{"nl": {"description": "In the city of Saint Petersburg, a day lasts for $$$2^{100}$$$ minutes. From the main station of Saint Petersburg, a train departs after $$$1$$$ minute, $$$4$$$ minutes, $$$16$$$ minutes, and so on; in other words, the train departs at time $$$4^k$$$ for each integer $$$k \\geq 0$$$. Team BowWow has arrived at the station at the time $$$s$$$ and it is trying to count how many trains have they missed; in other words, the number of trains that have departed strictly before time $$$s$$$. For example if $$$s = 20$$$, then they missed trains which have departed at $$$1$$$, $$$4$$$ and $$$16$$$. As you are the only one who knows the time, help them!Note that the number $$$s$$$ will be given you in a binary representation without leading zeroes.", "input_spec": "The first line contains a single binary number $$$s$$$ ($$$0 \\leq s < 2^{100}$$$) without leading zeroes.", "output_spec": "Output a single number\u00a0\u2014 the number of trains which have departed strictly before the time $$$s$$$.", "sample_inputs": ["100000000", "101", "10100"], "sample_outputs": ["4", "2", "3"], "notes": "NoteIn the first example $$$100000000_2 = 256_{10}$$$, missed trains have departed at $$$1$$$, $$$4$$$, $$$16$$$ and $$$64$$$.In the second example $$$101_2 = 5_{10}$$$, trains have departed at $$$1$$$ and $$$4$$$.The third example is explained in the statements."}, "src_uid": "d8ca1c83b431466eff6054d3b422ab47"} {"nl": {"description": "There are literally dozens of snooker competitions held each year, and team Jinotega tries to attend them all (for some reason they prefer name \"snookah\")! When a competition takes place somewhere far from their hometown, Ivan, Artsem and Konstantin take a flight to the contest and back.Jinotega's best friends, team Base have found a list of their itinerary receipts with information about departure and arrival airports. Now they wonder, where is Jinotega now: at home or at some competition far away? They know that: this list contains all Jinotega's flights in this year (in arbitrary order), Jinotega has only flown from his hometown to a snooker contest and back, after each competition Jinotega flies back home (though they may attend a competition in one place several times), and finally, at the beginning of the year Jinotega was at home. Please help them to determine Jinotega's location!", "input_spec": "In the first line of input there is a single integer n: the number of Jinotega's flights (1\u2009\u2264\u2009n\u2009\u2264\u2009100). In the second line there is a string of 3 capital Latin letters: the name of Jinotega's home airport. In the next n lines there is flight information, one flight per line, in form \"XXX->YYY\", where \"XXX\" is the name of departure airport \"YYY\" is the name of arrival airport. Exactly one of these airports is Jinotega's home airport. It is guaranteed that flights information is consistent with the knowledge of Jinotega's friends, which is described in the main part of the statement.", "output_spec": "If Jinotega is now at home, print \"home\" (without quotes), otherwise print \"contest\".", "sample_inputs": ["4\nSVO\nSVO->CDG\nLHR->SVO\nSVO->LHR\nCDG->SVO", "3\nSVO\nSVO->HKT\nHKT->SVO\nSVO->RAP"], "sample_outputs": ["home", "contest"], "notes": "NoteIn the first sample Jinotega might first fly from SVO to CDG and back, and then from SVO to LHR and back, so now they should be at home. In the second sample Jinotega must now be at RAP because a flight from RAP back to SVO is not on the list."}, "src_uid": "51d1c79a52d3d4f80c98052b6ec77222"} {"nl": {"description": "The Duck songFor simplicity, we'll assume that there are only three types of grapes: green grapes, purple grapes and black grapes.Andrew, Dmitry and Michal are all grapes' lovers, however their preferences of grapes are different. To make all of them happy, the following should happen: Andrew, Dmitry and Michal should eat at least $$$x$$$, $$$y$$$ and $$$z$$$ grapes, respectively. Andrew has an extreme affinity for green grapes, thus he will eat green grapes and green grapes only. On the other hand, Dmitry is not a fan of black grapes\u00a0\u2014 any types of grapes except black would do for him. In other words, Dmitry can eat green and purple grapes. Michal has a common taste\u00a0\u2014 he enjoys grapes in general and will be pleased with any types of grapes, as long as the quantity is sufficient.Knowing that his friends are so fond of grapes, Aki decided to host a grape party with them. He has prepared a box with $$$a$$$ green grapes, $$$b$$$ purple grapes and $$$c$$$ black grapes.However, Aki isn't sure if the box he prepared contains enough grapes to make everyone happy. Can you please find out whether it's possible to distribute grapes so that everyone is happy or Aki has to buy some more grapes?It is not required to distribute all the grapes, so it's possible that some of them will remain unused.", "input_spec": "The first line contains three integers $$$x$$$, $$$y$$$ and $$$z$$$ ($$$1 \\le x, y, z \\le 10^5$$$)\u00a0\u2014 the number of grapes Andrew, Dmitry and Michal want to eat. The second line contains three integers $$$a$$$, $$$b$$$, $$$c$$$ ($$$1 \\le a, b, c \\le 10^5$$$)\u00a0\u2014 the number of green, purple and black grapes in the box.", "output_spec": "If there is a grape distribution that allows everyone to be happy, print \"YES\", otherwise print \"NO\".", "sample_inputs": ["1 6 2\n4 3 3", "5 1 1\n4 3 2"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example, there is only one possible distribution:Andrew should take $$$1$$$ green grape, Dmitry should take $$$3$$$ remaining green grapes and $$$3$$$ purple grapes, and Michal will take $$$2$$$ out of $$$3$$$ available black grapes.In the second test, there is no possible distribution, since Andrew is not be able to eat enough green grapes. :("}, "src_uid": "d54201591f7284da5e9ce18984439f4e"} {"nl": {"description": "zscoder wants to generate an input file for some programming competition problem.His input is a string consisting of n letters 'a'. He is too lazy to write a generator so he will manually generate the input in a text editor.Initially, the text editor is empty. It takes him x seconds to insert or delete a letter 'a' from the text file and y seconds to copy the contents of the entire text file, and duplicate it.zscoder wants to find the minimum amount of time needed for him to create the input file of exactly n letters 'a'. Help him to determine the amount of time needed to generate the input.", "input_spec": "The only line contains three integers n, x and y (1\u2009\u2264\u2009n\u2009\u2264\u2009107, 1\u2009\u2264\u2009x,\u2009y\u2009\u2264\u2009109) \u2014 the number of letters 'a' in the input file and the parameters from the problem statement.", "output_spec": "Print the only integer t \u2014 the minimum amount of time needed to generate the input file.", "sample_inputs": ["8 1 1", "8 1 10"], "sample_outputs": ["4", "8"], "notes": null}, "src_uid": "0f270af00be2a523515d5e7bd66800f6"} {"nl": {"description": "Alice and Bob begin their day with a quick game. They first choose a starting number X0\u2009\u2265\u20093 and try to reach one million by the process described below. Alice goes first and then they take alternating turns. In the i-th turn, the player whose turn it is selects a prime number smaller than the current number, and announces the smallest multiple of this prime number that is not smaller than the current number.Formally, he or she selects a prime p\u2009<\u2009Xi\u2009-\u20091 and then finds the minimum Xi\u2009\u2265\u2009Xi\u2009-\u20091 such that p divides Xi. Note that if the selected prime p already divides Xi\u2009-\u20091, then the number does not change.Eve has witnessed the state of the game after two turns. Given X2, help her determine what is the smallest possible starting number X0. Note that the players don't necessarily play optimally. You should consider all possible game evolutions.", "input_spec": "The input contains a single integer X2 (4\u2009\u2264\u2009X2\u2009\u2264\u2009106). It is guaranteed that the integer X2 is composite, that is, is not prime.", "output_spec": "Output a single integer\u00a0\u2014 the minimum possible X0.", "sample_inputs": ["14", "20", "8192"], "sample_outputs": ["6", "15", "8191"], "notes": "NoteIn the first test, the smallest possible starting number is X0\u2009=\u20096. One possible course of the game is as follows: Alice picks prime 5 and announces X1\u2009=\u200910 Bob picks prime 7 and announces X2\u2009=\u200914. In the second case, let X0\u2009=\u200915. Alice picks prime 2 and announces X1\u2009=\u200916 Bob picks prime 5 and announces X2\u2009=\u200920. "}, "src_uid": "43ff6a223c68551eff793ba170110438"} {"nl": {"description": "Jon fought bravely to rescue the wildlings who were attacked by the white-walkers at Hardhome. On his arrival, Sam tells him that he wants to go to Oldtown to train at the Citadel to become a maester, so he can return and take the deceased Aemon's place as maester of Castle Black. Jon agrees to Sam's proposal and Sam sets off his journey to the Citadel. However becoming a trainee at the Citadel is not a cakewalk and hence the maesters at the Citadel gave Sam a problem to test his eligibility. Initially Sam has a list with a single element n. Then he has to perform certain operations on this list. In each operation Sam must remove any element x, such that x\u2009>\u20091, from the list and insert at the same position , , sequentially. He must continue with these operations until all the elements in the list are either 0 or 1.Now the masters want the total number of 1s in the range l to r (1-indexed). Sam wants to become a maester but unfortunately he cannot solve this problem. Can you help Sam to pass the eligibility test?", "input_spec": "The first line contains three integers n, l, r (0\u2009\u2264\u2009n\u2009<\u2009250, 0\u2009\u2264\u2009r\u2009-\u2009l\u2009\u2264\u2009105, r\u2009\u2265\u20091, l\u2009\u2265\u20091) \u2013 initial element and the range l to r. It is guaranteed that r is not greater than the length of the final list.", "output_spec": "Output the total number of 1s in the range l to r in the final sequence.", "sample_inputs": ["7 2 5", "10 3 10"], "sample_outputs": ["4", "5"], "notes": "NoteConsider first example:Elements on positions from 2-nd to 5-th in list is [1,\u20091,\u20091,\u20091]. The number of ones is 4.For the second example:Elements on positions from 3-rd to 10-th in list is [1,\u20091,\u20091,\u20090,\u20091,\u20090,\u20091,\u20090]. The number of ones is 5."}, "src_uid": "3ac61b1f8deee7911b1055c243f5eb6a"} {"nl": {"description": "The king's birthday dinner was attended by $$$k$$$ guests. The dinner was quite a success: every person has eaten several dishes (though the number of dishes was the same for every person) and every dish was served alongside with a new set of kitchen utensils.All types of utensils in the kingdom are numbered from $$$1$$$ to $$$100$$$. It is known that every set of utensils is the same and consist of different types of utensils, although every particular type may appear in the set at most once. For example, a valid set of utensils can be composed of one fork, one spoon and one knife.After the dinner was over and the guests were dismissed, the king wondered what minimum possible number of utensils could be stolen. Unfortunately, the king has forgotten how many dishes have been served for every guest but he knows the list of all the utensils left after the dinner. Your task is to find the minimum possible number of stolen utensils.", "input_spec": "The first line contains two integer numbers $$$n$$$ and $$$k$$$ ($$$1 \\le n \\le 100, 1 \\le k \\le 100$$$) \u00a0\u2014 the number of kitchen utensils remaining after the dinner and the number of guests correspondingly. The next line contains $$$n$$$ integers $$$a_1, a_2, \\ldots, a_n$$$ ($$$1 \\le a_i \\le 100$$$) \u00a0\u2014 the types of the utensils remaining. Equal values stand for identical utensils while different values stand for different utensils.", "output_spec": "Output a single value \u2014 the minimum number of utensils that could be stolen by the guests.", "sample_inputs": ["5 2\n1 2 2 1 3", "10 3\n1 3 3 1 3 5 5 5 5 100"], "sample_outputs": ["1", "14"], "notes": "NoteIn the first example it is clear that at least one utensil of type $$$3$$$ has been stolen, since there are two guests and only one such utensil. But it is also possible that every person received only one dish and there were only six utensils in total, when every person got a set $$$(1, 2, 3)$$$ of utensils. Therefore, the answer is $$$1$$$.One can show that in the second example at least $$$2$$$ dishes should have been served for every guest, so the number of utensils should be at least $$$24$$$: every set contains $$$4$$$ utensils and every one of the $$$3$$$ guests gets two such sets. Therefore, at least $$$14$$$ objects have been stolen. Please note that utensils of some types (for example, of types $$$2$$$ and $$$4$$$ in this example) may be not present in the set served for dishes."}, "src_uid": "c03ff0bc6a8c4ce5372194e8ea18527f"} {"nl": {"description": "A and B are preparing themselves for programming contests.An important part of preparing for a competition is sharing programming knowledge from the experienced members to those who are just beginning to deal with the contests. Therefore, during the next team training A decided to make teams so that newbies are solving problems together with experienced participants.A believes that the optimal team of three people should consist of one experienced participant and two newbies. Thus, each experienced participant can share the experience with a large number of people.However, B believes that the optimal team should have two experienced members plus one newbie. Thus, each newbie can gain more knowledge and experience.As a result, A and B have decided that all the teams during the training session should belong to one of the two types described above. Furthermore, they agree that the total number of teams should be as much as possible.There are n experienced members and m newbies on the training session. Can you calculate what maximum number of teams can be formed?", "input_spec": "The first line contains two integers n and m (0\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20095\u00b7105) \u2014 the number of experienced participants and newbies that are present at the training session. ", "output_spec": "Print the maximum number of teams that can be formed.", "sample_inputs": ["2 6", "4 5"], "sample_outputs": ["2", "3"], "notes": "NoteLet's represent the experienced players as XP and newbies as NB.In the first test the teams look as follows: (XP, NB, NB), (XP, NB, NB).In the second test sample the teams look as follows: (XP, NB, NB), (XP, NB, NB), (XP, XP, NB)."