is blind, so sometimes it is problem for him to put his hands accurately. He accidentally moved both his hands with one position to the left or to the right. That means that now he presses not a button he wants, but one neighboring button (left or right, as specified in input).We have a sequence of characters he has typed and we want to find the original message.", "input_spec": "First line of the input contains one letter describing direction of shifting ('L' or 'R' respectively for left or right). Second line contains a sequence of characters written by Mole. The size of this sequence will be no more than 100. Sequence contains only symbols that appear on Mole's keyboard. It doesn't contain spaces as there is no space on Mole's keyboard. It is guaranteed that even though Mole hands are moved, he is still pressing buttons on keyboard and not hitting outside it.", "output_spec": "Print a line that contains the original message.", "sample_inputs": ["R\ns;;upimrrfod;pbr"], "sample_outputs": ["allyouneedislove"], "notes": null}, "src_uid": "df49c0c257903516767fdb8ac9c2bfd6"} {"nl": {"description": "Let's call a string a phone number if it has length 11 and fits the pattern \"8xxxxxxxxxx\", where each \"x\" is replaced by a digit.For example, \"80123456789\" and \"80000000000\" are phone numbers, while \"8012345678\" and \"79000000000\" are not.You have $$$n$$$ cards with digits, and you want to use them to make as many phone numbers as possible. Each card must be used in at most one phone number, and you don't have to use all cards. The phone numbers do not necessarily have to be distinct.", "input_spec": "The first line contains an integer $$$n$$$\u00a0\u2014 the number of cards with digits that you have ($$$1 \\leq n \\leq 100$$$). The second line contains a string of $$$n$$$ digits (characters \"0\", \"1\", ..., \"9\") $$$s_1, s_2, \\ldots, s_n$$$. The string will not contain any other characters, such as leading or trailing spaces.", "output_spec": "If at least one phone number can be made from these cards, output the maximum number of phone numbers that can be made. Otherwise, output 0.", "sample_inputs": ["11\n00000000008", "22\n0011223344556677889988", "11\n31415926535"], "sample_outputs": ["1", "2", "0"], "notes": "NoteIn the first example, one phone number, \"8000000000\", can be made from these cards.In the second example, you can make two phone numbers from the cards, for example, \"80123456789\" and \"80123456789\".In the third example you can't make any phone number from the given cards."}, "src_uid": "259d01b81bef5536b969247ff2c2d776"} {"nl": {"description": "A new delivery of clothing has arrived today to the clothing store. This delivery consists of $$$a$$$ ties, $$$b$$$ scarves, $$$c$$$ vests and $$$d$$$ jackets.The store does not sell single clothing items \u2014 instead, it sells suits of two types: a suit of the first type consists of one tie and one jacket; a suit of the second type consists of one scarf, one vest and one jacket. Each suit of the first type costs $$$e$$$ coins, and each suit of the second type costs $$$f$$$ coins.Calculate the maximum possible cost of a set of suits that can be composed from the delivered clothing items. Note that one item cannot be used in more than one suit (though some items may be left unused).", "input_spec": "The first line contains one integer $$$a$$$ $$$(1 \\le a \\le 100\\,000)$$$ \u2014 the number of ties. The second line contains one integer $$$b$$$ $$$(1 \\le b \\le 100\\,000)$$$ \u2014 the number of scarves. The third line contains one integer $$$c$$$ $$$(1 \\le c \\le 100\\,000)$$$ \u2014 the number of vests. The fourth line contains one integer $$$d$$$ $$$(1 \\le d \\le 100\\,000)$$$ \u2014 the number of jackets. The fifth line contains one integer $$$e$$$ $$$(1 \\le e \\le 1\\,000)$$$ \u2014 the cost of one suit of the first type. The sixth line contains one integer $$$f$$$ $$$(1 \\le f \\le 1\\,000)$$$ \u2014 the cost of one suit of the second type.", "output_spec": "Print one integer \u2014 the maximum total cost of some set of suits that can be composed from the delivered items. ", "sample_inputs": ["4\n5\n6\n3\n1\n2", "12\n11\n13\n20\n4\n6", "17\n14\n5\n21\n15\n17"], "sample_outputs": ["6", "102", "325"], "notes": "NoteIt is possible to compose three suits of the second type in the first example, and their total cost will be $$$6$$$. Since all jackets will be used, it's impossible to add anything to this set.The best course of action in the second example is to compose nine suits of the first type and eleven suits of the second type. The total cost is $$$9 \\cdot 4 + 11 \\cdot 6 = 102$$$."}, "src_uid": "84d9e7e9c9541d997e6573edb421ae0a"} {"nl": {"description": "Mahmoud has n line segments, the i-th of them has length ai. Ehab challenged him to use exactly 3 line segments to form a non-degenerate triangle. Mahmoud doesn't accept challenges unless he is sure he can win, so he asked you to tell him if he should accept the challenge. Given the lengths of the line segments, check if he can choose exactly 3 of them to form a non-degenerate triangle.Mahmoud should use exactly 3 line segments, he can't concatenate two line segments or change any length. A non-degenerate triangle is a triangle with positive area.", "input_spec": "The first line contains single integer n (3\u2009\u2264\u2009n\u2009\u2264\u2009105)\u00a0\u2014 the number of line segments Mahmoud has. The second line contains n integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009109)\u00a0\u2014 the lengths of line segments Mahmoud has.", "output_spec": "In the only line print \"YES\" if he can choose exactly three line segments and form a non-degenerate triangle with them, and \"NO\" otherwise.", "sample_inputs": ["5\n1 5 3 2 4", "3\n4 1 2"], "sample_outputs": ["YES", "NO"], "notes": "NoteFor the first example, he can use line segments with lengths 2, 4 and 5 to form a non-degenerate triangle."}, "src_uid": "897bd80b79df7b1143b652655b9a6790"} {"nl": {"description": " It's the end of July\u00a0\u2013 the time when a festive evening is held at Jelly Castle! Guests from all over the kingdom gather here to discuss new trends in the world of confectionery. Yet some of the things discussed here are not supposed to be disclosed to the general public: the information can cause discord in the kingdom of Sweetland in case it turns out to reach the wrong hands. So it's a necessity to not let any uninvited guests in.There are 26 entrances in Jelly Castle, enumerated with uppercase English letters from A to Z. Because of security measures, each guest is known to be assigned an entrance he should enter the castle through. The door of each entrance is opened right before the first guest's arrival and closed right after the arrival of the last guest that should enter the castle through this entrance. No two guests can enter the castle simultaneously.For an entrance to be protected from possible intrusion, a candy guard should be assigned to it. There are k such guards in the castle, so if there are more than k opened doors, one of them is going to be left unguarded! Notice that a guard can't leave his post until the door he is assigned to is closed.Slastyona had a suspicion that there could be uninvited guests at the evening. She knows the order in which the invited guests entered the castle, and wants you to help her check whether there was a moment when more than k doors were opened.", "input_spec": "Two integers are given in the first string: the number of guests n and the number of guards k (1\u2009\u2264\u2009n\u2009\u2264\u2009106, 1\u2009\u2264\u2009k\u2009\u2264\u200926). In the second string, n uppercase English letters s1s2... sn are given, where si is the entrance used by the i-th guest.", "output_spec": "Output \u00abYES\u00bb if at least one door was unguarded during some time, and \u00abNO\u00bb otherwise. You can output each letter in arbitrary case (upper or lower).", "sample_inputs": ["5 1\nAABBB", "5 1\nABABB"], "sample_outputs": ["NO", "YES"], "notes": "NoteIn the first sample case, the door A is opened right before the first guest's arrival and closed when the second guest enters the castle. The door B is opened right before the arrival of the third guest, and closed after the fifth one arrives. One guard can handle both doors, as the first one is closed before the second one is opened.In the second sample case, the door B is opened before the second guest's arrival, but the only guard can't leave the door A unattended, as there is still one more guest that should enter the castle through this door. "}, "src_uid": "216323563f5b2dd63edc30cb9b4849a5"} {"nl": {"description": "Petya is having a party soon, and he has decided to invite his $$$n$$$ friends.He wants to make invitations in the form of origami. For each invitation, he needs two red sheets, five green sheets, and eight blue sheets. The store sells an infinite number of notebooks of each color, but each notebook consists of only one color with $$$k$$$ sheets. That is, each notebook contains $$$k$$$ sheets of either red, green, or blue.Find the minimum number of notebooks that Petya needs to buy to invite all $$$n$$$ of his friends.", "input_spec": "The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1\\leq n, k\\leq 10^8$$$)\u00a0\u2014 the number of Petya's friends and the number of sheets in each notebook respectively.", "output_spec": "Print one number\u00a0\u2014 the minimum number of notebooks that Petya needs to buy.", "sample_inputs": ["3 5", "15 6"], "sample_outputs": ["10", "38"], "notes": "NoteIn the first example, we need $$$2$$$ red notebooks, $$$3$$$ green notebooks, and $$$5$$$ blue notebooks.In the second example, we need $$$5$$$ red notebooks, $$$13$$$ green notebooks, and $$$20$$$ blue notebooks."}, "src_uid": "d259a3a5c38af34b2a15d61157cc0a39"} {"nl": {"description": "There are literally dozens of snooker competitions held each year, and team Jinotega tries to attend them all (for some reason they prefer name \"snookah\")! When a competition takes place somewhere far from their hometown, Ivan, Artsem and Konstantin take a flight to the contest and back.Jinotega's best friends, team Base have found a list of their itinerary receipts with information about departure and arrival airports. Now they wonder, where is Jinotega now: at home or at some competition far away? They know that: this list contains all Jinotega's flights in this year (in arbitrary order), Jinotega has only flown from his hometown to a snooker contest and back, after each competition Jinotega flies back home (though they may attend a competition in one place several times), and finally, at the beginning of the year Jinotega was at home. Please help them to determine Jinotega's location!", "input_spec": "In the first line of input there is a single integer n: the number of Jinotega's flights (1\u2009\u2264\u2009n\u2009\u2264\u2009100). In the second line there is a string of 3 capital Latin letters: the name of Jinotega's home airport. In the next n lines there is flight information, one flight per line, in form \"XXX->YYY\", where \"XXX\" is the name of departure airport \"YYY\" is the name of arrival airport. Exactly one of these airports is Jinotega's home airport. It is guaranteed that flights information is consistent with the knowledge of Jinotega's friends, which is described in the main part of the statement.", "output_spec": "If Jinotega is now at home, print \"home\" (without quotes), otherwise print \"contest\".", "sample_inputs": ["4\nSVO\nSVO->CDG\nLHR->SVO\nSVO->LHR\nCDG->SVO", "3\nSVO\nSVO->HKT\nHKT->SVO\nSVO->RAP"], "sample_outputs": ["home", "contest"], "notes": "NoteIn the first sample Jinotega might first fly from SVO to CDG and back, and then from SVO to LHR and back, so now they should be at home. In the second sample Jinotega must now be at RAP because a flight from RAP back to SVO is not on the list."}, "src_uid": "51d1c79a52d3d4f80c98052b6ec77222"} {"nl": {"description": "Everyone loves a freebie. Especially students.It is well-known that if in the night before exam a student opens window, opens the student's record-book and shouts loudly three times \"Fly, freebie, fly!\" \u2014 then flown freebie helps him to pass the upcoming exam.In the night before the exam on mathematical analysis n students living in dormitory shouted treasured words. The i-th student made a sacrament at the time ti, where ti is the number of seconds elapsed since the beginning of the night.It is known that the freebie is a capricious and willful lady. That night the freebie was near dormitory only for T seconds. Therefore, if for two students their sacrament times differ for more than T, then the freebie didn't visit at least one of them.Since all students are optimists, they really want to know what is the maximal number of students visited by the freebie can be.", "input_spec": "The first line of the input contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100), where n \u2014 the number of students shouted \"Fly, freebie, fly!\" The second line contains n positive integers ti (1\u2009\u2264\u2009ti\u2009\u2264\u20091000). The last line contains integer T (1\u2009\u2264\u2009T\u2009\u2264\u20091000) \u2014 the time interval during which the freebie was near the dormitory.", "output_spec": "Print a single integer \u2014 the largest number of people who will pass exam tomorrow because of the freebie visit.", "sample_inputs": ["6\n4 1 7 8 3 8\n1"], "sample_outputs": ["3"], "notes": null}, "src_uid": "086d07bd6f9031df09bd6a6e8fe8f25c"} {"nl": {"description": "At regular competition Vladik and Valera won a and b candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn.More formally, the guys take turns giving each other one candy more than they received in the previous turn.This continued until the moment when one of them couldn\u2019t give the right amount of candy. Candies, which guys got from each other, they don\u2019t consider as their own. You need to know, who is the first who can\u2019t give the right amount of candy.", "input_spec": "Single line of input data contains two space-separated integers a, b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009109) \u2014 number of Vladik and Valera candies respectively.", "output_spec": "Pring a single line \"Vladik\u2019\u2019 in case, if Vladik first who can\u2019t give right amount of candy, or \"Valera\u2019\u2019 otherwise.", "sample_inputs": ["1 1", "7 6"], "sample_outputs": ["Valera", "Vladik"], "notes": "NoteIllustration for first test case:Illustration for second test case:"}, "src_uid": "87e37a82be7e39e433060fd8cdb03270"} {"nl": {"description": "There are five people playing a game called \"Generosity\". Each person gives some non-zero number of coins b as an initial bet. After all players make their bets of b coins, the following operation is repeated for several times: a coin is passed from one player to some other player.Your task is to write a program that can, given the number of coins each player has at the end of the game, determine the size b of the initial bet or find out that such outcome of the game cannot be obtained for any positive number of coins b in the initial bet.", "input_spec": "The input consists of a single line containing five integers c1,\u2009c2,\u2009c3,\u2009c4 and c5 \u2014 the number of coins that the first, second, third, fourth and fifth players respectively have at the end of the game (0\u2009\u2264\u2009c1,\u2009c2,\u2009c3,\u2009c4,\u2009c5\u2009\u2264\u2009100).", "output_spec": "Print the only line containing a single positive integer b \u2014 the number of coins in the initial bet of each player. If there is no such value of b, then print the only value \"-1\" (quotes for clarity).", "sample_inputs": ["2 5 4 0 4", "4 5 9 2 1"], "sample_outputs": ["3", "-1"], "notes": "NoteIn the first sample the following sequence of operations is possible: One coin is passed from the fourth player to the second player; One coin is passed from the fourth player to the fifth player; One coin is passed from the first player to the third player; One coin is passed from the fourth player to the second player. "}, "src_uid": "af1ec6a6fc1f2360506fc8a34e3dcd20"} {"nl": {"description": "This task will exclusively concentrate only on the arrays where all elements equal 1 and/or 2.Array a is k-period if its length is divisible by k and there is such array b of length k, that a is represented by array b written exactly times consecutively. In other words, array a is k-periodic, if it has period of length k.For example, any array is n-periodic, where n is the array length. Array [2,\u20091,\u20092,\u20091,\u20092,\u20091] is at the same time 2-periodic and 6-periodic and array [1,\u20092,\u20091,\u20091,\u20092,\u20091,\u20091,\u20092,\u20091] is at the same time 3-periodic and 9-periodic.For the given array a, consisting only of numbers one and two, find the minimum number of elements to change to make the array k-periodic. If the array already is k-periodic, then the required value equals 0.", "input_spec": "The first line of the input contains a pair of integers n, k (1\u2009\u2264\u2009k\u2009\u2264\u2009n\u2009\u2264\u2009100), where n is the length of the array and the value n is divisible by k. The second line contains the sequence of elements of the given array a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u20092), ai is the i-th element of the array.", "output_spec": "Print the minimum number of array elements we need to change to make the array k-periodic. If the array already is k-periodic, then print 0.", "sample_inputs": ["6 2\n2 1 2 2 2 1", "8 4\n1 1 2 1 1 1 2 1", "9 3\n2 1 1 1 2 1 1 1 2"], "sample_outputs": ["1", "0", "3"], "notes": "NoteIn the first sample it is enough to change the fourth element from 2 to 1, then the array changes to [2,\u20091,\u20092,\u20091,\u20092,\u20091].In the second sample, the given array already is 4-periodic.In the third sample it is enough to replace each occurrence of number two by number one. In this case the array will look as [1,\u20091,\u20091,\u20091,\u20091,\u20091,\u20091,\u20091,\u20091] \u2014 this array is simultaneously 1-, 3- and 9-periodic."}, "src_uid": "5f94c2ecf1cf8fdbb6117cab801ed281"} {"nl": {"description": "Once again Tavas started eating coffee mix without water! Keione told him that it smells awful, but he didn't stop doing that. That's why Keione told his smart friend, SaDDas to punish him! SaDDas took Tavas' headphones and told him: \"If you solve the following problem, I'll return it to you.\" The problem is: You are given a lucky number n. Lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.If we sort all lucky numbers in increasing order, what's the 1-based index of n? Tavas is not as smart as SaDDas, so he asked you to do him a favor and solve this problem so he can have his headphones back.", "input_spec": "The first and only line of input contains a lucky number n (1\u2009\u2264\u2009n\u2009\u2264\u2009109).", "output_spec": "Print the index of n among all lucky numbers.", "sample_inputs": ["4", "7", "77"], "sample_outputs": ["1", "2", "6"], "notes": null}, "src_uid": "6a10bfe8b3da9c11167e136b3c6fb2a3"} {"nl": {"description": "Imp likes his plush toy a lot. Recently, he found a machine that can clone plush toys. Imp knows that if he applies the machine to an original toy, he additionally gets one more original toy and one copy, and if he applies the machine to a copied toy, he gets two additional copies.Initially, Imp has only one original toy. He wants to know if it is possible to use machine to get exactly x copied toys and y original toys? He can't throw toys away, and he can't apply the machine to a copy if he doesn't currently have any copies.", "input_spec": "The only line contains two integers x and y (0\u2009\u2264\u2009x,\u2009y\u2009\u2264\u2009109)\u00a0\u2014 the number of copies and the number of original toys Imp wants to get (including the initial one).", "output_spec": "Print \"Yes\", if the desired configuration is possible, and \"No\" otherwise. You can print each letter in arbitrary case (upper or lower).", "sample_inputs": ["6 3", "4 2", "1000 1001"], "sample_outputs": ["Yes", "No", "Yes"], "notes": "NoteIn the first example, Imp has to apply the machine twice to original toys and then twice to copies."}, "src_uid": "1527171297a0b9c5adf356a549f313b9"} {"nl": {"description": "A permutation p of size n is an array such that every integer from 1 to n occurs exactly once in this array.Let's call a permutation an almost identity permutation iff there exist at least n\u2009-\u2009k indices i (1\u2009\u2264\u2009i\u2009\u2264\u2009n) such that pi\u2009=\u2009i.Your task is to count the number of almost identity permutations for given numbers n and k.", "input_spec": "The first line contains two integers n and k (4\u2009\u2264\u2009n\u2009\u2264\u20091000, 1\u2009\u2264\u2009k\u2009\u2264\u20094).", "output_spec": "Print the number of almost identity permutations for given n and k.", "sample_inputs": ["4 1", "4 2", "5 3", "5 4"], "sample_outputs": ["1", "7", "31", "76"], "notes": null}, "src_uid": "96d839dc2d038f8ae95fc47c217b2e2f"} {"nl": {"description": "Polycarp takes part in a math show. He is given n tasks, each consists of k subtasks, numbered 1 through k. It takes him tj minutes to solve the j-th subtask of any task. Thus, time required to solve a subtask depends only on its index, but not on the task itself. Polycarp can solve subtasks in any order.By solving subtask of arbitrary problem he earns one point. Thus, the number of points for task is equal to the number of solved subtasks in it. Moreover, if Polycarp completely solves the task (solves all k of its subtasks), he recieves one extra point. Thus, total number of points he recieves for the complete solution of the task is k\u2009+\u20091.Polycarp has M minutes of time. What is the maximum number of points he can earn?", "input_spec": "The first line contains three integer numbers n, k and M (1\u2009\u2264\u2009n\u2009\u2264\u200945, 1\u2009\u2264\u2009k\u2009\u2264\u200945, 0\u2009\u2264\u2009M\u2009\u2264\u20092\u00b7109). The second line contains k integer numbers, values tj (1\u2009\u2264\u2009tj\u2009\u2264\u20091000000), where tj is the time in minutes required to solve j-th subtask of any task.", "output_spec": "Print the maximum amount of points Polycarp can earn in M minutes.", "sample_inputs": ["3 4 11\n1 2 3 4", "5 5 10\n1 2 4 8 16"], "sample_outputs": ["6", "7"], "notes": "NoteIn the first example Polycarp can complete the first task and spend 1\u2009+\u20092\u2009+\u20093\u2009+\u20094\u2009=\u200910 minutes. He also has the time to solve one subtask of the second task in one minute.In the second example Polycarp can solve the first subtask of all five tasks and spend 5\u00b71\u2009=\u20095 minutes. Also he can solve the second subtasks of two tasks and spend 2\u00b72\u2009=\u20094 minutes. Thus, he earns 5\u2009+\u20092\u2009=\u20097 points in total."}, "src_uid": "d659e92a410c1bc836be64fc1c0db160"} {"nl": {"description": "Anton likes to listen to fairy tales, especially when Danik, Anton's best friend, tells them. Right now Danik tells Anton a fairy tale:\"Once upon a time, there lived an emperor. He was very rich and had much grain. One day he ordered to build a huge barn to put there all his grain. Best builders were building that barn for three days and three nights. But they overlooked and there remained a little hole in the barn, from which every day sparrows came through. Here flew a sparrow, took a grain and flew away...\"More formally, the following takes place in the fairy tale. At the beginning of the first day the barn with the capacity of n grains was full. Then, every day (starting with the first day) the following happens: m grains are brought to the barn. If m grains doesn't fit to the barn, the barn becomes full and the grains that doesn't fit are brought back (in this problem we can assume that the grains that doesn't fit to the barn are not taken into account). Sparrows come and eat grain. In the i-th day i sparrows come, that is on the first day one sparrow come, on the second day two sparrows come and so on. Every sparrow eats one grain. If the barn is empty, a sparrow eats nothing. Anton is tired of listening how Danik describes every sparrow that eats grain from the barn. Anton doesn't know when the fairy tale ends, so he asked you to determine, by the end of which day the barn will become empty for the first time. Help Anton and write a program that will determine the number of that day!", "input_spec": "The only line of the input contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20091018)\u00a0\u2014 the capacity of the barn and the number of grains that are brought every day.", "output_spec": "Output one integer\u00a0\u2014 the number of the day when the barn will become empty for the first time. Days are numbered starting with one.", "sample_inputs": ["5 2", "8 1"], "sample_outputs": ["4", "5"], "notes": "NoteIn the first sample the capacity of the barn is five grains and two grains are brought every day. The following happens: At the beginning of the first day grain is brought to the barn. It's full, so nothing happens. At the end of the first day one sparrow comes and eats one grain, so 5\u2009-\u20091\u2009=\u20094 grains remain. At the beginning of the second day two grains are brought. The barn becomes full and one grain doesn't fit to it. At the end of the second day two sparrows come. 5\u2009-\u20092\u2009=\u20093 grains remain. At the beginning of the third day two grains are brought. The barn becomes full again. At the end of the third day three sparrows come and eat grain. 5\u2009-\u20093\u2009=\u20092 grains remain. At the beginning of the fourth day grain is brought again. 2\u2009+\u20092\u2009=\u20094 grains remain. At the end of the fourth day four sparrows come and eat grain. 4\u2009-\u20094\u2009=\u20090 grains remain. The barn is empty. So the answer is 4, because by the end of the fourth day the barn becomes empty."}, "src_uid": "3b585ea852ffc41034ef6804b6aebbd8"} {"nl": {"description": "After playing Neo in the legendary \"Matrix\" trilogy, Keanu Reeves started doubting himself: maybe we really live in virtual reality? To find if this is true, he needs to solve the following problem.Let's call a string consisting of only zeroes and ones good if it contains different numbers of zeroes and ones. For example, 1, 101, 0000 are good, while 01, 1001, and 111000 are not good.We are given a string $$$s$$$ of length $$$n$$$ consisting of only zeroes and ones. We need to cut $$$s$$$ into minimal possible number of substrings $$$s_1, s_2, \\ldots, s_k$$$ such that all of them are good. More formally, we have to find minimal by number of strings sequence of good strings $$$s_1, s_2, \\ldots, s_k$$$ such that their concatenation (joining) equals $$$s$$$, i.e. $$$s_1 + s_2 + \\dots + s_k = s$$$.For example, cuttings 110010 into 110 and 010 or into 11 and 0010 are valid, as 110, 010, 11, 0010 are all good, and we can't cut 110010 to the smaller number of substrings as 110010 isn't good itself. At the same time, cutting of 110010 into 1100 and 10 isn't valid as both strings aren't good. Also, cutting of 110010 into 1, 1, 0010 isn't valid, as it isn't minimal, even though all $$$3$$$ strings are good.Can you help Keanu? We can show that the solution always exists. If there are multiple optimal answers, print any.", "input_spec": "The first line of the input contains a single integer $$$n$$$ ($$$1\\le n \\le 100$$$)\u00a0\u2014 the length of the string $$$s$$$. The second line contains the string $$$s$$$ of length $$$n$$$ consisting only from zeros and ones.", "output_spec": "In the first line, output a single integer $$$k$$$ ($$$1\\le k$$$)\u00a0\u2014 a minimal number of strings you have cut $$$s$$$ into. In the second line, output $$$k$$$ strings $$$s_1, s_2, \\ldots, s_k$$$ separated with spaces. The length of each string has to be positive. Their concatenation has to be equal to $$$s$$$ and all of them have to be good. If there are multiple answers, print any.", "sample_inputs": ["1\n1", "2\n10", "6\n100011"], "sample_outputs": ["1\n1", "2\n1 0", "2\n100 011"], "notes": "NoteIn the first example, the string 1 wasn't cut at all. As it is good, the condition is satisfied.In the second example, 1 and 0 both are good. As 10 isn't good, the answer is indeed minimal.In the third example, 100 and 011 both are good. As 100011 isn't good, the answer is indeed minimal."}, "src_uid": "4ebed264d40a449602a26ceef2e849d1"} {"nl": {"description": "It's that time of the year when the Russians flood their countryside summer cottages (dachas) and the bus stop has a lot of people. People rarely go to the dacha on their own, it's usually a group, so the people stand in queue by groups.The bus stop queue has n groups of people. The i-th group from the beginning has ai people. Every 30 minutes an empty bus arrives at the bus stop, it can carry at most m people. Naturally, the people from the first group enter the bus first. Then go the people from the second group and so on. Note that the order of groups in the queue never changes. Moreover, if some group cannot fit all of its members into the current bus, it waits for the next bus together with other groups standing after it in the queue.Your task is to determine how many buses is needed to transport all n groups to the dacha countryside.", "input_spec": "The first line contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100). The next line contains n integers: a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009m).", "output_spec": "Print a single integer \u2014 the number of buses that is needed to transport all n groups to the dacha countryside.", "sample_inputs": ["4 3\n2 3 2 1", "3 4\n1 2 1"], "sample_outputs": ["3", "1"], "notes": null}, "src_uid": "5c73d6e3770dff034d210cdd572ccf0f"} {"nl": {"description": "One day, $$$n$$$ people ($$$n$$$ is an even number) met on a plaza and made two round dances, each round dance consists of exactly $$$\\frac{n}{2}$$$ people. Your task is to find the number of ways $$$n$$$ people can make two round dances if each round dance consists of exactly $$$\\frac{n}{2}$$$ people. Each person should belong to exactly one of these two round dances.Round dance is a dance circle consisting of $$$1$$$ or more people. Two round dances are indistinguishable (equal) if one can be transformed to another by choosing the first participant. For example, round dances $$$[1, 3, 4, 2]$$$, $$$[4, 2, 1, 3]$$$ and $$$[2, 1, 3, 4]$$$ are indistinguishable.For example, if $$$n=2$$$ then the number of ways is $$$1$$$: one round dance consists of the first person and the second one of the second person.For example, if $$$n=4$$$ then the number of ways is $$$3$$$. Possible options: one round dance \u2014 $$$[1,2]$$$, another \u2014 $$$[3,4]$$$; one round dance \u2014 $$$[2,4]$$$, another \u2014 $$$[3,1]$$$; one round dance \u2014 $$$[4,1]$$$, another \u2014 $$$[3,2]$$$. Your task is to find the number of ways $$$n$$$ people can make two round dances if each round dance consists of exactly $$$\\frac{n}{2}$$$ people.", "input_spec": "The input contains one integer $$$n$$$ ($$$2 \\le n \\le 20$$$), $$$n$$$ is an even number.", "output_spec": "Print one integer \u2014 the number of ways to make two round dances. It is guaranteed that the answer fits in the $$$64$$$-bit integer data type.", "sample_inputs": ["2", "4", "8", "20"], "sample_outputs": ["1", "3", "1260", "12164510040883200"], "notes": null}, "src_uid": "ad0985c56a207f76afa2ecd642f56728"} {"nl": {"description": "You are given a sequence of integers $$$a_1, a_2, \\dots, a_n$$$. You need to paint elements in colors, so that: If we consider any color, all elements of this color must be divisible by the minimal element of this color. The number of used colors must be minimized. For example, it's fine to paint elements $$$[40, 10, 60]$$$ in a single color, because they are all divisible by $$$10$$$. You can use any color an arbitrary amount of times (in particular, it is allowed to use a color only once). The elements painted in one color do not need to be consecutive.For example, if $$$a=[6, 2, 3, 4, 12]$$$ then two colors are required: let's paint $$$6$$$, $$$3$$$ and $$$12$$$ in the first color ($$$6$$$, $$$3$$$ and $$$12$$$ are divisible by $$$3$$$) and paint $$$2$$$ and $$$4$$$ in the second color ($$$2$$$ and $$$4$$$ are divisible by $$$2$$$). For example, if $$$a=[10, 7, 15]$$$ then $$$3$$$ colors are required (we can simply paint each element in an unique color).", "input_spec": "The first line contains an integer $$$n$$$ ($$$1 \\le n \\le 100$$$), where $$$n$$$ is the length of the given sequence. The second line contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 100$$$). These numbers can contain duplicates.", "output_spec": "Print the minimal number of colors to paint all the given numbers in a valid way.", "sample_inputs": ["6\n10 2 3 5 4 2", "4\n100 100 100 100", "8\n7 6 5 4 3 2 2 3"], "sample_outputs": ["3", "1", "4"], "notes": "NoteIn the first example, one possible way to paint the elements in $$$3$$$ colors is: paint in the first color the elements: $$$a_1=10$$$ and $$$a_4=5$$$, paint in the second color the element $$$a_3=3$$$, paint in the third color the elements: $$$a_2=2$$$, $$$a_5=4$$$ and $$$a_6=2$$$. In the second example, you can use one color to paint all the elements.In the third example, one possible way to paint the elements in $$$4$$$ colors is: paint in the first color the elements: $$$a_4=4$$$, $$$a_6=2$$$ and $$$a_7=2$$$, paint in the second color the elements: $$$a_2=6$$$, $$$a_5=3$$$ and $$$a_8=3$$$, paint in the third color the element $$$a_3=5$$$, paint in the fourth color the element $$$a_1=7$$$. "}, "src_uid": "63d9b7416aa96129c57d20ec6145e0cd"} {"nl": {"description": "Two teams meet in The Game World Championship. Some scientists consider this game to be the most intellectually challenging game in the world. You are given two strings describing the teams' actions in the final battle. Figure out who became the champion.", "input_spec": "The input contains two strings of equal length (between 2 and 20 characters, inclusive). Each line describes the actions of one team.", "output_spec": "Output \"TEAM 1 WINS\" if the first team won, \"TEAM 2 WINS\" if the second team won, and \"TIE\" if there was a tie.", "sample_inputs": ["[]()[]8<\n8<[]()8<", "8<8<()\n[]8<[]"], "sample_outputs": ["TEAM 2 WINS", "TIE"], "notes": null}, "src_uid": "bdf2e78c47d078b4ba61741b6fbb23cf"} {"nl": {"description": "Luba has to do n chores today. i-th chore takes ai units of time to complete. It is guaranteed that for every the condition ai\u2009\u2265\u2009ai\u2009-\u20091 is met, so the sequence is sorted.Also Luba can work really hard on some chores. She can choose not more than k any chores and do each of them in x units of time instead of ai ().Luba is very responsible, so she has to do all n chores, and now she wants to know the minimum time she needs to do everything. Luba cannot do two chores simultaneously.", "input_spec": "The first line contains three integers n,\u2009k,\u2009x\u00a0(1\u2009\u2264\u2009k\u2009\u2264\u2009n\u2009\u2264\u2009100,\u20091\u2009\u2264\u2009x\u2009\u2264\u200999) \u2014 the number of chores Luba has to do, the number of chores she can do in x units of time, and the number x itself. The second line contains n integer numbers ai\u00a0(2\u2009\u2264\u2009ai\u2009\u2264\u2009100) \u2014 the time Luba has to spend to do i-th chore. It is guaranteed that , and for each ai\u2009\u2265\u2009ai\u2009-\u20091.", "output_spec": "Print one number \u2014 minimum time Luba needs to do all n chores.", "sample_inputs": ["4 2 2\n3 6 7 10", "5 2 1\n100 100 100 100 100"], "sample_outputs": ["13", "302"], "notes": "NoteIn the first example the best option would be to do the third and the fourth chore, spending x\u2009=\u20092 time on each instead of a3 and a4, respectively. Then the answer is 3\u2009+\u20096\u2009+\u20092\u2009+\u20092\u2009=\u200913.In the second example Luba can choose any two chores to spend x time on them instead of ai. So the answer is 100\u00b73\u2009+\u20092\u00b71\u2009=\u2009302."}, "src_uid": "92a233f8d9c73d9f33e4e6116b7d0a96"} {"nl": {"description": "An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point x(x\u2009>\u20090) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.", "input_spec": "The first line of the input contains an integer x (1\u2009\u2264\u2009x\u2009\u2264\u20091\u2009000\u2009000)\u00a0\u2014 The coordinate of the friend's house.", "output_spec": "Print the minimum number of steps that elephant needs to make to get from point 0 to point x.", "sample_inputs": ["5", "12"], "sample_outputs": ["1", "3"], "notes": "NoteIn the first sample the elephant needs to make one step of length 5 to reach the point x.In the second sample the elephant can get to point x if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach x in less than three moves."}, "src_uid": "4b3d65b1b593829e92c852be213922b6"} {"nl": {"description": "In order to make the \"Sea Battle\" game more interesting, Boris decided to add a new ship type to it. The ship consists of two rectangles. The first rectangle has a width of $$$w_1$$$ and a height of $$$h_1$$$, while the second rectangle has a width of $$$w_2$$$ and a height of $$$h_2$$$, where $$$w_1 \\ge w_2$$$. In this game, exactly one ship is used, made up of two rectangles. There are no other ships on the field.The rectangles are placed on field in the following way: the second rectangle is on top the first rectangle; they are aligned to the left, i.e. their left sides are on the same line; the rectangles are adjacent to each other without a gap. See the pictures in the notes: the first rectangle is colored red, the second rectangle is colored blue.Formally, let's introduce a coordinate system. Then, the leftmost bottom cell of the first rectangle has coordinates $$$(1, 1)$$$, the rightmost top cell of the first rectangle has coordinates $$$(w_1, h_1)$$$, the leftmost bottom cell of the second rectangle has coordinates $$$(1, h_1 + 1)$$$ and the rightmost top cell of the second rectangle has coordinates $$$(w_2, h_1 + h_2)$$$.After the ship is completely destroyed, all cells neighboring by side or a corner with the ship are marked. Of course, only cells, which don't belong to the ship are marked. On the pictures in the notes such cells are colored green.Find out how many cells should be marked after the ship is destroyed. The field of the game is infinite in any direction.", "input_spec": "Four lines contain integers $$$w_1, h_1, w_2$$$ and $$$h_2$$$ ($$$1 \\leq w_1, h_1, w_2, h_2 \\leq 10^8$$$, $$$w_1 \\ge w_2$$$)\u00a0\u2014 the width of the first rectangle, the height of the first rectangle, the width of the second rectangle and the height of the second rectangle. You can't rotate the rectangles.", "output_spec": "Print exactly one integer\u00a0\u2014 the number of cells, which should be marked after the ship is destroyed.", "sample_inputs": ["2 1 2 1", "2 2 1 2"], "sample_outputs": ["12", "16"], "notes": "NoteIn the first example the field looks as follows (the first rectangle is red, the second rectangle is blue, green shows the marked squares): In the second example the field looks as: "}, "src_uid": "b5d44e0041053c996938aadd1b3865f6"} {"nl": {"description": "In a small but very proud high school it was decided to win ACM ICPC. This goal requires to compose as many teams of three as possible, but since there were only 6 students who wished to participate, the decision was to build exactly two teams.After practice competition, participant number i got a score of ai. Team score is defined as sum of scores of its participants. High school management is interested if it's possible to build two teams with equal scores. Your task is to answer that question.", "input_spec": "The single line contains six integers a1,\u2009...,\u2009a6 (0\u2009\u2264\u2009ai\u2009\u2264\u20091000) \u2014 scores of the participants", "output_spec": "Print \"YES\" (quotes for clarity), if it is possible to build teams with equal score, and \"NO\" otherwise. You can print each character either upper- or lowercase (\"YeS\" and \"yes\" are valid when the answer is \"YES\").", "sample_inputs": ["1 3 2 1 2 1", "1 1 1 1 1 99"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample, first team can be composed of 1st, 2nd and 6th participant, second \u2014 of 3rd, 4th and 5th: team scores are 1\u2009+\u20093\u2009+\u20091\u2009=\u20092\u2009+\u20091\u2009+\u20092\u2009=\u20095.In the second sample, score of participant number 6 is too high: his team score will be definitely greater."}, "src_uid": "2acf686862a34c337d1d2cbc0ac3fd11"} {"nl": {"description": "While playing with geometric figures Alex has accidentally invented a concept of a $$$n$$$-th order rhombus in a cell grid.A $$$1$$$-st order rhombus is just a square $$$1 \\times 1$$$ (i.e just a cell).A $$$n$$$-th order rhombus for all $$$n \\geq 2$$$ one obtains from a $$$n-1$$$-th order rhombus adding all cells which have a common side with it to it (look at the picture to understand it better). Alex asks you to compute the number of cells in a $$$n$$$-th order rhombus.", "input_spec": "The first and only input line contains integer $$$n$$$ ($$$1 \\leq n \\leq 100$$$)\u00a0\u2014 order of a rhombus whose numbers of cells should be computed.", "output_spec": "Print exactly one integer\u00a0\u2014 the number of cells in a $$$n$$$-th order rhombus.", "sample_inputs": ["1", "2", "3"], "sample_outputs": ["1", "5", "13"], "notes": "NoteImages of rhombus corresponding to the examples are given in the statement."}, "src_uid": "758d342c1badde6d0b4db81285be780c"} {"nl": {"description": "This problem's actual name, \"Lexicographically Largest Palindromic Subsequence\" is too long to fit into the page headline.You are given string s consisting of lowercase English letters only. Find its lexicographically largest palindromic subsequence.We'll call a non-empty string s[p1p2... pk] = sp1sp2... spk (1 \u2009\u2264\u2009 p1\u2009<\u2009p2\u2009<\u2009...\u2009<\u2009pk \u2009\u2264\u2009 |s|) a subsequence of string s = s1s2... s|s|, where |s| is the length of string s. For example, strings \"abcb\", \"b\" and \"abacaba\" are subsequences of string \"abacaba\".String x = x1x2... x|x| is lexicographically larger than string y = y1y2... y|y| if either |x| > |y| and x1\u2009=\u2009y1, x2\u2009=\u2009y2, ...,\u2009x|y|\u2009=\u2009y|y|, or there exists such number r (r\u2009<\u2009|x|, r\u2009<\u2009|y|) that x1\u2009=\u2009y1, x2\u2009=\u2009y2, ..., xr\u2009=\u2009yr and xr\u2009\u2009+\u2009\u20091\u2009>\u2009yr\u2009\u2009+\u2009\u20091. Characters in the strings are compared according to their ASCII codes. For example, string \"ranger\" is lexicographically larger than string \"racecar\" and string \"poster\" is lexicographically larger than string \"post\".String s = s1s2... s|s| is a palindrome if it matches string rev(s) = s|s|s|s|\u2009-\u20091... s1. In other words, a string is a palindrome if it reads the same way from left to right and from right to left. For example, palindromic strings are \"racecar\", \"refer\" and \"z\".", "input_spec": "The only input line contains a non-empty string s consisting of lowercase English letters only. Its length does not exceed 10.", "output_spec": "Print the lexicographically largest palindromic subsequence of string s.", "sample_inputs": ["radar", "bowwowwow", "codeforces", "mississipp"], "sample_outputs": ["rr", "wwwww", "s", "ssss"], "notes": "NoteAmong all distinct subsequences of string \"radar\" the following ones are palindromes: \"a\", \"d\", \"r\", \"aa\", \"rr\", \"ada\", \"rar\", \"rdr\", \"raar\" and \"radar\". The lexicographically largest of them is \"rr\"."}, "src_uid": "9a40e9b122962a1f83b74ddee6246a40"} {"nl": {"description": "The king's birthday dinner was attended by $$$k$$$ guests. The dinner was quite a success: every person has eaten several dishes (though the number of dishes was the same for every person) and every dish was served alongside with a new set of kitchen utensils.All types of utensils in the kingdom are numbered from $$$1$$$ to $$$100$$$. It is known that every set of utensils is the same and consist of different types of utensils, although every particular type may appear in the set at most once. For example, a valid set of utensils can be composed of one fork, one spoon and one knife.After the dinner was over and the guests were dismissed, the king wondered what minimum possible number of utensils could be stolen. Unfortunately, the king has forgotten how many dishes have been served for every guest but he knows the list of all the utensils left after the dinner. Your task is to find the minimum possible number of stolen utensils.", "input_spec": "The first line contains two integer numbers $$$n$$$ and $$$k$$$ ($$$1 \\le n \\le 100, 1 \\le k \\le 100$$$) \u00a0\u2014 the number of kitchen utensils remaining after the dinner and the number of guests correspondingly. The next line contains $$$n$$$ integers $$$a_1, a_2, \\ldots, a_n$$$ ($$$1 \\le a_i \\le 100$$$) \u00a0\u2014 the types of the utensils remaining. Equal values stand for identical utensils while different values stand for different utensils.", "output_spec": "Output a single value \u2014 the minimum number of utensils that could be stolen by the guests.", "sample_inputs": ["5 2\n1 2 2 1 3", "10 3\n1 3 3 1 3 5 5 5 5 100"], "sample_outputs": ["1", "14"], "notes": "NoteIn the first example it is clear that at least one utensil of type $$$3$$$ has been stolen, since there are two guests and only one such utensil. But it is also possible that every person received only one dish and there were only six utensils in total, when every person got a set $$$(1, 2, 3)$$$ of utensils. Therefore, the answer is $$$1$$$.One can show that in the second example at least $$$2$$$ dishes should have been served for every guest, so the number of utensils should be at least $$$24$$$: every set contains $$$4$$$ utensils and every one of the $$$3$$$ guests gets two such sets. Therefore, at least $$$14$$$ objects have been stolen. Please note that utensils of some types (for example, of types $$$2$$$ and $$$4$$$ in this example) may be not present in the set served for dishes."}, "src_uid": "c03ff0bc6a8c4ce5372194e8ea18527f"} {"nl": {"description": "In this problem we assume the Earth to be a completely round ball and its surface a perfect sphere. The length of the equator and any meridian is considered to be exactly 40\u2009000 kilometers. Thus, travelling from North Pole to South Pole or vice versa takes exactly 20\u2009000 kilometers.Limak, a polar bear, lives on the North Pole. Close to the New Year, he helps somebody with delivering packages all around the world. Instead of coordinates of places to visit, Limak got a description how he should move, assuming that he starts from the North Pole. The description consists of n parts. In the i-th part of his journey, Limak should move ti kilometers in the direction represented by a string diri that is one of: \"North\", \"South\", \"West\", \"East\".Limak isn\u2019t sure whether the description is valid. You must help him to check the following conditions: If at any moment of time (before any of the instructions or while performing one of them) Limak is on the North Pole, he can move only to the South. If at any moment of time (before any of the instructions or while performing one of them) Limak is on the South Pole, he can move only to the North. The journey must end on the North Pole. Check if the above conditions are satisfied and print \"YES\" or \"NO\" on a single line.", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200950). The i-th of next n lines contains an integer ti and a string diri (1\u2009\u2264\u2009ti\u2009\u2264\u2009106, )\u00a0\u2014 the length and the direction of the i-th part of the journey, according to the description Limak got.", "output_spec": "Print \"YES\" if the description satisfies the three conditions, otherwise print \"NO\", both without the quotes.", "sample_inputs": ["5\n7500 South\n10000 East\n3500 North\n4444 West\n4000 North", "2\n15000 South\n4000 East", "5\n20000 South\n1000 North\n1000000 West\n9000 North\n10000 North", "3\n20000 South\n10 East\n20000 North", "2\n1000 North\n1000 South", "4\n50 South\n50 North\n15000 South\n15000 North"], "sample_outputs": ["YES", "NO", "YES", "NO", "NO", "YES"], "notes": "NoteDrawings below show how Limak's journey would look like in first two samples. In the second sample the answer is \"NO\" because he doesn't end on the North Pole. "}, "src_uid": "11ac96a9daa97ae1900f123be921e517"} {"nl": {"description": "Today, Osama gave Fadi an integer $$$X$$$, and Fadi was wondering about the minimum possible value of $$$max(a, b)$$$ such that $$$LCM(a, b)$$$ equals $$$X$$$. Both $$$a$$$ and $$$b$$$ should be positive integers.$$$LCM(a, b)$$$ is the smallest positive integer that is divisible by both $$$a$$$ and $$$b$$$. For example, $$$LCM(6, 8) = 24$$$, $$$LCM(4, 12) = 12$$$, $$$LCM(2, 3) = 6$$$.Of course, Fadi immediately knew the answer. Can you be just like Fadi and find any such pair?", "input_spec": "The first and only line contains an integer $$$X$$$ ($$$1 \\le X \\le 10^{12}$$$).", "output_spec": "Print two positive integers, $$$a$$$ and $$$b$$$, such that the value of $$$max(a, b)$$$ is minimum possible and $$$LCM(a, b)$$$ equals $$$X$$$. If there are several possible such pairs, you can print any.", "sample_inputs": ["2", "6", "4", "1"], "sample_outputs": ["1 2", "2 3", "1 4", "1 1"], "notes": null}, "src_uid": "e504a04cefef3da093573f9df711bcea"} {"nl": {"description": "The only difference between easy and hard versions is on constraints. In this version constraints are lower. You can make hacks only if all versions of the problem are solved.Koa the Koala is at the beach!The beach consists (from left to right) of a shore, $$$n+1$$$ meters of sea and an island at $$$n+1$$$ meters from the shore.She measured the depth of the sea at $$$1, 2, \\dots, n$$$ meters from the shore and saved them in array $$$d$$$. $$$d_i$$$ denotes the depth of the sea at $$$i$$$ meters from the shore for $$$1 \\le i \\le n$$$.Like any beach this one has tide, the intensity of the tide is measured by parameter $$$k$$$ and affects all depths from the beginning at time $$$t=0$$$ in the following way: For a total of $$$k$$$ seconds, each second, tide increases all depths by $$$1$$$. Then, for a total of $$$k$$$ seconds, each second, tide decreases all depths by $$$1$$$. This process repeats again and again (ie. depths increase for $$$k$$$ seconds then decrease for $$$k$$$ seconds and so on ...).Formally, let's define $$$0$$$-indexed array $$$p = [0, 1, 2, \\ldots, k - 2, k - 1, k, k - 1, k - 2, \\ldots, 2, 1]$$$ of length $$$2k$$$. At time $$$t$$$ ($$$0 \\le t$$$) depth at $$$i$$$ meters from the shore equals $$$d_i + p[t \\bmod 2k]$$$ ($$$t \\bmod 2k$$$ denotes the remainder of the division of $$$t$$$ by $$$2k$$$). Note that the changes occur instantaneously after each second, see the notes for better understanding. At time $$$t=0$$$ Koa is standing at the shore and wants to get to the island. Suppose that at some time $$$t$$$ ($$$0 \\le t$$$) she is at $$$x$$$ ($$$0 \\le x \\le n$$$) meters from the shore: In one second Koa can swim $$$1$$$ meter further from the shore ($$$x$$$ changes to $$$x+1$$$) or not swim at all ($$$x$$$ stays the same), in both cases $$$t$$$ changes to $$$t+1$$$. As Koa is a bad swimmer, the depth of the sea at the point where she is can't exceed $$$l$$$ at integer points of time (or she will drown). More formally, if Koa is at $$$x$$$ ($$$1 \\le x \\le n$$$) meters from the shore at the moment $$$t$$$ (for some integer $$$t\\ge 0$$$), the depth of the sea at this point \u00a0\u2014 $$$d_x + p[t \\bmod 2k]$$$ \u00a0\u2014 can't exceed $$$l$$$. In other words, $$$d_x + p[t \\bmod 2k] \\le l$$$ must hold always. Once Koa reaches the island at $$$n+1$$$ meters from the shore, she stops and can rest.Note that while Koa swims tide doesn't have effect on her (ie. she can't drown while swimming). Note that Koa can choose to stay on the shore for as long as she needs and neither the shore or the island are affected by the tide (they are solid ground and she won't drown there). Koa wants to know whether she can go from the shore to the island. Help her!", "input_spec": "The first line of the input contains one integer $$$t$$$ ($$$1 \\le t \\le 100$$$) \u00a0\u2014 the number of test cases. Description of the test cases follows. The first line of each test case contains three integers $$$n$$$, $$$k$$$ and $$$l$$$ ($$$1 \\le n \\le 100; 1 \\le k \\le 100; 1 \\le l \\le 100$$$)\u00a0\u2014 the number of meters of sea Koa measured and parameters $$$k$$$ and $$$l$$$. The second line of each test case contains $$$n$$$ integers $$$d_1, d_2, \\ldots, d_n$$$ ($$$0 \\le d_i \\le 100$$$) \u00a0\u2014 the depths of each meter of sea Koa measured. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$100$$$.", "output_spec": "For each test case: Print Yes if Koa can get from the shore to the island, and No otherwise. You may print each letter in any case (upper or lower).", "sample_inputs": ["7\n2 1 1\n1 0\n5 2 3\n1 2 3 2 2\n4 3 4\n0 2 4 3\n2 3 5\n3 0\n7 2 3\n3 0 2 1 3 0 1\n7 1 4\n4 4 3 0 2 4 2\n5 2 3\n1 2 3 2 2"], "sample_outputs": ["Yes\nNo\nYes\nYes\nYes\nNo\nNo"], "notes": "NoteIn the following $$$s$$$ denotes the shore, $$$i$$$ denotes the island, $$$x$$$ denotes distance from Koa to the shore, the underline denotes the position of Koa, and values in the array below denote current depths, affected by tide, at $$$1, 2, \\dots, n$$$ meters from the shore.In test case $$$1$$$ we have $$$n = 2, k = 1, l = 1, p = [ 0, 1 ]$$$.Koa wants to go from shore (at $$$x = 0$$$) to the island (at $$$x = 3$$$). Let's describe a possible solution: Initially at $$$t = 0$$$ the beach looks like this: $$$[\\underline{s}, 1, 0, i]$$$. At $$$t = 0$$$ if Koa would decide to swim to $$$x = 1$$$, beach would look like: $$$[s, \\underline{2}, 1, i]$$$ at $$$t = 1$$$, since $$$2 > 1$$$ she would drown. So Koa waits $$$1$$$ second instead and beach looks like $$$[\\underline{s}, 2, 1, i]$$$ at $$$t = 1$$$. At $$$t = 1$$$ Koa swims to $$$x = 1$$$, beach looks like $$$[s, \\underline{1}, 0, i]$$$ at $$$t = 2$$$. Koa doesn't drown because $$$1 \\le 1$$$. At $$$t = 2$$$ Koa swims to $$$x = 2$$$, beach looks like $$$[s, 2, \\underline{1}, i]$$$ at $$$t = 3$$$. Koa doesn't drown because $$$1 \\le 1$$$. At $$$t = 3$$$ Koa swims to $$$x = 3$$$, beach looks like $$$[s, 1, 0, \\underline{i}]$$$ at $$$t = 4$$$. At $$$t = 4$$$ Koa is at $$$x = 3$$$ and she made it! We can show that in test case $$$2$$$ Koa can't get to the island."}, "src_uid": "4941b0a365f86b2e2cf686cdf5d532f8"} {"nl": {"description": "Limak is going to participate in a contest on the last day of the 2016. The contest will start at 20:00 and will last four hours, exactly until midnight. There will be n problems, sorted by difficulty, i.e. problem 1 is the easiest and problem n is the hardest. Limak knows it will take him 5\u00b7i minutes to solve the i-th problem.Limak's friends organize a New Year's Eve party and Limak wants to be there at midnight or earlier. He needs k minutes to get there from his house, where he will participate in the contest first.How many problems can Limak solve if he wants to make it to the party?", "input_spec": "The only line of the input contains two integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u200910, 1\u2009\u2264\u2009k\u2009\u2264\u2009240)\u00a0\u2014 the number of the problems in the contest and the number of minutes Limak needs to get to the party from his house.", "output_spec": "Print one integer, denoting the maximum possible number of problems Limak can solve so that he could get to the party at midnight or earlier.", "sample_inputs": ["3 222", "4 190", "7 1"], "sample_outputs": ["2", "4", "7"], "notes": "NoteIn the first sample, there are 3 problems and Limak needs 222 minutes to get to the party. The three problems require 5, 10 and 15 minutes respectively. Limak can spend 5\u2009+\u200910\u2009=\u200915 minutes to solve first two problems. Then, at 20:15 he can leave his house to get to the party at 23:57 (after 222 minutes). In this scenario Limak would solve 2 problems. He doesn't have enough time to solve 3 problems so the answer is 2.In the second sample, Limak can solve all 4 problems in 5\u2009+\u200910\u2009+\u200915\u2009+\u200920\u2009=\u200950 minutes. At 20:50 he will leave the house and go to the party. He will get there exactly at midnight.In the third sample, Limak needs only 1 minute to get to the party. He has enough time to solve all 7 problems."}, "src_uid": "41e554bc323857be7b8483ee358a35e2"} {"nl": {"description": "Berland Football Cup starts really soon! Commentators from all over the world come to the event.Organizers have already built $$$n$$$ commentary boxes. $$$m$$$ regional delegations will come to the Cup. Every delegation should get the same number of the commentary boxes. If any box is left unoccupied then the delegations will be upset. So each box should be occupied by exactly one delegation.If $$$n$$$ is not divisible by $$$m$$$, it is impossible to distribute the boxes to the delegations at the moment.Organizers can build a new commentary box paying $$$a$$$ burles and demolish a commentary box paying $$$b$$$ burles. They can both build and demolish boxes arbitrary number of times (each time paying a corresponding fee). It is allowed to demolish all the existing boxes.What is the minimal amount of burles organizers should pay to satisfy all the delegations (i.e. to make the number of the boxes be divisible by $$$m$$$)?", "input_spec": "The only line contains four integer numbers $$$n$$$, $$$m$$$, $$$a$$$ and $$$b$$$ ($$$1 \\le n, m \\le 10^{12}$$$, $$$1 \\le a, b \\le 100$$$), where $$$n$$$ is the initial number of the commentary boxes, $$$m$$$ is the number of delegations to come, $$$a$$$ is the fee to build a box and $$$b$$$ is the fee to demolish a box.", "output_spec": "Output the minimal amount of burles organizers should pay to satisfy all the delegations (i.e. to make the number of the boxes be divisible by $$$m$$$). It is allowed that the final number of the boxes is equal to $$$0$$$.", "sample_inputs": ["9 7 3 8", "2 7 3 7", "30 6 17 19"], "sample_outputs": ["15", "14", "0"], "notes": "NoteIn the first example organizers can build $$$5$$$ boxes to make the total of $$$14$$$ paying $$$3$$$ burles for the each of them.In the second example organizers can demolish $$$2$$$ boxes to make the total of $$$0$$$ paying $$$7$$$ burles for the each of them.In the third example organizers are already able to distribute all the boxes equally among the delegations, each one get $$$5$$$ boxes."}, "src_uid": "c05d753b35545176ad468b99ff13aa39"} {"nl": {"description": "Ann has recently started commuting by subway. We know that a one ride subway ticket costs a rubles. Besides, Ann found out that she can buy a special ticket for m rides (she can buy it several times). It costs b rubles. Ann did the math; she will need to use subway n times. Help Ann, tell her what is the minimum sum of money she will have to spend to make n rides?", "input_spec": "The single line contains four space-separated integers n, m, a, b (1\u2009\u2264\u2009n,\u2009m,\u2009a,\u2009b\u2009\u2264\u20091000) \u2014 the number of rides Ann has planned, the number of rides covered by the m ride ticket, the price of a one ride ticket and the price of an m ride ticket. ", "output_spec": "Print a single integer \u2014 the minimum sum in rubles that Ann will need to spend.", "sample_inputs": ["6 2 1 2", "5 2 2 3"], "sample_outputs": ["6", "8"], "notes": "NoteIn the first sample one of the optimal solutions is: each time buy a one ride ticket. There are other optimal solutions. For example, buy three m ride tickets."}, "src_uid": "faa343ad6028c5a069857a38fa19bb24"} {"nl": {"description": "Lavrenty, a baker, is going to make several buns with stuffings and sell them.Lavrenty has n grams of dough as well as m different stuffing types. The stuffing types are numerated from 1 to m. Lavrenty knows that he has ai grams left of the i-th stuffing. It takes exactly bi grams of stuffing i and ci grams of dough to cook a bun with the i-th stuffing. Such bun can be sold for di tugriks.Also he can make buns without stuffings. Each of such buns requires c0 grams of dough and it can be sold for d0 tugriks. So Lavrenty can cook any number of buns with different stuffings or without it unless he runs out of dough and the stuffings. Lavrenty throws away all excess material left after baking.Find the maximum number of tugriks Lavrenty can earn.", "input_spec": "The first line contains 4 integers n, m, c0 and d0 (1\u2009\u2264\u2009n\u2009\u2264\u20091000, 1\u2009\u2264\u2009m\u2009\u2264\u200910, 1\u2009\u2264\u2009c0,\u2009d0\u2009\u2264\u2009100). Each of the following m lines contains 4 integers. The i-th line contains numbers ai, bi, ci and di (1\u2009\u2264\u2009ai,\u2009bi,\u2009ci,\u2009di\u2009\u2264\u2009100).", "output_spec": "Print the only number \u2014 the maximum number of tugriks Lavrenty can earn.", "sample_inputs": ["10 2 2 1\n7 3 2 100\n12 3 1 10", "100 1 25 50\n15 5 20 10"], "sample_outputs": ["241", "200"], "notes": "NoteTo get the maximum number of tugriks in the first sample, you need to cook 2 buns with stuffing 1, 4 buns with stuffing 2 and a bun without any stuffing.In the second sample Lavrenty should cook 4 buns without stuffings."}, "src_uid": "4e166b8b44427b1227e0f811161d3a6f"} {"nl": {"description": "It is the easy version of the problem. The difference is that in this version, there are no nodes with already chosen colors.Theofanis is starving, and he wants to eat his favorite food, sheftalia. However, he should first finish his homework. Can you help him with this problem?You have a perfect binary tree of $$$2^k - 1$$$ nodes\u00a0\u2014 a binary tree where all vertices $$$i$$$ from $$$1$$$ to $$$2^{k - 1} - 1$$$ have exactly two children: vertices $$$2i$$$ and $$$2i + 1$$$. Vertices from $$$2^{k - 1}$$$ to $$$2^k - 1$$$ don't have any children. You want to color its vertices with the $$$6$$$ Rubik's cube colors (White, Green, Red, Blue, Orange and Yellow).Let's call a coloring good when all edges connect nodes with colors that are neighboring sides in the Rubik's cube. A picture of Rubik's cube and its 2D map. More formally: a white node can not be neighboring with white and yellow nodes; a yellow node can not be neighboring with white and yellow nodes; a green node can not be neighboring with green and blue nodes; a blue node can not be neighboring with green and blue nodes; a red node can not be neighboring with red and orange nodes; an orange node can not be neighboring with red and orange nodes; You want to calculate the number of the good colorings of the binary tree. Two colorings are considered different if at least one node is colored with a different color.The answer may be too large, so output the answer modulo $$$10^9+7$$$.", "input_spec": "The first and only line contains the integers $$$k$$$ ($$$1 \\le k \\le 60$$$)\u00a0\u2014 the number of levels in the perfect binary tree you need to color.", "output_spec": "Print one integer\u00a0\u2014 the number of the different colorings modulo $$$10^9+7$$$.", "sample_inputs": ["3", "14"], "sample_outputs": ["24576", "934234"], "notes": "NoteIn the picture below, you can see one of the correct colorings of the first example. "}, "src_uid": "5144b9b281ea4087d8334d91c3c8bda4"} {"nl": {"description": "Alex, Bob and Carl will soon participate in a team chess tournament. Since they are all in the same team, they have decided to practise really hard before the tournament. But it's a bit difficult for them because chess is a game for two players, not three.So they play with each other according to following rules: Alex and Bob play the first game, and Carl is spectating; When the game ends, the one who lost the game becomes the spectator in the next game, and the one who was spectating plays against the winner. Alex, Bob and Carl play in such a way that there are no draws.Today they have played n games, and for each of these games they remember who was the winner. They decided to make up a log of games describing who won each game. But now they doubt if the information in the log is correct, and they want to know if the situation described in the log they made up was possible (that is, no game is won by someone who is spectating if Alex, Bob and Carl play according to the rules). Help them to check it!", "input_spec": "The first line contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of games Alex, Bob and Carl played. Then n lines follow, describing the game log. i-th line contains one integer ai (1\u2009\u2264\u2009ai\u2009\u2264\u20093) which is equal to 1 if Alex won i-th game, to 2 if Bob won i-th game and 3 if Carl won i-th game.", "output_spec": "Print YES if the situation described in the log was possible. Otherwise print NO.", "sample_inputs": ["3\n1\n1\n2", "2\n1\n2"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example the possible situation is: Alex wins, Carl starts playing instead of Bob; Alex wins, Bob replaces Carl; Bob wins. The situation in the second example is impossible because Bob loses the first game, so he cannot win the second one."}, "src_uid": "6c7ab07abdf157c24be92f49fd1d8d87"} {"nl": {"description": "You are given a complete undirected graph. For each pair of vertices you are given the length of the edge that connects them. Find the shortest paths between each pair of vertices in the graph and return the length of the longest of them.", "input_spec": "The first line of the input contains a single integer N (3\u2009\u2264\u2009N\u2009\u2264\u200910). The following N lines each contain N space-separated integers. jth integer in ith line aij is the length of the edge that connects vertices i and j. aij\u2009=\u2009aji, aii\u2009=\u20090, 1\u2009\u2264\u2009aij\u2009\u2264\u2009100 for i\u2009\u2260\u2009j.", "output_spec": "Output the maximum length of the shortest path between any pair of vertices in the graph.", "sample_inputs": ["3\n0 1 1\n1 0 4\n1 4 0", "4\n0 1 2 3\n1 0 4 5\n2 4 0 6\n3 5 6 0"], "sample_outputs": ["2", "5"], "notes": "NoteYou're running short of keywords, so you can't use some of them:definedoforforeachwhilerepeatuntilifthenelseelifelsifelseifcaseswitch"}, "src_uid": "bbd210065f8b32de048a2d9b1b033ed5"} {"nl": {"description": "There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string s. The i-th (1-based) character of s represents the color of the i-th stone. If the character is \"R\", \"G\", or \"B\", the color of the corresponding stone is red, green, or blue, respectively.Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times.Each instruction is one of the three types: \"RED\", \"GREEN\", or \"BLUE\". After an instruction c, if Liss is standing on a stone whose colors is c, Liss will move one stone forward, else she will not move.You are given a string t. The number of instructions is equal to the length of t, and the i-th character of t represents the i-th instruction.Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence.", "input_spec": "The input contains two lines. The first line contains the string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200950). The second line contains the string t (1\u2009\u2264\u2009|t|\u2009\u2264\u200950). The characters of each string will be one of \"R\", \"G\", or \"B\". It is guaranteed that Liss don't move out of the sequence.", "output_spec": "Print the final 1-based position of Liss in a single line.", "sample_inputs": ["RGB\nRRR", "RRRBGBRBBB\nBBBRR", "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB"], "sample_outputs": ["2", "3", "15"], "notes": null}, "src_uid": "f5a907d6d35390b1fb11c8ce247d0252"} {"nl": {"description": "Limak is a grizzly bear who desires power and adoration. He wants to win in upcoming elections and rule over the Bearland.There are n candidates, including Limak. We know how many citizens are going to vote for each candidate. Now i-th candidate would get ai votes. Limak is candidate number 1. To win in elections, he must get strictly more votes than any other candidate.Victory is more important than everything else so Limak decided to cheat. He will steal votes from his opponents by bribing some citizens. To bribe a citizen, Limak must give him or her one candy - citizens are bears and bears like candies. Limak doesn't have many candies and wonders - how many citizens does he have to bribe?", "input_spec": "The first line contains single integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100) - number of candidates. The second line contains n space-separated integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u20091000) - number of votes for each candidate. Limak is candidate number 1. Note that after bribing number of votes for some candidate might be zero or might be greater than 1000.", "output_spec": "Print the minimum number of citizens Limak must bribe to have strictly more votes than any other candidate.", "sample_inputs": ["5\n5 1 11 2 8", "4\n1 8 8 8", "2\n7 6"], "sample_outputs": ["4", "6", "0"], "notes": "NoteIn the first sample Limak has 5 votes. One of the ways to achieve victory is to bribe 4 citizens who want to vote for the third candidate. Then numbers of votes would be 9,\u20091,\u20097,\u20092,\u20098 (Limak would have 9 votes). Alternatively, Limak could steal only 3 votes from the third candidate and 1 vote from the second candidate to get situation 9,\u20090,\u20098,\u20092,\u20098.In the second sample Limak will steal 2 votes from each candidate. Situation will be 7,\u20096,\u20096,\u20096.In the third sample Limak is a winner without bribing any citizen."}, "src_uid": "aa8fabf7c817dfd3d585b96a07bb7f58"} {"nl": {"description": "Polycarpus loves hamburgers very much. He especially adores the hamburgers he makes with his own hands. Polycarpus thinks that there are only three decent ingredients to make hamburgers from: a bread, sausage and cheese. He writes down the recipe of his favorite \"Le Hamburger de Polycarpus\" as a string of letters 'B' (bread), 'S' (sausage) \u0438 'C' (cheese). The ingredients in the recipe go from bottom to top, for example, recipe \"\u0412SCBS\" represents the hamburger where the ingredients go from bottom to top as bread, sausage, cheese, bread and sausage again.Polycarpus has nb pieces of bread, ns pieces of sausage and nc pieces of cheese in the kitchen. Besides, the shop nearby has all three ingredients, the prices are pb rubles for a piece of bread, ps for a piece of sausage and pc for a piece of cheese.Polycarpus has r rubles and he is ready to shop on them. What maximum number of hamburgers can he cook? You can assume that Polycarpus cannot break or slice any of the pieces of bread, sausage or cheese. Besides, the shop has an unlimited number of pieces of each ingredient.", "input_spec": "The first line of the input contains a non-empty string that describes the recipe of \"Le Hamburger de Polycarpus\". The length of the string doesn't exceed 100, the string contains only letters 'B' (uppercase English B), 'S' (uppercase English S) and 'C' (uppercase English C). The second line contains three integers nb, ns, nc (1\u2009\u2264\u2009nb,\u2009ns,\u2009nc\u2009\u2264\u2009100) \u2014 the number of the pieces of bread, sausage and cheese on Polycarpus' kitchen. The third line contains three integers pb, ps, pc (1\u2009\u2264\u2009pb,\u2009ps,\u2009pc\u2009\u2264\u2009100) \u2014 the price of one piece of bread, sausage and cheese in the shop. Finally, the fourth line contains integer r (1\u2009\u2264\u2009r\u2009\u2264\u20091012) \u2014 the number of rubles Polycarpus has. Please, do not write the %lld specifier to read or write 64-bit integers in \u0421++. It is preferred to use the cin, cout streams or the %I64d specifier.", "output_spec": "Print the maximum number of hamburgers Polycarpus can make. If he can't make any hamburger, print 0.", "sample_inputs": ["BBBSSC\n6 4 1\n1 2 3\n4", "BBC\n1 10 1\n1 10 1\n21", "BSC\n1 1 1\n1 1 3\n1000000000000"], "sample_outputs": ["2", "7", "200000000001"], "notes": null}, "src_uid": "8126a4232188ae7de8e5a7aedea1a97e"} {"nl": {"description": "Petya and Vasya decided to play a little. They found n red cubes and m blue cubes. The game goes like that: the players take turns to choose a cube of some color (red or blue) and put it in a line from left to right (overall the line will have n\u2009+\u2009m cubes). Petya moves first. Petya's task is to get as many pairs of neighbouring cubes of the same color as possible. Vasya's task is to get as many pairs of neighbouring cubes of different colors as possible. The number of Petya's points in the game is the number of pairs of neighboring cubes of the same color in the line, the number of Vasya's points in the game is the number of neighbouring cubes of the different color in the line. Your task is to calculate the score at the end of the game (Petya's and Vasya's points, correspondingly), if both boys are playing optimally well. To \"play optimally well\" first of all means to maximize the number of one's points, and second \u2014 to minimize the number of the opponent's points.", "input_spec": "The only line contains two space-separated integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009105) \u2014 the number of red and blue cubes, correspondingly.", "output_spec": "On a single line print two space-separated integers \u2014 the number of Petya's and Vasya's points correspondingly provided that both players play optimally well.", "sample_inputs": ["3 1", "2 4"], "sample_outputs": ["2 1", "3 2"], "notes": "NoteIn the first test sample the optimal strategy for Petya is to put the blue cube in the line. After that there will be only red cubes left, so by the end of the game the line of cubes from left to right will look as [blue, red, red, red]. So, Petya gets 2 points and Vasya gets 1 point. If Petya would choose the red cube during his first move, then, provided that both boys play optimally well, Petya would get 1 point and Vasya would get 2 points."}, "src_uid": "c8378e6fcaab30d15469a55419f38b39"} {"nl": {"description": "You are given a text of single-space separated words, consisting of small and capital Latin letters.Volume of the word is number of capital letters in the word. Volume of the text is maximum volume of all words in the text.Calculate the volume of the given text.", "input_spec": "The first line contains one integer number n (1\u2009\u2264\u2009n\u2009\u2264\u2009200) \u2014 length of the text. The second line contains text of single-space separated words s1,\u2009s2,\u2009...,\u2009si, consisting only of small and capital Latin letters.", "output_spec": "Print one integer number \u2014 volume of text.", "sample_inputs": ["7\nNonZERO", "24\nthis is zero answer text", "24\nHarbour Space University"], "sample_outputs": ["5", "0", "1"], "notes": "NoteIn the first example there is only one word, there are 5 capital letters in it.In the second example all of the words contain 0 capital letters."}, "src_uid": "d3929a9acf1633475ab16f5dfbead13c"} {"nl": {"description": "Holidays have finished. Thanks to the help of the hacker Leha, Noora managed to enter the university of her dreams which is located in a town Pavlopolis. It's well known that universities provide students with dormitory for the period of university studies. Consequently Noora had to leave Vi\u010dkopolis and move to Pavlopolis. Thus Leha was left completely alone in a quiet town Vi\u010dkopolis. He almost even fell into a depression from boredom!Leha came up with a task for himself to relax a little. He chooses two integers A and B and then calculates the greatest common divisor of integers \"A factorial\" and \"B factorial\". Formally the hacker wants to find out GCD(A!,\u2009B!). It's well known that the factorial of an integer x is a product of all positive integers less than or equal to x. Thus x!\u2009=\u20091\u00b72\u00b73\u00b7...\u00b7(x\u2009-\u20091)\u00b7x. For example 4!\u2009=\u20091\u00b72\u00b73\u00b74\u2009=\u200924. Recall that GCD(x,\u2009y) is the largest positive integer q that divides (without a remainder) both x and y.Leha has learned how to solve this task very effective. You are able to cope with it not worse, aren't you?", "input_spec": "The first and single line contains two integers A and B (1\u2009\u2264\u2009A,\u2009B\u2009\u2264\u2009109,\u2009min(A,\u2009B)\u2009\u2264\u200912).", "output_spec": "Print a single integer denoting the greatest common divisor of integers A! and B!.", "sample_inputs": ["4 3"], "sample_outputs": ["6"], "notes": "NoteConsider the sample.4!\u2009=\u20091\u00b72\u00b73\u00b74\u2009=\u200924. 3!\u2009=\u20091\u00b72\u00b73\u2009=\u20096. The greatest common divisor of integers 24 and 6 is exactly 6."}, "src_uid": "7bf30ceb24b66d91382e97767f9feeb6"} {"nl": {"description": "Little Petya loves presents. His mum bought him two strings of the same size for his birthday. The strings consist of uppercase and lowercase Latin letters. Now Petya wants to compare those two strings lexicographically. The letters' case does not matter, that is an uppercase letter is considered equivalent to the corresponding lowercase letter. Help Petya perform the comparison.", "input_spec": "Each of the first two lines contains a bought string. The strings' lengths range from 1 to 100 inclusive. It is guaranteed that the strings are of the same length and also consist of uppercase and lowercase Latin letters.", "output_spec": "If the first string is less than the second one, print \"-1\". If the second string is less than the first one, print \"1\". If the strings are equal, print \"0\". Note that the letters' case is not taken into consideration when the strings are compared.", "sample_inputs": ["aaaa\naaaA", "abs\nAbz", "abcdefg\nAbCdEfF"], "sample_outputs": ["0", "-1", "1"], "notes": "NoteIf you want more formal information about the lexicographical order (also known as the \"dictionary order\" or \"alphabetical order\"), you can visit the following site: http://en.wikipedia.org/wiki/Lexicographical_order"}, "src_uid": "ffeae332696a901813677bd1033cf01e"} {"nl": {"description": "Mishka is decorating the Christmas tree. He has got three garlands, and all of them will be put on the tree. After that Mishka will switch these garlands on.When a garland is switched on, it periodically changes its state \u2014 sometimes it is lit, sometimes not. Formally, if i-th garland is switched on during x-th second, then it is lit only during seconds x, x\u2009+\u2009ki, x\u2009+\u20092ki, x\u2009+\u20093ki and so on.Mishka wants to switch on the garlands in such a way that during each second after switching the garlands on there would be at least one lit garland. Formally, Mishka wants to choose three integers x1, x2 and x3 (not necessarily distinct) so that he will switch on the first garland during x1-th second, the second one \u2014 during x2-th second, and the third one \u2014 during x3-th second, respectively, and during each second starting from max(x1,\u2009x2,\u2009x3) at least one garland will be lit.Help Mishka by telling him if it is possible to do this!", "input_spec": "The first line contains three integers k1, k2 and k3 (1\u2009\u2264\u2009ki\u2009\u2264\u20091500) \u2014 time intervals of the garlands.", "output_spec": "If Mishka can choose moments of time to switch on the garlands in such a way that each second after switching the garlands on at least one garland will be lit, print YES. Otherwise, print NO.", "sample_inputs": ["2 2 3", "4 2 3"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example Mishka can choose x1\u2009=\u20091, x2\u2009=\u20092, x3\u2009=\u20091. The first garland will be lit during seconds 1,\u20093,\u20095,\u20097,\u2009..., the second \u2014 2,\u20094,\u20096,\u20098,\u2009..., which already cover all the seconds after the 2-nd one. It doesn't even matter what x3 is chosen. Our choice will lead third to be lit during seconds 1,\u20094,\u20097,\u200910,\u2009..., though.In the second example there is no way to choose such moments of time, there always be some seconds when no garland is lit."}, "src_uid": "df48af9f5e68cb6efc1214f7138accf9"} {"nl": {"description": "Misha and Vanya have played several table tennis sets. Each set consists of several serves, each serve is won by one of the players, he receives one point and the loser receives nothing. Once one of the players scores exactly k points, the score is reset and a new set begins.Across all the sets Misha scored a points in total, and Vanya scored b points. Given this information, determine the maximum number of sets they could have played, or that the situation is impossible.Note that the game consisted of several complete sets.", "input_spec": "The first line contains three space-separated integers k, a and b (1\u2009\u2264\u2009k\u2009\u2264\u2009109, 0\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009109, a\u2009+\u2009b\u2009>\u20090).", "output_spec": "If the situation is impossible, print a single number -1. Otherwise, print the maximum possible number of sets.", "sample_inputs": ["11 11 5", "11 2 3"], "sample_outputs": ["1", "-1"], "notes": "NoteNote that the rules of the game in this problem differ from the real table tennis game, for example, the rule of \"balance\" (the winning player has to be at least two points ahead to win a set) has no power within the present problem."}, "src_uid": "6e3b8193d1ca1a1d449dc7a4ad45b8f2"} {"nl": {"description": "You have n problems. You have estimated the difficulty of the i-th one as integer ci. Now you want to prepare a problemset for a contest, using some of the problems you've made.A problemset for the contest must consist of at least two problems. You think that the total difficulty of the problems of the contest must be at least l and at most r. Also, you think that the difference between difficulties of the easiest and the hardest of the chosen problems must be at least x.Find the number of ways to choose a problemset for the contest.", "input_spec": "The first line contains four integers n, l, r, x (1\u2009\u2264\u2009n\u2009\u2264\u200915, 1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u2009109, 1\u2009\u2264\u2009x\u2009\u2264\u2009106) \u2014 the number of problems you have, the minimum and maximum value of total difficulty of the problemset and the minimum difference in difficulty between the hardest problem in the pack and the easiest one, respectively. The second line contains n integers c1,\u2009c2,\u2009...,\u2009cn (1\u2009\u2264\u2009ci\u2009\u2264\u2009106) \u2014 the difficulty of each problem.", "output_spec": "Print the number of ways to choose a suitable problemset for the contest. ", "sample_inputs": ["3 5 6 1\n1 2 3", "4 40 50 10\n10 20 30 25", "5 25 35 10\n10 10 20 10 20"], "sample_outputs": ["2", "2", "6"], "notes": "NoteIn the first example two sets are suitable, one consisting of the second and third problem, another one consisting of all three problems.In the second example, two sets of problems are suitable \u2014 the set of problems with difficulties 10 and 30 as well as the set of problems with difficulties 20 and 30.In the third example any set consisting of one problem of difficulty 10 and one problem of difficulty 20 is suitable."}, "src_uid": "0d43104a0de924cdcf8e4aced5aa825d"} {"nl": {"description": "A burglar got into a matches warehouse and wants to steal as many matches as possible. In the warehouse there are m containers, in the i-th container there are ai matchboxes, and each matchbox contains bi matches. All the matchboxes are of the same size. The burglar's rucksack can hold n matchboxes exactly. Your task is to find out the maximum amount of matches that a burglar can carry away. He has no time to rearrange matches in the matchboxes, that's why he just chooses not more than n matchboxes so that the total amount of matches in them is maximal.", "input_spec": "The first line of the input contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092\u00b7108) and integer m (1\u2009\u2264\u2009m\u2009\u2264\u200920). The i\u2009+\u20091-th line contains a pair of numbers ai and bi (1\u2009\u2264\u2009ai\u2009\u2264\u2009108,\u20091\u2009\u2264\u2009bi\u2009\u2264\u200910). All the input numbers are integer.", "output_spec": "Output the only number \u2014 answer to the problem.", "sample_inputs": ["7 3\n5 10\n2 5\n3 6", "3 3\n1 3\n2 2\n3 1"], "sample_outputs": ["62", "7"], "notes": null}, "src_uid": "c052d85e402691b05e494b5283d62679"} {"nl": {"description": "Ilya is an experienced player in tic-tac-toe on the 4\u2009\u00d7\u20094 field. He always starts and plays with Xs. He played a lot of games today with his friend Arseny. The friends became tired and didn't finish the last game. It was Ilya's turn in the game when they left it. Determine whether Ilya could have won the game by making single turn or not. The rules of tic-tac-toe on the 4\u2009\u00d7\u20094 field are as follows. Before the first turn all the field cells are empty. The two players take turns placing their signs into empty cells (the first player places Xs, the second player places Os). The player who places Xs goes first, the another one goes second. The winner is the player who first gets three of his signs in a row next to each other (horizontal, vertical or diagonal).", "input_spec": "The tic-tac-toe position is given in four lines. Each of these lines contains four characters. Each character is '.' (empty cell), 'x' (lowercase English letter x), or 'o' (lowercase English letter o). It is guaranteed that the position is reachable playing tic-tac-toe, and it is Ilya's turn now (in particular, it means that the game is not finished). It is possible that all the cells are empty, it means that the friends left without making single turn.", "output_spec": "Print single line: \"YES\" in case Ilya could have won by making single turn, and \"NO\" otherwise.", "sample_inputs": ["xx..\n.oo.\nx...\noox.", "x.ox\nox..\nx.o.\noo.x", "x..x\n..oo\no...\nx.xo", "o.x.\no...\n.x..\nooxx"], "sample_outputs": ["YES", "NO", "YES", "NO"], "notes": "NoteIn the first example Ilya had two winning moves: to the empty cell in the left column and to the leftmost empty cell in the first row.In the second example it wasn't possible to win by making single turn.In the third example Ilya could have won by placing X in the last row between two existing Xs.In the fourth example it wasn't possible to win by making single turn."}, "src_uid": "ca4a77fe9718b8bd0b3cc3d956e22917"} {"nl": {"description": "It's one more school day now. Sasha doesn't like classes and is always bored at them. So, each day he invents some game and plays in it alone or with friends.Today he invented one simple game to play with Lena, with whom he shares a desk. The rules are simple. Sasha draws n sticks in a row. After that the players take turns crossing out exactly k sticks from left or right in each turn. Sasha moves first, because he is the inventor of the game. If there are less than k sticks on the paper before some turn, the game ends. Sasha wins if he makes strictly more moves than Lena. Sasha wants to know the result of the game before playing, you are to help him.", "input_spec": "The first line contains two integers n and k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u20091018, k\u2009\u2264\u2009n)\u00a0\u2014 the number of sticks drawn by Sasha and the number k\u00a0\u2014 the number of sticks to be crossed out on each turn.", "output_spec": "If Sasha wins, print \"YES\" (without quotes), otherwise print \"NO\" (without quotes). You can print each letter in arbitrary case (upper of lower).", "sample_inputs": ["1 1", "10 4"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example Sasha crosses out 1 stick, and then there are no sticks. So Lena can't make a move, and Sasha wins.In the second example Sasha crosses out 4 sticks, then Lena crosses out 4 sticks, and after that there are only 2 sticks left. Sasha can't make a move. The players make equal number of moves, so Sasha doesn't win."