}, "src_uid": "0718c6afe52cd232a5e942052527f31b"} {"nl": {"description": "You are given a sequence a consisting of n integers. You may partition this sequence into two sequences b and c in such a way that every element belongs exactly to one of these sequences. Let B be the sum of elements belonging to b, and C be the sum of elements belonging to c (if some of these sequences is empty, then its sum is 0). What is the maximum possible value of B\u2009-\u2009C?", "input_spec": "The first line contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of elements in a. The second line contains n integers a1, a2, ..., an (\u2009-\u2009100\u2009\u2264\u2009ai\u2009\u2264\u2009100) \u2014 the elements of sequence a.", "output_spec": "Print the maximum possible value of B\u2009-\u2009C, where B is the sum of elements of sequence b, and C is the sum of elements of sequence c.", "sample_inputs": ["3\n1 -2 0", "6\n16 23 16 15 42 8"], "sample_outputs": ["3", "120"], "notes": "NoteIn the first example we may choose b\u2009=\u2009{1,\u20090}, c\u2009=\u2009{\u2009-\u20092}. Then B\u2009=\u20091, C\u2009=\u2009\u2009-\u20092, B\u2009-\u2009C\u2009=\u20093.In the second example we choose b\u2009=\u2009{16,\u200923,\u200916,\u200915,\u200942,\u20098}, c\u2009=\u2009{} (an empty sequence). Then B\u2009=\u2009120, C\u2009=\u20090, B\u2009-\u2009C\u2009=\u2009120."}, "src_uid": "4b5d14833f9b51bfd336cc0e661243a5"} {"nl": {"description": "Polycarpus plays with red and blue marbles. He put n marbles from the left to the right in a row. As it turned out, the marbles form a zebroid.A non-empty sequence of red and blue marbles is a zebroid, if the colors of the marbles in this sequence alternate. For example, sequences (red; blue; red) and (blue) are zebroids and sequence (red; red) is not a zebroid.Now Polycarpus wonders, how many ways there are to pick a zebroid subsequence from this sequence. Help him solve the problem, find the number of ways modulo 1000000007 (109\u2009+\u20097).", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009106) \u2014 the number of marbles in Polycarpus's sequence.", "output_spec": "Print a single number \u2014 the answer to the problem modulo 1000000007 (109\u2009+\u20097).", "sample_inputs": ["3", "4"], "sample_outputs": ["6", "11"], "notes": "NoteLet's consider the first test sample. Let's assume that Polycarpus initially had sequence (red; blue; red), so there are six ways to pick a zebroid: pick the first marble; pick the second marble; pick the third marble; pick the first and second marbles; pick the second and third marbles; pick the first, second and third marbles. It can be proven that if Polycarpus picks (blue; red; blue) as the initial sequence, the number of ways won't change."}, "src_uid": "5c4bd12df3915186a7b506c2060db125"} {"nl": {"description": "Once upon a time a child got a test consisting of multiple-choice questions as homework. A multiple-choice question consists of four choices: A, B, C and D. Each choice has a description, and the child should find out the only one that is correct.Fortunately the child knows how to solve such complicated test. The child will follow the algorithm: If there is some choice whose description at least twice shorter than all other descriptions, or at least twice longer than all other descriptions, then the child thinks the choice is great. If there is exactly one great choice then the child chooses it. Otherwise the child chooses C (the child think it is the luckiest choice). You are given a multiple-choice questions, can you predict child's choose?", "input_spec": "The first line starts with \"A.\" (without quotes), then followed the description of choice A. The next three lines contains the descriptions of the other choices in the same format. They are given in order: B, C, D. Please note, that the description goes after prefix \"X.\", so the prefix mustn't be counted in description's length. Each description is non-empty and consists of at most 100 characters. Each character can be either uppercase English letter or lowercase English letter, or \"_\". ", "output_spec": "Print a single line with the child's choice: \"A\", \"B\", \"C\" or \"D\" (without quotes).", "sample_inputs": ["A.VFleaKing_is_the_author_of_this_problem\nB.Picks_is_the_author_of_this_problem\nC.Picking_is_the_author_of_this_problem\nD.Ftiasch_is_cute", "A.ab\nB.abcde\nC.ab\nD.abc", "A.c\nB.cc\nC.c\nD.c"], "sample_outputs": ["D", "C", "B"], "notes": "NoteIn the first sample, the first choice has length 39, the second one has length 35, the third one has length 37, and the last one has length 15. The choice D (length 15) is twice shorter than all other choices', so it is great choice. There is no other great choices so the child will choose D.In the second sample, no choice is great, so the child will choose the luckiest choice C.In the third sample, the choice B (length 2) is twice longer than all other choices', so it is great choice. There is no other great choices so the child will choose B."}, "src_uid": "30725e340dc07f552f0cce359af226a4"} {"nl": {"description": "Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.Neko has two integers $$$a$$$ and $$$b$$$. His goal is to find a non-negative integer $$$k$$$ such that the least common multiple of $$$a+k$$$ and $$$b+k$$$ is the smallest possible. If there are multiple optimal integers $$$k$$$, he needs to choose the smallest one.Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?", "input_spec": "The only line contains two integers $$$a$$$ and $$$b$$$ ($$$1 \\le a, b \\le 10^9$$$).", "output_spec": "Print the smallest non-negative integer $$$k$$$ ($$$k \\ge 0$$$) such that the lowest common multiple of $$$a+k$$$ and $$$b+k$$$ is the smallest possible. If there are many possible integers $$$k$$$ giving the same value of the least common multiple, print the smallest one.", "sample_inputs": ["6 10", "21 31", "5 10"], "sample_outputs": ["2", "9", "0"], "notes": "NoteIn the first test, one should choose $$$k = 2$$$, as the least common multiple of $$$6 + 2$$$ and $$$10 + 2$$$ is $$$24$$$, which is the smallest least common multiple possible."}, "src_uid": "414149fadebe25ab6097fc67663177c3"} {"nl": {"description": "A simple recommendation system would recommend a user things liked by a certain number of their friends. In this problem you will implement part of such a system.You are given user's friends' opinions about a list of items. You are also given a threshold T \u2014 the minimal number of \"likes\" necessary for an item to be recommended to the user.Output the number of items in the list liked by at least T of user's friends.", "input_spec": "The first line of the input will contain three space-separated integers: the number of friends F (1\u2009\u2264\u2009F\u2009\u2264\u200910), the number of items I (1\u2009\u2264\u2009I\u2009\u2264\u200910) and the threshold T (1\u2009\u2264\u2009T\u2009\u2264\u2009F). The following F lines of input contain user's friends' opinions. j-th character of i-th line is 'Y' if i-th friend likes j-th item, and 'N' otherwise.", "output_spec": "Output an integer \u2014 the number of items liked by at least T of user's friends.", "sample_inputs": ["3 3 2\nYYY\nNNN\nYNY", "4 4 1\nNNNY\nNNYN\nNYNN\nYNNN"], "sample_outputs": ["2", "4"], "notes": null}, "src_uid": "4c978130187e8ae6ca013d3f781b064e"} {"nl": {"description": "There are $$$n$$$ students in a school class, the rating of the $$$i$$$-th student on Codehorses is $$$a_i$$$. You have to form a team consisting of $$$k$$$ students ($$$1 \\le k \\le n$$$) such that the ratings of all team members are distinct.If it is impossible to form a suitable team, print \"NO\" (without quotes). Otherwise print \"YES\", and then print $$$k$$$ distinct numbers which should be the indices of students in the team you form. If there are multiple answers, print any of them.", "input_spec": "The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \\le k \\le n \\le 100$$$) \u2014 the number of students and the size of the team you have to form. The second line contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 100$$$), where $$$a_i$$$ is the rating of $$$i$$$-th student.", "output_spec": "If it is impossible to form a suitable team, print \"NO\" (without quotes). Otherwise print \"YES\", and then print $$$k$$$ distinct integers from $$$1$$$ to $$$n$$$ which should be the indices of students in the team you form. All the ratings of the students in the team should be distinct. You may print the indices in any order. If there are multiple answers, print any of them. Assume that the students are numbered from $$$1$$$ to $$$n$$$.", "sample_inputs": ["5 3\n15 13 15 15 12", "5 4\n15 13 15 15 12", "4 4\n20 10 40 30"], "sample_outputs": ["YES\n1 2 5", "NO", "YES\n1 2 3 4"], "notes": "NoteAll possible answers for the first example: {1 2 5} {2 3 5} {2 4 5} Note that the order does not matter."}, "src_uid": "5de6574d57ab04ca195143e08d28d0ad"} {"nl": {"description": "Arthur and Alexander are number busters. Today they've got a competition. Arthur took a group of four integers a,\u2009b,\u2009w,\u2009x (0\u2009\u2264\u2009b\u2009<\u2009w,\u20090\u2009<\u2009x\u2009<\u2009w) and Alexander took integer \u0441. Arthur and Alexander use distinct approaches to number bustings. Alexander is just a regular guy. Each second, he subtracts one from his number. In other words, he performs the assignment: c\u2009=\u2009c\u2009-\u20091. Arthur is a sophisticated guy. Each second Arthur performs a complex operation, described as follows: if b\u2009\u2265\u2009x, perform the assignment b\u2009=\u2009b\u2009-\u2009x, if b\u2009<\u2009x, then perform two consecutive assignments a\u2009=\u2009a\u2009-\u20091;\u00a0b\u2009=\u2009w\u2009-\u2009(x\u2009-\u2009b).You've got numbers a,\u2009b,\u2009w,\u2009x,\u2009c. Determine when Alexander gets ahead of Arthur if both guys start performing the operations at the same time. Assume that Alexander got ahead of Arthur if c\u2009\u2264\u2009a.", "input_spec": "The first line contains integers a,\u2009b,\u2009w,\u2009x,\u2009c (1\u2009\u2264\u2009a\u2009\u2264\u20092\u00b7109,\u20091\u2009\u2264\u2009w\u2009\u2264\u20091000,\u20090\u2009\u2264\u2009b\u2009<\u2009w,\u20090\u2009<\u2009x\u2009<\u2009w,\u20091\u2009\u2264\u2009c\u2009\u2264\u20092\u00b7109).", "output_spec": "Print a single integer \u2014 the minimum time in seconds Alexander needs to get ahead of Arthur. You can prove that the described situation always occurs within the problem's limits.", "sample_inputs": ["4 2 3 1 6", "4 2 3 1 7", "1 2 3 2 6", "1 1 2 1 1"], "sample_outputs": ["2", "4", "13", "0"], "notes": null}, "src_uid": "a1db3dd9f8d0f0cad7bdeb1780707143"} {"nl": {"description": "Right now she actually isn't. But she will be, if you don't solve this problem.You are given integers n, k, A and B. There is a number x, which is initially equal to n. You are allowed to perform two types of operations: Subtract 1 from x. This operation costs you A coins. Divide x by k. Can be performed only if x is divisible by k. This operation costs you B coins. What is the minimum amount of coins you have to pay to make x equal to 1?", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092\u00b7109). The second line contains a single integer k (1\u2009\u2264\u2009k\u2009\u2264\u20092\u00b7109). The third line contains a single integer A (1\u2009\u2264\u2009A\u2009\u2264\u20092\u00b7109). The fourth line contains a single integer B (1\u2009\u2264\u2009B\u2009\u2264\u20092\u00b7109).", "output_spec": "Output a single integer\u00a0\u2014 the minimum amount of coins you have to pay to make x equal to 1.", "sample_inputs": ["9\n2\n3\n1", "5\n5\n2\n20", "19\n3\n4\n2"], "sample_outputs": ["6", "8", "12"], "notes": "NoteIn the first testcase, the optimal strategy is as follows: Subtract 1 from x (9\u2009\u2192\u20098) paying 3 coins. Divide x by 2 (8\u2009\u2192\u20094) paying 1 coin. Divide x by 2 (4\u2009\u2192\u20092) paying 1 coin. Divide x by 2 (2\u2009\u2192\u20091) paying 1 coin. The total cost is 6 coins.In the second test case the optimal strategy is to subtract 1 from x 4 times paying 8 coins in total."}, "src_uid": "f838fae7c98bf51cfa0b9bd158650b10"} {"nl": {"description": "Dreamoon is standing at the position 0 on a number line. Drazil is sending a list of commands through Wi-Fi to Dreamoon's smartphone and Dreamoon follows them.Each command is one of the following two types: Go 1 unit towards the positive direction, denoted as '+' Go 1 unit towards the negative direction, denoted as '-' But the Wi-Fi condition is so poor that Dreamoon's smartphone reports some of the commands can't be recognized and Dreamoon knows that some of them might even be wrong though successfully recognized. Dreamoon decides to follow every recognized command and toss a fair coin to decide those unrecognized ones (that means, he moves to the 1 unit to the negative or positive direction with the same probability 0.5). You are given an original list of commands sent by Drazil and list received by Dreamoon. What is the probability that Dreamoon ends in the position originally supposed to be final by Drazil's commands?", "input_spec": "The first line contains a string s1 \u2014 the commands Drazil sends to Dreamoon, this string consists of only the characters in the set {'+', '-'}. The second line contains a string s2 \u2014 the commands Dreamoon's smartphone recognizes, this string consists of only the characters in the set {'+', '-', '?'}. '?' denotes an unrecognized command. Lengths of two strings are equal and do not exceed 10.", "output_spec": "Output a single real number corresponding to the probability. The answer will be considered correct if its relative or absolute error doesn't exceed 10\u2009-\u20099.", "sample_inputs": ["++-+-\n+-+-+", "+-+-\n+-??", "+++\n??-"], "sample_outputs": ["1.000000000000", "0.500000000000", "0.000000000000"], "notes": "NoteFor the first sample, both s1 and s2 will lead Dreamoon to finish at the same position \u2009+\u20091. For the second sample, s1 will lead Dreamoon to finish at position 0, while there are four possibilites for s2: {\"+-++\", \"+-+-\", \"+--+\", \"+---\"} with ending position {+2, 0, 0, -2} respectively. So there are 2 correct cases out of 4, so the probability of finishing at the correct position is 0.5. For the third sample, s2 could only lead us to finish at positions {+1, -1, -3}, so the probability to finish at the correct position \u2009+\u20093 is 0."