}, "src_uid": "05fd61dd0b1f50f154eec85d8cfaad50"} {"nl": {"description": "Two bears are playing tic-tac-toe via mail. It's boring for them to play usual tic-tac-toe game, so they are a playing modified version of this game. Here are its rules.The game is played on the following field. Players are making moves by turns. At first move a player can put his chip in any cell of any small field. For following moves, there are some restrictions: if during last move the opposite player put his chip to cell with coordinates (xl,\u2009yl) in some small field, the next move should be done in one of the cells of the small field with coordinates (xl,\u2009yl). For example, if in the first move a player puts his chip to lower left cell of central field, then the second player on his next move should put his chip into some cell of lower left field (pay attention to the first test case). If there are no free cells in the required field, the player can put his chip to any empty cell on any field.You are given current state of the game and coordinates of cell in which the last move was done. You should find all cells in which the current player can put his chip.A hare works as a postman in the forest, he likes to foul bears. Sometimes he changes the game field a bit, so the current state of the game could be unreachable. However, after his changes the cell where the last move was done is not empty. You don't need to find if the state is unreachable or not, just output possible next moves according to the rules.", "input_spec": "First 11 lines contains descriptions of table with 9 rows and 9 columns which are divided into 9 small fields by spaces and empty lines. Each small field is described by 9 characters without spaces and empty lines. character \"x\" (ASCII-code 120) means that the cell is occupied with chip of the first player, character \"o\" (ASCII-code 111) denotes a field occupied with chip of the second player, character \".\" (ASCII-code 46) describes empty cell. The line after the table contains two integers x and y (1\u2009\u2264\u2009x,\u2009y\u2009\u2264\u20099). They describe coordinates of the cell in table where the last move was done. Rows in the table are numbered from up to down and columns are numbered from left to right. It's guaranteed that cell where the last move was done is filled with \"x\" or \"o\". Also, it's guaranteed that there is at least one empty cell. It's not guaranteed that current state of game is reachable.", "output_spec": "Output the field in same format with characters \"!\" (ASCII-code 33) on positions where the current player can put his chip. All other cells should not be modified.", "sample_inputs": ["... ... ...\n... ... ...\n... ... ...\n\n... ... ...\n... ... ...\n... x.. ...\n\n... ... ...\n... ... ...\n... ... ...\n6 4", "xoo x.. x..\nooo ... ...\nooo ... ...\n\nx.. x.. x..\n... ... ...\n... ... ...\n\nx.. x.. x..\n... ... ...\n... ... ...\n7 4", "o.. ... ...\n... ... ...\n... ... ...\n\n... xxx ...\n... xox ...\n... ooo ...\n\n... ... ...\n... ... ...\n... ... ...\n5 5"], "sample_outputs": ["... ... ... \n... ... ... \n... ... ... \n\n... ... ... \n... ... ... \n... x.. ... \n\n!!! ... ... \n!!! ... ... \n!!! ... ...", "xoo x!! x!! \nooo !!! !!! \nooo !!! !!! \n\nx!! x!! x!! \n!!! !!! !!! \n!!! !!! !!! \n\nx!! x!! x!! \n!!! !!! !!! \n!!! !!! !!!", "o!! !!! !!! \n!!! !!! !!! \n!!! !!! !!! \n\n!!! xxx !!! \n!!! xox !!! \n!!! ooo !!! \n\n!!! !!! !!! \n!!! !!! !!! \n!!! !!! !!!"], "notes": "NoteIn the first test case the first player made a move to lower left cell of central field, so the second player can put a chip only to cells of lower left field.In the second test case the last move was done to upper left cell of lower central field, however all cells in upper left field are occupied, so the second player can put his chip to any empty cell.In the third test case the last move was done to central cell of central field, so current player can put his chip to any cell of central field, which is already occupied, so he can move anywhere. Pay attention that this state of the game is unreachable."}, "src_uid": "8f0fad22f629332868c39969492264d3"} {"nl": {"description": "A long time ago (probably even in the first book), Nicholas Flamel, a great alchemist and the creator of the Philosopher's Stone, taught Harry Potter three useful spells. The first one allows you to convert a grams of sand into b grams of lead, the second one allows you to convert c grams of lead into d grams of gold and third one allows you to convert e grams of gold into f grams of sand. When Harry told his friends about these spells, Ron Weasley was amazed. After all, if they succeed in turning sand into lead, lead into gold, and then turning part of the gold into sand again and so on, then it will be possible to start with a small amount of sand and get huge amounts of gold! Even an infinite amount of gold! Hermione Granger, by contrast, was skeptical about that idea. She argues that according to the law of conservation of matter getting an infinite amount of matter, even using magic, is impossible. On the contrary, the amount of matter may even decrease during transformation, being converted to magical energy. Though Hermione's theory seems convincing, Ron won't believe her. As far as Ron is concerned, Hermione made up her law of conservation of matter to stop Harry and Ron wasting their time with this nonsense, and to make them go and do homework instead. That's why Ron has already collected a certain amount of sand for the experiments. A quarrel between the friends seems unavoidable...Help Harry to determine which one of his friends is right, and avoid the quarrel after all. To do this you have to figure out whether it is possible to get the amount of gold greater than any preassigned number from some finite amount of sand.", "input_spec": "The first line contains 6 integers a, b, c, d, e, f (0\u2009\u2264\u2009a,\u2009b,\u2009c,\u2009d,\u2009e,\u2009f\u2009\u2264\u20091000).", "output_spec": "Print \"Ron\", if it is possible to get an infinitely large amount of gold having a certain finite amount of sand (and not having any gold and lead at all), i.e., Ron is right. Otherwise, print \"Hermione\".", "sample_inputs": ["100 200 250 150 200 250", "100 50 50 200 200 100", "100 10 200 20 300 30", "0 0 0 0 0 0", "1 1 0 1 1 1", "1 0 1 2 1 2", "100 1 100 1 0 1"], "sample_outputs": ["Ron", "Hermione", "Hermione", "Hermione", "Ron", "Hermione", "Ron"], "notes": "NoteConsider the first sample. Let's start with the 500 grams of sand. Apply the first spell 5 times and turn the sand into 1000 grams of lead. Then apply the second spell 4 times to get 600 grams of gold. Let\u2019s take 400 grams from the resulting amount of gold turn them back into sand. We get 500 grams of sand and 200 grams of gold. If we apply the same operations to 500 grams of sand again, we can get extra 200 grams of gold every time. Thus, you can get 200, 400, 600 etc. grams of gold, i.e., starting with a finite amount of sand (500 grams), you can get the amount of gold which is greater than any preassigned number.In the forth sample it is impossible to get sand, or lead, or gold, applying the spells.In the fifth sample an infinitely large amount of gold can be obtained by using only the second spell, which allows you to receive 1 gram of gold out of nothing. Note that if such a second spell is available, then the first and the third one do not affect the answer at all.The seventh sample is more interesting. We can also start with a zero amount of sand there. With the aid of the third spell you can get sand out of nothing. We get 10000 grams of sand in this manner. Let's get 100 grams of lead using the first spell 100 times. Then make 1 gram of gold from them. We managed to receive 1 gram of gold, starting with a zero amount of sand! Clearly, in this manner you can get an infinitely large amount of gold."}, "src_uid": "44d608de3e1447f89070e707ba550150"} {"nl": {"description": "The only difference between this problem and D2 is that you don't have to provide the way to construct the answer in this problem, but you have to do it in D2.There's a table of $$$n \\times m$$$ cells ($$$n$$$ rows and $$$m$$$ columns). The value of $$$n \\cdot m$$$ is even.A domino is a figure that consists of two cells having a common side. It may be horizontal (one of the cells is to the right of the other) or vertical (one of the cells is above the other).You need to find out whether it is possible to place $$$\\frac{nm}{2}$$$ dominoes on the table so that exactly $$$k$$$ of them are horizontal and all the other dominoes are vertical. The dominoes cannot overlap and must fill the whole table.", "input_spec": "The first line contains one integer $$$t$$$ ($$$1 \\le t \\le 10$$$) \u2014 the number of test cases. Then $$$t$$$ test cases follow. Each test case consists of a single line. The line contains three integers $$$n$$$, $$$m$$$, $$$k$$$ ($$$1 \\le n,m \\le 100$$$, $$$0 \\le k \\le \\frac{nm}{2}$$$, $$$n \\cdot m$$$ is even) \u2014 the number of rows, columns and horizontal dominoes, respectively.", "output_spec": "For each test case output \"YES\", if it is possible to place dominoes in the desired way, or \"NO\" otherwise. You may print each letter in any case (YES, yes, Yes will all be recognized as positive answer, NO, no and nO will all be recognized as negative answer).", "sample_inputs": ["8\n4 4 2\n2 3 0\n3 2 3\n1 2 0\n2 4 2\n5 2 2\n2 17 16\n2 1 1"], "sample_outputs": ["YES\nYES\nYES\nNO\nYES\nNO\nYES\nNO"], "notes": null}, "src_uid": "4d0c0cc8faca62eb6384f8135b30feb8"} {"nl": {"description": "Ivan's classes at the university have just finished, and now he wants to go to the local CFK cafe and eat some fried chicken.CFK sells chicken chunks in small and large portions. A small portion contains 3 chunks; a large one \u2014 7 chunks. Ivan wants to eat exactly x chunks. Now he wonders whether he can buy exactly this amount of chicken.Formally, Ivan wants to know if he can choose two non-negative integers a and b in such a way that a small portions and b large ones contain exactly x chunks.Help Ivan to answer this question for several values of x!", "input_spec": "The first line contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of testcases. The i-th of the following n lines contains one integer xi (1\u2009\u2264\u2009xi\u2009\u2264\u2009100) \u2014 the number of chicken chunks Ivan wants to eat.", "output_spec": "Print n lines, in i-th line output YES if Ivan can buy exactly xi chunks. Otherwise, print NO.", "sample_inputs": ["2\n6\n5"], "sample_outputs": ["YES\nNO"], "notes": "NoteIn the first example Ivan can buy two small portions.In the second example Ivan cannot buy exactly 5 chunks, since one small portion is not enough, but two small portions or one large is too much."}, "src_uid": "cfd1182be98fb5f0c426f8b68e48d452"} {"nl": {"description": "You are given a positive (greater than zero) integer $$$n$$$.You have to represent $$$n$$$ as the sum of integers (possibly negative) consisting only of ones (digits '1'). For example, $$$24 = 11 + 11 + 1 + 1$$$ and $$$102 = 111 - 11 + 1 + 1$$$. Among all possible representations, you have to find the one that uses the minimum number of ones in total.", "input_spec": "The single line contains one integer $$$n$$$ ($$$1 \\le n < 10^{50}$$$).", "output_spec": "Print one integer $$$x$$$ \u2014 the minimum number of ones, such that there exist a representation of $$$n$$$ as the sum of integers (possibly negative) that uses $$$x$$$ ones in total.", "sample_inputs": ["24", "102"], "sample_outputs": ["6", "7"], "notes": null}, "src_uid": "1961e7c9120ff652b15cad5dd5ca0907"} {"nl": {"description": "A and B are preparing themselves for programming contests.To train their logical thinking and solve problems better, A and B decided to play chess. During the game A wondered whose position is now stronger.For each chess piece we know its weight: the queen's weight is 9, the rook's weight is 5, the bishop's weight is 3, the knight's weight is 3, the pawn's weight is 1, the king's weight isn't considered in evaluating position. The player's weight equals to the sum of weights of all his pieces on the board.As A doesn't like counting, he asked you to help him determine which player has the larger position weight.", "input_spec": "The input contains eight lines, eight characters each \u2014 the board's description. The white pieces on the board are marked with uppercase letters, the black pieces are marked with lowercase letters. The white pieces are denoted as follows: the queen is represented is 'Q', the rook \u2014 as 'R', the bishop \u2014 as'B', the knight \u2014 as 'N', the pawn \u2014 as 'P', the king \u2014 as 'K'. The black pieces are denoted as 'q', 'r', 'b', 'n', 'p', 'k', respectively. An empty square of the board is marked as '.' (a dot). It is not guaranteed that the given chess position can be achieved in a real game. Specifically, there can be an arbitrary (possibly zero) number pieces of each type, the king may be under attack and so on.", "output_spec": "Print \"White\" (without quotes) if the weight of the position of the white pieces is more than the weight of the position of the black pieces, print \"Black\" if the weight of the black pieces is more than the weight of the white pieces and print \"Draw\" if the weights of the white and black pieces are equal.", "sample_inputs": ["...QK...\n........\n........\n........\n........\n........\n........\n...rk...", "rnbqkbnr\npppppppp\n........\n........\n........\n........\nPPPPPPPP\nRNBQKBNR", "rppppppr\n...k....\n........\n........\n........\n........\nK...Q...\n........"], "sample_outputs": ["White", "Draw", "Black"], "notes": "NoteIn the first test sample the weight of the position of the white pieces equals to 9, the weight of the position of the black pieces equals 5.In the second test sample the weights of the positions of the black and the white pieces are equal to 39.In the third test sample the weight of the position of the white pieces equals to 9, the weight of the position of the black pieces equals to 16."}, "src_uid": "44bed0ca7a8fb42fb72c1584d39a4442"} {"nl": {"description": "A string is a palindrome if it reads the same from the left to the right and from the right to the left. For example, the strings \"kek\", \"abacaba\", \"r\" and \"papicipap\" are palindromes, while the strings \"abb\" and \"iq\" are not.A substring $$$s[l \\ldots r]$$$ ($$$1\u2009\\leq\u2009l\u2009\\leq\u2009r\u2009\\leq\u2009|s|$$$) of a string $$$s\u2009=\u2009s_{1}s_{2} \\ldots s_{|s|}$$$ is the string $$$s_{l}s_{l\u2009+\u20091} \\ldots s_{r}$$$.Anna does not like palindromes, so she makes her friends call her Ann. She also changes all the words she reads in a similar way. Namely, each word $$$s$$$ is changed into its longest substring that is not a palindrome. If all the substrings of $$$s$$$ are palindromes, she skips the word at all.Some time ago Ann read the word $$$s$$$. What is the word she changed it into?", "input_spec": "The first line contains a non-empty string $$$s$$$ with length at most $$$50$$$ characters, containing lowercase English letters only.", "output_spec": "If there is such a substring in $$$s$$$ that is not a palindrome, print the maximum length of such a substring. Otherwise print $$$0$$$. Note that there can be multiple longest substrings that are not palindromes, but their length is unique.", "sample_inputs": ["mew", "wuffuw", "qqqqqqqq"], "sample_outputs": ["3", "5", "0"], "notes": "Note\"mew\" is not a palindrome, so the longest substring of it that is not a palindrome, is the string \"mew\" itself. Thus, the answer for the first example is $$$3$$$.The string \"uffuw\" is one of the longest non-palindrome substrings (of length $$$5$$$) of the string \"wuffuw\", so the answer for the second example is $$$5$$$.All substrings of the string \"qqqqqqqq\" consist of equal characters so they are palindromes. This way, there are no non-palindrome substrings. Thus, the answer for the third example is $$$0$$$."}, "src_uid": "6c85175d334f811617e7030e0403f706"} {"nl": {"description": "Allen has a LOT of money. He has $$$n$$$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $$$1$$$, $$$5$$$, $$$10$$$, $$$20$$$, $$$100$$$. What is the minimum number of bills Allen could receive after withdrawing his entire balance?", "input_spec": "The first and only line of input contains a single integer $$$n$$$ ($$$1 \\le n \\le 10^9$$$).", "output_spec": "Output the minimum number of bills that Allen could receive.", "sample_inputs": ["125", "43", "1000000000"], "sample_outputs": ["3", "5", "10000000"], "notes": "NoteIn the first sample case, Allen can withdraw this with a $$$100$$$ dollar bill, a $$$20$$$ dollar bill, and a $$$5$$$ dollar bill. There is no way for Allen to receive $$$125$$$ dollars in one or two bills.In the second sample case, Allen can withdraw two $$$20$$$ dollar bills and three $$$1$$$ dollar bills.In the third sample case, Allen can withdraw $$$100000000$$$ (ten million!) $$$100$$$ dollar bills."}, "src_uid": "8e81ad7110552c20297f08ad3e5f8ddc"} {"nl": {"description": "Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea.Amr has n instruments, it takes ai days to learn i-th instrument. Being busy, Amr dedicated k days to learn how to play the maximum possible number of instruments.Amr asked for your help to distribute his free days between instruments so that he can achieve his goal.", "input_spec": "The first line contains two numbers n, k (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 0\u2009\u2264\u2009k\u2009\u2264\u200910\u2009000), the number of instruments and number of days respectively. The second line contains n integers ai (1\u2009\u2264\u2009ai\u2009\u2264\u2009100), representing number of days required to learn the i-th instrument.", "output_spec": "In the first line output one integer m representing the maximum number of instruments Amr can learn. In the second line output m space-separated integers: the indices of instruments to be learnt. You may output indices in any order. if there are multiple optimal solutions output any. It is not necessary to use all days for studying.", "sample_inputs": ["4 10\n4 3 1 2", "5 6\n4 3 1 1 2", "1 3\n4"], "sample_outputs": ["4\n1 2 3 4", "3\n1 3 4", "0"], "notes": "NoteIn the first test Amr can learn all 4 instruments.In the second test other possible solutions are: {2,\u20093,\u20095} or {3,\u20094,\u20095}.In the third test Amr doesn't have enough time to learn the only presented instrument."}, "src_uid": "dbb164a8dd190e63cceba95a31690a7c"} {"nl": {"description": "Limak and Radewoosh are going to compete against each other in the upcoming algorithmic contest. They are equally skilled but they won't solve problems in the same order.There will be n problems. The i-th problem has initial score pi and it takes exactly ti minutes to solve it. Problems are sorted by difficulty\u00a0\u2014 it's guaranteed that pi\u2009<\u2009pi\u2009+\u20091 and ti\u2009<\u2009ti\u2009+\u20091.A constant c is given too, representing the speed of loosing points. Then, submitting the i-th problem at time x (x minutes after the start of the contest) gives max(0,\u2009 pi\u2009-\u2009c\u00b7x) points.Limak is going to solve problems in order 1,\u20092,\u2009...,\u2009n (sorted increasingly by pi). Radewoosh is going to solve them in order n,\u2009n\u2009-\u20091,\u2009...,\u20091 (sorted decreasingly by pi). Your task is to predict the outcome\u00a0\u2014 print the name of the winner (person who gets more points at the end) or a word \"Tie\" in case of a tie.You may assume that the duration of the competition is greater or equal than the sum of all ti. That means both Limak and Radewoosh will accept all n problems.", "input_spec": "The first line contains two integers n and c (1\u2009\u2264\u2009n\u2009\u2264\u200950,\u20091\u2009\u2264\u2009c\u2009\u2264\u20091000)\u00a0\u2014 the number of problems and the constant representing the speed of loosing points. The second line contains n integers p1,\u2009p2,\u2009...,\u2009pn (1\u2009\u2264\u2009pi\u2009\u2264\u20091000,\u2009pi\u2009<\u2009pi\u2009+\u20091)\u00a0\u2014 initial scores. The third line contains n integers t1,\u2009t2,\u2009...,\u2009tn (1\u2009\u2264\u2009ti\u2009\u2264\u20091000,\u2009ti\u2009<\u2009ti\u2009+\u20091) where ti denotes the number of minutes one needs to solve the i-th problem.", "output_spec": "Print \"Limak\" (without quotes) if Limak will get more points in total. Print \"Radewoosh\" (without quotes) if Radewoosh will get more points in total. Print \"Tie\" (without quotes) if Limak and Radewoosh will get the same total number of points.", "sample_inputs": ["3 2\n50 85 250\n10 15 25", "3 6\n50 85 250\n10 15 25", "8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76"], "sample_outputs": ["Limak", "Radewoosh", "Tie"], "notes": "NoteIn the first sample, there are 3 problems. Limak solves them as follows: Limak spends 10 minutes on the 1-st problem and he gets 50\u2009-\u2009c\u00b710\u2009=\u200950\u2009-\u20092\u00b710\u2009=\u200930 points. Limak spends 15 minutes on the 2-nd problem so he submits it 10\u2009+\u200915\u2009=\u200925 minutes after the start of the contest. For the 2-nd problem he gets 85\u2009-\u20092\u00b725\u2009=\u200935 points. He spends 25 minutes on the 3-rd problem so he submits it 10\u2009+\u200915\u2009+\u200925\u2009=\u200950 minutes after the start. For this problem he gets 250\u2009-\u20092\u00b750\u2009=\u2009150 points. So, Limak got 30\u2009+\u200935\u2009+\u2009150\u2009=\u2009215 points.Radewoosh solves problem in the reversed order: Radewoosh solves 3-rd problem after 25 minutes so he gets 250\u2009-\u20092\u00b725\u2009=\u2009200 points. He spends 15 minutes on the 2-nd problem so he submits it 25\u2009+\u200915\u2009=\u200940 minutes after the start. He gets 85\u2009-\u20092\u00b740\u2009=\u20095 points for this problem. He spends 10 minutes on the 1-st problem so he submits it 25\u2009+\u200915\u2009+\u200910\u2009=\u200950 minutes after the start. He gets max(0,\u200950\u2009-\u20092\u00b750)\u2009=\u2009max(0,\u2009\u2009-\u200950)\u2009=\u20090 points. Radewoosh got 200\u2009+\u20095\u2009+\u20090\u2009=\u2009205 points in total. Limak has 215 points so Limak wins.In the second sample, Limak will get 0 points for each problem and Radewoosh will first solve the hardest problem and he will get 250\u2009-\u20096\u00b725\u2009=\u2009100 points for that. Radewoosh will get 0 points for other two problems but he is the winner anyway.In the third sample, Limak will get 2 points for the 1-st problem and 2 points for the 2-nd problem. Radewoosh will get 4 points for the 8-th problem. They won't get points for other problems and thus there is a tie because 2\u2009+\u20092\u2009=\u20094."}, "src_uid": "8c704de75ab85f9e2c04a926143c8b4a"} {"nl": {"description": "Catherine has a deck of n cards, each of which is either red, green, or blue. As long as there are at least two cards left, she can do one of two actions: take any two (not necessarily adjacent) cards with different colors and exchange them for a new card of the third color; take any two (not necessarily adjacent) cards with the same color and exchange them for a new card with that color. She repeats this process until there is only one card left. What are the possible colors for the final card?", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009200)\u00a0\u2014 the total number of cards. The next line contains a string s of length n \u2014 the colors of the cards. s contains only the characters 'B', 'G', and 'R', representing blue, green, and red, respectively.", "output_spec": "Print a single string of up to three characters\u00a0\u2014 the possible colors of the final card (using the same symbols as the input) in alphabetical order.", "sample_inputs": ["2\nRB", "3\nGRG", "5\nBBBBB"], "sample_outputs": ["G", "BR", "B"], "notes": "NoteIn the first sample, Catherine has one red card and one blue card, which she must exchange for a green card.In the second sample, Catherine has two green cards and one red card. She has two options: she can exchange the two green cards for a green card, then exchange the new green card and the red card for a blue card. Alternatively, she can exchange a green and a red card for a blue card, then exchange the blue card and remaining green card for a red card.In the third sample, Catherine only has blue cards, so she can only exchange them for more blue cards."}, "src_uid": "4cedd3b70d793bc8ed4a93fc5a827f8f"} {"nl": {"description": "The recent All-Berland Olympiad in Informatics featured n participants with each scoring a certain amount of points.As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: At least one participant should get a diploma. None of those with score equal to zero should get awarded. When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of participants. The next line contains a sequence of n integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u2009600)\u00a0\u2014 participants' scores. It's guaranteed that at least one participant has non-zero score.", "output_spec": "Print a single integer\u00a0\u2014 the desired number of ways.", "sample_inputs": ["4\n1 3 3 2", "3\n1 1 1", "4\n42 0 0 42"], "sample_outputs": ["3", "1", "1"], "notes": "NoteThere are three ways to choose a subset in sample case one. Only participants with 3 points will get diplomas. Participants with 2 or 3 points will get diplomas. Everyone will get a diploma! The only option in sample case two is to award everyone.Note that in sample case three participants with zero scores cannot get anything."}, "src_uid": "3b520c15ea9a11b16129da30dcfb5161"} {"nl": {"description": "Gerald bought two very rare paintings at the Sotheby's auction and he now wants to hang them on the wall. For that he bought a special board to attach it to the wall and place the paintings on the board. The board has shape of an a1\u2009\u00d7\u2009b1 rectangle, the paintings have shape of a a2\u2009\u00d7\u2009b2 and a3\u2009\u00d7\u2009b3 rectangles.Since the paintings are painted in the style of abstract art, it does not matter exactly how they will be rotated, but still, one side of both the board, and each of the paintings must be parallel to the floor. The paintings can touch each other and the edges of the board, but can not overlap or go beyond the edge of the board. Gerald asks whether it is possible to place the paintings on the board, or is the board he bought not large enough?", "input_spec": "The first line contains two space-separated numbers a1 and b1 \u2014 the sides of the board. Next two lines contain numbers a2,\u2009b2,\u2009a3 and b3 \u2014 the sides of the paintings. All numbers ai,\u2009bi in the input are integers and fit into the range from 1 to 1000.", "output_spec": "If the paintings can be placed on the wall, print \"YES\" (without the quotes), and if they cannot, print \"NO\" (without the quotes).", "sample_inputs": ["3 2\n1 3\n2 1", "5 5\n3 3\n3 3", "4 2\n2 3\n1 2"], "sample_outputs": ["YES", "NO", "YES"], "notes": "NoteThat's how we can place the pictures in the first test:And that's how we can do it in the third one."}, "src_uid": "2ff30d9c4288390fd7b5b37715638ad9"} {"nl": {"description": "Let's call a string good if and only if it consists of only two types of letters\u00a0\u2014 'a' and 'b' and every two consecutive letters are distinct. For example \"baba\" and \"aba\" are good strings and \"abb\" is a bad string.You have $$$a$$$ strings \"a\", $$$b$$$ strings \"b\" and $$$c$$$ strings \"ab\". You want to choose some subset of these strings and concatenate them in any arbitrarily order.What is the length of the longest good string you can obtain this way?", "input_spec": "The first line contains three positive integers $$$a$$$, $$$b$$$, $$$c$$$ ($$$1 \\leq a, b, c \\leq 10^9$$$)\u00a0\u2014 the number of strings \"a\", \"b\" and \"ab\" respectively.", "output_spec": "Print a single number\u00a0\u2014 the maximum possible length of the good string you can obtain.", "sample_inputs": ["1 1 1", "2 1 2", "3 5 2", "2 2 1", "1000000000 1000000000 1000000000"], "sample_outputs": ["4", "7", "11", "6", "4000000000"], "notes": "NoteIn the first example the optimal string is \"baba\".In the second example the optimal string is \"abababa\".In the third example the optimal string is \"bababababab\".In the fourth example the optimal string is \"ababab\"."}, "src_uid": "609f131325c13213aedcf8d55fc3ed77"} {"nl": {"description": "When preparing a tournament, Codeforces coordinators try treir best to make the first problem as easy as possible. This time the coordinator had chosen some problem and asked $$$n$$$ people about their opinions. Each person answered whether this problem is easy or hard.If at least one of these $$$n$$$ people has answered that the problem is hard, the coordinator decides to change the problem. For the given responses, check if the problem is easy enough.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$1 \\le n \\le 100$$$) \u2014 the number of people who were asked to give their opinions. The second line contains $$$n$$$ integers, each integer is either $$$0$$$ or $$$1$$$. If $$$i$$$-th integer is $$$0$$$, then $$$i$$$-th person thinks that the problem is easy; if it is $$$1$$$, then $$$i$$$-th person thinks that the problem is hard.", "output_spec": "Print one word: \"EASY\" if the problem is easy according to all responses, or \"HARD\" if there is at least one person who thinks the problem is hard. You may print every letter in any register: \"EASY\", \"easy\", \"EaSY\" and \"eAsY\" all will be processed correctly.", "sample_inputs": ["3\n0 0 1", "1\n0"], "sample_outputs": ["HARD", "EASY"], "notes": "NoteIn the first example the third person says it's a hard problem, so it should be replaced.In the second example the problem easy for the only person, so it doesn't have to be replaced."}, "src_uid": "060406cd57739d929f54b4518a7ba83e"} {"nl": {"description": "In the city of Ultima Thule job applicants are often offered an IQ test. The test is as follows: the person gets a piece of squared paper with a 4\u2009\u00d7\u20094 square painted on it. Some of the square's cells are painted black and others are painted white. Your task is to repaint at most one cell the other color so that the picture has a 2\u2009\u00d7\u20092 square, completely consisting of cells of the same color. If the initial picture already has such a square, the person should just say so and the test will be completed. Your task is to write a program that determines whether it is possible to pass the test. You cannot pass the test if either repainting any cell or no action doesn't result in a 2\u2009\u00d7\u20092 square, consisting of cells of the same color.", "input_spec": "Four lines contain four characters each: the j-th character of the i-th line equals \".\" if the cell in the i-th row and the j-th column of the square is painted white, and \"#\", if the cell is black.", "output_spec": "Print \"YES\" (without the quotes), if the test can be passed and \"NO\" (without the quotes) otherwise.", "sample_inputs": ["####\n.#..\n####\n....", "####\n....\n####\n...."], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first test sample it is enough to repaint the first cell in the second row. After such repainting the required 2\u2009\u00d7\u20092 square is on the intersection of the 1-st and 2-nd row with the 1-st and 2-nd column."}, "src_uid": "01b145e798bbdf0ca2ecc383676d79f3"} {"nl": {"description": "On the way to Rio de Janeiro Ostap kills time playing with a grasshopper he took with him in a special box. Ostap builds a line of length n such that some cells of this line are empty and some contain obstacles. Then, he places his grasshopper to one of the empty cells and a small insect in another empty cell. The grasshopper wants to eat the insect.Ostap knows that grasshopper is able to jump to any empty cell that is exactly k cells away from the current (to the left or to the right). Note that it doesn't matter whether intermediate cells are empty or not as the grasshopper makes a jump over them. For example, if k\u2009=\u20091 the grasshopper can jump to a neighboring cell only, and if k\u2009=\u20092 the grasshopper can jump over a single cell.Your goal is to determine whether there is a sequence of jumps such that grasshopper will get from his initial position to the cell with an insect.", "input_spec": "The first line of the input contains two integers n and k (2\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009k\u2009\u2264\u2009n\u2009-\u20091)\u00a0\u2014 the number of cells in the line and the length of one grasshopper's jump. The second line contains a string of length n consisting of characters '.', '#', 'G' and 'T'. Character '.' means that the corresponding cell is empty, character '#' means that the corresponding cell contains an obstacle and grasshopper can't jump there. Character 'G' means that the grasshopper starts at this position and, finally, 'T' means that the target insect is located at this cell. It's guaranteed that characters 'G' and 'T' appear in this line exactly once.", "output_spec": "If there exists a sequence of jumps (each jump of length k), such that the grasshopper can get from his initial position to the cell with the insect, print \"YES\" (without quotes) in the only line of the input. Otherwise, print \"NO\" (without quotes).", "sample_inputs": ["5 2\n#G#T#", "6 1\nT....G", "7 3\nT..#..G", "6 2\n..GT.."], "sample_outputs": ["YES", "YES", "NO", "NO"], "notes": "NoteIn the first sample, the grasshopper can make one jump to the right in order to get from cell 2 to cell 4.In the second sample, the grasshopper is only able to jump to neighboring cells but the way to the insect is free\u00a0\u2014 he can get there by jumping left 5 times.In the third sample, the grasshopper can't make a single jump.In the fourth sample, the grasshopper can only jump to the cells with odd indices, thus he won't be able to reach the insect."}, "src_uid": "189a9b5ce669bdb04b9d371d74a5dd41"} {"nl": {"description": "Find the minimum number with the given sum of digits $$$s$$$ such that all digits in it are distinct (i.e. all digits are unique).For example, if $$$s=20$$$, then the answer is $$$389$$$. This is the minimum number in which all digits are different and the sum of the digits is $$$20$$$ ($$$3+8+9=20$$$).For the given $$$s$$$ print the required number.", "input_spec": "The first line contains an integer $$$t$$$ ($$$1 \\le t \\le 45$$$) \u2014 the number of test cases. Each test case is specified by a line that contains the only integer $$$s$$$ ($$$1 \\le s \\le 45$$$).", "output_spec": "Print $$$t$$$ integers \u2014 the answers to the given test cases.", "sample_inputs": ["4\n\n20\n\n8\n\n45\n\n10"], "sample_outputs": ["389\n8\n123456789\n19"], "notes": null}, "src_uid": "fe126aaa93acaca8c8559bc9e7e27b9f"} {"nl": {"description": "A + B is often used as an example of the easiest problem possible to show some contest platform. However, some scientists have observed that sometimes this problem is not so easy to get accepted. Want to try?", "input_spec": "The input contains two integers a and b (0\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009103), separated by a single space.", "output_spec": "Output the sum of the given integers.", "sample_inputs": ["5 14", "381 492"], "sample_outputs": ["19", "873"], "notes": null}, "src_uid": "b6e3f9c9b124ec3ec20eb8fcea075add"} {"nl": {"description": "One day Vasya the Hipster decided to count how many socks he had. It turned out that he had a red socks and b blue socks.According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.Can you help him?", "input_spec": "The single line of the input contains two positive integers a and b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009100) \u2014 the number of red and blue socks that Vasya's got.", "output_spec": "Print two space-separated integers \u2014 the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.", "sample_inputs": ["3 1", "2 3", "7 3"], "sample_outputs": ["1 1", "2 0", "3 2"], "notes": "NoteIn the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day."}, "src_uid": "775766790e91e539c1cfaa5030e5b955"} {"nl": {"description": "It is a balmy spring afternoon, and Farmer John's n cows are ruminating about link-cut cacti in their stalls. The cows, labeled 1 through n, are arranged so that the i-th cow occupies the i-th stall from the left. However, Elsie, after realizing that she will forever live in the shadows beyond Bessie's limelight, has formed the Mischievous Mess Makers and is plotting to disrupt this beautiful pastoral rhythm. While Farmer John takes his k minute long nap, Elsie and the Mess Makers plan to repeatedly choose two distinct stalls and swap the cows occupying those stalls, making no more than one swap each minute.Being the meticulous pranksters that they are, the Mischievous Mess Makers would like to know the maximum messiness attainable in the k minutes that they have. We denote as pi the label of the cow in the i-th stall. The messiness of an arrangement of cows is defined as the number of pairs (i,\u2009j) such that i\u2009<\u2009j and pi\u2009>\u2009pj.", "input_spec": "The first line of the input contains two integers n and k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u2009100\u2009000)\u00a0\u2014 the number of cows and the length of Farmer John's nap, respectively.", "output_spec": "Output a single integer, the maximum messiness that the Mischievous Mess Makers can achieve by performing no more than k swaps. ", "sample_inputs": ["5 2", "1 10"], "sample_outputs": ["10", "0"], "notes": "NoteIn the first sample, the Mischievous Mess Makers can swap the cows in the stalls 1 and 5 during the first minute, then the cows in stalls 2 and 4 during the second minute. This reverses the arrangement of cows, giving us a total messiness of 10.In the second sample, there is only one cow, so the maximum possible messiness is 0."}, "src_uid": "ea36ca0a3c336424d5b7e1b4c56947b0"} {"nl": {"description": "Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5 + 7 + 1.Two prime numbers are called neighboring if there are no other prime numbers between them.You are to help Nick, and find out if he is right or wrong.", "input_spec": "The first line of the input contains two integers n (2\u2009\u2264\u2009n\u2009\u2264\u20091000) and k (0\u2009\u2264\u2009k\u2009\u2264\u20091000).", "output_spec": "Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.", "sample_inputs": ["27 2", "45 7"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample the answer is YES since at least two numbers can be expressed as it was described (for example, 13 and 19). In the second sample the answer is NO since it is impossible to express 7 prime numbers from 2 to 45 in the desired form."}, "src_uid": "afd2b818ed3e2a931da9d682f6ad660d"} {"nl": {"description": "Mike has a string s consisting of only lowercase English letters. He wants to change exactly one character from the string so that the resulting one is a palindrome. A palindrome is a string that reads the same backward as forward, for example strings \"z\", \"aaa\", \"aba\", \"abccba\" are palindromes, but strings \"codeforces\", \"reality\", \"ab\" are not.", "input_spec": "The first and single line contains string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200915).", "output_spec": "Print \"YES\" (without quotes) if Mike can change exactly one character so that the resulting string is palindrome or \"NO\" (without quotes) otherwise. ", "sample_inputs": ["abccaa", "abbcca", "abcda"], "sample_outputs": ["YES", "NO", "YES"], "notes": null}, "src_uid": "fe74313abcf381f6c5b7b2057adaaa52"} {"nl": {"description": "Chloe, the same as Vladik, is a competitive programmer. She didn't have any problems to get to the olympiad like Vladik, but she was confused by the task proposed on the olympiad.Let's consider the following algorithm of generating a sequence of integers. Initially we have a sequence consisting of a single element equal to 1. Then we perform (n\u2009-\u20091) steps. On each step we take the sequence we've got on the previous step, append it to the end of itself and insert in the middle the minimum positive integer we haven't used before. For example, we get the sequence [1,\u20092,\u20091] after the first step, the sequence [1,\u20092,\u20091,\u20093,\u20091,\u20092,\u20091] after the second step.The task is to find the value of the element with index k (the elements are numbered from 1) in the obtained sequence, i.\u00a0e. after (n\u2009-\u20091) steps.Please help Chloe to solve the problem!", "input_spec": "The only line contains two integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u200950, 1\u2009\u2264\u2009k\u2009\u2264\u20092n\u2009-\u20091).", "output_spec": "Print single integer\u00a0\u2014 the integer at the k-th position in the obtained sequence.", "sample_inputs": ["3 2", "4 8"], "sample_outputs": ["2", "4"], "notes": "NoteIn the first sample the obtained sequence is [1,\u20092,\u20091,\u20093,\u20091,\u20092,\u20091]. The number on the second position is 2.In the second sample the obtained sequence is [1,\u20092,\u20091,\u20093,\u20091,\u20092,\u20091,\u20094,\u20091,\u20092,\u20091,\u20093,\u20091,\u20092,\u20091]. The number on the eighth position is 4."}, "src_uid": "0af400ea8e25b1a36adec4cc08912b71"} {"nl": {"description": "Luke Skywalker gave Chewbacca an integer number x. Chewbacca isn't good at numbers but he loves inverting digits in them. Inverting digit t means replacing it with digit 9\u2009-\u2009t. Help Chewbacca to transform the initial number x to the minimum possible positive number by inverting some (possibly, zero) digits. The decimal representation of the final number shouldn't start with a zero.", "input_spec": "The first line contains a single integer x (1\u2009\u2264\u2009x\u2009\u2264\u20091018) \u2014 the number that Luke Skywalker gave to Chewbacca.", "output_spec": "Print the minimum possible positive number that Chewbacca can obtain after inverting some digits. The number shouldn't contain leading zeroes.", "sample_inputs": ["27", "4545"], "sample_outputs": ["22", "4444"], "notes": null}, "src_uid": "d5de5052b4e9bbdb5359ac6e05a18b61"} {"nl": {"description": "We've got no test cases. A big olympiad is coming up. But the problemsetters' number one priority should be adding another problem to the round. The diameter of a multiset of points on the line is the largest distance between two points from this set. For example, the diameter of the multiset {1,\u20093,\u20092,\u20091} is 2.Diameter of multiset consisting of one point is 0.You are given n points on the line. What is the minimum number of points you have to remove, so that the diameter of the multiset of the remaining points will not exceed d?", "input_spec": "The first line contains two integers n and d (1\u2009\u2264\u2009n\u2009\u2264\u2009100,\u20090\u2009\u2264\u2009d\u2009\u2264\u2009100)\u00a0\u2014 the amount of points and the maximum allowed diameter respectively. The second line contains n space separated integers (1\u2009\u2264\u2009xi\u2009\u2264\u2009100)\u00a0\u2014 the coordinates of the points.", "output_spec": "Output a single integer\u00a0\u2014 the minimum number of points you have to remove.", "sample_inputs": ["3 1\n2 1 4", "3 0\n7 7 7", "6 3\n1 3 4 6 9 10"], "sample_outputs": ["1", "0", "3"], "notes": "NoteIn the first test case the optimal strategy is to remove the point with coordinate 4. The remaining points will have coordinates 1 and 2, so the diameter will be equal to 2\u2009-\u20091\u2009=\u20091.In the second test case the diameter is equal to 0, so its is unnecessary to remove any points. In the third test case the optimal strategy is to remove points with coordinates 1, 9 and 10. The remaining points will have coordinates 3, 4 and 6, so the diameter will be equal to 6\u2009-\u20093\u2009=\u20093."}, "src_uid": "6bcb324c072f796f4d50bafea5f624b2"} {"nl": {"description": "Arpa is researching the Mexican wave.There are n spectators in the stadium, labeled from 1 to n. They start the Mexican wave at time 0. At time 1, the first spectator stands. At time 2, the second spectator stands. ... At time k, the k-th spectator stands. At time k\u2009+\u20091, the (k\u2009+\u20091)-th spectator stands and the first spectator sits. At time k\u2009+\u20092, the (k\u2009+\u20092)-th spectator stands and the second spectator sits. ... At time n, the n-th spectator stands and the (n\u2009-\u2009k)-th spectator sits. At time n\u2009+\u20091, the (n\u2009+\u20091\u2009-\u2009k)-th spectator sits. ... At time n\u2009+\u2009k, the n-th spectator sits. Arpa wants to know how many spectators are standing at time t.", "input_spec": "The first line contains three integers n, k, t (1\u2009\u2264\u2009n\u2009\u2264\u2009109, 1\u2009\u2264\u2009k\u2009\u2264\u2009n, 1\u2009\u2264\u2009t\u2009<\u2009n\u2009+\u2009k).", "output_spec": "Print single integer: how many spectators are standing at time t.", "sample_inputs": ["10 5 3", "10 5 7", "10 5 12"], "sample_outputs": ["3", "5", "3"], "notes": "NoteIn the following a sitting spectator is represented as -, a standing spectator is represented as ^. At t\u2009=\u20090\u2002 ---------- number of standing spectators = 0. At t\u2009=\u20091\u2002 ^--------- number of standing spectators = 1. At t\u2009=\u20092\u2002 ^^-------- number of standing spectators = 2. At t\u2009=\u20093\u2002 ^^^------- number of standing spectators = 3. At t\u2009=\u20094\u2002 ^^^^------ number of standing spectators = 4. At t\u2009=\u20095\u2002 ^^^^^----- number of standing spectators = 5. At t\u2009=\u20096\u2002 -^^^^^---- number of standing spectators = 5. At t\u2009=\u20097\u2002 --^^^^^--- number of standing spectators = 5. At t\u2009=\u20098\u2002 ---^^^^^-- number of standing spectators = 5. At t\u2009=\u20099\u2002 ----^^^^^- number of standing spectators = 5. At t\u2009=\u200910 -----^^^^^ number of standing spectators = 5. At t\u2009=\u200911 ------^^^^ number of standing spectators = 4. At t\u2009=\u200912 -------^^^ number of standing spectators = 3. At t\u2009=\u200913 --------^^ number of standing spectators = 2. At t\u2009=\u200914 ---------^ number of standing spectators = 1. At t\u2009=\u200915 ---------- number of standing spectators = 0. "}, "src_uid": "7e614526109a2052bfe7934381e7f6c2"} {"nl": {"description": "After Fox Ciel won an onsite round of a programming contest, she took a bus to return to her castle. The fee of the bus was 220 yen. She met Rabbit Hanako in the bus. They decided to play the following game because they got bored in the bus. Initially, there is a pile that contains x 100-yen coins and y 10-yen coins. They take turns alternatively. Ciel takes the first turn. In each turn, they must take exactly 220 yen from the pile. In Ciel's turn, if there are multiple ways to take 220 yen, she will choose the way that contains the maximal number of 100-yen coins. In Hanako's turn, if there are multiple ways to take 220 yen, she will choose the way that contains the maximal number of 10-yen coins. If Ciel or Hanako can't take exactly 220 yen from the pile, she loses. Determine the winner of the game.", "input_spec": "The first line contains two integers x (0\u2009\u2264\u2009x\u2009\u2264\u2009106) and y (0\u2009\u2264\u2009y\u2009\u2264\u2009106), separated by a single space.", "output_spec": "If Ciel wins, print \"Ciel\". Otherwise, print \"Hanako\".", "sample_inputs": ["2 2", "3 22"], "sample_outputs": ["Ciel", "Hanako"], "notes": "NoteIn the first turn (Ciel's turn), she will choose 2 100-yen coins and 2 10-yen coins. In the second turn (Hanako's turn), she will choose 1 100-yen coin and 12 10-yen coins. In the third turn (Ciel's turn), she can't pay exactly 220 yen, so Ciel will lose."}, "src_uid": "8ffee18bbc4bb281027f91193002b7f5"} {"nl": {"description": " \u2014 Thanks a lot for today.\u2014 I experienced so many great things.\u2014 You gave me memories like dreams... But I have to leave now...\u2014 One last request, can you...\u2014 Help me solve a Codeforces problem?\u2014 ......\u2014 What?Chtholly has been thinking about a problem for days:If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not.Given integers k and p, calculate the sum of the k smallest zcy numbers and output this sum modulo p.Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help!", "input_spec": "The first line contains two integers k and p (1\u2009\u2264\u2009k\u2009\u2264\u2009105,\u20091\u2009\u2264\u2009p\u2009\u2264\u2009109).", "output_spec": "Output single integer\u00a0\u2014 answer to the problem.", "sample_inputs": ["2 100", "5 30"], "sample_outputs": ["33", "15"], "notes": "NoteIn the first example, the smallest zcy number is 11, and the second smallest zcy number is 22.In the second example, ."}, "src_uid": "00e90909a77ce9e22bb7cbf1285b0609"} {"nl": {"description": "A frog lives on the axis Ox and needs to reach home which is in the point n. She starts from the point 1. The frog can jump to the right at a distance not more than d. So, after she jumped from the point x she can reach the point x\u2009+\u2009a, where a is an integer from 1 to d.For each point from 1 to n is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and n.Determine the minimal number of jumps that the frog needs to reach home which is in the point n from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1.", "input_spec": "The first line contains two integers n and d (2\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009d\u2009\u2264\u2009n\u2009-\u20091) \u2014 the point, which the frog wants to reach, and the maximal length of the frog jump. The second line contains a string s of length n, consisting of zeros and ones. If a character of the string s equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string s equal to one.", "output_spec": "If the frog can not reach the home, print -1. In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point n from the point 1.", "sample_inputs": ["8 4\n10010101", "4 2\n1001", "8 4\n11100101", "12 3\n101111100101"], "sample_outputs": ["2", "-1", "3", "4"], "notes": "NoteIn the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four).In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two."}, "src_uid": "c08d2ecdfc66cd07fbbd461b1f069c9e"} {"nl": {"description": "The 9-th grade student Gabriel noticed a caterpillar on a tree when walking around in a forest after the classes. The caterpillar was on the height h1 cm from the ground. On the height h2 cm (h2\u2009>\u2009h1) on the same tree hung an apple and the caterpillar was crawling to the apple.Gabriel is interested when the caterpillar gets the apple. He noted that the caterpillar goes up by a cm per hour by day and slips down by b cm per hour by night.In how many days Gabriel should return to the forest to see the caterpillar get the apple. You can consider that the day starts at 10 am and finishes at 10 pm. Gabriel's classes finish at 2 pm. You can consider that Gabriel noticed the caterpillar just after the classes at 2 pm.Note that the forest is magic so the caterpillar can slip down under the ground and then lift to the apple.", "input_spec": "The first line contains two integers h1,\u2009h2 (1\u2009\u2264\u2009h1\u2009<\u2009h2\u2009\u2264\u2009105) \u2014 the heights of the position of the caterpillar and the apple in centimeters. The second line contains two integers a,\u2009b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009105) \u2014 the distance the caterpillar goes up by day and slips down by night, in centimeters per hour.", "output_spec": "Print the only integer k \u2014 the number of days Gabriel should wait to return to the forest and see the caterpillar getting the apple. If the caterpillar can't get the apple print the only integer \u2009-\u20091.", "sample_inputs": ["10 30\n2 1", "10 13\n1 1", "10 19\n1 2", "1 50\n5 4"], "sample_outputs": ["1", "0", "-1", "1"], "notes": "NoteIn the first example at 10 pm of the first day the caterpillar gets the height 26. At 10 am of the next day it slips down to the height 14. And finally at 6 pm of the same day the caterpillar gets the apple.Note that in the last example the caterpillar was slipping down under the ground and getting the apple on the next day."}, "src_uid": "2c39638f07c3d789ba4c323a205487d7"} {"nl": {"description": "Today in the scientific lyceum of the Kingdom of Kremland, there was a biology lesson. The topic of the lesson was the genomes. Let's call the genome the string \"ACTG\".Maxim was very boring to sit in class, so the teacher came up with a task for him: on a given string $$$s$$$ consisting of uppercase letters and length of at least $$$4$$$, you need to find the minimum number of operations that you need to apply, so that the genome appears in it as a substring. For one operation, you can replace any letter in the string $$$s$$$ with the next or previous in the alphabet. For example, for the letter \"D\" the previous one will be \"C\", and the next\u00a0\u2014 \"E\". In this problem, we assume that for the letter \"A\", the previous one will be the letter \"Z\", and the next one will be \"B\", and for the letter \"Z\", the previous one is the letter \"Y\", and the next one is the letter \"A\".Help Maxim solve the problem that the teacher gave him.A string $$$a$$$ is a substring of a string $$$b$$$ if $$$a$$$ can be obtained from $$$b$$$ by deletion of several (possibly, zero or all) characters from the beginning and several (possibly, zero or all) characters from the end.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$4 \\leq n \\leq 50$$$)\u00a0\u2014 the length of the string $$$s$$$. The second line contains the string $$$s$$$, consisting of exactly $$$n$$$ uppercase letters of the Latin alphabet.", "output_spec": "Output the minimum number of operations that need to be applied to the string $$$s$$$ so that the genome appears as a substring in it.", "sample_inputs": ["4\nZCTH", "5\nZDATG", "6\nAFBAKC"], "sample_outputs": ["2", "5", "16"], "notes": "NoteIn the first example, you should replace the letter \"Z\" with \"A\" for one operation, the letter \"H\"\u00a0\u2014 with the letter \"G\" for one operation. You will get the string \"ACTG\", in which the genome is present as a substring.In the second example, we replace the letter \"A\" with \"C\" for two operations, the letter \"D\"\u00a0\u2014 with the letter \"A\" for three operations. You will get the string \"ZACTG\", in which there is a genome."}, "src_uid": "ee4f88abe4c9fa776abd15c5f3a94543"} {"nl": {"description": "You are given a sequence $$$a_1, a_2, \\dots, a_n$$$ consisting of $$$n$$$ integers.You can choose any non-negative integer $$$D$$$ (i.e. $$$D \\ge 0$$$), and for each $$$a_i$$$ you can: add $$$D$$$ (only once), i.\u2009e. perform $$$a_i := a_i + D$$$, or subtract $$$D$$$ (only once), i.\u2009e. perform $$$a_i := a_i - D$$$, or leave the value of $$$a_i$$$ unchanged. It is possible that after an operation the value $$$a_i$$$ becomes negative.Your goal is to choose such minimum non-negative integer $$$D$$$ and perform changes in such a way, that all $$$a_i$$$ are equal (i.e. $$$a_1=a_2=\\dots=a_n$$$).Print the required $$$D$$$ or, if it is impossible to choose such value $$$D$$$, print -1.For example, for array $$$[2, 8]$$$ the value $$$D=3$$$ is minimum possible because you can obtain the array $$$[5, 5]$$$ if you will add $$$D$$$ to $$$2$$$ and subtract $$$D$$$ from $$$8$$$. And for array $$$[1, 4, 7, 7]$$$ the value $$$D=3$$$ is also minimum possible. You can add it to $$$1$$$ and subtract it from $$$7$$$ and obtain the array $$$[4, 4, 4, 4]$$$.", "input_spec": "The first line of the input contains one integer $$$n$$$ ($$$1 \\le n \\le 100$$$) \u2014 the number of elements in $$$a$$$. The second line of the input contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 100$$$) \u2014 the sequence $$$a$$$.", "output_spec": "Print one integer \u2014 the minimum non-negative integer value $$$D$$$ such that if you add this value to some $$$a_i$$$, subtract this value from some $$$a_i$$$ and leave some $$$a_i$$$ without changes, all obtained values become equal. If it is impossible to choose such value $$$D$$$, print -1.", "sample_inputs": ["6\n1 4 4 7 4 1", "5\n2 2 5 2 5", "4\n1 3 3 7", "2\n2 8"], "sample_outputs": ["3", "3", "-1", "3"], "notes": null}, "src_uid": "d486a88939c132848a7efdf257b9b066"} {"nl": {"description": "A car moves from point A to point B at speed v meters per second. The action takes place on the X-axis. At the distance d meters from A there are traffic lights. Starting from time 0, for the first g seconds the green light is on, then for the following r seconds the red light is on, then again the green light is on for the g seconds, and so on.The car can be instantly accelerated from 0 to v and vice versa, can instantly slow down from the v to 0. Consider that it passes the traffic lights at the green light instantly. If the car approaches the traffic lights at the moment when the red light has just turned on, it doesn't have time to pass it. But if it approaches the traffic lights at the moment when the green light has just turned on, it can move. The car leaves point A at the time 0.What is the minimum time for the car to get from point A to point B without breaking the traffic rules?", "input_spec": "The first line contains integers l, d, v, g, r (1\u2009\u2264\u2009l,\u2009d,\u2009v,\u2009g,\u2009r\u2009\u2264\u20091000,\u2009d\u2009<\u2009l) \u2014 the distance between A and B (in meters), the distance from A to the traffic lights, car's speed, the duration of green light and the duration of red light.", "output_spec": "Output a single number \u2014 the minimum time that the car needs to get from point A to point B. Your output must have relative or absolute error less than 10\u2009-\u20096.", "sample_inputs": ["2 1 3 4 5", "5 4 3 1 1"], "sample_outputs": ["0.66666667", "2.33333333"], "notes": null}, "src_uid": "e4a4affb439365c843c9f9828d81b42c"} {"nl": {"description": "Vasya the programmer lives in the middle of the Programming subway branch. He has two girlfriends: Dasha and Masha, who live at the different ends of the branch, each one is unaware of the other one's existence.When Vasya has some free time, he goes to one of his girlfriends. He descends into the subway at some time, waits the first train to come and rides on it to the end of the branch to the corresponding girl. However, the trains run with different frequencies: a train goes to Dasha's direction every a minutes, but a train goes to Masha's direction every b minutes. If two trains approach at the same time, Vasya goes toward the direction with the lower frequency of going trains, that is, to the girl, to whose directions the trains go less frequently (see the note to the third sample).We know that the trains begin to go simultaneously before Vasya appears. That is the train schedule is such that there exists a moment of time when the two trains arrive simultaneously.Help Vasya count to which girlfriend he will go more often.", "input_spec": "The first line contains two integers a and b (a\u2009\u2260\u2009b,\u20091\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009106).", "output_spec": "Print \"Dasha\" if Vasya will go to Dasha more frequently, \"Masha\" if he will go to Masha more frequently, or \"Equal\" if he will go to both girlfriends with the same frequency.", "sample_inputs": ["3 7", "5 3", "2 3"], "sample_outputs": ["Dasha", "Masha", "Equal"], "notes": "NoteLet's take a look at the third sample. Let the trains start to go at the zero moment of time. It is clear that the moments of the trains' arrival will be periodic with period 6. That's why it is enough to show that if Vasya descends to the subway at a moment of time inside the interval (0,\u20096], he will go to both girls equally often. If he descends to the subway at a moment of time from 0 to 2, he leaves for Dasha on the train that arrives by the second minute.If he descends to the subway at a moment of time from 2 to 3, he leaves for Masha on the train that arrives by the third minute.If he descends to the subway at a moment of time from 3 to 4, he leaves for Dasha on the train that arrives by the fourth minute.If he descends to the subway at a moment of time from 4 to 6, he waits for both trains to arrive by the sixth minute and goes to Masha as trains go less often in Masha's direction.In sum Masha and Dasha get equal time \u2014 three minutes for each one, thus, Vasya will go to both girlfriends equally often."}, "src_uid": "06eb66df61ff5d61d678bbb3bb6553cc"} {"nl": {"description": "The final match of the Berland Football Cup has been held recently. The referee has shown $$$n$$$ yellow cards throughout the match. At the beginning of the match there were $$$a_1$$$ players in the first team and $$$a_2$$$ players in the second team.The rules of sending players off the game are a bit different in Berland football. If a player from the first team receives $$$k_1$$$ yellow cards throughout the match, he can no longer participate in the match \u2014 he's sent off. And if a player from the second team receives $$$k_2$$$ yellow cards, he's sent off. After a player leaves the match, he can no longer receive any yellow cards. Each of $$$n$$$ yellow cards was shown to exactly one player. Even if all players from one team (or even from both teams) leave the match, the game still continues.The referee has lost his records on who has received each yellow card. Help him to determine the minimum and the maximum number of players that could have been thrown out of the game.", "input_spec": "The first line contains one integer $$$a_1$$$ $$$(1 \\le a_1 \\le 1\\,000)$$$ \u2014 the number of players in the first team. The second line contains one integer $$$a_2$$$ $$$(1 \\le a_2 \\le 1\\,000)$$$ \u2014 the number of players in the second team. The third line contains one integer $$$k_1$$$ $$$(1 \\le k_1 \\le 1\\,000)$$$ \u2014 the maximum number of yellow cards a player from the first team can receive (after receiving that many yellow cards, he leaves the game). The fourth line contains one integer $$$k_2$$$ $$$(1 \\le k_2 \\le 1\\,000)$$$ \u2014 the maximum number of yellow cards a player from the second team can receive (after receiving that many yellow cards, he leaves the game). The fifth line contains one integer $$$n$$$ $$$(1 \\le n \\le a_1 \\cdot k_1 + a_2 \\cdot k_2)$$$ \u2014 the number of yellow cards that have been shown during the match.", "output_spec": "Print two integers \u2014 the minimum and the maximum number of players that could have been thrown out of the game.", "sample_inputs": ["2\n3\n5\n1\n8", "3\n1\n6\n7\n25", "6\n4\n9\n10\n89"], "sample_outputs": ["0 4", "4 4", "5 9"], "notes": "NoteIn the first example it could be possible that no player left the game, so the first number in the output is $$$0$$$. The maximum possible number of players that could have been forced to leave the game is $$$4$$$ \u2014 one player from the first team, and three players from the second.In the second example the maximum possible number of yellow cards has been shown $$$(3 \\cdot 6 + 1 \\cdot 7 = 25)$$$, so in any case all players were sent off."}, "src_uid": "2be8e0b8ad4d3de2930576c0209e8b91"} {"nl": {"description": "Johnny has a younger sister Anne, who is very clever and smart. As she came home from the kindergarten, she told his brother about the task that her kindergartener asked her to solve. The task was just to construct a triangle out of four sticks of different colours. Naturally, one of the sticks is extra. It is not allowed to break the sticks or use their partial length. Anne has perfectly solved this task, now she is asking Johnny to do the same.The boy answered that he would cope with it without any difficulty. However, after a while he found out that different tricky things can occur. It can happen that it is impossible to construct a triangle of a positive area, but it is possible to construct a degenerate triangle. It can be so, that it is impossible to construct a degenerate triangle even. As Johnny is very lazy, he does not want to consider such a big amount of cases, he asks you to help him.", "input_spec": "The first line of the input contains four space-separated positive integer numbers not exceeding 100 \u2014 lengthes of the sticks.", "output_spec": "Output TRIANGLE if it is possible to construct a non-degenerate triangle. Output SEGMENT if the first case cannot take place and it is possible to construct a degenerate triangle. Output IMPOSSIBLE if it is impossible to construct any triangle. Remember that you are to use three sticks. It is not allowed to break the sticks or use their partial length.", "sample_inputs": ["4 2 1 3", "7 2 2 4", "3 5 9 1"], "sample_outputs": ["TRIANGLE", "SEGMENT", "IMPOSSIBLE"], "notes": null}, "src_uid": "8f5df9a41e6e100aa65b9fc1d26e447a"} {"nl": {"description": "Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The i-th digit of the answer is 1 if and only if the i-th digit of the two given numbers differ. In the other case the i-th digit of the answer is 0.Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length \u221e (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.Now you are going to take part in Shapur's contest. See if you are faster and more accurate.", "input_spec": "There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.", "output_spec": "Write one line \u2014 the corresponding answer. Do not omit the leading 0s.", "sample_inputs": ["1010100\n0100101", "000\n111", "1110\n1010", "01110\n01100"], "sample_outputs": ["1110001", "111", "0100", "00010"], "notes": null}, "src_uid": "3714b7596a6b48ca5b7a346f60d90549"} {"nl": {"description": "Jabber ID on the national Berland service \u00abBabber\u00bb has a form <username>@<hostname>[/resource], where <username> \u2014 is a sequence of Latin letters (lowercase or uppercase), digits or underscores characters \u00ab_\u00bb, the length of <username> is between 1 and 16, inclusive. <hostname> \u2014 is a sequence of word separated by periods (characters \u00ab.\u00bb), where each word should contain only characters allowed for <username>, the length of each word is between 1 and 16, inclusive. The length of <hostname> is between 1 and 32, inclusive. <resource> \u2014 is a sequence of Latin letters (lowercase or uppercase), digits or underscores characters \u00ab_\u00bb, the length of <resource> is between 1 and 16, inclusive. The content of square brackets is optional \u2014 it can be present or can be absent.There are the samples of correct Jabber IDs: mike@codeforces.com, 007@en.codeforces.com/contest.Your task is to write program which checks if given string is a correct Jabber ID.", "input_spec": "The input contains of a single line. The line has the length between 1 and 100 characters, inclusive. Each characters has ASCII-code between 33 and 127, inclusive.", "output_spec": "Print YES or NO.", "sample_inputs": ["mike@codeforces.com", "john.smith@codeforces.ru/contest.icpc/12"], "sample_outputs": ["YES", "NO"], "notes": null}, "src_uid": "2a68157e327f92415067f127feb31e24"} {"nl": {"description": "Polycarp is going to participate in the contest. It starts at $$$h_1:m_1$$$ and ends at $$$h_2:m_2$$$. It is guaranteed that the contest lasts an even number of minutes (i.e. $$$m_1 \\% 2 = m_2 \\% 2$$$, where $$$x \\% y$$$ is $$$x$$$ modulo $$$y$$$). It is also guaranteed that the entire contest is held during a single day. And finally it is guaranteed that the contest lasts at least two minutes.Polycarp wants to know the time of the midpoint of the contest. For example, if the contest lasts from $$$10:00$$$ to $$$11:00$$$ then the answer is $$$10:30$$$, if the contest lasts from $$$11:10$$$ to $$$11:12$$$ then the answer is $$$11:11$$$.", "input_spec": "The first line of the input contains two integers $$$h_1$$$ and $$$m_1$$$ in the format hh:mm. The second line of the input contains two integers $$$h_2$$$ and $$$m_2$$$ in the same format (hh:mm). It is guaranteed that $$$0 \\le h_1, h_2 \\le 23$$$ and $$$0 \\le m_1, m_2 \\le 59$$$. It is guaranteed that the contest lasts an even number of minutes (i.e. $$$m_1 \\% 2 = m_2 \\% 2$$$, where $$$x \\% y$$$ is $$$x$$$ modulo $$$y$$$). It is also guaranteed that the entire contest is held during a single day. And finally it is guaranteed that the contest lasts at least two minutes.", "output_spec": "Print two integers $$$h_3$$$ and $$$m_3$$$ ($$$0 \\le h_3 \\le 23, 0 \\le m_3 \\le 59$$$) corresponding to the midpoint of the contest in the format hh:mm. Print each number as exactly two digits (prepend a number with leading zero if needed), separate them with ':'.", "sample_inputs": ["10:00\n11:00", "11:10\n11:12", "01:02\n03:02"], "sample_outputs": ["10:30", "11:11", "02:02"], "notes": null}, "src_uid": "f7a32a8325ce97c4c50ce3a5c282ec50"} {"nl": {"description": "During the breaks between competitions, top-model Izabella tries to develop herself and not to be bored. For example, now she tries to solve Rubik's cube 2x2x2.It's too hard to learn to solve Rubik's cube instantly, so she learns to understand if it's possible to solve the cube in some state using 90-degrees rotation of one face of the cube in any direction.To check her answers she wants to use a program which will for some state of cube tell if it's possible to solve it using one rotation, described above.Cube is called solved if for each face of cube all squares on it has the same color.https://en.wikipedia.org/wiki/Rubik's_Cube", "input_spec": "In first line given a sequence of 24 integers ai (1\u2009\u2264\u2009ai\u2009\u2264\u20096), where ai denotes color of i-th square. There are exactly 4 occurrences of all colors in this sequence.", "output_spec": "Print \u00abYES\u00bb (without quotes) if it's possible to solve cube using one rotation and \u00abNO\u00bb (without quotes) otherwise.", "sample_inputs": ["2 5 4 6 1 3 6 2 5 5 1 2 3 5 3 1 1 2 4 6 6 4 3 4", "5 3 5 3 2 5 2 5 6 2 6 2 4 4 4 4 1 1 1 1 6 3 6 3"], "sample_outputs": ["NO", "YES"], "notes": "NoteIn first test case cube looks like this: In second test case cube looks like this: It's possible to solve cube by rotating face with squares with numbers 13, 14, 15, 16."}, "src_uid": "881a820aa8184d9553278a0002a3b7c4"} {"nl": {"description": "Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word s. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word \"hello\". For example, if Vasya types the word \"ahhellllloou\", it will be considered that he said hello, and if he types \"hlelo\", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word s.", "input_spec": "The first and only line contains the word s, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.", "output_spec": "If Vasya managed to say hello, print \"YES\", otherwise print \"NO\".", "sample_inputs": ["ahhellllloou", "hlelo"], "sample_outputs": ["YES", "NO"], "notes": null}, "src_uid": "c5d19dc8f2478ee8d9cba8cc2e4cd838"} {"nl": {"description": "Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y\u2009\u2260\u2009x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x\u2009-\u2009y|\u2009<\u2009|x\u2009-\u2009b|. After the lift successfully transports you to floor y, you write down number y in your notepad.Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109\u2009+\u20097).", "input_spec": "The first line of the input contains four space-separated integers n, a, b, k (2\u2009\u2264\u2009n\u2009\u2264\u20095000, 1\u2009\u2264\u2009k\u2009\u2264\u20095000, 1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009n, a\u2009\u2260\u2009b).", "output_spec": "Print a single integer \u2014 the remainder after dividing the sought number of sequences by 1000000007 (109\u2009+\u20097).", "sample_inputs": ["5 2 4 1", "5 2 4 2", "5 3 4 1"], "sample_outputs": ["2", "2", "0"], "notes": "NoteTwo sequences p1,\u2009p2,\u2009...,\u2009pk and q1,\u2009q2,\u2009...,\u2009qk are distinct, if there is such integer j (1\u2009\u2264\u2009j\u2009\u2264\u2009k), that pj\u2009\u2260\u2009qj.Notes to the samples: In the first sample after the first trip you are either on floor 1, or on floor 3, because |1\u2009-\u20092|\u2009<\u2009|2\u2009-\u20094| and |3\u2009-\u20092|\u2009<\u2009|2\u2009-\u20094|. In the second sample there are two possible sequences: (1,\u20092); (1,\u20093). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip. "}, "src_uid": "142b06ed43b3473513995de995e19fc3"} {"nl": {"description": "Alice is the leader of the State Refactoring Party, and she is about to become the prime minister. The elections have just taken place. There are $$$n$$$ parties, numbered from $$$1$$$ to $$$n$$$. The $$$i$$$-th party has received $$$a_i$$$ seats in the parliament.Alice's party has number $$$1$$$. In order to become the prime minister, she needs to build a coalition, consisting of her party and possibly some other parties. There are two conditions she needs to fulfil: The total number of seats of all parties in the coalition must be a strict majority of all the seats, i.e. it must have strictly more than half of the seats. For example, if the parliament has $$$200$$$ (or $$$201$$$) seats, then the majority is $$$101$$$ or more seats. Alice's party must have at least $$$2$$$ times more seats than any other party in the coalition. For example, to invite a party with $$$50$$$ seats, Alice's party must have at least $$$100$$$ seats. For example, if $$$n=4$$$ and $$$a=[51, 25, 99, 25]$$$ (note that Alice'a party has $$$51$$$ seats), then the following set $$$[a_1=51, a_2=25, a_4=25]$$$ can create a coalition since both conditions will be satisfied. However, the following sets will not create a coalition: $$$[a_2=25, a_3=99, a_4=25]$$$ since Alice's party is not there; $$$[a_1=51, a_2=25]$$$ since coalition should have a strict majority; $$$[a_1=51, a_2=25, a_3=99]$$$ since Alice's party should have at least $$$2$$$ times more seats than any other party in the coalition. Alice does not have to minimise the number of parties in a coalition. If she wants, she can invite as many parties as she wants (as long as the conditions are satisfied). If Alice's party has enough people to create a coalition on her own, she can invite no parties.Note that Alice can either invite a party as a whole or not at all. It is not possible to invite only some of the deputies (seats) from another party. In other words, if Alice invites a party, she invites all its deputies.Find and print any suitable coalition.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$2 \\leq n \\leq 100$$$)\u00a0\u2014 the number of parties. The second line contains $$$n$$$ space separated integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\leq a_i \\leq 100$$$)\u00a0\u2014 the number of seats the $$$i$$$-th party has.", "output_spec": "If no coalition satisfying both conditions is possible, output a single line with an integer $$$0$$$. Otherwise, suppose there are $$$k$$$ ($$$1 \\leq k \\leq n$$$) parties in the coalition (Alice does not have to minimise the number of parties in a coalition), and their indices are $$$c_1, c_2, \\dots, c_k$$$ ($$$1 \\leq c_i \\leq n$$$). Output two lines, first containing the integer $$$k$$$, and the second the space-separated indices $$$c_1, c_2, \\dots, c_k$$$. You may print the parties in any order. Alice's party (number $$$1$$$) must be on that list. If there are multiple solutions, you may print any of them.", "sample_inputs": ["3\n100 50 50", "3\n80 60 60", "2\n6 5", "4\n51 25 99 25"], "sample_outputs": ["2\n1 2", "0", "1\n1", "3\n1 2 4"], "notes": "NoteIn the first example, Alice picks the second party. Note that she can also pick the third party or both of them. However, she cannot become prime minister without any of them, because $$$100$$$ is not a strict majority out of $$$200$$$.In the second example, there is no way of building a majority, as both other parties are too large to become a coalition partner.In the third example, Alice already has the majority. The fourth example is described in the problem statement."}, "src_uid": "0a71fdaaf08c18396324ad762b7379d7"} {"nl": {"description": "Tonio has a keyboard with only two letters, \"V\" and \"K\".One day, he has typed out a string s with only these two letters. He really likes it when the string \"VK\" appears, so he wishes to change at most one letter in the string (or do no changes) to maximize the number of occurrences of that string. Compute the maximum number of times \"VK\" can appear as a substring (i.\u00a0e. a letter \"K\" right after a letter \"V\") in the resulting string.", "input_spec": "The first line will contain a string s consisting only of uppercase English letters \"V\" and \"K\" with length not less than 1 and not greater than 100.", "output_spec": "Output a single integer, the maximum number of times \"VK\" can appear as a substring of the given string after changing at most one character.", "sample_inputs": ["VK", "VV", "V", "VKKKKKKKKKVVVVVVVVVK", "KVKV"], "sample_outputs": ["1", "1", "0", "3", "1"], "notes": "NoteFor the first case, we do not change any letters. \"VK\" appears once, which is the maximum number of times it could appear.For the second case, we can change the second character from a \"V\" to a \"K\". This will give us the string \"VK\". This has one occurrence of the string \"VK\" as a substring.For the fourth case, we can change the fourth character from a \"K\" to a \"V\". This will give us the string \"VKKVKKKKKKVVVVVVVVVK\". This has three occurrences of the string \"VK\" as a substring. We can check no other moves can give us strictly more occurrences."}, "src_uid": "578bae0fe6634882227ac371ebb38fc9"} {"nl": {"description": "A positive integer is called a 2-3-integer, if it is equal to 2x\u00b73y for some non-negative integers x and y. In other words, these integers are such integers that only have 2 and 3 among their prime divisors. For example, integers 1, 6, 9, 16 and 108 \u2014 are 2-3 integers, while 5, 10, 21 and 120 are not.Print the number of 2-3-integers on the given segment [l,\u2009r], i.\u00a0e. the number of sich 2-3-integers t that l\u2009\u2264\u2009t\u2009\u2264\u2009r.", "input_spec": "The only line contains two integers l and r (1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u20092\u00b7109).", "output_spec": "Print a single integer the number of 2-3-integers on the segment [l,\u2009r].", "sample_inputs": ["1 10", "100 200", "1 2000000000"], "sample_outputs": ["7", "5", "326"], "notes": "NoteIn the first example the 2-3-integers are 1, 2, 3, 4, 6, 8 and 9.In the second example the 2-3-integers are 108, 128, 144, 162 and 192."}, "src_uid": "05fac54ed2064b46338bb18f897a4411"} {"nl": {"description": "What joy! Petya's parents went on a business trip for the whole year and the playful kid is left all by himself. Petya got absolutely happy. He jumped on the bed and threw pillows all day long, until... Today Petya opened the cupboard and found a scary note there. His parents had left him with duties: he should water their favourite flower all year, each day, in the morning, in the afternoon and in the evening. \"Wait a second!\" \u2014 thought Petya. He know for a fact that if he fulfills the parents' task in the i-th (1\u2009\u2264\u2009i\u2009\u2264\u200912) month of the year, then the flower will grow by ai centimeters, and if he doesn't water the flower in the i-th month, then the flower won't grow this month. Petya also knows that try as he might, his parents won't believe that he has been watering the flower if it grows strictly less than by k centimeters. Help Petya choose the minimum number of months when he will water the flower, given that the flower should grow no less than by k centimeters.", "input_spec": "The first line contains exactly one integer k (0\u2009\u2264\u2009k\u2009\u2264\u2009100). The next line contains twelve space-separated integers: the i-th (1\u2009\u2264\u2009i\u2009\u2264\u200912) number in the line represents ai (0\u2009\u2264\u2009ai\u2009\u2264\u2009100). ", "output_spec": "Print the only integer \u2014 the minimum number of months when Petya has to water the flower so that the flower grows no less than by k centimeters. If the flower can't grow by k centimeters in a year, print -1.", "sample_inputs": ["5\n1 1 1 1 2 2 3 2 2 1 1 1", "0\n0 0 0 0 0 0 0 1 1 2 3 0", "11\n1 1 4 1 1 5 1 1 4 1 1 1"], "sample_outputs": ["2", "0", "3"], "notes": "NoteLet's consider the first sample test. There it is enough to water the flower during the seventh and the ninth month. Then the flower grows by exactly five centimeters.In the second sample Petya's parents will believe him even if the flower doesn't grow at all (k\u2009=\u20090). So, it is possible for Petya not to water the flower at all."}, "src_uid": "59dfa7a4988375febc5dccc27aca90a8"} {"nl": {"description": "Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to \"All World Classical Singing Festival\". Other than Devu, comedian Churu was also invited.Devu has provided organizers a list of the songs and required time for singing them. He will sing n songs, ith song will take ti minutes exactly. The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly.People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest.You as one of the organizers should make an optimal s\u0441hedule for the event. For some reasons you must follow the conditions: The duration of the event must be no more than d minutes; Devu must complete all his songs; With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible. If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.", "input_spec": "The first line contains two space separated integers n, d (1\u2009\u2264\u2009n\u2009\u2264\u2009100;\u00a01\u2009\u2264\u2009d\u2009\u2264\u200910000). The second line contains n space-separated integers: t1,\u2009t2,\u2009...,\u2009tn (1\u2009\u2264\u2009ti\u2009\u2264\u2009100).", "output_spec": "If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.", "sample_inputs": ["3 30\n2 2 1", "3 20\n2 1 1"], "sample_outputs": ["5", "-1"], "notes": "NoteConsider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way: First Churu cracks a joke in 5 minutes. Then Devu performs the first song for 2 minutes. Then Churu cracks 2 jokes in 10 minutes. Now Devu performs second song for 2 minutes. Then Churu cracks 2 jokes in 10 minutes. Now finally Devu will perform his last song in 1 minutes. Total time spent is 5\u2009+\u20092\u2009+\u200910\u2009+\u20092\u2009+\u200910\u2009+\u20091\u2009=\u200930 minutes.Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1. "}, "src_uid": "b16f5f5c4eeed2a3700506003e8ea8ea"} {"nl": {"description": "Today, Mezo is playing a game. Zoma, a character in that game, is initially at position $$$x = 0$$$. Mezo starts sending $$$n$$$ commands to Zoma. There are two possible commands: 'L' (Left) sets the position $$$x: =x - 1$$$; 'R' (Right) sets the position $$$x: =x + 1$$$. Unfortunately, Mezo's controller malfunctions sometimes. Some commands are sent successfully and some are ignored. If the command is ignored then the position $$$x$$$ doesn't change and Mezo simply proceeds to the next command.For example, if Mezo sends commands \"LRLR\", then here are some possible outcomes (underlined commands are sent successfully): \"LRLR\" \u2014 Zoma moves to the left, to the right, to the left again and to the right for the final time, ending up at position $$$0$$$; \"LRLR\" \u2014 Zoma recieves no commands, doesn't move at all and ends up at position $$$0$$$ as well; \"LRLR\" \u2014 Zoma moves to the left, then to the left again and ends up in position $$$-2$$$. Mezo doesn't know which commands will be sent successfully beforehand. Thus, he wants to know how many different positions may Zoma end up at.", "input_spec": "The first line contains $$$n$$$ $$$(1 \\le n \\le 10^5)$$$ \u2014 the number of commands Mezo sends. The second line contains a string $$$s$$$ of $$$n$$$ commands, each either 'L' (Left) or 'R' (Right).", "output_spec": "Print one integer \u2014 the number of different positions Zoma may end up at.", "sample_inputs": ["4\nLRLR"], "sample_outputs": ["5"], "notes": "NoteIn the example, Zoma may end up anywhere between $$$-2$$$ and $$$2$$$."}, "src_uid": "098ade88ed90664da279fe8a5a54b5ba"} {"nl": {"description": "Uncle Fyodor, Matroskin the Cat and Sharic the Dog live their simple but happy lives in Prostokvashino. Sometimes they receive parcels from Uncle Fyodor\u2019s parents and sometimes from anonymous benefactors, in which case it is hard to determine to which one of them the package has been sent. A photographic rifle is obviously for Sharic who loves hunting and fish is for Matroskin, but for whom was a new video game console meant? Every one of the three friends claimed that the present is for him and nearly quarreled. Uncle Fyodor had an idea how to solve the problem justly: they should suppose that the console was sent to all three of them and play it in turns. Everybody got relieved but then yet another burning problem popped up \u2014 who will play first? This time Matroskin came up with a brilliant solution, suggesting the most fair way to find it out: play rock-paper-scissors together. The rules of the game are very simple. On the count of three every player shows a combination with his hand (or paw). The combination corresponds to one of three things: a rock, scissors or paper. Some of the gestures win over some other ones according to well-known rules: the rock breaks the scissors, the scissors cut the paper, and the paper gets wrapped over the stone. Usually there are two players. Yet there are three friends, that\u2019s why they decided to choose the winner like that: If someone shows the gesture that wins over the other two players, then that player wins. Otherwise, another game round is required. Write a program that will determine the winner by the gestures they have shown.", "input_spec": "The first input line contains the name of the gesture that Uncle Fyodor showed, the second line shows which gesture Matroskin showed and the third line shows Sharic\u2019s gesture. ", "output_spec": "Print \"F\" (without quotes) if Uncle Fyodor wins. Print \"M\" if Matroskin wins and \"S\" if Sharic wins. If it is impossible to find the winner, print \"?\".", "sample_inputs": ["rock\nrock\nrock", "paper\nrock\nrock", "scissors\nrock\nrock", "scissors\npaper\nrock"], "sample_outputs": ["?", "F", "?", "?"], "notes": null}, "src_uid": "072c7d29a1b338609a72ab6b73988282"} {"nl": {"description": "Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was n integers a1,\u2009a2,\u2009...,\u2009an. These numbers mean that Greg needs to do exactly n exercises today. Besides, Greg should repeat the i-th in order exercise ai times.Greg now only does three types of exercises: \"chest\" exercises, \"biceps\" exercises and \"back\" exercises. Besides, his training is cyclic, that is, the first exercise he does is a \"chest\" one, the second one is \"biceps\", the third one is \"back\", the fourth one is \"chest\", the fifth one is \"biceps\", and so on to the n-th exercise.Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u200920). The second line contains n integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u200925) \u2014 the number of times Greg repeats the exercises.", "output_spec": "Print word \"chest\" (without the quotes), if the chest gets the most exercise, \"biceps\" (without the quotes), if the biceps gets the most exercise and print \"back\" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous.", "sample_inputs": ["2\n2 8", "3\n5 1 10", "7\n3 3 2 7 9 6 8"], "sample_outputs": ["biceps", "back", "chest"], "notes": "NoteIn the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises.In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises.In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise."}, "src_uid": "579021de624c072f5e0393aae762117e"} {"nl": {"description": "There is a card game called \"Durak\", which means \"Fool\" in Russian. The game is quite popular in the countries that used to form USSR. The problem does not state all the game's rules explicitly \u2014 you can find them later yourselves if you want.To play durak you need a pack of 36 cards. Each card has a suit (\"S\", \"H\", \"D\" and \"C\") and a rank (in the increasing order \"6\", \"7\", \"8\", \"9\", \"T\", \"J\", \"Q\", \"K\" and \"A\"). At the beginning of the game one suit is arbitrarily chosen as trump. The players move like that: one player puts one or several of his cards on the table and the other one should beat each of them with his cards.A card beats another one if both cards have similar suits and the first card has a higher rank then the second one. Besides, a trump card can beat any non-trump card whatever the cards\u2019 ranks are. In all other cases you can not beat the second card with the first one.You are given the trump suit and two different cards. Determine whether the first one beats the second one or not.", "input_spec": "The first line contains the tramp suit. It is \"S\", \"H\", \"D\" or \"C\". The second line contains the description of the two different cards. Each card is described by one word consisting of two symbols. The first symbol stands for the rank (\"6\", \"7\", \"8\", \"9\", \"T\", \"J\", \"Q\", \"K\" and \"A\"), and the second one stands for the suit (\"S\", \"H\", \"D\" and \"C\").", "output_spec": "Print \"YES\" (without the quotes) if the first cards beats the second one. Otherwise, print \"NO\" (also without the quotes).", "sample_inputs": ["H\nQH 9S", "S\n8D 6D", "C\n7H AS"], "sample_outputs": ["YES", "YES", "NO"], "notes": null}, "src_uid": "da13bd5a335c7f81c5a963b030655c26"} {"nl": {"description": "Welcome to Codeforces Stock Exchange! We're pretty limited now as we currently allow trading on one stock, Codeforces Ltd. We hope you'll still be able to make profit from the market!In the morning, there are $$$n$$$ opportunities to buy shares. The $$$i$$$-th of them allows to buy as many shares as you want, each at the price of $$$s_i$$$ bourles.In the evening, there are $$$m$$$ opportunities to sell shares. The $$$i$$$-th of them allows to sell as many shares as you want, each at the price of $$$b_i$$$ bourles. You can't sell more shares than you have.It's morning now and you possess $$$r$$$ bourles and no shares.What is the maximum number of bourles you can hold after the evening?", "input_spec": "The first line of the input contains three integers $$$n, m, r$$$ ($$$1 \\leq n \\leq 30$$$, $$$1 \\leq m \\leq 30$$$, $$$1 \\leq r \\leq 1000$$$) \u2014 the number of ways to buy the shares on the market, the number of ways to sell the shares on the market, and the number of bourles you hold now. The next line contains $$$n$$$ integers $$$s_1, s_2, \\dots, s_n$$$ ($$$1 \\leq s_i \\leq 1000$$$); $$$s_i$$$ indicates the opportunity to buy shares at the price of $$$s_i$$$ bourles. The following line contains $$$m$$$ integers $$$b_1, b_2, \\dots, b_m$$$ ($$$1 \\leq b_i \\leq 1000$$$); $$$b_i$$$ indicates the opportunity to sell shares at the price of $$$b_i$$$ bourles.", "output_spec": "Output a single integer \u2014 the maximum number of bourles you can hold after the evening.", "sample_inputs": ["3 4 11\n4 2 5\n4 4 5 4", "2 2 50\n5 7\n4 2"], "sample_outputs": ["26", "50"], "notes": "NoteIn the first example test, you have $$$11$$$ bourles in the morning. It's optimal to buy $$$5$$$ shares of a stock at the price of $$$2$$$ bourles in the morning, and then to sell all of them at the price of $$$5$$$ bourles in the evening. It's easy to verify that you'll have $$$26$$$ bourles after the evening.In the second example test, it's optimal not to take any action."}, "src_uid": "42f25d492bddc12d3d89d39315d63cb9"} {"nl": {"description": "Last week, Hamed learned about a new type of equations in his math class called Modular Equations. Lets define i modulo j as the remainder of division of i by j and denote it by . A Modular Equation, as Hamed's teacher described, is an equation of the form in which a and b are two non-negative integers and x is a variable. We call a positive integer x for which a solution of our equation.Hamed didn't pay much attention to the class since he was watching a movie. He only managed to understand the definitions of these equations.Now he wants to write his math exercises but since he has no idea how to do that, he asked you for help. He has told you all he knows about Modular Equations and asked you to write a program which given two numbers a and b determines how many answers the Modular Equation has.", "input_spec": "In the only line of the input two space-separated integers a and b (0\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009109) are given.", "output_spec": "If there is an infinite number of answers to our equation, print \"infinity\" (without the quotes). Otherwise print the number of solutions of the Modular Equation .", "sample_inputs": ["21 5", "9435152 272", "10 10"], "sample_outputs": ["2", "282", "infinity"], "notes": "NoteIn the first sample the answers of the Modular Equation are 8 and 16 since "}, "src_uid": "6e0715f9239787e085b294139abb2475"} {"nl": {"description": "Tanechka is shopping in the toy shop. There are exactly $$$n$$$ toys in the shop for sale, the cost of the $$$i$$$-th toy is $$$i$$$ burles. She wants to choose two toys in such a way that their total cost is $$$k$$$ burles. How many ways to do that does she have?Each toy appears in the shop exactly once. Pairs $$$(a, b)$$$ and $$$(b, a)$$$ are considered equal. Pairs $$$(a, b)$$$, where $$$a=b$$$, are not allowed.", "input_spec": "The first line of the input contains two integers $$$n$$$, $$$k$$$ ($$$1 \\le n, k \\le 10^{14}$$$) \u2014 the number of toys and the expected total cost of the pair of toys.", "output_spec": "Print the number of ways to choose the pair of toys satisfying the condition above. Print 0, if Tanechka can choose no pair of toys in such a way that their total cost is $$$k$$$ burles.", "sample_inputs": ["8 5", "8 15", "7 20", "1000000000000 1000000000001"], "sample_outputs": ["2", "1", "0", "500000000000"], "notes": "NoteIn the first example Tanechka can choose the pair of toys ($$$1, 4$$$) or the pair of toys ($$$2, 3$$$).In the second example Tanechka can choose only the pair of toys ($$$7, 8$$$).In the third example choosing any pair of toys will lead to the total cost less than $$$20$$$. So the answer is 0.In the fourth example she can choose the following pairs: $$$(1, 1000000000000)$$$, $$$(2, 999999999999)$$$, $$$(3, 999999999998)$$$, ..., $$$(500000000000, 500000000001)$$$. The number of such pairs is exactly $$$500000000000$$$."}, "src_uid": "98624ab2fcd2a50a75788a29e04999ad"} {"nl": {"description": "The Little Elephant loves numbers. He has a positive integer x. The Little Elephant wants to find the number of positive integers d, such that d is the divisor of x, and x and d have at least one common (the same) digit in their decimal representations. Help the Little Elephant to find the described number.", "input_spec": "A single line contains a single integer x (1\u2009\u2264\u2009x\u2009\u2264\u2009109).", "output_spec": "In a single line print an integer \u2014 the answer to the problem.", "sample_inputs": ["1", "10"], "sample_outputs": ["1", "2"], "notes": null}, "src_uid": "ada94770281765f54ab264b4a1ef766e"} {"nl": {"description": "The last stage of Football World Cup is played using the play-off system.There are n teams left in this stage, they are enumerated from 1 to n. Several rounds are held, in each round the remaining teams are sorted in the order of their ids, then the first in this order plays with the second, the third\u00a0\u2014 with the fourth, the fifth\u00a0\u2014 with the sixth, and so on. It is guaranteed that in each round there is even number of teams. The winner of each game advances to the next round, the loser is eliminated from the tournament, there are no draws. In the last round there is the only game with two remaining teams: the round is called the Final, the winner is called the champion, and the tournament is over.Arkady wants his two favorite teams to play in the Final. Unfortunately, the team ids are already determined, and it may happen that it is impossible for teams to meet in the Final, because they are to meet in some earlier stage, if they are strong enough. Determine, in which round the teams with ids a and b can meet.", "input_spec": "The only line contains three integers n, a and b (2\u2009\u2264\u2009n\u2009\u2264\u2009256, 1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009n)\u00a0\u2014 the total number of teams, and the ids of the teams that Arkady is interested in. It is guaranteed that n is such that in each round an even number of team advance, and that a and b are not equal.", "output_spec": "In the only line print \"Final!\" (without quotes), if teams a and b can meet in the Final. Otherwise, print a single integer\u00a0\u2014 the number of the round in which teams a and b can meet. The round are enumerated from 1.", "sample_inputs": ["4 1 2", "8 2 6", "8 7 5"], "sample_outputs": ["1", "Final!", "2"], "notes": "NoteIn the first example teams 1 and 2 meet in the first round.In the second example teams 2 and 6 can only meet in the third round, which is the Final, if they win all their opponents in earlier rounds.In the third example the teams with ids 7 and 5 can meet in the second round, if they win their opponents in the first round."}, "src_uid": "a753bfa7bde157e108f34a28240f441f"} {"nl": {"description": "Little Dima misbehaved during a math lesson a lot and the nasty teacher Mr. Pickles gave him the following problem as a punishment. Find all integer solutions x (0\u2009<\u2009x\u2009<\u2009109) of the equation:x\u2009=\u2009b\u00b7s(x)a\u2009+\u2009c,\u2009 where a, b, c are some predetermined constant values and function s(x) determines the sum of all digits in the decimal representation of number x.The teacher gives this problem to Dima for each lesson. He changes only the parameters of the equation: a, b, c. Dima got sick of getting bad marks and he asks you to help him solve this challenging problem.", "input_spec": "The first line contains three space-separated integers: a,\u2009b,\u2009c (1\u2009\u2264\u2009a\u2009\u2264\u20095;\u00a01\u2009\u2264\u2009b\u2009\u2264\u200910000;\u00a0\u2009-\u200910000\u2009\u2264\u2009c\u2009\u2264\u200910000).", "output_spec": "Print integer n \u2014 the number of the solutions that you've found. Next print n integers in the increasing order \u2014 the solutions of the given equation. Print only integer solutions that are larger than zero and strictly less than 109.", "sample_inputs": ["3 2 8", "1 2 -18", "2 2 -1"], "sample_outputs": ["3\n10 2008 13726", "0", "4\n1 31 337 967"], "notes": null}, "src_uid": "e477185b94f93006d7ae84c8f0817009"} {"nl": {"description": "Those days, many boys use beautiful girls' photos as avatars in forums. So it is pretty hard to tell the gender of a user at the first glance. Last year, our hero went to a forum and had a nice chat with a beauty (he thought so). After that they talked very often and eventually they became a couple in the network. But yesterday, he came to see \"her\" in the real world and found out \"she\" is actually a very strong man! Our hero is very sad and he is too tired to love again now. So he came up with a way to recognize users' genders by their user names.This is his method: if the number of distinct characters in one's user name is odd, then he is a male, otherwise she is a female. You are given the string that denotes the user name, please help our hero to determine the gender of this user by his method.", "input_spec": "The first line contains a non-empty string, that contains only lowercase English letters \u2014 the user name. This string contains at most 100 letters.", "output_spec": "If it is a female by our hero's method, print \"CHAT WITH HER!\" (without the quotes), otherwise, print \"IGNORE HIM!\" (without the quotes).", "sample_inputs": ["wjmzbmr", "xiaodao", "sevenkplus"], "sample_outputs": ["CHAT WITH HER!", "IGNORE HIM!", "CHAT WITH HER!"], "notes": "NoteFor the first example. There are 6 distinct characters in \"wjmzbmr\". These characters are: \"w\", \"j\", \"m\", \"z\", \"b\", \"r\". So wjmzbmr is a female and you should print \"CHAT WITH HER!\"."}, "src_uid": "a8c14667b94b40da087501fd4bdd7818"} {"nl": {"description": " ", "input_spec": "The input contains two integers a,\u2009b (1\u2009\u2264\u2009a\u2009\u2264\u200910,\u20090\u2009\u2264\u2009b\u2009\u2264\u200922\u00b7a\u2009-\u20091) separated by a single space.", "output_spec": "Output two integers separated by a single space.", "sample_inputs": ["1 0", "2 15", "4 160"], "sample_outputs": ["0 0", "3 0", "12 12"], "notes": null}, "src_uid": "879ac20ae5d3e7f1002afe907d9887df"} {"nl": {"description": "Artem has an array of n positive integers. Artem decided to play with it. The game consists of n moves. Each move goes like this. Artem chooses some element of the array and removes it. For that, he gets min(a,\u2009b) points, where a and b are numbers that were adjacent with the removed number. If the number doesn't have an adjacent number to the left or right, Artem doesn't get any points. After the element is removed, the two parts of the array glue together resulting in the new array that Artem continues playing with. Borya wondered what maximum total number of points Artem can get as he plays this game.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20095\u00b7105) \u2014 the number of elements in the array. The next line contains n integers ai (1\u2009\u2264\u2009ai\u2009\u2264\u2009106) \u2014 the values of the array elements.", "output_spec": "In a single line print a single integer \u2014 the maximum number of points Artem can get.", "sample_inputs": ["5\n3 1 5 2 6", "5\n1 2 3 4 5", "5\n1 100 101 100 1"], "sample_outputs": ["11", "6", "102"], "notes": null}, "src_uid": "e7e0f9069166fe992abe6f0e19caa6a1"} {"nl": {"description": "Being a nonconformist, Volodya is displeased with the current state of things, particularly with the order of natural numbers (natural number is positive integer number). He is determined to rearrange them. But there are too many natural numbers, so Volodya decided to start with the first n. He writes down the following sequence of numbers: firstly all odd integers from 1 to n (in ascending order), then all even integers from 1 to n (also in ascending order). Help our hero to find out which number will stand at the position number k.", "input_spec": "The only line of input contains integers n and k (1\u2009\u2264\u2009k\u2009\u2264\u2009n\u2009\u2264\u20091012). Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.", "output_spec": "Print the number that will stand at the position number k after Volodya's manipulations.", "sample_inputs": ["10 3", "7 7"], "sample_outputs": ["5", "6"], "notes": "NoteIn the first sample Volodya's sequence will look like this: {1, 3, 5, 7, 9, 2, 4, 6, 8, 10}. The third place in the sequence is therefore occupied by the number 5."}, "src_uid": "1f8056884db00ad8294a7cc0be75fe97"} {"nl": {"description": "To make a paper airplane, one has to use a rectangular piece of paper. From a sheet of standard size you can make $$$s$$$ airplanes.A group of $$$k$$$ people decided to make $$$n$$$ airplanes each. They are going to buy several packs of paper, each of them containing $$$p$$$ sheets, and then distribute the sheets between the people. Each person should have enough sheets to make $$$n$$$ airplanes. How many packs should they buy?", "input_spec": "The only line contains four integers $$$k$$$, $$$n$$$, $$$s$$$, $$$p$$$ ($$$1 \\le k, n, s, p \\le 10^4$$$)\u00a0\u2014 the number of people, the number of airplanes each should make, the number of airplanes that can be made using one sheet and the number of sheets in one pack, respectively.", "output_spec": "Print a single integer\u00a0\u2014 the minimum number of packs they should buy.", "sample_inputs": ["5 3 2 3", "5 3 100 1"], "sample_outputs": ["4", "5"], "notes": "NoteIn the first sample they have to buy $$$4$$$ packs of paper: there will be $$$12$$$ sheets in total, and giving $$$2$$$ sheets to each person is enough to suit everyone's needs.In the second sample they have to buy a pack for each person as they can't share sheets."}, "src_uid": "73f0c7cfc06a9b04e4766d6aa61fc780"} {"nl": {"description": "Once upon a time a child got a test consisting of multiple-choice questions as homework. A multiple-choice question consists of four choices: A, B, C and D. Each choice has a description, and the child should find out the only one that is correct.Fortunately the child knows how to solve such complicated test. The child will follow the algorithm: If there is some choice whose description at least twice shorter than all other descriptions, or at least twice longer than all other descriptions, then the child thinks the choice is great. If there is exactly one great choice then the child chooses it. Otherwise the child chooses C (the child think it is the luckiest choice). You are given a multiple-choice questions, can you predict child's choose?", "input_spec": "The first line starts with \"A.\" (without quotes), then followed the description of choice A. The next three lines contains the descriptions of the other choices in the same format. They are given in order: B, C, D. Please note, that the description goes after prefix \"X.\", so the prefix mustn't be counted in description's length. Each description is non-empty and consists of at most 100 characters. Each character can be either uppercase English letter or lowercase English letter, or \"_\". ", "output_spec": "Print a single line with the child's choice: \"A\", \"B\", \"C\" or \"D\" (without quotes).", "sample_inputs": ["A.VFleaKing_is_the_author_of_this_problem\nB.Picks_is_the_author_of_this_problem\nC.Picking_is_the_author_of_this_problem\nD.Ftiasch_is_cute", "A.ab\nB.abcde\nC.ab\nD.abc", "A.c\nB.cc\nC.c\nD.c"], "sample_outputs": ["D", "C", "B"], "notes": "NoteIn the first sample, the first choice has length 39, the second one has length 35, the third one has length 37, and the last one has length 15. The choice D (length 15) is twice shorter than all other choices', so it is great choice. There is no other great choices so the child will choose D.In the second sample, no choice is great, so the child will choose the luckiest choice C.In the third sample, the choice B (length 2) is twice longer than all other choices', so it is great choice. There is no other great choices so the child will choose B."}, "src_uid": "30725e340dc07f552f0cce359af226a4"} {"nl": {"description": "Arthur and Alexander are number busters. Today they've got a competition. Arthur took a group of four integers a,\u2009b,\u2009w,\u2009x (0\u2009\u2264\u2009b\u2009<\u2009w,\u20090\u2009<\u2009x\u2009<\u2009w) and Alexander took integer \u0441. Arthur and Alexander use distinct approaches to number bustings. Alexander is just a regular guy. Each second, he subtracts one from his number. In other words, he performs the assignment: c\u2009=\u2009c\u2009-\u20091. Arthur is a sophisticated guy. Each second Arthur performs a complex operation, described as follows: if b\u2009\u2265\u2009x, perform the assignment b\u2009=\u2009b\u2009-\u2009x, if b\u2009<\u2009x, then perform two consecutive assignments a\u2009=\u2009a\u2009-\u20091;\u00a0b\u2009=\u2009w\u2009-\u2009(x\u2009-\u2009b).You've got numbers a,\u2009b,\u2009w,\u2009x,\u2009c. Determine when Alexander gets ahead of Arthur if both guys start performing the operations at the same time. Assume that Alexander got ahead of Arthur if c\u2009\u2264\u2009a.", "input_spec": "The first line contains integers a,\u2009b,\u2009w,\u2009x,\u2009c (1\u2009\u2264\u2009a\u2009\u2264\u20092\u00b7109,\u20091\u2009\u2264\u2009w\u2009\u2264\u20091000,\u20090\u2009\u2264\u2009b\u2009<\u2009w,\u20090\u2009<\u2009x\u2009<\u2009w,\u20091\u2009\u2264\u2009c\u2009\u2264\u20092\u00b7109).", "output_spec": "Print a single integer \u2014 the minimum time in seconds Alexander needs to get ahead of Arthur. You can prove that the described situation always occurs within the problem's limits.", "sample_inputs": ["4 2 3 1 6", "4 2 3 1 7", "1 2 3 2 6", "1 1 2 1 1"], "sample_outputs": ["2", "4", "13", "0"], "notes": null}, "src_uid": "a1db3dd9f8d0f0cad7bdeb1780707143"} {"nl": {"description": "Dr. Evil kidnapped Mahmoud and Ehab in the evil land because of their performance in the Evil Olympiad in Informatics (EOI). He decided to give them some problems to let them go.Dr. Evil is interested in sets, He has a set of n integers. Dr. Evil calls a set of integers evil if the MEX of it is exactly x. the MEX of a set of integers is the minimum non-negative integer that doesn't exist in it. For example, the MEX of the set {0,\u20092,\u20094} is 1 and the MEX of the set {1,\u20092,\u20093} is 0 .Dr. Evil is going to make his set evil. To do this he can perform some operations. During each operation he can add some non-negative integer to his set or erase some element from it. What is the minimal number of operations Dr. Evil has to perform to make his set evil?", "input_spec": "The first line contains two integers n and x (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 0\u2009\u2264\u2009x\u2009\u2264\u2009100)\u00a0\u2014 the size of the set Dr. Evil owns, and the desired MEX. The second line contains n distinct non-negative integers not exceeding 100 that represent the set.", "output_spec": "The only line should contain one integer\u00a0\u2014 the minimal number of operations Dr. Evil should perform.", "sample_inputs": ["5 3\n0 4 5 6 7", "1 0\n0", "5 0\n1 2 3 4 5"], "sample_outputs": ["2", "1", "0"], "notes": "NoteFor the first test case Dr. Evil should add 1 and 2 to the set performing 2 operations.For the second test case Dr. Evil should erase 0 from the set. After that, the set becomes empty, so the MEX of it is 0.In the third test case the set is already evil."}, "src_uid": "21f579ba807face432a7664091581cd8"} {"nl": {"description": "In this problem you will meet the simplified model of game King of Thieves.In a new ZeptoLab game called \"King of Thieves\" your aim is to reach a chest with gold by controlling your character, avoiding traps and obstacles on your way. An interesting feature of the game is that you can design your own levels that will be available to other players. Let's consider the following simple design of a level.A dungeon consists of n segments located at a same vertical level, each segment is either a platform that character can stand on, or a pit with a trap that makes player lose if he falls into it. All segments have the same length, platforms on the scheme of the level are represented as '*' and pits are represented as '.'. One of things that affects speedrun characteristics of the level is a possibility to perform a series of consecutive jumps of the same length. More formally, when the character is on the platform number i1, he can make a sequence of jumps through the platforms i1\u2009<\u2009i2\u2009<\u2009...\u2009<\u2009ik, if i2\u2009-\u2009i1\u2009=\u2009i3\u2009-\u2009i2\u2009=\u2009...\u2009=\u2009ik\u2009-\u2009ik\u2009-\u20091. Of course, all segments i1,\u2009i2,\u2009... ik should be exactly the platforms, not pits. Let's call a level to be good if you can perform a sequence of four jumps of the same length or in the other words there must be a sequence i1,\u2009i2,\u2009...,\u2009i5, consisting of five platforms so that the intervals between consecutive platforms are of the same length. Given the scheme of the level, check if it is good.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of segments on the level. Next line contains the scheme of the level represented as a string of n characters '*' and '.'.", "output_spec": "If the level is good, print the word \"yes\" (without the quotes), otherwise print the word \"no\" (without the quotes).", "sample_inputs": ["16\n.**.*..*.***.**.", "11\n.*.*...*.*."], "sample_outputs": ["yes", "no"], "notes": "NoteIn the first sample test you may perform a sequence of jumps through platforms 2,\u20095,\u20098,\u200911,\u200914."}, "src_uid": "12d451eb1b401a8f426287c4c6909e4b"} {"nl": {"description": "For a positive integer n let's define a function f:f(n)\u2009=\u2009\u2009-\u20091\u2009+\u20092\u2009-\u20093\u2009+\u2009..\u2009+\u2009(\u2009-\u20091)nn Your task is to calculate f(n) for a given integer n.", "input_spec": "The single line contains the positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091015).", "output_spec": "Print f(n) in a single line.", "sample_inputs": ["4", "5"], "sample_outputs": ["2", "-3"], "notes": "Notef(4)\u2009=\u2009\u2009-\u20091\u2009+\u20092\u2009-\u20093\u2009+\u20094\u2009=\u20092f(5)\u2009=\u2009\u2009-\u20091\u2009+\u20092\u2009-\u20093\u2009+\u20094\u2009-\u20095\u2009=\u2009\u2009-\u20093"}, "src_uid": "689e7876048ee4eb7479e838c981f068"} {"nl": {"description": "Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired and came up with the tree of his own which he called a k-tree.A k-tree is an infinite rooted tree where: each vertex has exactly k children; each edge has some weight; if we look at the edges that goes from some vertex to its children (exactly k edges), then their weights will equal 1,\u20092,\u20093,\u2009...,\u2009k. The picture below shows a part of a 3-tree. As soon as Dima, a good friend of Lesha, found out about the tree, he immediately wondered: \"How many paths of total weight n (the sum of all weights of the edges in the path) are there, starting from the root of a k-tree and also containing at least one edge of weight at least d?\".Help Dima find an answer to his question. As the number of ways can be rather large, print it modulo 1000000007 (109\u2009+\u20097). ", "input_spec": "A single line contains three space-separated integers: n, k and d (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u2009100; 1\u2009\u2264\u2009d\u2009\u2264\u2009k).", "output_spec": "Print a single integer \u2014 the answer to the problem modulo 1000000007 (109\u2009+\u20097). ", "sample_inputs": ["3 3 2", "3 3 3", "4 3 2", "4 5 2"], "sample_outputs": ["3", "1", "6", "7"], "notes": null}, "src_uid": "894a58c9bba5eba11b843c5c5ca0025d"} {"nl": {"description": "Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as \u00ab.\u00bb, 1 as \u00ab-.\u00bb and 2 as \u00ab--\u00bb. You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.", "input_spec": "The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).", "output_spec": "Output the decoded ternary number. It can have leading zeroes.", "sample_inputs": [".-.--", "--.", "-..-.--"], "sample_outputs": ["012", "20", "1012"], "notes": null}, "src_uid": "46b5a1cd1bd2985f2752662b7dbb1869"} {"nl": {"description": "Lengths are measures in Baden in inches and feet. To a length from centimeters it is enough to know that an inch equals three centimeters in Baden and one foot contains 12 inches.You are given a length equal to n centimeters. Your task is to convert it to feet and inches so that the number of feet was maximum. The result should be an integer rounded to the closest value containing an integral number of inches.Note that when you round up, 1 cm rounds up to 0 inches and 2 cm round up to 1 inch.", "input_spec": "The only line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u200910000).", "output_spec": "Print two non-negative space-separated integers a and b, where a is the numbers of feet and b is the number of inches.", "sample_inputs": ["42", "5"], "sample_outputs": ["1 2", "0 2"], "notes": null}, "src_uid": "5d4f38ffd1849862623325fdbe06cd00"} {"nl": {"description": "On a chessboard with a width of $$$n$$$ and a height of $$$n$$$, rows are numbered from bottom to top from $$$1$$$ to $$$n$$$, columns are numbered from left to right from $$$1$$$ to $$$n$$$. Therefore, for each cell of the chessboard, you can assign the coordinates $$$(r,c)$$$, where $$$r$$$ is the number of the row, and $$$c$$$ is the number of the column.The white king has been sitting in a cell with $$$(1,1)$$$ coordinates for a thousand years, while the black king has been sitting in a cell with $$$(n,n)$$$ coordinates. They would have sat like that further, but suddenly a beautiful coin fell on the cell with coordinates $$$(x,y)$$$...Each of the monarchs wanted to get it, so they decided to arrange a race according to slightly changed chess rules:As in chess, the white king makes the first move, the black king makes the second one, the white king makes the third one, and so on. However, in this problem, kings can stand in adjacent cells or even in the same cell at the same time.The player who reaches the coin first will win, that is to say, the player who reaches the cell with the coordinates $$$(x,y)$$$ first will win.Let's recall that the king is such a chess piece that can move one cell in all directions, that is, if the king is in the $$$(a,b)$$$ cell, then in one move he can move from $$$(a,b)$$$ to the cells $$$(a + 1,b)$$$, $$$(a - 1,b)$$$, $$$(a,b + 1)$$$, $$$(a,b - 1)$$$, $$$(a + 1,b - 1)$$$, $$$(a + 1,b + 1)$$$, $$$(a - 1,b - 1)$$$, or $$$(a - 1,b + 1)$$$. Going outside of the field is prohibited.Determine the color of the king, who will reach the cell with the coordinates $$$(x,y)$$$ first, if the white king moves first.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$2 \\le n \\le 10^{18}$$$)\u00a0\u2014 the length of the side of the chess field. The second line contains two integers $$$x$$$ and $$$y$$$ ($$$1 \\le x,y \\le n$$$)\u00a0\u2014 coordinates of the cell, where the coin fell.", "output_spec": "In a single line print the answer \"White\" (without quotes), if the white king will win, or \"Black\" (without quotes), if the black king will win. You can print each letter in any case (upper or lower).", "sample_inputs": ["4\n2 3", "5\n3 5", "2\n2 2"], "sample_outputs": ["White", "Black", "Black"], "notes": "NoteAn example of the race from the first sample where both the white king and the black king move optimally: The white king moves from the cell $$$(1,1)$$$ into the cell $$$(2,2)$$$. The black king moves form the cell $$$(4,4)$$$ into the cell $$$(3,3)$$$. The white king moves from the cell $$$(2,2)$$$ into the cell $$$(2,3)$$$. This is cell containing the coin, so the white king wins. An example of the race from the second sample where both the white king and the black king move optimally: The white king moves from the cell $$$(1,1)$$$ into the cell $$$(2,2)$$$. The black king moves form the cell $$$(5,5)$$$ into the cell $$$(4,4)$$$. The white king moves from the cell $$$(2,2)$$$ into the cell $$$(3,3)$$$. The black king moves from the cell $$$(4,4)$$$ into the cell $$$(3,5)$$$. This is the cell, where the coin fell, so the black king wins. In the third example, the coin fell in the starting cell of the black king, so the black king immediately wins. "}, "src_uid": "b8ece086b35a36ca873e2edecc674557"} {"nl": {"description": "The start of the new academic year brought about the problem of accommodation students into dormitories. One of such dormitories has a a\u2009\u00d7\u2009b square meter wonder room. The caretaker wants to accommodate exactly n students there. But the law says that there must be at least 6 square meters per student in a room (that is, the room for n students must have the area of at least 6n square meters). The caretaker can enlarge any (possibly both) side of the room by an arbitrary positive integer of meters. Help him change the room so as all n students could live in it and the total area of the room was as small as possible.", "input_spec": "The first line contains three space-separated integers n, a and b (1\u2009\u2264\u2009n,\u2009a,\u2009b\u2009\u2264\u2009109) \u2014 the number of students and the sizes of the room.", "output_spec": "Print three integers s, a1 and b1 (a\u2009\u2264\u2009a1;\u00a0b\u2009\u2264\u2009b1) \u2014 the final area of the room and its sizes. If there are multiple optimal solutions, print any of them.", "sample_inputs": ["3 3 5", "2 4 4"], "sample_outputs": ["18\n3 6", "16\n4 4"], "notes": null}, "src_uid": "6a2a584d36008151d18e5080aea5029c"} {"nl": {"description": "Polycarp is crazy about round numbers. He especially likes the numbers divisible by 10k.In the given number of n Polycarp wants to remove the least number of digits to get a number that is divisible by 10k. For example, if k\u2009=\u20093, in the number 30020 it is enough to delete a single digit (2). In this case, the result is 3000 that is divisible by 103\u2009=\u20091000.Write a program that prints the minimum number of digits to be deleted from the given integer number n, so that the result is divisible by 10k. The result should not start with the unnecessary leading zero (i.e., zero can start only the number 0, which is required to be written as exactly one digit).It is guaranteed that the answer exists.", "input_spec": "The only line of the input contains two integer numbers n and k (0\u2009\u2264\u2009n\u2009\u2264\u20092\u2009000\u2009000\u2009000, 1\u2009\u2264\u2009k\u2009\u2264\u20099). It is guaranteed that the answer exists. All numbers in the input are written in traditional notation of integers, that is, without any extra leading zeros.", "output_spec": "Print w \u2014 the required minimal number of digits to erase. After removing the appropriate w digits from the number n, the result should have a value that is divisible by 10k. The result can start with digit 0 in the single case (the result is zero and written by exactly the only digit 0).", "sample_inputs": ["30020 3", "100 9", "10203049 2"], "sample_outputs": ["1", "2", "3"], "notes": "NoteIn the example 2 you can remove two digits: 1 and any 0. The result is number 0 which is divisible by any number."}, "src_uid": "7a8890417aa48c2b93b559ca118853f9"} {"nl": {"description": "The Fair Nut lives in $$$n$$$ story house. $$$a_i$$$ people live on the $$$i$$$-th floor of the house. Every person uses elevator twice a day: to get from the floor where he/she lives to the ground (first) floor and to get from the first floor to the floor where he/she lives, when he/she comes back home in the evening. It was decided that elevator, when it is not used, will stay on the $$$x$$$-th floor, but $$$x$$$ hasn't been chosen yet. When a person needs to get from floor $$$a$$$ to floor $$$b$$$, elevator follows the simple algorithm: Moves from the $$$x$$$-th floor (initially it stays on the $$$x$$$-th floor) to the $$$a$$$-th and takes the passenger. Moves from the $$$a$$$-th floor to the $$$b$$$-th floor and lets out the passenger (if $$$a$$$ equals $$$b$$$, elevator just opens and closes the doors, but still comes to the floor from the $$$x$$$-th floor). Moves from the $$$b$$$-th floor back to the $$$x$$$-th. The elevator never transposes more than one person and always goes back to the floor $$$x$$$ before transposing a next passenger. The elevator spends one unit of electricity to move between neighboring floors. So moving from the $$$a$$$-th floor to the $$$b$$$-th floor requires $$$|a - b|$$$ units of electricity.Your task is to help Nut to find the minimum number of electricity units, that it would be enough for one day, by choosing an optimal the $$$x$$$-th floor. Don't forget than elevator initially stays on the $$$x$$$-th floor. ", "input_spec": "The first line contains one integer $$$n$$$ ($$$1 \\leq n \\leq 100$$$)\u00a0\u2014 the number of floors. The second line contains $$$n$$$ integers $$$a_1, a_2, \\ldots, a_n$$$ ($$$0 \\leq a_i \\leq 100$$$)\u00a0\u2014 the number of people on each floor.", "output_spec": "In a single line, print the answer to the problem\u00a0\u2014 the minimum number of electricity units.", "sample_inputs": ["3\n0 2 1", "2\n1 1"], "sample_outputs": ["16", "4"], "notes": "NoteIn the first example, the answer can be achieved by choosing the second floor as the $$$x$$$-th floor. Each person from the second floor (there are two of them) would spend $$$4$$$ units of electricity per day ($$$2$$$ to get down and $$$2$$$ to get up), and one person from the third would spend $$$8$$$ units of electricity per day ($$$4$$$ to get down and $$$4$$$ to get up). $$$4 \\cdot 2 + 8 \\cdot 1 = 16$$$.In the second example, the answer can be achieved by choosing the first floor as the $$$x$$$-th floor."}, "src_uid": "a5002ddf9e792cb4b4685e630f1e1b8f"} {"nl": {"description": "There are a lot of things which could be cut\u00a0\u2014 trees, paper, \"the rope\". In this problem you are going to cut a sequence of integers.There is a sequence of integers, which contains the equal number of even and odd numbers. Given a limited budget, you need to make maximum possible number of cuts such that each resulting segment will have the same number of odd and even integers.Cuts separate a sequence to continuous (contiguous) segments. You may think about each cut as a break between two adjacent elements in a sequence. So after cutting each element belongs to exactly one segment. Say, $$$[4, 1, 2, 3, 4, 5, 4, 4, 5, 5]$$$ $$$\\to$$$ two cuts $$$\\to$$$ $$$[4, 1 | 2, 3, 4, 5 | 4, 4, 5, 5]$$$. On each segment the number of even elements should be equal to the number of odd elements.The cost of the cut between $$$x$$$ and $$$y$$$ numbers is $$$|x - y|$$$ bitcoins. Find the maximum possible number of cuts that can be made while spending no more than $$$B$$$ bitcoins.", "input_spec": "First line of the input contains an integer $$$n$$$ ($$$2 \\le n \\le 100$$$) and an integer $$$B$$$ ($$$1 \\le B \\le 100$$$)\u00a0\u2014 the number of elements in the sequence and the number of bitcoins you have. Second line contains $$$n$$$ integers: $$$a_1$$$, $$$a_2$$$, ..., $$$a_n$$$ ($$$1 \\le a_i \\le 100$$$)\u00a0\u2014 elements of the sequence, which contains the equal number of even and odd numbers", "output_spec": "Print the maximum possible number of cuts which can be made while spending no more than $$$B$$$ bitcoins.", "sample_inputs": ["6 4\n1 2 5 10 15 20", "4 10\n1 3 2 4", "6 100\n1 2 3 4 5 6"], "sample_outputs": ["1", "0", "2"], "notes": "NoteIn the first sample the optimal answer is to split sequence between $$$2$$$ and $$$5$$$. Price of this cut is equal to $$$3$$$ bitcoins.In the second sample it is not possible to make even one cut even with unlimited number of bitcoins.In the third sample the sequence should be cut between $$$2$$$ and $$$3$$$, and between $$$4$$$ and $$$5$$$. The total price of the cuts is $$$1 + 1 = 2$$$ bitcoins."}, "src_uid": "b3f8e769ee7719ea5c9f458428b16a4e"} {"nl": {"description": "Everybody in Russia uses Gregorian calendar. In this calendar there are 31 days in January, 28 or 29 days in February (depending on whether the year is leap or not), 31 days in March, 30 days in April, 31 days in May, 30 in June, 31 in July, 31 in August, 30 in September, 31 in October, 30 in November, 31 in December.A year is leap in one of two cases: either its number is divisible by 4, but not divisible by 100, or is divisible by 400. For example, the following years are leap: 2000, 2004, but years 1900 and 2018 are not leap.In this problem you are given n (1\u2009\u2264\u2009n\u2009\u2264\u200924) integers a1,\u2009a2,\u2009...,\u2009an, and you have to check if these integers could be durations in days of n consecutive months, according to Gregorian calendar. Note that these months could belong to several consecutive years. In other words, check if there is a month in some year, such that its duration is a1 days, duration of the next month is a2 days, and so on.", "input_spec": "The first line contains single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200924) \u2014 the number of integers. The second line contains n integers a1,\u2009a2,\u2009...,\u2009an (28\u2009\u2264\u2009ai\u2009\u2264\u200931) \u2014 the numbers you are to check.", "output_spec": "If there are several consecutive months that fit the sequence, print \"YES\" (without quotes). Otherwise, print \"NO\" (without quotes). You can print each letter in arbitrary case (small or large).", "sample_inputs": ["4\n31 31 30 31", "2\n30 30", "5\n29 31 30 31 30", "3\n31 28 30", "3\n31 31 28"], "sample_outputs": ["Yes", "No", "Yes", "No", "Yes"], "notes": "NoteIn the first example the integers can denote months July, August, September and October.In the second example the answer is no, because there are no two consecutive months each having 30 days.In the third example the months are: February (leap year) \u2014 March \u2014 April \u2013 May \u2014 June.In the fourth example the number of days in the second month is 28, so this is February. March follows February and has 31 days, but not 30, so the answer is NO.In the fifth example the months are: December \u2014 January \u2014 February (non-leap year)."}, "src_uid": "d60c8895cebcc5d0c6459238edbdb945"} {"nl": {"description": "Vasya likes everything infinite. Now he is studying the properties of a sequence s, such that its first element is equal to a (s1\u2009=\u2009a), and the difference between any two neighbouring elements is equal to c (si\u2009-\u2009si\u2009-\u20091\u2009=\u2009c). In particular, Vasya wonders if his favourite integer b appears in this sequence, that is, there exists a positive integer i, such that si\u2009=\u2009b. Of course, you are the person he asks for a help.", "input_spec": "The first line of the input contain three integers a, b and c (\u2009-\u2009109\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u2009109)\u00a0\u2014 the first element of the sequence, Vasya's favorite number and the difference between any two neighbouring elements of the sequence, respectively.", "output_spec": "If b appears in the sequence s print \"YES\" (without quotes), otherwise print \"NO\" (without quotes).", "sample_inputs": ["1 7 3", "10 10 0", "1 -4 5", "0 60 50"], "sample_outputs": ["YES", "YES", "NO", "NO"], "notes": "NoteIn the first sample, the sequence starts from integers 1, 4, 7, so 7 is its element.In the second sample, the favorite integer of Vasya is equal to the first element of the sequence.In the third sample all elements of the sequence are greater than Vasya's favorite integer.In the fourth sample, the sequence starts from 0, 50, 100, and all the following elements are greater than Vasya's favorite integer."}, "src_uid": "9edf42c20ddf22a251b84553d7305a7d"} {"nl": {"description": "Tokitsukaze is playing a game derivated from Japanese mahjong. In this game, she has three tiles in her hand. Each tile she owns is a suited tile, which means it has a suit (manzu, pinzu or souzu) and a number (a digit ranged from $$$1$$$ to $$$9$$$). In this problem, we use one digit and one lowercase letter, which is the first character of the suit, to represent a suited tile. All possible suited tiles are represented as 1m, 2m, $$$\\ldots$$$, 9m, 1p, 2p, $$$\\ldots$$$, 9p, 1s, 2s, $$$\\ldots$$$, 9s.In order to win the game, she must have at least one mentsu (described below) in her hand, so sometimes she should draw extra suited tiles. After drawing a tile, the number of her tiles increases by one. She can draw any tiles she wants, including those already in her hand.Do you know the minimum number of extra suited tiles she needs to draw so that she can win?Here are some useful definitions in this game: A mentsu, also known as meld, is formed by a koutsu or a shuntsu; A koutsu, also known as triplet, is made of three identical tiles, such as [1m, 1m, 1m], however, [1m, 1p, 1s] or [1m, 4m, 7m] is NOT a koutsu; A shuntsu, also known as sequence, is made of three sequential numbered tiles in the same suit, such as [1m, 2m, 3m] and [5s, 7s, 6s], however, [9m, 1m, 2m] or [1m, 2p, 3s] is NOT a shuntsu. Some examples: [2m, 3p, 2s, 4m, 1s, 2s, 4s] \u2014 it contains no koutsu or shuntsu, so it includes no mentsu; [4s, 3m, 3p, 4s, 5p, 4s, 5p] \u2014 it contains a koutsu, [4s, 4s, 4s], but no shuntsu, so it includes a mentsu; [5p, 5s, 9m, 4p, 1s, 7p, 7m, 6p] \u2014 it contains no koutsu but a shuntsu, [5p, 4p, 6p] or [5p, 7p, 6p], so it includes a mentsu. Note that the order of tiles is unnecessary and you can assume the number of each type of suited tiles she can draw is infinite.", "input_spec": "The only line contains three strings\u00a0\u2014 the tiles in Tokitsukaze's hand. For each string, the first character is a digit ranged from $$$1$$$ to $$$9$$$ and the second character is m, p or s.", "output_spec": "Print a single integer\u00a0\u2014 the minimum number of extra suited tiles she needs to draw.", "sample_inputs": ["1s 2s 3s", "9m 9m 9m", "3p 9m 2p"], "sample_outputs": ["0", "0", "1"], "notes": "NoteIn the first example, Tokitsukaze already has a shuntsu.In the second example, Tokitsukaze already has a koutsu.In the third example, Tokitsukaze can get a shuntsu by drawing one suited tile\u00a0\u2014 1p or 4p. The resulting tiles will be [3p, 9m, 2p, 1p] or [3p, 9m, 2p, 4p]."}, "src_uid": "7e42cebc670e76ace967e01021f752d3"} {"nl": {"description": "There are three friend living on the straight line Ox in Lineland. The first friend lives at the point x1, the second friend lives at the point x2, and the third friend lives at the point x3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year?It's guaranteed that the optimal answer is always integer.", "input_spec": "The first line of the input contains three distinct integers x1, x2 and x3 (1\u2009\u2264\u2009x1,\u2009x2,\u2009x3\u2009\u2264\u2009100)\u00a0\u2014 the coordinates of the houses of the first, the second and the third friends respectively. ", "output_spec": "Print one integer\u00a0\u2014 the minimum total distance the friends need to travel in order to meet together.", "sample_inputs": ["7 1 4", "30 20 10"], "sample_outputs": ["6", "20"], "notes": "NoteIn the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4."}, "src_uid": "7bffa6e8d2d21bbb3b7f4aec109b3319"} {"nl": {"description": "Manao is trying to open a rather challenging lock. The lock has n buttons on it and to open it, you should press the buttons in a certain order to open the lock. When you push some button, it either stays pressed into the lock (that means that you've guessed correctly and pushed the button that goes next in the sequence), or all pressed buttons return to the initial position. When all buttons are pressed into the lock at once, the lock opens.Consider an example with three buttons. Let's say that the opening sequence is: {2, 3, 1}. If you first press buttons 1 or 3, the buttons unpress immediately. If you first press button 2, it stays pressed. If you press 1 after 2, all buttons unpress. If you press 3 after 2, buttons 3 and 2 stay pressed. As soon as you've got two pressed buttons, you only need to press button 1 to open the lock.Manao doesn't know the opening sequence. But he is really smart and he is going to act in the optimal way. Calculate the number of times he's got to push a button in order to open the lock in the worst-case scenario.", "input_spec": "A single line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092000) \u2014 the number of buttons the lock has.", "output_spec": "In a single line print the number of times Manao has to push a button in the worst-case scenario.", "sample_inputs": ["2", "3"], "sample_outputs": ["3", "7"], "notes": "NoteConsider the first test sample. Manao can fail his first push and push the wrong button. In this case he will already be able to guess the right one with his second push. And his third push will push the second right button. Thus, in the worst-case scenario he will only need 3 pushes."}, "src_uid": "6df251ac8bf27427a24bc23d64cb9884"} {"nl": {"description": "A string $$$s$$$ of length $$$n$$$ can be encrypted by the following algorithm: iterate over all divisors of $$$n$$$ in decreasing order (i.e. from $$$n$$$ to $$$1$$$), for each divisor $$$d$$$, reverse the substring $$$s[1 \\dots d]$$$ (i.e. the substring which starts at position $$$1$$$ and ends at position $$$d$$$). For example, the above algorithm applied to the string $$$s$$$=\"codeforces\" leads to the following changes: \"codeforces\" $$$\\to$$$ \"secrofedoc\" $$$\\to$$$ \"orcesfedoc\" $$$\\to$$$ \"rocesfedoc\" $$$\\to$$$ \"rocesfedoc\" (obviously, the last reverse operation doesn't change the string because $$$d=1$$$).You are given the encrypted string $$$t$$$. Your task is to decrypt this string, i.e., to find a string $$$s$$$ such that the above algorithm results in string $$$t$$$. It can be proven that this string $$$s$$$ always exists and is unique.", "input_spec": "The first line of input consists of a single integer $$$n$$$ ($$$1 \\le n \\le 100$$$) \u2014 the length of the string $$$t$$$. The second line of input consists of the string $$$t$$$. The length of $$$t$$$ is $$$n$$$, and it consists only of lowercase Latin letters.", "output_spec": "Print a string $$$s$$$ such that the above algorithm results in $$$t$$$.", "sample_inputs": ["10\nrocesfedoc", "16\nplmaetwoxesisiht", "1\nz"], "sample_outputs": ["codeforces", "thisisexampletwo", "z"], "notes": "NoteThe first example is described in the problem statement."}, "src_uid": "1b0b2ee44c63cb0634cb63f2ad65cdd3"} {"nl": {"description": "You are a lover of bacteria. You want to raise some bacteria in a box. Initially, the box is empty. Each morning, you can put any number of bacteria into the box. And each night, every bacterium in the box will split into two bacteria. You hope to see exactly x bacteria in the box at some moment. What is the minimum number of bacteria you need to put into the box across those days?", "input_spec": "The only line containing one integer x (1\u2009\u2264\u2009x\u2009\u2264\u2009109).", "output_spec": "The only line containing one integer: the answer.", "sample_inputs": ["5", "8"], "sample_outputs": ["2", "1"], "notes": "NoteFor the first sample, we can add one bacterium in the box in the first day morning and at the third morning there will be 4 bacteria in the box. Now we put one more resulting 5 in the box. We added 2 bacteria in the process so the answer is 2.For the second sample, we can put one in the first morning and in the 4-th morning there will be 8 in the box. So the answer is 1."}, "src_uid": "03e4482d53a059134676f431be4c16d2"} {"nl": {"description": "Vasya is an active Internet user. One day he came across an Internet resource he liked, so he wrote its address in the notebook. We know that the address of the written resource has format: <protocol>://<domain>.ru[/<context>] where: <protocol> can equal either \"http\" (without the quotes) or \"ftp\" (without the quotes), <domain> is a non-empty string, consisting of lowercase English letters, the /<context> part may not be present. If it is present, then <context> is a non-empty string, consisting of lowercase English letters. If string <context> isn't present in the address, then the additional character \"/\" isn't written. Thus, the address has either two characters \"/\" (the ones that go before the domain), or three (an extra one in front of the context).When the boy came home, he found out that the address he wrote in his notebook had no punctuation marks. Vasya must have been in a lot of hurry and didn't write characters \":\", \"/\", \".\".Help Vasya to restore the possible address of the recorded Internet resource.", "input_spec": "The first line contains a non-empty string that Vasya wrote out in his notebook. This line consists of lowercase English letters only. It is guaranteed that the given string contains at most 50 letters. It is guaranteed that the given string can be obtained from some correct Internet resource address, described above.", "output_spec": "Print a single line \u2014 the address of the Internet resource that Vasya liked. If there are several addresses that meet the problem limitations, you are allowed to print any of them.", "sample_inputs": ["httpsunrux", "ftphttprururu"], "sample_outputs": ["http://sun.ru/x", "ftp://http.ru/ruru"], "notes": "NoteIn the second sample there are two more possible answers: \"ftp://httpruru.ru\" and \"ftp://httpru.ru/ru\"."}, "src_uid": "4c999b7854a8a08960b6501a90b3bba3"} {"nl": {"description": "Polycarp plays \"Game 23\". Initially he has a number $$$n$$$ and his goal is to transform it to $$$m$$$. In one move, he can multiply $$$n$$$ by $$$2$$$ or multiply $$$n$$$ by $$$3$$$. He can perform any number of moves.Print the number of moves needed to transform $$$n$$$ to $$$m$$$. Print -1 if it is impossible to do so.It is easy to prove that any way to transform $$$n$$$ to $$$m$$$ contains the same number of moves (i.e. number of moves doesn't depend on the way of transformation).", "input_spec": "The only line of the input contains two integers $$$n$$$ and $$$m$$$ ($$$1 \\le n \\le m \\le 5\\cdot10^8$$$).", "output_spec": "Print the number of moves to transform $$$n$$$ to $$$m$$$, or -1 if there is no solution.", "sample_inputs": ["120 51840", "42 42", "48 72"], "sample_outputs": ["7", "0", "-1"], "notes": "NoteIn the first example, the possible sequence of moves is: $$$120 \\rightarrow 240 \\rightarrow 720 \\rightarrow 1440 \\rightarrow 4320 \\rightarrow 12960 \\rightarrow 25920 \\rightarrow 51840.$$$ The are $$$7$$$ steps in total.In the second example, no moves are needed. Thus, the answer is $$$0$$$.In the third example, it is impossible to transform $$$48$$$ to $$$72$$$."}, "src_uid": "3f9980ad292185f63a80bce10705e806"} {"nl": {"description": "Gerald got a very curious hexagon for his birthday. The boy found out that all the angles of the hexagon are equal to . Then he measured the length of its sides, and found that each of them is equal to an integer number of centimeters. There the properties of the hexagon ended and Gerald decided to draw on it.He painted a few lines, parallel to the sides of the hexagon. The lines split the hexagon into regular triangles with sides of 1 centimeter. Now Gerald wonders how many triangles he has got. But there were so many of them that Gerald lost the track of his counting. Help the boy count the triangles.", "input_spec": "The first and the single line of the input contains 6 space-separated integers a1,\u2009a2,\u2009a3,\u2009a4,\u2009a5 and a6 (1\u2009\u2264\u2009ai\u2009\u2264\u20091000) \u2014 the lengths of the sides of the hexagons in centimeters in the clockwise order. It is guaranteed that the hexagon with the indicated properties and the exactly such sides exists.", "output_spec": "Print a single integer \u2014 the number of triangles with the sides of one 1 centimeter, into which the hexagon is split.", "sample_inputs": ["1 1 1 1 1 1", "1 2 1 2 1 2"], "sample_outputs": ["6", "13"], "notes": "NoteThis is what Gerald's hexagon looks like in the first sample:And that's what it looks like in the second sample:"}, "src_uid": "382475475427f0e76c6b4ac6e7a02e21"} {"nl": {"description": "A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices.You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters.", "output_spec": "Output \"YES\", if the string is a pangram and \"NO\" otherwise.", "sample_inputs": ["12\ntoosmallword", "35\nTheQuickBrownFoxJumpsOverTheLazyDog"], "sample_outputs": ["NO", "YES"], "notes": null}, "src_uid": "f13eba0a0fb86e20495d218fc4ad532d"} {"nl": {"description": "Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob.Right now, Limak and Bob weigh a and b respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight.Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year.After how many full years will Limak become strictly larger (strictly heavier) than Bob?", "input_spec": "The only line of the input contains two integers a and b (1\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u200910)\u00a0\u2014 the weight of Limak and the weight of Bob respectively.", "output_spec": "Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob.", "sample_inputs": ["4 7", "4 9", "1 1"], "sample_outputs": ["2", "3", "1"], "notes": "NoteIn the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4\u00b73\u2009=\u200912 and 7\u00b72\u2009=\u200914 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2.In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights.In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then."}, "src_uid": "a1583b07a9d093e887f73cc5c29e444a"} {"nl": {"description": "There are $$$n$$$ benches in the Berland Central park. It is known that $$$a_i$$$ people are currently sitting on the $$$i$$$-th bench. Another $$$m$$$ people are coming to the park and each of them is going to have a seat on some bench out of $$$n$$$ available.Let $$$k$$$ be the maximum number of people sitting on one bench after additional $$$m$$$ people came to the park. Calculate the minimum possible $$$k$$$ and the maximum possible $$$k$$$.Nobody leaves the taken seat during the whole process.", "input_spec": "The first line contains a single integer $$$n$$$ $$$(1 \\le n \\le 100)$$$ \u2014 the number of benches in the park. The second line contains a single integer $$$m$$$ $$$(1 \\le m \\le 10\\,000)$$$ \u2014 the number of people additionally coming to the park. Each of the next $$$n$$$ lines contains a single integer $$$a_i$$$ $$$(1 \\le a_i \\le 100)$$$ \u2014 the initial number of people on the $$$i$$$-th bench.", "output_spec": "Print the minimum possible $$$k$$$ and the maximum possible $$$k$$$, where $$$k$$$ is the maximum number of people sitting on one bench after additional $$$m$$$ people came to the park.", "sample_inputs": ["4\n6\n1\n1\n1\n1", "1\n10\n5", "3\n6\n1\n6\n5", "3\n7\n1\n6\n5"], "sample_outputs": ["3 7", "15 15", "6 12", "7 13"], "notes": "NoteIn the first example, each of four benches is occupied by a single person. The minimum $$$k$$$ is $$$3$$$. For example, it is possible to achieve if two newcomers occupy the first bench, one occupies the second bench, one occupies the third bench, and two remaining \u2014 the fourth bench. The maximum $$$k$$$ is $$$7$$$. That requires all six new people to occupy the same bench.The second example has its minimum $$$k$$$ equal to $$$15$$$ and maximum $$$k$$$ equal to $$$15$$$, as there is just a single bench in the park and all $$$10$$$ people will occupy it."}, "src_uid": "78f696bd954c9f0f9bb502e515d85a8d"} {"nl": {"description": "Gennady owns a small hotel in the countryside where he lives a peaceful life. He loves to take long walks, watch sunsets and play cards with tourists staying in his hotel. His favorite game is called \"Mau-Mau\".To play Mau-Mau, you need a pack of $$$52$$$ cards. Each card has a suit (Diamonds \u2014 D, Clubs \u2014 C, Spades \u2014 S, or Hearts \u2014 H), and a rank (2, 3, 4, 5, 6, 7, 8, 9, T, J, Q, K, or A).At the start of the game, there is one card on the table and you have five cards in your hand. You can play a card from your hand if and only if it has the same rank or the same suit as the card on the table.In order to check if you'd be a good playing partner, Gennady has prepared a task for you. Given the card on the table and five cards in your hand, check if you can play at least one card.", "input_spec": "The first line of the input contains one string which describes the card on the table. The second line contains five strings which describe the cards in your hand. Each string is two characters long. The first character denotes the rank and belongs to the set $$$\\{{\\tt 2}, {\\tt 3}, {\\tt 4}, {\\tt 5}, {\\tt 6}, {\\tt 7}, {\\tt 8}, {\\tt 9}, {\\tt T}, {\\tt J}, {\\tt Q}, {\\tt K}, {\\tt A}\\}$$$. The second character denotes the suit and belongs to the set $$$\\{{\\tt D}, {\\tt C}, {\\tt S}, {\\tt H}\\}$$$. All the cards in the input are different.", "output_spec": "If it is possible to play a card from your hand, print one word \"YES\". Otherwise, print \"NO\". You can print each letter in any case (upper or lower).", "sample_inputs": ["AS\n2H 4C TH JH AD", "2H\n3D 4C AC KD AS", "4D\nAS AC AD AH 5H"], "sample_outputs": ["YES", "NO", "YES"], "notes": "NoteIn the first example, there is an Ace of Spades (AS) on the table. You can play an Ace of Diamonds (AD) because both of them are Aces.In the second example, you cannot play any card.In the third example, you can play an Ace of Diamonds (AD) because it has the same suit as a Four of Diamonds (4D), which lies on the table."}, "src_uid": "699444eb6366ad12bc77e7ac2602d74b"} {"nl": {"description": "Dima and his friends have been playing hide and seek at Dima's place all night. As a result, Dima's place got messy. In the morning they decided that they need to clean the place.To decide who exactly would clean the apartment, the friends want to play a counting-out game. First, all the guys stand in a circle, and then each of them shows some number of fingers on one hand (one to five), and then the boys count in a circle, starting from Dima, the number of people, respective to the total number of fingers shown. The person on who the countdown stops will clean the apartment.For example, if Dima and one of his friends played hide and seek, and 7 fingers were shown during the counting-out, then Dima would clean the place. If there were 2 or say, 8 fingers shown, then his friend would clean the place.Dima knows how many fingers each of his friends will show during the counting-out. Now he is interested in the number of ways to show some number of fingers on one hand (one to five), so that he did not have to clean the place. Help Dima.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of Dima's friends. Dima himself isn't considered to be his own friend. The second line contains n positive integers, not exceeding 5, representing, how many fingers the Dima's friends will show. The numbers in the lines are separated by a single space.", "output_spec": "In a single line print the answer to the problem.", "sample_inputs": ["1\n1", "1\n2", "2\n3 5"], "sample_outputs": ["3", "2", "3"], "notes": "NoteIn the first sample Dima can show 1, 3 or 5 fingers. If Dima shows 3 fingers, then the counting-out will go like that: Dima, his friend, Dima, his friend.In the second sample Dima can show 2 or 4 fingers."}, "src_uid": "ff6b3fd358c758324c19a26283ab96a4"} {"nl": {"description": "Two beavers, Timur and Marsel, play the following game.There are n logs, each of exactly m meters in length. The beavers move in turns. For each move a beaver chooses a log and gnaws it into some number (more than one) of equal parts, the length of each one is expressed by an integer and is no less than k meters. Each resulting part is also a log which can be gnawed in future by any beaver. The beaver that can't make a move loses. Thus, the other beaver wins.Timur makes the first move. The players play in the optimal way. Determine the winner.", "input_spec": "The first line contains three integers n, m, k (1\u2009\u2264\u2009n,\u2009m,\u2009k\u2009\u2264\u2009109).", "output_spec": "Print \"Timur\", if Timur wins, or \"Marsel\", if Marsel wins. You should print everything without the quotes. ", "sample_inputs": ["1 15 4", "4 9 5"], "sample_outputs": ["Timur", "Marsel"], "notes": "NoteIn the first sample the beavers only have one log, of 15 meters in length. Timur moves first. The only move he can do is to split the log into 3 parts each 5 meters in length. Then Marsel moves but he can't split any of the resulting logs, as k\u2009=\u20094. Thus, the winner is Timur.In the second example the beavers have 4 logs 9 meters in length. Timur can't split any of them, so that the resulting parts possessed the length of not less than 5 meters, that's why he loses instantly."}, "src_uid": "4a3767011ddac874efa021fff7c94432"} {"nl": {"description": "Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs a points and Vasya solved the problem that costs b points. Besides, Misha submitted the problem c minutes after the contest started and Vasya submitted the problem d minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs p points t minutes after the contest started, you get points. Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.", "input_spec": "The first line contains four integers a, b, c, d (250\u2009\u2264\u2009a,\u2009b\u2009\u2264\u20093500, 0\u2009\u2264\u2009c,\u2009d\u2009\u2264\u2009180). It is guaranteed that numbers a and b are divisible by 250 (just like on any real Codeforces round).", "output_spec": "Output on a single line: \"Misha\" (without the quotes), if Misha got more points than Vasya. \"Vasya\" (without the quotes), if Vasya got more points than Misha. \"Tie\" (without the quotes), if both of them got the same number of points.", "sample_inputs": ["500 1000 20 30", "1000 1000 1 1", "1500 1000 176 177"], "sample_outputs": ["Vasya", "Tie", "Misha"], "notes": null}, "src_uid": "95b19d7569d6b70bd97d46a8541060d0"} {"nl": {"description": "Jzzhu has invented a kind of sequences, they meet the following property:You are given x and y, please calculate fn modulo 1000000007 (109\u2009+\u20097).", "input_spec": "The first line contains two integers x and y (|x|,\u2009|y|\u2009\u2264\u2009109). The second line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092\u00b7109).", "output_spec": "Output a single integer representing fn modulo 1000000007 (109\u2009+\u20097).", "sample_inputs": ["2 3\n3", "0 -1\n2"], "sample_outputs": ["1", "1000000006"], "notes": "NoteIn the first sample, f2\u2009=\u2009f1\u2009+\u2009f3, 3\u2009=\u20092\u2009+\u2009f3, f3\u2009=\u20091.In the second sample, f2\u2009=\u2009\u2009-\u20091; \u2009-\u20091 modulo (109\u2009+\u20097) equals (109\u2009+\u20096)."}, "src_uid": "2ff85140e3f19c90e587ce459d64338b"} {"nl": {"description": "Theatre Square in the capital city of Berland has a rectangular shape with the size n\u2009\u00d7\u2009m meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size a\u2009\u00d7\u2009a.What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.", "input_spec": "The input contains three positive integer numbers in the first line: n,\u2009\u2009m and a (1\u2009\u2264\u2009\u2009n,\u2009m,\u2009a\u2009\u2264\u2009109).", "output_spec": "Write the needed number of flagstones.", "sample_inputs": ["6 6 4"], "sample_outputs": ["4"], "notes": null}, "src_uid": "ef971874d8c4da37581336284b688517"} {"nl": {"description": "Nothing is eternal in the world, Kostya understood it on the 7-th of January when he saw partially dead four-color garland.Now he has a goal to replace dead light bulbs, however he doesn't know how many light bulbs for each color are required. It is guaranteed that for each of four colors at least one light is working.It is known that the garland contains light bulbs of four colors: red, blue, yellow and green. The garland is made as follows: if you take any four consecutive light bulbs then there will not be light bulbs with the same color among them. For example, the garland can look like \"RYBGRYBGRY\", \"YBGRYBGRYBG\", \"BGRYB\", but can not look like \"BGRYG\", \"YBGRYBYGR\" or \"BGYBGY\". Letters denote colors: 'R'\u00a0\u2014 red, 'B'\u00a0\u2014 blue, 'Y'\u00a0\u2014 yellow, 'G'\u00a0\u2014 green.Using the information that for each color at least one light bulb still works count the number of dead light bulbs of each four colors.", "input_spec": "The first and the only line contains the string s (4\u2009\u2264\u2009|s|\u2009\u2264\u2009100), which describes the garland, the i-th symbol of which describes the color of the i-th light bulb in the order from the beginning of garland: 'R'\u00a0\u2014 the light bulb is red, 'B'\u00a0\u2014 the light bulb is blue, 'Y'\u00a0\u2014 the light bulb is yellow, 'G'\u00a0\u2014 the light bulb is green, '!'\u00a0\u2014 the light bulb is dead. The string s can not contain other symbols except those five which were described. It is guaranteed that in the given string at least once there is each of four letters 'R', 'B', 'Y' and 'G'. It is guaranteed that the string s is correct garland with some blown light bulbs, it means that for example the line \"GRBY!!!B\" can not be in the input data. ", "output_spec": "In the only line print four integers kr,\u2009kb,\u2009ky,\u2009kg\u00a0\u2014 the number of dead light bulbs of red, blue, yellow and green colors accordingly.", "sample_inputs": ["RYBGRYBGR", "!RGYB", "!!!!YGRB", "!GB!RG!Y!"], "sample_outputs": ["0 0 0 0", "0 1 0 0", "1 1 1 1", "2 1 1 0"], "notes": "NoteIn the first example there are no dead light bulbs.In the second example it is obvious that one blue bulb is blown, because it could not be light bulbs of other colors on its place according to the statements."}, "src_uid": "64fc6e9b458a9ece8ad70a8c72126b33"} {"nl": {"description": "Sometimes one has to spell email addresses over the phone. Then one usually pronounces a dot as dot, an at sign as at. As a result, we get something like vasyaatgmaildotcom. Your task is to transform it into a proper email address (vasya@gmail.com). It is known that a proper email address contains only such symbols as . @ and lower-case Latin letters, doesn't start with and doesn't end with a dot. Also, a proper email address doesn't start with and doesn't end with an at sign. Moreover, an email address contains exactly one such symbol as @, yet may contain any number (possible, zero) of dots. You have to carry out a series of replacements so that the length of the result was as short as possible and it was a proper email address. If the lengths are equal, you should print the lexicographically minimal result. Overall, two variants of replacement are possible: dot can be replaced by a dot, at can be replaced by an at. ", "input_spec": "The first line contains the email address description. It is guaranteed that that is a proper email address with all the dots replaced by dot an the at signs replaced by at. The line is not empty and its length does not exceed 100 symbols.", "output_spec": "Print the shortest email address, from which the given line could be made by the described above replacements. If there are several solutions to that problem, print the lexicographically minimal one (the lexicographical comparison of the lines are implemented with an operator < in modern programming languages). In the ASCII table the symbols go in this order: . @ ab...z", "sample_inputs": ["vasyaatgmaildotcom", "dotdotdotatdotdotat", "aatt"], "sample_outputs": ["vasya@gmail.com", "dot..@..at", "a@t"], "notes": null}, "src_uid": "a11c9679d8e2dca51be17d466202df6e"} {"nl": {"description": "You've got a rectangular table with length a and width b and the infinite number of plates of radius r. Two players play the following game: they take turns to put the plates on the table so that the plates don't lie on each other (but they can touch each other), and so that any point on any plate is located within the table's border. During the game one cannot move the plates that already lie on the table. The player who cannot make another move loses. Determine which player wins, the one who moves first or the one who moves second, provided that both players play optimally well.", "input_spec": "A single line contains three space-separated integers a, b, r (1\u2009\u2264\u2009a,\u2009b,\u2009r\u2009\u2264\u2009100) \u2014 the table sides and the plates' radius, correspondingly.", "output_spec": "If wins the player who moves first, print \"First\" (without the quotes). Otherwise print \"Second\" (without the quotes).", "sample_inputs": ["5 5 2", "6 7 4"], "sample_outputs": ["First", "Second"], "notes": "NoteIn the first sample the table has place for only one plate. The first player puts a plate on the table, the second player can't do that and loses. In the second sample the table is so small that it doesn't have enough place even for one plate. So the first player loses without making a single move. "}, "src_uid": "90b9ef939a13cf29715bc5bce26c9896"} {"nl": {"description": "After finishing eating her bun, Alyona came up with two integers n and m. She decided to write down two columns of integers\u00a0\u2014 the first column containing integers from 1 to n and the second containing integers from 1 to m. Now the girl wants to count how many pairs of integers she can choose, one from the first column and the other from the second column, such that their sum is divisible by 5.Formally, Alyona wants to count the number of pairs of integers (x,\u2009y) such that 1\u2009\u2264\u2009x\u2009\u2264\u2009n, 1\u2009\u2264\u2009y\u2009\u2264\u2009m and equals 0.As usual, Alyona has some troubles and asks you to help.", "input_spec": "The only line of the input contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20091\u2009000\u2009000).", "output_spec": "Print the only integer\u00a0\u2014 the number of pairs of integers (x,\u2009y) such that 1\u2009\u2264\u2009x\u2009\u2264\u2009n, 1\u2009\u2264\u2009y\u2009\u2264\u2009m and (x\u2009+\u2009y) is divisible by 5.", "sample_inputs": ["6 12", "11 14", "1 5", "3 8", "5 7", "21 21"], "sample_outputs": ["14", "31", "1", "5", "7", "88"], "notes": "NoteFollowing pairs are suitable in the first sample case: for x\u2009=\u20091 fits y equal to 4 or 9; for x\u2009=\u20092 fits y equal to 3 or 8; for x\u2009=\u20093 fits y equal to 2, 7 or 12; for x\u2009=\u20094 fits y equal to 1, 6 or 11; for x\u2009=\u20095 fits y equal to 5 or 10; for x\u2009=\u20096 fits y equal to 4 or 9. Only the pair (1,\u20094) is suitable in the third sample case."}, "src_uid": "df0879635b59e141c839d9599abd77d2"} {"nl": {"description": "You are given two set of points. The first set is determined by the equation A1x\u2009+\u2009B1y\u2009+\u2009C1\u2009=\u20090, and the second one is determined by the equation A2x\u2009+\u2009B2y\u2009+\u2009C2\u2009=\u20090.Write the program which finds the number of points in the intersection of two given sets.", "input_spec": "The first line of the input contains three integer numbers A1,\u2009B1,\u2009C1 separated by space. The second line contains three integer numbers A2,\u2009B2,\u2009C2 separated by space. All the numbers are between -100 and 100, inclusive.", "output_spec": "Print the number of points in the intersection or -1 if there are infinite number of points.", "sample_inputs": ["1 1 0\n2 2 0", "1 1 0\n2 -2 0"], "sample_outputs": ["-1", "1"], "notes": null}, "src_uid": "c8e869cb17550e888733551c749f2e1a"} {"nl": {"description": "Little Petya has recently started attending a programming club. Naturally he is facing the problem of choosing a programming language. After long considerations he realized that Java is the best choice. The main argument in favor of choosing Java was that it has a very large integer data type, called BigInteger.But having attended several classes of the club, Petya realized that not all tasks require using the BigInteger type. It turned out that in some tasks it is much easier to use small data types. That's why a question arises: \"Which integer type to use if one wants to store a positive integer n?\"Petya knows only 5 integer types:1) byte occupies 1 byte and allows you to store numbers from \u2009-\u2009128 to 1272) short occupies 2 bytes and allows you to store numbers from \u2009-\u200932768 to 327673) int occupies 4 bytes and allows you to store numbers from \u2009-\u20092147483648 to 21474836474) long occupies 8 bytes and allows you to store numbers from \u2009-\u20099223372036854775808 to 92233720368547758075) BigInteger can store any integer number, but at that it is not a primitive type, and operations with it are much slower.For all the types given above the boundary values are included in the value range.From this list, Petya wants to choose the smallest type that can store a positive integer n. Since BigInteger works much slower, Peter regards it last. Help him.", "input_spec": "The first line contains a positive number n. It consists of no more than 100 digits and doesn't contain any leading zeros. The number n can't be represented as an empty string. Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cout (also you may use %I64d).", "output_spec": "Print the first type from the list \"byte, short, int, long, BigInteger\", that can store the natural number n, in accordance with the data given above.", "sample_inputs": ["127", "130", "123456789101112131415161718192021222324"], "sample_outputs": ["byte", "short", "BigInteger"], "notes": null}, "src_uid": "33041f1832fa7f641e37c4c638ab08a1"} {"nl": {"description": "Noora is a student of one famous high school. It's her final year in school\u00a0\u2014 she is going to study in university next year. However, she has to get an \u00abA\u00bb graduation certificate in order to apply to a prestigious one.In school, where Noora is studying, teachers are putting down marks to the online class register, which are integers from 1 to k. The worst mark is 1, the best is k. Mark that is going to the certificate, is calculated as an average of all the marks, rounded to the closest integer. If several answers are possible, rounding up is produced. For example, 7.3 is rounded to 7, but 7.5 and 7.8784\u00a0\u2014 to 8. For instance, if Noora has marks [8,\u20099], then the mark to the certificate is 9, because the average is equal to 8.5 and rounded to 9, but if the marks are [8,\u20098,\u20099], Noora will have graduation certificate with 8.To graduate with \u00abA\u00bb certificate, Noora has to have mark k.Noora got n marks in register this year. However, she is afraid that her marks are not enough to get final mark k. Noora decided to ask for help in the internet, where hacker Leha immediately responded to her request. He is ready to hack class register for Noora and to add Noora any number of additional marks from 1 to k. At the same time, Leha want his hack be unseen to everyone, so he decided to add as less as possible additional marks. Please help Leha to calculate the minimal number of marks he has to add, so that final Noora's mark will become equal to k.", "input_spec": "The first line contains two integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u2009100,\u20091\u2009\u2264\u2009k\u2009\u2264\u2009100) denoting the number of marks, received by Noora and the value of highest possible mark. The second line contains n integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009k) denoting marks received by Noora before Leha's hack.", "output_spec": "Print a single integer\u00a0\u2014 minimal number of additional marks, that Leha has to add in order to change Noora's final mark to k.", "sample_inputs": ["2 10\n8 9", "3 5\n4 4 4"], "sample_outputs": ["4", "3"], "notes": "NoteConsider the first example testcase.Maximal mark is 10, Noora received two marks\u00a0\u2014 8 and 9, so current final mark is 9. To fix it, Leha can add marks [10,\u200910,\u200910,\u200910] (4 marks in total) to the registry, achieving Noora having average mark equal to . Consequently, new final mark is 10. Less number of marks won't fix the situation.In the second example Leha can add [5,\u20095,\u20095] to the registry, so that making average mark equal to 4.5, which is enough to have 5 in the certificate."}, "src_uid": "f22267bf3fad0bf342ecf4c27ad3a900"} {"nl": {"description": "A boy Valera registered on site Codeforces as Valera, and wrote his first Codeforces Round #300. He boasted to a friend Arkady about winning as much as x points for his first contest. But Arkady did not believe his friend's words and decided to check whether Valera could have shown such a result.He knows that the contest number 300 was unusual because there were only two problems. The contest lasted for t minutes, the minutes are numbered starting from zero. The first problem had the initial cost of a points, and every minute its cost reduced by da points. The second problem had the initial cost of b points, and every minute this cost reduced by db points. Thus, as soon as the zero minute of the contest is over, the first problem will cost a\u2009-\u2009da points, and the second problem will cost b\u2009-\u2009db points. It is guaranteed that at any moment of the contest each problem has a non-negative cost.Arkady asks you to find out whether Valera could have got exactly x points for this contest. You should assume that Valera could have solved any number of the offered problems. You should also assume that for each problem Valera made no more than one attempt, besides, he could have submitted both problems at the same minute of the contest, starting with minute 0 and ending with minute number t\u2009-\u20091. Please note that Valera can't submit a solution exactly t minutes after the start of the contest or later.", "input_spec": "The single line of the input contains six integers x,\u2009t,\u2009a,\u2009b,\u2009da,\u2009db (0\u2009\u2264\u2009x\u2009\u2264\u2009600;\u00a01\u2009\u2264\u2009t,\u2009a,\u2009b,\u2009da,\u2009db\u2009\u2264\u2009300) \u2014 Valera's result, the contest's duration, the initial cost of the first problem, the initial cost of the second problem, the number of points that the first and the second problem lose per minute, correspondingly. It is guaranteed that at each minute of the contest each problem has a non-negative cost, that is, a\u2009-\u2009i\u00b7da\u2009\u2265\u20090 and b\u2009-\u2009i\u00b7db\u2009\u2265\u20090 for all 0\u2009\u2264\u2009i\u2009\u2264\u2009t\u2009-\u20091.", "output_spec": "If Valera could have earned exactly x points at a contest, print \"YES\", otherwise print \"NO\" (without the quotes).", "sample_inputs": ["30 5 20 20 3 5", "10 4 100 5 5 1"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample Valera could have acted like this: he could have submitted the first problem at minute 0 and the second problem \u2014 at minute 2. Then the first problem brings him 20 points and the second problem brings him 10 points, that in total gives the required 30 points."}, "src_uid": "f98168cdd72369303b82b5a7ac45c3af"} {"nl": {"description": "Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to n (n\u2009\u2265\u20092) burles and the amount of tax he has to pay is calculated as the maximum divisor of n (not equal to n, of course). For example, if n\u2009=\u20096 then Funt has to pay 3 burles, while for n\u2009=\u200925 he needs to pay 5 and if n\u2009=\u20092 he pays only 1 burle.As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial n in several parts n1\u2009+\u2009n2\u2009+\u2009...\u2009+\u2009nk\u2009=\u2009n (here k is arbitrary, even k\u2009=\u20091 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition ni\u2009\u2265\u20092 should hold for all i from 1 to k.Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split n in parts.", "input_spec": "The first line of the input contains a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u20092\u00b7109)\u00a0\u2014 the total year income of mr. Funt.", "output_spec": "Print one integer\u00a0\u2014 minimum possible number of burles that mr. Funt has to pay as a tax.", "sample_inputs": ["4", "27"], "sample_outputs": ["2", "3"], "notes": null}, "src_uid": "684ce84149d6a5f4776ecd1ea6cb455b"} {"nl": {"description": "Statistics claims that students sleep no more than three hours a day. But even in the world of their dreams, while they are snoring peacefully, the sense of impending doom is still upon them.A poor student is dreaming that he is sitting the mathematical analysis exam. And he is examined by the most formidable professor of all times, a three times Soviet Union Hero, a Noble Prize laureate in student expulsion, venerable Petr Palych.The poor student couldn't answer a single question. Thus, instead of a large spacious office he is going to apply for a job to thorium mines. But wait a minute! Petr Palych decided to give the student the last chance! Yes, that is possible only in dreams. So the professor began: \"Once a Venusian girl and a Marsian boy met on the Earth and decided to take a walk holding hands. But the problem is the girl has al fingers on her left hand and ar fingers on the right one. The boy correspondingly has bl and br fingers. They can only feel comfortable when holding hands, when no pair of the girl's fingers will touch each other. That is, they are comfortable when between any two girl's fingers there is a boy's finger. And in addition, no three fingers of the boy should touch each other. Determine if they can hold hands so that the both were comfortable.\"The boy any the girl don't care who goes to the left and who goes to the right. The difference is only that if the boy goes to the left of the girl, he will take her left hand with his right one, and if he goes to the right of the girl, then it is vice versa.", "input_spec": "The first line contains two positive integers not exceeding 100. They are the number of fingers on the Venusian girl's left and right hand correspondingly. The second line contains two integers not exceeding 100. They are the number of fingers on the Marsian boy's left and right hands correspondingly.", "output_spec": "Print YES or NO, that is, the answer to Petr Palych's question.", "sample_inputs": ["5 1\n10 5", "4 5\n3 3", "1 2\n11 6"], "sample_outputs": ["YES", "YES", "NO"], "notes": "NoteThe boy and the girl don't really care who goes to the left."}, "src_uid": "36b7478e162be6e985613b2dad0974dd"} {"nl": {"description": "Iahub got bored, so he invented a game to be played on paper. He writes n integers a1,\u2009a2,\u2009...,\u2009an. Each of those integers can be either 0 or 1. He's allowed to do exactly one move: he chooses two indices i and j (1\u2009\u2264\u2009i\u2009\u2264\u2009j\u2009\u2264\u2009n) and flips all values ak for which their positions are in range [i,\u2009j] (that is i\u2009\u2264\u2009k\u2009\u2264\u2009j). Flip the value of x means to apply operation x\u2009=\u20091 - x.The goal of the game is that after exactly one move to obtain the maximum number of ones. Write a program to solve the little game of Iahub.", "input_spec": "The first line of the input contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). In the second line of the input there are n integers: a1,\u2009a2,\u2009...,\u2009an. It is guaranteed that each of those n values is either 0 or 1.", "output_spec": "Print an integer \u2014 the maximal number of 1s that can be obtained after exactly one move. ", "sample_inputs": ["5\n1 0 0 1 0", "4\n1 0 0 1"], "sample_outputs": ["4", "4"], "notes": "NoteIn the first case, flip the segment from 2 to 5 (i\u2009=\u20092,\u2009j\u2009=\u20095). That flip changes the sequence, it becomes: [1 1 1 0 1]. So, it contains four ones. There is no way to make the whole sequence equal to [1 1 1 1 1].In the second case, flipping only the second and the third element (i\u2009=\u20092,\u2009j\u2009=\u20093) will turn all numbers into 1."}, "src_uid": "9b543e07e805fe1dd8fa869d5d7c8b99"} {"nl": {"description": "Many students live in a dormitory. A dormitory is a whole new world of funny amusements and possibilities but it does have its drawbacks. There is only one shower and there are multiple students who wish to have a shower in the morning. That's why every morning there is a line of five people in front of the dormitory shower door. As soon as the shower opens, the first person from the line enters the shower. After a while the first person leaves the shower and the next person enters the shower. The process continues until everybody in the line has a shower.Having a shower takes some time, so the students in the line talk as they wait. At each moment of time the students talk in pairs: the (2i\u2009-\u20091)-th man in the line (for the current moment) talks with the (2i)-th one. Let's look at this process in more detail. Let's number the people from 1 to 5. Let's assume that the line initially looks as 23154 (person number 2 stands at the beginning of the line). Then, before the shower opens, 2 talks with 3, 1 talks with 5, 4 doesn't talk with anyone. Then 2 enters the shower. While 2 has a shower, 3 and 1 talk, 5 and 4 talk too. Then, 3 enters the shower. While 3 has a shower, 1 and 5 talk, 4 doesn't talk to anyone. Then 1 enters the shower and while he is there, 5 and 4 talk. Then 5 enters the shower, and then 4 enters the shower.We know that if students i and j talk, then the i-th student's happiness increases by gij and the j-th student's happiness increases by gji. Your task is to find such initial order of students in the line that the total happiness of all students will be maximum in the end. Please note that some pair of students may have a talk several times. In the example above students 1 and 5 talk while they wait for the shower to open and while 3 has a shower.", "input_spec": "The input consists of five lines, each line contains five space-separated integers: the j-th number in the i-th line shows gij (0\u2009\u2264\u2009gij\u2009\u2264\u2009105). It is guaranteed that gii\u2009=\u20090 for all i. Assume that the students are numbered from 1 to 5.", "output_spec": "Print a single integer \u2014 the maximum possible total happiness of the students.", "sample_inputs": ["0 0 0 0 9\n0 0 0 0 0\n0 0 0 0 0\n0 0 0 0 0\n7 0 0 0 0", "0 43 21 18 2\n3 0 21 11 65\n5 2 0 1 4\n54 62 12 0 99\n87 64 81 33 0"], "sample_outputs": ["32", "620"], "notes": "NoteIn the first sample, the optimal arrangement of the line is 23154. In this case, the total happiness equals:(g23\u2009+\u2009g32\u2009+\u2009g15\u2009+\u2009g51)\u2009+\u2009(g13\u2009+\u2009g31\u2009+\u2009g54\u2009+\u2009g45)\u2009+\u2009(g15\u2009+\u2009g51)\u2009+\u2009(g54\u2009+\u2009g45)\u2009=\u200932."