}, "src_uid": "f7f68a15cfd33f641132fac265bc5299"} {"nl": {"description": "Many people are aware of DMCA \u2013 Digital Millennium Copyright Act. But another recently proposed DMCA \u2013 Digital Millennium Calculation Act \u2013 is much less known.In this problem you need to find a root of a number according to this new DMCA law.", "input_spec": "The input contains a single integer $$$a$$$ ($$$1 \\le a \\le 1000000$$$).", "output_spec": "Output the result \u2013 an integer number.", "sample_inputs": ["1", "81"], "sample_outputs": ["1", "9"], "notes": null}, "src_uid": "477a67877367dc68b3bf5143120ff45d"} {"nl": {"description": "There are n cities in Bearland, numbered 1 through n. Cities are arranged in one long row. The distance between cities i and j is equal to |i\u2009-\u2009j|.Limak is a police officer. He lives in a city a. His job is to catch criminals. It's hard because he doesn't know in which cities criminals are. Though, he knows that there is at most one criminal in each city.Limak is going to use a BCD (Bear Criminal Detector). The BCD will tell Limak how many criminals there are for every distance from a city a. After that, Limak can catch a criminal in each city for which he is sure that there must be a criminal.You know in which cities criminals are. Count the number of criminals Limak will catch, after he uses the BCD.", "input_spec": "The first line of the input contains two integers n and a (1\u2009\u2264\u2009a\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of cities and the index of city where Limak lives. The second line contains n integers t1,\u2009t2,\u2009...,\u2009tn (0\u2009\u2264\u2009ti\u2009\u2264\u20091). There are ti criminals in the i-th city.", "output_spec": "Print the number of criminals Limak will catch.", "sample_inputs": ["6 3\n1 1 1 0 1 0", "5 2\n0 0 0 1 0"], "sample_outputs": ["3", "1"], "notes": "NoteIn the first sample, there are six cities and Limak lives in the third one (blue arrow below). Criminals are in cities marked red. Using the BCD gives Limak the following information: There is one criminal at distance 0 from the third city\u00a0\u2014 Limak is sure that this criminal is exactly in the third city. There is one criminal at distance 1 from the third city\u00a0\u2014 Limak doesn't know if a criminal is in the second or fourth city. There are two criminals at distance 2 from the third city\u00a0\u2014 Limak is sure that there is one criminal in the first city and one in the fifth city. There are zero criminals for every greater distance. So, Limak will catch criminals in cities 1, 3 and 5, that is 3 criminals in total.In the second sample (drawing below), the BCD gives Limak the information that there is one criminal at distance 2 from Limak's city. There is only one city at distance 2 so Limak is sure where a criminal is. "}, "src_uid": "4840d571d4ce6e1096bb678b6c100ae5"} {"nl": {"description": "A number is called almost prime if it has exactly two distinct prime divisors. For example, numbers 6, 18, 24 are almost prime, while 4, 8, 9, 42 are not. Find the amount of almost prime numbers which are between 1 and n, inclusive.", "input_spec": "Input contains one integer number n (1\u2009\u2264\u2009n\u2009\u2264\u20093000).", "output_spec": "Output the amount of almost prime numbers between 1 and n, inclusive.", "sample_inputs": ["10", "21"], "sample_outputs": ["2", "8"], "notes": null}, "src_uid": "356666366625bc5358bc8b97c8d67bd5"} {"nl": {"description": "Bear Limak likes watching sports on TV. He is going to watch a game today. The game lasts 90 minutes and there are no breaks.Each minute can be either interesting or boring. If 15 consecutive minutes are boring then Limak immediately turns TV off.You know that there will be n interesting minutes t1,\u2009t2,\u2009...,\u2009tn. Your task is to calculate for how many minutes Limak will watch the game.", "input_spec": "The first line of the input contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u200990)\u00a0\u2014 the number of interesting minutes. The second line contains n integers t1,\u2009t2,\u2009...,\u2009tn (1\u2009\u2264\u2009t1\u2009<\u2009t2\u2009<\u2009... tn\u2009\u2264\u200990), given in the increasing order.", "output_spec": "Print the number of minutes Limak will watch the game.", "sample_inputs": ["3\n7 20 88", "9\n16 20 30 40 50 60 70 80 90", "9\n15 20 30 40 50 60 70 80 90"], "sample_outputs": ["35", "15", "90"], "notes": "NoteIn the first sample, minutes 21,\u200922,\u2009...,\u200935 are all boring and thus Limak will turn TV off immediately after the 35-th minute. So, he would watch the game for 35 minutes.In the second sample, the first 15 minutes are boring.In the third sample, there are no consecutive 15 boring minutes. So, Limak will watch the whole game."}, "src_uid": "5031b15e220f0ff6cc1dd3731ecdbf27"} {"nl": {"description": "After playing Neo in the legendary \"Matrix\" trilogy, Keanu Reeves started doubting himself: maybe we really live in virtual reality? To find if this is true, he needs to solve the following problem.Let's call a string consisting of only zeroes and ones good if it contains different numbers of zeroes and ones. For example, 1, 101, 0000 are good, while 01, 1001, and 111000 are not good.We are given a string $$$s$$$ of length $$$n$$$ consisting of only zeroes and ones. We need to cut $$$s$$$ into minimal possible number of substrings $$$s_1, s_2, \\ldots, s_k$$$ such that all of them are good. More formally, we have to find minimal by number of strings sequence of good strings $$$s_1, s_2, \\ldots, s_k$$$ such that their concatenation (joining) equals $$$s$$$, i.e. $$$s_1 + s_2 + \\dots + s_k = s$$$.For example, cuttings 110010 into 110 and 010 or into 11 and 0010 are valid, as 110, 010, 11, 0010 are all good, and we can't cut 110010 to the smaller number of substrings as 110010 isn't good itself. At the same time, cutting of 110010 into 1100 and 10 isn't valid as both strings aren't good. Also, cutting of 110010 into 1, 1, 0010 isn't valid, as it isn't minimal, even though all $$$3$$$ strings are good.Can you help Keanu? We can show that the solution always exists. If there are multiple optimal answers, print any.", "input_spec": "The first line of the input contains a single integer $$$n$$$ ($$$1\\le n \\le 100$$$)\u00a0\u2014 the length of the string $$$s$$$. The second line contains the string $$$s$$$ of length $$$n$$$ consisting only from zeros and ones.", "output_spec": "In the first line, output a single integer $$$k$$$ ($$$1\\le k$$$)\u00a0\u2014 a minimal number of strings you have cut $$$s$$$ into. In the second line, output $$$k$$$ strings $$$s_1, s_2, \\ldots, s_k$$$ separated with spaces. The length of each string has to be positive. Their concatenation has to be equal to $$$s$$$ and all of them have to be good. If there are multiple answers, print any.", "sample_inputs": ["1\n1", "2\n10", "6\n100011"], "sample_outputs": ["1\n1", "2\n1 0", "2\n100 011"], "notes": "NoteIn the first example, the string 1 wasn't cut at all. As it is good, the condition is satisfied.In the second example, 1 and 0 both are good. As 10 isn't good, the answer is indeed minimal.In the third example, 100 and 011 both are good. As 100011 isn't good, the answer is indeed minimal."}, "src_uid": "4ebed264d40a449602a26ceef2e849d1"} {"nl": {"description": "Ayrat is looking for the perfect code. He decided to start his search from an infinite field tiled by hexagons. For convenience the coordinate system is introduced, take a look at the picture to see how the coordinates of hexagon are defined: Ayrat is searching through the field. He started at point (0,\u20090) and is moving along the spiral (see second picture). Sometimes he forgets where he is now. Help Ayrat determine his location after n moves.", "input_spec": "The only line of the input contains integer n (0\u2009\u2264\u2009n\u2009\u2264\u20091018)\u00a0\u2014 the number of Ayrat's moves.", "output_spec": "Print two integers x and y\u00a0\u2014 current coordinates of Ayrat coordinates.", "sample_inputs": ["3", "7"], "sample_outputs": ["-2 0", "3 2"], "notes": null}, "src_uid": "a4b6a570f5e63462b68447713924b465"} {"nl": {"description": "Let's assume that we have a pair of numbers (a,\u2009b). We can get a new pair (a\u2009+\u2009b,\u2009b) or (a,\u2009a\u2009+\u2009b) from the given pair in a single step.Let the initial pair of numbers be (1,1). Your task is to find number k, that is, the least number of steps needed to transform (1,1) into the pair where at least one number equals n.", "input_spec": "The input contains the only integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009106).", "output_spec": "Print the only integer k.", "sample_inputs": ["5", "1"], "sample_outputs": ["3", "0"], "notes": "NoteThe pair (1,1) can be transformed into a pair containing 5 in three moves: (1,1) \u2009\u2192\u2009 (1,2) \u2009\u2192\u2009 (3,2) \u2009\u2192\u2009 (5,2)."}, "src_uid": "75739f77378b21c331b46b1427226fa1"} {"nl": {"description": "InputThe input contains a single integer a (0\u2009\u2264\u2009a\u2009\u2264\u200935).OutputOutput a single integer.ExamplesInput3Output8Input10Output1024", "input_spec": "The input contains a single integer a (0\u2009\u2264\u2009a\u2009\u2264\u200935).", "output_spec": "Output a single integer.", "sample_inputs": ["3", "10"], "sample_outputs": ["8", "1024"], "notes": null}, "src_uid": "76f6ebfaeea789952c931d65c6a5fdff"} {"nl": {"description": "InputThe input consists of a single string of uppercase letters A-Z. The length of the string is between 1 and 10 characters, inclusive.OutputOutput \"YES\" or \"NO\".ExamplesInput\nHELP\nOutput\nYES\nInput\nAID\nOutput\nNO\nInput\nMARY\nOutput\nNO\nInput\nANNA\nOutput\nYES\nInput\nMUG\nOutput\nYES\nInput\nCUP\nOutput\nNO\nInput\nSUM\nOutput\nYES\nInput\nPRODUCT\nOutput\nNO\n", "input_spec": "The input consists of a single string of uppercase letters A-Z. The length of the string is between 1 and 10 characters, inclusive.", "output_spec": "Output \"YES\" or \"NO\".", "sample_inputs": ["HELP", "AID", "MARY", "ANNA", "MUG", "CUP", "SUM", "PRODUCT"], "sample_outputs": ["YES", "NO", "NO", "YES", "YES", "NO", "YES", "NO"], "notes": null}, "src_uid": "27e977b41f5b6970a032d13e53db2a6a"} {"nl": {"description": "The Little Elephant very much loves sums on intervals.This time he has a pair of integers l and r (l\u2009\u2264\u2009r). The Little Elephant has to find the number of such integers x (l\u2009\u2264\u2009x\u2009\u2264\u2009r), that the first digit of integer x equals the last one (in decimal notation). For example, such numbers as 101, 477474 or 9 will be included in the answer and 47, 253 or 1020 will not.Help him and count the number of described numbers x for a given pair l and r.", "input_spec": "The single line contains a pair of integers l and r (1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u20091018) \u2014 the boundaries of the interval. Please, do not use the %lld specifier to read or write 64-bit integers in \u0421++. It is preferred to use cin, cout streams or the %I64d specifier.", "output_spec": "On a single line print a single integer \u2014 the answer to the problem.", "sample_inputs": ["2 47", "47 1024"], "sample_outputs": ["12", "98"], "notes": "NoteIn the first sample the answer includes integers 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44. "}, "src_uid": "9642368dc4ffe2fc6fe6438c7406c1bd"} {"nl": {"description": "Have you ever played Hanabi? If not, then you've got to try it out! This problem deals with a simplified version of the game.Overall, the game has 25 types of cards (5 distinct colors and 5 distinct values). Borya is holding n cards. The game is somewhat complicated by the fact that everybody sees Borya's cards except for Borya himself. Borya knows which cards he has but he knows nothing about the order they lie in. Note that Borya can have multiple identical cards (and for each of the 25 types of cards he knows exactly how many cards of this type he has).The aim of the other players is to achieve the state when Borya knows the color and number value of each of his cards. For that, other players can give him hints. The hints can be of two types: color hints and value hints. A color hint goes like that: a player names some color and points at all the cards of this color. Similarly goes the value hint. A player names some value and points at all the cards that contain the value.Determine what minimum number of hints the other players should make for Borya to be certain about each card's color and value.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of Borya's cards. The next line contains the descriptions of n cards. The description of each card consists of exactly two characters. The first character shows the color (overall this position can contain five distinct letters \u2014 R, G, B, Y, W). The second character shows the card's value (a digit from 1 to 5). Borya doesn't know exact order of the cards they lie in.", "output_spec": "Print a single integer \u2014 the minimum number of hints that the other players should make.", "sample_inputs": ["2\nG3 G3", "4\nG4 R4 R3 B3", "5\nB1 Y1 W1 G1 R1"], "sample_outputs": ["0", "2", "4"], "notes": "NoteIn the first sample Borya already knows for each card that it is a green three.In the second sample we can show all fours and all red cards.In the third sample you need to make hints about any four colors."}, "src_uid": "3b12863997b377b47bae43566ec1a63b"} {"nl": {"description": "There is a beautiful garden of stones in Innopolis.Its most beautiful place is the $$$n$$$ piles with stones numbered from $$$1$$$ to $$$n$$$.EJOI participants have visited this place twice. When they first visited it, the number of stones in piles was $$$x_1, x_2, \\ldots, x_n$$$, correspondingly. One of the participants wrote down this sequence in a notebook. They visited it again the following day, and the number of stones in piles was equal to $$$y_1, y_2, \\ldots, y_n$$$. One of the participants also wrote it down in a notebook.It is well known that every member of the EJOI jury during the night either sits in the room $$$108$$$ or comes to the place with stones. Each jury member who comes there either takes one stone for himself or moves one stone from one pile to another. We can assume that there is an unlimited number of jury members. No one except the jury goes to the place with stones at night.Participants want to know whether their notes can be correct or they are sure to have made a mistake.", "input_spec": "The first line of the input file contains a single integer $$$n$$$, the number of piles with stones in the garden ($$$1 \\leq n \\leq 50$$$). The second line contains $$$n$$$ integers separated by spaces $$$x_1, x_2, \\ldots, x_n$$$, the number of stones in piles recorded in the notebook when the participants came to the place with stones for the first time ($$$0 \\leq x_i \\leq 1000$$$). The third line contains $$$n$$$ integers separated by spaces $$$y_1, y_2, \\ldots, y_n$$$, the number of stones in piles recorded in the notebook when the participants came to the place with stones for the second time ($$$0 \\leq y_i \\leq 1000$$$).", "output_spec": "If the records can be consistent output \"Yes\", otherwise output \"No\" (quotes for clarity).", "sample_inputs": ["5\n1 2 3 4 5\n2 1 4 3 5", "5\n1 1 1 1 1\n1 0 1 0 1", "3\n2 3 9\n1 7 9"], "sample_outputs": ["Yes", "Yes", "No"], "notes": "NoteIn the first example, the following could have happened during the night: one of the jury members moved one stone from the second pile to the first pile, and the other jury member moved one stone from the fourth pile to the third pile.In the second example, the jury took stones from the second and fourth piles.It can be proved that it is impossible for the jury members to move and took stones to convert the first array into the second array."