}, "src_uid": "be6d4df20e9a48d183dd8f34531df246"} {"nl": {"description": "You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped.", "input_spec": "The first and the single line contains three space-separated integers \u2014 the areas of the parallelepiped's faces. The area's values are positive (\u2009>\u20090) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement.", "output_spec": "Print a single number \u2014 the sum of all edges of the parallelepiped.", "sample_inputs": ["1 1 1", "4 6 6"], "sample_outputs": ["12", "28"], "notes": "NoteIn the first sample the parallelepiped has sizes 1\u2009\u00d7\u20091\u2009\u00d7\u20091, in the second one\u00a0\u2014 2\u2009\u00d7\u20092\u2009\u00d7\u20093."}, "src_uid": "c0a3290be3b87f3a232ec19d4639fefc"} {"nl": {"description": "You have a plate and you want to add some gilding to it. The plate is a rectangle that we split into $$$w\\times h$$$ cells. There should be $$$k$$$ gilded rings, the first one should go along the edge of the plate, the second one\u00a0\u2014 $$$2$$$ cells away from the edge and so on. Each ring has a width of $$$1$$$ cell. Formally, the $$$i$$$-th of these rings should consist of all bordering cells on the inner rectangle of size $$$(w - 4(i - 1))\\times(h - 4(i - 1))$$$. The picture corresponds to the third example. Your task is to compute the number of cells to be gilded.", "input_spec": "The only line contains three integers $$$w$$$, $$$h$$$ and $$$k$$$ ($$$3 \\le w, h \\le 100$$$, $$$1 \\le k \\le \\left\\lfloor \\frac{min(n, m) + 1}{4}\\right\\rfloor$$$, where $$$\\lfloor x \\rfloor$$$ denotes the number $$$x$$$ rounded down) \u2014 the number of rows, columns and the number of rings, respectively.", "output_spec": "Print a single positive integer\u00a0\u2014 the number of cells to be gilded.", "sample_inputs": ["3 3 1", "7 9 1", "7 9 2"], "sample_outputs": ["8", "28", "40"], "notes": "NoteThe first example is shown on the picture below. The second example is shown on the picture below. The third example is shown in the problem description."}, "src_uid": "2c98d59917337cb321d76f72a1b3c057"} {"nl": {"description": "The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the \u00abtranslation\u00bb. Vasya translated word s from Berlandish into Birlandish as t. Help him: find out if he translated the word correctly.", "input_spec": "The first line contains word s, the second line contains word t. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.", "output_spec": "If the word t is a word s, written reversely, print YES, otherwise print NO.", "sample_inputs": ["code\nedoc", "abb\naba", "code\ncode"], "sample_outputs": ["YES", "NO", "NO"], "notes": null}, "src_uid": "35a4be326690b58bf9add547fb63a5a5"} {"nl": {"description": "Alice has a lovely piece of cloth. It has the shape of a square with a side of length $$$a$$$ centimeters. Bob also wants such piece of cloth. He would prefer a square with a side of length $$$b$$$ centimeters (where $$$b < a$$$). Alice wanted to make Bob happy, so she cut the needed square out of the corner of her piece and gave it to Bob. Now she is left with an ugly L shaped cloth (see pictures below).Alice would like to know whether the area of her cloth expressed in square centimeters is prime. Could you help her to determine it?", "input_spec": "The first line contains a number $$$t$$$\u00a0($$$1 \\leq t \\leq 5$$$)\u00a0\u2014 the number of test cases. Each of the next $$$t$$$ lines describes the $$$i$$$-th test case. It contains two integers $$$a$$$ and $$$b~(1 \\leq b < a \\leq 10^{11})$$$\u00a0\u2014 the side length of Alice's square and the side length of the square that Bob wants.", "output_spec": "Print $$$t$$$ lines, where the $$$i$$$-th line is the answer to the $$$i$$$-th test case. Print \"YES\" (without quotes) if the area of the remaining piece of cloth is prime, otherwise print \"NO\". You can print each letter in an arbitrary case (upper or lower).", "sample_inputs": ["4\n6 5\n16 13\n61690850361 24777622630\n34 33"], "sample_outputs": ["YES\nNO\nNO\nYES"], "notes": "NoteThe figure below depicts the first test case. The blue part corresponds to the piece which belongs to Bob, and the red part is the piece that Alice keeps for herself. The area of the red part is $$$6^2 - 5^2 = 36 - 25 = 11$$$, which is prime, so the answer is \"YES\". In the second case, the area is $$$16^2 - 13^2 = 87$$$, which is divisible by $$$3$$$. In the third case, the area of the remaining piece is $$$61690850361^2 - 24777622630^2 = 3191830435068605713421$$$. This number is not prime because $$$3191830435068605713421 = 36913227731 \\cdot 86468472991 $$$.In the last case, the area is $$$34^2 - 33^2 = 67$$$."}, "src_uid": "5a052e4e6c64333d94c83df890b1183c"} {"nl": {"description": "Amr bought a new video game \"Guess Your Way Out!\". The goal of the game is to find an exit from the maze that looks like a perfect binary tree of height h. The player is initially standing at the root of the tree and the exit from the tree is located at some leaf node. Let's index all the leaf nodes from the left to the right from 1 to 2h. The exit is located at some node n where 1\u2009\u2264\u2009n\u2009\u2264\u20092h, the player doesn't know where the exit is so he has to guess his way out!Amr follows simple algorithm to choose the path. Let's consider infinite command string \"LRLRLRLRL...\" (consisting of alternating characters 'L' and 'R'). Amr sequentially executes the characters of the string using following rules: Character 'L' means \"go to the left child of the current node\"; Character 'R' means \"go to the right child of the current node\"; If the destination node is already visited, Amr skips current command, otherwise he moves to the destination node; If Amr skipped two consecutive commands, he goes back to the parent of the current node before executing next command; If he reached a leaf node that is not the exit, he returns to the parent of the current node; If he reaches an exit, the game is finished. Now Amr wonders, if he follows this algorithm, how many nodes he is going to visit before reaching the exit?", "input_spec": "Input consists of two integers h,\u2009n (1\u2009\u2264\u2009h\u2009\u2264\u200950, 1\u2009\u2264\u2009n\u2009\u2264\u20092h).", "output_spec": "Output a single integer representing the number of nodes (excluding the exit node) Amr is going to visit before reaching the exit by following this algorithm.", "sample_inputs": ["1 2", "2 3", "3 6", "10 1024"], "sample_outputs": ["2", "5", "10", "2046"], "notes": "NoteA perfect binary tree of height h is a binary tree consisting of h\u2009+\u20091 levels. Level 0 consists of a single node called root, level h consists of 2h nodes called leaves. Each node that is not a leaf has exactly two children, left and right one. Following picture illustrates the sample test number 3. Nodes are labeled according to the order of visit."}, "src_uid": "3dc25ccb394e2d5ceddc6b3a26cb5781"} {"nl": {"description": "The whole world got obsessed with robots,and to keep pace with the progress, great Berland's programmer Draude decided to build his own robot. He was working hard at the robot. He taught it to walk the shortest path from one point to another, to record all its movements, but like in many Draude's programs, there was a bug \u2014 the robot didn't always walk the shortest path. Fortunately, the robot recorded its own movements correctly. Now Draude wants to find out when his robot functions wrong. Heh, if Draude only remembered the map of the field, where he tested the robot, he would easily say if the robot walked in the right direction or not. But the field map was lost never to be found, that's why he asks you to find out if there exist at least one map, where the path recorded by the robot is the shortest.The map is an infinite checkered field, where each square is either empty, or contains an obstruction. It is also known that the robot never tries to run into the obstruction. By the recorded robot's movements find out if there exist at least one such map, that it is possible to choose for the robot a starting square (the starting square should be empty) such that when the robot moves from this square its movements coincide with the recorded ones (the robot doesn't run into anything, moving along empty squares only), and the path from the starting square to the end one is the shortest.In one movement the robot can move into the square (providing there are no obstrutions in this square) that has common sides with the square the robot is currently in.", "input_spec": "The first line of the input file contains the recording of the robot's movements. This recording is a non-empty string, consisting of uppercase Latin letters L, R, U and D, standing for movements left, right, up and down respectively. The length of the string does not exceed 100.", "output_spec": "In the first line output the only word OK (if the above described map exists), or BUG (if such a map does not exist).", "sample_inputs": ["LLUUUR", "RRUULLDD"], "sample_outputs": ["OK", "BUG"], "notes": null}, "src_uid": "bb7805cc9d1cc907b64371b209c564b3"} {"nl": {"description": "Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you?You are given a system of equations: You should count, how many there are pairs of integers (a,\u2009b) (0\u2009\u2264\u2009a,\u2009b) which satisfy the system.", "input_spec": "A single line contains two integers n,\u2009m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20091000) \u2014 the parameters of the system. The numbers on the line are separated by a space.", "output_spec": "On a single line print the answer to the problem.", "sample_inputs": ["9 3", "14 28", "4 20"], "sample_outputs": ["1", "1", "0"], "notes": "NoteIn the first sample the suitable pair is integers (3,\u20090). In the second sample the suitable pair is integers (3,\u20095). In the third sample there is no suitable pair."}, "src_uid": "03caf4ddf07c1783e42e9f9085cc6efd"} {"nl": {"description": "Imp is watching a documentary about cave painting. Some numbers, carved in chaotic order, immediately attracted his attention. Imp rapidly proposed a guess that they are the remainders of division of a number n by all integers i from 1 to k. Unfortunately, there are too many integers to analyze for Imp.Imp wants you to check whether all these remainders are distinct. Formally, he wants to check, if all , 1\u2009\u2264\u2009i\u2009\u2264\u2009k, are distinct, i.\u00a0e. there is no such pair (i,\u2009j) that: 1\u2009\u2264\u2009i\u2009<\u2009j\u2009\u2264\u2009k, , where is the remainder of division x by y. ", "input_spec": "The only line contains two integers n, k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u20091018).", "output_spec": "Print \"Yes\", if all the remainders are distinct, and \"No\" otherwise. You can print each letter in arbitrary case (lower or upper).", "sample_inputs": ["4 4", "5 3"], "sample_outputs": ["No", "Yes"], "notes": "NoteIn the first sample remainders modulo 1 and 4 coincide."}, "src_uid": "5271c707c9c72ef021a0baf762bf3eb2"} {"nl": {"description": "A classroom in a school has six rows with 3 desks in each row. Two people can use the same desk: one sitting on the left and one sitting on the right. Some places are already occupied, and some places are vacant. Petya has just entered the class and wants to occupy the most convenient place. The conveniences of the places are shown on the picture: Here, the desks in the top row are the closest to the blackboard, while the desks in the bottom row are the furthest from the blackboard.You are given a plan of the class, where '*' denotes an occupied place, '.' denotes a vacant place, and the aisles are denoted by '-'. Find any of the most convenient vacant places for Petya.", "input_spec": "The input consists of 6 lines. Each line describes one row of desks, starting from the closest to the blackboard. Each line is given in the following format: two characters, each is '*' or '.' \u2014 the description of the left desk in the current row; a character '-' \u2014 the aisle; two characters, each is '*' or '.' \u2014 the description of the center desk in the current row; a character '-' \u2014 the aisle; two characters, each is '*' or '.' \u2014 the description of the right desk in the current row. So, the length of each of the six lines is 8. It is guaranteed that there is at least one vacant place in the classroom.", "output_spec": "Print the plan of the classroom after Petya takes one of the most convenient for him places. Mark this place with the letter 'P'. There should be exactly one letter 'P' in the plan. Petya can only take a vacant place. In all other places the output should coincide with the input. If there are multiple answers, print any.", "sample_inputs": ["..-**-..\n..-**-..\n..-..-..\n..-..-..\n..-..-..\n..-..-..", "**-**-**\n**-**-**\n..-**-.*\n**-**-**\n..-..-..\n..-**-..", "**-**-*.\n*.-*.-**\n**-**-**\n**-**-**\n..-..-..\n..-**-.."], "sample_outputs": ["..-**-..\n..-**-..\n..-..-..\n..-P.-..\n..-..-..\n..-..-..", "**-**-**\n**-**-**\n..-**-.*\n**-**-**\n..-P.-..\n..-**-..", "**-**-*.\n*.-*P-**\n**-**-**\n**-**-**\n..-..-..\n..-**-.."], "notes": "NoteIn the first example the maximum convenience is 3.In the second example the maximum convenience is 2.In the third example the maximum convenience is 4."}, "src_uid": "35503a2aeb18c8c1b3eda9de2c6ce33e"} {"nl": {"description": "Iahub is training for the IOI. What is a better way to train than playing a Zuma-like game? There are n balls put in a row. Each ball is colored in one of k colors. Initially the row doesn't contain three or more contiguous balls with the same color. Iahub has a single ball of color x. He can insert his ball at any position in the row (probably, between two other balls). If at any moment there are three or more contiguous balls of the same color in the row, they are destroyed immediately. This rule is applied multiple times, until there are no more sets of 3 or more contiguous balls of the same color. For example, if Iahub has the row of balls [black, black, white, white, black, black] and a white ball, he can insert the ball between two white balls. Thus three white balls are destroyed, and then four black balls become contiguous, so all four balls are destroyed. The row will not contain any ball in the end, so Iahub can destroy all 6 balls.Iahub wants to destroy as many balls as possible. You are given the description of the row of balls, and the color of Iahub's ball. Help Iahub train for the IOI by telling him the maximum number of balls from the row he can destroy.", "input_spec": "The first line of input contains three integers: n (1\u2009\u2264\u2009n\u2009\u2264\u2009100), k (1\u2009\u2264\u2009k\u2009\u2264\u2009100) and x (1\u2009\u2264\u2009x\u2009\u2264\u2009k). The next line contains n space-separated integers c1,\u2009c2,\u2009...,\u2009cn (1\u2009\u2264\u2009ci\u2009\u2264\u2009k). Number ci means that the i-th ball in the row has color ci. It is guaranteed that the initial row of balls will never contain three or more contiguous balls of the same color. ", "output_spec": "Print a single integer \u2014 the maximum number of balls Iahub can destroy.", "sample_inputs": ["6 2 2\n1 1 2 2 1 1", "1 1 1\n1"], "sample_outputs": ["6", "0"], "notes": null}, "src_uid": "d73d9610e3800817a3109314b1e6f88c"} {"nl": {"description": "Vasiliy has a car and he wants to get from home to the post office. The distance which he needs to pass equals to d kilometers.Vasiliy's car is not new \u2014 it breaks after driven every k kilometers and Vasiliy needs t seconds to repair it. After repairing his car Vasiliy can drive again (but after k kilometers it will break again, and so on). In the beginning of the trip the car is just from repair station.To drive one kilometer on car Vasiliy spends a seconds, to walk one kilometer on foot he needs b seconds (a\u2009<\u2009b).Your task is to find minimal time after which Vasiliy will be able to reach the post office. Consider that in every moment of time Vasiliy can left his car and start to go on foot.", "input_spec": "The first line contains 5 positive integers d,\u2009k,\u2009a,\u2009b,\u2009t (1\u2009\u2264\u2009d\u2009\u2264\u20091012; 1\u2009\u2264\u2009k,\u2009a,\u2009b,\u2009t\u2009\u2264\u2009106; a\u2009<\u2009b), where: d \u2014 the distance from home to the post office; k \u2014 the distance, which car is able to drive before breaking; a \u2014 the time, which Vasiliy spends to drive 1 kilometer on his car; b \u2014 the time, which Vasiliy spends to walk 1 kilometer on foot; t \u2014 the time, which Vasiliy spends to repair his car. ", "output_spec": "Print the minimal time after which Vasiliy will be able to reach the post office.", "sample_inputs": ["5 2 1 4 10", "5 2 1 4 5"], "sample_outputs": ["14", "13"], "notes": "NoteIn the first example Vasiliy needs to drive the first 2 kilometers on the car (in 2 seconds) and then to walk on foot 3 kilometers (in 12 seconds). So the answer equals to 14 seconds.In the second example Vasiliy needs to drive the first 2 kilometers on the car (in 2 seconds), then repair his car (in 5 seconds) and drive 2 kilometers more on the car (in 2 seconds). After that he needs to walk on foot 1 kilometer (in 4 seconds). So the answer equals to 13 seconds."}, "src_uid": "359ddf1f1aed9b3256836e5856fe3466"} {"nl": {"description": "Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a d1 meter long road between his house and the first shop and a d2 meter long road between his house and the second shop. Also, there is a road of length d3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house. Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled.", "input_spec": "The first line of the input contains three integers d1, d2, d3 (1\u2009\u2264\u2009d1,\u2009d2,\u2009d3\u2009\u2264\u2009108)\u00a0\u2014 the lengths of the paths. d1 is the length of the path connecting Patrick's house and the first shop; d2 is the length of the path connecting Patrick's house and the second shop; d3 is the length of the path connecting both shops. ", "output_spec": "Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house.", "sample_inputs": ["10 20 30", "1 1 5"], "sample_outputs": ["60", "4"], "notes": "NoteThe first sample is shown on the picture in the problem statement. One of the optimal routes is: house first shop second shop house.In the second sample one of the optimal routes is: house first shop house second shop house."}, "src_uid": "26cd7954a21866dbb2824d725473673e"} {"nl": {"description": "The only difference between easy and hard versions is constraints.The BerTV channel every day broadcasts one episode of one of the $$$k$$$ TV shows. You know the schedule for the next $$$n$$$ days: a sequence of integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le k$$$), where $$$a_i$$$ is the show, the episode of which will be shown in $$$i$$$-th day.The subscription to the show is bought for the entire show (i.e. for all its episodes), for each show the subscription is bought separately.How many minimum subscriptions do you need to buy in order to have the opportunity to watch episodes of purchased shows $$$d$$$ ($$$1 \\le d \\le n$$$) days in a row? In other words, you want to buy the minimum number of TV shows so that there is some segment of $$$d$$$ consecutive days in which all episodes belong to the purchased shows.", "input_spec": "The first line contains an integer $$$t$$$ ($$$1 \\le t \\le 100$$$) \u2014 the number of test cases in the input. Then $$$t$$$ test case descriptions follow. The first line of each test case contains three integers $$$n, k$$$ and $$$d$$$ ($$$1 \\le n \\le 100$$$, $$$1 \\le k \\le 100$$$, $$$1 \\le d \\le n$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le k$$$), where $$$a_i$$$ is the show that is broadcasted on the $$$i$$$-th day. It is guaranteed that the sum of the values \u200b\u200bof $$$n$$$ for all test cases in the input does not exceed $$$100$$$.", "output_spec": "Print $$$t$$$ integers \u2014 the answers to the test cases in the input in the order they follow. The answer to a test case is the minimum number of TV shows for which you need to purchase a subscription so that you can watch episodes of the purchased TV shows on BerTV for $$$d$$$ consecutive days. Please note that it is permissible that you will be able to watch more than $$$d$$$ days in a row.", "sample_inputs": ["4\n5 2 2\n1 2 1 2 1\n9 3 3\n3 3 3 2 2 2 1 1 1\n4 10 4\n10 8 6 4\n16 9 8\n3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3"], "sample_outputs": ["2\n1\n4\n5"], "notes": "NoteIn the first test case to have an opportunity to watch shows for two consecutive days, you need to buy a subscription on show $$$1$$$ and on show $$$2$$$. So the answer is two.In the second test case, you can buy a subscription to any show because for each show you can find a segment of three consecutive days, consisting only of episodes of this show.In the third test case in the unique segment of four days, you have four different shows, so you need to buy a subscription to all these four shows.In the fourth test case, you can buy subscriptions to shows $$$3,5,7,8,9$$$, and you will be able to watch shows for the last eight days."}, "src_uid": "56da4ec7cd849c4330d188d8c9bd6094"} {"nl": {"description": "Alice and Bob have decided to play the game \"Rock, Paper, Scissors\". The game consists of several rounds, each round is independent of each other. In each round, both players show one of the following things at the same time: rock, paper or scissors. If both players showed the same things then the round outcome is a draw. Otherwise, the following rules applied: if one player showed rock and the other one showed scissors, then the player who showed rock is considered the winner and the other one is considered the loser; if one player showed scissors and the other one showed paper, then the player who showed scissors is considered the winner and the other one is considered the loser; if one player showed paper and the other one showed rock, then the player who showed paper is considered the winner and the other one is considered the loser. Alice and Bob decided to play exactly $$$n$$$ rounds of the game described above. Alice decided to show rock $$$a_1$$$ times, show scissors $$$a_2$$$ times and show paper $$$a_3$$$ times. Bob decided to show rock $$$b_1$$$ times, show scissors $$$b_2$$$ times and show paper $$$b_3$$$ times. Though, both Alice and Bob did not choose the sequence in which they show things. It is guaranteed that $$$a_1 + a_2 + a_3 = n$$$ and $$$b_1 + b_2 + b_3 = n$$$.Your task is to find two numbers: the minimum number of round Alice can win; the maximum number of rounds Alice can win. ", "input_spec": "The first line of the input contains one integer $$$n$$$ ($$$1 \\le n \\le 10^{9}$$$) \u2014 the number of rounds. The second line of the input contains three integers $$$a_1, a_2, a_3$$$ ($$$0 \\le a_i \\le n$$$) \u2014 the number of times Alice will show rock, scissors and paper, respectively. It is guaranteed that $$$a_1 + a_2 + a_3 = n$$$. The third line of the input contains three integers $$$b_1, b_2, b_3$$$ ($$$0 \\le b_j \\le n$$$) \u2014 the number of times Bob will show rock, scissors and paper, respectively. It is guaranteed that $$$b_1 + b_2 + b_3 = n$$$.", "output_spec": "Print two integers: the minimum and the maximum number of rounds Alice can win.", "sample_inputs": ["2\n0 1 1\n1 1 0", "15\n5 5 5\n5 5 5", "3\n0 0 3\n3 0 0", "686\n479 178 29\n11 145 530", "319\n10 53 256\n182 103 34"], "sample_outputs": ["0 1", "0 15", "3 3", "22 334", "119 226"], "notes": "NoteIn the first example, Alice will not win any rounds if she shows scissors and then paper and Bob shows rock and then scissors. In the best outcome, Alice will win one round if she shows paper and then scissors, and Bob shows rock and then scissors.In the second example, Alice will not win any rounds if Bob shows the same things as Alice each round.In the third example, Alice always shows paper and Bob always shows rock so Alice will win all three rounds anyway."}, "src_uid": "e6dc3bc64fc66b6127e2b32cacc06402"} {"nl": {"description": "Bran and his older sister Arya are from the same house. Bran like candies so much, so Arya is going to give him some Candies.At first, Arya and Bran have 0 Candies. There are n days, at the i-th day, Arya finds ai candies in a box, that is given by the Many-Faced God. Every day she can give Bran at most 8 of her candies. If she don't give him the candies at the same day, they are saved for her and she can give them to him later.Your task is to find the minimum number of days Arya needs to give Bran k candies before the end of the n-th day. Formally, you need to output the minimum day index to the end of which k candies will be given out (the days are indexed from 1 to n).Print -1 if she can't give him k candies during n given days.", "input_spec": "The first line contains two integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009k\u2009\u2264\u200910000). The second line contains n integers a1,\u2009a2,\u2009a3,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009100).", "output_spec": "If it is impossible for Arya to give Bran k candies within n days, print -1. Otherwise print a single integer\u00a0\u2014 the minimum number of days Arya needs to give Bran k candies before the end of the n-th day.", "sample_inputs": ["2 3\n1 2", "3 17\n10 10 10", "1 9\n10"], "sample_outputs": ["2", "3", "-1"], "notes": "NoteIn the first sample, Arya can give Bran 3 candies in 2 days.In the second sample, Arya can give Bran 17 candies in 3 days, because she can give him at most 8 candies per day.In the third sample, Arya can't give Bran 9 candies, because she can give him at most 8 candies per day and she must give him the candies within 1 day."}, "src_uid": "24695b6a2aa573e90f0fe661b0c0bd3a"} {"nl": {"description": "A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed.To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity.Hitagi's sequence a has a length of n. Lost elements in it are denoted by zeros. Kaiki provides another sequence b, whose length k equals the number of lost elements in a (i.e. the number of zeros). Hitagi is to replace each zero in a with an element from b so that each element in b should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in a and b more than once in total.If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in a with an integer from b so that each integer from b is used exactly once, and the resulting sequence is not increasing.", "input_spec": "The first line of input contains two space-separated positive integers n (2\u2009\u2264\u2009n\u2009\u2264\u2009100) and k (1\u2009\u2264\u2009k\u2009\u2264\u2009n) \u2014 the lengths of sequence a and b respectively. The second line contains n space-separated integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u2009200) \u2014 Hitagi's broken sequence with exactly k zero elements. The third line contains k space-separated integers b1,\u2009b2,\u2009...,\u2009bk (1\u2009\u2264\u2009bi\u2009\u2264\u2009200) \u2014 the elements to fill into Hitagi's sequence. Input guarantees that apart from 0, no integer occurs in a and b more than once in total.", "output_spec": "Output \"Yes\" if it's possible to replace zeros in a with elements in b and make the resulting sequence not increasing, and \"No\" otherwise.", "sample_inputs": ["4 2\n11 0 0 14\n5 4", "6 1\n2 3 0 8 9 10\n5", "4 1\n8 94 0 4\n89", "7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7"], "sample_outputs": ["Yes", "No", "Yes", "Yes"], "notes": "NoteIn the first sample: Sequence a is 11,\u20090,\u20090,\u200914. Two of the elements are lost, and the candidates in b are 5 and 4. There are two possible resulting sequences: 11,\u20095,\u20094,\u200914 and 11,\u20094,\u20095,\u200914, both of which fulfill the requirements. Thus the answer is \"Yes\". In the second sample, the only possible resulting sequence is 2,\u20093,\u20095,\u20098,\u20099,\u200910, which is an increasing sequence and therefore invalid."}, "src_uid": "40264e84c041fcfb4f8c0af784df102a"} {"nl": {"description": "Vasya has n pairs of socks. In the morning of each day Vasya has to put on a pair of socks before he goes to school. When he comes home in the evening, Vasya takes off the used socks and throws them away. Every m-th day (at days with numbers m,\u20092m,\u20093m,\u2009...) mom buys a pair of socks to Vasya. She does it late in the evening, so that Vasya cannot put on a new pair of socks before the next day. How many consecutive days pass until Vasya runs out of socks?", "input_spec": "The single line contains two integers n and m (1\u2009\u2264\u2009n\u2009\u2264\u2009100;\u00a02\u2009\u2264\u2009m\u2009\u2264\u2009100), separated by a space.", "output_spec": "Print a single integer \u2014 the answer to the problem.", "sample_inputs": ["2 2", "9 3"], "sample_outputs": ["3", "13"], "notes": "NoteIn the first sample Vasya spends the first two days wearing the socks that he had initially. Then on day three he puts on the socks that were bought on day two.In the second sample Vasya spends the first nine days wearing the socks that he had initially. Then he spends three days wearing the socks that were bought on the third, sixth and ninth days. Than he spends another day wearing the socks that were bought on the twelfth day."}, "src_uid": "42b25b7335ec01794fbb1d4086aa9dd0"} {"nl": {"description": "Each of you probably has your personal experience of riding public transportation and buying tickets. After a person buys a ticket (which traditionally has an even number of digits), he usually checks whether the ticket is lucky. Let us remind you that a ticket is lucky if the sum of digits in its first half matches the sum of digits in its second half.But of course, not every ticket can be lucky. Far from it! Moreover, sometimes one look at a ticket can be enough to say right away that the ticket is not lucky. So, let's consider the following unluckiness criterion that can definitely determine an unlucky ticket. We'll say that a ticket is definitely unlucky if each digit from the first half corresponds to some digit from the second half so that each digit from the first half is strictly less than the corresponding digit from the second one or each digit from the first half is strictly more than the corresponding digit from the second one. Each digit should be used exactly once in the comparisons. In other words, there is such bijective correspondence between the digits of the first and the second half of the ticket, that either each digit of the first half turns out strictly less than the corresponding digit of the second half or each digit of the first half turns out strictly more than the corresponding digit from the second half.For example, ticket 2421 meets the following unluckiness criterion and will not be considered lucky (the sought correspondence is 2\u2009>\u20091 and 4\u2009>\u20092), ticket 0135 also meets the criterion (the sought correspondence is 0\u2009<\u20093 and 1\u2009<\u20095), and ticket 3754 does not meet the criterion. You have a ticket in your hands, it contains 2n digits. Your task is to check whether it meets the unluckiness criterion.", "input_spec": "The first line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). The second line contains a string that consists of 2n digits and defines your ticket.", "output_spec": "In the first line print \"YES\" if the ticket meets the unluckiness criterion. Otherwise, print \"NO\" (without the quotes).", "sample_inputs": ["2\n2421", "2\n0135", "2\n3754"], "sample_outputs": ["YES", "YES", "NO"], "notes": null}, "src_uid": "e4419bca9d605dbd63f7884377e28769"} {"nl": {"description": "Mislove had an array $$$a_1$$$, $$$a_2$$$, $$$\\cdots$$$, $$$a_n$$$ of $$$n$$$ positive integers, but he has lost it. He only remembers the following facts about it: The number of different numbers in the array is not less than $$$l$$$ and is not greater than $$$r$$$; For each array's element $$$a_i$$$ either $$$a_i = 1$$$ or $$$a_i$$$ is even and there is a number $$$\\dfrac{a_i}{2}$$$ in the array.For example, if $$$n=5$$$, $$$l=2$$$, $$$r=3$$$ then an array could be $$$[1,2,2,4,4]$$$ or $$$[1,1,1,1,2]$$$; but it couldn't be $$$[1,2,2,4,8]$$$ because this array contains $$$4$$$ different numbers; it couldn't be $$$[1,2,2,3,3]$$$ because $$$3$$$ is odd and isn't equal to $$$1$$$; and it couldn't be $$$[1,1,2,2,16]$$$ because there is a number $$$16$$$ in the array but there isn't a number $$$\\frac{16}{2} = 8$$$.According to these facts, he is asking you to count the minimal and the maximal possible sums of all elements in an array. ", "input_spec": "The only input line contains three integers $$$n$$$, $$$l$$$ and $$$r$$$ ($$$1 \\leq n \\leq 1\\,000$$$, $$$1 \\leq l \\leq r \\leq \\min(n, 20)$$$)\u00a0\u2014 an array's size, the minimal number and the maximal number of distinct elements in an array.", "output_spec": "Output two numbers\u00a0\u2014 the minimal and the maximal possible sums of all elements in an array.", "sample_inputs": ["4 2 2", "5 1 5"], "sample_outputs": ["5 7", "5 31"], "notes": "NoteIn the first example, an array could be the one of the following: $$$[1,1,1,2]$$$, $$$[1,1,2,2]$$$ or $$$[1,2,2,2]$$$. In the first case the minimal sum is reached and in the last case the maximal sum is reached.In the second example, the minimal sum is reached at the array $$$[1,1,1,1,1]$$$, and the maximal one is reached at the array $$$[1,2,4,8,16]$$$."}, "src_uid": "ce220726392fb0cacf0ec44a7490084a"} {"nl": {"description": "Captain Bill the Hummingbird and his crew recieved an interesting challenge offer. Some stranger gave them a map, potion of teleportation and said that only this potion might help them to reach the treasure. Bottle with potion has two values x and y written on it. These values define four moves which can be performed using the potion: Map shows that the position of Captain Bill the Hummingbird is (x1,\u2009y1) and the position of the treasure is (x2,\u2009y2).You task is to tell Captain Bill the Hummingbird whether he should accept this challenge or decline. If it is possible for Captain to reach the treasure using the potion then output \"YES\", otherwise \"NO\" (without quotes).The potion can be used infinite amount of times.", "input_spec": "The first line contains four integer numbers x1,\u2009y1,\u2009x2,\u2009y2 (\u2009-\u2009105\u2009\u2264\u2009x1,\u2009y1,\u2009x2,\u2009y2\u2009\u2264\u2009105) \u2014 positions of Captain Bill the Hummingbird and treasure respectively. The second line contains two integer numbers x,\u2009y (1\u2009\u2264\u2009x,\u2009y\u2009\u2264\u2009105) \u2014 values on the potion bottle.", "output_spec": "Print \"YES\" if it is possible for Captain to reach the treasure using the potion, otherwise print \"NO\" (without quotes).", "sample_inputs": ["0 0 0 6\n2 3", "1 1 3 6\n1 5"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example there exists such sequence of moves: \u2014 the first type of move \u2014 the third type of move "}, "src_uid": "1c80040104e06c9f24abfcfe654a851f"} {"nl": {"description": "Long time ago Alex created an interesting problem about parallelogram. The input data for this problem contained four integer points on the Cartesian plane, that defined the set of vertices of some non-degenerate (positive area) parallelogram. Points not necessary were given in the order of clockwise or counterclockwise traversal.Alex had very nice test for this problem, but is somehow happened that the last line of the input was lost and now he has only three out of four points of the original parallelogram. He remembers that test was so good that he asks you to restore it given only these three points.", "input_spec": "The input consists of three lines, each containing a pair of integer coordinates xi and yi (\u2009-\u20091000\u2009\u2264\u2009xi,\u2009yi\u2009\u2264\u20091000). It's guaranteed that these three points do not lie on the same line and no two of them coincide.", "output_spec": "First print integer k\u00a0\u2014 the number of ways to add one new integer point such that the obtained set defines some parallelogram of positive area. There is no requirement for the points to be arranged in any special order (like traversal), they just define the set of vertices. Then print k lines, each containing a pair of integer\u00a0\u2014 possible coordinates of the fourth point.", "sample_inputs": ["0 0\n1 0\n0 1"], "sample_outputs": ["3\n1 -1\n-1 1\n1 1"], "notes": "NoteIf you need clarification of what parallelogram is, please check Wikipedia page:https://en.wikipedia.org/wiki/Parallelogram"}, "src_uid": "7725f9906a1b87bf4e866df03112f1e0"} {"nl": {"description": "In some game by Playrix it takes t minutes for an oven to bake k carrot cakes, all cakes are ready at the same moment t minutes after they started baking. Arkady needs at least n cakes to complete a task, but he currently don't have any. However, he has infinitely many ingredients and one oven. Moreover, Arkady can build one more similar oven to make the process faster, it would take d minutes to build the oven. While the new oven is being built, only old one can bake cakes, after the new oven is built, both ovens bake simultaneously. Arkady can't build more than one oven.Determine if it is reasonable to build the second oven, i.e. will it decrease the minimum time needed to get n cakes or not. If the time needed with the second oven is the same as with one oven, then it is unreasonable.", "input_spec": "The only line contains four integers n, t, k, d (1\u2009\u2264\u2009n,\u2009t,\u2009k,\u2009d\u2009\u2264\u20091\u2009000)\u00a0\u2014 the number of cakes needed, the time needed for one oven to bake k cakes, the number of cakes baked at the same time, the time needed to build the second oven. ", "output_spec": "If it is reasonable to build the second oven, print \"YES\". Otherwise print \"NO\".", "sample_inputs": ["8 6 4 5", "8 6 4 6", "10 3 11 4", "4 2 1 4"], "sample_outputs": ["YES", "NO", "NO", "YES"], "notes": "NoteIn the first example it is possible to get 8 cakes in 12 minutes using one oven. The second oven can be built in 5 minutes, so after 6 minutes the first oven bakes 4 cakes, the second oven bakes 4 more ovens after 11 minutes. Thus, it is reasonable to build the second oven. In the second example it doesn't matter whether we build the second oven or not, thus it takes 12 minutes to bake 8 cakes in both cases. Thus, it is unreasonable to build the second oven.In the third example the first oven bakes 11 cakes in 3 minutes, that is more than needed 10. It is unreasonable to build the second oven, because its building takes more time that baking the needed number of cakes using the only oven."}, "src_uid": "32c866d3d394e269724b4930df5e4407"} {"nl": {"description": "Vasya has a non-negative integer n. He wants to round it to nearest integer, which ends up with 0. If n already ends up with 0, Vasya considers it already rounded.For example, if n\u2009=\u20094722 answer is 4720. If n\u2009=\u20095 Vasya can round it to 0 or to 10. Both ways are correct.For given n find out to which integer will Vasya round it.", "input_spec": "The first line contains single integer n (0\u2009\u2264\u2009n\u2009\u2264\u2009109)\u00a0\u2014 number that Vasya has.", "output_spec": "Print result of rounding n. Pay attention that in some cases answer isn't unique. In that case print any correct answer.", "sample_inputs": ["5", "113", "1000000000", "5432359"], "sample_outputs": ["0", "110", "1000000000", "5432360"], "notes": "NoteIn the first example n\u2009=\u20095. Nearest integers, that ends up with zero are 0 and 10. Any of these answers is correct, so you can print 0 or 10."}, "src_uid": "29c4d5fdf1328bbc943fa16d54d97aa9"} {"nl": {"description": "You are given an array of positive integers a1,\u2009a2,\u2009...,\u2009an\u2009\u00d7\u2009T of length n\u2009\u00d7\u2009T. We know that for any i\u2009>\u2009n it is true that ai\u2009=\u2009ai\u2009-\u2009n. Find the length of the longest non-decreasing sequence of the given array.", "input_spec": "The first line contains two space-separated integers: n, T (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009T\u2009\u2264\u2009107). The second line contains n space-separated integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009300).", "output_spec": "Print a single number \u2014 the length of a sought sequence.", "sample_inputs": ["4 3\n3 1 4 2"], "sample_outputs": ["5"], "notes": "NoteThe array given in the sample looks like that: 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2. The elements in bold form the largest non-decreasing subsequence. "}, "src_uid": "26cf484fa4cb3dc2ab09adce7a3fc9b2"} {"nl": {"description": "Grigoriy, like the hero of one famous comedy film, found a job as a night security guard at the museum. At first night he received embosser and was to take stock of the whole exposition.Embosser is a special devise that allows to \"print\" the text of a plastic tape. Text is printed sequentially, character by character. The device consists of a wheel with a lowercase English letters written in a circle, static pointer to the current letter and a button that print the chosen letter. At one move it's allowed to rotate the alphabetic wheel one step clockwise or counterclockwise. Initially, static pointer points to letter 'a'. Other letters are located as shown on the picture: After Grigoriy add new item to the base he has to print its name on the plastic tape and attach it to the corresponding exhibit. It's not required to return the wheel to its initial position with pointer on the letter 'a'.Our hero is afraid that some exhibits may become alive and start to attack him, so he wants to print the names as fast as possible. Help him, for the given string find the minimum number of rotations of the wheel required to print it.", "input_spec": "The only line of input contains the name of some exhibit\u00a0\u2014 the non-empty string consisting of no more than 100 characters. It's guaranteed that the string consists of only lowercase English letters.", "output_spec": "Print one integer\u00a0\u2014 the minimum number of rotations of the wheel, required to print the name given in the input.", "sample_inputs": ["zeus", "map", "ares"], "sample_outputs": ["18", "35", "34"], "notes": "Note\u00a0 To print the string from the first sample it would be optimal to perform the following sequence of rotations: from 'a' to 'z' (1 rotation counterclockwise), from 'z' to 'e' (5 clockwise rotations), from 'e' to 'u' (10 rotations counterclockwise), from 'u' to 's' (2 counterclockwise rotations). In total, 1\u2009+\u20095\u2009+\u200910\u2009+\u20092\u2009=\u200918 rotations are required."}, "src_uid": "ecc890b3bdb9456441a2a265c60722dd"} {"nl": {"description": "Dima and Seryozha live in an ordinary dormitory room for two. One day Dima had a date with his girl and he asked Seryozha to leave the room. As a compensation, Seryozha made Dima do his homework.The teacher gave Seryozha the coordinates of n distinct points on the abscissa axis and asked to consecutively connect them by semi-circus in a certain order: first connect the first point with the second one, then connect the second point with the third one, then the third one with the fourth one and so on to the n-th point. Two points with coordinates (x1,\u20090) and (x2,\u20090) should be connected by a semi-circle that passes above the abscissa axis with the diameter that coincides with the segment between points. Seryozha needs to find out if the line on the picture intersects itself. For clarifications, see the picture Seryozha showed to Dima (the left picture has self-intersections, the right picture doesn't have any). Seryozha is not a small boy, so the coordinates of the points can be rather large. Help Dima cope with the problem.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009103). The second line contains n distinct integers x1,\u2009x2,\u2009...,\u2009xn (\u2009-\u2009106\u2009\u2264\u2009xi\u2009\u2264\u2009106) \u2014 the i-th point has coordinates (xi,\u20090). The points are not necessarily sorted by their x coordinate.", "output_spec": "In the single line print \"yes\" (without the quotes), if the line has self-intersections. Otherwise, print \"no\" (without the quotes).", "sample_inputs": ["4\n0 10 5 15", "4\n0 15 5 10"], "sample_outputs": ["yes", "no"], "notes": "NoteThe first test from the statement is on the picture to the left, the second test is on the picture to the right."}, "src_uid": "f1b6b81ebd49f31428fe57913dfc604d"} {"nl": {"description": "It is known that fleas in Berland can jump only vertically and horizontally, and the length of the jump is always equal to s centimeters. A flea has found herself at the center of some cell of the checked board of the size n\u2009\u00d7\u2009m centimeters (each cell is 1\u2009\u00d7\u20091 centimeters). She can jump as she wishes for an arbitrary number of times, she can even visit a cell more than once. The only restriction is that she cannot jump out of the board.The flea can count the amount of cells that she can reach from the starting position (x,\u2009y). Let's denote this amount by dx,\u2009y. Your task is to find the number of such starting positions (x,\u2009y), which have the maximum possible value of dx,\u2009y.", "input_spec": "The first line contains three integers n, m, s (1\u2009\u2264\u2009n,\u2009m,\u2009s\u2009\u2264\u2009106) \u2014 length of the board, width of the board and length of the flea's jump.", "output_spec": "Output the only integer \u2014 the number of the required starting positions of the flea.", "sample_inputs": ["2 3 1000000", "3 3 2"], "sample_outputs": ["6", "4"], "notes": null}, "src_uid": "e853733fb2ed87c56623ff9a5ac09c36"} {"nl": {"description": "Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (a\u2009<\u2009b) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1).During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (\u2009+\u2009) instead of division button (\u00f7) and got sum of numerator and denominator that was equal to n instead of the expected decimal notation. Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals n. Help Petya deal with this problem. ", "input_spec": "In the only line of input there is an integer n (3\u2009\u2264\u2009n\u2009\u2264\u20091000), the sum of numerator and denominator of the fraction.", "output_spec": "Output two space-separated positive integers a and b, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum.", "sample_inputs": ["3", "4", "12"], "sample_outputs": ["1 2", "1 3", "5 7"], "notes": null}, "src_uid": "0af3515ed98d9d01ce00546333e98e77"} {"nl": {"description": "A simple recommendation system would recommend a user things liked by a certain number of their friends. In this problem you will implement part of such a system.You are given user's friends' opinions about a list of items. You are also given a threshold T \u2014 the minimal number of \"likes\" necessary for an item to be recommended to the user.Output the number of items in the list liked by at least T of user's friends.", "input_spec": "The first line of the input will contain three space-separated integers: the number of friends F (1\u2009\u2264\u2009F\u2009\u2264\u200910), the number of items I (1\u2009\u2264\u2009I\u2009\u2264\u200910) and the threshold T (1\u2009\u2264\u2009T\u2009\u2264\u2009F). The following F lines of input contain user's friends' opinions. j-th character of i-th line is 'Y' if i-th friend likes j-th item, and 'N' otherwise.", "output_spec": "Output an integer \u2014 the number of items liked by at least T of user's friends.", "sample_inputs": ["3 3 2\nYYY\nNNN\nYNY", "4 4 1\nNNNY\nNNYN\nNYNN\nYNNN"], "sample_outputs": ["2", "4"], "notes": null}, "src_uid": "4c978130187e8ae6ca013d3f781b064e"} {"nl": {"description": "Giga Tower is the tallest and deepest building in Cyberland. There are 17\u2009777\u2009777\u2009777 floors, numbered from \u2009-\u20098\u2009888\u2009888\u2009888 to 8\u2009888\u2009888\u2009888. In particular, there is floor 0 between floor \u2009-\u20091 and floor 1. Every day, thousands of tourists come to this place to enjoy the wonderful view. In Cyberland, it is believed that the number \"8\" is a lucky number (that's why Giga Tower has 8\u2009888\u2009888\u2009888 floors above the ground), and, an integer is lucky, if and only if its decimal notation contains at least one digit \"8\". For example, 8,\u2009\u2009-\u2009180,\u2009808 are all lucky while 42,\u2009\u2009-\u200910 are not. In the Giga Tower, if you write code at a floor with lucky floor number, good luck will always be with you (Well, this round is #278, also lucky, huh?).Tourist Henry goes to the tower to seek good luck. Now he is at the floor numbered a. He wants to find the minimum positive integer b, such that, if he walks b floors higher, he will arrive at a floor with a lucky number. ", "input_spec": "The only line of input contains an integer a (\u2009-\u2009109\u2009\u2264\u2009a\u2009\u2264\u2009109).", "output_spec": "Print the minimum b in a line.", "sample_inputs": ["179", "-1", "18"], "sample_outputs": ["1", "9", "10"], "notes": "NoteFor the first sample, he has to arrive at the floor numbered 180.For the second sample, he will arrive at 8.Note that b should be positive, so the answer for the third sample is 10, not 0."}, "src_uid": "4e57740be015963c190e0bfe1ab74cb9"} {"nl": {"description": "Meg the Rabbit decided to do something nice, specifically \u2014 to determine the shortest distance between two points on the surface of our planet. But Meg... what can you say, she wants everything simple. So, she already regards our planet as a two-dimensional circle. No, wait, it's even worse \u2014 as a square of side n. Thus, the task has been reduced to finding the shortest path between two dots on a square (the path should go through the square sides). To simplify the task let us consider the vertices of the square to lie at points whose coordinates are: (0,\u20090), (n,\u20090), (0,\u2009n) and (n,\u2009n).", "input_spec": "The single line contains 5 space-separated integers: n,\u2009x1,\u2009y1,\u2009x2,\u2009y2 (1\u2009\u2264\u2009n\u2009\u2264\u20091000,\u20090\u2009\u2264\u2009x1,\u2009y1,\u2009x2,\u2009y2\u2009\u2264\u2009n) which correspondingly represent a side of the square, the coordinates of the first point and the coordinates of the second point. It is guaranteed that the points lie on the sides of the square.", "output_spec": "You must print on a single line the shortest distance between the points.", "sample_inputs": ["2 0 0 1 0", "2 0 1 2 1", "100 0 0 100 100"], "sample_outputs": ["1", "4", "200"], "notes": null}, "src_uid": "685fe16c217b5b71eafdb4198822250e"} {"nl": {"description": "The only king stands on the standard chess board. You are given his position in format \"cd\", where c is the column from 'a' to 'h' and d is the row from '1' to '8'. Find the number of moves permitted for the king.Check the king's moves here https://en.wikipedia.org/wiki/King_(chess). King moves from the position e4 ", "input_spec": "The only line contains the king's position in the format \"cd\", where 'c' is the column from 'a' to 'h' and 'd' is the row from '1' to '8'.", "output_spec": "Print the only integer x \u2014 the number of moves permitted for the king.", "sample_inputs": ["e4"], "sample_outputs": ["8"], "notes": null}, "src_uid": "6994331ca6282669cbb7138eb7e55e01"} {"nl": {"description": "Given a positive integer n, find k integers (not necessary distinct) such that all these integers are strictly greater than 1, and their product is equal to n.", "input_spec": "The first line contains two integers n and k (2\u2009\u2264\u2009n\u2009\u2264\u2009100000, 1\u2009\u2264\u2009k\u2009\u2264\u200920).", "output_spec": "If it's impossible to find the representation of n as a product of k numbers, print -1. Otherwise, print k integers in any order. Their product must be equal to n. If there are multiple answers, print any of them.", "sample_inputs": ["100000 2", "100000 20", "1024 5"], "sample_outputs": ["2 50000", "-1", "2 64 2 2 2"], "notes": null}, "src_uid": "bd0bc809d52e0a17da07ccfd450a4d79"} {"nl": {"description": "The king is left alone on the chessboard. In spite of this loneliness, he doesn't lose heart, because he has business of national importance. For example, he has to pay an official visit to square t. As the king is not in habit of wasting his time, he wants to get from his current position s to square t in the least number of moves. Help him to do this. In one move the king can get to the square that has a common side or a common vertex with the square the king is currently in (generally there are 8 different squares he can move to).", "input_spec": "The first line contains the chessboard coordinates of square s, the second line \u2014 of square t. Chessboard coordinates consist of two characters, the first one is a lowercase Latin letter (from a to h), the second one is a digit from 1 to 8.", "output_spec": "In the first line print n \u2014 minimum number of the king's moves. Then in n lines print the moves themselves. Each move is described with one of the 8: L, R, U, D, LU, LD, RU or RD. L, R, U, D stand respectively for moves left, right, up and down (according to the picture), and 2-letter combinations stand for diagonal moves. If the answer is not unique, print any of them. ", "sample_inputs": ["a8\nh1"], "sample_outputs": ["7\nRD\nRD\nRD\nRD\nRD\nRD\nRD"], "notes": null}, "src_uid": "d25d454702b7755297a7a8e1f6f36ab9"} {"nl": {"description": "Let's write all the positive integer numbers one after another from $$$1$$$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...Your task is to print the $$$k$$$-th digit of this sequence.", "input_spec": "The first and only line contains integer $$$k$$$ ($$$1 \\le k \\le 10000$$$) \u2014 the position to process ($$$1$$$-based index).", "output_spec": "Print the $$$k$$$-th digit of the resulting infinite sequence.", "sample_inputs": ["7", "21"], "sample_outputs": ["7", "5"], "notes": null}, "src_uid": "1503d761dd4e129fb7c423da390544ff"} {"nl": {"description": "Xenia the beginner mathematician is a third year student at elementary school. She is now learning the addition operation.The teacher has written down the sum of multiple numbers. Pupils should calculate the sum. To make the calculation easier, the sum only contains numbers 1, 2 and 3. Still, that isn't enough for Xenia. She is only beginning to count, so she can calculate a sum only if the summands follow in non-decreasing order. For example, she can't calculate sum 1+3+2+1 but she can calculate sums 1+1+2 and 3+3.You've got the sum that was written on the board. Rearrange the summans and print the sum in such a way that Xenia can calculate the sum.", "input_spec": "The first line contains a non-empty string s \u2014 the sum Xenia needs to count. String s contains no spaces. It only contains digits and characters \"+\". Besides, string s is a correct sum of numbers 1, 2 and 3. String s is at most 100 characters long.", "output_spec": "Print the new sum that Xenia can count.", "sample_inputs": ["3+2+1", "1+1+3+1+3", "2"], "sample_outputs": ["1+2+3", "1+1+1+3+3", "2"], "notes": null}, "src_uid": "76c7312733ef9d8278521cf09d3ccbc8"} {"nl": {"description": "Friends are going to play console. They have two joysticks and only one charger for them. Initially first joystick is charged at a1 percent and second one is charged at a2 percent. You can connect charger to a joystick only at the beginning of each minute. In one minute joystick either discharges by 2 percent (if not connected to a charger) or charges by 1 percent (if connected to a charger).Game continues while both joysticks have a positive charge. Hence, if at the beginning of minute some joystick is charged by 1 percent, it has to be connected to a charger, otherwise the game stops. If some joystick completely discharges (its charge turns to 0), the game also stops.Determine the maximum number of minutes that game can last. It is prohibited to pause the game, i. e. at each moment both joysticks should be enabled. It is allowed for joystick to be charged by more than 100 percent.", "input_spec": "The first line of the input contains two positive integers a1 and a2 (1\u2009\u2264\u2009a1,\u2009a2\u2009\u2264\u2009100), the initial charge level of first and second joystick respectively.", "output_spec": "Output the only integer, the maximum number of minutes that the game can last. Game continues until some joystick is discharged.", "sample_inputs": ["3 5", "4 4"], "sample_outputs": ["6", "5"], "notes": "NoteIn the first sample game lasts for 6 minute by using the following algorithm: at the beginning of the first minute connect first joystick to the charger, by the end of this minute first joystick is at 4%, second is at 3%; continue the game without changing charger, by the end of the second minute the first joystick is at 5%, second is at 1%; at the beginning of the third minute connect second joystick to the charger, after this minute the first joystick is at 3%, the second one is at 2%; continue the game without changing charger, by the end of the fourth minute first joystick is at 1%, second one is at 3%; at the beginning of the fifth minute connect first joystick to the charger, after this minute the first joystick is at 2%, the second one is at 1%; at the beginning of the sixth minute connect second joystick to the charger, after this minute the first joystick is at 0%, the second one is at 2%. After that the first joystick is completely discharged and the game is stopped."}, "src_uid": "ba0f9f5f0ad4786b9274c829be587961"} {"nl": {"description": "Ilya got tired of sports programming, left university and got a job in the subway. He was given the task to determine the escalator load factor. Let's assume that n people stand in the queue for the escalator. At each second one of the two following possibilities takes place: either the first person in the queue enters the escalator with probability p, or the first person in the queue doesn't move with probability (1\u2009-\u2009p), paralyzed by his fear of escalators and making the whole queue wait behind him.Formally speaking, the i-th person in the queue cannot enter the escalator until people with indices from 1 to i\u2009-\u20091 inclusive enter it. In one second only one person can enter the escalator. The escalator is infinite, so if a person enters it, he never leaves it, that is he will be standing on the escalator at any following second. Ilya needs to count the expected value of the number of people standing on the escalator after t seconds. Your task is to help him solve this complicated task.", "input_spec": "The first line of the input contains three numbers n,\u2009p,\u2009t (1\u2009\u2264\u2009n,\u2009t\u2009\u2264\u20092000, 0\u2009\u2264\u2009p\u2009\u2264\u20091). Numbers n and t are integers, number p is real, given with exactly two digits after the decimal point.", "output_spec": "Print a single real number \u2014 the expected number of people who will be standing on the escalator after t seconds. The absolute or relative error mustn't exceed 10\u2009-\u20096.", "sample_inputs": ["1 0.50 1", "1 0.50 4", "4 0.20 2"], "sample_outputs": ["0.5", "0.9375", "0.4"], "notes": null}, "src_uid": "20873b1e802c7aa0e409d9f430516c1e"} {"nl": {"description": "The king Copa often has been reported about the Codeforces site, which is rapidly getting more and more popular among the brightest minds of the humanity, who are using it for training and competing. Recently Copa understood that to conquer the world he needs to organize the world Codeforces tournament. He hopes that after it the brightest minds will become his subordinates, and the toughest part of conquering the world will be completed.The final round of the Codeforces World Finals 20YY is scheduled for DD.MM.YY, where DD is the day of the round, MM is the month and YY are the last two digits of the year. Bob is lucky to be the first finalist form Berland. But there is one problem: according to the rules of the competition, all participants must be at least 18 years old at the moment of the finals. Bob was born on BD.BM.BY. This date is recorded in his passport, the copy of which he has already mailed to the organizers. But Bob learned that in different countries the way, in which the dates are written, differs. For example, in the US the month is written first, then the day and finally the year. Bob wonders if it is possible to rearrange the numbers in his date of birth so that he will be at least 18 years old on the day DD.MM.YY. He can always tell that in his motherland dates are written differently. Help him.According to another strange rule, eligible participant must be born in the same century as the date of the finals. If the day of the finals is participant's 18-th birthday, he is allowed to participate. As we are considering only the years from 2001 to 2099 for the year of the finals, use the following rule: the year is leap if it's number is divisible by four.", "input_spec": "The first line contains the date DD.MM.YY, the second line contains the date BD.BM.BY. It is guaranteed that both dates are correct, and YY and BY are always in [01;99]. It could be that by passport Bob was born after the finals. In this case, he can still change the order of numbers in date.", "output_spec": "If it is possible to rearrange the numbers in the date of birth so that Bob will be at least 18 years old on the DD.MM.YY, output YES. In the other case, output NO. Each number contains exactly two digits and stands for day, month or year in a date. Note that it is permitted to rearrange only numbers, not digits.", "sample_inputs": ["01.01.98\n01.01.80", "20.10.20\n10.02.30", "28.02.74\n28.02.64"], "sample_outputs": ["YES", "NO", "NO"], "notes": null}, "src_uid": "5418c98fe362909f7b28f95225837d33"} {"nl": {"description": "Apart from Nian, there is a daemon named Sui, which terrifies children and causes them to become sick. Parents give their children money wrapped in red packets and put them under the pillow, so that when Sui tries to approach them, it will be driven away by the fairies inside.Big Banban is hesitating over the amount of money to give out. He considers loops to be lucky since it symbolizes unity and harmony.He would like to find a positive integer n not greater than 1018, such that there are exactly k loops in the decimal representation of n, or determine that such n does not exist.A loop is a planar area enclosed by lines in the digits' decimal representation written in Arabic numerals. For example, there is one loop in digit 4, two loops in 8 and no loops in 5. Refer to the figure below for all exact forms. ", "input_spec": "The first and only line contains an integer k (1\u2009\u2264\u2009k\u2009\u2264\u2009106)\u00a0\u2014 the desired number of loops.", "output_spec": "Output an integer\u00a0\u2014 if no such n exists, output -1; otherwise output any such n. In the latter case, your output should be a positive decimal integer not exceeding 1018.", "sample_inputs": ["2", "6"], "sample_outputs": ["462", "8080"], "notes": null}, "src_uid": "0c9973792c1976c5710f88e3520cda4e"} {"nl": {"description": "Winnie-the-Pooh likes honey very much! That is why he decided to visit his friends. Winnie has got three best friends: Rabbit, Owl and Eeyore, each of them lives in his own house. There are winding paths between each pair of houses. The length of a path between Rabbit's and Owl's houses is a meters, between Rabbit's and Eeyore's house is b meters, between Owl's and Eeyore's house is c meters.For enjoying his life and singing merry songs Winnie-the-Pooh should have a meal n times a day. Now he is in the Rabbit's house and has a meal for the first time. Each time when in the friend's house where Winnie is now the supply of honey is about to end, Winnie leaves that house. If Winnie has not had a meal the required amount of times, he comes out from the house and goes to someone else of his two friends. For this he chooses one of two adjacent paths, arrives to the house on the other end and visits his friend. You may assume that when Winnie is eating in one of his friend's house, the supply of honey in other friend's houses recover (most probably, they go to the supply store).Winnie-the-Pooh does not like physical activity. He wants to have a meal n times, traveling minimum possible distance. Help him to find this distance.", "input_spec": "First line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 number of visits. Second line contains an integer a (1\u2009\u2264\u2009a\u2009\u2264\u2009100)\u00a0\u2014 distance between Rabbit's and Owl's houses. Third line contains an integer b (1\u2009\u2264\u2009b\u2009\u2264\u2009100)\u00a0\u2014 distance between Rabbit's and Eeyore's houses. Fourth line contains an integer c (1\u2009\u2264\u2009c\u2009\u2264\u2009100)\u00a0\u2014 distance between Owl's and Eeyore's houses.", "output_spec": "Output one number\u00a0\u2014 minimum distance in meters Winnie must go through to have a meal n times.", "sample_inputs": ["3\n2\n3\n1", "1\n2\n3\n5"], "sample_outputs": ["3", "0"], "notes": "NoteIn the first test case the optimal path for Winnie is the following: first have a meal in Rabbit's house, then in Owl's house, then in Eeyore's house. Thus he will pass the distance 2\u2009+\u20091\u2009=\u20093.In the second test case Winnie has a meal in Rabbit's house and that is for him. So he doesn't have to walk anywhere at all."}, "src_uid": "6058529f0144c853e9e17ed7c661fc50"} {"nl": {"description": "As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where k is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers.A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number n, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!", "input_spec": "The first input line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009109).", "output_spec": "Print \"YES\" (without the quotes), if n can be represented as a sum of two triangular numbers, otherwise print \"NO\" (without the quotes).", "sample_inputs": ["256", "512"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample number .In the second sample number 512 can not be represented as a sum of two triangular numbers."}, "src_uid": "245ec0831cd817714a4e5c531bffd099"} {"nl": {"description": "Kitahara Haruki has bought n apples for Touma Kazusa and Ogiso Setsuna. Now he wants to divide all the apples between the friends.Each apple weights 100 grams or 200 grams. Of course Kitahara Haruki doesn't want to offend any of his friend. Therefore the total weight of the apples given to Touma Kazusa must be equal to the total weight of the apples given to Ogiso Setsuna.But unfortunately Kitahara Haruki doesn't have a knife right now, so he cannot split any apple into some parts. Please, tell him: is it possible to divide all the apples in a fair way between his friends?", "input_spec": "The first line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of apples. The second line contains n integers w1,\u2009w2,\u2009...,\u2009wn (wi\u2009=\u2009100 or wi\u2009=\u2009200), where wi is the weight of the i-th apple.", "output_spec": "In a single line print \"YES\" (without the quotes) if it is possible to divide all the apples between his friends. Otherwise print \"NO\" (without the quotes).", "sample_inputs": ["3\n100 200 100", "4\n100 100 100 200"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first test sample Kitahara Haruki can give the first and the last apple to Ogiso Setsuna and the middle apple to Touma Kazusa."}, "src_uid": "9679acef82356004e47b1118f8fc836a"} {"nl": {"description": "Mike is trying rock climbing but he is awful at it. There are n holds on the wall, i-th hold is at height ai off the ground. Besides, let the sequence ai increase, that is, ai\u2009<\u2009ai\u2009+\u20091 for all i from 1 to n\u2009-\u20091; we will call such sequence a track. Mike thinks that the track a1, ..., an has difficulty . In other words, difficulty equals the maximum distance between two holds that are adjacent in height.Today Mike decided to cover the track with holds hanging on heights a1, ..., an. To make the problem harder, Mike decided to remove one hold, that is, remove one element of the sequence (for example, if we take the sequence (1,\u20092,\u20093,\u20094,\u20095) and remove the third element from it, we obtain the sequence (1,\u20092,\u20094,\u20095)). However, as Mike is awful at climbing, he wants the final difficulty (i.e. the maximum difference of heights between adjacent holds after removing the hold) to be as small as possible among all possible options of removing a hold. The first and last holds must stay at their positions.Help Mike determine the minimum difficulty of the track after removing one hold.", "input_spec": "The first line contains a single integer n (3\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of holds. The next line contains n space-separated integers ai (1\u2009\u2264\u2009ai\u2009\u2264\u20091000), where ai is the height where the hold number i hangs. The sequence ai is increasing (i.e. each element except for the first one is strictly larger than the previous one).", "output_spec": "Print a single number \u2014 the minimum difficulty of the track after removing a single hold.", "sample_inputs": ["3\n1 4 6", "5\n1 2 3 4 5", "5\n1 2 3 7 8"], "sample_outputs": ["5", "2", "4"], "notes": "NoteIn the first sample you can remove only the second hold, then the sequence looks like (1,\u20096), the maximum difference of the neighboring elements equals 5.In the second test after removing every hold the difficulty equals 2.In the third test you can obtain sequences (1,\u20093,\u20097,\u20098), (1,\u20092,\u20097,\u20098), (1,\u20092,\u20093,\u20098), for which the difficulty is 4, 5 and 5, respectively. Thus, after removing the second element we obtain the optimal answer \u2014 4."}, "src_uid": "8a8013f960814040ac4bf229a0bd5437"} {"nl": {"description": "One beautiful July morning a terrible thing happened in Mainframe: a mean virus Megabyte somehow got access to the memory of his not less mean sister Hexadecimal. He loaded there a huge amount of n different natural numbers from 1 to n to obtain total control over her energy.But his plan failed. The reason for this was very simple: Hexadecimal didn't perceive any information, apart from numbers written in binary format. This means that if a number in a decimal representation contained characters apart from 0 and 1, it was not stored in the memory. Now Megabyte wants to know, how many numbers were loaded successfully.", "input_spec": "Input data contains the only number n (1\u2009\u2264\u2009n\u2009\u2264\u2009109).", "output_spec": "Output the only number \u2014 answer to the problem.", "sample_inputs": ["10"], "sample_outputs": ["2"], "notes": "NoteFor n = 10 the answer includes numbers 1 and 10."}, "src_uid": "64a842f9a41f85a83b7d65bfbe21b6cb"} {"nl": {"description": " When the curtains are opened, a canvas unfolds outside. Kanno marvels at all the blonde colours along the riverside\u00a0\u2014 not tangerines, but blossoms instead.\"What a pity it's already late spring,\" sighs Mino with regret, \"one more drizzling night and they'd be gone.\"\"But these blends are at their best, aren't they?\" Absorbed in the landscape, Kanno remains optimistic. The landscape can be expressed as a row of consecutive cells, each of which either contains a flower of colour amber or buff or canary yellow, or is empty.When a flower withers, it disappears from the cell that it originally belonged to, and it spreads petals of its colour in its two neighbouring cells (or outside the field if the cell is on the side of the landscape). In case petals fall outside the given cells, they simply become invisible.You are to help Kanno determine whether it's possible that after some (possibly none or all) flowers shed their petals, at least one of the cells contains all three colours, considering both petals and flowers. Note that flowers can wither in arbitrary order.", "input_spec": "The first and only line of input contains a non-empty string $$$s$$$ consisting of uppercase English letters 'A', 'B', 'C' and characters '.' (dots) only ($$$\\lvert s \\rvert \\leq 100$$$)\u00a0\u2014 denoting cells containing an amber flower, a buff one, a canary yellow one, and no flowers, respectively.", "output_spec": "Output \"Yes\" if it's possible that all three colours appear in some cell, and \"No\" otherwise. You can print each letter in any case (upper or lower).", "sample_inputs": [".BAC.", "AA..CB"], "sample_outputs": ["Yes", "No"], "notes": "NoteIn the first example, the buff and canary yellow flowers can leave their petals in the central cell, blending all three colours in it.In the second example, it's impossible to satisfy the requirement because there is no way that amber and buff meet in any cell."}, "src_uid": "ba6ff507384570152118e2ab322dd11f"} {"nl": {"description": "Comrade Dujikov is busy choosing artists for Timofey's birthday and is recieving calls from Taymyr from Ilia-alpinist.Ilia-alpinist calls every n minutes, i.e. in minutes n, 2n, 3n and so on. Artists come to the comrade every m minutes, i.e. in minutes m, 2m, 3m and so on. The day is z minutes long, i.e. the day consists of minutes 1,\u20092,\u2009...,\u2009z. How many artists should be killed so that there are no artists in the room when Ilia calls? Consider that a call and a talk with an artist take exactly one minute.", "input_spec": "The only string contains three integers\u00a0\u2014 n, m and z (1\u2009\u2264\u2009n,\u2009m,\u2009z\u2009\u2264\u2009104).", "output_spec": "Print single integer\u00a0\u2014 the minimum number of artists that should be killed so that there are no artists in the room when Ilia calls.", "sample_inputs": ["1 1 10", "1 2 5", "2 3 9"], "sample_outputs": ["10", "2", "1"], "notes": "NoteTaymyr is a place in the north of Russia.In the first test the artists come each minute, as well as the calls, so we need to kill all of them.In the second test we need to kill artists which come on the second and the fourth minutes.In the third test\u00a0\u2014 only the artist which comes on the sixth minute. "}, "src_uid": "e7ad55ce26fc8610639323af1de36c2d"} {"nl": {"description": "Your friend has n cards.You know that each card has a lowercase English letter on one side and a digit on the other.Currently, your friend has laid out the cards on a table so only one side of each card is visible.You would like to know if the following statement is true for cards that your friend owns: \"If a card has a vowel on one side, then it has an even digit on the other side.\" More specifically, a vowel is one of 'a', 'e', 'i', 'o' or 'u', and even digit is one of '0', '2', '4', '6' or '8'.For example, if a card has 'a' on one side, and '6' on the other side, then this statement is true for it. Also, the statement is true, for example, for a card with 'b' and '4', and for a card with 'b' and '3' (since the letter is not a vowel). The statement is false, for example, for card with 'e' and '5'. You are interested if the statement is true for all cards. In particular, if no card has a vowel, the statement is true.To determine this, you can flip over some cards to reveal the other side. You would like to know what is the minimum number of cards you need to flip in the worst case in order to verify that the statement is true.", "input_spec": "The first and only line of input will contain a string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200950), denoting the sides of the cards that you can see on the table currently. Each character of s is either a lowercase English letter or a digit.", "output_spec": "Print a single integer, the minimum number of cards you must turn over to verify your claim.", "sample_inputs": ["ee", "z", "0ay1"], "sample_outputs": ["2", "0", "2"], "notes": "NoteIn the first sample, we must turn over both cards. Note that even though both cards have the same letter, they could possibly have different numbers on the other side.In the second sample, we don't need to turn over any cards. The statement is vacuously true, since you know your friend has no cards with a vowel on them.In the third sample, we need to flip the second and fourth cards."}, "src_uid": "b4af2b8a7e9844bf58ad3410c2cb5223"} {"nl": {"description": "Not so long ago the Codecraft-17 contest was held on Codeforces. The top 25 participants, and additionally random 25 participants out of those who got into top 500, will receive a Codeforces T-shirt.Unfortunately, you didn't manage to get into top 25, but you got into top 500, taking place p.Now the elimination round of 8VC Venture Cup 2017 is being held. It has been announced that the Codecraft-17 T-shirt winners will be chosen as follows. Let s be the number of points of the winner of the elimination round of 8VC Venture Cup 2017. Then the following pseudocode will be executed: i := (s div 50) mod 475repeat 25 times: i := (i * 96 + 42) mod 475 print (26 + i)Here \"div\" is the integer division operator, \"mod\" is the modulo (the remainder of division) operator.As the result of pseudocode execution, 25 integers between 26 and 500, inclusive, will be printed. These will be the numbers of places of the participants who get the Codecraft-17 T-shirts. It is guaranteed that the 25 printed integers will be pairwise distinct for any value of s.You're in the lead of the elimination round of 8VC Venture Cup 2017, having x points. You believe that having at least y points in the current round will be enough for victory.To change your final score, you can make any number of successful and unsuccessful hacks. A successful hack brings you 100 points, an unsuccessful one takes 50 points from you. It's difficult to do successful hacks, though.You want to win the current round and, at the same time, ensure getting a Codecraft-17 T-shirt. What is the smallest number of successful hacks you have to do to achieve that?", "input_spec": "The only line contains three integers p, x and y (26\u2009\u2264\u2009p\u2009\u2264\u2009500; 1\u2009\u2264\u2009y\u2009\u2264\u2009x\u2009\u2264\u200920000)\u00a0\u2014 your place in Codecraft-17, your current score in the elimination round of 8VC Venture Cup 2017, and the smallest number of points you consider sufficient for winning the current round.", "output_spec": "Output a single integer\u00a0\u2014 the smallest number of successful hacks you have to do in order to both win the elimination round of 8VC Venture Cup 2017 and ensure getting a Codecraft-17 T-shirt. It's guaranteed that your goal is achievable for any valid input data.", "sample_inputs": ["239 10880 9889", "26 7258 6123", "493 8000 8000", "101 6800 6500", "329 19913 19900"], "sample_outputs": ["0", "2", "24", "0", "8"], "notes": "NoteIn the first example, there is no need to do any hacks since 10880 points already bring the T-shirt to the 239-th place of Codecraft-17 (that is, you). In this case, according to the pseudocode, the T-shirts will be given to the participants at the following places: 475 422 84 411 453 210 157 294 146 188 420 367 29 356 398 155 102 239 91 133 365 312 449 301 343In the second example, you have to do two successful and one unsuccessful hack to make your score equal to 7408.In the third example, you need to do as many as 24 successful hacks to make your score equal to 10400.In the fourth example, it's sufficient to do 6 unsuccessful hacks (and no successful ones) to make your score equal to 6500, which is just enough for winning the current round and also getting the T-shirt."}, "src_uid": "c9c22e03c70a94a745b451fc79e112fd"} {"nl": {"description": "This is an easy version of the problem. The actual problems are different, but the easy version is almost a subtask of the hard version. Note that the constraints and the output format are different.You are given a string $$$s$$$ consisting of $$$n$$$ lowercase Latin letters.You have to color all its characters one of the two colors (each character to exactly one color, the same letters can be colored the same or different colors, i.e. you can choose exactly one color for each index in $$$s$$$).After coloring, you can swap any two neighboring characters of the string that are colored different colors. You can perform such an operation arbitrary (possibly, zero) number of times.The goal is to make the string sorted, i.e. all characters should be in alphabetical order.Your task is to say if it is possible to color the given string so that after coloring it can become sorted by some sequence of swaps. Note that you have to restore only coloring, not the sequence of swaps.", "input_spec": "The first line of the input contains one integer $$$n$$$ ($$$1 \\le n \\le 200$$$) \u2014 the length of $$$s$$$. The second line of the input contains the string $$$s$$$ consisting of exactly $$$n$$$ lowercase Latin letters.", "output_spec": "If it is impossible to color the given string so that after coloring it can become sorted by some sequence of swaps, print \"NO\" (without quotes) in the first line. Otherwise, print \"YES\" in the first line and any correct coloring in the second line (the coloring is the string consisting of $$$n$$$ characters, the $$$i$$$-th character should be '0' if the $$$i$$$-th character is colored the first color and '1' otherwise).", "sample_inputs": ["9\nabacbecfd", "8\naaabbcbb", "7\nabcdedc", "5\nabcde"], "sample_outputs": ["YES\n001010101", "YES\n01011011", "NO", "YES\n00000"], "notes": null}, "src_uid": "9bd31827cda83eacfcf5e46cdeaabe2b"} {"nl": {"description": "Chouti was doing a competitive programming competition. However, after having all the problems accepted, he got bored and decided to invent some small games.He came up with the following game. The player has a positive integer $$$n$$$. Initially the value of $$$n$$$ equals to $$$v$$$ and the player is able to do the following operation as many times as the player want (possibly zero): choose a positive integer $$$x$$$ that $$$x<n$$$ and $$$x$$$ is not a divisor of $$$n$$$, then subtract $$$x$$$ from $$$n$$$. The goal of the player is to minimize the value of $$$n$$$ in the end.Soon, Chouti found the game trivial. Can you also beat the game?", "input_spec": "The input contains only one integer in the first line: $$$v$$$ ($$$1 \\le v \\le 10^9$$$), the initial value of $$$n$$$.", "output_spec": "Output a single integer, the minimum value of $$$n$$$ the player can get.", "sample_inputs": ["8", "1"], "sample_outputs": ["1", "1"], "notes": "NoteIn the first example, the player can choose $$$x=3$$$ in the first turn, then $$$n$$$ becomes $$$5$$$. He can then choose $$$x=4$$$ in the second turn to get $$$n=1$$$ as the result. There are other ways to get this minimum. However, for example, he cannot choose $$$x=2$$$ in the first turn because $$$2$$$ is a divisor of $$$8$$$.In the second example, since $$$n=1$$$ initially, the player can do nothing."}, "src_uid": "c30b372a9cc0df4948dca48ef4c5d80d"} {"nl": {"description": "Carl is a beginner magician. He has a blue, b violet and c orange magic spheres. In one move he can transform two spheres of the same color into one sphere of any other color. To make a spell that has never been seen before, he needs at least x blue, y violet and z orange spheres. Can he get them (possible, in multiple actions)?", "input_spec": "The first line of the input contains three integers a, b and c (0\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u20091\u2009000\u2009000)\u00a0\u2014 the number of blue, violet and orange spheres that are in the magician's disposal. The second line of the input contains three integers, x, y and z (0\u2009\u2264\u2009x,\u2009y,\u2009z\u2009\u2264\u20091\u2009000\u2009000)\u00a0\u2014 the number of blue, violet and orange spheres that he needs to get.", "output_spec": "If the wizard is able to obtain the required numbers of spheres, print \"Yes\". Otherwise, print \"No\".", "sample_inputs": ["4 4 0\n2 1 2", "5 6 1\n2 7 2", "3 3 3\n2 2 2"], "sample_outputs": ["Yes", "No", "Yes"], "notes": "NoteIn the first sample the wizard has 4 blue and 4 violet spheres. In his first action he can turn two blue spheres into one violet one. After that he will have 2 blue and 5 violet spheres. Then he turns 4 violet spheres into 2 orange spheres and he ends up with 2 blue, 1 violet and 2 orange spheres, which is exactly what he needs."}, "src_uid": "1db4ba9dc1000e26532bb73336cf12c3"} {"nl": {"description": "Moamen and Ezzat are playing a game. They create an array $$$a$$$ of $$$n$$$ non-negative integers where every element is less than $$$2^k$$$.Moamen wins if $$$a_1 \\,\\&\\, a_2 \\,\\&\\, a_3 \\,\\&\\, \\ldots \\,\\&\\, a_n \\ge a_1 \\oplus a_2 \\oplus a_3 \\oplus \\ldots \\oplus a_n$$$.Here $$$\\&$$$ denotes the bitwise AND operation, and $$$\\oplus$$$ denotes the bitwise XOR operation.Please calculate the number of winning for Moamen arrays $$$a$$$.As the result may be very large, print the value modulo $$$1\\,000\\,000\\,007$$$ ($$$10^9 + 7$$$).", "input_spec": "The first line contains a single integer $$$t$$$ ($$$1 \\le t \\le 5$$$)\u2014 the number of test cases. Each test case consists of one line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \\le n\\le 2\\cdot 10^5$$$, $$$0 \\le k \\le 2\\cdot 10^5$$$).", "output_spec": "For each test case, print a single value \u2014 the number of different arrays that Moamen wins with. Print the result modulo $$$1\\,000\\,000\\,007$$$ ($$$10^9 + 7$$$).", "sample_inputs": ["3\n3 1\n2 1\n4 0"], "sample_outputs": ["5\n2\n1"], "notes": "NoteIn the first example, $$$n = 3$$$, $$$k = 1$$$. As a result, all the possible arrays are $$$[0,0,0]$$$, $$$[0,0,1]$$$, $$$[0,1,0]$$$, $$$[1,0,0]$$$, $$$[1,1,0]$$$, $$$[0,1,1]$$$, $$$[1,0,1]$$$, and $$$[1,1,1]$$$.Moamen wins in only $$$5$$$ of them: $$$[0,0,0]$$$, $$$[1,1,0]$$$, $$$[0,1,1]$$$, $$$[1,0,1]$$$, and $$$[1,1,1]$$$."}, "src_uid": "02f5fe43ea60939dd4a53299b5fa0881"} {"nl": {"description": "You are given an integer N. Consider all possible segments on the coordinate axis with endpoints at integer points with coordinates between 0 and N, inclusive; there will be of them.You want to draw these segments in several layers so that in each layer the segments don't overlap (they might touch at the endpoints though). You can not move the segments to a different location on the coordinate axis. Find the minimal number of layers you have to use for the given N.", "input_spec": "The only input line contains a single integer N (1\u2009\u2264\u2009N\u2009\u2264\u2009100).", "output_spec": "Output a single integer - the minimal number of layers required to draw the segments for the given N.", "sample_inputs": ["2", "3", "4"], "sample_outputs": ["2", "4", "6"], "notes": "NoteAs an example, here are the segments and their optimal arrangement into layers for N\u2009=\u20094. "}, "src_uid": "f8af5dfcf841a7f105ac4c144eb51319"} {"nl": {"description": "Simon and Antisimon play a game. Initially each player receives one fixed positive integer that doesn't change throughout the game. Simon receives number a and Antisimon receives number b. They also have a heap of n stones. The players take turns to make a move and Simon starts. During a move a player should take from the heap the number of stones equal to the greatest common divisor of the fixed number he has received and the number of stones left in the heap. A player loses when he cannot take the required number of stones (i. e. the heap has strictly less stones left than one needs to take). Your task is to determine by the given a, b and n who wins the game.", "input_spec": "The only string contains space-separated integers a, b and n (1\u2009\u2264\u2009a,\u2009b,\u2009n\u2009\u2264\u2009100) \u2014 the fixed numbers Simon and Antisimon have received correspondingly and the initial number of stones in the pile.", "output_spec": "If Simon wins, print \"0\" (without the quotes), otherwise print \"1\" (without the quotes).", "sample_inputs": ["3 5 9", "1 1 100"], "sample_outputs": ["0", "1"], "notes": "NoteThe greatest common divisor of two non-negative integers a and b is such maximum positive integer k, that a is divisible by k without remainder and similarly, b is divisible by k without remainder. Let gcd(a,\u2009b) represent the operation of calculating the greatest common divisor of numbers a and b. Specifically, gcd(x,\u20090)\u2009=\u2009gcd(0,\u2009x)\u2009=\u2009x.In the first sample the game will go like that: Simon should take gcd(3,\u20099)\u2009=\u20093 stones from the heap. After his move the heap has 6 stones left. Antisimon should take gcd(5,\u20096)\u2009=\u20091 stone from the heap. After his move the heap has 5 stones left. Simon should take gcd(3,\u20095)\u2009=\u20091 stone from the heap. After his move the heap has 4 stones left. Antisimon should take gcd(5,\u20094)\u2009=\u20091 stone from the heap. After his move the heap has 3 stones left. Simon should take gcd(3,\u20093)\u2009=\u20093 stones from the heap. After his move the heap has 0 stones left. Antisimon should take gcd(5,\u20090)\u2009=\u20095 stones from the heap. As 0\u2009<\u20095, it is impossible and Antisimon loses.In the second sample each player during each move takes one stone from the heap. As n is even, Antisimon takes the last stone and Simon can't make a move after that."