}, "src_uid": "e0ddac5c6d3671070860dda10d50c28a"} {"nl": {"description": "Several ages ago Berland was a kingdom. The King of Berland adored math. That's why, when he first visited one of his many palaces, he first of all paid attention to the floor in one hall. The floor was tiled with hexagonal tiles.The hall also turned out hexagonal in its shape. The King walked along the perimeter of the hall and concluded that each of the six sides has a, b, c, a, b and c adjacent tiles, correspondingly.To better visualize the situation, look at the picture showing a similar hexagon for a\u2009=\u20092, b\u2009=\u20093 and c\u2009=\u20094. According to the legend, as the King of Berland obtained the values a, b and c, he almost immediately calculated the total number of tiles on the hall floor. Can you do the same?", "input_spec": "The first line contains three integers: a, b and c (2\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u20091000).", "output_spec": "Print a single number \u2014 the total number of tiles on the hall floor.", "sample_inputs": ["2 3 4"], "sample_outputs": ["18"], "notes": null}, "src_uid": "8ab25ed4955d978fe20f6872cb94b0da"} {"nl": {"description": "When Valera was playing football on a stadium, it suddenly began to rain. Valera hid in the corridor under the grandstand not to get wet. However, the desire to play was so great that he decided to train his hitting the ball right in this corridor. Valera went back far enough, put the ball and hit it. The ball bounced off the walls, the ceiling and the floor corridor and finally hit the exit door. As the ball was wet, it left a spot on the door. Now Valera wants to know the coordinates for this spot.Let's describe the event more formally. The ball will be considered a point in space. The door of the corridor will be considered a rectangle located on plane xOz, such that the lower left corner of the door is located at point (0,\u20090,\u20090), and the upper right corner is located at point (a,\u20090,\u2009b) . The corridor will be considered as a rectangular parallelepiped, infinite in the direction of increasing coordinates of y. In this corridor the floor will be considered as plane xOy, and the ceiling as plane, parallel to xOy and passing through point (a,\u20090,\u2009b). We will also assume that one of the walls is plane yOz, and the other wall is plane, parallel to yOz and passing through point (a,\u20090,\u2009b).We'll say that the ball hit the door when its coordinate y was equal to 0. Thus the coordinates of the spot are point (x0,\u20090,\u2009z0), where 0\u2009\u2264\u2009x0\u2009\u2264\u2009a,\u20090\u2009\u2264\u2009z0\u2009\u2264\u2009b. To hit the ball, Valera steps away from the door at distance m and puts the ball in the center of the corridor at point . After the hit the ball flies at speed (vx,\u2009vy,\u2009vz). This means that if the ball has coordinates (x,\u2009y,\u2009z), then after one second it will have coordinates (x\u2009+\u2009vx,\u2009y\u2009+\u2009vy,\u2009z\u2009+\u2009vz).See image in notes for clarification.When the ball collides with the ceiling, the floor or a wall of the corridor, it bounces off in accordance with the laws of reflection (the angle of incidence equals the angle of reflection). In the problem we consider the ideal physical model, so we can assume that there is no air resistance, friction force, or any loss of energy.", "input_spec": "The first line contains three space-separated integers a,\u2009b,\u2009m (1\u2009\u2264\u2009a,\u2009b,\u2009m\u2009\u2264\u2009100). The first two integers specify point (a,\u20090,\u2009b), through which the ceiling and one of the corridor walls pass. The third integer is the distance at which Valera went away from the door. The second line has three space-separated integers vx,\u2009vy,\u2009vz (|vx|,\u2009|vy|,\u2009|vz|\u2009\u2264\u2009100,\u2009vy\u2009<\u20090,\u2009vz\u2009\u2265\u20090) \u2014 the speed of the ball after the hit. It is guaranteed that the ball hits the door.", "output_spec": "Print two real numbers x0,\u2009z0 \u2014 the x and z coordinates of point (x0,\u20090,\u2009z0), at which the ball hits the exit door. The answer will be considered correct, if its absolute or relative error does not exceed 10\u2009\u2009-\u20096.", "sample_inputs": ["7 2 11\n3 -11 2", "7 2 11\n4 -3 3"], "sample_outputs": ["6.5000000000 2.0000000000", "4.1666666667 1.0000000000"], "notes": "Note"}, "src_uid": "84848b8bd92fd2834db1ee9cb0899cff"} {"nl": {"description": "We consider a positive integer perfect, if and only if the sum of its digits is exactly $$$10$$$. Given a positive integer $$$k$$$, your task is to find the $$$k$$$-th smallest perfect positive integer.", "input_spec": "A single line with a positive integer $$$k$$$ ($$$1 \\leq k \\leq 10\\,000$$$).", "output_spec": "A single number, denoting the $$$k$$$-th smallest perfect integer.", "sample_inputs": ["1", "2"], "sample_outputs": ["19", "28"], "notes": "NoteThe first perfect integer is $$$19$$$ and the second one is $$$28$$$."}, "src_uid": "0a98a6a15e553ce11cb468d3330fc86a"} {"nl": {"description": "Little penguin Polo loves his home village. The village has n houses, indexed by integers from 1 to n. Each house has a plaque containing an integer, the i-th house has a plaque containing integer pi (1\u2009\u2264\u2009pi\u2009\u2264\u2009n).Little penguin Polo loves walking around this village. The walk looks like that. First he stands by a house number x. Then he goes to the house whose number is written on the plaque of house x (that is, to house px), then he goes to the house whose number is written on the plaque of house px (that is, to house ppx), and so on.We know that: When the penguin starts walking from any house indexed from 1 to k, inclusive, he can walk to house number 1. When the penguin starts walking from any house indexed from k\u2009+\u20091 to n, inclusive, he definitely cannot walk to house number 1. When the penguin starts walking from house number 1, he can get back to house number 1 after some non-zero number of walks from a house to a house. You need to find the number of ways you may write the numbers on the houses' plaques so as to fulfill the three above described conditions. Print the remainder after dividing this number by 1000000007 (109\u2009+\u20097).", "input_spec": "The single line contains two space-separated integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u20091000,\u20091\u2009\u2264\u2009k\u2009\u2264\u2009min(8,\u2009n)) \u2014 the number of the houses and the number k from the statement.", "output_spec": "In a single line print a single integer \u2014 the answer to the problem modulo 1000000007 (109\u2009+\u20097).", "sample_inputs": ["5 2", "7 4"], "sample_outputs": ["54", "1728"], "notes": null}, "src_uid": "cc838bc14408f14f984a349fea9e9694"} {"nl": {"description": "A stowaway and a controller play the following game. The train is represented by n wagons which are numbered with positive integers from 1 to n from the head to the tail. The stowaway and the controller are initially in some two different wagons. Every minute the train can be in one of two conditions \u2014 moving or idle. Every minute the players move.The controller's move is as follows. The controller has the movement direction \u2014 to the train's head or to its tail. During a move the controller moves to the neighbouring wagon correspondingly to its movement direction. If at the end of his move the controller enters the 1-st or the n-th wagon, that he changes the direction of his movement into the other one. In other words, the controller cyclically goes from the train's head to its tail and back again during all the time of a game, shifting during each move by one wagon. Note, that the controller always have exactly one possible move.The stowaway's move depends from the state of the train. If the train is moving, then the stowaway can shift to one of neighbouring wagons or he can stay where he is without moving. If the train is at a station and is idle, then the stowaway leaves the train (i.e. he is now not present in any train wagon) and then, if it is not the terminal train station, he enters the train again into any of n wagons (not necessarily into the one he's just left and not necessarily into the neighbouring one). If the train is idle for several minutes then each such minute the stowaway leaves the train and enters it back.Let's determine the order of the players' moves. If at the given minute the train is moving, then first the stowaway moves and then the controller does. If at this minute the train is idle, then first the stowaway leaves the train, then the controller moves and then the stowaway enters the train.If at some point in time the stowaway and the controller happen to be in one wagon, then the controller wins: he makes the stowaway pay fine. If after a while the stowaway reaches the terminal train station, then the stowaway wins: he simply leaves the station during his move and never returns there again.At any moment of time the players know each other's positions. The players play in the optimal way. Specifically, if the controller wins, then the stowaway plays so as to lose as late as possible. As all the possible moves for the controller are determined uniquely, then he is considered to play optimally always. Determine the winner.", "input_spec": "The first line contains three integers n, m and k. They represent the number of wagons in the train, the stowaway's and the controller's initial positions correspondingly (2\u2009\u2264\u2009n\u2009\u2264\u200950, 1\u2009\u2264\u2009m,\u2009k\u2009\u2264\u2009n, m\u2009\u2260\u2009k). The second line contains the direction in which a controller moves. \"to head\" means that the controller moves to the train's head and \"to tail\" means that the controller moves to its tail. It is guaranteed that in the direction in which the controller is moving, there is at least one wagon. Wagon 1 is the head, and wagon n is the tail. The third line has the length from 1 to 200 and consists of symbols \"0\" and \"1\". The i-th symbol contains information about the train's state at the i-th minute of time. \"0\" means that in this very minute the train moves and \"1\" means that the train in this very minute stands idle. The last symbol of the third line is always \"1\" \u2014 that's the terminal train station.", "output_spec": "If the stowaway wins, print \"Stowaway\" without quotes. Otherwise, print \"Controller\" again without quotes, then, separated by a space, print the number of a minute, at which the stowaway will be caught.", "sample_inputs": ["5 3 2\nto head\n0001001", "3 2 1\nto tail\n0001"], "sample_outputs": ["Stowaway", "Controller 2"], "notes": null}, "src_uid": "2222ce16926fdc697384add731819f75"} {"nl": {"description": "Duff is in love with lovely numbers! A positive integer x is called lovely if and only if there is no such positive integer a\u2009>\u20091 such that a2 is a divisor of x. Malek has a number store! In his store, he has only divisors of positive integer n (and he has all of them). As a birthday present, Malek wants to give her a lovely number from his store. He wants this number to be as big as possible.Malek always had issues in math, so he asked for your help. Please tell him what is the biggest lovely number in his store.", "input_spec": "The first and only line of input contains one integer, n (1\u2009\u2264\u2009n\u2009\u2264\u20091012).", "output_spec": "Print the answer in one line.", "sample_inputs": ["10", "12"], "sample_outputs": ["10", "6"], "notes": "NoteIn first sample case, there are numbers 1, 2, 5 and 10 in the shop. 10 isn't divisible by any perfect square, so 10 is lovely.In second sample case, there are numbers 1, 2, 3, 4, 6 and 12 in the shop. 12 is divisible by 4\u2009=\u200922, so 12 is not lovely, while 6 is indeed lovely."}, "src_uid": "6d0da975fa0961acfdbe75f2f29aeb92"} {"nl": {"description": "A positive integer is called a 2-3-integer, if it is equal to 2x\u00b73y for some non-negative integers x and y. In other words, these integers are such integers that only have 2 and 3 among their prime divisors. For example, integers 1, 6, 9, 16 and 108 \u2014 are 2-3 integers, while 5, 10, 21 and 120 are not.Print the number of 2-3-integers on the given segment [l,\u2009r], i.\u00a0e. the number of sich 2-3-integers t that l\u2009\u2264\u2009t\u2009\u2264\u2009r.", "input_spec": "The only line contains two integers l and r (1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u20092\u00b7109).", "output_spec": "Print a single integer the number of 2-3-integers on the segment [l,\u2009r].", "sample_inputs": ["1 10", "100 200", "1 2000000000"], "sample_outputs": ["7", "5", "326"], "notes": "NoteIn the first example the 2-3-integers are 1, 2, 3, 4, 6, 8 and 9.In the second example the 2-3-integers are 108, 128, 144, 162 and 192."}, "src_uid": "05fac54ed2064b46338bb18f897a4411"} {"nl": {"description": "We'll define S(n) for positive integer n as follows: the number of the n's digits in the decimal base. For example, S(893)\u2009=\u20093, S(114514)\u2009=\u20096.You want to make a consecutive integer sequence starting from number m (m,\u2009m\u2009+\u20091,\u2009...). But you need to pay S(n)\u00b7k to add the number n to the sequence.You can spend a cost up to w, and you want to make the sequence as long as possible. Write a program that tells sequence's maximum length.", "input_spec": "The first line contains three integers w (1\u2009\u2264\u2009w\u2009\u2264\u20091016), m (1\u2009\u2264\u2009m\u2009\u2264\u20091016), k (1\u2009\u2264\u2009k\u2009\u2264\u2009109). Please, do not write the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.", "output_spec": "The first line should contain a single integer \u2014 the answer to the problem.", "sample_inputs": ["9 1 1", "77 7 7", "114 5 14", "1 1 2"], "sample_outputs": ["9", "7", "6", "0"], "notes": null}, "src_uid": "8ef8a09e33d38a2d7f023316bc38b6ea"} {"nl": {"description": "A group of $$$n$$$ dancers rehearses a performance for the closing ceremony. The dancers are arranged in a row, they've studied their dancing moves and can't change positions. For some of them, a white dancing suit is already bought, for some of them \u2014 a black one, and for the rest the suit will be bought in the future.On the day when the suits were to be bought, the director was told that the participants of the olympiad will be happy if the colors of the suits on the scene will form a palindrome. A palindrome is a sequence that is the same when read from left to right and when read from right to left. The director liked the idea, and she wants to buy suits so that the color of the leftmost dancer's suit is the same as the color of the rightmost dancer's suit, the 2nd left is the same as 2nd right, and so on.The director knows how many burls it costs to buy a white suit, and how many burls to buy a black suit. You need to find out whether it is possible to buy suits to form a palindrome, and if it's possible, what's the minimal cost of doing so. Remember that dancers can not change positions, and due to bureaucratic reasons it is not allowed to buy new suits for the dancers who already have suits, even if it reduces the overall spending.", "input_spec": "The first line contains three integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \\leq n \\leq 20$$$, $$$1 \\leq a, b \\leq 100$$$)\u00a0\u2014 the number of dancers, the cost of a white suit, and the cost of a black suit. The next line contains $$$n$$$ numbers $$$c_i$$$, $$$i$$$-th of which denotes the color of the suit of the $$$i$$$-th dancer. Number $$$0$$$ denotes the white color, $$$1$$$\u00a0\u2014 the black color, and $$$2$$$ denotes that a suit for this dancer is still to be bought.", "output_spec": "If it is not possible to form a palindrome without swapping dancers and buying new suits for those who have one, then output -1. Otherwise, output the minimal price to get the desired visual effect.", "sample_inputs": ["5 100 1\n0 1 2 1 2", "3 10 12\n1 2 0", "3 12 1\n0 1 0"], "sample_outputs": ["101", "-1", "0"], "notes": "NoteIn the first sample, the cheapest way to obtain palindromic colors is to buy a black suit for the third from left dancer and a white suit for the rightmost dancer.In the second sample, the leftmost dancer's suit already differs from the rightmost dancer's suit so there is no way to obtain the desired coloring.In the third sample, all suits are already bought and their colors form a palindrome."