}, "src_uid": "0bd6fbb6b0a2e7e5f080a70553149ac2"} {"nl": {"description": "A famous Berland's painter Kalevitch likes to shock the public. One of his last obsessions is chess. For more than a thousand years people have been playing this old game on uninteresting, monotonous boards. Kalevitch decided to put an end to this tradition and to introduce a new attitude to chessboards.As before, the chessboard is a square-checkered board with the squares arranged in a 8\u2009\u00d7\u20098 grid, each square is painted black or white. Kalevitch suggests that chessboards should be painted in the following manner: there should be chosen a horizontal or a vertical line of 8 squares (i.e. a row or a column), and painted black. Initially the whole chessboard is white, and it can be painted in the above described way one or more times. It is allowed to paint a square many times, but after the first time it does not change its colour any more and remains black. Kalevitch paints chessboards neatly, and it is impossible to judge by an individual square if it was painted with a vertical or a horizontal stroke.Kalevitch hopes that such chessboards will gain popularity, and he will be commissioned to paint chessboards, which will help him ensure a comfortable old age. The clients will inform him what chessboard they want to have, and the painter will paint a white chessboard meeting the client's requirements.It goes without saying that in such business one should economize on everything \u2014 for each commission he wants to know the minimum amount of strokes that he has to paint to fulfill the client's needs. You are asked to help Kalevitch with this task.", "input_spec": "The input file contains 8 lines, each of the lines contains 8 characters. The given matrix describes the client's requirements, W character stands for a white square, and B character \u2014 for a square painted black. It is guaranteed that client's requirments can be fulfilled with a sequence of allowed strokes (vertical/column or horizontal/row).", "output_spec": "Output the only number \u2014 the minimum amount of rows and columns that Kalevitch has to paint on the white chessboard to meet the client's requirements.", "sample_inputs": ["WWWBWWBW\nBBBBBBBB\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW", "WWWWWWWW\nBBBBBBBB\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW"], "sample_outputs": ["3", "1"], "notes": null}, "src_uid": "8b6ae2190413b23f47e2958a7d4e7bc0"} {"nl": {"description": "The Little Elephant loves chess very much. One day the Little Elephant and his friend decided to play chess. They've got the chess pieces but the board is a problem. They've got an 8\u2009\u00d7\u20098 checkered board, each square is painted either black or white. The Little Elephant and his friend know that a proper chessboard doesn't have any side-adjacent cells with the same color and the upper left cell is white. To play chess, they want to make the board they have a proper chessboard. For that the friends can choose any row of the board and cyclically shift the cells of the chosen row, that is, put the last (rightmost) square on the first place in the row and shift the others one position to the right. You can run the described operation multiple times (or not run it at all).For example, if the first line of the board looks like that \"BBBBBBWW\" (the white cells of the line are marked with character \"W\", the black cells are marked with character \"B\"), then after one cyclic shift it will look like that \"WBBBBBBW\".Help the Little Elephant and his friend to find out whether they can use any number of the described operations to turn the board they have into a proper chessboard.", "input_spec": "The input consists of exactly eight lines. Each line contains exactly eight characters \"W\" or \"B\" without any spaces: the j-th character in the i-th line stands for the color of the j-th cell of the i-th row of the elephants' board. Character \"W\" stands for the white color, character \"B\" stands for the black color. Consider the rows of the board numbered from 1 to 8 from top to bottom, and the columns \u2014 from 1 to 8 from left to right. The given board can initially be a proper chessboard.", "output_spec": "In a single line print \"YES\" (without the quotes), if we can make the board a proper chessboard and \"NO\" (without the quotes) otherwise.", "sample_inputs": ["WBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB", "WBWBWBWB\nWBWBWBWB\nBBWBWWWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWWW\nBWBWBWBW\nBWBWBWBW"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample you should shift the following lines one position to the right: the 3-rd, the 6-th, the 7-th and the 8-th.In the second sample there is no way you can achieve the goal."}, "src_uid": "ca65e023be092b2ce25599f52acc1a67"} {"nl": {"description": "Kolya is developing an economy simulator game. His most favourite part of the development process is in-game testing. Once he was entertained by the testing so much, that he found out his game-coin score become equal to 0.Kolya remembers that at the beginning of the game his game-coin score was equal to n and that he have bought only some houses (for 1\u2009234\u2009567 game-coins each), cars (for 123\u2009456 game-coins each) and computers (for 1\u2009234 game-coins each).Kolya is now interested, whether he could have spent all of his initial n game-coins buying only houses, cars and computers or there is a bug in the game. Formally, is there a triple of non-negative integers a, b and c such that a\u2009\u00d7\u20091\u2009234\u2009567\u2009+\u2009b\u2009\u00d7\u2009123\u2009456\u2009+\u2009c\u2009\u00d7\u20091\u2009234\u2009=\u2009n?Please help Kolya answer this question.", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009109)\u00a0\u2014 Kolya's initial game-coin score.", "output_spec": "Print \"YES\" (without quotes) if it's possible that Kolya spent all of his initial n coins buying only houses, cars and computers. Otherwise print \"NO\" (without quotes).", "sample_inputs": ["1359257", "17851817"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample, one of the possible solutions is to buy one house, one car and one computer, spending 1\u2009234\u2009567\u2009+\u2009123\u2009456\u2009+\u20091234\u2009=\u20091\u2009359\u2009257 game-coins in total."}, "src_uid": "72d7e422a865cc1f85108500bdf2adf2"} {"nl": {"description": "Bizon the Champion isn't just a bison. He also is a favorite of the \"Bizons\" team.At a competition the \"Bizons\" got the following problem: \"You are given two distinct words (strings of English letters), s and t. You need to transform word s into word t\". The task looked simple to the guys because they know the suffix data structures well. Bizon Senior loves suffix automaton. By applying it once to a string, he can remove from this string any single character. Bizon Middle knows suffix array well. By applying it once to a string, he can swap any two characters of this string. The guys do not know anything about the suffix tree, but it can help them do much more. Bizon the Champion wonders whether the \"Bizons\" can solve the problem. Perhaps, the solution do not require both data structures. Find out whether the guys can solve the problem and if they can, how do they do it? Can they solve it either only with use of suffix automaton or only with use of suffix array or they need both structures? Note that any structure may be used an unlimited number of times, the structures may be used in any order.", "input_spec": "The first line contains a non-empty word s. The second line contains a non-empty word t. Words s and t are different. Each word consists only of lowercase English letters. Each word contains at most 100 letters.", "output_spec": "In the single line print the answer to the problem. Print \"need tree\" (without the quotes) if word s cannot be transformed into word t even with use of both suffix array and suffix automaton. Print \"automaton\" (without the quotes) if you need only the suffix automaton to solve the problem. Print \"array\" (without the quotes) if you need only the suffix array to solve the problem. Print \"both\" (without the quotes), if you need both data structures to solve the problem. It's guaranteed that if you can solve the problem only with use of suffix array, then it is impossible to solve it only with use of suffix automaton. This is also true for suffix automaton.", "sample_inputs": ["automaton\ntomat", "array\narary", "both\nhot", "need\ntree"], "sample_outputs": ["automaton", "array", "both", "need tree"], "notes": "NoteIn the third sample you can act like that: first transform \"both\" into \"oth\" by removing the first character using the suffix automaton and then make two swaps of the string using the suffix array and get \"hot\"."}, "src_uid": "edb9d51e009a59a340d7d589bb335c14"} {"nl": {"description": "The only difference between easy and hard versions is the constraints.Polycarp has to write a coursework. The coursework consists of $$$m$$$ pages.Polycarp also has $$$n$$$ cups of coffee. The coffee in the $$$i$$$-th cup has $$$a_i$$$ caffeine in it. Polycarp can drink some cups of coffee (each one no more than once). He can drink cups in any order. Polycarp drinks each cup instantly and completely (i.e. he cannot split any cup into several days).Surely, courseworks are not usually being written in a single day (in a perfect world of Berland, at least). Some of them require multiple days of hard work.Let's consider some day of Polycarp's work. Consider Polycarp drinks $$$k$$$ cups of coffee during this day and caffeine dosages of cups Polycarp drink during this day are $$$a_{i_1}, a_{i_2}, \\dots, a_{i_k}$$$. Then the first cup he drinks gives him energy to write $$$a_{i_1}$$$ pages of coursework, the second cup gives him energy to write $$$max(0, a_{i_2} - 1)$$$ pages, the third cup gives him energy to write $$$max(0, a_{i_3} - 2)$$$ pages, ..., the $$$k$$$-th cup gives him energy to write $$$max(0, a_{i_k} - k + 1)$$$ pages.If Polycarp doesn't drink coffee during some day, he cannot write coursework at all that day.Polycarp has to finish his coursework as soon as possible (spend the minimum number of days to do it). Your task is to find out this number of days or say that it is impossible.", "input_spec": "The first line of the input contains two integers $$$n$$$ and $$$m$$$ ($$$1 \\le n \\le 100$$$, $$$1 \\le m \\le 10^4$$$) \u2014 the number of cups of coffee and the number of pages in the coursework. The second line of the input contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 100$$$), where $$$a_i$$$ is the caffeine dosage of coffee in the $$$i$$$-th cup.", "output_spec": "If it is impossible to write the coursework, print -1. Otherwise print the minimum number of days Polycarp needs to do it.", "sample_inputs": ["5 8\n2 3 1 1 2", "7 10\n1 3 4 2 1 4 2", "5 15\n5 5 5 5 5", "5 16\n5 5 5 5 5", "5 26\n5 5 5 5 5"], "sample_outputs": ["4", "2", "1", "2", "-1"], "notes": "NoteIn the first example Polycarp can drink fourth cup during first day (and write $$$1$$$ page), first and second cups during second day (and write $$$2 + (3 - 1) = 4$$$ pages), fifth cup during the third day (and write $$$2$$$ pages) and third cup during the fourth day (and write $$$1$$$ page) so the answer is $$$4$$$. It is obvious that there is no way to write the coursework in three or less days in this test.In the second example Polycarp can drink third, fourth and second cups during first day (and write $$$4 + (2 - 1) + (3 - 2) = 6$$$ pages) and sixth cup during second day (and write $$$4$$$ pages) so the answer is $$$2$$$. It is obvious that Polycarp cannot write the whole coursework in one day in this test.In the third example Polycarp can drink all cups of coffee during first day and write $$$5 + (5 - 1) + (5 - 2) + (5 - 3) + (5 - 4) = 15$$$ pages of coursework.In the fourth example Polycarp cannot drink all cups during first day and should drink one of them during the second day. So during first day he will write $$$5 + (5 - 1) + (5 - 2) + (5 - 3) = 14$$$ pages of coursework and during second day he will write $$$5$$$ pages of coursework. This is enough to complete it.In the fifth example Polycarp cannot write the whole coursework at all, even if he will drink one cup of coffee during each day, so the answer is -1."}, "src_uid": "acb8a57c8cfdb849a55fa65aff86628d"} {"nl": {"description": "Once Max found an electronic calculator from his grandfather Dovlet's chest. He noticed that the numbers were written with seven-segment indicators (https://en.wikipedia.org/wiki/Seven-segment_display). Max starts to type all the values from a to b. After typing each number Max resets the calculator. Find the total number of segments printed on the calculator.For example if a\u2009=\u20091 and b\u2009=\u20093 then at first the calculator will print 2 segments, then \u2014 5 segments and at last it will print 5 segments. So the total number of printed segments is 12.", "input_spec": "The only line contains two integers a,\u2009b (1\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u2009106) \u2014 the first and the last number typed by Max.", "output_spec": "Print the only integer a \u2014 the total number of printed segments.", "sample_inputs": ["1 3", "10 15"], "sample_outputs": ["12", "39"], "notes": null}, "src_uid": "1193de6f80a9feee8522a404d16425b9"} {"nl": {"description": "Vadim is really keen on travelling. Recently he heard about kayaking activity near his town and became very excited about it, so he joined a party of kayakers.Now the party is ready to start its journey, but firstly they have to choose kayaks. There are 2\u00b7n people in the group (including Vadim), and they have exactly n\u2009-\u20091 tandem kayaks (each of which, obviously, can carry two people) and 2 single kayaks. i-th person's weight is wi, and weight is an important matter in kayaking \u2014 if the difference between the weights of two people that sit in the same tandem kayak is too large, then it can crash. And, of course, people want to distribute their seats in kayaks in order to minimize the chances that kayaks will crash.Formally, the instability of a single kayak is always 0, and the instability of a tandem kayak is the absolute difference between weights of the people that are in this kayak. Instability of the whole journey is the total instability of all kayaks.Help the party to determine minimum possible total instability! ", "input_spec": "The first line contains one number n (2\u2009\u2264\u2009n\u2009\u2264\u200950). The second line contains 2\u00b7n integer numbers w1, w2, ..., w2n, where wi is weight of person i (1\u2009\u2264\u2009wi\u2009\u2264\u20091000).", "output_spec": "Print minimum possible total instability.", "sample_inputs": ["2\n1 2 3 4", "4\n1 3 4 6 3 4 100 200"], "sample_outputs": ["1", "5"], "notes": null}, "src_uid": "76659c0b7134416452585c391daadb16"} {"nl": {"description": "Mishka started participating in a programming contest. There are $$$n$$$ problems in the contest. Mishka's problem-solving skill is equal to $$$k$$$.Mishka arranges all problems from the contest into a list. Because of his weird principles, Mishka only solves problems from one of the ends of the list. Every time, he chooses which end (left or right) he will solve the next problem from. Thus, each problem Mishka solves is either the leftmost or the rightmost problem in the list.Mishka cannot solve a problem with difficulty greater than $$$k$$$. When Mishka solves the problem, it disappears from the list, so the length of the list decreases by $$$1$$$. Mishka stops when he is unable to solve any problem from any end of the list.How many problems can Mishka solve?", "input_spec": "The first line of input contains two integers $$$n$$$ and $$$k$$$ ($$$1 \\le n, k \\le 100$$$) \u2014 the number of problems in the contest and Mishka's problem-solving skill. The second line of input contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 100$$$), where $$$a_i$$$ is the difficulty of the $$$i$$$-th problem. The problems are given in order from the leftmost to the rightmost in the list.", "output_spec": "Print one integer \u2014 the maximum number of problems Mishka can solve.", "sample_inputs": ["8 4\n4 2 3 1 5 1 6 4", "5 2\n3 1 2 1 3", "5 100\n12 34 55 43 21"], "sample_outputs": ["5", "0", "5"], "notes": "NoteIn the first example, Mishka can solve problems in the following order: $$$[4, 2, 3, 1, 5, 1, 6, 4] \\rightarrow [2, 3, 1, 5, 1, 6, 4] \\rightarrow [2, 3, 1, 5, 1, 6] \\rightarrow [3, 1, 5, 1, 6] \\rightarrow [1, 5, 1, 6] \\rightarrow [5, 1, 6]$$$, so the number of solved problems will be equal to $$$5$$$.In the second example, Mishka can't solve any problem because the difficulties of problems from both ends are greater than $$$k$$$.In the third example, Mishka's solving skill is so amazing that he can solve all the problems."}, "src_uid": "ecf0ead308d8a581dd233160a7e38173"} {"nl": {"description": "This morning, Roman woke up and opened the browser with $$$n$$$ opened tabs numbered from $$$1$$$ to $$$n$$$. There are two kinds of tabs: those with the information required for the test and those with social network sites. Roman decided that there are too many tabs open so he wants to close some of them.He decided to accomplish this by closing every $$$k$$$-th ($$$2 \\leq k \\leq n - 1$$$) tab. Only then he will decide whether he wants to study for the test or to chat on the social networks. Formally, Roman will choose one tab (let its number be $$$b$$$) and then close all tabs with numbers $$$c = b + i \\cdot k$$$ that satisfy the following condition: $$$1 \\leq c \\leq n$$$ and $$$i$$$ is an integer (it may be positive, negative or zero).For example, if $$$k = 3$$$, $$$n = 14$$$ and Roman chooses $$$b = 8$$$, then he will close tabs with numbers $$$2$$$, $$$5$$$, $$$8$$$, $$$11$$$ and $$$14$$$.After closing the tabs Roman will calculate the amount of remaining tabs with the information for the test (let's denote it $$$e$$$) and the amount of remaining social network tabs ($$$s$$$). Help Roman to calculate the maximal absolute value of the difference of those values $$$|e - s|$$$ so that it would be easy to decide what to do next.", "input_spec": "The first line contains two integers $$$n$$$ and $$$k$$$ ($$$2 \\leq k < n \\leq 100$$$) \u2014 the amount of tabs opened currently and the distance between the tabs closed. The second line consists of $$$n$$$ integers, each of them equal either to $$$1$$$ or to $$$-1$$$. The $$$i$$$-th integer denotes the type of the $$$i$$$-th tab: if it is equal to $$$1$$$, this tab contains information for the test, and if it is equal to $$$-1$$$, it's a social network tab.", "output_spec": "Output a single integer \u2014 the maximum absolute difference between the amounts of remaining tabs of different types $$$|e - s|$$$.", "sample_inputs": ["4 2\n1 1 -1 1", "14 3\n-1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1"], "sample_outputs": ["2", "9"], "notes": "NoteIn the first example we can choose $$$b = 1$$$ or $$$b = 3$$$. We will delete then one tab of each type and the remaining tabs are then all contain test information. Thus, $$$e = 2$$$ and $$$s = 0$$$ and $$$|e - s| = 2$$$.In the second example, on the contrary, we can leave opened only tabs that have social networks opened in them."}, "src_uid": "6119258322e06fa6146e592c63313df3"} {"nl": {"description": "One day Alex was creating a contest about his friends, but accidentally deleted it. Fortunately, all the problems were saved, but now he needs to find them among other problems.But there are too many problems, to do it manually. Alex asks you to write a program, which will determine if a problem is from this contest by its name.It is known, that problem is from this contest if and only if its name contains one of Alex's friends' name exactly once. His friends' names are \"Danil\", \"Olya\", \"Slava\", \"Ann\" and \"Nikita\".Names are case sensitive.", "input_spec": "The only line contains string from lowercase and uppercase letters and \"_\" symbols of length, not more than 100 \u2014 the name of the problem.", "output_spec": "Print \"YES\", if problem is from this contest, and \"NO\" otherwise.", "sample_inputs": ["Alex_and_broken_contest", "NikitaAndString", "Danil_and_Olya"], "sample_outputs": ["NO", "YES", "NO"], "notes": null}, "src_uid": "db2dc7500ff4d84dcc1a37aebd2b3710"} {"nl": {"description": "In the city of Saint Petersburg, a day lasts for $$$2^{100}$$$ minutes. From the main station of Saint Petersburg, a train departs after $$$1$$$ minute, $$$4$$$ minutes, $$$16$$$ minutes, and so on; in other words, the train departs at time $$$4^k$$$ for each integer $$$k \\geq 0$$$. Team BowWow has arrived at the station at the time $$$s$$$ and it is trying to count how many trains have they missed; in other words, the number of trains that have departed strictly before time $$$s$$$. For example if $$$s = 20$$$, then they missed trains which have departed at $$$1$$$, $$$4$$$ and $$$16$$$. As you are the only one who knows the time, help them!Note that the number $$$s$$$ will be given you in a binary representation without leading zeroes.", "input_spec": "The first line contains a single binary number $$$s$$$ ($$$0 \\leq s < 2^{100}$$$) without leading zeroes.", "output_spec": "Output a single number\u00a0\u2014 the number of trains which have departed strictly before the time $$$s$$$.", "sample_inputs": ["100000000", "101", "10100"], "sample_outputs": ["4", "2", "3"], "notes": "NoteIn the first example $$$100000000_2 = 256_{10}$$$, missed trains have departed at $$$1$$$, $$$4$$$, $$$16$$$ and $$$64$$$.In the second example $$$101_2 = 5_{10}$$$, trains have departed at $$$1$$$ and $$$4$$$.The third example is explained in the statements."}, "src_uid": "d8ca1c83b431466eff6054d3b422ab47"} {"nl": {"description": "Given 2 integers $$$u$$$ and $$$v$$$, find the shortest array such that bitwise-xor of its elements is $$$u$$$, and the sum of its elements is $$$v$$$.", "input_spec": "The only line contains 2 integers $$$u$$$ and $$$v$$$ $$$(0 \\le u,v \\le 10^{18})$$$.", "output_spec": "If there's no array that satisfies the condition, print \"-1\". Otherwise: The first line should contain one integer, $$$n$$$, representing the length of the desired array. The next line should contain $$$n$$$ positive integers, the array itself. If there are multiple possible answers, print any.", "sample_inputs": ["2 4", "1 3", "8 5", "0 0"], "sample_outputs": ["2\n3 1", "3\n1 1 1", "-1", "0"], "notes": "NoteIn the first sample, $$$3\\oplus 1 = 2$$$ and $$$3 + 1 = 4$$$. There is no valid array of smaller length.Notice that in the fourth sample the array is empty."}, "src_uid": "490f23ced6c43f9e12f1bcbecbb14904"} {"nl": {"description": "Polycarpus has a ribbon, its length is n. He wants to cut the ribbon in a way that fulfils the following two conditions: After the cutting each ribbon piece should have length a, b or c. After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting.", "input_spec": "The first line contains four space-separated integers n, a, b and c (1\u2009\u2264\u2009n,\u2009a,\u2009b,\u2009c\u2009\u2264\u20094000) \u2014 the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers a, b and c can coincide.", "output_spec": "Print a single number \u2014 the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.", "sample_inputs": ["5 5 3 2", "7 5 5 2"], "sample_outputs": ["2", "2"], "notes": "NoteIn the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3.In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2."}, "src_uid": "062a171cc3ea717ea95ede9d7a1c3a43"} {"nl": {"description": "Maxim wants to buy an apartment in a new house at Line Avenue of Metropolis. The house has n apartments that are numbered from 1 to n and are arranged in a row. Two apartments are adjacent if their indices differ by 1. Some of the apartments can already be inhabited, others are available for sale.Maxim often visits his neighbors, so apartment is good for him if it is available for sale and there is at least one already inhabited apartment adjacent to it. Maxim knows that there are exactly k already inhabited apartments, but he doesn't know their indices yet.Find out what could be the minimum possible and the maximum possible number of apartments that are good for Maxim.", "input_spec": "The only line of the input contains two integers: n and k (1\u2009\u2264\u2009n\u2009\u2264\u2009109, 0\u2009\u2264\u2009k\u2009\u2264\u2009n).", "output_spec": "Print the minimum possible and the maximum possible number of apartments good for Maxim.", "sample_inputs": ["6 3"], "sample_outputs": ["1 3"], "notes": "NoteIn the sample test, the number of good apartments could be minimum possible if, for example, apartments with indices 1, 2 and 3 were inhabited. In this case only apartment 4 is good. The maximum possible number could be, for example, if apartments with indices 1, 3 and 5 were inhabited. In this case all other apartments: 2, 4 and 6 are good."}, "src_uid": "bdccf34b5a5ae13238c89a60814b9f86"} {"nl": {"description": "Pupils decided to go to amusement park. Some of them were with parents. In total, n people came to the park and they all want to get to the most extreme attraction and roll on it exactly once.Tickets for group of x people are sold on the attraction, there should be at least one adult in each group (it is possible that the group consists of one adult). The ticket price for such group is c1\u2009+\u2009c2\u00b7(x\u2009-\u20091)2 (in particular, if the group consists of one person, then the price is c1). All pupils who came to the park and their parents decided to split into groups in such a way that each visitor join exactly one group, and the total price of visiting the most extreme attraction is as low as possible. You are to determine this minimum possible total price. There should be at least one adult in each group. ", "input_spec": "The first line contains three integers n, c1 and c2 (1\u2009\u2264\u2009n\u2009\u2264\u2009200\u2009000, 1\u2009\u2264\u2009c1,\u2009c2\u2009\u2264\u2009107)\u00a0\u2014 the number of visitors and parameters for determining the ticket prices for a group. The second line contains the string of length n, which consists of zeros and ones. If the i-th symbol of the string is zero, then the i-th visitor is a pupil, otherwise the i-th person is an adult. It is guaranteed that there is at least one adult. It is possible that there are no pupils.", "output_spec": "Print the minimum price of visiting the most extreme attraction for all pupils and their parents. Each of them should roll on the attraction exactly once.", "sample_inputs": ["3 4 1\n011", "4 7 2\n1101"], "sample_outputs": ["8", "18"], "notes": "NoteIn the first test one group of three people should go to the attraction. Then they have to pay 4\u2009+\u20091\u2009*\u2009(3\u2009-\u20091)2\u2009=\u20098.In the second test it is better to go to the attraction in two groups. The first group should consist of two adults (for example, the first and the second person), the second should consist of one pupil and one adult (the third and the fourth person). Then each group will have a size of two and for each the price of ticket is 7\u2009+\u20092\u2009*\u2009(2\u2009-\u20091)2\u2009=\u20099. Thus, the total price for two groups is 18."}, "src_uid": "78d013b01497053b8e321fe7b6ce3760"} {"nl": {"description": "A string is called bracket sequence if it does not contain any characters other than \"(\" and \")\". A bracket sequence is called regular if it it is possible to obtain correct arithmetic expression by inserting characters \"+\" and \"1\" into this sequence. For example, \"\", \"(())\" and \"()()\" are regular bracket sequences; \"))\" and \")((\" are bracket sequences (but not regular ones), and \"(a)\" and \"(1)+(1)\" are not bracket sequences at all.You have a number of strings; each string is a bracket sequence of length $$$2$$$. So, overall you have $$$cnt_1$$$ strings \"((\", $$$cnt_2$$$ strings \"()\", $$$cnt_3$$$ strings \")(\" and $$$cnt_4$$$ strings \"))\". You want to write all these strings in some order, one after another; after that, you will get a long bracket sequence of length $$$2(cnt_1 + cnt_2 + cnt_3 + cnt_4)$$$. You wonder: is it possible to choose some order of the strings you have such that you will get a regular bracket sequence? Note that you may not remove any characters or strings, and you may not add anything either.", "input_spec": "The input consists of four lines, $$$i$$$-th of them contains one integer $$$cnt_i$$$ ($$$0 \\le cnt_i \\le 10^9$$$).", "output_spec": "Print one integer: $$$1$$$ if it is possible to form a regular bracket sequence by choosing the correct order of the given strings, $$$0$$$ otherwise.", "sample_inputs": ["3\n1\n4\n3", "0\n0\n0\n0", "1\n2\n3\n4"], "sample_outputs": ["1", "1", "0"], "notes": "NoteIn the first example it is possible to construct a string \"(())()(()((()()()())))\", which is a regular bracket sequence.In the second example it is possible to construct a string \"\", which is a regular bracket sequence."}, "src_uid": "b99578086043537297d374dc01eeb6f8"} {"nl": {"description": "Dima and Inna are doing so great! At the moment, Inna is sitting on the magic lawn playing with a pink pony. Dima wanted to play too. He brought an n\u2009\u00d7\u2009m chessboard, a very tasty candy and two numbers a and b.Dima put the chessboard in front of Inna and placed the candy in position (i,\u2009j) on the board. The boy said he would give the candy if it reaches one of the corner cells of the board. He's got one more condition. There can only be actions of the following types: move the candy from position (x,\u2009y) on the board to position (x\u2009-\u2009a,\u2009y\u2009-\u2009b); move the candy from position (x,\u2009y) on the board to position (x\u2009+\u2009a,\u2009y\u2009-\u2009b); move the candy from position (x,\u2009y) on the board to position (x\u2009-\u2009a,\u2009y\u2009+\u2009b); move the candy from position (x,\u2009y) on the board to position (x\u2009+\u2009a,\u2009y\u2009+\u2009b). Naturally, Dima doesn't allow to move the candy beyond the chessboard borders.Inna and the pony started shifting the candy around the board. They wonder what is the minimum number of allowed actions that they need to perform to move the candy from the initial position (i,\u2009j) to one of the chessboard corners. Help them cope with the task! ", "input_spec": "The first line of the input contains six integers n,\u2009m,\u2009i,\u2009j,\u2009a,\u2009b (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009106;\u00a01\u2009\u2264\u2009i\u2009\u2264\u2009n;\u00a01\u2009\u2264\u2009j\u2009\u2264\u2009m;\u00a01\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009106). You can assume that the chessboard rows are numbered from 1 to n from top to bottom and the columns are numbered from 1 to m from left to right. Position (i,\u2009j) in the statement is a chessboard cell on the intersection of the i-th row and the j-th column. You can consider that the corners are: (1,\u2009m), (n,\u20091), (n,\u2009m), (1,\u20091).", "output_spec": "In a single line print a single integer \u2014 the minimum number of moves needed to get the candy. If Inna and the pony cannot get the candy playing by Dima's rules, print on a single line \"Poor Inna and pony!\" without the quotes.", "sample_inputs": ["5 7 1 3 2 2", "5 5 2 3 1 1"], "sample_outputs": ["2", "Poor Inna and pony!"], "notes": "NoteNote to sample 1:Inna and the pony can move the candy to position (1\u2009+\u20092,\u20093\u2009+\u20092)\u2009=\u2009(3,\u20095), from there they can move it to positions (3\u2009-\u20092,\u20095\u2009+\u20092)\u2009=\u2009(1,\u20097) and (3\u2009+\u20092,\u20095\u2009+\u20092)\u2009=\u2009(5,\u20097). These positions correspond to the corner squares of the chess board. Thus, the answer to the test sample equals two."}, "src_uid": "51155e9bfa90e0ff29d049cedc3e1862"} {"nl": {"description": "You have an initially empty cauldron, and you want to brew a potion in it. The potion consists of two ingredients: magic essence and water. The potion you want to brew should contain exactly $$$k\\ \\%$$$ magic essence and $$$(100 - k)\\ \\%$$$ water.In one step, you can pour either one liter of magic essence or one liter of water into the cauldron. What is the minimum number of steps to brew a potion? You don't care about the total volume of the potion, only about the ratio between magic essence and water in it.A small reminder: if you pour $$$e$$$ liters of essence and $$$w$$$ liters of water ($$$e + w > 0$$$) into the cauldron, then it contains $$$\\frac{e}{e + w} \\cdot 100\\ \\%$$$ (without rounding) magic essence and $$$\\frac{w}{e + w} \\cdot 100\\ \\%$$$ water.", "input_spec": "The first line contains the single $$$t$$$ ($$$1 \\le t \\le 100$$$)\u00a0\u2014 the number of test cases. The first and only line of each test case contains a single integer $$$k$$$ ($$$1 \\le k \\le 100$$$)\u00a0\u2014 the percentage of essence in a good potion.", "output_spec": "For each test case, print the minimum number of steps to brew a good potion. It can be proved that it's always possible to achieve it in a finite number of steps.", "sample_inputs": ["3\n3\n100\n25"], "sample_outputs": ["100\n1\n4"], "notes": "NoteIn the first test case, you should pour $$$3$$$ liters of magic essence and $$$97$$$ liters of water into the cauldron to get a potion with $$$3\\ \\%$$$ of magic essence.In the second test case, you can pour only $$$1$$$ liter of essence to get a potion with $$$100\\ \\%$$$ of magic essence.In the third test case, you can pour $$$1$$$ liter of magic essence and $$$3$$$ liters of water."}, "src_uid": "19a2bcb727510c729efe442a13c2ff7c"} {"nl": {"description": "Polycarpus has got n candies and m friends (n\u2009\u2265\u2009m). He wants to make a New Year present with candies to each friend. Polycarpus is planning to present all candies and he wants to do this in the fairest (that is, most equal) manner. He wants to choose such ai, where ai is the number of candies in the i-th friend's present, that the maximum ai differs from the least ai as little as possible.For example, if n is divisible by m, then he is going to present the same number of candies to all his friends, that is, the maximum ai won't differ from the minimum one.", "input_spec": "The single line of the input contains a pair of space-separated positive integers n, m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100;n\u2009\u2265\u2009m) \u2014 the number of candies and the number of Polycarpus's friends.", "output_spec": "Print the required sequence a1,\u2009a2,\u2009...,\u2009am, where ai is the number of candies in the i-th friend's present. All numbers ai must be positive integers, total up to n, the maximum one should differ from the minimum one by the smallest possible value.", "sample_inputs": ["12 3", "15 4", "18 7"], "sample_outputs": ["4 4 4", "3 4 4 4", "2 2 2 3 3 3 3"], "notes": "NotePrint ai in any order, separate the numbers by spaces."}, "src_uid": "0b2c1650979a9931e00ffe32a70e3c23"} {"nl": {"description": "Today Vasya visited a widely known site and learned that the continuation of his favourite game Codecraft II will appear after exactly k months. He looked at the calendar and learned that at the moment is the month number s. Vasya immediately got interested in what month Codecraft III will appear. Help him understand that.All the twelve months in Vasya's calendar are named using their usual English names: January, February, March, April, May, June, July, August, September, October, November, December.", "input_spec": "The first input line contains the name of the current month. It is guaranteed that it is a proper English name of one of twelve months. The first letter is uppercase, the rest are lowercase. The second line contains integer k (0\u2009\u2264\u2009k\u2009\u2264\u2009100) \u2014 the number of months left till the appearance of Codecraft III.", "output_spec": "Print starting from an uppercase letter the name of the month in which the continuation of Codeforces II will appear. The printed name must be contained in the list January, February, March, April, May, June, July, August, September, October, November, December.", "sample_inputs": ["November\n3", "May\n24"], "sample_outputs": ["February", "May"], "notes": null}, "src_uid": "a307b402b20554ce177a73db07170691"} {"nl": {"description": "So nearly half of the winter is over and Maria is dreaming about summer. She's fed up with skates and sleds, she was dreaming about Hopscotch all night long. It's a very popular children's game. The game field, the court, looks as is shown in the figure (all blocks are square and are numbered from bottom to top, blocks in the same row are numbered from left to right). Let us describe the hopscotch with numbers that denote the number of squares in the row, staring from the lowest one: 1-1-2-1-2-1-2-(1-2)..., where then the period is repeated (1-2). The coordinate system is defined as shown in the figure. Side of all the squares are equal and have length a.Maria is a very smart and clever girl, and she is concerned with quite serious issues: if she throws a stone into a point with coordinates (x,\u2009y), then will she hit some square? If the answer is positive, you are also required to determine the number of the square.It is believed that the stone has fallen into the square if it is located strictly inside it. In other words a stone that has fallen on the square border is not considered a to hit a square.", "input_spec": "The only input line contains three integers: a, x, y, where a (1\u2009\u2264\u2009a\u2009\u2264\u2009100) is the side of the square, x and y (\u2009-\u2009106\u2009\u2264\u2009x\u2009\u2264\u2009106,\u20090\u2009\u2264\u2009y\u2009\u2264\u2009106) are coordinates of the stone.", "output_spec": "Print the number of the square, inside which the stone fell. If the stone is on a border of some stone or outside the court, print \"-1\" without the quotes.", "sample_inputs": ["1 0 0", "3 1 1", "3 0 10", "3 0 7", "3 4 0"], "sample_outputs": ["-1", "1", "5", "-1", "-1"], "notes": null}, "src_uid": "cf48ff6ba3e77ba5d4afccb8f775fb02"} {"nl": {"description": "Fox Ciel is playing a game with numbers now. Ciel has n positive integers: x1, x2, ..., xn. She can do the following operation as many times as needed: select two different indexes i and j such that xi > xj hold, and then apply assignment xi = xi - xj. The goal is to make the sum of all numbers as small as possible.Please help Ciel to find this minimal sum.", "input_spec": "The first line contains an integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100). Then the second line contains n integers: x1, x2, ..., xn (1\u2009\u2264\u2009xi\u2009\u2264\u2009100).", "output_spec": "Output a single integer \u2014 the required minimal sum.", "sample_inputs": ["2\n1 2", "3\n2 4 6", "2\n12 18", "5\n45 12 27 30 18"], "sample_outputs": ["2", "6", "12", "15"], "notes": "NoteIn the first example the optimal way is to do the assignment: x2 = x2 - x1.In the second example the optimal sequence of operations is: x3 = x3 - x2, x2 = x2 - x1."}, "src_uid": "042cf938dc4a0f46ff33d47b97dc6ad4"} {"nl": {"description": "A large banner with word CODEFORCES was ordered for the 1000-th onsite round of Codeforces\u03c9 that takes place on the Miami beach. Unfortunately, the company that made the banner mixed up two orders and delivered somebody else's banner that contains someone else's word. The word on the banner consists only of upper-case English letters.There is very little time to correct the mistake. All that we can manage to do is to cut out some substring from the banner, i.e. several consecutive letters. After that all the resulting parts of the banner will be glued into a single piece (if the beginning or the end of the original banner was cut out, only one part remains); it is not allowed change the relative order of parts of the banner (i.e. after a substring is cut, several first and last letters are left, it is allowed only to glue the last letters to the right of the first letters). Thus, for example, for example, you can cut a substring out from string 'TEMPLATE' and get string 'TEMPLE' (if you cut out string AT), 'PLATE' (if you cut out TEM), 'T' (if you cut out EMPLATE), etc.Help the organizers of the round determine whether it is possible to cut out of the banner some substring in such a way that the remaining parts formed word CODEFORCES.", "input_spec": "The single line of the input contains the word written on the banner. The word only consists of upper-case English letters. The word is non-empty and its length doesn't exceed 100 characters. It is guaranteed that the word isn't word CODEFORCES.", "output_spec": "Print 'YES', if there exists a way to cut out the substring, and 'NO' otherwise (without the quotes).", "sample_inputs": ["CODEWAITFORITFORCES", "BOTTOMCODER", "DECODEFORCES", "DOGEFORCES"], "sample_outputs": ["YES", "NO", "YES", "NO"], "notes": null}, "src_uid": "bda4b15827c94b526643dfefc4bc36e7"} {"nl": {"description": "Ilya is a very clever lion, he lives in an unusual city ZooVille. In this city all the animals have their rights and obligations. Moreover, they even have their own bank accounts. The state of a bank account is an integer. The state of a bank account can be a negative number. This means that the owner of the account owes the bank money.Ilya the Lion has recently had a birthday, so he got a lot of gifts. One of them (the gift of the main ZooVille bank) is the opportunity to delete the last digit or the digit before last from the state of his bank account no more than once. For example, if the state of Ilya's bank account is -123, then Ilya can delete the last digit and get his account balance equal to -12, also he can remove its digit before last and get the account balance equal to -13. Of course, Ilya is permitted not to use the opportunity to delete a digit from the balance.Ilya is not very good at math, and that's why he asks you to help him maximize his bank account. Find the maximum state of the bank account that can be obtained using the bank's gift.", "input_spec": "The single line contains integer n (10\u2009\u2264\u2009|n|\u2009\u2264\u2009109) \u2014 the state of Ilya's bank account.", "output_spec": "In a single line print an integer \u2014 the maximum state of the bank account that Ilya can get. ", "sample_inputs": ["2230", "-10", "-100003"], "sample_outputs": ["2230", "0", "-10000"], "notes": "NoteIn the first test sample Ilya doesn't profit from using the present.In the second test sample you can delete digit 1 and get the state of the account equal to 0."}, "src_uid": "4b0a8798a6d53351226d4f06e3356b1e"} {"nl": {"description": "Two polar bears Menshykov and Uslada from the St.Petersburg zoo and elephant Horace from the Kiev zoo got six sticks to play with and assess the animals' creativity. Menshykov, Uslada and Horace decided to make either an elephant or a bear from those sticks. They can make an animal from sticks in the following way: Four sticks represent the animal's legs, these sticks should have the same length. Two remaining sticks represent the animal's head and body. The bear's head stick must be shorter than the body stick. The elephant, however, has a long trunk, so his head stick must be as long as the body stick. Note that there are no limits on the relations between the leg sticks and the head and body sticks. Your task is to find out which animal can be made from the given stick set. The zoo keeper wants the sticks back after the game, so they must never be broken, even bears understand it.", "input_spec": "The single line contains six space-separated integers li (1\u2009\u2264\u2009li\u2009\u2264\u20099) \u2014 the lengths of the six sticks. It is guaranteed that the input is such that you cannot make both animals from the sticks.", "output_spec": "If you can make a bear from the given set, print string \"Bear\" (without the quotes). If you can make an elephant, print string \"Elephant\" (w\u0131thout the quotes). If you can make neither a bear nor an elephant, print string \"Alien\" (without the quotes).", "sample_inputs": ["4 2 5 4 4 4", "4 4 5 4 4 5", "1 2 3 4 5 6"], "sample_outputs": ["Bear", "Elephant", "Alien"], "notes": "NoteIf you're out of creative ideas, see instructions below which show how to make a bear and an elephant in the first two samples. The stick of length 2 is in red, the sticks of length 4 are in green, the sticks of length 5 are in blue. "}, "src_uid": "43308fa25e8578fd9f25328e715d4dd6"} {"nl": {"description": "Many people are aware of DMCA \u2013 Digital Millennium Copyright Act. But another recently proposed DMCA \u2013 Digital Millennium Calculation Act \u2013 is much less known.In this problem you need to find a root of a number according to this new DMCA law.", "input_spec": "The input contains a single integer $$$a$$$ ($$$1 \\le a \\le 1000000$$$).", "output_spec": "Output the result \u2013 an integer number.", "sample_inputs": ["1", "81"], "sample_outputs": ["1", "9"], "notes": null}, "src_uid": "477a67877367dc68b3bf5143120ff45d"} {"nl": {"description": "Calvin the robot lies in an infinite rectangular grid. Calvin's source code contains a list of n commands, each either 'U', 'R', 'D', or 'L'\u00a0\u2014 instructions to move a single square up, right, down, or left, respectively. How many ways can Calvin execute a non-empty contiguous substrings of commands and return to the same square he starts in? Two substrings are considered different if they have different starting or ending indices.", "input_spec": "The first line of the input contains a single positive integer, n (1\u2009\u2264\u2009n\u2009\u2264\u2009200)\u00a0\u2014 the number of commands. The next line contains n characters, each either 'U', 'R', 'D', or 'L'\u00a0\u2014 Calvin's source code.", "output_spec": "Print a single integer\u00a0\u2014 the number of contiguous substrings that Calvin can execute and return to his starting square.", "sample_inputs": ["6\nURLLDR", "4\nDLUU", "7\nRLRLRLR"], "sample_outputs": ["2", "0", "12"], "notes": "NoteIn the first case, the entire source code works, as well as the \"RL\" substring in the second and third characters.Note that, in the third case, the substring \"LR\" appears three times, and is therefore counted three times to the total result."}, "src_uid": "7bd5521531950e2de9a7b0904353184d"} {"nl": {"description": "In Omkar's last class of math, he learned about the least common multiple, or $$$LCM$$$. $$$LCM(a, b)$$$ is the smallest positive integer $$$x$$$ which is divisible by both $$$a$$$ and $$$b$$$.Omkar, having a laudably curious mind, immediately thought of a problem involving the $$$LCM$$$ operation: given an integer $$$n$$$, find positive integers $$$a$$$ and $$$b$$$ such that $$$a + b = n$$$ and $$$LCM(a, b)$$$ is the minimum value possible.Can you help Omkar solve his ludicrously challenging math problem?", "input_spec": "Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \\leq t \\leq 10$$$). Description of the test cases follows. Each test case consists of a single integer $$$n$$$ ($$$2 \\leq n \\leq 10^{9}$$$).", "output_spec": "For each test case, output two positive integers $$$a$$$ and $$$b$$$, such that $$$a + b = n$$$ and $$$LCM(a, b)$$$ is the minimum possible.", "sample_inputs": ["3\n4\n6\n9"], "sample_outputs": ["2 2\n3 3\n3 6"], "notes": "NoteFor the first test case, the numbers we can choose are $$$1, 3$$$ or $$$2, 2$$$. $$$LCM(1, 3) = 3$$$ and $$$LCM(2, 2) = 2$$$, so we output $$$2 \\ 2$$$.For the second test case, the numbers we can choose are $$$1, 5$$$, $$$2, 4$$$, or $$$3, 3$$$. $$$LCM(1, 5) = 5$$$, $$$LCM(2, 4) = 4$$$, and $$$LCM(3, 3) = 3$$$, so we output $$$3 \\ 3$$$.For the third test case, $$$LCM(3, 6) = 6$$$. It can be shown that there are no other pairs of numbers which sum to $$$9$$$ that have a lower $$$LCM$$$."}, "src_uid": "3fd60db24b1873e906d6dee9c2508ac5"} {"nl": {"description": "One day Misha and Andrew were playing a very simple game. First, each player chooses an integer in the range from 1 to n. Let's assume that Misha chose number m, and Andrew chose number a.Then, by using a random generator they choose a random integer c in the range between 1 and n (any integer from 1 to n is chosen with the same probability), after which the winner is the player, whose number was closer to c. The boys agreed that if m and a are located on the same distance from c, Misha wins.Andrew wants to win very much, so he asks you to help him. You know the number selected by Misha, and number n. You need to determine which value of a Andrew must choose, so that the probability of his victory is the highest possible.More formally, you need to find such integer a (1\u2009\u2264\u2009a\u2009\u2264\u2009n), that the probability that is maximal, where c is the equiprobably chosen integer from 1 to n (inclusive).", "input_spec": "The first line contains two integers n and m (1\u2009\u2264\u2009m\u2009\u2264\u2009n\u2009\u2264\u2009109) \u2014 the range of numbers in the game, and the number selected by Misha respectively.", "output_spec": "Print a single number \u2014 such value a, that probability that Andrew wins is the highest. If there are multiple such values, print the minimum of them.", "sample_inputs": ["3 1", "4 3"], "sample_outputs": ["2", "2"], "notes": "NoteIn the first sample test: Andrew wins if c is equal to 2 or 3. The probability that Andrew wins is 2\u2009/\u20093. If Andrew chooses a\u2009=\u20093, the probability of winning will be 1\u2009/\u20093. If a\u2009=\u20091, the probability of winning is 0.In the second sample test: Andrew wins if c is equal to 1 and 2. The probability that Andrew wins is 1\u2009/\u20092. For other choices of a the probability of winning is less."}, "src_uid": "f6a80c0f474cae1e201032e1df10e9f7"} {"nl": {"description": "Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n.Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result?", "input_spec": "The first and the only line of the input contains two distinct integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009104), separated by a space .", "output_spec": "Print a single number \u2014 the minimum number of times one needs to push the button required to get the number m out of number n.", "sample_inputs": ["4 6", "10 1"], "sample_outputs": ["2", "9"], "notes": "NoteIn the first example you need to push the blue button once, and then push the red button once.In the second example, doubling the number is unnecessary, so we need to push the blue button nine times."}, "src_uid": "861f8edd2813d6d3a5ff7193a804486f"} {"nl": {"description": "The only difference between easy and hard versions is the number of elements in the array.You are given an array $$$a$$$ consisting of $$$n$$$ integers. In one move you can choose any $$$a_i$$$ and divide it by $$$2$$$ rounding down (in other words, in one move you can set $$$a_i := \\lfloor\\frac{a_i}{2}\\rfloor$$$).You can perform such an operation any (possibly, zero) number of times with any $$$a_i$$$.Your task is to calculate the minimum possible number of operations required to obtain at least $$$k$$$ equal numbers in the array.Don't forget that it is possible to have $$$a_i = 0$$$ after some operations, thus the answer always exists.", "input_spec": "The first line of the input contains two integers $$$n$$$ and $$$k$$$ ($$$1 \\le k \\le n \\le 50$$$) \u2014 the number of elements in the array and the number of equal numbers required. The second line of the input contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 2 \\cdot 10^5$$$), where $$$a_i$$$ is the $$$i$$$-th element of $$$a$$$.", "output_spec": "Print one integer \u2014 the minimum possible number of operations required to obtain at least $$$k$$$ equal numbers in the array.", "sample_inputs": ["5 3\n1 2 2 4 5", "5 3\n1 2 3 4 5", "5 3\n1 2 3 3 3"], "sample_outputs": ["1", "2", "0"], "notes": null}, "src_uid": "ed1a2ae733121af6486568e528fe2d84"} {"nl": {"description": "A and B are preparing themselves for programming contests.An important part of preparing for a competition is sharing programming knowledge from the experienced members to those who are just beginning to deal with the contests. Therefore, during the next team training A decided to make teams so that newbies are solving problems together with experienced participants.A believes that the optimal team of three people should consist of one experienced participant and two newbies. Thus, each experienced participant can share the experience with a large number of people.However, B believes that the optimal team should have two experienced members plus one newbie. Thus, each newbie can gain more knowledge and experience.As a result, A and B have decided that all the teams during the training session should belong to one of the two types described above. Furthermore, they agree that the total number of teams should be as much as possible.There are n experienced members and m newbies on the training session. Can you calculate what maximum number of teams can be formed?", "input_spec": "The first line contains two integers n and m (0\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20095\u00b7105) \u2014 the number of experienced participants and newbies that are present at the training session. ", "output_spec": "Print the maximum number of teams that can be formed.", "sample_inputs": ["2 6", "4 5"], "sample_outputs": ["2", "3"], "notes": "NoteLet's represent the experienced players as XP and newbies as NB.In the first test the teams look as follows: (XP, NB, NB), (XP, NB, NB).In the second test sample the teams look as follows: (XP, NB, NB), (XP, NB, NB), (XP, XP, NB)."}, "src_uid": "0718c6afe52cd232a5e942052527f31b"} {"nl": {"description": "Each student eagerly awaits the day he would pass the exams successfully. Thus, Vasya was ready to celebrate, but, alas, he didn't pass it. However, many of Vasya's fellow students from the same group were more successful and celebrated after the exam.Some of them celebrated in the BugDonalds restaurant, some of them\u00a0\u2014 in the BeaverKing restaurant, the most successful ones were fast enough to celebrate in both of restaurants. Students which didn't pass the exam didn't celebrate in any of those restaurants and elected to stay home to prepare for their reexamination. However, this quickly bored Vasya and he started checking celebration photos on the Kilogramm. He found out that, in total, BugDonalds was visited by $$$A$$$ students, BeaverKing\u00a0\u2014 by $$$B$$$ students and $$$C$$$ students visited both restaurants. Vasya also knows that there are $$$N$$$ students in his group.Based on this info, Vasya wants to determine either if his data contradicts itself or, if it doesn't, how many students in his group didn't pass the exam. Can you help him so he won't waste his valuable preparation time?", "input_spec": "The first line contains four integers\u00a0\u2014 $$$A$$$, $$$B$$$, $$$C$$$ and $$$N$$$ ($$$0 \\leq A, B, C, N \\leq 100$$$).", "output_spec": "If a distribution of $$$N$$$ students exists in which $$$A$$$ students visited BugDonalds, $$$B$$$ \u2014 BeaverKing, $$$C$$$ \u2014 both of the restaurants and at least one student is left home (it is known that Vasya didn't pass the exam and stayed at home), output one integer\u00a0\u2014 amount of students (including Vasya) who did not pass the exam. If such a distribution does not exist and Vasya made a mistake while determining the numbers $$$A$$$, $$$B$$$, $$$C$$$ or $$$N$$$ (as in samples 2 and 3), output $$$-1$$$.", "sample_inputs": ["10 10 5 20", "2 2 0 4", "2 2 2 1"], "sample_outputs": ["5", "-1", "-1"], "notes": "NoteThe first sample describes following situation: $$$5$$$ only visited BugDonalds, $$$5$$$ students only visited BeaverKing, $$$5$$$ visited both of them and $$$5$$$ students (including Vasya) didn't pass the exam.In the second sample $$$2$$$ students only visited BugDonalds and $$$2$$$ only visited BeaverKing, but that means all $$$4$$$ students in group passed the exam which contradicts the fact that Vasya didn't pass meaning that this situation is impossible.The third sample describes a situation where $$$2$$$ students visited BugDonalds but the group has only $$$1$$$ which makes it clearly impossible."}, "src_uid": "959d56affbe2ff5dd999a7e8729f60ce"} {"nl": {"description": "You are given a chessboard of size 1\u2009\u00d7\u2009n. It is guaranteed that n is even. The chessboard is painted like this: \"BWBW...BW\".Some cells of the board are occupied by the chess pieces. Each cell contains no more than one chess piece. It is known that the total number of pieces equals to .In one step you can move one of the pieces one cell to the left or to the right. You cannot move pieces beyond the borders of the board. You also cannot move pieces to the cells that are already occupied.Your task is to place all the pieces in the cells of the same color using the minimum number of moves (all the pieces must occupy only the black cells or only the white cells after all the moves are made).", "input_spec": "The first line of the input contains one integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100, n is even) \u2014 the size of the chessboard. The second line of the input contains integer numbers (1\u2009\u2264\u2009pi\u2009\u2264\u2009n) \u2014 initial positions of the pieces. It is guaranteed that all the positions are distinct.", "output_spec": "Print one integer \u2014 the minimum number of moves you have to make to place all the pieces in the cells of the same color.", "sample_inputs": ["6\n1 2 6", "10\n1 2 3 4 5"], "sample_outputs": ["2", "10"], "notes": "NoteIn the first example the only possible strategy is to move the piece at the position 6 to the position 5 and move the piece at the position 2 to the position 3. Notice that if you decide to place the pieces in the white cells the minimum number of moves will be 3.In the second example the possible strategy is to move in 4 moves, then in 3 moves, in 2 moves and in 1 move."}, "src_uid": "0efe9afd8e6be9e00f7949be93f0ca1a"} {"nl": {"description": "You are solving the crossword problem K from IPSC 2014. You solved all the clues except for one: who does Eevee evolve into? You are not very into pokemons, but quick googling helped you find out, that Eevee can evolve into eight different pokemons: Vaporeon, Jolteon, Flareon, Espeon, Umbreon, Leafeon, Glaceon, and Sylveon.You know the length of the word in the crossword, and you already know some letters. Designers of the crossword made sure that the answer is unambiguous, so you can assume that exactly one pokemon out of the 8 that Eevee evolves into fits the length and the letters given. Your task is to find it.", "input_spec": "First line contains an integer n (6\u2009\u2264\u2009n\u2009\u2264\u20098) \u2013 the length of the string. Next line contains a string consisting of n characters, each of which is either a lower case english letter (indicating a known letter) or a dot character (indicating an empty cell in the crossword).", "output_spec": "Print a name of the pokemon that Eevee can evolve into that matches the pattern in the input. Use lower case letters only to print the name (in particular, do not capitalize the first letter).", "sample_inputs": ["7\nj......", "7\n...feon", "7\n.l.r.o."], "sample_outputs": ["jolteon", "leafeon", "flareon"], "notes": "NoteHere's a set of names in a form you can paste into your solution:[\"vaporeon\", \"jolteon\", \"flareon\", \"espeon\", \"umbreon\", \"leafeon\", \"glaceon\", \"sylveon\"]{\"vaporeon\", \"jolteon\", \"flareon\", \"espeon\", \"umbreon\", \"leafeon\", \"glaceon\", \"sylveon\"}"}, "src_uid": "ec3d15ff198d1e4ab9fd04dd3b12e6c0"} {"nl": {"description": "Petya has an array $$$a$$$ consisting of $$$n$$$ integers. He wants to remove duplicate (equal) elements.Petya wants to leave only the rightmost entry (occurrence) for each element of the array. The relative order of the remaining unique elements should not be changed.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$1 \\le n \\le 50$$$) \u2014 the number of elements in Petya's array. The following line contains a sequence $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 1\\,000$$$) \u2014 the Petya's array.", "output_spec": "In the first line print integer $$$x$$$ \u2014 the number of elements which will be left in Petya's array after he removed the duplicates. In the second line print $$$x$$$ integers separated with a space \u2014 Petya's array after he removed the duplicates. For each unique element only the rightmost entry should be left.", "sample_inputs": ["6\n1 5 5 1 6 1", "5\n2 4 2 4 4", "5\n6 6 6 6 6"], "sample_outputs": ["3\n5 6 1", "2\n2 4", "1\n6"], "notes": "NoteIn the first example you should remove two integers $$$1$$$, which are in the positions $$$1$$$ and $$$4$$$. Also you should remove the integer $$$5$$$, which is in the position $$$2$$$.In the second example you should remove integer $$$2$$$, which is in the position $$$1$$$, and two integers $$$4$$$, which are in the positions $$$2$$$ and $$$4$$$.In the third example you should remove four integers $$$6$$$, which are in the positions $$$1$$$, $$$2$$$, $$$3$$$ and $$$4$$$."}, "src_uid": "1b9d3dfcc2353eac20b84c75c27fab5a"} {"nl": {"description": "One spring day on his way to university Lesha found an array A. Lesha likes to split arrays into several parts. This time Lesha decided to split the array A into several, possibly one, new arrays so that the sum of elements in each of the new arrays is not zero. One more condition is that if we place the new arrays one after another they will form the old array A.Lesha is tired now so he asked you to split the array. Help Lesha!", "input_spec": "The first line contains single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of elements in the array A. The next line contains n integers a1,\u2009a2,\u2009...,\u2009an (\u2009-\u2009103\u2009\u2264\u2009ai\u2009\u2264\u2009103)\u00a0\u2014 the elements of the array A.", "output_spec": "If it is not possible to split the array A and satisfy all the constraints, print single line containing \"NO\" (without quotes). Otherwise in the first line print \"YES\" (without quotes). In the next line print single integer k\u00a0\u2014 the number of new arrays. In each of the next k lines print two integers li and ri which denote the subarray A[li... ri] of the initial array A being the i-th new array. Integers li, ri should satisfy the following conditions: l1\u2009=\u20091 rk\u2009=\u2009n ri\u2009+\u20091\u2009=\u2009li\u2009+\u20091 for each 1\u2009\u2264\u2009i\u2009<\u2009k. If there are multiple answers, print any of them.", "sample_inputs": ["3\n1 2 -3", "8\n9 -12 3 4 -4 -10 7 3", "1\n0", "4\n1 2 3 -5"], "sample_outputs": ["YES\n2\n1 2\n3 3", "YES\n2\n1 2\n3 8", "NO", "YES\n4\n1 1\n2 2\n3 3\n4 4"], "notes": null}, "src_uid": "3a9258070ff179daf33a4515def9897a"} {"nl": {"description": "You have a nuts and lots of boxes. The boxes have a wonderful feature: if you put x (x\u2009\u2265\u20090) divisors (the spacial bars that can divide a box) to it, you get a box, divided into x\u2009+\u20091 sections.You are minimalist. Therefore, on the one hand, you are against dividing some box into more than k sections. On the other hand, you are against putting more than v nuts into some section of the box. What is the minimum number of boxes you have to use if you want to put all the nuts in boxes, and you have b divisors?Please note that you need to minimize the number of used boxes, not sections. You do not have to minimize the number of used divisors.", "input_spec": "The first line contains four space-separated integers k, a, b, v (2\u2009\u2264\u2009k\u2009\u2264\u20091000; 1\u2009\u2264\u2009a,\u2009b,\u2009v\u2009\u2264\u20091000) \u2014 the maximum number of sections in the box, the number of nuts, the number of divisors and the capacity of each section of the box.", "output_spec": "Print a single integer \u2014 the answer to the problem.", "sample_inputs": ["3 10 3 3", "3 10 1 3", "100 100 1 1000"], "sample_outputs": ["2", "3", "1"], "notes": "NoteIn the first sample you can act like this: Put two divisors to the first box. Now the first box has three sections and we can put three nuts into each section. Overall, the first box will have nine nuts. Do not put any divisors into the second box. Thus, the second box has one section for the last nut. In the end we've put all the ten nuts into boxes.The second sample is different as we have exactly one divisor and we put it to the first box. The next two boxes will have one section each."}, "src_uid": "7cff20b1c63a694baca69bdf4bdb2652"} {"nl": {"description": "Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to n. Entrance n and entrance 1 are adjacent.Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance a and he decided that during his walk he will move around the house b entrances in the direction of increasing numbers (in this order entrance n should be followed by entrance 1). The negative value of b corresponds to moving |b| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance n). If b\u2009=\u20090, then Vasya prefers to walk beside his entrance. Illustration for n\u2009=\u20096, a\u2009=\u20092, b\u2009=\u2009\u2009-\u20095. Help Vasya to determine the number of the entrance, near which he will be at the end of his walk.", "input_spec": "The single line of the input contains three space-separated integers n, a and b (1\u2009\u2264\u2009n\u2009\u2264\u2009100,\u20091\u2009\u2264\u2009a\u2009\u2264\u2009n,\u2009\u2009-\u2009100\u2009\u2264\u2009b\u2009\u2264\u2009100)\u00a0\u2014 the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively.", "output_spec": "Print a single integer k (1\u2009\u2264\u2009k\u2009\u2264\u2009n)\u00a0\u2014 the number of the entrance where Vasya will be at the end of his walk.", "sample_inputs": ["6 2 -5", "5 1 3", "3 2 7"], "sample_outputs": ["3", "4", "3"], "notes": "NoteThe first example is illustrated by the picture in the statements."}, "src_uid": "cd0e90042a6aca647465f1d51e6dffc4"} {"nl": {"description": "Kolya is very absent-minded. Today his math teacher asked him to solve a simple problem with the equation $$$a + 1 = b$$$ with positive integers $$$a$$$ and $$$b$$$, but Kolya forgot the numbers $$$a$$$ and $$$b$$$. He does, however, remember that the first (leftmost) digit of $$$a$$$ was $$$d_a$$$, and the first (leftmost) digit of $$$b$$$ was $$$d_b$$$.Can you reconstruct any equation $$$a + 1 = b$$$ that satisfies this property? It may be possible that Kolya misremembers the digits, and there is no suitable equation, in which case report so.", "input_spec": "The only line contains two space-separated digits $$$d_a$$$ and $$$d_b$$$ ($$$1 \\leq d_a, d_b \\leq 9$$$).", "output_spec": "If there is no equation $$$a + 1 = b$$$ with positive integers $$$a$$$ and $$$b$$$ such that the first digit of $$$a$$$ is $$$d_a$$$, and the first digit of $$$b$$$ is $$$d_b$$$, print a single number $$$-1$$$. Otherwise, print any suitable $$$a$$$ and $$$b$$$ that both are positive and do not exceed $$$10^9$$$. It is guaranteed that if a solution exists, there also exists a solution with both numbers not exceeding $$$10^9$$$.", "sample_inputs": ["1 2", "4 4", "5 7", "6 2"], "sample_outputs": ["199 200", "412 413", "-1", "-1"], "notes": null}, "src_uid": "3eff6f044c028146bea5f0dfd2870d23"} {"nl": {"description": "The new operating system BerOS has a nice feature. It is possible to use any number of characters '/' as a delimiter in path instead of one traditional '/'. For example, strings //usr///local//nginx/sbin// and /usr/local/nginx///sbin are equivalent. The character '/' (or some sequence of such characters) at the end of the path is required only in case of the path to the root directory, which can be represented as single character '/'.A path called normalized if it contains the smallest possible number of characters '/'.Your task is to transform a given path to the normalized form.", "input_spec": "The first line of the input contains only lowercase Latin letters and character '/'\u00a0\u2014 the path to some directory. All paths start with at least one character '/'. The length of the given line is no more than 100 characters, it is not empty.", "output_spec": "The path in normalized form.", "sample_inputs": ["//usr///local//nginx/sbin"], "sample_outputs": ["/usr/local/nginx/sbin"], "notes": null}, "src_uid": "6c2e658ac3c3d6b0569dd373806fa031"} {"nl": {"description": "Vasya studies music. He has learned lots of interesting stuff. For example, he knows that there are 12 notes: C, C#, D, D#, E, F, F#, G, G#, A, B, H. He also knows that the notes are repeated cyclically: after H goes C again, and before C stands H. We will consider the C note in the row's beginning and the C note after the H similar and we will identify them with each other. The distance between the notes along the musical scale is measured in tones: between two consecutive notes there's exactly one semitone, that is, 0.5 tone. The distance is taken from the lowest tone to the uppest one, that is, the distance between C and E is 4 semitones and between E and C is 8 semitonesVasya also knows what a chord is. A chord is an unordered set of no less than three notes. However, for now Vasya only works with triads, that is with the chords that consist of exactly three notes. He can already distinguish between two types of triads \u2014 major and minor.Let's define a major triad. Let the triad consist of notes X, Y and Z. If we can order the notes so as the distance along the musical scale between X and Y equals 4 semitones and the distance between Y and Z is 3 semitones, then the triad is major. The distance between X and Z, accordingly, equals 7 semitones.A minor triad is different in that the distance between X and Y should be 3 semitones and between Y and Z \u2014 4 semitones.For example, the triad \"C E G\" is major: between C and E are 4 semitones, and between E and G are 3 semitones. And the triplet \"C# B F\" is minor, because if we order the notes as \"B C# F\", than between B and C# will be 3 semitones, and between C# and F \u2014 4 semitones.Help Vasya classify the triad the teacher has given to him.", "input_spec": "The only line contains 3 space-separated notes in the above-given notation.", "output_spec": "Print \"major\" if the chord is major, \"minor\" if it is minor, and \"strange\" if the teacher gave Vasya some weird chord which is neither major nor minor. Vasya promises you that the answer will always be unambiguous. That is, there are no chords that are both major and minor simultaneously.", "sample_inputs": ["C E G", "C# B F", "A B H"], "sample_outputs": ["major", "minor", "strange"], "notes": null}, "src_uid": "6aa83c2f6e095848bc63aba7d013aa58"} {"nl": {"description": "Nauuo is a girl who loves writing comments.One day, she posted a comment on Codeforces, wondering whether she would get upvotes or downvotes.It's known that there were $$$x$$$ persons who would upvote, $$$y$$$ persons who would downvote, and there were also another $$$z$$$ persons who would vote, but you don't know whether they would upvote or downvote. Note that each of the $$$x+y+z$$$ people would vote exactly one time.There are three different results: if there are more people upvote than downvote, the result will be \"+\"; if there are more people downvote than upvote, the result will be \"-\"; otherwise the result will be \"0\".Because of the $$$z$$$ unknown persons, the result may be uncertain (i.e. there are more than one possible results). More formally, the result is uncertain if and only if there exist two different situations of how the $$$z$$$ persons vote, that the results are different in the two situations.Tell Nauuo the result or report that the result is uncertain.", "input_spec": "The only line contains three integers $$$x$$$, $$$y$$$, $$$z$$$ ($$$0\\le x,y,z\\le100$$$), corresponding to the number of persons who would upvote, downvote or unknown.", "output_spec": "If there is only one possible result, print the result : \"+\", \"-\" or \"0\". Otherwise, print \"?\" to report that the result is uncertain.", "sample_inputs": ["3 7 0", "2 0 1", "1 1 0", "0 0 1"], "sample_outputs": ["-", "+", "0", "?"], "notes": "NoteIn the first example, Nauuo would definitely get three upvotes and seven downvotes, so the only possible result is \"-\".In the second example, no matter the person unknown downvotes or upvotes, Nauuo would get more upvotes than downvotes. So the only possible result is \"+\".In the third example, Nauuo would definitely get one upvote and one downvote, so the only possible result is \"0\".In the fourth example, if the only one person upvoted, the result would be \"+\", otherwise, the result would be \"-\". There are two possible results, so the result is uncertain."}, "src_uid": "66398694a4a142b4a4e709d059aca0fa"} {"nl": {"description": "Two boys decided to compete in text typing on the site \"Key races\". During the competition, they have to type a text consisting of s characters. The first participant types one character in v1 milliseconds and has ping t1 milliseconds. The second participant types one character in v2 milliseconds and has ping t2 milliseconds.If connection ping (delay) is t milliseconds, the competition passes for a participant as follows: Exactly after t milliseconds after the start of the competition the participant receives the text to be entered. Right after that he starts to type it. Exactly t milliseconds after he ends typing all the text, the site receives information about it. The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw.Given the length of the text and the information about participants, determine the result of the game.", "input_spec": "The first line contains five integers s, v1, v2, t1, t2 (1\u2009\u2264\u2009s,\u2009v1,\u2009v2,\u2009t1,\u2009t2\u2009\u2264\u20091000)\u00a0\u2014 the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant.", "output_spec": "If the first participant wins, print \"First\". If the second participant wins, print \"Second\". In case of a draw print \"Friendship\".", "sample_inputs": ["5 1 2 1 2", "3 3 1 1 1", "4 5 3 1 5"], "sample_outputs": ["First", "Second", "Friendship"], "notes": "NoteIn the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant\u00a0\u2014 in 14 milliseconds. So, the first wins.In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant\u00a0\u2014 in 5 milliseconds. So, the second wins.In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant\u00a0\u2014 in 22 milliseconds. So, it is be a draw."}, "src_uid": "10226b8efe9e3c473239d747b911a1ef"} {"nl": {"description": "Finished her homework, Nastya decided to play computer games. Passing levels one by one, Nastya eventually faced a problem. Her mission is to leave a room, where a lot of monsters live, as quickly as possible.There are $$$n$$$ manholes in the room which are situated on one line, but, unfortunately, all the manholes are closed, and there is one stone on every manhole. There is exactly one coin under every manhole, and to win the game Nastya should pick all the coins. Initially Nastya stands near the $$$k$$$-th manhole from the left. She is thinking what to do.In one turn, Nastya can do one of the following: if there is at least one stone on the manhole Nastya stands near, throw exactly one stone from it onto any other manhole (yes, Nastya is strong). go to a neighboring manhole; if there are no stones on the manhole Nastya stays near, she can open it and pick the coin from it. After it she must close the manhole immediately (it doesn't require additional moves). The figure shows the intermediate state of the game. At the current position Nastya can throw the stone to any other manhole or move left or right to the neighboring manholes. If she were near the leftmost manhole, she could open it (since there are no stones on it). Nastya can leave the room when she picks all the coins. Monsters are everywhere, so you need to compute the minimum number of moves Nastya has to make to pick all the coins.Note one time more that Nastya can open a manhole only when there are no stones onto it.", "input_spec": "The first and only line contains two integers $$$n$$$ and $$$k$$$, separated by space ($$$2 \\leq n \\leq 5000$$$, $$$1 \\leq k \\leq n$$$)\u00a0\u2014 the number of manholes and the index of manhole from the left, near which Nastya stays initially. Initially there is exactly one stone near each of the $$$n$$$ manholes. ", "output_spec": "Print a single integer\u00a0\u2014 minimum number of moves which lead Nastya to pick all the coins.", "sample_inputs": ["2 2", "4 2", "5 1"], "sample_outputs": ["6", "13", "15"], "notes": "NoteLet's consider the example where $$$n = 2$$$, $$$k = 2$$$. Nastya should play as follows: At first she throws the stone from the second manhole to the first. Now there are two stones on the first manhole. Then she opens the second manhole and pick the coin from it. Then she goes to the first manhole, throws two stones by two moves to the second manhole and then opens the manhole and picks the coin from it. So, $$$6$$$ moves are required to win."}, "src_uid": "24b02afe8d86314ec5f75a00c72af514"} {"nl": {"description": "In this problem you have to solve a simple classification task: given an image, determine whether it depicts a Fourier doodle. You are given a set of 50 images with ids 1 through 50. You are also given a text file labels.txt containing the labels for images with ids 1 through 20, which comprise the learning data set. You have to output the classification results for images with ids 21 through 50 in the same format.", "input_spec": "Download the images and the training labels Each line of the file labels.txt contains a single integer 0 or 1. Line $$$i$$$ (1-based) contains the label of the image {i}.png. Label 1 means that the image depicts a Fourier doodle, label 0 - that it does not.", "output_spec": "Output 30 lines, one line per image 21 through 50. Line $$$i$$$ (1-based) should contain the classification result for the image {i + 20}.png.", "sample_inputs": [], "sample_outputs": [], "notes": null}, "src_uid": "4bda04e64ff661336a93464563f1b550"} {"nl": {"description": "Trouble came from the overseas lands: a three-headed dragon Gorynych arrived. The dragon settled at point C and began to terrorize the residents of the surrounding villages.A brave hero decided to put an end to the dragon. He moved from point A to fight with Gorynych. The hero rode from point A along a straight road and met point B on his way. The hero knows that in this land for every pair of roads it is true that they are either parallel to each other, or lie on a straight line, or are perpendicular to each other. He also knows well that points B and C are connected by a road. So the hero must either turn 90 degrees to the left or continue riding straight ahead or turn 90 degrees to the right. But he forgot where the point C is located.Fortunately, a Brave Falcon flew right by. It can see all three points from the sky. The hero asked him what way to go to get to the dragon's lair.If you have not got it, you are the falcon. Help the hero and tell him how to get him to point C: turn left, go straight or turn right.At this moment the hero is believed to stand at point B, turning his back to point A.", "input_spec": "The first input line contains two space-separated integers xa,\u2009ya (|xa|,\u2009|ya|\u2009\u2264\u2009109) \u2014 the coordinates of point A. The second line contains the coordinates of point B in the same form, the third line contains the coordinates of point C. It is guaranteed that all points are pairwise different. It is also guaranteed that either point B lies on segment AC, or angle ABC is right.", "output_spec": "Print a single line. If a hero must turn left, print \"LEFT\" (without the quotes); If he must go straight ahead, print \"TOWARDS\" (without the quotes); if he should turn right, print \"RIGHT\" (without the quotes).", "sample_inputs": ["0 0\n0 1\n1 1", "-1 -1\n-3 -3\n-4 -4", "-4 -6\n-3 -7\n-2 -6"], "sample_outputs": ["RIGHT", "TOWARDS", "LEFT"], "notes": "NoteThe picture to the first sample: The red color shows points A, B and C. The blue arrow shows the hero's direction. The green color shows the hero's trajectory.The picture to the second sample: "}, "src_uid": "f6e132d1969863e9f28c87e5a44c2b69"} {"nl": {"description": "One rainy gloomy evening when all modules hid in the nearby cafes to drink hot energetic cocktails, the Hexadecimal virus decided to fly over the Mainframe to look for a Great Idea. And she has found one!Why not make her own Codeforces, with blackjack and other really cool stuff? Many people will surely be willing to visit this splendid shrine of high culture.In Mainframe a standard pack of 52 cards is used to play blackjack. The pack contains cards of 13 values: 2, 3, 4, 5, 6, 7, 8, 9, 10, jacks, queens, kings and aces. Each value also exists in one of four suits: hearts, diamonds, clubs and spades. Also, each card earns some value in points assigned to it: cards with value from two to ten earn from 2 to 10 points, correspondingly. An ace can either earn 1 or 11, whatever the player wishes. The picture cards (king, queen and jack) earn 10 points. The number of points a card earns does not depend on the suit. The rules of the game are very simple. The player gets two cards, if the sum of points of those cards equals n, then the player wins, otherwise the player loses.The player has already got the first card, it's the queen of spades. To evaluate chances for victory, you should determine how many ways there are to get the second card so that the sum of points exactly equals n.", "input_spec": "The only line contains n (1\u2009\u2264\u2009n\u2009\u2264\u200925) \u2014 the required sum of points.", "output_spec": "Print the numbers of ways to get the second card in the required way if the first card is the queen of spades.", "sample_inputs": ["12", "20", "10"], "sample_outputs": ["4", "15", "0"], "notes": "NoteIn the first sample only four two's of different suits can earn the required sum of points.In the second sample we can use all tens, jacks, queens and kings; overall it's 15 cards, as the queen of spades (as any other card) is only present once in the pack of cards and it's already in use.In the third sample there is no card, that would add a zero to the current ten points."}, "src_uid": "5802f52caff6015f21b80872274ab16c"} {"nl": {"description": "Petr stands in line of n people, but he doesn't know exactly which position he occupies. He can say that there are no less than a people standing in front of him and no more than b people standing behind him. Find the number of different positions Petr can occupy.", "input_spec": "The only line contains three integers n, a and b (0\u2009\u2264\u2009a,\u2009b\u2009<\u2009n\u2009\u2264\u2009100).", "output_spec": "Print the single number \u2014 the number of the sought positions.", "sample_inputs": ["3 1 1", "5 2 3"], "sample_outputs": ["2", "3"], "notes": "NoteThe possible positions in the first sample are: 2 and 3 (if we number the positions starting with 1).In the second sample they are 3, 4 and 5."}, "src_uid": "51a072916bff600922a77da0c4582180"} {"nl": {"description": "Lenny is playing a game on a 3\u2009\u00d7\u20093 grid of lights. In the beginning of the game all lights are switched on. Pressing any of the lights will toggle it and all side-adjacent lights. The goal of the game is to switch all the lights off. We consider the toggling as follows: if the light was switched on then it will be switched off, if it was switched off then it will be switched on.Lenny has spent some time playing with the grid and by now he has pressed each light a certain number of times. Given the number of times each light is pressed, you have to print the current state of each light.", "input_spec": "The input consists of three rows. Each row contains three integers each between 0 to 100 inclusive. The j-th number in the i-th row is the number of times the j-th light of the i-th row of the grid is pressed.", "output_spec": "Print three lines, each containing three characters. The j-th character of the i-th line is \"1\" if and only if the corresponding light is switched on, otherwise it's \"0\".", "sample_inputs": ["1 0 0\n0 0 0\n0 0 1", "1 0 1\n8 8 8\n2 0 3"], "sample_outputs": ["001\n010\n100", "010\n011\n100"], "notes": null}, "src_uid": "b045abf40c75bb66a80fd6148ecc5bd6"} {"nl": {"description": "Let's consider a table consisting of n rows and n columns. The cell located at the intersection of i-th row and j-th column contains number i\u2009\u00d7\u2009j. The rows and columns are numbered starting from 1.You are given a positive integer x. Your task is to count the number of cells in a table that contain number x.", "input_spec": "The single line contains numbers n and x (1\u2009\u2264\u2009n\u2009\u2264\u2009105, 1\u2009\u2264\u2009x\u2009\u2264\u2009109) \u2014 the size of the table and the number that we are looking for in the table.", "output_spec": "Print a single number: the number of times x occurs in the table.", "sample_inputs": ["10 5", "6 12", "5 13"], "sample_outputs": ["2", "4", "0"], "notes": "NoteA table for the second sample test is given below. The occurrences of number 12 are marked bold. "}, "src_uid": "c4b139eadca94201596f1305b2f76496"} {"nl": {"description": "Little Artem got n stones on his birthday and now wants to give some of them to Masha. He knows that Masha cares more about the fact of receiving the present, rather than the value of that present, so he wants to give her stones as many times as possible. However, Masha remembers the last present she received, so Artem can't give her the same number of stones twice in a row. For example, he can give her 3 stones, then 1 stone, then again 3 stones, but he can't give her 3 stones and then again 3 stones right after that.How many times can Artem give presents to Masha?", "input_spec": "The only line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009109)\u00a0\u2014 number of stones Artem received on his birthday.", "output_spec": "Print the maximum possible number of times Artem can give presents to Masha.", "sample_inputs": ["1", "2", "3", "4"], "sample_outputs": ["1", "1", "2", "3"], "notes": "NoteIn the first sample, Artem can only give 1 stone to Masha.In the second sample, Atrem can give Masha 1 or 2 stones, though he can't give her 1 stone two times.In the third sample, Atrem can first give Masha 2 stones, a then 1 more stone.In the fourth sample, Atrem can first give Masha 1 stone, then 2 stones, and finally 1 stone again."}, "src_uid": "a993069e35b35ae158d35d6fe166aaef"} {"nl": {"description": "Grandma Laura came to the market to sell some apples. During the day she sold all the apples she had. But grandma is old, so she forgot how many apples she had brought to the market.She precisely remembers she had n buyers and each of them bought exactly half of the apples she had at the moment of the purchase and also she gave a half of an apple to some of them as a gift (if the number of apples at the moment of purchase was odd), until she sold all the apples she had.So each buyer took some integral positive number of apples, but maybe he didn't pay for a half of an apple (if the number of apples at the moment of the purchase was odd).For each buyer grandma remembers if she gave a half of an apple as a gift or not. The cost of an apple is p (the number p is even).Print the total money grandma should have at the end of the day to check if some buyers cheated her.", "input_spec": "The first line contains two integers n and p (1\u2009\u2264\u2009n\u2009\u2264\u200940,\u20092\u2009\u2264\u2009p\u2009\u2264\u20091000) \u2014 the number of the buyers and the cost of one apple. It is guaranteed that the number p is even. The next n lines contains the description of buyers. Each buyer is described with the string half if he simply bought half of the apples and with the string halfplus if grandma also gave him a half of an apple as a gift. It is guaranteed that grandma has at least one apple at the start of the day and she has no apples at the end of the day.", "output_spec": "Print the only integer a \u2014 the total money grandma should have at the end of the day. Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.", "sample_inputs": ["2 10\nhalf\nhalfplus", "3 10\nhalfplus\nhalfplus\nhalfplus"], "sample_outputs": ["15", "55"], "notes": "NoteIn the first sample at the start of the day the grandma had two apples. First she sold one apple and then she sold a half of the second apple and gave a half of the second apple as a present to the second buyer."}, "src_uid": "6330891dd05bb70241e2a052f5bf5a58"} {"nl": {"description": "One industrial factory is reforming working plan. The director suggested to set a mythical detail production norm. If at the beginning of the day there were x details in the factory storage, then by the end of the day the factory has to produce (remainder after dividing x by m) more details. Unfortunately, no customer has ever bought any mythical detail, so all the details produced stay on the factory. The board of directors are worried that the production by the given plan may eventually stop (that means that there will be \u0430 moment when the current number of details on the factory is divisible by m). Given the number of details a on the first day and number m check if the production stops at some moment.", "input_spec": "The first line contains two integers a and m (1\u2009\u2264\u2009a,\u2009m\u2009\u2264\u2009105).", "output_spec": "Print \"Yes\" (without quotes) if the production will eventually stop, otherwise print \"No\".", "sample_inputs": ["1 5", "3 6"], "sample_outputs": ["No", "Yes"], "notes": null}, "src_uid": "f726133018e2149ec57e113860ec498a"} {"nl": {"description": "Every year, hundreds of people come to summer camps, they learn new algorithms and solve hard problems.This is your first year at summer camp, and you are asked to solve the following problem. All integers starting with 1 are written in one line. The prefix of these line is \"123456789101112131415...\". Your task is to print the n-th digit of this string (digits are numbered starting with 1.", "input_spec": "The only line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091000)\u00a0\u2014 the position of the digit you need to print.", "output_spec": "Print the n-th digit of the line.", "sample_inputs": ["3", "11"], "sample_outputs": ["3", "0"], "notes": "NoteIn the first sample the digit at position 3 is '3', as both integers 1 and 2 consist on one digit.In the second sample, the digit at position 11 is '0', it belongs to the integer 10."}, "src_uid": "2d46e34839261eda822f0c23c6e19121"} {"nl": {"description": "Anton has the integer x. He is interested what positive integer, which doesn't exceed x, has the maximum sum of digits.Your task is to help Anton and to find the integer that interests him. If there are several such integers, determine the biggest of them. ", "input_spec": "The first line contains the positive integer x (1\u2009\u2264\u2009x\u2009\u2264\u20091018) \u2014 the integer which Anton has. ", "output_spec": "Print the positive integer which doesn't exceed x and has the maximum sum of digits. If there are several such integers, print the biggest of them. Printed integer must not contain leading zeros.", "sample_inputs": ["100", "48", "521"], "sample_outputs": ["99", "48", "499"], "notes": null}, "src_uid": "e55b0debbf33c266091e6634494356b8"} {"nl": {"description": "Having stayed home alone, Petya decided to watch forbidden films on the Net in secret. \"What ungentlemanly behavior!\" \u2014 you can say that, of course, but don't be too harsh on the kid. In his country films about the Martians and other extraterrestrial civilizations are forbidden. It was very unfair to Petya as he adored adventure stories that featured lasers and robots. Today Petya is watching a shocking blockbuster about the Martians called \"R2:D2\". What can \"R2:D2\" possibly mean? It might be the Martian time represented in the Martian numeral system. Petya knows that time on Mars is counted just like on the Earth (that is, there are 24 hours and each hour has 60 minutes). The time is written as \"a:b\", where the string a stands for the number of hours (from 0 to 23 inclusive), and string b stands for the number of minutes (from 0 to 59 inclusive). The only thing Petya doesn't know is in what numeral system the Martian time is written.Your task is to print the radixes of all numeral system which can contain the time \"a:b\".", "input_spec": "The first line contains a single string as \"a:b\" (without the quotes). There a is a non-empty string, consisting of numbers and uppercase Latin letters. String a shows the number of hours. String b is a non-empty string that consists of numbers and uppercase Latin letters. String b shows the number of minutes. The lengths of strings a and b are from 1 to 5 characters, inclusive. Please note that strings a and b can have leading zeroes that do not influence the result in any way (for example, string \"008:1\" in decimal notation denotes correctly written time). We consider characters 0, 1, ..., 9 as denoting the corresponding digits of the number's representation in some numeral system, and characters A, B, ..., Z correspond to numbers 10, 11, ..., 35.", "output_spec": "Print the radixes of the numeral systems that can represent the time \"a:b\" in the increasing order. Separate the numbers with spaces or line breaks. If there is no numeral system that can represent time \"a:b\", print the single integer 0. If there are infinitely many numeral systems that can represent the time \"a:b\", print the single integer -1. Note that on Mars any positional numeral systems with positive radix strictly larger than one are possible.", "sample_inputs": ["11:20", "2A:13", "000B:00001"], "sample_outputs": ["3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22", "0", "-1"], "notes": "NoteLet's consider the first sample. String \"11:20\" can be perceived, for example, as time 4:6, represented in the ternary numeral system or as time 17:32 in hexadecimal system. Let's consider the second sample test. String \"2A:13\" can't be perceived as correct time in any notation. For example, let's take the base-11 numeral notation. There the given string represents time 32:14 that isn't a correct time.Let's consider the third sample. String \"000B:00001\" can be perceived as a correct time in the infinite number of numeral systems. If you need an example, you can take any numeral system with radix no less than 12."}, "src_uid": "c02dfe5b8d9da2818a99c3afbe7a5293"} {"nl": {"description": " *The two images are equivalent, feel free to use either one.", "input_spec": "The input contains a single integer $$$a$$$ ($$$-100 \\le a \\le 100$$$).", "output_spec": "Output the result \u2013 an integer number.", "sample_inputs": ["1"], "sample_outputs": ["1"], "notes": null}, "src_uid": "f76005f888df46dac38b0f159ca04d5f"} {"nl": {"description": "n hobbits are planning to spend the night at Frodo's house. Frodo has n beds standing in a row and m pillows (n\u2009\u2264\u2009m). Each hobbit needs a bed and at least one pillow to sleep, however, everyone wants as many pillows as possible. Of course, it's not always possible to share pillows equally, but any hobbit gets hurt if he has at least two pillows less than some of his neighbors have. Frodo will sleep on the k-th bed in the row. What is the maximum number of pillows he can have so that every hobbit has at least one pillow, every pillow is given to some hobbit and no one is hurt?", "input_spec": "The only line contain three integers n, m and k (1\u2009\u2264\u2009n\u2009\u2264\u2009m\u2009\u2264\u2009109, 1\u2009\u2264\u2009k\u2009\u2264\u2009n)\u00a0\u2014 the number of hobbits, the number of pillows and the number of Frodo's bed.", "output_spec": "Print single integer\u00a0\u2014 the maximum number of pillows Frodo can have so that no one is hurt.", "sample_inputs": ["4 6 2", "3 10 3", "3 6 1"], "sample_outputs": ["2", "4", "3"], "notes": "NoteIn the first example Frodo can have at most two pillows. In this case, he can give two pillows to the hobbit on the first bed, and one pillow to each of the hobbits on the third and the fourth beds.In the second example Frodo can take at most four pillows, giving three pillows to each of the others.In the third example Frodo can take three pillows, giving two pillows to the hobbit in the middle and one pillow to the hobbit on the third bed."}, "src_uid": "da9ddd00f46021e8ee9db4a8deed017c"} {"nl": {"description": "Melody Pond was stolen from her parents as a newborn baby by Madame Kovarian, to become a weapon of the Silence in their crusade against the Doctor. Madame Kovarian changed Melody's name to River Song, giving her a new identity that allowed her to kill the Eleventh Doctor.Heidi figured out that Madame Kovarian uses a very complicated hashing function in order to change the names of the babies she steals. In order to prevent this from happening to future Doctors, Heidi decided to prepare herself by learning some basic hashing techniques.The first hashing function she designed is as follows.Given two positive integers $$$(x, y)$$$ she defines $$$H(x,y):=x^2+2xy+x+1$$$.Now, Heidi wonders if the function is reversible. That is, given a positive integer $$$r$$$, can you find a pair $$$(x, y)$$$ (of positive integers) such that $$$H(x, y) = r$$$?If multiple such pairs exist, output the one with smallest possible $$$x$$$. If there is no such pair, output \"NO\".", "input_spec": "The first and only line contains an integer $$$r$$$ ($$$1 \\le r \\le 10^{12}$$$).", "output_spec": "Output integers $$$x, y$$$ such that $$$H(x,y) = r$$$ and $$$x$$$ is smallest possible, or \"NO\" if no such pair exists.", "sample_inputs": ["19", "16"], "sample_outputs": ["1 8", "NO"], "notes": null}, "src_uid": "3ff1c25a1026c90aeb14d148d7fb96ba"} {"nl": {"description": "Imp is in a magic forest, where xorangles grow (wut?) A xorangle of order n is such a non-degenerate triangle, that lengths of its sides are integers not exceeding n, and the xor-sum of the lengths is equal to zero. Imp has to count the number of distinct xorangles of order n to get out of the forest. Formally, for a given integer n you have to find the number of such triples (a,\u2009b,\u2009c), that: 1\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u2009c\u2009\u2264\u2009n; , where denotes the bitwise xor of integers x and y. (a,\u2009b,\u2009c) form a non-degenerate (with strictly positive area) triangle. ", "input_spec": "The only line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092500).", "output_spec": "Print the number of xorangles of order n.", "sample_inputs": ["6", "10"], "sample_outputs": ["1", "2"], "notes": "NoteThe only xorangle in the first sample is (3,\u20095,\u20096)."}, "src_uid": "838f2e75fdff0f13f002c0dfff0b2e8d"} {"nl": {"description": "Each evening after the dinner the SIS's students gather together to play the game of Sport Mafia. For the tournament, Alya puts candies into the box, which will serve as a prize for a winner. To do that, she performs $$$n$$$ actions. The first action performed is to put a single candy into the box. For each of the remaining moves she can choose from two options: the first option, in case the box contains at least one candy, is to take exactly one candy out and eat it. This way the number of candies in the box decreased by $$$1$$$; the second option is to put candies in the box. In this case, Alya will put $$$1$$$ more candy, than she put in the previous time. Thus, if the box is empty, then it can only use the second option.For example, one possible sequence of Alya's actions look as follows: put one candy into the box; put two candies into the box; eat one candy from the box; eat one candy from the box; put three candies into the box; eat one candy from the box; put four candies into the box; eat one candy from the box; put five candies into the box; This way she will perform $$$9$$$ actions, the number of candies at the end will be $$$11$$$, while Alya will eat $$$4$$$ candies in total.You know the total number of actions $$$n$$$ and the number of candies at the end $$$k$$$. You need to find the total number of sweets Alya ate. That is the number of moves of the first option. It's guaranteed, that for the given $$$n$$$ and $$$k$$$ the answer always exists.Please note, that during an action of the first option, Alya takes out and eats exactly one candy.", "input_spec": "The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \\le n \\le 10^9$$$; $$$0 \\le k \\le 10^9$$$)\u00a0\u2014 the total number of moves and the number of candies in the box at the end. It's guaranteed, that for the given $$$n$$$ and $$$k$$$ the answer exists.", "output_spec": "Print a single integer\u00a0\u2014 the number of candies, which Alya ate. Please note, that in this problem there aren't multiple possible answers\u00a0\u2014 the answer is unique for any input data. ", "sample_inputs": ["1 1", "9 11", "5 0", "3 2"], "sample_outputs": ["0", "4", "3", "1"], "notes": "NoteIn the first example, Alya has made one move only. According to the statement, the first move is always putting one candy in the box. Hence Alya ate $$$0$$$ candies.In the second example the possible sequence of Alya's actions looks as follows: put $$$1$$$ candy, put $$$2$$$ candies, eat a candy, eat a candy, put $$$3$$$ candies, eat a candy, put $$$4$$$ candies, eat a candy, put $$$5$$$ candies. This way, she will make exactly $$$n=9$$$ actions and in the end the box will contain $$$1+2-1-1+3-1+4-1+5=11$$$ candies. The answer is $$$4$$$, since she ate $$$4$$$ candies in total."}, "src_uid": "17b5ec1c6263ef63c668c2b903db1d77"} {"nl": {"description": "Little Petya was given this problem for homework:You are given function (here represents the operation of taking the remainder). His task is to count the number of integers x in range [a;b] with property f(x)\u2009=\u2009x.It is a pity that Petya forgot the order in which the remainders should be taken and wrote down only 4 numbers. Each of 24 possible orders of taking the remainder has equal probability of being chosen. For example, if Petya has numbers 1, 2, 3, 4 then he can take remainders in that order or first take remainder modulo 4, then modulo 2, 3, 1. There also are 22 other permutations of these numbers that represent orders in which remainder can be taken. In this problem 4 numbers wrote down by Petya will be pairwise distinct.Now it is impossible for Petya to complete the task given by teacher but just for fun he decided to find the number of integers with property that probability that f(x)\u2009=\u2009x is not less than 31.4159265352718281828459045%. In other words, Petya will pick up the number x if there exist at least 7 permutations of numbers p1,\u2009p2,\u2009p3,\u2009p4, for which f(x)\u2009=\u2009x.", "input_spec": "First line of the input will contain 6 integers, separated by spaces: p1,\u2009p2,\u2009p3,\u2009p4,\u2009a,\u2009b (1\u2009\u2264\u2009p1,\u2009p2,\u2009p3,\u2009p4\u2009\u2264\u20091000,\u20090\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u200931415). It is guaranteed that numbers p1,\u2009p2,\u2009p3,\u2009p4 will be pairwise distinct.", "output_spec": "Output the number of integers in the given range that have the given property.", "sample_inputs": ["2 7 1 8 2 8", "20 30 40 50 0 100", "31 41 59 26 17 43"], "sample_outputs": ["0", "20", "9"], "notes": null}, "src_uid": "63b9dc70e6ad83d89a487ffebe007b0a"} {"nl": {"description": "Vanya got an important task \u2014 he should enumerate books in the library and label each book with its number. Each of the n books should be assigned with a number from 1 to n. Naturally, distinct books should be assigned distinct numbers.Vanya wants to know how many digits he will have to write down as he labels the books.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009109) \u2014 the number of books in the library.", "output_spec": "Print the number of digits needed to number all the books.", "sample_inputs": ["13", "4"], "sample_outputs": ["17", "4"], "notes": "NoteNote to the first test. The books get numbers 1,\u20092,\u20093,\u20094,\u20095,\u20096,\u20097,\u20098,\u20099,\u200910,\u200911,\u200912,\u200913, which totals to 17 digits.Note to the second sample. The books get numbers 1,\u20092,\u20093,\u20094, which totals to 4 digits."}, "src_uid": "4e652ccb40632bf4b9dd95b9f8ae1ec9"} {"nl": {"description": "You are given a positive integer $$$n$$$.Let $$$S(x)$$$ be sum of digits in base 10 representation of $$$x$$$, for example, $$$S(123) = 1 + 2 + 3 = 6$$$, $$$S(0) = 0$$$.Your task is to find two integers $$$a, b$$$, such that $$$0 \\leq a, b \\leq n$$$, $$$a + b = n$$$ and $$$S(a) + S(b)$$$ is the largest possible among all such pairs.", "input_spec": "The only line of input contains an integer $$$n$$$ $$$(1 \\leq n \\leq 10^{12})$$$.", "output_spec": "Print largest $$$S(a) + S(b)$$$ among all pairs of integers $$$a, b$$$, such that $$$0 \\leq a, b \\leq n$$$ and $$$a + b = n$$$.", "sample_inputs": ["35", "10000000000"], "sample_outputs": ["17", "91"], "notes": "NoteIn the first example, you can choose, for example, $$$a = 17$$$ and $$$b = 18$$$, so that $$$S(17) + S(18) = 1 + 7 + 1 + 8 = 17$$$. It can be shown that it is impossible to get a larger answer.In the second test example, you can choose, for example, $$$a = 5000000001$$$ and $$$b = 4999999999$$$, with $$$S(5000000001) + S(4999999999) = 91$$$. It can be shown that it is impossible to get a larger answer."}, "src_uid": "5c61b4a4728070b9de49d72831cd2329"} {"nl": {"description": "Polycarp decided to relax on his weekend and visited to the performance of famous ropewalkers: Agafon, Boniface and Konrad.The rope is straight and infinite in both directions. At the beginning of the performance, Agafon, Boniface and Konrad are located in positions $$$a$$$, $$$b$$$ and $$$c$$$ respectively. At the end of the performance, the distance between each pair of ropewalkers was at least $$$d$$$.Ropewalkers can walk on the rope. In one second, only one ropewalker can change his position. Every ropewalker can change his position exactly by $$$1$$$ (i. e. shift by $$$1$$$ to the left or right direction on the rope). Agafon, Boniface and Konrad can not move at the same time (Only one of them can move at each moment). Ropewalkers can be at the same positions at the same time and can \"walk past each other\".You should find the minimum duration (in seconds) of the performance. In other words, find the minimum number of seconds needed so that the distance between each pair of ropewalkers can be greater or equal to $$$d$$$.Ropewalkers can walk to negative coordinates, due to the rope is infinite to both sides.", "input_spec": "The only line of the input contains four integers $$$a$$$, $$$b$$$, $$$c$$$, $$$d$$$ ($$$1 \\le a, b, c, d \\le 10^9$$$). It is possible that any two (or all three) ropewalkers are in the same position at the beginning of the performance.", "output_spec": "Output one integer \u2014 the minimum duration (in seconds) of the performance.", "sample_inputs": ["5 2 6 3", "3 1 5 6", "8 3 3 2", "2 3 10 4"], "sample_outputs": ["2", "8", "2", "3"], "notes": "NoteIn the first example: in the first two seconds Konrad moves for 2 positions to the right (to the position $$$8$$$), while Agafon and Boniface stay at their positions. Thus, the distance between Agafon and Boniface will be $$$|5 - 2| = 3$$$, the distance between Boniface and Konrad will be $$$|2 - 8| = 6$$$ and the distance between Agafon and Konrad will be $$$|5 - 8| = 3$$$. Therefore, all three pairwise distances will be at least $$$d=3$$$, so the performance could be finished within 2 seconds."}, "src_uid": "47c07e46517dbc937e2e779ec0d74eb3"} {"nl": {"description": "There is a field of size $$$2 \\times 2$$$. Each cell of this field can either contain grass or be empty. The value $$$a_{i, j}$$$ is $$$1$$$ if the cell $$$(i, j)$$$ contains grass, or $$$0$$$ otherwise.In one move, you can choose one row and one column and cut all the grass in this row and this column. In other words, you choose the row $$$x$$$ and the column $$$y$$$, then you cut the grass in all cells $$$a_{x, i}$$$ and all cells $$$a_{i, y}$$$ for all $$$i$$$ from $$$1$$$ to $$$2$$$. After you cut the grass from a cell, it becomes empty (i.\u2009e. its value is replaced by $$$0$$$).Your task is to find the minimum number of moves required to cut the grass in all non-empty cells of the field (i.\u2009e. make all $$$a_{i, j}$$$ zeros).You have to answer $$$t$$$ independent test cases.", "input_spec": "The first line of the input contains one integer $$$t$$$ ($$$1 \\le t \\le 16$$$) \u2014 the number of test cases. Then $$$t$$$ test cases follow. The test case consists of two lines, each of these lines contains two integers. The $$$j$$$-th integer in the $$$i$$$-th row is $$$a_{i, j}$$$. If $$$a_{i, j} = 0$$$ then the cell $$$(i, j)$$$ is empty, and if $$$a_{i, j} = 1$$$ the cell $$$(i, j)$$$ contains grass.", "output_spec": "For each test case, print one integer \u2014 the minimum number of moves required to cut the grass in all non-empty cells of the field (i.\u2009e. make all $$$a_{i, j}$$$ zeros) in the corresponding test case.", "sample_inputs": ["3\n\n0 0\n\n0 0\n\n1 0\n\n0 1\n\n1 1\n\n1 1"], "sample_outputs": ["0\n1\n2"], "notes": null}, "src_uid": "7336b8becd2438f0439240ee8f9610ec"} {"nl": {"description": "Ksenia has ordinary pan scales and several weights of an equal mass. Ksenia has already put some weights on the scales, while other weights are untouched. Ksenia is now wondering whether it is possible to put all the remaining weights on the scales so that the scales were in equilibrium. The scales is in equilibrium if the total sum of weights on the left pan is equal to the total sum of weights on the right pan.", "input_spec": "The first line has a non-empty sequence of characters describing the scales. In this sequence, an uppercase English letter indicates a weight, and the symbol \"|\" indicates the delimiter (the character occurs in the sequence exactly once). All weights that are recorded in the sequence before the delimiter are initially on the left pan of the scale. All weights that are recorded in the sequence after the delimiter are initially on the right pan of the scale. The second line contains a non-empty sequence containing uppercase English letters. Each letter indicates a weight which is not used yet. It is guaranteed that all the English letters in the input data are different. It is guaranteed that the input does not contain any extra characters.", "output_spec": "If you cannot put all the weights on the scales so that the scales were in equilibrium, print string \"Impossible\". Otherwise, print the description of the resulting scales, copy the format of the input. If there are multiple answers, print any of them.", "sample_inputs": ["AC|T\nL", "|ABC\nXYZ", "W|T\nF", "ABC|\nD"], "sample_outputs": ["AC|TL", "XYZ|ABC", "Impossible", "Impossible"], "notes": null}, "src_uid": "917f173b8523ddd38925238e5d2089b9"} {"nl": {"description": "Overlooking the captivating blend of myriads of vernal hues, Arkady the painter lays out a long, long canvas.Arkady has a sufficiently large amount of paint of three colours: cyan, magenta, and yellow. On the one-dimensional canvas split into n consecutive segments, each segment needs to be painted in one of the colours.Arkady has already painted some (possibly none or all) segments and passes the paintbrush to you. You are to determine whether there are at least two ways of colouring all the unpainted segments so that no two adjacent segments are of the same colour. Two ways are considered different if and only if a segment is painted in different colours in them.", "input_spec": "The first line contains a single positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the length of the canvas. The second line contains a string s of n characters, the i-th of which is either 'C' (denoting a segment painted in cyan), 'M' (denoting one painted in magenta), 'Y' (one painted in yellow), or '?' (an unpainted one).", "output_spec": "If there are at least two different ways of painting, output \"Yes\"; otherwise output \"No\" (both without quotes). You can print each character in any case (upper or lower).", "sample_inputs": ["5\nCY??Y", "5\nC?C?Y", "5\n?CYC?", "5\nC??MM", "3\nMMY"], "sample_outputs": ["Yes", "Yes", "Yes", "No", "No"], "notes": "NoteFor the first example, there are exactly two different ways of colouring: CYCMY and CYMCY.For the second example, there are also exactly two different ways of colouring: CMCMY and CYCMY.For the third example, there are four ways of colouring: MCYCM, MCYCY, YCYCM, and YCYCY.For the fourth example, no matter how the unpainted segments are coloured, the existing magenta segments will prevent the painting from satisfying the requirements. The similar is true for the fifth example."}, "src_uid": "f8adfa0dde7ac1363f269dbdf00212c3"} {"nl": {"description": "Do you remember a kind cartoon \"Beauty and the Beast\"? No, no, there was no firing from machine guns or radiation mutants time-travels!There was a beauty named Belle. Once she had violated the Beast's order and visited the West Wing. After that she was banished from the castle... Everybody was upset. The beautiful Belle was upset, so was the Beast, so was Lumiere the candlestick. But the worst thing was that Cogsworth was upset. Cogsworth is not a human, but is the mantel clock, which was often used as an alarm clock.Due to Cogsworth's frustration all the inhabitants of the castle were in trouble: now they could not determine when it was time to drink morning tea, and when it was time for an evening stroll. Fortunately, deep in the basement are lying digital clock showing the time in the format HH:MM. Now the residents of the castle face a difficult task. They should turn Cogsworth's hour and minute mustache hands in such a way, that Cogsworth began to show the correct time. Moreover they need to find turn angles in degrees for each mustache hands. The initial time showed by Cogsworth is 12:00.You can only rotate the hands forward, that is, as is shown in the picture: As since there are many ways too select such angles because of full rotations, choose the smallest angles in the right (non-negative) direction.Note that Cogsworth's hour and minute mustache hands move evenly and continuously. Hands are moving independently, so when turning one hand the other hand remains standing still.", "input_spec": "The only line of input contains current time according to the digital clock, formatted as HH:MM (00\u2009\u2264\u2009HH\u2009\u2264\u200923, 00\u2009\u2264\u2009MM\u2009\u2264\u200959). The mantel clock initially shows 12:00. Pretests contain times of the beginning of some morning TV programs of the Channel One Russia.", "output_spec": "Print two numbers x and y \u2014 the angles of turning the hour and minute hands, respectively (0\u2009\u2264\u2009x,\u2009y\u2009<\u2009360). The absolute or relative error in the answer should not exceed 10\u2009-\u20099.", "sample_inputs": ["12:00", "04:30", "08:17"], "sample_outputs": ["0 0", "135 180", "248.5 102"], "notes": "NoteA note to the second example: the hour hand will be positioned exactly in the middle, between 4 and 5."}, "src_uid": "175dc0bdb5c9513feb49be6644d0d150"} {"nl": {"description": "A soldier wants to buy w bananas in the shop. He has to pay k dollars for the first banana, 2k dollars for the second one and so on (in other words, he has to pay i\u00b7k dollars for the i-th banana). He has n dollars. How many dollars does he have to borrow from his friend soldier to buy w bananas?", "input_spec": "The first line contains three positive integers k,\u2009n,\u2009w (1\u2009\u2009\u2264\u2009\u2009k,\u2009w\u2009\u2009\u2264\u2009\u20091000, 0\u2009\u2264\u2009n\u2009\u2264\u2009109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants. ", "output_spec": "Output one integer \u2014 the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.", "sample_inputs": ["3 17 4"], "sample_outputs": ["13"], "notes": null}, "src_uid": "e87d9798107734a885fd8263e1431347"} {"nl": {"description": "At the beginning of the school year Berland State University starts two city school programming groups, for beginners and for intermediate coders. The children were tested in order to sort them into groups. According to the results, each student got some score from 1 to m points. We know that c1 schoolchildren got 1 point, c2 children got 2 points, ..., cm children got m points. Now you need to set the passing rate k (integer from 1 to m): all schoolchildren who got less than k points go to the beginner group and those who get at strictly least k points go to the intermediate group. We know that if the size of a group is more than y, then the university won't find a room for them. We also know that if a group has less than x schoolchildren, then it is too small and there's no point in having classes with it. So, you need to split all schoolchildren into two groups so that the size of each group was from x to y, inclusive. Help the university pick the passing rate in a way that meets these requirements.", "input_spec": "The first line contains integer m (2\u2009\u2264\u2009m\u2009\u2264\u2009100). The second line contains m integers c1, c2, ..., cm, separated by single spaces (0\u2009\u2264\u2009ci\u2009\u2264\u2009100). The third line contains two space-separated integers x and y (1\u2009\u2264\u2009x\u2009\u2264\u2009y\u2009\u2264\u200910000). At least one ci is greater than 0.", "output_spec": "If it is impossible to pick a passing rate in a way that makes the size of each resulting groups at least x and at most y, print 0. Otherwise, print an integer from 1 to m \u2014 the passing rate you'd like to suggest. If there are multiple possible answers, print any of them.", "sample_inputs": ["5\n3 4 3 2 1\n6 8", "5\n0 3 3 4 2\n3 10", "2\n2 5\n3 6"], "sample_outputs": ["3", "4", "0"], "notes": "NoteIn the first sample the beginner group has 7 students, the intermediate group has 6 of them. In the second sample another correct answer is 3."}, "src_uid": "e595a1d0c0e4bbcc99454d3148b4557b"} {"nl": {"description": "For a given positive integer n denote its k-rounding as the minimum positive integer x, such that x ends with k or more zeros in base 10 and is divisible by n.For example, 4-rounding of 375 is 375\u00b780\u2009=\u200930000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375.Write a program that will perform the k-rounding of n.", "input_spec": "The only line contains two integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u2009109, 0\u2009\u2264\u2009k\u2009\u2264\u20098).", "output_spec": "Print the k-rounding of n.", "sample_inputs": ["375 4", "10000 1", "38101 0", "123456789 8"], "sample_outputs": ["30000", "10000", "38101", "12345678900000000"], "notes": null}, "src_uid": "73566d4d9f20f7bbf71bc06bc9a4e9f3"} {"nl": {"description": "Vasya came up with his own weather forecasting method. He knows the information about the average air temperature for each of the last n days. Assume that the average air temperature for each day is integral.Vasya believes that if the average temperatures over the last n days form an arithmetic progression, where the first term equals to the average temperature on the first day, the second term equals to the average temperature on the second day and so on, then the average temperature of the next (n\u2009+\u20091)-th day will be equal to the next term of the arithmetic progression. Otherwise, according to Vasya's method, the temperature of the (n\u2009+\u20091)-th day will be equal to the temperature of the n-th day.Your task is to help Vasya predict the average temperature for tomorrow, i. e. for the (n\u2009+\u20091)-th day.", "input_spec": "The first line contains a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of days for which the average air temperature is known. The second line contains a sequence of integers t1,\u2009t2,\u2009...,\u2009tn (\u2009-\u20091000\u2009\u2264\u2009ti\u2009\u2264\u20091000)\u00a0\u2014 where ti is the average temperature in the i-th day.", "output_spec": "Print the average air temperature in the (n\u2009+\u20091)-th day, which Vasya predicts according to his method. Note that the absolute value of the predicted temperature can exceed 1000.", "sample_inputs": ["5\n10 5 0 -5 -10", "4\n1 1 1 1", "3\n5 1 -5", "2\n900 1000"], "sample_outputs": ["-15", "1", "-5", "1100"], "notes": "NoteIn the first example the sequence of the average temperatures is an arithmetic progression where the first term is 10 and each following terms decreases by 5. So the predicted average temperature for the sixth day is \u2009-\u200910\u2009-\u20095\u2009=\u2009\u2009-\u200915.In the second example the sequence of the average temperatures is an arithmetic progression where the first term is 1 and each following terms equals to the previous one. So the predicted average temperature in the fifth day is 1.In the third example the average temperatures do not form an arithmetic progression, so the average temperature of the fourth day equals to the temperature of the third day and equals to \u2009-\u20095.In the fourth example the sequence of the average temperatures is an arithmetic progression where the first term is 900 and each the following terms increase by 100. So predicted average temperature in the third day is 1000\u2009+\u2009100\u2009=\u20091100."}, "src_uid": "d04fa4322a1b300bdf4a56f09681b17f"} {"nl": {"description": "Vasilisa the Wise from the Kingdom of Far Far Away got a magic box with a secret as a present from her friend Hellawisa the Wise from the Kingdom of A Little Closer. However, Vasilisa the Wise does not know what the box's secret is, since she cannot open it again. She hopes that you will help her one more time with that.The box's lock looks as follows: it contains 4 identical deepenings for gems as a 2\u2009\u00d7\u20092 square, and some integer numbers are written at the lock's edge near the deepenings. The example of a lock is given on the picture below. The box is accompanied with 9 gems. Their shapes match the deepenings' shapes and each gem contains one number from 1 to 9 (each number is written on exactly one gem). The box will only open after it is decorated with gems correctly: that is, each deepening in the lock should be filled with exactly one gem. Also, the sums of numbers in the square's rows, columns and two diagonals of the square should match the numbers written at the lock's edge. For example, the above lock will open if we fill the deepenings with gems with numbers as is shown on the picture below. Now Vasilisa the Wise wants to define, given the numbers on the box's lock, which gems she should put in the deepenings to open the box. Help Vasilisa to solve this challenging task.", "input_spec": "The input contains numbers written on the edges of the lock of the box. The first line contains space-separated integers r1 and r2 that define the required sums of numbers in the rows of the square. The second line contains space-separated integers c1 and c2 that define the required sums of numbers in the columns of the square. The third line contains space-separated integers d1 and d2 that define the required sums of numbers on the main and on the side diagonals of the square (1\u2009\u2264\u2009r1,\u2009r2,\u2009c1,\u2009c2,\u2009d1,\u2009d2\u2009\u2264\u200920). Correspondence between the above 6 variables and places where they are written is shown on the picture below. For more clarifications please look at the second sample test that demonstrates the example given in the problem statement. ", "output_spec": "Print the scheme of decorating the box with stones: two lines containing two space-separated integers from 1 to 9. The numbers should be pairwise different. If there is no solution for the given lock, then print the single number \"-1\" (without the quotes). If there are several solutions, output any.", "sample_inputs": ["3 7\n4 6\n5 5", "11 10\n13 8\n5 16", "1 2\n3 4\n5 6", "10 10\n10 10\n10 10"], "sample_outputs": ["1 2\n3 4", "4 7\n9 1", "-1", "-1"], "notes": "NotePay attention to the last test from the statement: it is impossible to open the box because for that Vasilisa the Wise would need 4 identical gems containing number \"5\". However, Vasilisa only has one gem with each number from 1 to 9."}, "src_uid": "6821f502f5b6ec95c505e5dd8f3cd5d3"} {"nl": {"description": "One Sunday Petr went to a bookshop and bought a new book on sports programming. The book had exactly n pages.Petr decided to start reading it starting from the next day, that is, from Monday. Petr's got a very tight schedule and for each day of the week he knows how many pages he will be able to read on that day. Some days are so busy that Petr will have no time to read whatsoever. However, we know that he will be able to read at least one page a week.Assuming that Petr will not skip days and will read as much as he can every day, determine on which day of the week he will read the last page of the book.", "input_spec": "The first input line contains the single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091000) \u2014 the number of pages in the book. The second line contains seven non-negative space-separated integers that do not exceed 1000 \u2014 those integers represent how many pages Petr can read on Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday correspondingly. It is guaranteed that at least one of those numbers is larger than zero.", "output_spec": "Print a single number \u2014 the number of the day of the week, when Petr will finish reading the book. The days of the week are numbered starting with one in the natural order: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.", "sample_inputs": ["100\n15 20 20 15 10 30 45", "2\n1 0 0 0 0 0 0"], "sample_outputs": ["6", "1"], "notes": "NoteNote to the first sample:By the end of Monday and therefore, by the beginning of Tuesday Petr has 85 pages left. He has 65 pages left by Wednesday, 45 by Thursday, 30 by Friday, 20 by Saturday and on Saturday Petr finishes reading the book (and he also has time to read 10 pages of something else).Note to the second sample:On Monday of the first week Petr will read the first page. On Monday of the second week Petr will read the second page and will finish reading the book."}, "src_uid": "007a779d966e2e9219789d6d9da7002c"} {"nl": {"description": "On her way to programming school tiger Dasha faced her first test \u2014 a huge staircase! The steps were numbered from one to infinity. As we know, tigers are very fond of all striped things, it is possible that it has something to do with their color. So on some interval of her way she calculated two values \u2014 the number of steps with even and odd numbers. You need to check whether there is an interval of steps from the l-th to the r-th (1\u2009\u2264\u2009l\u2009\u2264\u2009r), for which values that Dasha has found are correct.", "input_spec": "In the only line you are given two integers a, b (0\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009100) \u2014 the number of even and odd steps, accordingly.", "output_spec": "In the only line print \"YES\", if the interval of steps described above exists, and \"NO\" otherwise.", "sample_inputs": ["2 3", "3 1"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example one of suitable intervals is from 1 to 5. The interval contains two even steps\u00a0\u2014 2 and 4, and three odd: 1, 3 and 5."}, "src_uid": "ec5e3b3f5ee6a13eaf01b9a9a66ff037"} {"nl": {"description": "Two players play a simple game. Each player is provided with a box with balls. First player's box contains exactly n1 balls and second player's box contains exactly n2 balls. In one move first player can take from 1 to k1 balls from his box and throw them away. Similarly, the second player can take from 1 to k2 balls from his box in his move. Players alternate turns and the first player starts the game. The one who can't make a move loses. Your task is to determine who wins if both players play optimally.", "input_spec": "The first line contains four integers n1,\u2009n2,\u2009k1,\u2009k2. All numbers in the input are from 1 to 50. This problem doesn't have subproblems. You will get 3 points for the correct submission.", "output_spec": "Output \"First\" if the first player wins and \"Second\" otherwise.", "sample_inputs": ["2 2 1 2", "2 1 1 1"], "sample_outputs": ["Second", "First"], "notes": "NoteConsider the first sample test. Each player has a box with 2 balls. The first player draws a single ball from his box in one move and the second player can either take 1 or 2 balls from his box in one move. No matter how the first player acts, the second player can always win if he plays wisely."}, "src_uid": "aed24ebab3ed9fd1741eea8e4200f86b"} {"nl": {"description": "Can you imagine our life if we removed all zeros from it? For sure we will have many problems.In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation a\u2009+\u2009b\u2009=\u2009c, where a and b are positive integers, and c is the sum of a and b. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros?For example if the equation is 101\u2009+\u2009102\u2009=\u2009203, if we removed all zeros it will be 11\u2009+\u200912\u2009=\u200923 which is still a correct equation.But if the equation is 105\u2009+\u2009106\u2009=\u2009211, if we removed all zeros it will be 15\u2009+\u200916\u2009=\u2009211 which is not a correct equation.", "input_spec": "The input will consist of two lines, the first line will contain the integer a, and the second line will contain the integer b which are in the equation as described above (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009109). There won't be any leading zeros in both. The value of c should be calculated as c\u2009=\u2009a\u2009+\u2009b.", "output_spec": "The output will be just one line, you should print \"YES\" if the equation will remain correct after removing all zeros, and print \"NO\" otherwise.", "sample_inputs": ["101\n102", "105\n106"], "sample_outputs": ["YES", "NO"], "notes": null}, "src_uid": "ac6971f4feea0662d82da8e0862031ad"} {"nl": {"description": "A few years ago Sajjad left his school and register to another one due to security reasons. Now he wishes to find Amir, one of his schoolmates and good friends.There are n schools numerated from 1 to n. One can travel between each pair of them, to do so, he needs to buy a ticket. The ticker between schools i and j costs and can be used multiple times. Help Sajjad to find the minimum cost he needs to pay for tickets to visit all schools. He can start and finish in any school.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009105)\u00a0\u2014 the number of schools.", "output_spec": "Print single integer: the minimum cost of tickets needed to visit all schools.", "sample_inputs": ["2", "10"], "sample_outputs": ["0", "4"], "notes": "NoteIn the first example we can buy a ticket between the schools that costs ."}, "src_uid": "dfe9446431325c73e88b58ba204d0e47"} {"nl": {"description": "String can be called correct if it consists of characters \"0\" and \"1\" and there are no redundant leading zeroes. Here are some examples: \"0\", \"10\", \"1001\".You are given a correct string s.You can perform two different operations on this string: swap any pair of adjacent characters (for example, \"101\" \"110\"); replace \"11\" with \"1\" (for example, \"110\" \"10\"). Let val(s) be such a number that s is its binary representation.Correct string a is less than some other correct string b iff val(a)\u2009<\u2009val(b).Your task is to find the minimum correct string that you can obtain from the given one using the operations described above. You can use these operations any number of times in any order (or even use no operations at all).", "input_spec": "The first line contains integer number n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the length of string s. The second line contains the string s consisting of characters \"0\" and \"1\". It is guaranteed that the string s is correct.", "output_spec": "Print one string \u2014 the minimum correct string that you can obtain from the given one.", "sample_inputs": ["4\n1001", "1\n1"], "sample_outputs": ["100", "1"], "notes": "NoteIn the first example you can obtain the answer by the following sequence of operations: \"1001\" \"1010\" \"1100\" \"100\".In the second example you can't obtain smaller answer no matter what operations you use."}, "src_uid": "ac244791f8b648d672ed3de32ce0074d"} {"nl": {"description": "Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.One day Petya was delivered a string s, containing only digits. He needs to find a string that represents a lucky number without leading zeroes, is not empty, is contained in s as a substring the maximum number of times.Among all the strings for which the three conditions given above are fulfilled, Petya only needs the lexicographically minimum one. Find this string for Petya.", "input_spec": "The single line contains a non-empty string s whose length can range from 1 to 50, inclusive. The string only contains digits. The string can contain leading zeroes.", "output_spec": "In the only line print the answer to Petya's problem. If the sought string does not exist, print \"-1\" (without quotes).", "sample_inputs": ["047", "16", "472747"], "sample_outputs": ["4", "-1", "7"], "notes": "NoteThe lexicographical comparison of strings is performed by the < operator in the modern programming languages. String x is lexicographically less than string y either if x is a prefix of y, or exists such i (1\u2009\u2264\u2009i\u2009\u2264\u2009min(|x|,\u2009|y|)), that xi\u2009<\u2009yi and for any j (1\u2009\u2264\u2009j\u2009<\u2009i) xj\u2009=\u2009yj. Here |a| denotes the length of string a.In the first sample three conditions are fulfilled for strings \"4\", \"7\" and \"47\". The lexicographically minimum one is \"4\".In the second sample s has no substrings which are lucky numbers.In the third sample the three conditions are only fulfilled for string \"7\"."}, "src_uid": "639b8b8d0dc42df46b139f0aeb3a7a0a"} {"nl": {"description": "The HR manager was disappointed again. The last applicant failed the interview the same way as 24 previous ones. \"Do I give such a hard task?\" \u2014 the HR manager thought. \"Just raise number 5 to the power of n and get last two digits of the number. Yes, of course, n can be rather big, and one cannot find the power using a calculator, but we need people who are able to think, not just follow the instructions.\"Could you pass the interview in the machine vision company in IT City?", "input_spec": "The only line of the input contains a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u20092\u00b71018) \u2014 the power in which you need to raise number 5.", "output_spec": "Output the last two digits of 5n without spaces between them.", "sample_inputs": ["2"], "sample_outputs": ["25"], "notes": null}, "src_uid": "dcaff75492eafaf61d598779d6202c9d"} {"nl": {"description": "Ujan has been lazy lately, but now has decided to bring his yard to good shape. First, he decided to paint the path from his house to the gate.The path consists of $$$n$$$ consecutive tiles, numbered from $$$1$$$ to $$$n$$$. Ujan will paint each tile in some color. He will consider the path aesthetic if for any two different tiles with numbers $$$i$$$ and $$$j$$$, such that $$$|j - i|$$$ is a divisor of $$$n$$$ greater than $$$1$$$, they have the same color. Formally, the colors of two tiles with numbers $$$i$$$ and $$$j$$$ should be the same if $$$|i-j| > 1$$$ and $$$n \\bmod |i-j| = 0$$$ (where $$$x \\bmod y$$$ is the remainder when dividing $$$x$$$ by $$$y$$$).Ujan wants to brighten up space. What is the maximum number of different colors that Ujan can use, so that the path is aesthetic?", "input_spec": "The first line of input contains a single integer $$$n$$$ ($$$1 \\leq n \\leq 10^{12}$$$), the length of the path.", "output_spec": "Output a single integer, the maximum possible number of colors that the path can be painted in.", "sample_inputs": ["4", "5"], "sample_outputs": ["2", "5"], "notes": "NoteIn the first sample, two colors is the maximum number. Tiles $$$1$$$ and $$$3$$$ should have the same color since $$$4 \\bmod |3-1| = 0$$$. Also, tiles $$$2$$$ and $$$4$$$ should have the same color since $$$4 \\bmod |4-2| = 0$$$.In the second sample, all five colors can be used. "}, "src_uid": "f553e89e267c223fd5acf0dd2bc1706b"} {"nl": {"description": "The only difference between easy and hard versions is constraints.A session has begun at Beland State University. Many students are taking exams.Polygraph Poligrafovich is going to examine a group of $$$n$$$ students. Students will take the exam one-by-one in order from $$$1$$$-th to $$$n$$$-th. Rules of the exam are following: The $$$i$$$-th student randomly chooses a ticket. if this ticket is too hard to the student, he doesn't answer and goes home immediately (this process is so fast that it's considered no time elapses). This student fails the exam. if the student finds the ticket easy, he spends exactly $$$t_i$$$ minutes to pass the exam. After it, he immediately gets a mark and goes home. Students take the exam in the fixed order, one-by-one, without any interruption. At any moment of time, Polygraph Poligrafovich takes the answer from one student.The duration of the whole exam for all students is $$$M$$$ minutes ($$$\\max t_i \\le M$$$), so students at the end of the list have a greater possibility to run out of time to pass the exam.For each student $$$i$$$, you should count the minimum possible number of students who need to fail the exam so the $$$i$$$-th student has enough time to pass the exam.For each student $$$i$$$, find the answer independently. That is, if when finding the answer for the student $$$i_1$$$ some student $$$j$$$ should leave, then while finding the answer for $$$i_2$$$ ($$$i_2>i_1$$$) the student $$$j$$$ student does not have to go home.", "input_spec": "The first line of the input contains two integers $$$n$$$ and $$$M$$$ ($$$1 \\le n \\le 100$$$, $$$1 \\le M \\le 100$$$)\u00a0\u2014 the number of students and the total duration of the exam in minutes, respectively. The second line of the input contains $$$n$$$ integers $$$t_i$$$ ($$$1 \\le t_i \\le 100$$$)\u00a0\u2014 time in minutes that $$$i$$$-th student spends to answer to a ticket. It's guaranteed that all values of $$$t_i$$$ are not greater than $$$M$$$.", "output_spec": "Print $$$n$$$ numbers: the $$$i$$$-th number must be equal to the minimum number of students who have to leave the exam in order to $$$i$$$-th student has enough time to pass the exam.", "sample_inputs": ["7 15\n1 2 3 4 5 6 7", "5 100\n80 40 40 40 60"], "sample_outputs": ["0 0 0 0 0 2 3", "0 1 1 2 3"], "notes": "NoteThe explanation for the example 1.Please note that the sum of the first five exam times does not exceed $$$M=15$$$ (the sum is $$$1+2+3+4+5=15$$$). Thus, the first five students can pass the exam even if all the students before them also pass the exam. In other words, the first five numbers in the answer are $$$0$$$.In order for the $$$6$$$-th student to pass the exam, it is necessary that at least $$$2$$$ students must fail it before (for example, the $$$3$$$-rd and $$$4$$$-th, then the $$$6$$$-th will finish its exam in $$$1+2+5+6=14$$$ minutes, which does not exceed $$$M$$$).In order for the $$$7$$$-th student to pass the exam, it is necessary that at least $$$3$$$ students must fail it before (for example, the $$$2$$$-nd, $$$5$$$-th and $$$6$$$-th, then the $$$7$$$-th will finish its exam in $$$1+3+4+7=15$$$ minutes, which does not exceed $$$M$$$)."}, "src_uid": "d3c1dc3ed7af2b51b4c49c9b5052c346"} {"nl": {"description": "One day Kefa found n baloons. For convenience, we denote color of i-th baloon as si \u2014 lowercase letter of the Latin alphabet. Also Kefa has k friends. Friend will be upset, If he get two baloons of the same color. Kefa want to give out all baloons to his friends. Help Kefa to find out, can he give out all his baloons, such that no one of his friens will be upset \u2014 print \u00abYES\u00bb, if he can, and \u00abNO\u00bb, otherwise. Note, that Kefa's friend will not upset, if he doesn't get baloons at all.", "input_spec": "The first line contains two integers n and k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u2009100) \u2014 the number of baloons and friends. Next line contains string s \u2014 colors of baloons.", "output_spec": "Answer to the task \u2014 \u00abYES\u00bb or \u00abNO\u00bb in a single line. You can choose the case (lower or upper) for each letter arbitrary.", "sample_inputs": ["4 2\naabb", "6 3\naacaab"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample Kefa can give 1-st and 3-rd baloon to the first friend, and 2-nd and 4-th to the second.In the second sample Kefa needs to give to all his friends baloons of color a, but one baloon will stay, thats why answer is \u00abNO\u00bb."}, "src_uid": "ceb3807aaffef60bcdbcc9a17a1391be"} {"nl": {"description": "Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1,\u2009a2,\u2009...,\u2009an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.loop integer variable i from 1 to n\u2009-\u20091\u00a0\u00a0\u00a0\u00a0loop integer variable j from i to n\u2009-\u20091\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0if (aj\u2009>\u2009aj\u2009+\u20091), then swap the values of elements aj and aj\u2009+\u20091But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.", "input_spec": "You've got a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200950) \u2014 the size of the sorted array.", "output_spec": "Print n space-separated integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009100) \u2014 the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.", "sample_inputs": ["1"], "sample_outputs": ["-1"], "notes": null}, "src_uid": "fe8a0332119bd182a0a5b7758716317e"} {"nl": {"description": "Mashmokh works in a factory. At the end of each day he must turn off all of the lights. The lights on the factory are indexed from 1 to n. There are n buttons in Mashmokh's room indexed from 1 to n as well. If Mashmokh pushes button with index i, then each light with index not less than i that is still turned on turns off.Mashmokh is not very clever. So instead of pushing the first button he pushes some of the buttons randomly each night. He pushed m distinct buttons b1,\u2009b2,\u2009...,\u2009bm (the buttons were pushed consecutively in the given order) this night. Now he wants to know for each light the index of the button that turned this light off. Please note that the index of button bi is actually bi, not i.Please, help Mashmokh, print these indices.", "input_spec": "The first line of the input contains two space-separated integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100), the number of the factory lights and the pushed buttons respectively. The next line contains m distinct space-separated integers b1,\u2009b2,\u2009...,\u2009bm\u00a0(1\u2009\u2264\u2009bi\u2009\u2264\u2009n). It is guaranteed that all lights will be turned off after pushing all buttons.", "output_spec": "Output n space-separated integers where the i-th number is index of the button that turns the i-th light off.", "sample_inputs": ["5 4\n4 3 1 2", "5 5\n5 4 3 2 1"], "sample_outputs": ["1 1 3 4 4", "1 2 3 4 5"], "notes": "NoteIn the first sample, after pressing button number 4, lights 4 and 5 are turned off and lights 1, 2 and 3 are still on. Then after pressing button number 3, light number 3 is turned off as well. Pressing button number 1 turns off lights number 1 and 2 as well so pressing button number 2 in the end has no effect. Thus button number 4 turned lights 4 and 5 off, button number 3 turned light 3 off and button number 1 turned light 1 and 2 off."}, "src_uid": "2e44c8aabab7ef7b06bbab8719a8d863"} {"nl": {"description": "Baby Ehab was toying around with arrays. He has an array $$$a$$$ of length $$$n$$$. He defines an array to be good if there's no way to partition it into $$$2$$$ subsequences such that the sum of the elements in the first is equal to the sum of the elements in the second. Now he wants to remove the minimum number of elements in $$$a$$$ so that it becomes a good array. Can you help him?A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero or all) elements. A partitioning of an array is a way to divide it into $$$2$$$ subsequences such that every element belongs to exactly one subsequence, so you must use all the elements, and you can't share any elements.", "input_spec": "The first line contains an integer $$$n$$$ ($$$2 \\le n \\le 100$$$)\u00a0\u2014 the length of the array $$$a$$$. The second line contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\\ldots$$$, $$$a_{n}$$$ ($$$1 \\le a_i \\le 2000$$$)\u00a0\u2014 the elements of the array $$$a$$$.", "output_spec": "The first line should contain the minimum number of elements you need to remove. The second line should contain the indices of the elements you're removing, separated by spaces. We can show that an answer always exists. If there are multiple solutions, you can print any.", "sample_inputs": ["4\n6 3 9 12", "2\n1 2"], "sample_outputs": ["1\n2", "0"], "notes": "NoteIn the first example, you can partition the array into $$$[6,9]$$$ and $$$[3,12]$$$, so you must remove at least $$$1$$$ element. Removing $$$3$$$ is sufficient.In the second example, the array is already good, so you don't need to remove any elements."}, "src_uid": "29063ad54712b4911c6bf871969ee147"} {"nl": {"description": "You have a given integer $$$n$$$. Find the number of ways to fill all $$$3 \\times n$$$ tiles with the shape described in the picture below. Upon filling, no empty spaces are allowed. Shapes cannot overlap. This picture describes when $$$n = 4$$$. The left one is the shape and the right one is $$$3 \\times n$$$ tiles. ", "input_spec": "The only line contains one integer $$$n$$$ ($$$1 \\le n \\le 60$$$)\u00a0\u2014 the length.", "output_spec": "Print the number of ways to fill.", "sample_inputs": ["4", "1"], "sample_outputs": ["4", "0"], "notes": "NoteIn the first example, there are $$$4$$$ possible cases of filling.In the second example, you cannot fill the shapes in $$$3 \\times 1$$$ tiles."}, "src_uid": "4b7ff467ed5907e32fd529fb39b708db"} {"nl": {"description": "Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number n is almost lucky.", "input_spec": "The single line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091000) \u2014 the number that needs to be checked.", "output_spec": "In the only line print \"YES\" (without the quotes), if number n is almost lucky. Otherwise, print \"NO\" (without the quotes).", "sample_inputs": ["47", "16", "78"], "sample_outputs": ["YES", "YES", "NO"], "notes": "NoteNote that all lucky numbers are almost lucky as any number is evenly divisible by itself.In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4."}, "src_uid": "78cf8bc7660dbd0602bf6e499bc6bb0d"} {"nl": {"description": "The final round of Bayan Programming Contest will be held in Tehran, and the participants will be carried around with a yellow bus. The bus has 34 passenger seats: 4 seats in the last row and 3 seats in remaining rows. The event coordinator has a list of k participants who should be picked up at the airport. When a participant gets on the bus, he will sit in the last row with an empty seat. If there is more than one empty seat in that row, he will take the leftmost one. In order to keep track of the people who are on the bus, the event coordinator needs a figure showing which seats are going to be taken by k participants. Your task is to draw the figure representing occupied seats.", "input_spec": "The only line of input contains integer k, (0\u2009\u2264\u2009k\u2009\u2264\u200934), denoting the number of participants.", "output_spec": "Print the figure of a bus with k passengers as described in sample tests. Character '#' denotes an empty seat, while 'O' denotes a taken seat. 'D' is the bus driver and other characters in the output are for the purpose of beautifying the figure. Strictly follow the sample test cases output format. Print exactly six lines. Do not output extra space or other characters.", "sample_inputs": ["9", "20"], "sample_outputs": ["+------------------------+\n|O.O.O.#.#.#.#.#.#.#.#.|D|)\n|O.O.O.#.#.#.#.#.#.#.#.|.|\n|O.......................|\n|O.O.#.#.#.#.#.#.#.#.#.|.|)\n+------------------------+", "+------------------------+\n|O.O.O.O.O.O.O.#.#.#.#.|D|)\n|O.O.O.O.O.O.#.#.#.#.#.|.|\n|O.......................|\n|O.O.O.O.O.O.#.#.#.#.#.|.|)\n+------------------------+"], "notes": null}, "src_uid": "075f83248f6d4d012e0ca1547fc67993"} {"nl": {"description": "The football season has just ended in Berland. According to the rules of Berland football, each match is played between two teams. The result of each match is either a draw, or a victory of one of the playing teams. If a team wins the match, it gets $$$w$$$ points, and the opposing team gets $$$0$$$ points. If the game results in a draw, both teams get $$$d$$$ points.The manager of the Berland capital team wants to summarize the results of the season, but, unfortunately, all information about the results of each match is lost. The manager only knows that the team has played $$$n$$$ games and got $$$p$$$ points for them.You have to determine three integers $$$x$$$, $$$y$$$ and $$$z$$$ \u2014 the number of wins, draws and loses of the team. If there are multiple answers, print any of them. If there is no suitable triple $$$(x, y, z)$$$, report about it.", "input_spec": "The first line contains four integers $$$n$$$, $$$p$$$, $$$w$$$ and $$$d$$$ $$$(1 \\le n \\le 10^{12}, 0 \\le p \\le 10^{17}, 1 \\le d < w \\le 10^{5})$$$ \u2014 the number of games, the number of points the team got, the number of points awarded for winning a match, and the number of points awarded for a draw, respectively. Note that $$$w > d$$$, so the number of points awarded for winning is strictly greater than the number of points awarded for draw.", "output_spec": "If there is no answer, print $$$-1$$$. Otherwise print three non-negative integers $$$x$$$, $$$y$$$ and $$$z$$$ \u2014 the number of wins, draws and losses of the team. If there are multiple possible triples $$$(x, y, z)$$$, print any of them. The numbers should meet the following conditions: $$$x \\cdot w + y \\cdot d = p$$$, $$$x + y + z = n$$$. ", "sample_inputs": ["30 60 3 1", "10 51 5 4", "20 0 15 5"], "sample_outputs": ["17 9 4", "-1", "0 0 20"], "notes": "NoteOne of the possible answers in the first example \u2014 $$$17$$$ wins, $$$9$$$ draws and $$$4$$$ losses. Then the team got $$$17 \\cdot 3 + 9 \\cdot 1 = 60$$$ points in $$$17 + 9 + 4 = 30$$$ games.In the second example the maximum possible score is $$$10 \\cdot 5 = 50$$$. Since $$$p = 51$$$, there is no answer.In the third example the team got $$$0$$$ points, so all $$$20$$$ games were lost."}, "src_uid": "503116e144d19eb953954d99c5526a7d"} {"nl": {"description": "Awruk is taking part in elections in his school. It is the final round. He has only one opponent\u00a0\u2014 Elodreip. The are $$$n$$$ students in the school. Each student has exactly $$$k$$$ votes and is obligated to use all of them. So Awruk knows that if a person gives $$$a_i$$$ votes for Elodreip, than he will get exactly $$$k - a_i$$$ votes from this person. Of course $$$0 \\le k - a_i$$$ holds.Awruk knows that if he loses his life is over. He has been speaking a lot with his friends and now he knows $$$a_1, a_2, \\dots, a_n$$$ \u2014 how many votes for Elodreip each student wants to give. Now he wants to change the number $$$k$$$ to win the elections. Of course he knows that bigger $$$k$$$ means bigger chance that somebody may notice that he has changed something and then he will be disqualified.So, Awruk knows $$$a_1, a_2, \\dots, a_n$$$ \u2014 how many votes each student will give to his opponent. Help him select the smallest winning number $$$k$$$. In order to win, Awruk needs to get strictly more votes than Elodreip.", "input_spec": "The first line contains integer $$$n$$$ ($$$1 \\le n \\le 100$$$)\u00a0\u2014 the number of students in the school. The second line contains $$$n$$$ integers $$$a_1, a_2, \\ldots, a_n$$$ ($$$1 \\leq a_i \\leq 100$$$)\u00a0\u2014 the number of votes each student gives to Elodreip.", "output_spec": "Output the smallest integer $$$k$$$ ($$$k \\ge \\max a_i$$$) which gives Awruk the victory. In order to win, Awruk needs to get strictly more votes than Elodreip.", "sample_inputs": ["5\n1 1 1 5 1", "5\n2 2 3 2 2"], "sample_outputs": ["5", "5"], "notes": "NoteIn the first example, Elodreip gets $$$1 + 1 + 1 + 5 + 1 = 9$$$ votes. The smallest possible $$$k$$$ is $$$5$$$ (it surely can't be less due to the fourth person), and it leads to $$$4 + 4 + 4 + 0 + 4 = 16$$$ votes for Awruk, which is enough to win.In the second example, Elodreip gets $$$11$$$ votes. If $$$k = 4$$$, Awruk gets $$$9$$$ votes and loses to Elodreip."}, "src_uid": "d215b3541d6d728ad01b166aae64faa2"} {"nl": {"description": "Recently Anton found a box with digits in his room. There are k2 digits 2, k3 digits 3, k5 digits 5 and k6 digits 6.Anton's favorite integers are 32 and 256. He decided to compose this integers from digits he has. He wants to make the sum of these integers as large as possible. Help him solve this task!Each digit can be used no more than once, i.e. the composed integers should contain no more than k2 digits 2, k3 digits 3 and so on. Of course, unused digits are not counted in the sum.", "input_spec": "The only line of the input contains four integers k2, k3, k5 and k6\u00a0\u2014 the number of digits 2, 3, 5 and 6 respectively (0\u2009\u2264\u2009k2,\u2009k3,\u2009k5,\u2009k6\u2009\u2264\u20095\u00b7106).", "output_spec": "Print one integer\u00a0\u2014 maximum possible sum of Anton's favorite integers that can be composed using digits from the box.", "sample_inputs": ["5 1 3 4", "1 1 1 1"], "sample_outputs": ["800", "256"], "notes": "NoteIn the first sample, there are five digits 2, one digit 3, three digits 5 and four digits 6. Anton can compose three integers 256 and one integer 32 to achieve the value 256\u2009+\u2009256\u2009+\u2009256\u2009+\u200932\u2009=\u2009800. Note, that there is one unused integer 2 and one unused integer 6. They are not counted in the answer.In the second sample, the optimal answer is to create on integer 256, thus the answer is 256."}, "src_uid": "082b31cc156a7ba1e0a982f07ecc207e"} {"nl": {"description": "You are given a string $$$s$$$ consisting of lowercase Latin letters. Let the length of $$$s$$$ be $$$|s|$$$. You may perform several operations on this string.In one operation, you can choose some index $$$i$$$ and remove the $$$i$$$-th character of $$$s$$$ ($$$s_i$$$) if at least one of its adjacent characters is the previous letter in the Latin alphabet for $$$s_i$$$. For example, the previous letter for b is a, the previous letter for s is r, the letter a has no previous letters. Note that after each removal the length of the string decreases by one. So, the index $$$i$$$ should satisfy the condition $$$1 \\le i \\le |s|$$$ during each operation.For the character $$$s_i$$$ adjacent characters are $$$s_{i-1}$$$ and $$$s_{i+1}$$$. The first and the last characters of $$$s$$$ both have only one adjacent character (unless $$$|s| = 1$$$).Consider the following example. Let $$$s=$$$ bacabcab. During the first move, you can remove the first character $$$s_1=$$$ b because $$$s_2=$$$ a. Then the string becomes $$$s=$$$ acabcab. During the second move, you can remove the fifth character $$$s_5=$$$ c because $$$s_4=$$$ b. Then the string becomes $$$s=$$$ acabab. During the third move, you can remove the sixth character $$$s_6=$$$'b' because $$$s_5=$$$ a. Then the string becomes $$$s=$$$ acaba. During the fourth move, the only character you can remove is $$$s_4=$$$ b, because $$$s_3=$$$ a (or $$$s_5=$$$ a). The string becomes $$$s=$$$ acaa and you cannot do anything with it. Your task is to find the maximum possible number of characters you can remove if you choose the sequence of operations optimally.", "input_spec": "The only line of the input contains one integer $$$|s|$$$ ($$$1 \\le |s| \\le 100$$$) \u2014 the length of $$$s$$$. The second line of the input contains one string $$$s$$$ consisting of $$$|s|$$$ lowercase Latin letters.", "output_spec": "Print one integer \u2014 the maximum possible number of characters you can remove if you choose the sequence of moves optimally.", "sample_inputs": ["8\nbacabcab", "4\nbcda", "6\nabbbbb"], "sample_outputs": ["4", "3", "5"], "notes": "NoteThe first example is described in the problem statement. Note that the sequence of moves provided in the statement is not the only, but it can be shown that the maximum possible answer to this test is $$$4$$$.In the second example, you can remove all but one character of $$$s$$$. The only possible answer follows. During the first move, remove the third character $$$s_3=$$$ d, $$$s$$$ becomes bca. During the second move, remove the second character $$$s_2=$$$ c, $$$s$$$ becomes ba. And during the third move, remove the first character $$$s_1=$$$ b, $$$s$$$ becomes a. "}, "src_uid": "9ce37bc2d361f5bb8a0568fb479b8a38"} {"nl": {"description": "Dima loves representing an odd number as the sum of multiple primes, and Lisa loves it when there are at most three primes. Help them to represent the given number as the sum of at most than three primes.More formally, you are given an odd numer n. Find a set of numbers pi (1\u2009\u2264\u2009i\u2009\u2264\u2009k), such that 1\u2009\u2264\u2009k\u2009\u2264\u20093 pi is a prime The numbers pi do not necessarily have to be distinct. It is guaranteed that at least one possible solution exists.", "input_spec": "The single line contains an odd number n (3\u2009\u2264\u2009n\u2009<\u2009109).", "output_spec": "In the first line print k (1\u2009\u2264\u2009k\u2009\u2264\u20093), showing how many numbers are in the representation you found. In the second line print numbers pi in any order. If there are multiple possible solutions, you can print any of them.", "sample_inputs": ["27"], "sample_outputs": ["3\n5 11 11"], "notes": "NoteA prime is an integer strictly larger than one that is divisible only by one and by itself."}, "src_uid": "f2aaa149ce81bf332d0b5d80b2a13bc3"} {"nl": {"description": "Once upon a time there were several little pigs and several wolves on a two-dimensional grid of size n\u2009\u00d7\u2009m. Each cell in this grid was either empty, containing one little pig, or containing one wolf.A little pig and a wolf are adjacent if the cells that they are located at share a side. The little pigs are afraid of wolves, so there will be at most one wolf adjacent to each little pig. But each wolf may be adjacent to any number of little pigs.They have been living peacefully for several years. But today the wolves got hungry. One by one, each wolf will choose one of the little pigs adjacent to it (if any), and eats the poor little pig. This process is not repeated. That is, each wolf will get to eat at most one little pig. Once a little pig gets eaten, it disappears and cannot be eaten by any other wolf.What is the maximum number of little pigs that may be eaten by the wolves?", "input_spec": "The first line contains integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u200910) which denotes the number of rows and columns in our two-dimensional grid, respectively. Then follow n lines containing m characters each \u2014 that is the grid description. \".\" means that this cell is empty. \"P\" means that this cell contains a little pig. \"W\" means that this cell contains a wolf. It is guaranteed that there will be at most one wolf adjacent to any little pig.", "output_spec": "Print a single number \u2014 the maximal number of little pigs that may be eaten by the wolves.", "sample_inputs": ["2 3\nPPW\nW.P", "3 3\nP.W\n.P.\nW.P"], "sample_outputs": ["2", "0"], "notes": "NoteIn the first example, one possible scenario in which two little pigs get eaten by the wolves is as follows. "}, "src_uid": "969b24ed98d916184821b2b2f8fd3aac"} {"nl": {"description": "Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills.Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system.", "input_spec": "In the only line given a non-empty binary string s with length up to 100.", "output_spec": "Print \u00abyes\u00bb (without quotes) if it's possible to remove digits required way and \u00abno\u00bb otherwise.", "sample_inputs": ["100010001", "100"], "sample_outputs": ["yes", "no"], "notes": "NoteIn the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system.You can read more about binary numeral system representation here: https://en.wikipedia.org/wiki/Binary_system"}, "src_uid": "88364b8d71f2ce2b90bdfaa729eb92ca"} {"nl": {"description": "Your friend recently gave you some slimes for your birthday. You have n slimes all initially with value 1.You are going to play a game with these slimes. Initially, you put a single slime by itself in a row. Then, you will add the other n\u2009-\u20091 slimes one by one. When you add a slime, you place it at the right of all already placed slimes. Then, while the last two slimes in the row have the same value v, you combine them together to create a slime with value v\u2009+\u20091.You would like to see what the final state of the row is after you've added all n slimes. Please print the values of the slimes in the row from left to right.", "input_spec": "The first line of the input will contain a single integer, n (1\u2009\u2264\u2009n\u2009\u2264\u2009100\u2009000).", "output_spec": "Output a single line with k integers, where k is the number of slimes in the row after you've finished the procedure described in the problem statement. The i-th of these numbers should be the value of the i-th slime from the left.", "sample_inputs": ["1", "2", "3", "8"], "sample_outputs": ["1", "2", "2 1", "4"], "notes": "NoteIn the first sample, we only have a single slime with value 1. The final state of the board is just a single slime with value 1.In the second sample, we perform the following steps:Initially we place a single slime in a row by itself. Thus, row is initially 1.Then, we will add another slime. The row is now 1 1. Since two rightmost slimes have the same values, we should replace these slimes with one with value 2. Thus, the final state of the board is 2.In the third sample, after adding the first two slimes, our row is 2. After adding one more slime, the row becomes 2 1.In the last sample, the steps look as follows: 1 2 2 1 3 3 1 3 2 3 2 1 4 "}, "src_uid": "757cd804aba01dc4bc108cb0722f68dc"} {"nl": {"description": "InputThe only line of the input contains a 7-digit hexadecimal number. The first \"digit\" of the number is letter A, the rest of the \"digits\" are decimal digits 0-9.OutputOutput a single integer.ExamplesInput\nA278832\nOutput\n0\nInput\nA089956\nOutput\n0\nInput\nA089957\nOutput\n1\nInput\nA144045\nOutput\n1\n", "input_spec": "The only line of the input contains a 7-digit hexadecimal number. The first \"digit\" of the number is letter A, the rest of the \"digits\" are decimal digits 0-9.", "output_spec": "Output a single integer.", "sample_inputs": ["A278832", "A089956", "A089957", "A144045"], "sample_outputs": ["0", "0", "1", "1"], "notes": null}, "src_uid": "e52bc741bb72bb8e79cf392b2d15354f"} {"nl": {"description": "Barney is standing in a bar and starring at a pretty girl. He wants to shoot her with his heart arrow but he needs to know the distance between him and the girl to make his shot accurate. Barney asked the bar tender Carl about this distance value, but Carl was so busy talking to the customers so he wrote the distance value (it's a real number) on a napkin. The problem is that he wrote it in scientific notation. The scientific notation of some real number x is the notation of form AeB, where A is a real number and B is an integer and x\u2009=\u2009A\u2009\u00d7\u200910B is true. In our case A is between 0 and 9 and B is non-negative.Barney doesn't know anything about scientific notation (as well as anything scientific at all). So he asked you to tell him the distance value in usual decimal representation with minimal number of digits after the decimal point (and no decimal point if it is an integer). See the output format for better understanding.", "input_spec": "The first and only line of input contains a single string of form a.deb where a, d and b are integers and e is usual character 'e' (0\u2009\u2264\u2009a\u2009\u2264\u20099,\u20090\u2009\u2264\u2009d\u2009<\u200910100,\u20090\u2009\u2264\u2009b\u2009\u2264\u2009100)\u00a0\u2014 the scientific notation of the desired distance value. a and b contain no leading zeros and d contains no trailing zeros (but may be equal to 0). Also, b can not be non-zero if a is zero.", "output_spec": "Print the only real number x (the desired distance value) in the only line in its decimal notation. Thus if x is an integer, print it's integer value without decimal part and decimal point and without leading zeroes. Otherwise print x in a form of p.q such that p is an integer that have no leading zeroes (but may be equal to zero), and q is an integer that have no trailing zeroes (and may not be equal to zero).", "sample_inputs": ["8.549e2", "8.549e3", "0.33e0"], "sample_outputs": ["854.9", "8549", "0.33"], "notes": null}, "src_uid": "a79358099f08f3ec50c013d47d910eef"} {"nl": {"description": "Ivan has number $$$b$$$. He is sorting through the numbers $$$a$$$ from $$$1$$$ to $$$10^{18}$$$, and for every $$$a$$$ writes $$$\\frac{[a, \\,\\, b]}{a}$$$ on blackboard. Here $$$[a, \\,\\, b]$$$ stands for least common multiple of $$$a$$$ and $$$b$$$. Ivan is very lazy, that's why this task bored him soon. But he is interested in how many different numbers he would write on the board if he would finish the task. Help him to find the quantity of different numbers he would write on the board.", "input_spec": "The only line contains one integer\u00a0\u2014 $$$b$$$ $$$(1 \\le b \\le 10^{10})$$$.", "output_spec": "Print one number\u00a0\u2014 answer for the problem.", "sample_inputs": ["1", "2"], "sample_outputs": ["1", "2"], "notes": "NoteIn the first example $$$[a, \\,\\, 1] = a$$$, therefore $$$\\frac{[a, \\,\\, b]}{a}$$$ is always equal to $$$1$$$.In the second example $$$[a, \\,\\, 2]$$$ can be equal to $$$a$$$ or $$$2 \\cdot a$$$ depending on parity of $$$a$$$. $$$\\frac{[a, \\,\\, b]}{a}$$$ can be equal to $$$1$$$ and $$$2$$$."}, "src_uid": "7fc9e7d7e25ab97d8ebc10ed8ae38fd1"} {"nl": {"description": "You are given a string s consisting of n lowercase Latin letters. You have to type this string using your keyboard.Initially, you have an empty string. Until you type the whole string, you may perform the following operation: add a character to the end of the string. Besides, at most once you may perform one additional operation: copy the string and append it to itself.For example, if you have to type string abcabca, you can type it in 7 operations if you type all the characters one by one. However, you can type it in 5 operations if you type the string abc first and then copy it and type the last character.If you have to type string aaaaaaaaa, the best option is to type 4 characters one by one, then copy the string, and then type the remaining character.Print the minimum number of operations you need to type the given string.", "input_spec": "The first line of the input containing only one integer number n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the length of the string you have to type. The second line containing the string s consisting of n lowercase Latin letters.", "output_spec": "Print one integer number\u00a0\u2014 the minimum number of operations you need to type the given string.", "sample_inputs": ["7\nabcabca", "8\nabcdefgh"], "sample_outputs": ["5", "8"], "notes": "NoteThe first test described in the problem statement.In the second test you can only type all the characters one by one."}, "src_uid": "ed8725e4717c82fa7cfa56178057bca3"} {"nl": {"description": "You're given a row with $$$n$$$ chairs. We call a seating of people \"maximal\" if the two following conditions hold: There are no neighbors adjacent to anyone seated. It's impossible to seat one more person without violating the first rule. The seating is given as a string consisting of zeros and ones ($$$0$$$ means that the corresponding seat is empty, $$$1$$$ \u2014 occupied). The goal is to determine whether this seating is \"maximal\".Note that the first and last seats are not adjacent (if $$$n \\ne 2$$$).", "input_spec": "The first line contains a single integer $$$n$$$ ($$$1 \\leq n \\leq 1000$$$)\u00a0\u2014 the number of chairs. The next line contains a string of $$$n$$$ characters, each of them is either zero or one, describing the seating.", "output_spec": "Output \"Yes\" (without quotation marks) if the seating is \"maximal\". Otherwise print \"No\". You are allowed to print letters in whatever case you'd like (uppercase or lowercase).", "sample_inputs": ["3\n101", "4\n1011", "5\n10001"], "sample_outputs": ["Yes", "No", "No"], "notes": "NoteIn sample case one the given seating is maximal.In sample case two the person at chair three has a neighbour to the right.In sample case three it is possible to seat yet another person into chair three."}, "src_uid": "c14d255785b1f668d04b0bf6dcadf32d"} {"nl": {"description": "We consider a positive integer perfect, if and only if the sum of its digits is exactly $$$10$$$. Given a positive integer $$$k$$$, your task is to find the $$$k$$$-th smallest perfect positive integer.", "input_spec": "A single line with a positive integer $$$k$$$ ($$$1 \\leq k \\leq 10\\,000$$$).", "output_spec": "A single number, denoting the $$$k$$$-th smallest perfect integer.", "sample_inputs": ["1", "2"], "sample_outputs": ["19", "28"], "notes": "NoteThe first perfect integer is $$$19$$$ and the second one is $$$28$$$."}, "src_uid": "0a98a6a15e553ce11cb468d3330fc86a"} {"nl": {"description": "A monster is chasing after Rick and Morty on another planet. They're so frightened that sometimes they scream. More accurately, Rick screams at times b,\u2009b\u2009+\u2009a,\u2009b\u2009+\u20092a,\u2009b\u2009+\u20093a,\u2009... and Morty screams at times d,\u2009d\u2009+\u2009c,\u2009d\u2009+\u20092c,\u2009d\u2009+\u20093c,\u2009.... The Monster will catch them if at any point they scream at the same time, so it wants to know when it will catch them (the first time they scream at the same time) or that they will never scream at the same time.", "input_spec": "The first line of input contains two integers a and b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009100). The second line contains two integers c and d (1\u2009\u2264\u2009c,\u2009d\u2009\u2264\u2009100).", "output_spec": "Print the first time Rick and Morty will scream at the same time, or \u2009-\u20091 if they will never scream at the same time.", "sample_inputs": ["20 2\n9 19", "2 1\n16 12"], "sample_outputs": ["82", "-1"], "notes": "NoteIn the first sample testcase, Rick's 5th scream and Morty's 8th time are at time 82. In the second sample testcase, all Rick's screams will be at odd times and Morty's will be at even times, so they will never scream at the same time."}, "src_uid": "158cb12d45f4ee3368b94b2b622693e7"} {"nl": {"description": "There are n cards (n is even) in the deck. Each card has a positive integer written on it. n\u2009/\u20092 people will play new card game. At the beginning of the game each player gets two cards, each card is given to exactly one player. Find the way to distribute cards such that the sum of values written of the cards will be equal for each player. It is guaranteed that it is always possible.", "input_spec": "The first line of the input contains integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of cards in the deck. It is guaranteed that n is even. The second line contains the sequence of n positive integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009100), where ai is equal to the number written on the i-th card.", "output_spec": "Print n\u2009/\u20092 pairs of integers, the i-th pair denote the cards that should be given to the i-th player. Each card should be given to exactly one player. Cards are numbered in the order they appear in the input. It is guaranteed that solution exists. If there are several correct answers, you are allowed to print any of them.", "sample_inputs": ["6\n1 5 7 4 4 3", "4\n10 10 10 10"], "sample_outputs": ["1 3\n6 2\n4 5", "1 2\n3 4"], "notes": "NoteIn the first sample, cards are distributed in such a way that each player has the sum of numbers written on his cards equal to 8. In the second sample, all values ai are equal. Thus, any distribution is acceptable."}, "src_uid": "6e5011801ceff9d76e33e0908b695132"} {"nl": {"description": "You are given the current time in 24-hour format hh:mm. Find and print the time after a minutes.Note that you should find only the time after a minutes, see the examples to clarify the problem statement.You can read more about 24-hour format here https://en.wikipedia.org/wiki/24-hour_clock.", "input_spec": "The first line contains the current time in the format hh:mm (0\u2009\u2264\u2009hh\u2009<\u200924,\u20090\u2009\u2264\u2009mm\u2009<\u200960). The hours and the minutes are given with two digits (the hours or the minutes less than 10 are given with the leading zeroes). The second line contains integer a (0\u2009\u2264\u2009a\u2009\u2264\u2009104) \u2014 the number of the minutes passed.", "output_spec": "The only line should contain the time after a minutes in the format described in the input. Note that you should print exactly two digits for the hours and the minutes (add leading zeroes to the numbers if needed). See the examples to check the input/output format.", "sample_inputs": ["23:59\n10", "20:20\n121", "10:10\n0"], "sample_outputs": ["00:09", "22:21", "10:10"], "notes": null}, "src_uid": "20c2d9da12d6b88f300977d74287a15d"} {"nl": {"description": "Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different.There are n teams taking part in the national championship. The championship consists of n\u00b7(n\u2009-\u20091) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number.You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.", "input_spec": "The first line contains an integer n (2\u2009\u2264\u2009n\u2009\u2264\u200930). Each of the following n lines contains a pair of distinct space-separated integers hi, ai (1\u2009\u2264\u2009hi,\u2009ai\u2009\u2264\u2009100) \u2014 the colors of the i-th team's home and guest uniforms, respectively.", "output_spec": "In a single line print the number of games where the host team is going to play in the guest uniform.", "sample_inputs": ["3\n1 2\n2 4\n3 4", "4\n100 42\n42 100\n5 42\n100 5", "2\n1 2\n1 2"], "sample_outputs": ["1", "5", "0"], "notes": "NoteIn the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2.In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first)."