}, "src_uid": "af07223819aeb5bd6ded4340c472b2b6"} {"nl": {"description": "The only king stands on the standard chess board. You are given his position in format \"cd\", where c is the column from 'a' to 'h' and d is the row from '1' to '8'. Find the number of moves permitted for the king.Check the king's moves here https://en.wikipedia.org/wiki/King_(chess). King moves from the position e4 ", "input_spec": "The only line contains the king's position in the format \"cd\", where 'c' is the column from 'a' to 'h' and 'd' is the row from '1' to '8'.", "output_spec": "Print the only integer x \u2014 the number of moves permitted for the king.", "sample_inputs": ["e4"], "sample_outputs": ["8"], "notes": null}, "src_uid": "6994331ca6282669cbb7138eb7e55e01"} {"nl": {"description": "International Abbreviation Olympiad takes place annually starting from 1989. Each year the competition receives an abbreviation of form IAO'y, where y stands for some number of consequent last digits of the current year. Organizers always pick an abbreviation with non-empty string y that has never been used before. Among all such valid abbreviations they choose the shortest one and announce it to be the abbreviation of this year's competition.For example, the first three Olympiads (years 1989, 1990 and 1991, respectively) received the abbreviations IAO'9, IAO'0 and IAO'1, while the competition in 2015 received an abbreviation IAO'15, as IAO'5 has been already used in 1995.You are given a list of abbreviations. For each of them determine the year it stands for.", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091000)\u00a0\u2014 the number of abbreviations to process. Then n lines follow, each containing a single abbreviation. It's guaranteed that each abbreviation contains at most nine digits.", "output_spec": "For each abbreviation given in the input, find the year of the corresponding Olympiad.", "sample_inputs": ["5\nIAO'15\nIAO'2015\nIAO'1\nIAO'9\nIAO'0", "4\nIAO'9\nIAO'99\nIAO'999\nIAO'9999"], "sample_outputs": ["2015\n12015\n1991\n1989\n1990", "1989\n1999\n2999\n9999"], "notes": null}, "src_uid": "31be4d38a8b5ea8738a65bfee24a5a21"} {"nl": {"description": "Johnny has a younger sister Anne, who is very clever and smart. As she came home from the kindergarten, she told his brother about the task that her kindergartener asked her to solve. The task was just to construct a triangle out of four sticks of different colours. Naturally, one of the sticks is extra. It is not allowed to break the sticks or use their partial length. Anne has perfectly solved this task, now she is asking Johnny to do the same.The boy answered that he would cope with it without any difficulty. However, after a while he found out that different tricky things can occur. It can happen that it is impossible to construct a triangle of a positive area, but it is possible to construct a degenerate triangle. It can be so, that it is impossible to construct a degenerate triangle even. As Johnny is very lazy, he does not want to consider such a big amount of cases, he asks you to help him.", "input_spec": "The first line of the input contains four space-separated positive integer numbers not exceeding 100 \u2014 lengthes of the sticks.", "output_spec": "Output TRIANGLE if it is possible to construct a non-degenerate triangle. Output SEGMENT if the first case cannot take place and it is possible to construct a degenerate triangle. Output IMPOSSIBLE if it is impossible to construct any triangle. Remember that you are to use three sticks. It is not allowed to break the sticks or use their partial length.", "sample_inputs": ["4 2 1 3", "7 2 2 4", "3 5 9 1"], "sample_outputs": ["TRIANGLE", "SEGMENT", "IMPOSSIBLE"], "notes": null}, "src_uid": "8f5df9a41e6e100aa65b9fc1d26e447a"} {"nl": {"description": "Mikhail walks on a 2D plane. He can go either up or right. You are given a sequence of Mikhail's moves. He thinks that this sequence is too long and he wants to make it as short as possible.In the given sequence moving up is described by character U and moving right is described by character R. Mikhail can replace any pair of consecutive moves RU or UR with a diagonal move (described as character D). After that, he can go on and do some other replacements, until there is no pair of consecutive moves RU or UR left.Your problem is to print the minimum possible length of the sequence of moves after the replacements.", "input_spec": "The first line of the input contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the length of the sequence. The second line contains the sequence consisting of n characters U and R.", "output_spec": "Print the minimum possible length of the sequence of moves after all replacements are done.", "sample_inputs": ["5\nRUURU", "17\nUUURRRRRUUURURUUU"], "sample_outputs": ["3", "13"], "notes": "NoteIn the first test the shortened sequence of moves may be DUD (its length is 3).In the second test the shortened sequence of moves can be UUDRRRDUDDUUU (its length is 13)."}, "src_uid": "986ae418ce82435badadb0bd5588f45b"} {"nl": {"description": "There is the faculty of Computer Science in Berland. In the social net \"TheContact!\" for each course of this faculty there is the special group whose name equals the year of university entrance of corresponding course of students at the university. Each of students joins the group of his course and joins all groups for which the year of student's university entrance differs by no more than x from the year of university entrance of this student, where x \u2014 some non-negative integer. A value x is not given, but it can be uniquely determined from the available data. Note that students don't join other groups. You are given the list of groups which the student Igor joined. According to this information you need to determine the year of Igor's university entrance.", "input_spec": "The first line contains the positive odd integer n (1\u2009\u2264\u2009n\u2009\u2264\u20095) \u2014 the number of groups which Igor joined. The next line contains n distinct integers a1,\u2009a2,\u2009...,\u2009an (2010\u2009\u2264\u2009ai\u2009\u2264\u20092100) \u2014 years of student's university entrance for each group in which Igor is the member. It is guaranteed that the input data is correct and the answer always exists. Groups are given randomly.", "output_spec": "Print the year of Igor's university entrance. ", "sample_inputs": ["3\n2014 2016 2015", "1\n2050"], "sample_outputs": ["2015", "2050"], "notes": "NoteIn the first test the value x\u2009=\u20091. Igor entered the university in 2015. So he joined groups members of which are students who entered the university in 2014, 2015 and 2016.In the second test the value x\u2009=\u20090. Igor entered only the group which corresponds to the year of his university entrance. "}, "src_uid": "f03773118cca29ff8d5b4281d39e7c63"} {"nl": {"description": " When the curtains are opened, a canvas unfolds outside. Kanno marvels at all the blonde colours along the riverside\u00a0\u2014 not tangerines, but blossoms instead.\"What a pity it's already late spring,\" sighs Mino with regret, \"one more drizzling night and they'd be gone.\"\"But these blends are at their best, aren't they?\" Absorbed in the landscape, Kanno remains optimistic. The landscape can be expressed as a row of consecutive cells, each of which either contains a flower of colour amber or buff or canary yellow, or is empty.When a flower withers, it disappears from the cell that it originally belonged to, and it spreads petals of its colour in its two neighbouring cells (or outside the field if the cell is on the side of the landscape). In case petals fall outside the given cells, they simply become invisible.You are to help Kanno determine whether it's possible that after some (possibly none or all) flowers shed their petals, at least one of the cells contains all three colours, considering both petals and flowers. Note that flowers can wither in arbitrary order.", "input_spec": "The first and only line of input contains a non-empty string $$$s$$$ consisting of uppercase English letters 'A', 'B', 'C' and characters '.' (dots) only ($$$\\lvert s \\rvert \\leq 100$$$)\u00a0\u2014 denoting cells containing an amber flower, a buff one, a canary yellow one, and no flowers, respectively.", "output_spec": "Output \"Yes\" if it's possible that all three colours appear in some cell, and \"No\" otherwise. You can print each letter in any case (upper or lower).", "sample_inputs": [".BAC.", "AA..CB"], "sample_outputs": ["Yes", "No"], "notes": "NoteIn the first example, the buff and canary yellow flowers can leave their petals in the central cell, blending all three colours in it.In the second example, it's impossible to satisfy the requirement because there is no way that amber and buff meet in any cell."}, "src_uid": "ba6ff507384570152118e2ab322dd11f"} {"nl": {"description": "To quickly hire highly skilled specialists one of the new IT City companies made an unprecedented move. Every employee was granted a car, and an employee can choose one of four different car makes.The parking lot before the office consists of one line of (2n\u2009-\u20092) parking spaces. Unfortunately the total number of cars is greater than the parking lot capacity. Furthermore even amount of cars of each make is greater than the amount of parking spaces! That's why there are no free spaces on the parking lot ever.Looking on the straight line of cars the company CEO thought that parking lot would be more beautiful if it contained exactly n successive cars of the same make. Help the CEO determine the number of ways to fill the parking lot this way.", "input_spec": "The only line of the input contains one integer n (3\u2009\u2264\u2009n\u2009\u2264\u200930) \u2014 the amount of successive cars of the same make.", "output_spec": "Output one integer \u2014 the number of ways to fill the parking lot by cars of four makes using the described way.", "sample_inputs": ["3"], "sample_outputs": ["24"], "notes": "NoteLet's denote car makes in the following way: A \u2014 Aston Martin, B \u2014 Bentley, M \u2014 Mercedes-Maybach, Z \u2014 Zaporozhets. For n\u2009=\u20093 there are the following appropriate ways to fill the parking lot: AAAB AAAM AAAZ ABBB AMMM AZZZ BBBA BBBM BBBZ BAAA BMMM BZZZ MMMA MMMB MMMZ MAAA MBBB MZZZ ZZZA ZZZB ZZZM ZAAA ZBBB ZMMMOriginally it was planned to grant sport cars of Ferrari, Lamborghini, Maserati and Bugatti makes but this idea was renounced because it is impossible to drive these cars having small road clearance on the worn-down roads of IT City."}, "src_uid": "3b02cbb38d0b4ddc1a6467f7647d53a9"} {"nl": {"description": "Let's consider an n\u2009\u00d7\u2009n square matrix, consisting of digits one and zero.We'll consider a matrix good, if it meets the following condition: in each row of the matrix all ones go in one group. That is, each row of the matrix looks like that 00...0011...1100...00 (or simply consists of zeroes if it has no ones).You are given matrix a of size n\u2009\u00d7\u2009n, consisting of zeroes and ones. Your task is to determine whether you can get a good matrix b from it by rearranging the columns or not.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009500) \u2014 the size of matrix a. Each of n following lines contains n characters \"0\" and \"1\" \u2014 matrix a. Note that the characters are written without separators.", "output_spec": "Print \"YES\" in the first line, if you can rearrange the matrix columns so as to get a good matrix b. In the next n lines print the good matrix b. If there are multiple answers, you are allowed to print any of them. If it is impossible to get a good matrix, print \"NO\".", "sample_inputs": ["6\n100010\n110110\n011001\n010010\n000100\n011001", "3\n110\n101\n011"], "sample_outputs": ["YES\n011000\n111100\n000111\n001100\n100000\n000111", "NO"], "notes": null}, "src_uid": "af8d46722e1bd8f7392e5596eaf4def8"} {"nl": {"description": "You are given a text of single-space separated words, consisting of small and capital Latin letters.Volume of the word is number of capital letters in the word. Volume of the text is maximum volume of all words in the text.Calculate the volume of the given text.", "input_spec": "The first line contains one integer number n (1\u2009\u2264\u2009n\u2009\u2264\u2009200) \u2014 length of the text. The second line contains text of single-space separated words s1,\u2009s2,\u2009...,\u2009si, consisting only of small and capital Latin letters.", "output_spec": "Print one integer number \u2014 volume of text.", "sample_inputs": ["7\nNonZERO", "24\nthis is zero answer text", "24\nHarbour Space University"], "sample_outputs": ["5", "0", "1"], "notes": "NoteIn the first example there is only one word, there are 5 capital letters in it.In the second example all of the words contain 0 capital letters."}, "src_uid": "d3929a9acf1633475ab16f5dfbead13c"} {"nl": {"description": "Vasya likes to solve equations. Today he wants to solve $$$(x~\\mathrm{div}~k) \\cdot (x \\bmod k) = n$$$, where $$$\\mathrm{div}$$$ and $$$\\mathrm{mod}$$$ stand for integer division and modulo operations (refer to the Notes below for exact definition). In this equation, $$$k$$$ and $$$n$$$ are positive integer parameters, and $$$x$$$ is a positive integer unknown. If there are several solutions, Vasya wants to find the smallest possible $$$x$$$. Can you help him?", "input_spec": "The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \\leq n \\leq 10^6$$$, $$$2 \\leq k \\leq 1000$$$).", "output_spec": "Print a single integer $$$x$$$\u00a0\u2014 the smallest positive integer solution to $$$(x~\\mathrm{div}~k) \\cdot (x \\bmod k) = n$$$. It is guaranteed that this equation has at least one positive integer solution.", "sample_inputs": ["6 3", "1 2", "4 6"], "sample_outputs": ["11", "3", "10"], "notes": "NoteThe result of integer division $$$a~\\mathrm{div}~b$$$ is equal to the largest integer $$$c$$$ such that $$$b \\cdot c \\leq a$$$. $$$a$$$ modulo $$$b$$$ (shortened $$$a \\bmod b$$$) is the only integer $$$c$$$ such that $$$0 \\leq c < b$$$, and $$$a - c$$$ is divisible by $$$b$$$.In the first sample, $$$11~\\mathrm{div}~3 = 3$$$ and $$$11 \\bmod 3 = 2$$$. Since $$$3 \\cdot 2 = 6$$$, then $$$x = 11$$$ is a solution to $$$(x~\\mathrm{div}~3) \\cdot (x \\bmod 3) = 6$$$. One can see that $$$19$$$ is the only other positive integer solution, hence $$$11$$$ is the smallest one."}, "src_uid": "ed0ebc1e484fcaea875355b5b7944c57"} {"nl": {"description": "Calendars in widespread use today include the Gregorian calendar, which is the de facto international standard, and is used almost everywhere in the world for civil purposes. The Gregorian reform modified the Julian calendar's scheme of leap years as follows: Every year that is exactly divisible by four is a leap year, except for years that are exactly divisible by 100; the centurial years that are exactly divisible by 400 are still leap years. For example, the year 1900 is not a leap year; the year 2000 is a leap year. In this problem, you have been given two dates and your task is to calculate how many days are between them. Note, that leap years have unusual number of days in February.Look at the sample to understand what borders are included in the aswer.", "input_spec": "The first two lines contain two dates, each date is in the format yyyy:mm:dd (1900\u2009\u2264\u2009yyyy\u2009\u2264\u20092038 and yyyy:mm:dd is a legal date).", "output_spec": "Print a single integer \u2014 the answer to the problem.", "sample_inputs": ["1900:01:01\n2038:12:31", "1996:03:09\n1991:11:12"], "sample_outputs": ["50768", "1579"], "notes": null}, "src_uid": "bdf99d78dc291758fa09ec133fff1e9c"} {"nl": {"description": "Tomorrow Peter has a Biology exam. He does not like this subject much, but d days ago he learnt that he would have to take this exam. Peter's strict parents made him prepare for the exam immediately, for this purpose he has to study not less than minTimei and not more than maxTimei hours per each i-th day. Moreover, they warned Peter that a day before the exam they would check how he has followed their instructions.So, today is the day when Peter's parents ask him to show the timetable of his preparatory studies. But the boy has counted only the sum of hours sumTime spent him on preparation, and now he wants to know if he can show his parents a timetable s\u0441hedule with d numbers, where each number s\u0441hedulei stands for the time in hours spent by Peter each i-th day on biology studies, and satisfying the limitations imposed by his parents, and at the same time the sum total of all schedulei should equal to sumTime.", "input_spec": "The first input line contains two integer numbers d,\u2009sumTime (1\u2009\u2264\u2009d\u2009\u2264\u200930,\u20090\u2009\u2264\u2009sumTime\u2009\u2264\u2009240) \u2014 the amount of days, during which Peter studied, and the total amount of hours, spent on preparation. Each of the following d lines contains two integer numbers minTimei,\u2009maxTimei (0\u2009\u2264\u2009minTimei\u2009\u2264\u2009maxTimei\u2009\u2264\u20098), separated by a space \u2014 minimum and maximum amount of hours that Peter could spent in the i-th day.", "output_spec": "In the first line print YES, and in the second line print d numbers (separated by a space), each of the numbers \u2014 amount of hours, spent by Peter on preparation in the corresponding day, if he followed his parents' instructions; or print NO in the unique line. If there are many solutions, print any of them.", "sample_inputs": ["1 48\n5 7", "2 5\n0 1\n3 5"], "sample_outputs": ["NO", "YES\n1 4"], "notes": null}, "src_uid": "f48ff06e65b70f49eee3d7cba5a6aed0"} {"nl": {"description": "Hideo Kojima has just quit his job at Konami. Now he is going to find a new place to work. Despite being such a well-known person, he still needs a CV to apply for a job.During all his career Hideo has produced n games. Some of them were successful, some were not. Hideo wants to remove several of them (possibly zero) from his CV to make a better impression on employers. As a result there should be no unsuccessful game which comes right after successful one in his CV.More formally, you are given an array s1,\u2009s2,\u2009...,\u2009sn of zeros and ones. Zero corresponds to an unsuccessful game, one \u2014 to a successful one. Games are given in order they were produced, and Hideo can't swap these values. He should remove some elements from this array in such a way that no zero comes right after one.Besides that, Hideo still wants to mention as much games in his CV as possible. Help this genius of a man determine the maximum number of games he can leave in his CV.", "input_spec": "The first line contains one integer number n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). The second line contains n space-separated integer numbers s1,\u2009s2,\u2009...,\u2009sn (0\u2009\u2264\u2009si\u2009\u2264\u20091). 0 corresponds to an unsuccessful game, 1 \u2014 to a successful one.", "output_spec": "Print one integer \u2014 the maximum number of games Hideo can leave in his CV so that no unsuccessful game comes after a successful one.", "sample_inputs": ["4\n1 1 0 1", "6\n0 1 0 0 1 0", "1\n0"], "sample_outputs": ["3", "4", "1"], "notes": null}, "src_uid": "c7b1f0b40e310f99936d1c33e4816b95"} {"nl": {"description": "You have r red, g green and b blue balloons. To decorate a single table for the banquet you need exactly three balloons. Three balloons attached to some table shouldn't have the same color. What maximum number t of tables can be decorated if we know number of balloons of each color?Your task is to write a program that for given values r, g and b will find the maximum number t of tables, that can be decorated in the required manner.", "input_spec": "The single line contains three integers r, g and b (0\u2009\u2264\u2009r,\u2009g,\u2009b\u2009\u2264\u20092\u00b7109) \u2014 the number of red, green and blue baloons respectively. The numbers are separated by exactly one space.", "output_spec": "Print a single integer t \u2014 the maximum number of tables that can be decorated in the required manner.", "sample_inputs": ["5 4 3", "1 1 1", "2 3 3"], "sample_outputs": ["4", "1", "2"], "notes": "NoteIn the first sample you can decorate the tables with the following balloon sets: \"rgg\", \"gbb\", \"brr\", \"rrg\", where \"r\", \"g\" and \"b\" represent the red, green and blue balls, respectively."}, "src_uid": "bae7cbcde19114451b8712d6361d2b01"} {"nl": {"description": "From beginning till end, this message has been waiting to be conveyed.For a given unordered multiset of n lowercase English letters (\"multi\" means that a letter may appear more than once), we treat all letters as strings of length 1, and repeat the following operation n\u2009-\u20091 times: Remove any two elements s and t from the set, and add their concatenation s\u2009+\u2009t to the set. The cost of such operation is defined to be , where f(s,\u2009c) denotes the number of times character c appears in string s.Given a non-negative integer k, construct any valid non-empty set of no more than 100\u2009000 letters, such that the minimum accumulative cost of the whole process is exactly k. It can be shown that a solution always exists.", "input_spec": "The first and only line of input contains a non-negative integer k (0\u2009\u2264\u2009k\u2009\u2264\u2009100\u2009000) \u2014 the required minimum cost.", "output_spec": "Output a non-empty string of no more than 100\u2009000 lowercase English letters \u2014 any multiset satisfying the requirements, concatenated to be a string. Note that the printed string doesn't need to be the final concatenated string. It only needs to represent an unordered multiset of letters.", "sample_inputs": ["12", "3"], "sample_outputs": ["abababab", "codeforces"], "notes": "NoteFor the multiset {'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b'}, one of the ways to complete the process is as follows: {\"ab\", \"a\", \"b\", \"a\", \"b\", \"a\", \"b\"}, with a cost of 0; {\"aba\", \"b\", \"a\", \"b\", \"a\", \"b\"}, with a cost of 1; {\"abab\", \"a\", \"b\", \"a\", \"b\"}, with a cost of 1; {\"abab\", \"ab\", \"a\", \"b\"}, with a cost of 0; {\"abab\", \"aba\", \"b\"}, with a cost of 1; {\"abab\", \"abab\"}, with a cost of 1; {\"abababab\"}, with a cost of 8. The total cost is 12, and it can be proved to be the minimum cost of the process."}, "src_uid": "b991c064562704b6106a6ff2a297e64a"} {"nl": {"description": "Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to n (n\u2009\u2265\u20092) burles and the amount of tax he has to pay is calculated as the maximum divisor of n (not equal to n, of course). For example, if n\u2009=\u20096 then Funt has to pay 3 burles, while for n\u2009=\u200925 he needs to pay 5 and if n\u2009=\u20092 he pays only 1 burle.As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial n in several parts n1\u2009+\u2009n2\u2009+\u2009...\u2009+\u2009nk\u2009=\u2009n (here k is arbitrary, even k\u2009=\u20091 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition ni\u2009\u2265\u20092 should hold for all i from 1 to k.Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split n in parts.", "input_spec": "The first line of the input contains a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u20092\u00b7109)\u00a0\u2014 the total year income of mr. Funt.", "output_spec": "Print one integer\u00a0\u2014 minimum possible number of burles that mr. Funt has to pay as a tax.", "sample_inputs": ["4", "27"], "sample_outputs": ["2", "3"], "notes": null}, "src_uid": "684ce84149d6a5f4776ecd1ea6cb455b"} {"nl": {"description": "Throughout Igor K.'s life he has had many situations worthy of attention. We remember the story with the virus, the story of his mathematical career and of course, his famous programming achievements. However, one does not always adopt new hobbies, one can quit something as well.This time Igor K. got disappointed in one of his hobbies: editing and voicing videos. Moreover, he got disappointed in it so much, that he decided to destroy his secret archive for good. Igor K. use Pindows XR operation system which represents files and folders by small icons. At that, m icons can fit in a horizontal row in any window.Igor K.'s computer contains n folders in the D: disk's root catalog. The folders are numbered from 1 to n in the order from the left to the right and from top to bottom (see the images). At that the folders with secret videos have numbers from a to b inclusive. Igor K. wants to delete them forever, at that making as few frame selections as possible, and then pressing Shift+Delete exactly once. What is the minimum number of times Igor K. will have to select the folder in order to select folders from a to b and only them? Let us note that if some selected folder is selected repeatedly, then it is deselected. Each selection possesses the shape of some rectangle with sides parallel to the screen's borders.", "input_spec": "The only line contains four integers n, m, a, b (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009109, 1\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u2009n). They are the number of folders in Igor K.'s computer, the width of a window and the numbers of the first and the last folders that need to be deleted.", "output_spec": "Print a single number: the least possible number of times Igor K. will have to select the folders using frames to select only the folders with numbers from a to b.", "sample_inputs": ["11 4 3 9", "20 5 2 20"], "sample_outputs": ["3", "2"], "notes": "NoteThe images below illustrate statement tests.The first test:In this test we can select folders 3 and 4 with out first selection, folders 5, 6, 7, 8 with our second selection and folder 9 with our third, last selection.The second test:In this test we can first select all folders in the first row (2, 3, 4, 5), then \u2014 all other ones."}, "src_uid": "f256235c0b2815aae85a6f9435c69dac"} {"nl": {"description": "Robbers, who attacked the Gerda's cab, are very successful in covering from the kingdom police. To make the goal of catching them even harder, they use their own watches.First, as they know that kingdom police is bad at math, robbers use the positional numeral system with base 7. Second, they divide one day in n hours, and each hour in m minutes. Personal watches of each robber are divided in two parts: first of them has the smallest possible number of places that is necessary to display any integer from 0 to n\u2009-\u20091, while the second has the smallest possible number of places that is necessary to display any integer from 0 to m\u2009-\u20091. Finally, if some value of hours or minutes can be displayed using less number of places in base 7 than this watches have, the required number of zeroes is added at the beginning of notation.Note that to display number 0 section of the watches is required to have at least one place.Little robber wants to know the number of moments of time (particular values of hours and minutes), such that all digits displayed on the watches are distinct. Help her calculate this number.", "input_spec": "The first line of the input contains two integers, given in the decimal notation, n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009109)\u00a0\u2014 the number of hours in one day and the number of minutes in one hour, respectively.", "output_spec": "Print one integer in decimal notation\u00a0\u2014 the number of different pairs of hour and minute, such that all digits displayed on the watches are distinct.", "sample_inputs": ["2 3", "8 2"], "sample_outputs": ["4", "5"], "notes": "NoteIn the first sample, possible pairs are: (0:\u20091), (0:\u20092), (1:\u20090), (1:\u20092).In the second sample, possible pairs are: (02:\u20091), (03:\u20091), (04:\u20091), (05:\u20091), (06:\u20091)."}, "src_uid": "0930c75f57dd88a858ba7bb0f11f1b1c"} {"nl": {"description": "Attention: we lost all the test cases for this problem, so instead of solving the problem, we need you to generate test cases. We're going to give you the answer, and you need to print a test case that produces the given answer. The original problem is in the following paragraph.People don't use cash as often as they used to. Having a credit card solves some of the hassles of cash, such as having to receive change when you can't form the exact amount of money needed to purchase an item. Typically cashiers will give you as few coins as possible in change, but they don't have to. For example, if your change is 30 cents, a cashier could give you a 5 cent piece and a 25 cent piece, or they could give you three 10 cent pieces, or ten 1 cent pieces, two 5 cent pieces, and one 10 cent piece. Altogether there are 18 different ways to make 30 cents using only 1 cent pieces, 5 cent pieces, 10 cent pieces, and 25 cent pieces. Two ways are considered different if they contain a different number of at least one type of coin. Given the denominations of the coins and an amount of change to be made, how many different ways are there to make change?As we mentioned before, we lost all the test cases for this problem, so we're actually going to give you the number of ways, and want you to produce a test case for which the number of ways is the given number. There could be many ways to achieve this (we guarantee there's always at least one), so you can print any, as long as it meets the constraints described below.", "input_spec": "Input will consist of a single integer A (1\u2009\u2264\u2009A\u2009\u2264\u2009105), the desired number of ways.", "output_spec": "In the first line print integers N and M (1\u2009\u2264\u2009N\u2009\u2264\u2009106,\u20091\u2009\u2264\u2009M\u2009\u2264\u200910), the amount of change to be made, and the number of denominations, respectively. Then print M integers D1,\u2009D2,\u2009...,\u2009DM (1\u2009\u2264\u2009Di\u2009\u2264\u2009106), the denominations of the coins. All denominations must be distinct: for any i\u2009\u2260\u2009j we must have Di\u2009\u2260\u2009Dj. If there are multiple tests, print any of them. You can print denominations in atbitrary order.", "sample_inputs": ["18", "3", "314"], "sample_outputs": ["30 4\n1 5 10 25", "20 2\n5 2", "183 4\n6 5 2 139"], "notes": null}, "src_uid": "5c000b4c82a8ecef764f53fda8cee541"} {"nl": {"description": "Vasya has a pile, that consists of some number of stones. $$$n$$$ times he either took one stone from the pile or added one stone to the pile. The pile was non-empty before each operation of taking one stone from the pile.You are given $$$n$$$ operations which Vasya has made. Find the minimal possible number of stones that can be in the pile after making these operations.", "input_spec": "The first line contains one positive integer $$$n$$$\u00a0\u2014 the number of operations, that have been made by Vasya ($$$1 \\leq n \\leq 100$$$). The next line contains the string $$$s$$$, consisting of $$$n$$$ symbols, equal to \"-\" (without quotes) or \"+\" (without quotes). If Vasya took the stone on $$$i$$$-th operation, $$$s_i$$$ is equal to \"-\" (without quotes), if added, $$$s_i$$$ is equal to \"+\" (without quotes).", "output_spec": "Print one integer\u00a0\u2014 the minimal possible number of stones that can be in the pile after these $$$n$$$ operations.", "sample_inputs": ["3\n---", "4\n++++", "2\n-+", "5\n++-++"], "sample_outputs": ["0", "4", "1", "3"], "notes": "NoteIn the first test, if Vasya had $$$3$$$ stones in the pile at the beginning, after making operations the number of stones will be equal to $$$0$$$. It is impossible to have less number of piles, so the answer is $$$0$$$. Please notice, that the number of stones at the beginning can't be less, than $$$3$$$, because in this case, Vasya won't be able to take a stone on some operation (the pile will be empty).In the second test, if Vasya had $$$0$$$ stones in the pile at the beginning, after making operations the number of stones will be equal to $$$4$$$. It is impossible to have less number of piles because after making $$$4$$$ operations the number of stones in the pile increases on $$$4$$$ stones. So, the answer is $$$4$$$.In the third test, if Vasya had $$$1$$$ stone in the pile at the beginning, after making operations the number of stones will be equal to $$$1$$$. It can be proved, that it is impossible to have less number of stones after making the operations.In the fourth test, if Vasya had $$$0$$$ stones in the pile at the beginning, after making operations the number of stones will be equal to $$$3$$$."