}, "src_uid": "745f81dcb4f23254bf6602f9f389771b"} {"nl": {"description": "Limak is a little polar bear. He has n balls, the i-th ball has size ti.Limak wants to give one ball to each of his three friends. Giving gifts isn't easy\u00a0\u2014 there are two rules Limak must obey to make friends happy: No two friends can get balls of the same size. No two friends can get balls of sizes that differ by more than 2. For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2).Your task is to check whether Limak can choose three balls that satisfy conditions above.", "input_spec": "The first line of the input contains one integer n (3\u2009\u2264\u2009n\u2009\u2264\u200950)\u00a0\u2014 the number of balls Limak has. The second line contains n integers t1,\u2009t2,\u2009...,\u2009tn (1\u2009\u2264\u2009ti\u2009\u2264\u20091000) where ti denotes the size of the i-th ball.", "output_spec": "Print \"YES\" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print \"NO\" (without quotes).", "sample_inputs": ["4\n18 55 16 17", "6\n40 41 43 44 44 44", "8\n5 972 3 4 1 4 970 971"], "sample_outputs": ["YES", "NO", "YES"], "notes": "NoteIn the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17.In the second sample, there is no way to give gifts to three friends without breaking the rules.In the third sample, there is even more than one way to choose balls: Choose balls with sizes 3, 4 and 5. Choose balls with sizes 972, 970, 971. "}, "src_uid": "d6c876a84c7b92141710be5d76536eab"} {"nl": {"description": "This year, as in previous years, MemSQL is inviting the top 25 competitors from the Start[c]up qualification round to compete onsite for the final round. Not everyone who is eligible to compete onsite can afford to travel to the office, though. Initially the top 25 contestants are invited to come onsite. Each eligible contestant must either accept or decline the invitation. Whenever a contestant declines, the highest ranked contestant not yet invited is invited to take the place of the one that declined. This continues until 25 contestants have accepted invitations.After the qualifying round completes, you know K of the onsite finalists, as well as their qualifying ranks (which start at 1, there are no ties). Determine the minimum possible number of contestants that declined the invitation to compete onsite in the final round.", "input_spec": "The first line of input contains K (1\u2009\u2264\u2009K\u2009\u2264\u200925), the number of onsite finalists you know. The second line of input contains r1,\u2009r2,\u2009...,\u2009rK (1\u2009\u2264\u2009ri\u2009\u2264\u2009106), the qualifying ranks of the finalists you know. All these ranks are distinct.", "output_spec": "Print the minimum possible number of contestants that declined the invitation to compete onsite.", "sample_inputs": ["25\n2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 28", "5\n16 23 8 15 4", "3\n14 15 92"], "sample_outputs": ["3", "0", "67"], "notes": "NoteIn the first example, you know all 25 onsite finalists. The contestants who ranked 1-st, 13-th, and 27-th must have declined, so the answer is 3."}, "src_uid": "ef657588b4f2fe8b2ff5f8edc0ab8afd"} {"nl": {"description": "Polycarp loves ciphers. He has invented his own cipher called repeating.Repeating cipher is used for strings. To encrypt the string $$$s=s_{1}s_{2} \\dots s_{m}$$$ ($$$1 \\le m \\le 10$$$), Polycarp uses the following algorithm: he writes down $$$s_1$$$ ones, he writes down $$$s_2$$$ twice, he writes down $$$s_3$$$ three times, ... he writes down $$$s_m$$$ $$$m$$$ times. For example, if $$$s$$$=\"bab\" the process is: \"b\" $$$\\to$$$ \"baa\" $$$\\to$$$ \"baabbb\". So the encrypted $$$s$$$=\"bab\" is \"baabbb\".Given string $$$t$$$ \u2014 the result of encryption of some string $$$s$$$. Your task is to decrypt it, i.\u2009e. find the string $$$s$$$.", "input_spec": "The first line contains integer $$$n$$$ ($$$1 \\le n \\le 55$$$) \u2014 the length of the encrypted string. The second line of the input contains $$$t$$$ \u2014 the result of encryption of some string $$$s$$$. It contains only lowercase Latin letters. The length of $$$t$$$ is exactly $$$n$$$. It is guaranteed that the answer to the test exists.", "output_spec": "Print such string $$$s$$$ that after encryption it equals $$$t$$$.", "sample_inputs": ["6\nbaabbb", "10\nooopppssss", "1\nz"], "sample_outputs": ["bab", "oops", "z"], "notes": null}, "src_uid": "08e8c0c37b223f6aae01d5609facdeaf"} {"nl": {"description": "Polycarp loves ciphers. He has invented his own cipher called Right-Left.Right-Left cipher is used for strings. To encrypt the string $$$s=s_{1}s_{2} \\dots s_{n}$$$ Polycarp uses the following algorithm: he writes down $$$s_1$$$, he appends the current word with $$$s_2$$$ (i.e. writes down $$$s_2$$$ to the right of the current result), he prepends the current word with $$$s_3$$$ (i.e. writes down $$$s_3$$$ to the left of the current result), he appends the current word with $$$s_4$$$ (i.e. writes down $$$s_4$$$ to the right of the current result), he prepends the current word with $$$s_5$$$ (i.e. writes down $$$s_5$$$ to the left of the current result), and so on for each position until the end of $$$s$$$. For example, if $$$s$$$=\"techno\" the process is: \"t\" $$$\\to$$$ \"te\" $$$\\to$$$ \"cte\" $$$\\to$$$ \"cteh\" $$$\\to$$$ \"ncteh\" $$$\\to$$$ \"ncteho\". So the encrypted $$$s$$$=\"techno\" is \"ncteho\".Given string $$$t$$$ \u2014 the result of encryption of some string $$$s$$$. Your task is to decrypt it, i.e. find the string $$$s$$$.", "input_spec": "The only line of the input contains $$$t$$$ \u2014 the result of encryption of some string $$$s$$$. It contains only lowercase Latin letters. The length of $$$t$$$ is between $$$1$$$ and $$$50$$$, inclusive.", "output_spec": "Print such string $$$s$$$ that after encryption it equals $$$t$$$.", "sample_inputs": ["ncteho", "erfdcoeocs", "z"], "sample_outputs": ["techno", "codeforces", "z"], "notes": null}, "src_uid": "992ae43e66f1808f19c86b1def1f6b41"} {"nl": {"description": "You are given a rectangular board of M\u2009\u00d7\u2009N squares. Also you are given an unlimited number of standard domino pieces of 2\u2009\u00d7\u20091 squares. You are allowed to rotate the pieces. You are asked to place as many dominoes as possible on the board so as to meet the following conditions:1. Each domino completely covers two squares.2. No two dominoes overlap.3. Each domino lies entirely inside the board. It is allowed to touch the edges of the board.Find the maximum number of dominoes, which can be placed under these restrictions.", "input_spec": "In a single line you are given two integers M and N \u2014 board sizes in squares (1\u2009\u2264\u2009M\u2009\u2264\u2009N\u2009\u2264\u200916).", "output_spec": "Output one number \u2014 the maximal number of dominoes, which can be placed.", "sample_inputs": ["2 4", "3 3"], "sample_outputs": ["4", "4"], "notes": null}, "src_uid": "e840e7bfe83764bee6186fcf92a1b5cd"} {"nl": {"description": "Zane the wizard had never loved anyone before, until he fell in love with a girl, whose name remains unknown to us. The girl lives in house m of a village. There are n houses in that village, lining in a straight line from left to right: house 1, house 2, ..., house n. The village is also well-structured: house i and house i\u2009+\u20091 (1\u2009\u2264\u2009i\u2009<\u2009n) are exactly 10 meters away. In this village, some houses are occupied, and some are not. Indeed, unoccupied houses can be purchased.You will be given n integers a1,\u2009a2,\u2009...,\u2009an that denote the availability and the prices of the houses. If house i is occupied, and therefore cannot be bought, then ai equals 0. Otherwise, house i can be bought, and ai represents the money required to buy it, in dollars.As Zane has only k dollars to spare, it becomes a challenge for him to choose the house to purchase, so that he could live as near as possible to his crush. Help Zane determine the minimum distance from his crush's house to some house he can afford, to help him succeed in his love.", "input_spec": "The first line contains three integers n, m, and k (2\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009m\u2009\u2264\u2009n, 1\u2009\u2264\u2009k\u2009\u2264\u2009100)\u00a0\u2014 the number of houses in the village, the house where the girl lives, and the amount of money Zane has (in dollars), respectively. The second line contains n integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u2009100)\u00a0\u2014 denoting the availability and the prices of the houses. It is guaranteed that am\u2009=\u20090 and that it is possible to purchase some house with no more than k dollars.", "output_spec": "Print one integer\u00a0\u2014 the minimum distance, in meters, from the house where the girl Zane likes lives to the house Zane can buy.", "sample_inputs": ["5 1 20\n0 27 32 21 19", "7 3 50\n62 0 0 0 99 33 22", "10 5 100\n1 0 1 0 0 0 0 0 1 1"], "sample_outputs": ["40", "30", "20"], "notes": "NoteIn the first sample, with k\u2009=\u200920 dollars, Zane can buy only house 5. The distance from house m\u2009=\u20091 to house 5 is 10\u2009+\u200910\u2009+\u200910\u2009+\u200910\u2009=\u200940 meters.In the second sample, Zane can buy houses 6 and 7. It is better to buy house 6 than house 7, since house m\u2009=\u20093 and house 6 are only 30 meters away, while house m\u2009=\u20093 and house 7 are 40 meters away."}, "src_uid": "57860e9a5342a29257ce506063d37624"} {"nl": {"description": "Consider an array $$$a$$$ of length $$$n$$$ with elements numbered from $$$1$$$ to $$$n$$$. It is possible to remove the $$$i$$$-th element of $$$a$$$ if $$$gcd(a_i, i) = 1$$$, where $$$gcd$$$ denotes the greatest common divisor. After an element is removed, the elements to the right are shifted to the left by one position.An array $$$b$$$ with $$$n$$$ integers such that $$$1 \\le b_i \\le n - i + 1$$$ is a removal sequence for the array $$$a$$$ if it is possible to remove all elements of $$$a$$$, if you remove the $$$b_1$$$-th element, then the $$$b_2$$$-th, ..., then the $$$b_n$$$-th element. For example, let $$$a = [42, 314]$$$: $$$[1, 1]$$$ is a removal sequence: when you remove the $$$1$$$-st element of the array, the condition $$$gcd(42, 1) = 1$$$ holds, and the array becomes $$$[314]$$$; when you remove the $$$1$$$-st element again, the condition $$$gcd(314, 1) = 1$$$ holds, and the array becomes empty. $$$[2, 1]$$$ is not a removal sequence: when you try to remove the $$$2$$$-nd element, the condition $$$gcd(314, 2) = 1$$$ is false. An array is ambiguous if it has at least two removal sequences. For example, the array $$$[1, 2, 5]$$$ is ambiguous: it has removal sequences $$$[3, 1, 1]$$$ and $$$[1, 2, 1]$$$. The array $$$[42, 314]$$$ is not ambiguous: the only removal sequence it has is $$$[1, 1]$$$.You are given two integers $$$n$$$ and $$$m$$$. You have to calculate the number of ambiguous arrays $$$a$$$ such that the length of $$$a$$$ is from $$$1$$$ to $$$n$$$ and each $$$a_i$$$ is an integer from $$$1$$$ to $$$m$$$.", "input_spec": "The only line of the input contains two integers $$$n$$$ and $$$m$$$ ($$$2 \\le n \\le 3 \\cdot 10^5$$$; $$$1 \\le m \\le 10^{12}$$$).", "output_spec": "Print one integer \u2014 the number of ambiguous arrays $$$a$$$ such that the length of $$$a$$$ is from $$$1$$$ to $$$n$$$ and each $$$a_i$$$ is an integer from $$$1$$$ to $$$m$$$. Since the answer can be very large, print it modulo $$$998244353$$$.", "sample_inputs": ["2 3", "4 2", "4 6", "1337 424242424242"], "sample_outputs": ["6", "26", "1494", "119112628"], "notes": null}, "src_uid": "0fdd91ed33431848614075ebe9d2ee68"} {"nl": {"description": "Little Lesha loves listening to music via his smartphone. But the smartphone doesn't have much memory, so Lesha listens to his favorite songs in a well-known social network InTalk.Unfortunately, internet is not that fast in the city of Ekaterinozavodsk and the song takes a lot of time to download. But Lesha is quite impatient. The song's duration is T seconds. Lesha downloads the first S seconds of the song and plays it. When the playback reaches the point that has not yet been downloaded, Lesha immediately plays the song from the start (the loaded part of the song stays in his phone, and the download is continued from the same place), and it happens until the song is downloaded completely and Lesha listens to it to the end. For q seconds of real time the Internet allows you to download q\u2009-\u20091 seconds of the track.Tell Lesha, for how many times he will start the song, including the very first start.", "input_spec": "The single line contains three integers T,\u2009S,\u2009q (2\u2009\u2264\u2009q\u2009\u2264\u2009104, 1\u2009\u2264\u2009S\u2009<\u2009T\u2009\u2264\u2009105).", "output_spec": "Print a single integer\u00a0\u2014 the number of times the song will be restarted.", "sample_inputs": ["5 2 2", "5 4 7", "6 2 3"], "sample_outputs": ["2", "1", "1"], "notes": "NoteIn the first test, the song is played twice faster than it is downloaded, which means that during four first seconds Lesha reaches the moment that has not been downloaded, and starts the song again. After another two seconds, the song is downloaded completely, and thus, Lesha starts the song twice.In the second test, the song is almost downloaded, and Lesha will start it only once.In the third sample test the download finishes and Lesha finishes listening at the same moment. Note that song isn't restarted in this case."}, "src_uid": "0d01bf286fb2c7950ce5d5fa59a17dd9"} {"nl": {"description": "You know that Japan is the country with almost the largest 'electronic devices per person' ratio. So you might be quite surprised to find out that the primary school in Japan teaches to count using a Soroban \u2014 an abacus developed in Japan. This phenomenon has its reasons, of course, but we are not going to speak about them. Let's have a look at the Soroban's construction. Soroban consists of some number of rods, each rod contains five beads. We will assume that the rods are horizontal lines. One bead on each rod (the leftmost one) is divided from the others by a bar (the reckoning bar). This single bead is called go-dama and four others are ichi-damas. Each rod is responsible for representing a single digit from 0 to 9. We can obtain the value of a digit by following simple algorithm: Set the value of a digit equal to 0. If the go-dama is shifted to the right, add 5. Add the number of ichi-damas shifted to the left. Thus, the upper rod on the picture shows digit 0, the middle one shows digit 2 and the lower one shows 7. We will consider the top rod to represent the last decimal digit of a number, so the picture shows number 720.Write the program that prints the way Soroban shows the given number n.", "input_spec": "The first line contains a single integer n (0\u2009\u2264\u2009n\u2009<\u2009109).", "output_spec": "Print the description of the decimal digits of number n from the last one to the first one (as mentioned on the picture in the statement), one per line. Print the beads as large English letters 'O', rod pieces as character '-' and the reckoning bar as '|'. Print as many rods, as many digits are in the decimal representation of number n without leading zeroes. We can assume that number 0 has no leading zeroes.", "sample_inputs": ["2", "13", "720"], "sample_outputs": ["O-|OO-OO", "O-|OOO-O\nO-|O-OOO", "O-|-OOOO\nO-|OO-OO\n-O|OO-OO"], "notes": null}, "src_uid": "c2e3aced0bc76b6484360563355d23a7"} {"nl": {"description": "Vus the Cossack holds a programming competition, in which $$$n$$$ people participate. He decided to award them all with pens and notebooks. It is known that Vus has exactly $$$m$$$ pens and $$$k$$$ notebooks.Determine whether the Cossack can reward all participants, giving each of them at least one pen and at least one notebook.", "input_spec": "The first line contains three integers $$$n$$$, $$$m$$$, and $$$k$$$ ($$$1 \\leq n, m, k \\leq 100$$$)\u00a0\u2014 the number of participants, the number of pens, and the number of notebooks respectively.", "output_spec": "Print \"Yes\" if it possible to reward all the participants. Otherwise, print \"No\". You can print each letter in any case (upper or lower).", "sample_inputs": ["5 8 6", "3 9 3", "8 5 20"], "sample_outputs": ["Yes", "Yes", "No"], "notes": "NoteIn the first example, there are $$$5$$$ participants. The Cossack has $$$8$$$ pens and $$$6$$$ notebooks. Therefore, he has enough pens and notebooks.In the second example, there are $$$3$$$ participants. The Cossack has $$$9$$$ pens and $$$3$$$ notebooks. He has more than enough pens but only the minimum needed number of notebooks.In the third example, there are $$$8$$$ participants but only $$$5$$$ pens. Since the Cossack does not have enough pens, the answer is \"No\"."}, "src_uid": "6cd07298b23cc6ce994bb1811b9629c4"} {"nl": {"description": "Kirill plays a new computer game. He came to the potion store where he can buy any potion. Each potion is characterized by two integers\u00a0\u2014 amount of experience and cost. The efficiency of a potion is the ratio of the amount of experience to the cost. Efficiency may be a non-integer number.For each two integer numbers a and b such that l\u2009\u2264\u2009a\u2009\u2264\u2009r and x\u2009\u2264\u2009b\u2009\u2264\u2009y there is a potion with experience a and cost b in the store (that is, there are (r\u2009-\u2009l\u2009+\u20091)\u00b7(y\u2009-\u2009x\u2009+\u20091) potions).Kirill wants to buy a potion which has efficiency k. Will he be able to do this?", "input_spec": "First string contains five integer numbers l, r, x, y, k (1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u2009107, 1\u2009\u2264\u2009x\u2009\u2264\u2009y\u2009\u2264\u2009107, 1\u2009\u2264\u2009k\u2009\u2264\u2009107).", "output_spec": "Print \"YES\" without quotes if a potion with efficiency exactly k can be bought in the store and \"NO\" without quotes otherwise. You can output each of the letters in any register.", "sample_inputs": ["1 10 1 10 1", "1 5 6 10 1"], "sample_outputs": ["YES", "NO"], "notes": null}, "src_uid": "1110d3671e9f77fd8d66dca6e74d2048"} {"nl": {"description": "Jon fought bravely to rescue the wildlings who were attacked by the white-walkers at Hardhome. On his arrival, Sam tells him that he wants to go to Oldtown to train at the Citadel to become a maester, so he can return and take the deceased Aemon's place as maester of Castle Black. Jon agrees to Sam's proposal and Sam sets off his journey to the Citadel. However becoming a trainee at the Citadel is not a cakewalk and hence the maesters at the Citadel gave Sam a problem to test his eligibility. Initially Sam has a list with a single element n. Then he has to perform certain operations on this list. In each operation Sam must remove any element x, such that x\u2009>\u20091, from the list and insert at the same position , , sequentially. He must continue with these operations until all the elements in the list are either 0 or 1.Now the masters want the total number of 1s in the range l to r (1-indexed). Sam wants to become a maester but unfortunately he cannot solve this problem. Can you help Sam to pass the eligibility test?", "input_spec": "The first line contains three integers n, l, r (0\u2009\u2264\u2009n\u2009<\u2009250, 0\u2009\u2264\u2009r\u2009-\u2009l\u2009\u2264\u2009105, r\u2009\u2265\u20091, l\u2009\u2265\u20091) \u2013 initial element and the range l to r. It is guaranteed that r is not greater than the length of the final list.", "output_spec": "Output the total number of 1s in the range l to r in the final sequence.", "sample_inputs": ["7 2 5", "10 3 10"], "sample_outputs": ["4", "5"], "notes": "NoteConsider first example:Elements on positions from 2-nd to 5-th in list is [1,\u20091,\u20091,\u20091]. The number of ones is 4.For the second example:Elements on positions from 3-rd to 10-th in list is [1,\u20091,\u20091,\u20090,\u20091,\u20090,\u20091,\u20090]. The number of ones is 5."}, "src_uid": "3ac61b1f8deee7911b1055c243f5eb6a"} {"nl": {"description": "Baby Badawy's first words were \"AND 0 SUM BIG\", so he decided to solve the following problem. Given two integers $$$n$$$ and $$$k$$$, count the number of arrays of length $$$n$$$ such that: all its elements are integers between $$$0$$$ and $$$2^k-1$$$ (inclusive); the bitwise AND of all its elements is $$$0$$$; the sum of its elements is as large as possible. Since the answer can be very large, print its remainder when divided by $$$10^9+7$$$.", "input_spec": "The first line contains an integer $$$t$$$ ($$$1 \\le t \\le 10$$$)\u00a0\u2014 the number of test cases you need to solve. Each test case consists of a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \\le n \\le 10^{5}$$$, $$$1 \\le k \\le 20$$$).", "output_spec": "For each test case, print the number of arrays satisfying the conditions. Since the answer can be very large, print its remainder when divided by $$$10^9+7$$$.", "sample_inputs": ["2\n2 2\n100000 20"], "sample_outputs": ["4\n226732710"], "notes": "NoteIn the first example, the $$$4$$$ arrays are: $$$[3,0]$$$, $$$[0,3]$$$, $$$[1,2]$$$, $$$[2,1]$$$. "}, "src_uid": "2e7a9f3a97938e4a7e036520d812b97a"} {"nl": {"description": "Let's denote a function $$$f(x)$$$ in such a way: we add $$$1$$$ to $$$x$$$, then, while there is at least one trailing zero in the resulting number, we remove that zero. For example, $$$f(599) = 6$$$: $$$599 + 1 = 600 \\rightarrow 60 \\rightarrow 6$$$; $$$f(7) = 8$$$: $$$7 + 1 = 8$$$; $$$f(9) = 1$$$: $$$9 + 1 = 10 \\rightarrow 1$$$; $$$f(10099) = 101$$$: $$$10099 + 1 = 10100 \\rightarrow 1010 \\rightarrow 101$$$. We say that some number $$$y$$$ is reachable from $$$x$$$ if we can apply function $$$f$$$ to $$$x$$$ some (possibly zero) times so that we get $$$y$$$ as a result. For example, $$$102$$$ is reachable from $$$10098$$$ because $$$f(f(f(10098))) = f(f(10099)) = f(101) = 102$$$; and any number is reachable from itself.You are given a number $$$n$$$; your task is to count how many different numbers are reachable from $$$n$$$.", "input_spec": "The first line contains one integer $$$n$$$ ($$$1 \\le n \\le 10^9$$$).", "output_spec": "Print one integer: the number of different numbers that are reachable from $$$n$$$.", "sample_inputs": ["1098", "10"], "sample_outputs": ["20", "19"], "notes": "NoteThe numbers that are reachable from $$$1098$$$ are:$$$1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1098, 1099$$$."}, "src_uid": "055fbbde4b9ffd4473e6e716da6da899"} {"nl": {"description": "Fafa owns a company that works on huge projects. There are n employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees.Fafa finds doing this every time is very tiring for him. So, he decided to choose the best l employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader.Given the number of employees n, find in how many ways Fafa could choose the number of team leaders l in such a way that it is possible to divide employees between them evenly.", "input_spec": "The input consists of a single line containing a positive integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009105) \u2014 the number of employees in Fafa's company.", "output_spec": "Print a single integer representing the answer to the problem.", "sample_inputs": ["2", "10"], "sample_outputs": ["1", "3"], "notes": "NoteIn the second sample Fafa has 3 ways: choose only 1 employee as a team leader with 9 employees under his responsibility. choose 2 employees as team leaders with 4 employees under the responsibility of each of them. choose 5 employees as team leaders with 1 employee under the responsibility of each of them. "}, "src_uid": "89f6c1659e5addbf909eddedb785d894"} {"nl": {"description": "Little Petya likes numbers a lot. He found that number 123 in base 16 consists of two digits: the first is 7 and the second is 11. So the sum of digits of 123 in base 16 is equal to 18.Now he wonders what is an average value of sum of digits of the number A written in all bases from 2 to A\u2009-\u20091.Note that all computations should be done in base 10. You should find the result as an irreducible fraction, written in base 10.", "input_spec": "Input contains one integer number A (3\u2009\u2264\u2009A\u2009\u2264\u20091000).", "output_spec": "Output should contain required average value in format \u00abX/Y\u00bb, where X is the numerator and Y is the denominator.", "sample_inputs": ["5", "3"], "sample_outputs": ["7/3", "2/1"], "notes": "NoteIn the first sample number 5 written in all bases from 2 to 4 looks so: 101, 12, 11. Sums of digits are 2, 3 and 2, respectively."}, "src_uid": "1366732dddecba26db232d6ca8f35fdc"} {"nl": {"description": "InputThe only line of the input contains a string of digits. The length of the string is between 1 and 10, inclusive.OutputOutput \"Yes\" or \"No\".ExamplesInput373OutputYesInput121OutputNoInput436OutputYes", "input_spec": "The only line of the input contains a string of digits. The length of the string is between 1 and 10, inclusive.", "output_spec": "Output \"Yes\" or \"No\".", "sample_inputs": ["373", "121", "436"], "sample_outputs": ["Yes", "No", "Yes"], "notes": null}, "src_uid": "0f11f41cefd7cf43f498e511405426c3"} {"nl": {"description": "There exists an island called Arpa\u2019s land, some beautiful girls live there, as ugly ones do.Mehrdad wants to become minister of Arpa\u2019s land. Arpa has prepared an exam. Exam has only one question, given n, print the last digit of 1378n. Mehrdad has become quite confused and wants you to help him. Please help, although it's a naive cheat.", "input_spec": "The single line of input contains one integer n (0\u2009\u2009\u2264\u2009\u2009n\u2009\u2009\u2264\u2009\u2009109).", "output_spec": "Print single integer\u00a0\u2014 the last digit of 1378n.", "sample_inputs": ["1", "2"], "sample_outputs": ["8", "4"], "notes": "NoteIn the first example, last digit of 13781\u2009=\u20091378 is 8.In the second example, last digit of 13782\u2009=\u20091378\u00b71378\u2009=\u20091898884 is 4."}, "src_uid": "4b51b99d1dea367bf37dc5ead08ca48f"} {"nl": {"description": "Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.Note, that during capitalization all the letters except the first one remains unchanged.", "input_spec": "A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103.", "output_spec": "Output the given word after capitalization.", "sample_inputs": ["ApPLe", "konjac"], "sample_outputs": ["ApPLe", "Konjac"], "notes": null}, "src_uid": "29e0fc0c5c0e136ac8e58011c91397e4"} {"nl": {"description": "Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.Let's remember how Fibonacci numbers can be calculated. F0\u2009=\u20090, F1\u2009=\u20091, and all the next numbers are Fi\u2009=\u2009Fi\u2009-\u20092\u2009+\u2009Fi\u2009-\u20091.So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number n by three not necessary different Fibonacci numbers or say that it is impossible.", "input_spec": "The input contains of a single integer n (0\u2009\u2264\u2009n\u2009<\u2009109) \u2014 the number that should be represented by the rules described above. It is guaranteed that n is a Fibonacci number.", "output_spec": "Output three required numbers: a, b and c. If there is no answer for the test you have to print \"I'm too stupid to solve this problem\" without the quotes. If there are multiple answers, print any of them.", "sample_inputs": ["3", "13"], "sample_outputs": ["1 1 1", "2 3 8"], "notes": null}, "src_uid": "db46a6b0380df047aa34ea6a8f0f93c1"} {"nl": {"description": "Bessie the cow and her best friend Elsie each received a sliding puzzle on Pi Day. Their puzzles consist of a 2\u2009\u00d7\u20092 grid and three tiles labeled 'A', 'B', and 'C'. The three tiles sit on top of the grid, leaving one grid cell empty. To make a move, Bessie or Elsie can slide a tile adjacent to the empty cell into the empty cell as shown below: In order to determine if they are truly Best Friends For Life (BFFLs), Bessie and Elsie would like to know if there exists a sequence of moves that takes their puzzles to the same configuration (moves can be performed in both puzzles). Two puzzles are considered to be in the same configuration if each tile is on top of the same grid cell in both puzzles. Since the tiles are labeled with letters, rotations and reflections are not allowed.", "input_spec": "The first two lines of the input consist of a 2\u2009\u00d7\u20092 grid describing the initial configuration of Bessie's puzzle. The next two lines contain a 2\u2009\u00d7\u20092 grid describing the initial configuration of Elsie's puzzle. The positions of the tiles are labeled 'A', 'B', and 'C', while the empty cell is labeled 'X'. It's guaranteed that both puzzles contain exactly one tile with each letter and exactly one empty position.", "output_spec": "Output \"YES\"(without quotes) if the puzzles can reach the same configuration (and Bessie and Elsie are truly BFFLs). Otherwise, print \"NO\" (without quotes).", "sample_inputs": ["AB\nXC\nXB\nAC", "AB\nXC\nAC\nBX"], "sample_outputs": ["YES", "NO"], "notes": "NoteThe solution to the first sample is described by the image. All Bessie needs to do is slide her 'A' tile down.In the second sample, the two puzzles can never be in the same configuration. Perhaps Bessie and Elsie are not meant to be friends after all..."}, "src_uid": "46f051f58d626587a5ec449c27407771"} {"nl": {"description": "Some country is populated by wizards. They want to organize a demonstration.There are n people living in the city, x of them are the wizards who will surely go to the demonstration. Other city people (n\u2009-\u2009x people) do not support the wizards and aren't going to go to the demonstration. We know that the city administration will react only to the demonstration involving at least y percent of the city people. Having considered the matter, the wizards decided to create clone puppets which can substitute the city people on the demonstration. So all in all, the demonstration will involve only the wizards and their puppets. The city administration cannot tell the difference between a puppet and a person, so, as they calculate the percentage, the administration will consider the city to be consisting of only n people and not containing any clone puppets. Help the wizards and find the minimum number of clones to create to that the demonstration had no less than y percent of the city people.", "input_spec": "The first line contains three space-separated integers, n, x, y (1\u2009\u2264\u2009n,\u2009x,\u2009y\u2009\u2264\u2009104,\u2009x\u2009\u2264\u2009n) \u2014 the number of citizens in the city, the number of wizards and the percentage the administration needs, correspondingly. Please note that y can exceed 100 percent, that is, the administration wants to see on a demonstration more people that actually live in the city (\u2009>\u2009n).", "output_spec": "Print a single integer \u2014 the answer to the problem, the minimum number of clones to create, so that the demonstration involved no less than y percent of n (the real total city population). ", "sample_inputs": ["10 1 14", "20 10 50", "1000 352 146"], "sample_outputs": ["1", "0", "1108"], "notes": "NoteIn the first sample it is necessary that at least 14% of 10 people came to the demonstration. As the number of people should be integer, then at least two people should come. There is only one wizard living in the city and he is going to come. That isn't enough, so he needs to create one clone. In the second sample 10 people should come to the demonstration. The city has 10 wizards. They will all come to the demonstration, so nobody has to create any clones."}, "src_uid": "7038d7b31e1900588da8b61b325e4299"} {"nl": {"description": "You are given a tetrahedron. Let's mark its vertices with letters A, B, C and D correspondingly. An ant is standing in the vertex D of the tetrahedron. The ant is quite active and he wouldn't stay idle. At each moment of time he makes a step from one vertex to another one along some edge of the tetrahedron. The ant just can't stand on one place.You do not have to do much to solve the problem: your task is to count the number of ways in which the ant can go from the initial vertex D to itself in exactly n steps. In other words, you are asked to find out the number of different cyclic paths with the length of n from vertex D to itself. As the number can be quite large, you should print it modulo 1000000007 (109\u2009+\u20097). ", "input_spec": "The first line contains the only integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009107) \u2014 the required length of the cyclic path.", "output_spec": "Print the only integer \u2014 the required number of ways modulo 1000000007 (109\u2009+\u20097).", "sample_inputs": ["2", "4"], "sample_outputs": ["3", "21"], "notes": "NoteThe required paths in the first sample are: D\u2009-\u2009A\u2009-\u2009D D\u2009-\u2009B\u2009-\u2009D D\u2009-\u2009C\u2009-\u2009D "}, "src_uid": "77627cc366a22e38da412c3231ac91a8"} {"nl": {"description": "Every summer Vitya comes to visit his grandmother in the countryside. This summer, he got a huge wart. Every grandma knows that one should treat warts when the moon goes down. Thus, Vitya has to catch the moment when the moon is down.Moon cycle lasts 30 days. The size of the visible part of the moon (in Vitya's units) for each day is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, and then cycle repeats, thus after the second 1 again goes 0.As there is no internet in the countryside, Vitya has been watching the moon for n consecutive days and for each of these days he wrote down the size of the visible part of the moon. Help him find out whether the moon will be up or down next day, or this cannot be determined by the data he has.", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200992)\u00a0\u2014 the number of consecutive days Vitya was watching the size of the visible part of the moon. The second line contains n integers ai (0\u2009\u2264\u2009ai\u2009\u2264\u200915)\u00a0\u2014 Vitya's records. It's guaranteed that the input data is consistent.", "output_spec": "If Vitya can be sure that the size of visible part of the moon on day n\u2009+\u20091 will be less than the size of the visible part on day n, then print \"DOWN\" at the only line of the output. If he might be sure that the size of the visible part will increase, then print \"UP\". If it's impossible to determine what exactly will happen with the moon, print -1.", "sample_inputs": ["5\n3 4 5 6 7", "7\n12 13 14 15 14 13 12", "1\n8"], "sample_outputs": ["UP", "DOWN", "-1"], "notes": "NoteIn the first sample, the size of the moon on the next day will be equal to 8, thus the answer is \"UP\".In the second sample, the size of the moon on the next day will be 11, thus the answer is \"DOWN\".In the third sample, there is no way to determine whether the size of the moon on the next day will be 7 or 9, thus the answer is -1."}, "src_uid": "8330d9fea8d50a79741507b878da0a75"} {"nl": {"description": "Today Tavas got his test result as an integer score and he wants to share it with his girlfriend, Nafas.His phone operating system is Tavdroid, and its keyboard doesn't have any digits! He wants to share his score with Nafas via text, so he has no choice but to send this number using words. He ate coffee mix without water again, so right now he's really messed up and can't think.Your task is to help him by telling him what to type.", "input_spec": "The first and only line of input contains an integer s (0\u2009\u2264\u2009s\u2009\u2264\u200999), Tavas's score. ", "output_spec": "In the first and only line of output, print a single string consisting only from English lowercase letters and hyphens ('-'). Do not use spaces.", "sample_inputs": ["6", "99", "20"], "sample_outputs": ["six", "ninety-nine", "twenty"], "notes": "NoteYou can find all you need to know about English numerals in http://en.wikipedia.org/wiki/English_numerals ."}, "src_uid": "a49ca177b2f1f9d5341462a38a25d8b7"} {"nl": {"description": "Dreamoon loves summing up something for no reason. One day he obtains two integers a and b occasionally. He wants to calculate the sum of all nice integers. Positive integer x is called nice if and , where k is some integer number in range [1,\u2009a].By we denote the quotient of integer division of x and y. By we denote the remainder of integer division of x and y. You can read more about these operations here: http://goo.gl/AcsXhT.The answer may be large, so please print its remainder modulo 1\u2009000\u2009000\u2009007 (109\u2009+\u20097). Can you compute it faster than Dreamoon?", "input_spec": "The single line of the input contains two integers a, b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009107).", "output_spec": "Print a single integer representing the answer modulo 1\u2009000\u2009000\u2009007 (109\u2009+\u20097).", "sample_inputs": ["1 1", "2 2"], "sample_outputs": ["0", "8"], "notes": "NoteFor the first sample, there are no nice integers because is always zero.For the second sample, the set of nice integers is {3,\u20095}."}, "src_uid": "cd351d1190a92d094b2d929bf1e5c44f"} {"nl": {"description": "In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example, the sequence BDF is a subsequence of ABCDEF. A substring of a string is a continuous subsequence of the string. For example, BCD is a substring of ABCDEF.You are given two strings s1, s2 and another string called virus. Your task is to find the longest common subsequence of s1 and s2, such that it doesn't contain virus as a substring.", "input_spec": "The input contains three strings in three separate lines: s1, s2 and virus (1\u2009\u2264\u2009|s1|,\u2009|s2|,\u2009|virus|\u2009\u2264\u2009100). Each string consists only of uppercase English letters.", "output_spec": "Output the longest common subsequence of s1 and s2 without virus as a substring. If there are multiple answers, any of them will be accepted. If there is no valid common subsequence, output 0.", "sample_inputs": ["AJKEQSLOBSROFGZ\nOVGURWZLWVLUXTH\nOZ", "AA\nA\nA"], "sample_outputs": ["ORZ", "0"], "notes": null}, "src_uid": "391c2abbe862139733fcb997ba1629b8"} {"nl": {"description": "You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits.Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code.", "input_spec": "The first line contains two integers $$$n$$$ and $$$m$$$ ($$$1 \\le n, m \\le 10$$$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints. The next line contains $$$n$$$ distinct space-separated integers $$$x_1, x_2, \\ldots, x_n$$$ ($$$0 \\le x_i \\le 9$$$) representing the sequence. The next line contains $$$m$$$ distinct space-separated integers $$$y_1, y_2, \\ldots, y_m$$$ ($$$0 \\le y_i \\le 9$$$) \u2014 the keys with fingerprints.", "output_spec": "In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable.", "sample_inputs": ["7 3\n3 5 7 1 6 2 8\n1 2 7", "4 4\n3 4 1 0\n0 1 7 9"], "sample_outputs": ["7 1 2", "1 0"], "notes": "NoteIn the first example, the only digits with fingerprints are $$$1$$$, $$$2$$$ and $$$7$$$. All three of them appear in the sequence you know, $$$7$$$ first, then $$$1$$$ and then $$$2$$$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence.In the second example digits $$$0$$$, $$$1$$$, $$$7$$$ and $$$9$$$ have fingerprints, however only $$$0$$$ and $$$1$$$ appear in the original sequence. $$$1$$$ appears earlier, so the output is 1 0. Again, the order is important."}, "src_uid": "f9044a4b4c3a0c2751217d9b31cd0c72"} {"nl": {"description": "Given an integer $$$x$$$, find 2 integers $$$a$$$ and $$$b$$$ such that: $$$1 \\le a,b \\le x$$$ $$$b$$$ divides $$$a$$$ ($$$a$$$ is divisible by $$$b$$$). $$$a \\cdot b>x$$$. $$$\\frac{a}{b}<x$$$. ", "input_spec": "The only line contains the integer $$$x$$$ $$$(1 \\le x \\le 100)$$$.", "output_spec": "You should output two integers $$$a$$$ and $$$b$$$, satisfying the given conditions, separated by a space. If no pair of integers satisfy the conditions above, print \"-1\" (without quotes).", "sample_inputs": ["10", "1"], "sample_outputs": ["6 3", "-1"], "notes": null}, "src_uid": "883f67177474d23d7a320d9dbfa70dd3"} {"nl": {"description": "Some days ago, I learned the concept of LCM (least common multiple). I've played with it for several times and I want to make a big number with it.But I also don't want to use many numbers, so I'll choose three positive integers (they don't have to be distinct) which are not greater than n. Can you help me to find the maximum possible least common multiple of these three integers?", "input_spec": "The first line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009106) \u2014 the n mentioned in the statement.", "output_spec": "Print a single integer \u2014 the maximum possible LCM of three not necessarily distinct positive integers that are not greater than n.", "sample_inputs": ["9", "7"], "sample_outputs": ["504", "210"], "notes": "NoteThe least common multiple of some positive integers is the least positive integer which is multiple for each of them.The result may become very large, 32-bit integer won't be enough. So using 64-bit integers is recommended.For the last example, we can chose numbers 7, 6, 5 and the LCM of them is 7\u00b76\u00b75\u2009=\u2009210. It is the maximum value we can get."}, "src_uid": "25e5afcdf246ee35c9cef2fcbdd4566e"} {"nl": {"description": "Bear Limak likes watching sports on TV. He is going to watch a game today. The game lasts 90 minutes and there are no breaks.Each minute can be either interesting or boring. If 15 consecutive minutes are boring then Limak immediately turns TV off.You know that there will be n interesting minutes t1,\u2009t2,\u2009...,\u2009tn. Your task is to calculate for how many minutes Limak will watch the game.", "input_spec": "The first line of the input contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u200990)\u00a0\u2014 the number of interesting minutes. The second line contains n integers t1,\u2009t2,\u2009...,\u2009tn (1\u2009\u2264\u2009t1\u2009<\u2009t2\u2009<\u2009... tn\u2009\u2264\u200990), given in the increasing order.", "output_spec": "Print the number of minutes Limak will watch the game.", "sample_inputs": ["3\n7 20 88", "9\n16 20 30 40 50 60 70 80 90", "9\n15 20 30 40 50 60 70 80 90"], "sample_outputs": ["35", "15", "90"], "notes": "NoteIn the first sample, minutes 21,\u200922,\u2009...,\u200935 are all boring and thus Limak will turn TV off immediately after the 35-th minute. So, he would watch the game for 35 minutes.In the second sample, the first 15 minutes are boring.In the third sample, there are no consecutive 15 boring minutes. So, Limak will watch the whole game."}, "src_uid": "5031b15e220f0ff6cc1dd3731ecdbf27"} {"nl": {"description": "Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them.Each command is one of the following two types: Go 1 unit towards the positive direction, denoted as '+' Go 1 unit towards the negative direction, denoted as '-' But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5). You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands?", "input_spec": "The first line contains a string s1 \u2014 the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}. The second line contains a string s2 \u2014 the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command. Lengths of two strings are equal and do not exceed 10.", "output_spec": "Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10\u2009-\u20099.", "sample_inputs": ["++-+-\n+-+-+", "+-+-\n+-??", "+++\n??-"], "sample_outputs": ["1.000000000000", "0.500000000000", "0.000000000000"], "notes": "NoteFor the first sample, both s1 and s2 will lead Dreamoon to finish at the same position \u2009+\u20091. For the second sample, s1 will lead Dreamoon to finish at position 0, while there are four possibilites for s2: {\"+-++\", \"+-+-\", \"+--+\", \"+---\"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5. For the third sample, s2 could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position \u2009+\u20093 is 0."}, "src_uid": "f7f68a15cfd33f641132fac265bc5299"} {"nl": {"description": "The Smart Beaver from ABBYY decided to have a day off. But doing nothing the whole day turned out to be too boring, and he decided to play a game with pebbles. Initially, the Beaver has n pebbles. He arranges them in a equal rows, each row has b pebbles (a\u2009>\u20091). Note that the Beaver must use all the pebbles he has, i. e. n\u2009=\u2009a\u00b7b. 10 pebbles are arranged in two rows, each row has 5 pebbles Once the Smart Beaver has arranged the pebbles, he takes back any of the resulting rows (that is, b pebbles) and discards all other pebbles. Then he arranges all his pebbles again (possibly choosing other values of a and b) and takes back one row, and so on. The game continues until at some point the Beaver ends up with exactly one pebble. The game process can be represented as a finite sequence of integers c1,\u2009...,\u2009ck, where: c1\u2009=\u2009n ci\u2009+\u20091 is the number of pebbles that the Beaver ends up with after the i-th move, that is, the number of pebbles in a row after some arrangement of ci pebbles (1\u2009\u2264\u2009i\u2009<\u2009k). Note that ci\u2009>\u2009ci\u2009+\u20091. ck\u2009=\u20091 The result of the game is the sum of numbers ci. You are given n. Find the maximum possible result of the game.", "input_spec": "The single line of the input contains a single integer n \u2014 the initial number of pebbles the Smart Beaver has. The input limitations for getting 30 points are: 2\u2009\u2264\u2009n\u2009\u2264\u200950 The input limitations for getting 100 points are: 2\u2009\u2264\u2009n\u2009\u2264\u2009109 ", "output_spec": "Print a single number \u2014 the maximum possible result of the game.", "sample_inputs": ["10", "8"], "sample_outputs": ["16", "15"], "notes": "NoteConsider the first example (c1\u2009=\u200910). The possible options for the game development are: Arrange the pebbles in 10 rows, one pebble per row. Then c2\u2009=\u20091, and the game ends after the first move with the result of 11. Arrange the pebbles in 5 rows, two pebbles per row. Then c2\u2009=\u20092, and the game continues. During the second move we have two pebbles which can be arranged in a unique way (remember that you are not allowed to put all the pebbles in the same row!) \u2014 2 rows, one pebble per row. c3\u2009=\u20091, and the game ends with the result of 13. Finally, arrange the pebbles in two rows, five pebbles per row. The same logic leads us to c2\u2009=\u20095,\u2009c3\u2009=\u20091, and the game ends with the result of 16 \u2014 the maximum possible result. "}, "src_uid": "821c0e3b5fad197a47878bba5e520b6e"} {"nl": {"description": "You are planning to build housing on a street. There are $$$n$$$ spots available on the street on which you can build a house. The spots are labeled from $$$1$$$ to $$$n$$$ from left to right. In each spot, you can build a house with an integer height between $$$0$$$ and $$$h$$$.In each spot, if a house has height $$$a$$$, you will gain $$$a^2$$$ dollars from it.The city has $$$m$$$ zoning restrictions. The $$$i$$$-th restriction says that the tallest house from spots $$$l_i$$$ to $$$r_i$$$ (inclusive) must be at most $$$x_i$$$.You would like to build houses to maximize your profit. Determine the maximum profit possible.", "input_spec": "The first line contains three integers $$$n$$$, $$$h$$$, and $$$m$$$ ($$$1 \\leq n,h,m \\leq 50$$$)\u00a0\u2014 the number of spots, the maximum height, and the number of restrictions. Each of the next $$$m$$$ lines contains three integers $$$l_i$$$, $$$r_i$$$, and $$$x_i$$$ ($$$1 \\leq l_i \\leq r_i \\leq n$$$, $$$0 \\leq x_i \\leq h$$$)\u00a0\u2014 left and right limits (inclusive) of the $$$i$$$-th restriction and the maximum possible height in that range.", "output_spec": "Print a single integer, the maximum profit you can make.", "sample_inputs": ["3 3 3\n1 1 1\n2 2 3\n3 3 2", "4 10 2\n2 3 8\n3 4 7"], "sample_outputs": ["14", "262"], "notes": "NoteIn the first example, there are $$$3$$$ houses, the maximum height of a house is $$$3$$$, and there are $$$3$$$ restrictions. The first restriction says the tallest house between $$$1$$$ and $$$1$$$ must be at most $$$1$$$. The second restriction says the tallest house between $$$2$$$ and $$$2$$$ must be at most $$$3$$$. The third restriction says the tallest house between $$$3$$$ and $$$3$$$ must be at most $$$2$$$.In this case, it is optimal to build houses with heights $$$[1, 3, 2]$$$. This fits within all the restrictions. The total profit in this case is $$$1^2 + 3^2 + 2^2 = 14$$$.In the second example, there are $$$4$$$ houses, the maximum height of a house is $$$10$$$, and there are $$$2$$$ restrictions. The first restriction says the tallest house from $$$2$$$ to $$$3$$$ must be at most $$$8$$$. The second restriction says the tallest house from $$$3$$$ to $$$4$$$ must be at most $$$7$$$.In this case, it's optimal to build houses with heights $$$[10, 8, 7, 7]$$$. We get a profit of $$$10^2+8^2+7^2+7^2 = 262$$$. Note that there are two restrictions on house $$$3$$$ and both of them must be satisfied. Also, note that even though there isn't any explicit restrictions on house $$$1$$$, we must still limit its height to be at most $$$10$$$ ($$$h=10$$$)."}, "src_uid": "f22b6dab443f63fb8d2d288b702f20ad"} {"nl": {"description": "There was once young lass called Mary, Whose jokes were occasionally scary. On this April's Fool Fixed limerick rules Allowed her to trip the unwary.Can she fill all the linesTo work at all times?On juggling the wordsRight around two-thirdsShe nearly ran out of rhymes.", "input_spec": "The input contains a single integer $$$a$$$ ($$$4 \\le a \\le 998$$$). Not every integer in the range is a valid input for the problem; you are guaranteed that the input will be a valid integer.", "output_spec": "Output a single number.", "sample_inputs": ["35", "57", "391"], "sample_outputs": ["57", "319", "1723"], "notes": null}, "src_uid": "7220f2da5081547a12118595bbeda4f6"} {"nl": {"description": "Johny likes numbers n and k very much. Now Johny wants to find the smallest integer x greater than n, so it is divisible by the number k.", "input_spec": "The only line contains two integers n and k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u2009109).", "output_spec": "Print the smallest integer x\u2009>\u2009n, so it is divisible by the number k.", "sample_inputs": ["5 3", "25 13", "26 13"], "sample_outputs": ["6", "26", "39"], "notes": null}, "src_uid": "75f3835c969c871a609b978e04476542"} {"nl": {"description": "Karen is getting ready for a new school day! It is currently hh:mm, given in a 24-hour format. As you know, Karen loves palindromes, and she believes that it is good luck to wake up when the time is a palindrome.What is the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome?Remember that a palindrome is a string that reads the same forwards and backwards. For instance, 05:39 is not a palindrome, because 05:39 backwards is 93:50. On the other hand, 05:50 is a palindrome, because 05:50 backwards is 05:50.", "input_spec": "The first and only line of input contains a single string in the format hh:mm (00\u2009\u2264\u2009 hh \u2009\u2264\u200923, 00\u2009\u2264\u2009 mm \u2009\u2264\u200959).", "output_spec": "Output a single integer on a line by itself, the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome.", "sample_inputs": ["05:39", "13:31", "23:59"], "sample_outputs": ["11", "0", "1"], "notes": "NoteIn the first test case, the minimum number of minutes Karen should sleep for is 11. She can wake up at 05:50, when the time is a palindrome.In the second test case, Karen can wake up immediately, as the current time, 13:31, is already a palindrome.In the third test case, the minimum number of minutes Karen should sleep for is 1 minute. She can wake up at 00:00, when the time is a palindrome."}, "src_uid": "3ad3b8b700f6f34b3a53fdb63af351a5"} {"nl": {"description": "Polycarp likes squares and cubes of positive integers. Here is the beginning of the sequence of numbers he likes: $$$1$$$, $$$4$$$, $$$8$$$, $$$9$$$, ....For a given number $$$n$$$, count the number of integers from $$$1$$$ to $$$n$$$ that Polycarp likes. In other words, find the number of such $$$x$$$ that $$$x$$$ is a square of a positive integer number or a cube of a positive integer number (or both a square and a cube simultaneously).", "input_spec": "The first line contains an integer $$$t$$$ ($$$1 \\le t \\le 20$$$) \u2014 the number of test cases. Then $$$t$$$ lines contain the test cases, one per line. Each of the lines contains one integer $$$n$$$ ($$$1 \\le n \\le 10^9$$$).", "output_spec": "For each test case, print the answer you are looking for \u2014 the number of integers from $$$1$$$ to $$$n$$$ that Polycarp likes.", "sample_inputs": ["6\n10\n1\n25\n1000000000\n999999999\n500000000"], "sample_outputs": ["4\n1\n6\n32591\n32590\n23125"], "notes": null}, "src_uid": "015afbefe1514a0e18fcb9286c7b6624"} {"nl": {"description": "InputThe input contains two integers $$$N$$$, $$$M$$$ ($$$1 \\le N \\le 1024, 2 \\le M \\le 16$$$), separated by a single space.OutputOutput \"YES\" or \"NO\".ExamplesInput\n2 3\nOutput\nYES\nInput\n3 2\nOutput\nNO\nInput\n33 16\nOutput\nYES\nInput\n26 5\nOutput\nNO\n", "input_spec": "The input contains two integers $$$N$$$, $$$M$$$ ($$$1 \\le N \\le 1024, 2 \\le M \\le 16$$$), separated by a single space.", "output_spec": "Output \"YES\" or \"NO\".", "sample_inputs": ["2 3", "3 2", "33 16", "26 5"], "sample_outputs": ["YES", "NO", "YES", "NO"], "notes": null}, "src_uid": "a8945bb1082fefe70e6898a8bec1ce3f"} {"nl": {"description": "Imagine a city with n horizontal streets crossing m vertical streets, forming an (n\u2009-\u20091)\u2009\u00d7\u2009(m\u2009-\u20091) grid. In order to increase the traffic flow, mayor of the city has decided to make each street one way. This means in each horizontal street, the traffic moves only from west to east or only from east to west. Also, traffic moves only from north to south or only from south to north in each vertical street. It is possible to enter a horizontal street from a vertical street, or vice versa, at their intersection. The mayor has received some street direction patterns. Your task is to check whether it is possible to reach any junction from any other junction in the proposed street direction pattern.", "input_spec": "The first line of input contains two integers n and m, (2\u2009\u2264\u2009n,\u2009m\u2009\u2264\u200920), denoting the number of horizontal streets and the number of vertical streets. The second line contains a string of length n, made of characters '<' and '>', denoting direction of each horizontal street. If the i-th character is equal to '<', the street is directed from east to west otherwise, the street is directed from west to east. Streets are listed in order from north to south. The third line contains a string of length m, made of characters '^' and 'v', denoting direction of each vertical street. If the i-th character is equal to '^', the street is directed from south to north, otherwise the street is directed from north to south. Streets are listed in order from west to east.", "output_spec": "If the given pattern meets the mayor's criteria, print a single line containing \"YES\", otherwise print a single line containing \"NO\".", "sample_inputs": ["3 3\n><>\nv^v", "4 6\n<><>\nv^v^v^"], "sample_outputs": ["NO", "YES"], "notes": "NoteThe figure above shows street directions in the second sample test case."}, "src_uid": "eab5c84c9658eb32f5614cd2497541cf"} {"nl": {"description": "Polycarpus has postcards and photos hung in a row on the wall. He decided to put them away to the closet and hang on the wall a famous painter's picture. Polycarpus does it like that: he goes from the left to the right and removes the objects consecutively. As Polycarpus doesn't want any mix-ups to happen, he will not carry in his hands objects of two different types. In other words, Polycarpus can't carry both postcards and photos simultaneously. Sometimes he goes to the closet and puts the objects there, thus leaving his hands free. Polycarpus must put all the postcards and photos to the closet. He cannot skip objects. What minimum number of times he should visit the closet if he cannot carry more than 5 items?", "input_spec": "The only line of the input data contains a non-empty string consisting of letters \"\u0421\" and \"P\" whose length does not exceed 100 characters. If the i-th character in the string is the letter \"\u0421\", that means that the i-th object (the numbering goes from the left to the right) on Polycarpus' wall is a postcard. And if the i-th character is the letter \"P\", than the i-th object on the wall is a photo.", "output_spec": "Print the only number \u2014 the minimum number of times Polycarpus has to visit the closet.", "sample_inputs": ["CPCPCPC", "CCCCCCPPPPPP", "CCCCCCPPCPPPPPPPPPP", "CCCCCCCCCC"], "sample_outputs": ["7", "4", "6", "2"], "notes": "NoteIn the first sample Polycarpus needs to take one item to the closet 7 times.In the second sample Polycarpus can first take 3 postcards to the closet; then 3 more. He can take the 6 photos that are left in the similar way, going to the closet twice.In the third sample Polycarpus can visit the closet twice, both times carrying 3 postcards. Then he can take there 2 photos at once, then one postcard and finally, he can carry the last 10 photos if he visits the closet twice.In the fourth sample Polycarpus can visit the closet twice and take there all 10 postcards (5 items during each go)."}, "src_uid": "5257f6b50f5a610a17c35a47b3a0da11"} {"nl": {"description": "InputThe input contains two integers a1,\u2009a2 (0\u2009\u2264\u2009ai\u2009\u2264\u2009109), separated by a single space.OutputOutput a single integer.ExamplesInput3 14Output44Input27 12Output48Input100 200Output102", "input_spec": "The input contains two integers a1,\u2009a2 (0\u2009\u2264\u2009ai\u2009\u2264\u2009109), separated by a single space.", "output_spec": "Output a single integer.", "sample_inputs": ["3 14", "27 12", "100 200"], "sample_outputs": ["44", "48", "102"], "notes": null}, "src_uid": "69b219054cad0844fc4f15df463e09c0"} {"nl": {"description": "DO YOU EXPECT ME TO FIND THIS OUT?WHAT BASE AND/XOR LANGUAGE INCLUDES string?DON'T BYTE OF MORE THAN YOU CAN CHEWYOU CAN ONLY DISTORT THE LARGEST OF MATHEMATICS SO FARSAYING \"ABRACADABRA\" WITHOUT A MAGIC AND WON'T DO YOU ANY GOODTHE LAST STACK RUPTURES. ALL DIE. OH, THE EMBARRASSMENT!I HAVE NO ARRAY AND I MUST SCREAMELEMENTS MAY NOT BE STORED IN WEST HYPERSPACE", "input_spec": "The first line of input data contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200910). The second line of input data contains n space-separated integers ai (1\u2009\u2264\u2009ai\u2009\u2264\u200911).", "output_spec": "Output a single integer.", "sample_inputs": ["4\n2 5 3 1"], "sample_outputs": ["4"], "notes": null}, "src_uid": "f45c769556ac3f408f5542fa71a67d98"} {"nl": {"description": "It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits.Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.", "input_spec": "The single line contains integer y (1000\u2009\u2264\u2009y\u2009\u2264\u20099000) \u2014 the year number.", "output_spec": "Print a single integer \u2014 the minimum year number that is strictly larger than y and all it's digits are distinct. It is guaranteed that the answer exists.", "sample_inputs": ["1987", "2013"], "sample_outputs": ["2013", "2014"], "notes": null}, "src_uid": "d62dabfbec52675b7ed7b582ad133acd"} {"nl": {"description": "InputThe input contains a single integer a (10\u2009\u2264\u2009a\u2009\u2264\u2009999).OutputOutput 0 or 1.ExamplesInput13Output1Input927Output1Input48Output0", "input_spec": "The input contains a single integer a (10\u2009\u2264\u2009a\u2009\u2264\u2009999).", "output_spec": "Output 0 or 1.", "sample_inputs": ["13", "927", "48"], "sample_outputs": ["1", "1", "0"], "notes": null}, "src_uid": "78e64fdbf59c5ce89d0f0a1d0591f795"} {"nl": {"description": "Sasha is a very happy guy, that's why he is always on the move. There are $$$n$$$ cities in the country where Sasha lives. They are all located on one straight line, and for convenience, they are numbered from $$$1$$$ to $$$n$$$ in increasing order. The distance between any two adjacent cities is equal to $$$1$$$ kilometer. Since all roads in the country are directed, it's possible to reach the city $$$y$$$ from the city $$$x$$$ only if $$$x < y$$$. Once Sasha decided to go on a trip around the country and to visit all $$$n$$$ cities. He will move with the help of his car, Cheetah-2677. The tank capacity of this model is $$$v$$$ liters, and it spends exactly $$$1$$$ liter of fuel for $$$1$$$ kilometer of the way. At the beginning of the journey, the tank is empty. Sasha is located in the city with the number $$$1$$$ and wants to get to the city with the number $$$n$$$. There is a gas station in each city. In the $$$i$$$-th city, the price of $$$1$$$ liter of fuel is $$$i$$$ dollars. It is obvious that at any moment of time, the tank can contain at most $$$v$$$ liters of fuel.Sasha doesn't like to waste money, that's why he wants to know what is the minimum amount of money is needed to finish the trip if he can buy fuel in any city he wants. Help him to figure it out!", "input_spec": "The first line contains two integers $$$n$$$ and $$$v$$$ ($$$2 \\le n \\le 100$$$, $$$1 \\le v \\le 100$$$) \u00a0\u2014 the number of cities in the country and the capacity of the tank.", "output_spec": "Print one integer\u00a0\u2014 the minimum amount of money that is needed to finish the trip.", "sample_inputs": ["4 2", "7 6"], "sample_outputs": ["4", "6"], "notes": "NoteIn the first example, Sasha can buy $$$2$$$ liters for $$$2$$$ dollars ($$$1$$$ dollar per liter) in the first city, drive to the second city, spend $$$1$$$ liter of fuel on it, then buy $$$1$$$ liter for $$$2$$$ dollars in the second city and then drive to the $$$4$$$-th city. Therefore, the answer is $$$1+1+2=4$$$.In the second example, the capacity of the tank allows to fill the tank completely in the first city, and drive to the last city without stops in other cities."}, "src_uid": "f8eb96deeb82d9f011f13d7dac1e1ab7"} {"nl": {"description": "As you have noticed, there are lovely girls in Arpa\u2019s land.People in Arpa's land are numbered from 1 to n. Everyone has exactly one crush, i-th person's crush is person with the number crushi. Someday Arpa shouted Owf loudly from the top of the palace and a funny game started in Arpa's land. The rules are as follows.The game consists of rounds. Assume person x wants to start a round, he calls crushx and says: \"Oww...wwf\" (the letter w is repeated t times) and cuts off the phone immediately. If t\u2009>\u20091 then crushx calls crushcrushx and says: \"Oww...wwf\" (the letter w is repeated t\u2009-\u20091 times) and cuts off the phone immediately. The round continues until some person receives an \"Owf\" (t\u2009=\u20091). This person is called the Joon-Joon of the round. There can't be two rounds at the same time.Mehrdad has an evil plan to make the game more funny, he wants to find smallest t (t\u2009\u2265\u20091) such that for each person x, if x starts some round and y becomes the Joon-Joon of the round, then by starting from y, x would become the Joon-Joon of the round. Find such t for Mehrdad if it's possible.Some strange fact in Arpa's land is that someone can be himself's crush (i.e. crushi\u2009=\u2009i).", "input_spec": "The first line of input contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of people in Arpa's land. The second line contains n integers, i-th of them is crushi (1\u2009\u2264\u2009crushi\u2009\u2264\u2009n)\u00a0\u2014 the number of i-th person's crush.", "output_spec": "If there is no t satisfying the condition, print -1. Otherwise print such smallest t.", "sample_inputs": ["4\n2 3 1 4", "4\n4 4 4 4", "4\n2 1 4 3"], "sample_outputs": ["3", "-1", "1"], "notes": "NoteIn the first sample suppose t\u2009=\u20093. If the first person starts some round:The first person calls the second person and says \"Owwwf\", then the second person calls the third person and says \"Owwf\", then the third person calls the first person and says \"Owf\", so the first person becomes Joon-Joon of the round. So the condition is satisfied if x is 1.The process is similar for the second and the third person.If the fourth person starts some round:The fourth person calls himself and says \"Owwwf\", then he calls himself again and says \"Owwf\", then he calls himself for another time and says \"Owf\", so the fourth person becomes Joon-Joon of the round. So the condition is satisfied when x is 4.In the last example if the first person starts a round, then the second person becomes the Joon-Joon, and vice versa."}, "src_uid": "149221131a978298ac56b58438df46c9"} {"nl": {"description": "Let's define a split of $$$n$$$ as a nonincreasing sequence of positive integers, the sum of which is $$$n$$$. For example, the following sequences are splits of $$$8$$$: $$$[4, 4]$$$, $$$[3, 3, 2]$$$, $$$[2, 2, 1, 1, 1, 1]$$$, $$$[5, 2, 1]$$$.The following sequences aren't splits of $$$8$$$: $$$[1, 7]$$$, $$$[5, 4]$$$, $$$[11, -3]$$$, $$$[1, 1, 4, 1, 1]$$$.The weight of a split is the number of elements in the split that are equal to the first element. For example, the weight of the split $$$[1, 1, 1, 1, 1]$$$ is $$$5$$$, the weight of the split $$$[5, 5, 3, 3, 3]$$$ is $$$2$$$ and the weight of the split $$$[9]$$$ equals $$$1$$$.For a given $$$n$$$, find out the number of different weights of its splits.", "input_spec": "The first line contains one integer $$$n$$$ ($$$1 \\leq n \\leq 10^9$$$).", "output_spec": "Output one integer\u00a0\u2014 the answer to the problem.", "sample_inputs": ["7", "8", "9"], "sample_outputs": ["4", "5", "5"], "notes": "NoteIn the first sample, there are following possible weights of splits of $$$7$$$:Weight 1: [$$$\\textbf 7$$$] Weight 2: [$$$\\textbf 3$$$, $$$\\textbf 3$$$, 1] Weight 3: [$$$\\textbf 2$$$, $$$\\textbf 2$$$, $$$\\textbf 2$$$, 1] Weight 7: [$$$\\textbf 1$$$, $$$\\textbf 1$$$, $$$\\textbf 1$$$, $$$\\textbf 1$$$, $$$\\textbf 1$$$, $$$\\textbf 1$$$, $$$\\textbf 1$$$]"}, "src_uid": "5551742f6ab39fdac3930d866f439e3e"} {"nl": {"description": "Dante is engaged in a fight with \"The Savior\". Before he can fight it with his sword, he needs to break its shields. He has two guns, Ebony and Ivory, each of them is able to perform any non-negative number of shots.For every bullet that hits the shield, Ebony deals a units of damage while Ivory deals b units of damage. In order to break the shield Dante has to deal exactly c units of damage. Find out if this is possible.", "input_spec": "The first line of the input contains three integers a, b, c (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009100,\u20091\u2009\u2264\u2009c\u2009\u2264\u200910\u2009000)\u00a0\u2014 the number of units of damage dealt by Ebony gun and Ivory gun, and the total number of damage required to break the shield, respectively.", "output_spec": "Print \"Yes\" (without quotes) if Dante can deal exactly c damage to the shield and \"No\" (without quotes) otherwise.", "sample_inputs": ["4 6 15", "3 2 7", "6 11 6"], "sample_outputs": ["No", "Yes", "Yes"], "notes": "NoteIn the second sample, Dante can fire 1 bullet from Ebony and 2 from Ivory to deal exactly 1\u00b73\u2009+\u20092\u00b72\u2009=\u20097 damage. In the third sample, Dante can fire 1 bullet from ebony and no bullets from ivory to do 1\u00b76\u2009+\u20090\u00b711\u2009=\u20096 damage. "}, "src_uid": "e66ecb0021a34042885442b336f3d911"} {"nl": {"description": "One day Vasya heard a story: \"In the city of High Bertown a bus number 62 left from the bus station. It had n grown-ups and m kids...\"The latter events happen to be of no importance to us. Vasya is an accountant and he loves counting money. So he wondered what maximum and minimum sum of money these passengers could have paid for the ride.The bus fare equals one berland ruble in High Bertown. However, not everything is that easy \u2014 no more than one child can ride for free with each grown-up passenger. That means that a grown-up passenger who rides with his k (k\u2009>\u20090) children, pays overall k rubles: a ticket for himself and (k\u2009-\u20091) tickets for his children. Also, a grown-up can ride without children, in this case he only pays one ruble.We know that in High Bertown children can't ride in a bus unaccompanied by grown-ups.Help Vasya count the minimum and the maximum sum in Berland rubles, that all passengers of this bus could have paid in total.", "input_spec": "The input file consists of a single line containing two space-separated numbers n and m (0\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009105) \u2014 the number of the grown-ups and the number of the children in the bus, correspondingly.", "output_spec": "If n grown-ups and m children could have ridden in the bus, then print on a single line two space-separated integers \u2014 the minimum and the maximum possible total bus fare, correspondingly. Otherwise, print \"Impossible\" (without the quotes).", "sample_inputs": ["1 2", "0 5", "2 2"], "sample_outputs": ["2 2", "Impossible", "2 3"], "notes": "NoteIn the first sample a grown-up rides with two children and pays two rubles.In the second sample there are only children in the bus, so the situation is impossible. In the third sample there are two cases: Each of the two grown-ups rides with one children and pays one ruble for the tickets. In this case the passengers pay two rubles in total. One of the grown-ups ride with two children's and pays two rubles, the another one rides alone and pays one ruble for himself. So, they pay three rubles in total. "}, "src_uid": "1e865eda33afe09302bda9077d613763"} {"nl": {"description": "Cucumber boy is fan of Kyubeat, a famous music game.Kyubeat has 16 panels for playing arranged in 4\u2009\u00d7\u20094 table. When a panel lights up, he has to press that panel.Each panel has a timing to press (the preffered time when a player should press it), and Cucumber boy is able to press at most k panels in a time with his one hand. Cucumber boy is trying to press all panels in perfect timing, that is he wants to press each panel exactly in its preffered time. If he cannot press the panels with his two hands in perfect timing, his challenge to press all the panels in perfect timing will fail.You are given one scene of Kyubeat's panel from the music Cucumber boy is trying. Tell him is he able to press all the panels in perfect timing.", "input_spec": "The first line contains a single integer k (1\u2009\u2264\u2009k\u2009\u2264\u20095) \u2014 the number of panels Cucumber boy can press with his one hand. Next 4 lines contain 4 characters each (digits from 1 to 9, or period) \u2014 table of panels. If a digit i was written on the panel, it means the boy has to press that panel in time i. If period was written on the panel, he doesn't have to press that panel.", "output_spec": "Output \"YES\" (without quotes), if he is able to press all the panels in perfect timing. If not, output \"NO\" (without quotes).", "sample_inputs": ["1\n.135\n1247\n3468\n5789", "5\n..1.\n1111\n..1.\n..1.", "1\n....\n12.1\n.2..\n.2.."], "sample_outputs": ["YES", "YES", "NO"], "notes": "NoteIn the third sample boy cannot press all panels in perfect timing. He can press all the panels in timing in time 1, but he cannot press the panels in time 2 in timing with his two hands."}, "src_uid": "5fdaf8ee7763cb5815f49c0c38398f16"} {"nl": {"description": "Santa Claus is the first who came to the Christmas Olympiad, and he is going to be the first to take his place at a desk! In the classroom there are n lanes of m desks each, and there are two working places at each of the desks. The lanes are numbered from 1 to n from the left to the right, the desks in a lane are numbered from 1 to m starting from the blackboard. Note that the lanes go perpendicularly to the blackboard, not along it (see picture).The organizers numbered all the working places from 1 to 2nm. The places are numbered by lanes (i.\u00a0e. all the places of the first lane go first, then all the places of the second lane, and so on), in a lane the places are numbered starting from the nearest to the blackboard (i.\u00a0e. from the first desk in the lane), at each desk, the place on the left is numbered before the place on the right. The picture illustrates the first and the second samples. Santa Clause knows that his place has number k. Help him to determine at which lane at which desk he should sit, and whether his place is on the left or on the right!", "input_spec": "The only line contains three integers n, m and k (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u200910\u2009000, 1\u2009\u2264\u2009k\u2009\u2264\u20092nm)\u00a0\u2014 the number of lanes, the number of desks in each lane and the number of Santa Claus' place.", "output_spec": "Print two integers: the number of lane r, the number of desk d, and a character s, which stands for the side of the desk Santa Claus. The character s should be \"L\", if Santa Clause should sit on the left, and \"R\" if his place is on the right.", "sample_inputs": ["4 3 9", "4 3 24", "2 4 4"], "sample_outputs": ["2 2 L", "4 3 R", "1 2 R"], "notes": "NoteThe first and the second samples are shown on the picture. The green place corresponds to Santa Claus' place in the first example, the blue place corresponds to Santa Claus' place in the second example.In the third sample there are two lanes with four desks in each, and Santa Claus has the fourth place. Thus, his place is in the first lane at the second desk on the right."}, "src_uid": "d6929926b44c2d5b1a8e6b7f965ca1bb"} {"nl": {"description": " Walking through the streets of Marshmallow City, Slastyona have spotted some merchants selling a kind of useless toy which is very popular nowadays\u00a0\u2013 caramel spinner! Wanting to join the craze, she has immediately bought the strange contraption.Spinners in Sweetland have the form of V-shaped pieces of caramel. Each spinner can, well, spin around an invisible magic axis. At a specific point in time, a spinner can take 4 positions shown below (each one rotated 90 degrees relative to the previous, with the fourth one followed by the first one): After the spinner was spun, it starts its rotation, which is described by a following algorithm: the spinner maintains its position for a second then majestically switches to the next position in clockwise or counter-clockwise order, depending on the direction the spinner was spun in.Slastyona managed to have spinner rotating for exactly n seconds. Being fascinated by elegance of the process, she completely forgot the direction the spinner was spun in! Lucky for her, she managed to recall the starting position, and wants to deduct the direction given the information she knows. Help her do this.", "input_spec": "There are two characters in the first string\u00a0\u2013 the starting and the ending position of a spinner. The position is encoded with one of the following characters: v (ASCII code 118, lowercase v), < (ASCII code 60), ^ (ASCII code 94) or > (ASCII code 62) (see the picture above for reference). Characters are separated by a single space. In the second strings, a single number n is given (0\u2009\u2264\u2009n\u2009\u2264\u2009109)\u00a0\u2013 the duration of the rotation. It is guaranteed that the ending position of a spinner is a result of a n second spin in any of the directions, assuming the given starting position.", "output_spec": "Output cw, if the direction is clockwise, ccw\u00a0\u2013 if counter-clockwise, and undefined otherwise.", "sample_inputs": ["^ >\n1", "< ^\n3", "^ v\n6"], "sample_outputs": ["cw", "ccw", "undefined"], "notes": null}, "src_uid": "fb99ef80fd21f98674fe85d80a2e5298"} {"nl": {"description": "Pasha has two hamsters: Arthur and Alexander. Pasha put n apples in front of them. Pasha knows which apples Arthur likes. Similarly, Pasha knows which apples Alexander likes. Pasha doesn't want any conflict between the hamsters (as they may like the same apple), so he decided to distribute the apples between the hamsters on his own. He is going to give some apples to Arthur and some apples to Alexander. It doesn't matter how many apples each hamster gets but it is important that each hamster gets only the apples he likes. It is possible that somebody doesn't get any apples.Help Pasha distribute all the apples between the hamsters. Note that Pasha wants to distribute all the apples, not just some of them.", "input_spec": "The first line contains integers n, a, b (1\u2009\u2264\u2009n\u2009\u2264\u2009100;\u00a01\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009n) \u2014 the number of apples Pasha has, the number of apples Arthur likes and the number of apples Alexander likes, correspondingly. The next line contains a distinct integers \u2014 the numbers of the apples Arthur likes. The next line contains b distinct integers \u2014 the numbers of the apples Alexander likes. Assume that the apples are numbered from 1 to n. The input is such that the answer exists.", "output_spec": "Print n characters, each of them equals either 1 or 2. If the i-h character equals 1, then the i-th apple should be given to Arthur, otherwise it should be given to Alexander. If there are multiple correct answers, you are allowed to print any of them.", "sample_inputs": ["4 2 3\n1 2\n2 3 4", "5 5 2\n3 4 1 2 5\n2 3"], "sample_outputs": ["1 1 2 2", "1 1 1 1 1"], "notes": null}, "src_uid": "a35a27754c9c095c6f1b2d4adccbfe93"} {"nl": {"description": "Sereja showed an interesting game to his friends. The game goes like that. Initially, there is a table with an empty cup and n water mugs on it. Then all players take turns to move. During a move, a player takes a non-empty mug of water and pours all water from it into the cup. If the cup overfills, then we assume that this player lost.As soon as Sereja's friends heard of the game, they wanted to play it. Sereja, on the other hand, wanted to find out whether his friends can play the game in such a way that there are no losers. You are given the volumes of all mugs and the cup. Also, you know that Sereja has (n\u2009-\u20091) friends. Determine if Sereja's friends can play the game so that nobody loses.", "input_spec": "The first line contains integers n and s (2\u2009\u2264\u2009n\u2009\u2264\u2009100;\u00a01\u2009\u2264\u2009s\u2009\u2264\u20091000) \u2014 the number of mugs and the volume of the cup. The next line contains n integers a1, a2, ..., an (1\u2009\u2264\u2009ai\u2009\u2264\u200910). Number ai means the volume of the i-th mug.", "output_spec": "In a single line, print \"YES\" (without the quotes) if his friends can play in the described manner, and \"NO\" (without the quotes) otherwise.", "sample_inputs": ["3 4\n1 1 1", "3 4\n3 1 3", "3 4\n4 4 4"], "sample_outputs": ["YES", "YES", "NO"], "notes": null}, "src_uid": "496baae594b32c5ffda35b896ebde629"} {"nl": {"description": "Victor tries to write his own text editor, with word correction included. However, the rules of word correction are really strange.Victor thinks that if a word contains two consecutive vowels, then it's kinda weird and it needs to be replaced. So the word corrector works in such a way: as long as there are two consecutive vowels in the word, it deletes the first vowel in a word such that there is another vowel right before it. If there are no two consecutive vowels in the word, it is considered to be correct.You are given a word s. Can you predict what will it become after correction?In this problem letters a, e, i, o, u and y are considered to be vowels.", "input_spec": "The first line contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of letters in word s before the correction. The second line contains a string s consisting of exactly n lowercase Latin letters \u2014 the word before the correction.", "output_spec": "Output the word s after the correction.", "sample_inputs": ["5\nweird", "4\nword", "5\naaeaa"], "sample_outputs": ["werd", "word", "a"], "notes": "NoteExplanations of the examples: There is only one replace: weird werd; No replace needed since there are no two consecutive vowels; aaeaa aeaa aaa aa a. "}, "src_uid": "63a4a5795d94f698b0912bb8d4cdf690"} {"nl": {"description": "Nowadays all circuses in Berland have a round arena with diameter 13 meters, but in the past things were different.In Ancient Berland arenas in circuses were shaped as a regular (equiangular) polygon, the size and the number of angles could vary from one circus to another. In each corner of the arena there was a special pillar, and the rope strung between the pillars marked the arena edges.Recently the scientists from Berland have discovered the remains of the ancient circus arena. They found only three pillars, the others were destroyed by the time.You are given the coordinates of these three pillars. Find out what is the smallest area that the arena could have.", "input_spec": "The input file consists of three lines, each of them contains a pair of numbers \u2013\u2013 coordinates of the pillar. Any coordinate doesn't exceed 1000 by absolute value, and is given with at most six digits after decimal point.", "output_spec": "Output the smallest possible area of the ancient arena. This number should be accurate to at least 6 digits after the decimal point. It's guaranteed that the number of angles in the optimal polygon is not larger than 100.", "sample_inputs": ["0.000000 0.000000\n1.000000 1.000000\n0.000000 1.000000"], "sample_outputs": ["1.00000000"], "notes": null}, "src_uid": "980f4094b3cfc647d6f74e840b1bfb62"} {"nl": {"description": "A magic number is a number formed by concatenation of numbers 1, 14 and 144. We can use each of these numbers any number of times. Therefore 14144, 141414 and 1411 are magic numbers but 1444, 514 and 414 are not.You're given a number. Determine if it is a magic number or not.", "input_spec": "The first line of input contains an integer n, (1\u2009\u2264\u2009n\u2009\u2264\u2009109). This number doesn't contain leading zeros.", "output_spec": "Print \"YES\" if n is a magic number or print \"NO\" if it's not.", "sample_inputs": ["114114", "1111", "441231"], "sample_outputs": ["YES", "YES", "NO"], "notes": null}, "src_uid": "3153cfddae27fbd817caaf2cb7a6a4b5"} {"nl": {"description": "Gerald is setting the New Year table. The table has the form of a circle; its radius equals R. Gerald invited many guests and is concerned whether the table has enough space for plates for all those guests. Consider all plates to be round and have the same radii that equal r. Each plate must be completely inside the table and must touch the edge of the table. Of course, the plates must not intersect, but they can touch each other. Help Gerald determine whether the table is large enough for n plates.", "input_spec": "The first line contains three integers n, R and r (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009r,\u2009R\u2009\u2264\u20091000) \u2014 the number of plates, the radius of the table and the plates' radius.", "output_spec": "Print \"YES\" (without the quotes) if it is possible to place n plates on the table by the rules given above. If it is impossible, print \"NO\". Remember, that each plate must touch the edge of the table. ", "sample_inputs": ["4 10 4", "5 10 4", "1 10 10"], "sample_outputs": ["YES", "NO", "YES"], "notes": "NoteThe possible arrangement of the plates for the first sample is: "}, "src_uid": "2fedbfccd893cde8f2fab2b5bf6fb6f6"} {"nl": {"description": "You are given a positive integer $$$n$$$, written without leading zeroes (for example, the number 04 is incorrect). In one operation you can delete any digit of the given integer so that the result remains a positive integer without leading zeros.Determine the minimum number of operations that you need to consistently apply to the given integer $$$n$$$ to make from it the square of some positive integer or report that it is impossible.An integer $$$x$$$ is the square of some positive integer if and only if $$$x=y^2$$$ for some positive integer $$$y$$$.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$1 \\le n \\le 2 \\cdot 10^{9}$$$). The number is given without leading zeroes.", "output_spec": "If it is impossible to make the square of some positive integer from $$$n$$$, print -1. In the other case, print the minimal number of operations required to do it.", "sample_inputs": ["8314", "625", "333"], "sample_outputs": ["2", "0", "-1"], "notes": "NoteIn the first example we should delete from $$$8314$$$ the digits $$$3$$$ and $$$4$$$. After that $$$8314$$$ become equals to $$$81$$$, which is the square of the integer $$$9$$$.In the second example the given $$$625$$$ is the square of the integer $$$25$$$, so you should not delete anything. In the third example it is impossible to make the square from $$$333$$$, so the answer is -1."}, "src_uid": "fa4b1de79708329bb85437e1413e13df"} {"nl": {"description": "Mishka got a six-faced dice. It has integer numbers from $$$2$$$ to $$$7$$$ written on its faces (all numbers on faces are different, so this is an almost usual dice).Mishka wants to get exactly $$$x$$$ points by rolling his dice. The number of points is just a sum of numbers written at the topmost face of the dice for all the rolls Mishka makes.Mishka doesn't really care about the number of rolls, so he just wants to know any number of rolls he can make to be able to get exactly $$$x$$$ points for them. Mishka is very lucky, so if the probability to get $$$x$$$ points with chosen number of rolls is non-zero, he will be able to roll the dice in such a way. Your task is to print this number. It is guaranteed that at least one answer exists.Mishka is also very curious about different number of points to score so you have to answer $$$t$$$ independent queries.", "input_spec": "The first line of the input contains one integer $$$t$$$ ($$$1 \\le t \\le 100$$$) \u2014 the number of queries. Each of the next $$$t$$$ lines contains one integer each. The $$$i$$$-th line contains one integer $$$x_i$$$ ($$$2 \\le x_i \\le 100$$$) \u2014 the number of points Mishka wants to get.", "output_spec": "Print $$$t$$$ lines. In the $$$i$$$-th line print the answer to the $$$i$$$-th query (i.e. any number of rolls Mishka can make to be able to get exactly $$$x_i$$$ points for them). It is guaranteed that at least one answer exists.", "sample_inputs": ["4\n2\n13\n37\n100"], "sample_outputs": ["1\n3\n8\n27"], "notes": "NoteIn the first query Mishka can roll a dice once and get $$$2$$$ points.In the second query Mishka can roll a dice $$$3$$$ times and get points $$$5$$$, $$$5$$$ and $$$3$$$ (for example).In the third query Mishka can roll a dice $$$8$$$ times and get $$$5$$$ points $$$7$$$ times and $$$2$$$ points with the remaining roll.In the fourth query Mishka can roll a dice $$$27$$$ times and get $$$2$$$ points $$$11$$$ times, $$$3$$$ points $$$6$$$ times and $$$6$$$ points $$$10$$$ times."