}, "src_uid": "a593016e4992f695be7c7cd3c920d1ed"} {"nl": {"description": "For each positive integer n consider the integer \u03c8(n) which is obtained from n by replacing every digit a in the decimal notation of n with the digit (9\u2009\u2009-\u2009\u2009a). We say that \u03c8(n) is the reflection of n. For example, reflection of 192 equals 807. Note that leading zeros (if any) should be omitted. So reflection of 9 equals 0, reflection of 91 equals 8.Let us call the weight of the number the product of the number and its reflection. Thus, the weight of the number 10 is equal to 10\u00b789\u2009=\u2009890.Your task is to find the maximum weight of the numbers in the given range [l,\u2009r] (boundaries are included).", "input_spec": "Input contains two space-separated integers l and r (1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u2009109) \u2014 bounds of the range.", "output_spec": "Output should contain single integer number: maximum value of the product n\u00b7\u03c8(n), where l\u2009\u2264\u2009n\u2009\u2264\u2009r. Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout (also you may use %I64d).", "sample_inputs": ["3 7", "1 1", "8 10"], "sample_outputs": ["20", "8", "890"], "notes": "NoteIn the third sample weight of 8 equals 8\u00b71\u2009=\u20098, weight of 9 equals 9\u00b70\u2009=\u20090, weight of 10 equals 890.Thus, maximum value of the product is equal to 890."}, "src_uid": "2c4b2a162563242cb2f43f6209b59d5e"} {"nl": {"description": "Alex enjoys performing magic tricks. He has a trick that requires a deck of n cards. He has m identical decks of n different cards each, which have been mixed together. When Alex wishes to perform the trick, he grabs n cards at random and performs the trick with those. The resulting deck looks like a normal deck, but may have duplicates of some cards.The trick itself is performed as follows: first Alex allows you to choose a random card from the deck. You memorize the card and put it back in the deck. Then Alex shuffles the deck, and pulls out a card. If the card matches the one you memorized, the trick is successful.You don't think Alex is a very good magician, and that he just pulls a card randomly from the deck. Determine the probability of the trick being successful if this is the case.", "input_spec": "First line of the input consists of two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20091000), separated by space \u2014 number of cards in each deck, and number of decks.", "output_spec": "On the only line of the output print one floating point number \u2013 probability of Alex successfully performing the trick. Relative or absolute error of your answer should not be higher than 10\u2009-\u20096.", "sample_inputs": ["2 2", "4 4", "1 2"], "sample_outputs": ["0.6666666666666666", "0.4000000000000000", "1.0000000000000000"], "notes": "NoteIn the first sample, with probability Alex will perform the trick with two cards with the same value from two different decks. In this case the trick is guaranteed to succeed.With the remaining probability he took two different cards, and the probability of pulling off the trick is .The resulting probability is "}, "src_uid": "0b9ce20c36e53d4702869660cbb53317"} {"nl": {"description": "Polycarp has interviewed Oleg and has written the interview down without punctuation marks and spaces to save time. Thus, the interview is now a string s consisting of n lowercase English letters.There is a filler word ogo in Oleg's speech. All words that can be obtained from ogo by adding go several times to the end of it are also considered to be fillers. For example, the words ogo, ogogo, ogogogo are fillers, but the words go, og, ogog, ogogog and oggo are not fillers.The fillers have maximal size, for example, for ogogoo speech we can't consider ogo a filler and goo as a normal phrase. We should consider ogogo as a filler here.To print the interview, Polycarp has to replace each of the fillers with three asterisks. Note that a filler word is replaced with exactly three asterisks regardless of its length.Polycarp has dealt with this problem in no time. Can you do the same? The clock is ticking!", "input_spec": "The first line contains a positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the length of the interview. The second line contains the string s of length n, consisting of lowercase English letters.", "output_spec": "Print the interview text after the replacement of each of the fillers with \"***\". It is allowed for the substring \"***\" to have several consecutive occurences.", "sample_inputs": ["7\naogogob", "13\nogogmgogogogo", "9\nogoogoogo"], "sample_outputs": ["a***b", "***gmg***", "*********"], "notes": "NoteThe first sample contains one filler word ogogo, so the interview for printing is \"a***b\".The second sample contains two fillers ogo and ogogogo. Thus, the interview is transformed to \"***gmg***\"."}, "src_uid": "619665bed79ecf77b083251fe6fe7eb3"} {"nl": {"description": "Petya wrote a programme on C++ that calculated a very interesting function f(n). Petya ran the program with a certain value of n and went to the kitchen to have some tea. The history has no records concerning how long the program had been working. By the time Petya returned, it had completed the calculations and had the result. However while Petya was drinking tea, a sly virus managed to destroy the input file so that Petya can't figure out for which value of n the program was run. Help Petya, carry out the inverse function!Mostly, the program consists of a function in C++ with the following simplified syntax: function ::= int f(int n) {operatorSequence} operatorSequence ::= operator\u00a0|\u00a0operator\u00a0operatorSequence operator ::= return arithmExpr; | if (logicalExpr) return arithmExpr; logicalExpr ::= arithmExpr\u2009>\u2009arithmExpr | arithmExpr\u2009<\u2009arithmExpr | arithmExpr == arithmExpr arithmExpr ::= sum sum ::= product | sum\u2009+\u2009product | sum\u2009-\u2009product product ::= multiplier | product\u2009*\u2009multiplier | product\u2009/\u2009multiplier multiplier ::= n | number | f(arithmExpr) number ::= 0|1|2|... |32767 The whitespaces in a operatorSequence are optional.Thus, we have a function, in which body there are two kinds of operators. There is the operator \"return arithmExpr;\" that returns the value of the expression as the value of the function, and there is the conditional operator \"if (logicalExpr) return arithmExpr;\" that returns the value of the arithmetical expression when and only when the logical expression is true. Guaranteed that no other constructions of C++ language \u2014 cycles, assignment operators, nested conditional operators etc, and other variables except the n parameter are used in the function. All the constants are integers in the interval [0..32767].The operators are performed sequentially. After the function has returned a value other operators in the sequence are not performed. Arithmetical expressions are performed taking into consideration the standard priority of the operations. It means that first all the products that are part of the sum are calculated. During the calculation of the products the operations of multiplying and division are performed from the left to the right. Then the summands are summed, and the addition and the subtraction are also performed from the left to the right. Operations \">\" (more), \"<\" (less) and \"==\" (equals) also have standard meanings.Now you've got to pay close attention! The program is compiled with the help of 15-bit Berland C++ compiler invented by a Berland company BerSoft, that's why arithmetical operations are performed in a non-standard way. Addition, subtraction and multiplication are performed modulo 32768 (if the result of subtraction is negative, then 32768 is added to it until the number belongs to the interval [0..32767]). Division \"/\" is a usual integer division where the remainder is omitted.Examples of arithmetical operations: Guaranteed that for all values of n from 0 to 32767 the given function is performed correctly. That means that:1. Division by 0 never occures.2. When performing a function for the value n\u2009=\u2009N recursive calls of the function f may occur only for the parameter value of 0,\u20091,\u2009...,\u2009N\u2009-\u20091. Consequently, the program never has an infinite recursion.3. As the result of the sequence of the operators, the function always returns a value.We have to mention that due to all the limitations the value returned by the function f is independent from either global variables or the order of performing the calculations of arithmetical expressions as part of the logical one, or from anything else except the value of n parameter. That's why the f function can be regarded as a function in its mathematical sense, i.e. as a unique correspondence between any value of n from the interval [0..32767] and a value of f(n) from the same interval.Given the value of f(n), and you should find n. If the suitable n value is not unique, you should find the maximal one (from the interval [0..32767]).", "input_spec": "The first line has an integer f(n) from the interval [0..32767]. The next lines have the description of the function f. In the description can be found extra spaces and line breaks (see the examples) which, of course, can\u2019t break key words int, if, return and numbers. The size of input data can\u2019t exceed 100 bytes.", "output_spec": "Output a single number \u2014 the answer to the problem. If there\u2019s no answer, output \"-1\" (without quotes).", "sample_inputs": ["17\nint f(int n)\n{\nif (n < 100) return 17;\nif (n > 99) return 27;\n}", "13\nint f(int n)\n{\nif (n == 0) return 0;\nreturn f(n - 1) + 1;\n}", "144\nint f(int n)\n{\nif (n == 0) return 0;\nif (n == 1) return n;\nreturn f(n - 1) + f(n - 2);\n}"], "sample_outputs": ["99", "13", "24588"], "notes": null}, "src_uid": "698c5a87f9adbe6af60d9f70519c9672"} {"nl": {"description": "Fox Ciel has a robot on a 2D plane. Initially it is located in (0, 0). Fox Ciel code a command to it. The command was represented by string s. Each character of s is one move operation. There are four move operations at all: 'U': go up, (x, y) \u2009\u2192\u2009 (x, y+1); 'D': go down, (x, y) \u2009\u2192\u2009 (x, y-1); 'L': go left, (x, y) \u2009\u2192\u2009 (x-1, y); 'R': go right, (x, y) \u2009\u2192\u2009 (x+1, y). The robot will do the operations in s from left to right, and repeat it infinite times. Help Fox Ciel to determine if after some steps the robot will located in (a,\u2009b).", "input_spec": "The first line contains two integers a and b, (\u2009-\u2009109\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009109). The second line contains a string s (1\u2009\u2264\u2009|s|\u2009\u2264\u2009100, s only contains characters 'U', 'D', 'L', 'R') \u2014 the command.", "output_spec": "Print \"Yes\" if the robot will be located at (a,\u2009b), and \"No\" otherwise.", "sample_inputs": ["2 2\nRU", "1 2\nRU", "-1 1000000000\nLRRLU", "0 0\nD"], "sample_outputs": ["Yes", "No", "Yes", "Yes"], "notes": "NoteIn the first and second test case, command string is \"RU\", so the robot will go right, then go up, then right, and then up and so on.The locations of its moves are (0, 0) \u2009\u2192\u2009 (1, 0) \u2009\u2192\u2009 (1, 1) \u2009\u2192\u2009 (2, 1) \u2009\u2192\u2009 (2, 2) \u2009\u2192\u2009 ...So it can reach (2, 2) but not (1, 2)."