}, "src_uid": "a661b6ce166fe4b2bbfd0ace56a7dc2c"} {"nl": {"description": "Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.Photo can be represented as a matrix sized n\u2009\u00d7\u2009m, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors: 'C' (cyan) 'M' (magenta) 'Y' (yellow) 'W' (white) 'G' (grey) 'B' (black) The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.", "input_spec": "The first line of the input contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100)\u00a0\u2014 the number of photo pixel matrix rows and columns respectively. Then n lines describing matrix rows follow. Each of them contains m space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.", "output_spec": "Print the \"#Black&White\" (without quotes), if the photo is black-and-white and \"#Color\" (without quotes), if it is colored, in the only line.", "sample_inputs": ["2 2\nC M\nY Y", "3 2\nW W\nW W\nB B", "1 1\nW"], "sample_outputs": ["#Color", "#Black&White", "#Black&White"], "notes": null}, "src_uid": "19c311c02380f9a73cd477e4fde27454"} {"nl": {"description": "So, the New Year holidays are over. Santa Claus and his colleagues can take a rest and have guests at last. When two \"New Year and Christmas Men\" meet, thear assistants cut out of cardboard the letters from the guest's name and the host's name in honor of this event. Then the hung the letters above the main entrance. One night, when everyone went to bed, someone took all the letters of our characters' names. Then he may have shuffled the letters and put them in one pile in front of the door.The next morning it was impossible to find the culprit who had made the disorder. But everybody wondered whether it is possible to restore the names of the host and his guests from the letters lying at the door? That is, we need to verify that there are no extra letters, and that nobody will need to cut more letters.Help the \"New Year and Christmas Men\" and their friends to cope with this problem. You are given both inscriptions that hung over the front door the previous night, and a pile of letters that were found at the front door next morning.", "input_spec": "The input file consists of three lines: the first line contains the guest's name, the second line contains the name of the residence host and the third line contains letters in a pile that were found at the door in the morning. All lines are not empty and contain only uppercase Latin letters. The length of each line does not exceed 100.", "output_spec": "Print \"YES\" without the quotes, if the letters in the pile could be permuted to make the names of the \"New Year and Christmas Men\". Otherwise, print \"NO\" without the quotes.", "sample_inputs": ["SANTACLAUS\nDEDMOROZ\nSANTAMOROZDEDCLAUS", "PAPAINOEL\nJOULUPUKKI\nJOULNAPAOILELUPUKKI", "BABBONATALE\nFATHERCHRISTMAS\nBABCHRISTMASBONATALLEFATHER"], "sample_outputs": ["YES", "NO", "NO"], "notes": "NoteIn the first sample the letters written in the last line can be used to write the names and there won't be any extra letters left.In the second sample letter \"P\" is missing from the pile and there's an extra letter \"L\".In the third sample there's an extra letter \"L\"."}, "src_uid": "b6456a39d38fabcd25267793ed94d90c"} {"nl": {"description": "Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.Yakko thrown a die and got Y points, Wakko \u2014 W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.", "input_spec": "The only line of the input file contains two natural numbers Y and W \u2014 the results of Yakko's and Wakko's die rolls.", "output_spec": "Output the required probability in the form of irreducible fraction in format \u00abA/B\u00bb, where A \u2014 the numerator, and B \u2014 the denominator. If the required probability equals to zero, output \u00ab0/1\u00bb. If the required probability equals to 1, output \u00ab1/1\u00bb. ", "sample_inputs": ["4 2"], "sample_outputs": ["1/2"], "notes": "NoteDot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points."}, "src_uid": "f97eb4ecffb6cbc8679f0c621fd59414"} {"nl": {"description": "JATC's math teacher always gives the class some interesting math problems so that they don't get bored. Today the problem is as follows. Given an integer $$$n$$$, you can perform the following operations zero or more times: mul $$$x$$$: multiplies $$$n$$$ by $$$x$$$ (where $$$x$$$ is an arbitrary positive integer). sqrt: replaces $$$n$$$ with $$$\\sqrt{n}$$$ (to apply this operation, $$$\\sqrt{n}$$$ must be an integer). You can perform these operations as many times as you like. What is the minimum value of $$$n$$$, that can be achieved and what is the minimum number of operations, to achieve that minimum value?Apparently, no one in the class knows the answer to this problem, maybe you can help them?", "input_spec": "The only line of the input contains a single integer $$$n$$$ ($$$1 \\le n \\le 10^6$$$)\u00a0\u2014 the initial number.", "output_spec": "Print two integers: the minimum integer $$$n$$$ that can be achieved using the described operations and the minimum number of operations required.", "sample_inputs": ["20", "5184"], "sample_outputs": ["10 2", "6 4"], "notes": "NoteIn the first example, you can apply the operation mul $$$5$$$ to get $$$100$$$ and then sqrt to get $$$10$$$.In the second example, you can first apply sqrt to get $$$72$$$, then mul $$$18$$$ to get $$$1296$$$ and finally two more sqrt and you get $$$6$$$.Note, that even if the initial value of $$$n$$$ is less or equal $$$10^6$$$, it can still become greater than $$$10^6$$$ after applying one or more operations."}, "src_uid": "212cda3d9d611cd45332bb10b80f0b56"} {"nl": {"description": "Modern text editors usually show some information regarding the document being edited. For example, the number of words, the number of pages, or the number of characters.In this problem you should implement the similar functionality.You are given a string which only consists of: uppercase and lowercase English letters, underscore symbols (they are used as separators), parentheses (both opening and closing). It is guaranteed that each opening parenthesis has a succeeding closing parenthesis. Similarly, each closing parentheses has a preceding opening parentheses matching it. For each pair of matching parentheses there are no other parenthesis between them. In other words, each parenthesis in the string belongs to a matching \"opening-closing\" pair, and such pairs can't be nested.For example, the following string is valid: \"_Hello_Vasya(and_Petya)__bye_(and_OK)\".Word is a maximal sequence of consecutive letters, i.e. such sequence that the first character to the left and the first character to the right of it is an underscore, a parenthesis, or it just does not exist. For example, the string above consists of seven words: \"Hello\", \"Vasya\", \"and\", \"Petya\", \"bye\", \"and\" and \"OK\". Write a program that finds: the length of the longest word outside the parentheses (print 0, if there is no word outside the parentheses), the number of words inside the parentheses (print 0, if there is no word inside the parentheses). ", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009255)\u00a0\u2014 the length of the given string. The second line contains the string consisting of only lowercase and uppercase English letters, parentheses and underscore symbols. ", "output_spec": "Print two space-separated integers: the length of the longest word outside the parentheses (print 0, if there is no word outside the parentheses), the number of words inside the parentheses (print 0, if there is no word inside the parentheses). ", "sample_inputs": ["37\n_Hello_Vasya(and_Petya)__bye_(and_OK)", "37\n_a_(_b___c)__de_f(g_)__h__i(j_k_l)m__", "27\n(LoooonG)__shOrt__(LoooonG)", "5\n(___)"], "sample_outputs": ["5 4", "2 6", "5 2", "0 0"], "notes": "NoteIn the first sample, the words \"Hello\", \"Vasya\" and \"bye\" are outside any of the parentheses, and the words \"and\", \"Petya\", \"and\" and \"OK\" are inside. Note, that the word \"and\" is given twice and you should count it twice in the answer."}, "src_uid": "fc86df4931e787fa3a1a40e2aecf0b92"} {"nl": {"description": "Karl likes Codeforces and subsequences. He wants to find a string of lowercase English letters that contains at least $$$k$$$ subsequences codeforces. Out of all possible strings, Karl wants to find a shortest one.Formally, a codeforces subsequence of a string $$$s$$$ is a subset of ten characters of $$$s$$$ that read codeforces from left to right. For example, codeforces contains codeforces a single time, while codeforcesisawesome contains codeforces four times: codeforcesisawesome, codeforcesisawesome, codeforcesisawesome, codeforcesisawesome.Help Karl find any shortest string that contains at least $$$k$$$ codeforces subsequences.", "input_spec": "The only line contains a single integer $$$k$$$ ($$$1 \\leq k \\leq 10^{16})$$$.", "output_spec": "Print a shortest string of lowercase English letters that contains at least $$$k$$$ codeforces subsequences. If there are several such strings, print any of them.", "sample_inputs": ["1", "3"], "sample_outputs": ["codeforces", "codeforcesss"], "notes": null}, "src_uid": "8001a7570766cadcc538217e941b3031"} {"nl": {"description": "You are given an integer number $$$n$$$. The following algorithm is applied to it: if $$$n = 0$$$, then end algorithm; find the smallest prime divisor $$$d$$$ of $$$n$$$; subtract $$$d$$$ from $$$n$$$ and go to step $$$1$$$. Determine the number of subtrations the algorithm will make.", "input_spec": "The only line contains a single integer $$$n$$$ ($$$2 \\le n \\le 10^{10}$$$).", "output_spec": "Print a single integer \u2014 the number of subtractions the algorithm will make.", "sample_inputs": ["5", "4"], "sample_outputs": ["1", "2"], "notes": "NoteIn the first example $$$5$$$ is the smallest prime divisor, thus it gets subtracted right away to make a $$$0$$$.In the second example $$$2$$$ is the smallest prime divisor at both steps."}, "src_uid": "a1e80ddd97026835a84f91bac8eb21e6"} {"nl": {"description": "Fox Ciel has n boxes in her room. They have the same size and weight, but they might have different strength. The i-th box can hold at most xi boxes on its top (we'll call xi the strength of the box). Since all the boxes have the same size, Ciel cannot put more than one box directly on the top of some box. For example, imagine Ciel has three boxes: the first has strength 2, the second has strength 1 and the third has strength 1. She cannot put the second and the third box simultaneously directly on the top of the first one. But she can put the second box directly on the top of the first one, and then the third box directly on the top of the second one. We will call such a construction of boxes a pile.Fox Ciel wants to construct piles from all the boxes. Each pile will contain some boxes from top to bottom, and there cannot be more than xi boxes on the top of i-th box. What is the minimal number of piles she needs to construct?", "input_spec": "The first line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). The next line contains n integers x1,\u2009x2,\u2009...,\u2009xn (0\u2009\u2264\u2009xi\u2009\u2264\u2009100).", "output_spec": "Output a single integer \u2014 the minimal possible number of piles.", "sample_inputs": ["3\n0 0 10", "5\n0 1 2 3 4", "4\n0 0 0 0", "9\n0 1 0 2 0 1 1 2 10"], "sample_outputs": ["2", "1", "4", "3"], "notes": "NoteIn example 1, one optimal way is to build 2 piles: the first pile contains boxes 1 and 3 (from top to bottom), the second pile contains only box 2.In example 2, we can build only 1 pile that contains boxes 1, 2, 3, 4, 5 (from top to bottom)."}, "src_uid": "7c710ae68f27f140e7e03564492f7214"} {"nl": {"description": "InputThe input contains a single integer a (1\u2009\u2264\u2009a\u2009\u2264\u200930).OutputOutput a single integer.ExampleInput3Output27", "input_spec": "The input contains a single integer a (1\u2009\u2264\u2009a\u2009\u2264\u200930).", "output_spec": "Output a single integer.", "sample_inputs": ["3"], "sample_outputs": ["27"], "notes": null}, "src_uid": "bf65a25185e9ea5b71e853723b838b04"} {"nl": {"description": "Dawid has four bags of candies. The $$$i$$$-th of them contains $$$a_i$$$ candies. Also, Dawid has two friends. He wants to give each bag to one of his two friends. Is it possible to distribute the bags in such a way that each friend receives the same amount of candies in total?Note, that you can't keep bags for yourself or throw them away, each bag should be given to one of the friends.", "input_spec": "The only line contains four integers $$$a_1$$$, $$$a_2$$$, $$$a_3$$$ and $$$a_4$$$ ($$$1 \\leq a_i \\leq 100$$$) \u2014 the numbers of candies in each bag.", "output_spec": "Output YES if it's possible to give the bags to Dawid's friends so that both friends receive the same amount of candies, or NO otherwise. Each character can be printed in any case (either uppercase or lowercase).", "sample_inputs": ["1 7 11 5", "7 3 2 5"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample test, Dawid can give the first and the third bag to the first friend, and the second and the fourth bag to the second friend. This way, each friend will receive $$$12$$$ candies.In the second sample test, it's impossible to distribute the bags."}, "src_uid": "5a623c49cf7effacfb58bc82f8eaff37"} {"nl": {"description": "Luba is surfing the Internet. She currently has n opened tabs in her browser, indexed from 1 to n from left to right. The mouse cursor is currently located at the pos-th tab. Luba needs to use the tabs with indices from l to r (inclusive) for her studies, and she wants to close all the tabs that don't belong to this segment as fast as possible.Each second Luba can either try moving the cursor to the left or to the right (if the cursor is currently at the tab i, then she can move it to the tab max(i\u2009-\u20091,\u2009a) or to the tab min(i\u2009+\u20091,\u2009b)) or try closing all the tabs to the left or to the right of the cursor (if the cursor is currently at the tab i, she can close all the tabs with indices from segment [a,\u2009i\u2009-\u20091] or from segment [i\u2009+\u20091,\u2009b]). In the aforementioned expressions a and b denote the minimum and maximum index of an unclosed tab, respectively. For example, if there were 7 tabs initially and tabs 1, 2 and 7 are closed, then a\u2009=\u20093, b\u2009=\u20096.What is the minimum number of seconds Luba has to spend in order to leave only the tabs with initial indices from l to r inclusive opened?", "input_spec": "The only line of input contains four integer numbers n, pos, l, r (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009pos\u2009\u2264\u2009n, 1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u2009n) \u2014 the number of the tabs, the cursor position and the segment which Luba needs to leave opened.", "output_spec": "Print one integer equal to the minimum number of seconds required to close all the tabs outside the segment [l,\u2009r].", "sample_inputs": ["6 3 2 4", "6 3 1 3", "5 2 1 5"], "sample_outputs": ["5", "1", "0"], "notes": "NoteIn the first test Luba can do the following operations: shift the mouse cursor to the tab 2, close all the tabs to the left of it, shift the mouse cursor to the tab 3, then to the tab 4, and then close all the tabs to the right of it.In the second test she only needs to close all the tabs to the right of the current position of the cursor.In the third test Luba doesn't need to do anything."}, "src_uid": "5deaac7bd3afedee9b10e61997940f78"} {"nl": {"description": "To celebrate the opening of the Winter Computer School the organizers decided to buy in n liters of cola. However, an unexpected difficulty occurred in the shop: it turned out that cola is sold in bottles 0.5, 1 and 2 liters in volume. At that, there are exactly a bottles 0.5 in volume, b one-liter bottles and c of two-liter ones. The organizers have enough money to buy any amount of cola. What did cause the heated arguments was how many bottles of every kind to buy, as this question is pivotal for the distribution of cola among the participants (and organizers as well).Thus, while the organizers are having the argument, discussing different variants of buying cola, the Winter School can't start. Your task is to count the number of all the possible ways to buy exactly n liters of cola and persuade the organizers that this number is too large, and if they keep on arguing, then the Winter Computer School will have to be organized in summer.All the bottles of cola are considered indistinguishable, i.e. two variants of buying are different from each other only if they differ in the number of bottles of at least one kind.", "input_spec": "The first line contains four integers \u2014 n, a, b, c (1\u2009\u2264\u2009n\u2009\u2264\u200910000, 0\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u20095000).", "output_spec": "Print the unique number \u2014 the solution to the problem. If it is impossible to buy exactly n liters of cola, print 0. ", "sample_inputs": ["10 5 5 5", "3 0 0 2"], "sample_outputs": ["9", "0"], "notes": null}, "src_uid": "474e527d41040446a18186596e8bdd83"} {"nl": {"description": "One day, the Grasshopper was jumping on the lawn and found a piece of paper with a string. Grasshopper became interested what is the minimum jump ability he should have in order to be able to reach the far end of the string, jumping only on vowels of the English alphabet. Jump ability is the maximum possible length of his jump. Formally, consider that at the begginning the Grasshopper is located directly in front of the leftmost character of the string. His goal is to reach the position right after the rightmost character of the string. In one jump the Grasshopper could jump to the right any distance from 1 to the value of his jump ability. The picture corresponds to the first example. The following letters are vowels: 'A', 'E', 'I', 'O', 'U' and 'Y'.", "input_spec": "The first line contains non-empty string consisting of capital English letters. It is guaranteed that the length of the string does not exceed 100. ", "output_spec": "Print single integer a\u00a0\u2014 the minimum jump ability of the Grasshopper (in the number of symbols) that is needed to overcome the given string, jumping only on vowels.", "sample_inputs": ["ABABBBACFEYUKOTT", "AAA"], "sample_outputs": ["4", "1"], "notes": null}, "src_uid": "1fc7e939cdeb015fe31f3cf1c0982fee"} {"nl": {"description": "You are given an alphabet consisting of n letters, your task is to make a string of the maximum possible length so that the following conditions are satisfied: the i-th letter occurs in the string no more than ai times; the number of occurrences of each letter in the string must be distinct for all the letters that occurred in the string at least once. ", "input_spec": "The first line of the input contains a single integer n (2\u2009\u2009\u2264\u2009\u2009n\u2009\u2009\u2264\u2009\u200926)\u00a0\u2014 the number of letters in the alphabet. The next line contains n integers ai (1\u2009\u2264\u2009ai\u2009\u2264\u2009109)\u00a0\u2014 i-th of these integers gives the limitation on the number of occurrences of the i-th character in the string.", "output_spec": "Print a single integer \u2014 the maximum length of the string that meets all the requirements.", "sample_inputs": ["3\n2 5 5", "3\n1 1 2"], "sample_outputs": ["11", "3"], "notes": "NoteFor convenience let's consider an alphabet consisting of three letters: \"a\", \"b\", \"c\". In the first sample, some of the optimal strings are: \"cccaabbccbb\", \"aabcbcbcbcb\". In the second sample some of the optimal strings are: \"acc\", \"cbc\"."}, "src_uid": "3c4b2d1c9440515bc3002eddd2b89f6f"} {"nl": {"description": "Malek lives in an apartment block with 100 floors numbered from 0 to 99. The apartment has an elevator with a digital counter showing the floor that the elevator is currently on. The elevator shows each digit of a number with 7 light sticks by turning them on or off. The picture below shows how the elevator shows each digit.One day when Malek wanted to go from floor 88 to floor 0 using the elevator he noticed that the counter shows number 89 instead of 88. Then when the elevator started moving the number on the counter changed to 87. After a little thinking Malek came to the conclusion that there is only one explanation for this: One of the sticks of the counter was broken. Later that day Malek was thinking about the broken stick and suddenly he came up with the following problem.Suppose the digital counter is showing number n. Malek calls an integer x (0\u2009\u2264\u2009x\u2009\u2264\u200999) good if it's possible that the digital counter was supposed to show x but because of some(possibly none) broken sticks it's showing n instead. Malek wants to know number of good integers for a specific n. So you must write a program that calculates this number. Please note that the counter always shows two digits.", "input_spec": "The only line of input contains exactly two digits representing number n (0\u2009\u2264\u2009n\u2009\u2264\u200999). Note that n may have a leading zero.", "output_spec": "In the only line of the output print the number of good integers.", "sample_inputs": ["89", "00", "73"], "sample_outputs": ["2", "4", "15"], "notes": "NoteIn the first sample the counter may be supposed to show 88 or 89.In the second sample the good integers are 00, 08, 80 and 88.In the third sample the good integers are 03,\u200908,\u200909,\u200933,\u200938,\u200939,\u200973,\u200978,\u200979,\u200983,\u200988,\u200989,\u200993,\u200998,\u200999."}, "src_uid": "76c8bfa6789db8364a8ece0574cd31f5"} {"nl": {"description": "Golorps are mysterious creatures who feed on variables. Golorp's name is a program in some programming language. Some scientists believe that this language is Befunge; golorps are tantalizingly silent.Variables consumed by golorps can take values from 0 to 9, inclusive. For each golorp its daily diet is defined by its name. Some golorps are so picky that they can't be fed at all. Besides, all golorps are very health-conscious and try to eat as little as possible. Given a choice of several valid sequences of variable values, each golorp will choose lexicographically smallest one.For the purposes of this problem you can assume that a golorp consists of jaws and a stomach. The number of variables necessary to feed a golorp is defined by the shape of its jaws. Variables can get to the stomach only via the jaws.A hungry golorp is visiting you. You know its name; feed it or figure out that it's impossible.", "input_spec": "The input is a single string (between 13 and 1024 characters long) \u2014 the name of the visiting golorp. All names are similar and will resemble the ones given in the samples. The name is guaranteed to be valid.", "output_spec": "Output lexicographically smallest sequence of variable values fit for feeding this golorp. Values should be listed in the order in which they get into the jaws. If the golorp is impossible to feed, output \"false\".", "sample_inputs": ["?(_-_/___*__):-___>__.", "?(__-_+_/_____):-__>__,_____<__.", "?(______________________/____+_______*__-_____*______-___):-__<___,___<____,____<_____,_____<______,______<_______.", "?(__+___+__-___):-___>__."], "sample_outputs": ["0010", "false", "0250341", "0101"], "notes": null}, "src_uid": "390a0b72c77ebe5881b656830fbfae02"} {"nl": {"description": "Mahmoud and Ehab play a game called the even-odd game. Ehab chooses his favorite integer n and then they take turns, starting from Mahmoud. In each player's turn, he has to choose an integer a and subtract it from n such that: 1\u2009\u2264\u2009a\u2009\u2264\u2009n. If it's Mahmoud's turn, a has to be even, but if it's Ehab's turn, a has to be odd. If the current player can't choose any number satisfying the conditions, he loses. Can you determine the winner if they both play optimally?", "input_spec": "The only line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009109), the number at the beginning of the game.", "output_spec": "Output \"Mahmoud\" (without quotes) if Mahmoud wins and \"Ehab\" (without quotes) otherwise.", "sample_inputs": ["1", "2"], "sample_outputs": ["Ehab", "Mahmoud"], "notes": "NoteIn the first sample, Mahmoud can't choose any integer a initially because there is no positive even integer less than or equal to 1 so Ehab wins.In the second sample, Mahmoud has to choose a\u2009=\u20092 and subtract it from n. It's Ehab's turn and n\u2009=\u20090. There is no positive odd integer less than or equal to 0 so Mahmoud wins."}, "src_uid": "5e74750f44142624e6da41d4b35beb9a"} {"nl": {"description": "Students Vasya and Petya are studying at the BSU (Byteland State University). At one of the breaks they decided to order a pizza. In this problem pizza is a circle of some radius. The pizza was delivered already cut into n pieces. The i-th piece is a sector of angle equal to ai. Vasya and Petya want to divide all pieces of pizza into two continuous sectors in such way that the difference between angles of these sectors is minimal. Sector angle is sum of angles of all pieces in it. Pay attention, that one of sectors can be empty.", "input_spec": "The first line contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009360) \u00a0\u2014 the number of pieces into which the delivered pizza was cut. The second line contains n integers ai (1\u2009\u2264\u2009ai\u2009\u2264\u2009360) \u00a0\u2014 the angles of the sectors into which the pizza was cut. The sum of all ai is 360.", "output_spec": "Print one integer \u00a0\u2014 the minimal difference between angles of sectors that will go to Vasya and Petya.", "sample_inputs": ["4\n90 90 90 90", "3\n100 100 160", "1\n360", "4\n170 30 150 10"], "sample_outputs": ["0", "40", "360", "0"], "notes": "NoteIn first sample Vasya can take 1 and 2 pieces, Petya can take 3 and 4 pieces. Then the answer is |(90\u2009+\u200990)\u2009-\u2009(90\u2009+\u200990)|\u2009=\u20090.In third sample there is only one piece of pizza that can be taken by only one from Vasya and Petya. So the answer is |360\u2009-\u20090|\u2009=\u2009360.In fourth sample Vasya can take 1 and 4 pieces, then Petya will take 2 and 3 pieces. So the answer is |(170\u2009+\u200910)\u2009-\u2009(30\u2009+\u2009150)|\u2009=\u20090.Picture explaning fourth sample:Both red and green sectors consist of two adjacent pieces of pizza. So Vasya can take green sector, then Petya will take red sector."}, "src_uid": "1b6a6aff81911865356ec7cbf6883e82"} {"nl": {"description": "A big company decided to launch a new series of rectangular displays, and decided that the display must have exactly n pixels. Your task is to determine the size of the rectangular display \u2014 the number of lines (rows) of pixels a and the number of columns of pixels b, so that: there are exactly n pixels on the display; the number of rows does not exceed the number of columns, it means a\u2009\u2264\u2009b; the difference b\u2009-\u2009a is as small as possible. ", "input_spec": "The first line contains the positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009106)\u00a0\u2014 the number of pixels display should have.", "output_spec": "Print two integers\u00a0\u2014 the number of rows and columns on the display. ", "sample_inputs": ["8", "64", "5", "999999"], "sample_outputs": ["2 4", "8 8", "1 5", "999 1001"], "notes": "NoteIn the first example the minimum possible difference equals 2, so on the display should be 2 rows of 4 pixels.In the second example the minimum possible difference equals 0, so on the display should be 8 rows of 8 pixels.In the third example the minimum possible difference equals 4, so on the display should be 1 row of 5 pixels."}, "src_uid": "f52af273954798a4ae38a1378bfbf77a"} {"nl": {"description": "Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number n is a nearly lucky number.", "input_spec": "The only line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091018). Please do not use the %lld specificator to read or write 64-bit numbers in \u0421++. It is preferred to use the cin, cout streams or the %I64d specificator.", "output_spec": "Print on the single line \"YES\" if n is a nearly lucky number. Otherwise, print \"NO\" (without the quotes).", "sample_inputs": ["40047", "7747774", "1000000000000000000"], "sample_outputs": ["NO", "YES", "NO"], "notes": "NoteIn the first sample there are 3 lucky digits (first one and last two), so the answer is \"NO\".In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is \"YES\".In the third sample there are no lucky digits, so the answer is \"NO\"."}, "src_uid": "33b73fd9e7f19894ea08e98b790d07f1"} {"nl": {"description": "InputThe input consists of a single string of uppercase letters A-Z. The length of the string is between 1 and 10 characters, inclusive.OutputOutput \"YES\" or \"NO\".ExamplesInput\nHELP\nOutput\nYES\nInput\nAID\nOutput\nNO\nInput\nMARY\nOutput\nNO\nInput\nANNA\nOutput\nYES\nInput\nMUG\nOutput\nYES\nInput\nCUP\nOutput\nNO\nInput\nSUM\nOutput\nYES\nInput\nPRODUCT\nOutput\nNO\n", "input_spec": "The input consists of a single string of uppercase letters A-Z. The length of the string is between 1 and 10 characters, inclusive.", "output_spec": "Output \"YES\" or \"NO\".", "sample_inputs": ["HELP", "AID", "MARY", "ANNA", "MUG", "CUP", "SUM", "PRODUCT"], "sample_outputs": ["YES", "NO", "NO", "YES", "YES", "NO", "YES", "NO"], "notes": null}, "src_uid": "27e977b41f5b6970a032d13e53db2a6a"} {"nl": {"description": "There are $$$n$$$ heroes fighting in the arena. Initially, the $$$i$$$-th hero has $$$a_i$$$ health points.The fight in the arena takes place in several rounds. At the beginning of each round, each alive hero deals $$$1$$$ damage to all other heroes. Hits of all heroes occur simultaneously. Heroes whose health is less than $$$1$$$ at the end of the round are considered killed.If exactly $$$1$$$ hero remains alive after a certain round, then he is declared the winner. Otherwise, there is no winner.Your task is to calculate the number of ways to choose the initial health points for each hero $$$a_i$$$, where $$$1 \\le a_i \\le x$$$, so that there is no winner of the fight. The number of ways can be very large, so print it modulo $$$998244353$$$. Two ways are considered different if at least one hero has a different amount of health. For example, $$$[1, 2, 1]$$$ and $$$[2, 1, 1]$$$ are different.", "input_spec": "The only line contains two integers $$$n$$$ and $$$x$$$ ($$$2 \\le n \\le 500; 1 \\le x \\le 500$$$).", "output_spec": "Print one integer\u00a0\u2014 the number of ways to choose the initial health points for each hero $$$a_i$$$, where $$$1 \\le a_i \\le x$$$, so that there is no winner of the fight, taken modulo $$$998244353$$$. ", "sample_inputs": ["2 5", "3 3", "5 4", "13 37"], "sample_outputs": ["5", "15", "1024", "976890680"], "notes": null}, "src_uid": "1908d1c8c6b122a4c6633a7af094f17f"} {"nl": {"description": "Jamie loves sleeping. One day, he decides that he needs to wake up at exactly hh:\u2009mm. However, he hates waking up, so he wants to make waking up less painful by setting the alarm at a lucky time. He will then press the snooze button every x minutes until hh:\u2009mm is reached, and only then he will wake up. He wants to know what is the smallest number of times he needs to press the snooze button.A time is considered lucky if it contains a digit '7'. For example, 13:\u200907 and 17:\u200927 are lucky, while 00:\u200948 and 21:\u200934 are not lucky.Note that it is not necessary that the time set for the alarm and the wake-up time are on the same day. It is guaranteed that there is a lucky time Jamie can set so that he can wake at hh:\u2009mm.Formally, find the smallest possible non-negative integer y such that the time representation of the time x\u00b7y minutes before hh:\u2009mm contains the digit '7'.Jamie uses 24-hours clock, so after 23:\u200959 comes 00:\u200900.", "input_spec": "The first line contains a single integer x (1\u2009\u2264\u2009x\u2009\u2264\u200960). The second line contains two two-digit integers, hh and mm (00\u2009\u2264\u2009hh\u2009\u2264\u200923,\u200900\u2009\u2264\u2009mm\u2009\u2264\u200959).", "output_spec": "Print the minimum number of times he needs to press the button.", "sample_inputs": ["3\n11 23", "5\n01 07"], "sample_outputs": ["2", "0"], "notes": "NoteIn the first sample, Jamie needs to wake up at 11:23. So, he can set his alarm at 11:17. He would press the snooze button when the alarm rings at 11:17 and at 11:20.In the second sample, Jamie can set his alarm at exactly at 01:07 which is lucky."}, "src_uid": "5ecd569e02e0164a5da9ff549fca3ceb"} {"nl": {"description": "n children are standing in a circle and playing a game. Children's numbers in clockwise order form a permutation a1,\u2009a2,\u2009...,\u2009an of length n. It is an integer sequence such that each integer from 1 to n appears exactly once in it.The game consists of m steps. On each step the current leader with index i counts out ai people in clockwise order, starting from the next person. The last one to be pointed at by the leader becomes the new leader.You are given numbers l1,\u2009l2,\u2009...,\u2009lm \u2014 indices of leaders in the beginning of each step. Child with number l1 is the first leader in the game. Write a program which will restore a possible permutation a1,\u2009a2,\u2009...,\u2009an. If there are multiple solutions then print any of them. If there is no solution then print -1.", "input_spec": "The first line contains two integer numbers n, m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100). The second line contains m integer numbers l1,\u2009l2,\u2009...,\u2009lm (1\u2009\u2264\u2009li\u2009\u2264\u2009n) \u2014 indices of leaders in the beginning of each step.", "output_spec": "Print such permutation of n numbers a1,\u2009a2,\u2009...,\u2009an that leaders in the game will be exactly l1,\u2009l2,\u2009...,\u2009lm if all the rules are followed. If there are multiple solutions print any of them. If there is no permutation which satisfies all described conditions print -1.", "sample_inputs": ["4 5\n2 3 1 4 4", "3 3\n3 1 2"], "sample_outputs": ["3 1 2 4", "-1"], "notes": "NoteLet's follow leadership in the first example: Child 2 starts. Leadership goes from 2 to 2\u2009+\u2009a2\u2009=\u20093. Leadership goes from 3 to 3\u2009+\u2009a3\u2009=\u20095. As it's greater than 4, it's going in a circle to 1. Leadership goes from 1 to 1\u2009+\u2009a1\u2009=\u20094. Leadership goes from 4 to 4\u2009+\u2009a4\u2009=\u20098. Thus in circle it still remains at 4. "}, "src_uid": "4a7c959ca279d0a9bd9bbf0ce88cf72b"} {"nl": {"description": "Polycarp has $$$n$$$ coins, the value of the $$$i$$$-th coin is $$$a_i$$$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.For example, if Polycarp has got six coins represented as an array $$$a = [1, 2, 4, 3, 3, 2]$$$, he can distribute the coins into two pockets as follows: $$$[1, 2, 3], [2, 3, 4]$$$.Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.", "input_spec": "The first line of the input contains one integer $$$n$$$ ($$$1 \\le n \\le 100$$$) \u2014 the number of coins. The second line of the input contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 100$$$) \u2014 values of coins.", "output_spec": "Print only one integer \u2014 the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.", "sample_inputs": ["6\n1 2 4 3 3 2", "1\n100"], "sample_outputs": ["2", "1"], "notes": null}, "src_uid": "f30329023e84b4c50b1b118dc98ae73c"} {"nl": {"description": "Kolya got string s for his birthday, the string consists of small English letters. He immediately added k more characters to the right of the string.Then Borya came and said that the new string contained a tandem repeat of length l as a substring. How large could l be?See notes for definition of a tandem repeat.", "input_spec": "The first line contains s (1\u2009\u2264\u2009|s|\u2009\u2264\u2009200). This string contains only small English letters. The second line contains number k (1\u2009\u2264\u2009k\u2009\u2264\u2009200) \u2014 the number of the added characters.", "output_spec": "Print a single number \u2014 the maximum length of the tandem repeat that could have occurred in the new string.", "sample_inputs": ["aaba\n2", "aaabbbb\n2", "abracadabra\n10"], "sample_outputs": ["6", "6", "20"], "notes": "NoteA tandem repeat of length 2n is string s, where for any position i (1\u2009\u2264\u2009i\u2009\u2264\u2009n) the following condition fulfills: si\u2009=\u2009si\u2009+\u2009n.In the first sample Kolya could obtain a string aabaab, in the second \u2014 aaabbbbbb, in the third \u2014 abracadabrabracadabra."}, "src_uid": "bb65667b65ff069a9c0c9e8fe31da8ab"} {"nl": {"description": "There is the faculty of Computer Science in Berland. In the social net \"TheContact!\" for each course of this faculty there is the special group whose name equals the year of university entrance of corresponding course of students at the university. Each of students joins the group of his course and joins all groups for which the year of student's university entrance differs by no more than x from the year of university entrance of this student, where x \u2014 some non-negative integer. A value x is not given, but it can be uniquely determined from the available data. Note that students don't join other groups. You are given the list of groups which the student Igor joined. According to this information you need to determine the year of Igor's university entrance.", "input_spec": "The first line contains the positive odd integer n (1\u2009\u2264\u2009n\u2009\u2264\u20095) \u2014 the number of groups which Igor joined. The next line contains n distinct integers a1,\u2009a2,\u2009...,\u2009an (2010\u2009\u2264\u2009ai\u2009\u2264\u20092100) \u2014 years of student's university entrance for each group in which Igor is the member. It is guaranteed that the input data is correct and the answer always exists. Groups are given randomly.", "output_spec": "Print the year of Igor's university entrance. ", "sample_inputs": ["3\n2014 2016 2015", "1\n2050"], "sample_outputs": ["2015", "2050"], "notes": "NoteIn the first test the value x\u2009=\u20091. Igor entered the university in 2015. So he joined groups members of which are students who entered the university in 2014, 2015 and 2016.In the second test the value x\u2009=\u20090. Igor entered only the group which corresponds to the year of his university entrance. "}, "src_uid": "f03773118cca29ff8d5b4281d39e7c63"} {"nl": {"description": "Petya loves lucky numbers. Everybody knows that positive integers are lucky if their decimal representation doesn't contain digits other than 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.Lucky number is super lucky if it's decimal representation contains equal amount of digits 4 and 7. For example, numbers 47, 7744, 474477 are super lucky and 4, 744, 467 are not.One day Petya came across a positive integer n. Help him to find the least super lucky number which is not less than n.", "input_spec": "The only line contains a positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u200910100000). This number doesn't have leading zeroes.", "output_spec": "Output the least super lucky number that is more than or equal to n.", "sample_inputs": ["4500", "47"], "sample_outputs": ["4747", "47"], "notes": null}, "src_uid": "77b5f83cdadf4b0743618a46b646a849"} {"nl": {"description": "The bear decided to store some raspberry for the winter. He cunningly found out the price for a barrel of honey in kilos of raspberry for each of the following n days. According to the bear's data, on the i-th (1\u2009\u2264\u2009i\u2009\u2264\u2009n) day, the price for one barrel of honey is going to is xi kilos of raspberry.Unfortunately, the bear has neither a honey barrel, nor the raspberry. At the same time, the bear's got a friend who is ready to lend him a barrel of honey for exactly one day for c kilograms of raspberry. That's why the bear came up with a smart plan. He wants to choose some day d (1\u2009\u2264\u2009d\u2009<\u2009n), lent a barrel of honey and immediately (on day d) sell it according to a daily exchange rate. The next day (d\u2009+\u20091) the bear wants to buy a new barrel of honey according to a daily exchange rate (as he's got some raspberry left from selling the previous barrel) and immediately (on day d\u2009+\u20091) give his friend the borrowed barrel of honey as well as c kilograms of raspberry for renting the barrel.The bear wants to execute his plan at most once and then hibernate. What maximum number of kilograms of raspberry can he earn? Note that if at some point of the plan the bear runs out of the raspberry, then he won't execute such a plan.", "input_spec": "The first line contains two space-separated integers, n and c (2\u2009\u2264\u2009n\u2009\u2264\u2009100,\u20090\u2009\u2264\u2009c\u2009\u2264\u2009100), \u2014 the number of days and the number of kilos of raspberry that the bear should give for borrowing the barrel. The second line contains n space-separated integers x1,\u2009x2,\u2009...,\u2009xn (0\u2009\u2264\u2009xi\u2009\u2264\u2009100), the price of a honey barrel on day i.", "output_spec": "Print a single integer \u2014 the answer to the problem.", "sample_inputs": ["5 1\n5 10 7 3 20", "6 2\n100 1 10 40 10 40", "3 0\n1 2 3"], "sample_outputs": ["3", "97", "0"], "notes": "NoteIn the first sample the bear will lend a honey barrel at day 3 and then sell it for 7. Then the bear will buy a barrel for 3 and return it to the friend. So, the profit is (7 - 3 - 1) = 3.In the second sample bear will lend a honey barrel at day 1 and then sell it for 100. Then the bear buy the barrel for 1 at the day 2. So, the profit is (100 - 1 - 2) = 97."}, "src_uid": "411539a86f2e94eb6386bb65c9eb9557"} {"nl": {"description": "ZS the Coder loves to read the dictionary. He thinks that a word is nice if there exists a substring (contiguous segment of letters) of it of length 26 where each letter of English alphabet appears exactly once. In particular, if the string has length strictly less than 26, no such substring exists and thus it is not nice.Now, ZS the Coder tells you a word, where some of its letters are missing as he forgot them. He wants to determine if it is possible to fill in the missing letters so that the resulting word is nice. If it is possible, he needs you to find an example of such a word as well. Can you help him?", "input_spec": "The first and only line of the input contains a single string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200950\u2009000), the word that ZS the Coder remembers. Each character of the string is the uppercase letter of English alphabet ('A'-'Z') or is a question mark ('?'), where the question marks denotes the letters that ZS the Coder can't remember.", "output_spec": "If there is no way to replace all the question marks with uppercase letters such that the resulting word is nice, then print \u2009-\u20091 in the only line. Otherwise, print a string which denotes a possible nice word that ZS the Coder learned. This string should match the string from the input, except for the question marks replaced with uppercase English letters. If there are multiple solutions, you may print any of them.", "sample_inputs": ["ABC??FGHIJK???OPQR?TUVWXY?", "WELCOMETOCODEFORCESROUNDTHREEHUNDREDANDSEVENTYTWO", "??????????????????????????", "AABCDEFGHIJKLMNOPQRSTUVW??M"], "sample_outputs": ["ABCDEFGHIJKLMNOPQRZTUVWXYS", "-1", "MNBVCXZLKJHGFDSAQPWOEIRUYT", "-1"], "notes": "NoteIn the first sample case, ABCDEFGHIJKLMNOPQRZTUVWXYS is a valid answer beacuse it contains a substring of length 26 (the whole string in this case) which contains all the letters of the English alphabet exactly once. Note that there are many possible solutions, such as ABCDEFGHIJKLMNOPQRSTUVWXYZ or ABCEDFGHIJKLMNOPQRZTUVWXYS.In the second sample case, there are no missing letters. In addition, the given string does not have a substring of length 26 that contains all the letters of the alphabet, so the answer is \u2009-\u20091.In the third sample case, any string of length 26 that contains all letters of the English alphabet fits as an answer."}, "src_uid": "a249431a4b0b1ade652997fe0b82edf3"} {"nl": {"description": "Polycarpus loves lucky numbers. Everybody knows that lucky numbers are positive integers, whose decimal representation (without leading zeroes) contain only the lucky digits x and y. For example, if x\u2009=\u20094, and y\u2009=\u20097, then numbers 47, 744, 4 are lucky.Let's call a positive integer a undoubtedly lucky, if there are such digits x and y (0\u2009\u2264\u2009x,\u2009y\u2009\u2264\u20099), that the decimal representation of number a (without leading zeroes) contains only digits x and y.Polycarpus has integer n. He wants to know how many positive integers that do not exceed n, are undoubtedly lucky. Help him, count this number.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009109) \u2014 Polycarpus's number.", "output_spec": "Print a single integer that says, how many positive integers that do not exceed n are undoubtedly lucky.", "sample_inputs": ["10", "123"], "sample_outputs": ["10", "113"], "notes": "NoteIn the first test sample all numbers that do not exceed 10 are undoubtedly lucky.In the second sample numbers 102, 103, 104, 105, 106, 107, 108, 109, 120, 123 are not undoubtedly lucky."}, "src_uid": "0f7f10557602c8c2f2eb80762709ffc4"} {"nl": {"description": "Panic is rising in the committee for doggo standardization\u00a0\u2014 the puppies of the new brood have been born multi-colored! In total there are 26 possible colors of puppies in the nature and they are denoted by letters from 'a' to 'z' inclusive.The committee rules strictly prohibit even the smallest diversity between doggos and hence all the puppies should be of the same color. Thus Slava, the committee employee, has been assigned the task to recolor some puppies into other colors in order to eliminate the difference and make all the puppies have one common color.Unfortunately, due to bureaucratic reasons and restricted budget, there's only one operation Slava can perform: he can choose a color $$$x$$$ such that there are currently at least two puppies of color $$$x$$$ and recolor all puppies of the color $$$x$$$ into some arbitrary color $$$y$$$. Luckily, this operation can be applied multiple times (including zero).For example, if the number of puppies is $$$7$$$ and their colors are represented as the string \"abababc\", then in one operation Slava can get the results \"zbzbzbc\", \"bbbbbbc\", \"aaaaaac\", \"acacacc\" and others. However, if the current color sequence is \"abababc\", then he can't choose $$$x$$$='c' right now, because currently only one puppy has the color 'c'.Help Slava and the committee determine whether it is possible to standardize all the puppies, i.e. after Slava's operations all the puppies should have the same color.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$1 \\le n \\le 10^5$$$)\u00a0\u2014 the number of puppies. The second line contains a string $$$s$$$ of length $$$n$$$ consisting of lowercase Latin letters, where the $$$i$$$-th symbol denotes the $$$i$$$-th puppy's color.", "output_spec": "If it's possible to recolor all puppies into one color, print \"Yes\". Otherwise print \"No\". Output the answer without quotation signs.", "sample_inputs": ["6\naabddc", "3\nabc", "3\njjj"], "sample_outputs": ["Yes", "No", "Yes"], "notes": "NoteIn the first example Slava can perform the following steps: take all puppies of color 'a' (a total of two) and recolor them into 'b'; take all puppies of color 'd' (a total of two) and recolor them into 'c'; take all puppies of color 'b' (three puppies for now) and recolor them into 'c'. In the second example it's impossible to recolor any of the puppies.In the third example all the puppies' colors are the same; thus there's no need to recolor anything."}, "src_uid": "6b22e93f7e429693dcfe3c099346dcda"} {"nl": {"description": "In one very old text file there was written Great Wisdom. This Wisdom was so Great that nobody could decipher it, even Phong \u2014 the oldest among the inhabitants of Mainframe. But still he managed to get some information from there. For example, he managed to learn that User launches games for pleasure \u2014 and then terrible Game Cubes fall down on the city, bringing death to those modules, who cannot win the game...For sure, as guard Bob appeared in Mainframe many modules stopped fearing Game Cubes. Because Bob (as he is alive yet) has never been defeated by User, and he always meddles with Game Cubes, because he is programmed to this.However, unpleasant situations can happen, when a Game Cube falls down on Lost Angles. Because there lives a nasty virus \u2014 Hexadecimal, who is... mmm... very strange. And she likes to play very much. So, willy-nilly, Bob has to play with her first, and then with User.This time Hexadecimal invented the following entertainment: Bob has to leap over binary search trees with n nodes. We should remind you that a binary search tree is a binary tree, each node has a distinct key, for each node the following is true: the left sub-tree of a node contains only nodes with keys less than the node's key, the right sub-tree of a node contains only nodes with keys greater than the node's key. All the keys are different positive integer numbers from 1 to n. Each node of such a tree can have up to two children, or have no children at all (in the case when a node is a leaf).In Hexadecimal's game all the trees are different, but the height of each is not lower than h. In this problem \u00abheight\u00bb stands for the maximum amount of nodes on the way from the root to the remotest leaf, the root node and the leaf itself included. When Bob leaps over a tree, it disappears. Bob gets the access to a Cube, when there are no trees left. He knows how many trees he will have to leap over in the worst case. And you?", "input_spec": "The input data contains two space-separated positive integer numbers n and h (n\u2009\u2264\u200935, h\u2009\u2264\u2009n).", "output_spec": "Output one number \u2014 the answer to the problem. It is guaranteed that it does not exceed 9\u00b71018.", "sample_inputs": ["3 2", "3 3"], "sample_outputs": ["5", "4"], "notes": null}, "src_uid": "faf12a603d0c27f8be6bf6b02531a931"} {"nl": {"description": "IT City company developing computer games invented a new way to reward its employees. After a new game release users start buying it actively, and the company tracks the number of sales with precision to each transaction. Every time when the next number of sales is divisible by all numbers from 2 to 10 every developer of this game gets a small bonus.A game designer Petya knows that the company is just about to release a new game that was partly developed by him. On the basis of his experience he predicts that n people will buy the game during the first month. Now Petya wants to determine how many times he will get the bonus. Help him to know it.", "input_spec": "The only line of the input contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091018) \u2014 the prediction on the number of people who will buy the game.", "output_spec": "Output one integer showing how many numbers from 1 to n are divisible by all numbers from 2 to 10.", "sample_inputs": ["3000"], "sample_outputs": ["1"], "notes": null}, "src_uid": "8551308e5ff435e0fc507b89a912408a"} {"nl": {"description": "You have two variables a and b. Consider the following sequence of actions performed with these variables: If a\u2009=\u20090 or b\u2009=\u20090, end the process. Otherwise, go to step 2; If a\u2009\u2265\u20092\u00b7b, then set the value of a to a\u2009-\u20092\u00b7b, and repeat step 1. Otherwise, go to step 3; If b\u2009\u2265\u20092\u00b7a, then set the value of b to b\u2009-\u20092\u00b7a, and repeat step 1. Otherwise, end the process.Initially the values of a and b are positive integers, and so the process will be finite.You have to determine the values of a and b after the process ends.", "input_spec": "The only line of the input contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20091018). n is the initial value of variable a, and m is the initial value of variable b.", "output_spec": "Print two integers \u2014 the values of a and b after the end of the process.", "sample_inputs": ["12 5", "31 12"], "sample_outputs": ["0 1", "7 12"], "notes": "NoteExplanations to the samples: a\u2009=\u200912, b\u2009=\u20095 a\u2009=\u20092, b\u2009=\u20095 a\u2009=\u20092, b\u2009=\u20091 a\u2009=\u20090, b\u2009=\u20091; a\u2009=\u200931, b\u2009=\u200912 a\u2009=\u20097, b\u2009=\u200912."}, "src_uid": "1f505e430eb930ea2b495ab531274114"} {"nl": {"description": "Sagheer is walking in the street when he comes to an intersection of two roads. Each road can be represented as two parts where each part has 3 lanes getting into the intersection (one for each direction) and 3 lanes getting out of the intersection, so we have 4 parts in total. Each part has 4 lights, one for each lane getting into the intersection (l \u2014 left, s \u2014 straight, r \u2014 right) and a light p for a pedestrian crossing. An accident is possible if a car can hit a pedestrian. This can happen if the light of a pedestrian crossing of some part and the light of a lane that can get to or from that same part are green at the same time.Now, Sagheer is monitoring the configuration of the traffic lights. Your task is to help him detect whether an accident is possible.", "input_spec": "The input consists of four lines with each line describing a road part given in a counter-clockwise order. Each line contains four integers l, s, r, p \u2014 for the left, straight, right and pedestrian lights, respectively. The possible values are 0 for red light and 1 for green light.", "output_spec": "On a single line, print \"YES\" if an accident is possible, and \"NO\" otherwise.", "sample_inputs": ["1 0 0 1\n0 1 0 0\n0 0 1 0\n0 0 0 1", "0 1 1 0\n1 0 1 0\n1 1 0 0\n0 0 0 1", "1 0 0 0\n0 0 0 1\n0 0 0 0\n1 0 1 0"], "sample_outputs": ["YES", "NO", "NO"], "notes": "NoteIn the first example, some accidents are possible because cars of part 1 can hit pedestrians of parts 1 and 4. Also, cars of parts 2 and 3 can hit pedestrians of part 4.In the second example, no car can pass the pedestrian crossing of part 4 which is the only green pedestrian light. So, no accident can occur."}, "src_uid": "44fdf71d56bef949ec83f00d17c29127"} {"nl": {"description": "A mouse encountered a nice big cake and decided to take a walk across it, eating the berries on top of the cake on its way. The cake is rectangular, neatly divided into squares; some of the squares have a berry in them, and some don't.The mouse is in a bit of a hurry, though, so once she enters the cake from its northwest corner (the top left cell in the input data), she will only go east (right) or south (down), until she reaches the southeast corner (the bottom right cell). She will eat every berry in the squares she passes through, but not in the other squares.The mouse tries to choose her path so as to maximize the number of berries consumed. However, her haste and hunger might be clouding her judgement, leading her to suboptimal decisions...", "input_spec": "The first line of input contains two integers $$$H$$$ and $$$W$$$ ($$$1 \\le H, W \\le 5$$$), separated by a space, \u2014 the height and the width of the cake. The next $$$H$$$ lines contain a string of $$$W$$$ characters each, representing the squares of the cake in that row: '.' represents an empty square, and '*' represents a square with a berry.", "output_spec": "Output the number of berries the mouse will eat following her strategy.", "sample_inputs": ["4 3\n*..\n.*.\n..*\n...", "4 4\n.*..\n*...\n...*\n..*.", "3 4\n..**\n*...\n....", "5 5\n..*..\n.....\n**...\n**...\n**..."], "sample_outputs": ["3", "2", "1", "1"], "notes": null}, "src_uid": "f985d7a6e7650a9b855a4cef26fd9b0d"} {"nl": {"description": "Ivan has a robot which is situated on an infinite grid. Initially the robot is standing in the starting cell (0,\u20090). The robot can process commands. There are four types of commands it can perform: U \u2014 move from the cell (x,\u2009y) to (x,\u2009y\u2009+\u20091); D \u2014 move from (x,\u2009y) to (x,\u2009y\u2009-\u20091); L \u2014 move from (x,\u2009y) to (x\u2009-\u20091,\u2009y); R \u2014 move from (x,\u2009y) to (x\u2009+\u20091,\u2009y). Ivan entered a sequence of n commands, and the robot processed it. After this sequence the robot ended up in the starting cell (0,\u20090), but Ivan doubts that the sequence is such that after performing it correctly the robot ends up in the same cell. He thinks that some commands were ignored by robot. To acknowledge whether the robot is severely bugged, he needs to calculate the maximum possible number of commands that were performed correctly. Help Ivan to do the calculations!", "input_spec": "The first line contains one number n \u2014 the length of sequence of commands entered by Ivan (1\u2009\u2264\u2009n\u2009\u2264\u2009100). The second line contains the sequence itself \u2014 a string consisting of n characters. Each character can be U, D, L or R.", "output_spec": "Print the maximum possible number of commands from the sequence the robot could perform to end up in the starting cell.", "sample_inputs": ["4\nLDUR", "5\nRRRUU", "6\nLLRRRR"], "sample_outputs": ["4", "0", "4"], "notes": null}, "src_uid": "b9fa2bb8001bd064ede531a5281cfd8a"} {"nl": {"description": "The only difference between the easy and the hard versions is constraints.A subsequence is a string that can be derived from another string by deleting some or no symbols without changing the order of the remaining symbols. Characters to be deleted are not required to go successively, there can be any gaps between them. For example, for the string \"abaca\" the following strings are subsequences: \"abaca\", \"aba\", \"aaa\", \"a\" and \"\" (empty string). But the following strings are not subsequences: \"aabaca\", \"cb\" and \"bcaa\".You are given a string $$$s$$$ consisting of $$$n$$$ lowercase Latin letters.In one move you can take any subsequence $$$t$$$ of the given string and add it to the set $$$S$$$. The set $$$S$$$ can't contain duplicates. This move costs $$$n - |t|$$$, where $$$|t|$$$ is the length of the added subsequence (i.e. the price equals to the number of the deleted characters).Your task is to find out the minimum possible total cost to obtain a set $$$S$$$ of size $$$k$$$ or report that it is impossible to do so.", "input_spec": "The first line of the input contains two integers $$$n$$$ and $$$k$$$ ($$$1 \\le n, k \\le 100$$$) \u2014 the length of the string and the size of the set, correspondingly. The second line of the input contains a string $$$s$$$ consisting of $$$n$$$ lowercase Latin letters.", "output_spec": "Print one integer \u2014 if it is impossible to obtain the set $$$S$$$ of size $$$k$$$, print -1. Otherwise, print the minimum possible total cost to do it.", "sample_inputs": ["4 5\nasdf", "5 6\naaaaa", "5 7\naaaaa", "10 100\najihiushda"], "sample_outputs": ["4", "15", "-1", "233"], "notes": "NoteIn the first example we can generate $$$S$$$ = { \"asdf\", \"asd\", \"adf\", \"asf\", \"sdf\" }. The cost of the first element in $$$S$$$ is $$$0$$$ and the cost of the others is $$$1$$$. So the total cost of $$$S$$$ is $$$4$$$."}, "src_uid": "ae5d21919ecac431ea7507cb1b6dc72b"} {"nl": {"description": "Little Petya very much likes computers. Recently he has received a new \"Ternatron IV\" as a gift from his mother. Unlike other modern computers, \"Ternatron IV\" operates with ternary and not binary logic. Petya immediately wondered how the xor operation is performed on this computer (and whether there is anything like it).It turned out that the operation does exist (however, it is called tor) and it works like this. Suppose that we need to calculate the value of the expression a tor b. Both numbers a and b are written in the ternary notation one under the other one (b under a). If they have a different number of digits, then leading zeroes are added to the shorter number until the lengths are the same. Then the numbers are summed together digit by digit. The result of summing each two digits is calculated modulo 3. Note that there is no carry between digits (i. e. during this operation the digits aren't transferred). For example: 1410 tor 5010\u2009=\u200901123 tor 12123\u2009=\u200910213\u2009=\u20093410.Petya wrote numbers a and c on a piece of paper. Help him find such number b, that a tor b\u2009=\u2009c. If there are several such numbers, print the smallest one.", "input_spec": "The first line contains two integers a and c (0\u2009\u2264\u2009a,\u2009c\u2009\u2264\u2009109). Both numbers are written in decimal notation.", "output_spec": "Print the single integer b, such that a tor b\u2009=\u2009c. If there are several possible numbers b, print the smallest one. You should print the number in decimal notation.", "sample_inputs": ["14 34", "50 34", "387420489 225159023", "5 5"], "sample_outputs": ["50", "14", "1000000001", "0"], "notes": null}, "src_uid": "5fb635d52ddccf6a4d5103805da02a88"} {"nl": {"description": "There is a very secret base in Potatoland where potato mash is made according to a special recipe. The neighbours from Porridgia decided to seize this recipe and to sell it to Pilauland. For this mission they have been preparing special agent Pearlo for many years. When, finally, Pearlo learned all secrets of espionage, he penetrated into the Potatoland territory and reached the secret base.Now he is standing at the entrance, but to get inside he need to pass combination lock. Minute ago one of the workers entered the password on the terminal and opened the door. The terminal is a square digital keyboard 3\u2009\u00d7\u20093 with digits from 1 to 9.Pearlo knows that the password consists from distinct digits and is probably symmetric with respect to the central button of the terminal. He has heat sensor which allowed him to detect the digits which the worker pressed. Now he wants to check whether the password entered by the worker is symmetric with respect to the central button of the terminal. This fact can Help Pearlo to reduce the number of different possible password combinations.", "input_spec": "Input contains the matrix of three rows of three symbols each. Symbol \u00abX\u00bb means that the corresponding button was pressed, and \u00ab.\u00bb means that is was not pressed. The matrix may contain no \u00abX\u00bb, also it may contain no \u00ab.\u00bb.", "output_spec": "Print YES if the password is symmetric with respect to the central button of the terminal and NO otherwise.", "sample_inputs": ["XX.\n...\n.XX", "X.X\nX..\n..."], "sample_outputs": ["YES", "NO"], "notes": "NoteIf you are not familiar with the term \u00abcentral symmetry\u00bb, you may look into http://en.wikipedia.org/wiki/Central_symmetry"}, "src_uid": "6a5fe5fac8a4e3993dc3423180cdd6a9"} {"nl": {"description": "Little Elephant loves magic squares very much.A magic square is a 3\u2009\u00d7\u20093 table, each cell contains some positive integer. At that the sums of integers in all rows, columns and diagonals of the table are equal. The figure below shows the magic square, the sum of integers in all its rows, columns and diagonals equals 15. The Little Elephant remembered one magic square. He started writing this square on a piece of paper, but as he wrote, he forgot all three elements of the main diagonal of the magic square. Fortunately, the Little Elephant clearly remembered that all elements of the magic square did not exceed 105. Help the Little Elephant, restore the original magic square, given the Elephant's notes.", "input_spec": "The first three lines of the input contain the Little Elephant's notes. The first line contains elements of the first row of the magic square. The second line contains the elements of the second row, the third line is for the third row. The main diagonal elements that have been forgotten by the Elephant are represented by zeroes. It is guaranteed that the notes contain exactly three zeroes and they are all located on the main diagonal. It is guaranteed that all positive numbers in the table do not exceed 105.", "output_spec": "Print three lines, in each line print three integers \u2014 the Little Elephant's magic square. If there are multiple magic squares, you are allowed to print any of them. Note that all numbers you print must be positive and not exceed 105. It is guaranteed that there exists at least one magic square that meets the conditions.", "sample_inputs": ["0 1 1\n1 0 1\n1 1 0", "0 3 6\n5 0 5\n4 7 0"], "sample_outputs": ["1 1 1\n1 1 1\n1 1 1", "6 3 6\n5 5 5\n4 7 4"], "notes": null}, "src_uid": "0c42eafb73d1e30f168958a06a0f9bca"} {"nl": {"description": "You want to arrange n integers a1,\u2009a2,\u2009...,\u2009an in some order in a row. Let's define the value of an arrangement as the sum of differences between all pairs of adjacent integers.More formally, let's denote some arrangement as a sequence of integers x1,\u2009x2,\u2009...,\u2009xn, where sequence x is a permutation of sequence a. The value of such an arrangement is (x1\u2009-\u2009x2)\u2009+\u2009(x2\u2009-\u2009x3)\u2009+\u2009...\u2009+\u2009(xn\u2009-\u20091\u2009-\u2009xn).Find the largest possible value of an arrangement. Then, output the lexicographically smallest sequence x that corresponds to an arrangement of the largest possible value.", "input_spec": "The first line of the input contains integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100). The second line contains n space-separated integers a1, a2, ..., an (|ai|\u2009\u2264\u20091000).", "output_spec": "Print the required sequence x1,\u2009x2,\u2009...,\u2009xn. Sequence x should be the lexicographically smallest permutation of a that corresponds to an arrangement of the largest possible value.", "sample_inputs": ["5\n100 -100 50 0 -50"], "sample_outputs": ["100 -50 0 50 -100"], "notes": "NoteIn the sample test case, the value of the output arrangement is (100\u2009-\u2009(\u2009-\u200950))\u2009+\u2009((\u2009-\u200950)\u2009-\u20090)\u2009+\u2009(0\u2009-\u200950)\u2009+\u2009(50\u2009-\u2009(\u2009-\u2009100))\u2009=\u2009200. No other arrangement has a larger value, and among all arrangements with the value of 200, the output arrangement is the lexicographically smallest one.Sequence x1,\u2009x2,\u2009... ,\u2009xp is lexicographically smaller than sequence y1,\u2009y2,\u2009... ,\u2009yp if there exists an integer r (0\u2009\u2264\u2009r\u2009<\u2009p) such that x1\u2009=\u2009y1,\u2009x2\u2009=\u2009y2,\u2009... ,\u2009xr\u2009=\u2009yr and xr\u2009+\u20091\u2009<\u2009yr\u2009+\u20091."}, "src_uid": "4408eba2c5c0693e6b70bdcbe2dda2f4"} {"nl": {"description": "Recently Luba learned about a special kind of numbers that she calls beautiful numbers. The number is called beautiful iff its binary representation consists of k\u2009+\u20091 consecutive ones, and then k consecutive zeroes.Some examples of beautiful numbers: 12 (110); 1102 (610); 11110002 (12010); 1111100002 (49610). More formally, the number is beautiful iff there exists some positive integer k such that the number is equal to (2k\u2009-\u20091)\u2009*\u2009(2k\u2009-\u20091).Luba has got an integer number n, and she wants to find its greatest beautiful divisor. Help her to find it!", "input_spec": "The only line of input contains one number n (1\u2009\u2264\u2009n\u2009\u2264\u2009105) \u2014 the number Luba has got.", "output_spec": "Output one number \u2014 the greatest beautiful divisor of Luba's number. It is obvious that the answer always exists.", "sample_inputs": ["3", "992"], "sample_outputs": ["1", "496"], "notes": null}, "src_uid": "339246a1be81aefe19290de0d1aead84"} {"nl": {"description": "There is a legend in the IT City college. A student that failed to answer all questions on the game theory exam is given one more chance by his professor. The student has to play a game with the professor.The game is played on a square field consisting of n\u2009\u00d7\u2009n cells. Initially all cells are empty. On each turn a player chooses and paint an empty cell that has no common sides with previously painted cells. Adjacent corner of painted cells is allowed. On the next turn another player does the same, then the first one and so on. The player with no cells to paint on his turn loses.The professor have chosen the field size n and allowed the student to choose to be the first or the second player in the game. What should the student choose to win the game? Both players play optimally.", "input_spec": "The only line of the input contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091018) \u2014 the size of the field.", "output_spec": "Output number 1, if the player making the first turn wins when both players play optimally, otherwise print number 2.", "sample_inputs": ["1", "2"], "sample_outputs": ["1", "2"], "notes": null}, "src_uid": "816ec4cd9736f3113333ef05405b8e81"} {"nl": {"description": "You are given two integer numbers, $$$n$$$ and $$$x$$$. You may perform several operations with the integer $$$x$$$.Each operation you perform is the following one: choose any digit $$$y$$$ that occurs in the decimal representation of $$$x$$$ at least once, and replace $$$x$$$ by $$$x \\cdot y$$$.You want to make the length of decimal representation of $$$x$$$ (without leading zeroes) equal to $$$n$$$. What is the minimum number of operations required to do that?", "input_spec": "The only line of the input contains two integers $$$n$$$ and $$$x$$$ ($$$2 \\le n \\le 19$$$; $$$1 \\le x < 10^{n-1}$$$).", "output_spec": "Print one integer \u2014 the minimum number of operations required to make the length of decimal representation of $$$x$$$ (without leading zeroes) equal to $$$n$$$, or $$$-1$$$ if it is impossible.", "sample_inputs": ["2 1", "3 2", "13 42"], "sample_outputs": ["-1", "4", "12"], "notes": "NoteIn the second example, the following sequence of operations achieves the goal: multiply $$$x$$$ by $$$2$$$, so $$$x = 2 \\cdot 2 = 4$$$; multiply $$$x$$$ by $$$4$$$, so $$$x = 4 \\cdot 4 = 16$$$; multiply $$$x$$$ by $$$6$$$, so $$$x = 16 \\cdot 6 = 96$$$; multiply $$$x$$$ by $$$9$$$, so $$$x = 96 \\cdot 9 = 864$$$. "}, "src_uid": "cedcc3cee864bf8684148df93804d029"} {"nl": {"description": "Not so long ago company R2 bought company R1 and consequently, all its developments in the field of multicore processors. Now the R2 laboratory is testing one of the R1 processors.The testing goes in n steps, at each step the processor gets some instructions, and then its temperature is measured. The head engineer in R2 is keeping a report record on the work of the processor: he writes down the minimum and the maximum measured temperature in his notebook. His assistant had to write down all temperatures into his notebook, but (for unknown reasons) he recorded only m.The next day, the engineer's assistant filed in a report with all the m temperatures. However, the chief engineer doubts that the assistant wrote down everything correctly (naturally, the chief engineer doesn't doubt his notes). So he asked you to help him. Given numbers n, m, min, max and the list of m temperatures determine whether you can upgrade the set of m temperatures to the set of n temperatures (that is add n\u2009-\u2009m temperatures), so that the minimum temperature was min and the maximum one was max.", "input_spec": "The first line contains four integers n,\u2009m,\u2009min,\u2009max (1\u2009\u2264\u2009m\u2009<\u2009n\u2009\u2264\u2009100;\u00a01\u2009\u2264\u2009min\u2009<\u2009max\u2009\u2264\u2009100). The second line contains m space-separated integers ti (1\u2009\u2264\u2009ti\u2009\u2264\u2009100) \u2014 the temperatures reported by the assistant. Note, that the reported temperatures, and the temperatures you want to add can contain equal temperatures.", "output_spec": "If the data is consistent, print 'Correct' (without the quotes). Otherwise, print 'Incorrect' (without the quotes).", "sample_inputs": ["2 1 1 2\n1", "3 1 1 3\n2", "2 1 1 3\n2"], "sample_outputs": ["Correct", "Correct", "Incorrect"], "notes": "NoteIn the first test sample one of the possible initial configurations of temperatures is [1, 2].In the second test sample one of the possible initial configurations of temperatures is [2, 1, 3].In the third test sample it is impossible to add one temperature to obtain the minimum equal to 1 and the maximum equal to 3."}, "src_uid": "99f9cdc85010bd89434f39b78f15b65e"} {"nl": {"description": "There are n boys and m girls attending a theatre club. To set a play \"The Big Bang Theory\", they need to choose a group containing exactly t actors containing no less than 4 boys and no less than one girl. How many ways are there to choose a group? Of course, the variants that only differ in the composition of the troupe are considered different.Perform all calculations in the 64-bit type: long long for \u0421/\u0421++, int64 for Delphi and long for Java.", "input_spec": "The only line of the input data contains three integers n, m, t (4\u2009\u2264\u2009n\u2009\u2264\u200930,\u20091\u2009\u2264\u2009m\u2009\u2264\u200930,\u20095\u2009\u2264\u2009t\u2009\u2264\u2009n\u2009+\u2009m).", "output_spec": "Find the required number of ways. Please do not use the %lld specificator to read or write 64-bit integers in \u0421++. It is preferred to use cin, cout streams or the %I64d specificator.", "sample_inputs": ["5 2 5", "4 3 5"], "sample_outputs": ["10", "3"], "notes": null}, "src_uid": "489e69c7a2fba5fac34e89d7388ed4b8"} {"nl": {"description": "A prime number is a number which has exactly two distinct divisors: one and itself. For example, numbers 2, 7, 3 are prime, and 1, 6, 4 are not.The next prime number after x is the smallest prime number greater than x. For example, the next prime number after 2 is 3, and the next prime number after 3 is 5. Note that there is exactly one next prime number after each number. So 5 is\u00a0not the next prime number for 2.One cold April morning Panoramix predicted that soon Kakofonix will break free from his straitjacket, and this will be a black day for the residents of the Gallic countryside.Panoramix's prophecy tells that if some day Asterix and Obelix beat exactly x Roman soldiers, where x is a prime number, and next day they beat exactly y Roman soldiers, where y is the next prime number after x, then it's time to wait for Armageddon, for nothing can shut Kakofonix up while he sings his infernal song.Yesterday the Gauls beat n Roman soldiers and it turned out that the number n was prime! Today their victims were a troop of m Romans (m\u2009>\u2009n). Determine whether the Gauls should wait for the black day after today's victory of Asterix and Obelix?", "input_spec": "The first and only input line contains two positive integers \u2014 n and m (2\u2009\u2264\u2009n\u2009<\u2009m\u2009\u2264\u200950). It is guaranteed that n is prime. Pretests contain all the cases with restrictions 2\u2009\u2264\u2009n\u2009<\u2009m\u2009\u2264\u20094.", "output_spec": "Print YES, if m is the next prime number after n, or NO otherwise.", "sample_inputs": ["3 5", "7 11", "7 9"], "sample_outputs": ["YES", "YES", "NO"], "notes": null}, "src_uid": "9d52ff51d747bb59aa463b6358258865"} {"nl": {"description": "Mister B once received a gift: it was a book about aliens, which he started read immediately. This book had c pages.At first day Mister B read v0 pages, but after that he started to speed up. Every day, starting from the second, he read a pages more than on the previous day (at first day he read v0 pages, at second\u00a0\u2014 v0\u2009+\u2009a pages, at third\u00a0\u2014 v0\u2009+\u20092a pages, and so on). But Mister B is just a human, so he physically wasn't able to read more than v1 pages per day.Also, to refresh his memory, every day, starting from the second, Mister B had to reread last l pages he read on the previous day. Mister B finished the book when he read the last page for the first time.Help Mister B to calculate how many days he needed to finish the book.", "input_spec": "First and only line contains five space-separated integers: c, v0, v1, a and l (1\u2009\u2264\u2009c\u2009\u2264\u20091000, 0\u2009\u2264\u2009l\u2009<\u2009v0\u2009\u2264\u2009v1\u2009\u2264\u20091000, 0\u2009\u2264\u2009a\u2009\u2264\u20091000) \u2014 the length of the book in pages, the initial reading speed, the maximum reading speed, the acceleration in reading speed and the number of pages for rereading.", "output_spec": "Print one integer \u2014 the number of days Mister B needed to finish the book.", "sample_inputs": ["5 5 10 5 4", "12 4 12 4 1", "15 1 100 0 0"], "sample_outputs": ["1", "3", "15"], "notes": "NoteIn the first sample test the book contains 5 pages, so Mister B read it right at the first day.In the second sample test at first day Mister B read pages number 1\u2009-\u20094, at second day\u00a0\u2014 4\u2009-\u200911, at third day\u00a0\u2014 11\u2009-\u200912 and finished the book.In third sample test every day Mister B read 1 page of the book, so he finished in 15 days."}, "src_uid": "b743110117ce13e2090367fd038d3b50"} {"nl": {"description": "Certainly, everyone is familiar with tic-tac-toe game. The rules are very simple indeed. Two players take turns marking the cells in a 3\u2009\u00d7\u20093 grid (one player always draws crosses, the other \u2014 noughts). The player who succeeds first in placing three of his marks in a horizontal, vertical or diagonal line wins, and the game is finished. The player who draws crosses goes first. If the grid is filled, but neither Xs, nor 0s form the required line, a draw is announced.You are given a 3\u2009\u00d7\u20093 grid, each grid cell is empty, or occupied by a cross or a nought. You have to find the player (first or second), whose turn is next, or print one of the verdicts below: illegal \u2014 if the given board layout can't appear during a valid game; the first player won \u2014 if in the given board layout the first player has just won; the second player won \u2014 if in the given board layout the second player has just won; draw \u2014 if the given board layout has just let to a draw. ", "input_spec": "The input consists of three lines, each of the lines contains characters \".\", \"X\" or \"0\" (a period, a capital letter X, or a digit zero).", "output_spec": "Print one of the six verdicts: first, second, illegal, the first player won, the second player won or draw.", "sample_inputs": ["X0X\n.0.\n.X."], "sample_outputs": ["second"], "notes": null}, "src_uid": "892680e26369325fb00d15543a96192c"} {"nl": {"description": "Vasya likes to solve equations. Today he wants to solve $$$(x~\\mathrm{div}~k) \\cdot (x \\bmod k) = n$$$, where $$$\\mathrm{div}$$$ and $$$\\mathrm{mod}$$$ stand for integer division and modulo operations (refer to the Notes below for exact definition). In this equation, $$$k$$$ and $$$n$$$ are positive integer parameters, and $$$x$$$ is a positive integer unknown. If there are several solutions, Vasya wants to find the smallest possible $$$x$$$. Can you help him?", "input_spec": "The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \\leq n \\leq 10^6$$$, $$$2 \\leq k \\leq 1000$$$).", "output_spec": "Print a single integer $$$x$$$\u00a0\u2014 the smallest positive integer solution to $$$(x~\\mathrm{div}~k) \\cdot (x \\bmod k) = n$$$. It is guaranteed that this equation has at least one positive integer solution.", "sample_inputs": ["6 3", "1 2", "4 6"], "sample_outputs": ["11", "3", "10"], "notes": "NoteThe result of integer division $$$a~\\mathrm{div}~b$$$ is equal to the largest integer $$$c$$$ such that $$$b \\cdot c \\leq a$$$. $$$a$$$ modulo $$$b$$$ (shortened $$$a \\bmod b$$$) is the only integer $$$c$$$ such that $$$0 \\leq c < b$$$, and $$$a - c$$$ is divisible by $$$b$$$.In the first sample, $$$11~\\mathrm{div}~3 = 3$$$ and $$$11 \\bmod 3 = 2$$$. Since $$$3 \\cdot 2 = 6$$$, then $$$x = 11$$$ is a solution to $$$(x~\\mathrm{div}~3) \\cdot (x \\bmod 3) = 6$$$. One can see that $$$19$$$ is the only other positive integer solution, hence $$$11$$$ is the smallest one."}, "src_uid": "ed0ebc1e484fcaea875355b5b7944c57"} {"nl": {"description": "There are r red and g green blocks for construction of the red-green tower. Red-green tower can be built following next rules: Red-green tower is consisting of some number of levels; Let the red-green tower consist of n levels, then the first level of this tower should consist of n blocks, second level \u2014 of n\u2009-\u20091 blocks, the third one \u2014 of n\u2009-\u20092 blocks, and so on \u2014 the last level of such tower should consist of the one block. In other words, each successive level should contain one block less than the previous one; Each level of the red-green tower should contain blocks of the same color. Let h be the maximum possible number of levels of red-green tower, that can be built out of r red and g green blocks meeting the rules above. The task is to determine how many different red-green towers having h levels can be built out of the available blocks.Two red-green towers are considered different if there exists some level, that consists of red blocks in the one tower and consists of green blocks in the other tower.You are to write a program that will find the number of different red-green towers of height h modulo\u00a0109\u2009+\u20097.", "input_spec": "The only line of input contains two integers r and g, separated by a single space \u2014 the number of available red and green blocks respectively (0\u2009\u2264\u2009r,\u2009g\u2009\u2264\u20092\u00b7105, r\u2009+\u2009g\u2009\u2265\u20091).", "output_spec": "Output the only integer \u2014 the number of different possible red-green towers of height h modulo\u00a0109\u2009+\u20097.", "sample_inputs": ["4 6", "9 7", "1 1"], "sample_outputs": ["2", "6", "2"], "notes": "NoteThe image in the problem statement shows all possible red-green towers for the first sample."}, "src_uid": "34b6286350e3531c1fbda6b0c184addc"} {"nl": {"description": "There are $$$b$$$ boys and $$$g$$$ girls participating in Olympiad of Metropolises. There will be a board games tournament in the evening and $$$n$$$ participants have accepted the invitation. The organizers do not know how many boys and girls are among them.Organizers are preparing red badges for girls and blue ones for boys.Vasya prepared $$$n+1$$$ decks of badges. The $$$i$$$-th (where $$$i$$$ is from $$$0$$$ to $$$n$$$, inclusive) deck contains $$$i$$$ blue badges and $$$n-i$$$ red ones. The total number of badges in any deck is exactly $$$n$$$.Determine the minimum number of decks among these $$$n+1$$$ that Vasya should take, so that there will be a suitable deck no matter how many girls and boys there will be among the participants of the tournament.", "input_spec": "The first line contains an integer $$$b$$$ ($$$1 \\le b \\le 300$$$), the number of boys. The second line contains an integer $$$g$$$ ($$$1 \\le g \\le 300$$$), the number of girls. The third line contains an integer $$$n$$$ ($$$1 \\le n \\le b + g$$$), the number of the board games tournament participants.", "output_spec": "Output the only integer, the minimum number of badge decks that Vasya could take.", "sample_inputs": ["5\n6\n3", "5\n3\n5"], "sample_outputs": ["4", "4"], "notes": "NoteIn the first example, each of 4 decks should be taken: (0 blue, 3 red), (1 blue, 2 red), (2 blue, 1 red), (3 blue, 0 red).In the second example, 4 decks should be taken: (2 blue, 3 red), (3 blue, 2 red), (4 blue, 1 red), (5 blue, 0 red). Piles (0 blue, 5 red) and (1 blue, 4 red) can not be used."}, "src_uid": "9266a69e767df299569986151852e7b1"} {"nl": {"description": "Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for k burles. Assume that there is an unlimited number of such shovels in the shop.In his pocket Polycarp has an unlimited number of \"10-burle coins\" and exactly one coin of r burles (1\u2009\u2264\u2009r\u2009\u2264\u20099).What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of r burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel.", "input_spec": "The single line of input contains two integers k and r (1\u2009\u2264\u2009k\u2009\u2264\u20091000, 1\u2009\u2264\u2009r\u2009\u2264\u20099)\u00a0\u2014 the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from \"10-burle coins\". Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels.", "output_spec": "Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change. ", "sample_inputs": ["117 3", "237 7", "15 2"], "sample_outputs": ["9", "1", "2"], "notes": "NoteIn the first example Polycarp can buy 9 shovels and pay 9\u00b7117\u2009=\u20091053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change.In the second example it is enough for Polycarp to buy one shovel.In the third example Polycarp should buy two shovels and pay 2\u00b715\u2009=\u200930 burles. It is obvious that he can pay this sum without any change. "}, "src_uid": "18cd1cd809df4744bb7bcd7cad94e2d3"} {"nl": {"description": "Masha lives in a multi-storey building, where floors are numbered with positive integers. Two floors are called adjacent if their numbers differ by one. Masha decided to visit Egor. Masha lives on the floor $$$x$$$, Egor on the floor $$$y$$$ (not on the same floor with Masha).The house has a staircase and an elevator. If Masha uses the stairs, it takes $$$t_1$$$ seconds for her to walk between adjacent floors (in each direction). The elevator passes between adjacent floors (in each way) in $$$t_2$$$ seconds. The elevator moves with doors closed. The elevator spends $$$t_3$$$ seconds to open or close the doors. We can assume that time is not spent on any action except moving between adjacent floors and waiting for the doors to open or close. If Masha uses the elevator, it immediately goes directly to the desired floor.Coming out of the apartment on her floor, Masha noticed that the elevator is now on the floor $$$z$$$ and has closed doors. Now she has to choose whether to use the stairs or use the elevator. If the time that Masha needs to get to the Egor's floor by the stairs is strictly less than the time it will take her using the elevator, then she will use the stairs, otherwise she will choose the elevator.Help Mary to understand whether to use the elevator or the stairs.", "input_spec": "The only line contains six integers $$$x$$$, $$$y$$$, $$$z$$$, $$$t_1$$$, $$$t_2$$$, $$$t_3$$$ ($$$1 \\leq x, y, z, t_1, t_2, t_3 \\leq 1000$$$)\u00a0\u2014 the floor Masha is at, the floor Masha wants to get to, the floor the elevator is located on, the time it takes Masha to pass between two floors by stairs, the time it takes the elevator to pass between two floors and the time it takes for the elevator to close or open the doors. It is guaranteed that $$$x \\ne y$$$.", "output_spec": "If the time it will take to use the elevator is not greater than the time it will take to use the stairs, print \u00abYES\u00bb (without quotes), otherwise print \u00abNO> (without quotes). You can print each letter in any case (upper or lower).", "sample_inputs": ["5 1 4 4 2 1", "1 6 6 2 1 1", "4 1 7 4 1 2"], "sample_outputs": ["YES", "NO", "YES"], "notes": "NoteIn the first example:If Masha goes by the stairs, the time she spends is $$$4 \\cdot 4 = 16$$$, because she has to go $$$4$$$ times between adjacent floors and each time she spends $$$4$$$ seconds. If she chooses the elevator, she will have to wait $$$2$$$ seconds while the elevator leaves the $$$4$$$-th floor and goes to the $$$5$$$-th. After that the doors will be opening for another $$$1$$$ second. Then Masha will enter the elevator, and she will have to wait for $$$1$$$ second for the doors closing. Next, the elevator will spend $$$4 \\cdot 2 = 8$$$ seconds going from the $$$5$$$-th floor to the $$$1$$$-st, because the elevator has to pass $$$4$$$ times between adjacent floors and spends $$$2$$$ seconds each time. And finally, it will take another $$$1$$$ second before the doors are open and Masha can come out. Thus, all the way by elevator will take $$$2 + 1 + 1 + 8 + 1 = 13$$$ seconds, which is less than $$$16$$$ seconds, so Masha has to choose the elevator.In the second example, it is more profitable for Masha to use the stairs, because it will take $$$13$$$ seconds to use the elevator, that is more than the $$$10$$$ seconds it will takes to go by foot.In the third example, the time it takes to use the elevator is equal to the time it takes to walk up by the stairs, and is equal to $$$12$$$ seconds. That means Masha will take the elevator."}, "src_uid": "05cffd59b28b9e026ca3203718b2e6ca"} {"nl": {"description": "A necklace can be described as a string of links ('-') and pearls ('o'), with the last link or pearl connected to the first one. You can remove a link or a pearl and insert it between two other existing links or pearls (or between a link and a pearl) on the necklace. This process can be repeated as many times as you like, but you can't throw away any parts.Can you make the number of links between every two adjacent pearls equal? Two pearls are considered to be adjacent if there is no other pearl between them.Note that the final necklace should remain as one circular part of the same length as the initial necklace.", "input_spec": "The only line of input contains a string $$$s$$$ ($$$3 \\leq |s| \\leq 100$$$), representing the necklace, where a dash '-' represents a link and the lowercase English letter 'o' represents a pearl.", "output_spec": "Print \"YES\" if the links and pearls can be rejoined such that the number of links between adjacent pearls is equal. Otherwise print \"NO\". You can print each letter in any case (upper or lower).", "sample_inputs": ["-o-o--", "-o---", "-o---o-", "ooo"], "sample_outputs": ["YES", "YES", "NO", "YES"], "notes": null}, "src_uid": "6e006ae3df3bcd24755358a5f584ec03"}