}, "src_uid": "5d6212e28c7942e9ff4d096938b782bf"} {"nl": {"description": "Vasily has a number a, which he wants to turn into a number b. For this purpose, he can do two types of operations: multiply the current number by 2 (that is, replace the number x by 2\u00b7x); append the digit 1 to the right of current number (that is, replace the number x by 10\u00b7x\u2009+\u20091). You need to help Vasily to transform the number a into the number b using only the operations described above, or find that it is impossible.Note that in this task you are not required to minimize the number of operations. It suffices to find any way to transform a into b.", "input_spec": "The first line contains two positive integers a and b (1\u2009\u2264\u2009a\u2009<\u2009b\u2009\u2264\u2009109)\u00a0\u2014 the number which Vasily has and the number he wants to have.", "output_spec": "If there is no way to get b from a, print \"NO\" (without quotes). Otherwise print three lines. On the first line print \"YES\" (without quotes). The second line should contain single integer k\u00a0\u2014 the length of the transformation sequence. On the third line print the sequence of transformations x1,\u2009x2,\u2009...,\u2009xk, where: x1 should be equal to a, xk should be equal to b, xi should be obtained from xi\u2009-\u20091 using any of two described operations (1\u2009<\u2009i\u2009\u2264\u2009k). If there are multiple answers, print any of them.", "sample_inputs": ["2 162", "4 42", "100 40021"], "sample_outputs": ["YES\n5\n2 4 8 81 162", "NO", "YES\n5\n100 200 2001 4002 40021"], "notes": null}, "src_uid": "fc3adb1a9a7f1122b567b4d8afd7b3f3"} {"nl": {"description": "Zane the wizard had never loved anyone before, until he fell in love with a girl, whose name remains unknown to us. The girl lives in house m of a village. There are n houses in that village, lining in a straight line from left to right: house 1, house 2, ..., house n. The village is also well-structured: house i and house i\u2009+\u20091 (1\u2009\u2264\u2009i\u2009<\u2009n) are exactly 10 meters away. In this village, some houses are occupied, and some are not. Indeed, unoccupied houses can be purchased.You will be given n integers a1,\u2009a2,\u2009...,\u2009an that denote the availability and the prices of the houses. If house i is occupied, and therefore cannot be bought, then ai equals 0. Otherwise, house i can be bought, and ai represents the money required to buy it, in dollars.As Zane has only k dollars to spare, it becomes a challenge for him to choose the house to purchase, so that he could live as near as possible to his crush. Help Zane determine the minimum distance from his crush's house to some house he can afford, to help him succeed in his love.", "input_spec": "The first line contains three integers n, m, and k (2\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009m\u2009\u2264\u2009n, 1\u2009\u2264\u2009k\u2009\u2264\u2009100)\u00a0\u2014 the number of houses in the village, the house where the girl lives, and the amount of money Zane has (in dollars), respectively. The second line contains n integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u2009100)\u00a0\u2014 denoting the availability and the prices of the houses. It is guaranteed that am\u2009=\u20090 and that it is possible to purchase some house with no more than k dollars.", "output_spec": "Print one integer\u00a0\u2014 the minimum distance, in meters, from the house where the girl Zane likes lives to the house Zane can buy.", "sample_inputs": ["5 1 20\n0 27 32 21 19", "7 3 50\n62 0 0 0 99 33 22", "10 5 100\n1 0 1 0 0 0 0 0 1 1"], "sample_outputs": ["40", "30", "20"], "notes": "NoteIn the first sample, with k\u2009=\u200920 dollars, Zane can buy only house 5. The distance from house m\u2009=\u20091 to house 5 is 10\u2009+\u200910\u2009+\u200910\u2009+\u200910\u2009=\u200940 meters.In the second sample, Zane can buy houses 6 and 7. It is better to buy house 6 than house 7, since house m\u2009=\u20093 and house 6 are only 30 meters away, while house m\u2009=\u20093 and house 7 are 40 meters away."}, "src_uid": "57860e9a5342a29257ce506063d37624"} {"nl": {"description": "Every summer Vitya comes to visit his grandmother in the countryside. This summer, he got a huge wart. Every grandma knows that one should treat warts when the moon goes down. Thus, Vitya has to catch the moment when the moon is down.Moon cycle lasts 30 days. The size of the visible part of the moon (in Vitya's units) for each day is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, and then cycle repeats, thus after the second 1 again goes 0.As there is no internet in the countryside, Vitya has been watching the moon for n consecutive days and for each of these days he wrote down the size of the visible part of the moon. Help him find out whether the moon will be up or down next day, or this cannot be determined by the data he has.", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200992)\u00a0\u2014 the number of consecutive days Vitya was watching the size of the visible part of the moon. The second line contains n integers ai (0\u2009\u2264\u2009ai\u2009\u2264\u200915)\u00a0\u2014 Vitya's records. It's guaranteed that the input data is consistent.", "output_spec": "If Vitya can be sure that the size of visible part of the moon on day n\u2009+\u20091 will be less than the size of the visible part on day n, then print \"DOWN\" at the only line of the output. If he might be sure that the size of the visible part will increase, then print \"UP\". If it's impossible to determine what exactly will happen with the moon, print -1.", "sample_inputs": ["5\n3 4 5 6 7", "7\n12 13 14 15 14 13 12", "1\n8"], "sample_outputs": ["UP", "DOWN", "-1"], "notes": "NoteIn the first sample, the size of the moon on the next day will be equal to 8, thus the answer is \"UP\".In the second sample, the size of the moon on the next day will be 11, thus the answer is \"DOWN\".In the third sample, there is no way to determine whether the size of the moon on the next day will be 7 or 9, thus the answer is -1."}, "src_uid": "8330d9fea8d50a79741507b878da0a75"} {"nl": {"description": "Apart from having lots of holidays throughout the year, residents of Berland also have whole lucky years. Year is considered lucky if it has no more than 1 non-zero digit in its number. So years 100, 40000, 5 are lucky and 12, 3001 and 12345 are not.You are given current year in Berland. Your task is to find how long will residents of Berland wait till the next lucky year.", "input_spec": "The first line contains integer number n (1\u2009\u2264\u2009n\u2009\u2264\u2009109) \u2014 current year in Berland.", "output_spec": "Output amount of years from the current year to the next lucky one.", "sample_inputs": ["4", "201", "4000"], "sample_outputs": ["1", "99", "1000"], "notes": "NoteIn the first example next lucky year is 5. In the second one \u2014 300. In the third \u2014 5000."}, "src_uid": "a3e15c0632e240a0ef6fe43a5ab3cc3e"} {"nl": {"description": "Vasya lives in a round building, whose entrances are numbered sequentially by integers from 1 to n. Entrance n and entrance 1 are adjacent.Today Vasya got bored and decided to take a walk in the yard. Vasya lives in entrance a and he decided that during his walk he will move around the house b entrances in the direction of increasing numbers (in this order entrance n should be followed by entrance 1). The negative value of b corresponds to moving |b| entrances in the order of decreasing numbers (in this order entrance 1 is followed by entrance n). If b\u2009=\u20090, then Vasya prefers to walk beside his entrance. Illustration for n\u2009=\u20096, a\u2009=\u20092, b\u2009=\u2009\u2009-\u20095. Help Vasya to determine the number of the entrance, near which he will be at the end of his walk.", "input_spec": "The single line of the input contains three space-separated integers n, a and b (1\u2009\u2264\u2009n\u2009\u2264\u2009100,\u20091\u2009\u2264\u2009a\u2009\u2264\u2009n,\u2009\u2009-\u2009100\u2009\u2264\u2009b\u2009\u2264\u2009100)\u00a0\u2014 the number of entrances at Vasya's place, the number of his entrance and the length of his walk, respectively.", "output_spec": "Print a single integer k (1\u2009\u2264\u2009k\u2009\u2264\u2009n)\u00a0\u2014 the number of the entrance where Vasya will be at the end of his walk.", "sample_inputs": ["6 2 -5", "5 1 3", "3 2 7"], "sample_outputs": ["3", "4", "3"], "notes": "NoteThe first example is illustrated by the picture in the statements."}, "src_uid": "cd0e90042a6aca647465f1d51e6dffc4"} {"nl": {"description": "There are n people, sitting in a line at the table. For each person we know that he always tells either the truth or lies.Little Serge asked them: how many of you always tell the truth? Each of the people at the table knows everything (who is an honest person and who is a liar) about all the people at the table. The honest people are going to say the correct answer, the liars are going to say any integer from 1 to n, which is not the correct answer. Every liar chooses his answer, regardless of the other liars, so two distinct liars may give distinct answer.Serge does not know any information about the people besides their answers to his question. He took a piece of paper and wrote n integers a1,\u2009a2,\u2009...,\u2009an, where ai is the answer of the i-th person in the row. Given this sequence, Serge determined that exactly k people sitting at the table apparently lie.Serge wonders, how many variants of people's answers (sequences of answers a of length n) there are where one can say that exactly k people sitting at the table apparently lie. As there can be rather many described variants of answers, count the remainder of dividing the number of the variants by 777777777.", "input_spec": "The first line contains two integers n, k, (1\u2009\u2264\u2009k\u2009\u2264\u2009n\u2009\u2264\u200928). It is guaranteed that n \u2014 is the power of number 2.", "output_spec": "Print a single integer \u2014 the answer to the problem modulo 777777777.", "sample_inputs": ["1 1", "2 1"], "sample_outputs": ["0", "2"], "notes": null}, "src_uid": "cfe19131644e5925e32084a581e23286"} {"nl": {"description": "Mike has a string s consisting of only lowercase English letters. He wants to change exactly one character from the string so that the resulting one is a palindrome. A palindrome is a string that reads the same backward as forward, for example strings \"z\", \"aaa\", \"aba\", \"abccba\" are palindromes, but strings \"codeforces\", \"reality\", \"ab\" are not.", "input_spec": "The first and single line contains string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200915).", "output_spec": "Print \"YES\" (without quotes) if Mike can change exactly one character so that the resulting string is palindrome or \"NO\" (without quotes) otherwise. ", "sample_inputs": ["abccaa", "abbcca", "abcda"], "sample_outputs": ["YES", "NO", "YES"], "notes": null}, "src_uid": "fe74313abcf381f6c5b7b2057adaaa52"} {"nl": {"description": "Recently Luba learned about a special kind of numbers that she calls beautiful numbers. The number is called beautiful iff its binary representation consists of k\u2009+\u20091 consecutive ones, and then k consecutive zeroes.Some examples of beautiful numbers: 12 (110); 1102 (610); 11110002 (12010); 1111100002 (49610). More formally, the number is beautiful iff there exists some positive integer k such that the number is equal to (2k\u2009-\u20091)\u2009*\u2009(2k\u2009-\u20091).Luba has got an integer number n, and she wants to find its greatest beautiful divisor. Help her to find it!", "input_spec": "The only line of input contains one number n (1\u2009\u2264\u2009n\u2009\u2264\u2009105) \u2014 the number Luba has got.", "output_spec": "Output one number \u2014 the greatest beautiful divisor of Luba's number. It is obvious that the answer always exists.", "sample_inputs": ["3", "992"], "sample_outputs": ["1", "496"], "notes": null}, "src_uid": "339246a1be81aefe19290de0d1aead84"} {"nl": {"description": "Imp likes his plush toy a lot. Recently, he found a machine that can clone plush toys. Imp knows that if he applies the machine to an original toy, he additionally gets one more original toy and one copy, and if he applies the machine to a copied toy, he gets two additional copies.Initially, Imp has only one original toy. He wants to know if it is possible to use machine to get exactly x copied toys and y original toys? He can't throw toys away, and he can't apply the machine to a copy if he doesn't currently have any copies.", "input_spec": "The only line contains two integers x and y (0\u2009\u2264\u2009x,\u2009y\u2009\u2264\u2009109)\u00a0\u2014 the number of copies and the number of original toys Imp wants to get (including the initial one).", "output_spec": "Print \"Yes\", if the desired configuration is possible, and \"No\" otherwise. You can print each letter in arbitrary case (upper or lower).", "sample_inputs": ["6 3", "4 2", "1000 1001"], "sample_outputs": ["Yes", "No", "Yes"], "notes": "NoteIn the first example, Imp has to apply the machine twice to original toys and then twice to copies."}, "src_uid": "1527171297a0b9c5adf356a549f313b9"} {"nl": {"description": "Two friends are on the coordinate axis Ox in points with integer coordinates. One of them is in the point x1\u2009=\u2009a, another one is in the point x2\u2009=\u2009b. Each of the friends can move by one along the line in any direction unlimited number of times. When a friend moves, the tiredness of a friend changes according to the following rules: the first move increases the tiredness by 1, the second move increases the tiredness by 2, the third\u00a0\u2014 by 3 and so on. For example, if a friend moves first to the left, then to the right (returning to the same point), and then again to the left his tiredness becomes equal to 1\u2009+\u20092\u2009+\u20093\u2009=\u20096.The friends want to meet in a integer point. Determine the minimum total tiredness they should gain, if they meet in the same point.", "input_spec": "The first line contains a single integer a (1\u2009\u2264\u2009a\u2009\u2264\u20091000) \u2014 the initial position of the first friend. The second line contains a single integer b (1\u2009\u2264\u2009b\u2009\u2264\u20091000) \u2014 the initial position of the second friend. It is guaranteed that a\u2009\u2260\u2009b.", "output_spec": "Print the minimum possible total tiredness if the friends meet in the same point.", "sample_inputs": ["3\n4", "101\n99", "5\n10"], "sample_outputs": ["1", "2", "9"], "notes": "NoteIn the first example the first friend should move by one to the right (then the meeting happens at point 4), or the second friend should move by one to the left (then the meeting happens at point 3). In both cases, the total tiredness becomes 1.In the second example the first friend should move by one to the left, and the second friend should move by one to the right. Then they meet in the point 100, and the total tiredness becomes 1\u2009+\u20091\u2009=\u20092.In the third example one of the optimal ways is the following. The first friend should move three times to the right, and the second friend \u2014 two times to the left. Thus the friends meet in the point 8, and the total tiredness becomes 1\u2009+\u20092\u2009+\u20093\u2009+\u20091\u2009+\u20092\u2009=\u20099."}, "src_uid": "d3f2c6886ed104d7baba8dd7b70058da"} {"nl": {"description": "You are given a rectangle grid. That grid's size is n\u2009\u00d7\u2009m. Let's denote the coordinate system on the grid. So, each point on the grid will have coordinates \u2014 a pair of integers (x,\u2009y) (0\u2009\u2264\u2009x\u2009\u2264\u2009n,\u20090\u2009\u2264\u2009y\u2009\u2264\u2009m).Your task is to find a maximum sub-rectangle on the grid (x1,\u2009y1,\u2009x2,\u2009y2) so that it contains the given point (x,\u2009y), and its length-width ratio is exactly (a,\u2009b). In other words the following conditions must hold: 0\u2009\u2264\u2009x1\u2009\u2264\u2009x\u2009\u2264\u2009x2\u2009\u2264\u2009n, 0\u2009\u2264\u2009y1\u2009\u2264\u2009y\u2009\u2264\u2009y2\u2009\u2264\u2009m, .The sides of this sub-rectangle should be parallel to the axes. And values x1,\u2009y1,\u2009x2,\u2009y2 should be integers. If there are multiple solutions, find the rectangle which is closest to (x,\u2009y). Here \"closest\" means the Euclid distance between (x,\u2009y) and the center of the rectangle is as small as possible. If there are still multiple solutions, find the lexicographically minimum one. Here \"lexicographically minimum\" means that we should consider the sub-rectangle as sequence of integers (x1,\u2009y1,\u2009x2,\u2009y2), so we can choose the lexicographically minimum one.", "input_spec": "The first line contains six integers n,\u2009m,\u2009x,\u2009y,\u2009a,\u2009b (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009109,\u20090\u2009\u2264\u2009x\u2009\u2264\u2009n,\u20090\u2009\u2264\u2009y\u2009\u2264\u2009m,\u20091\u2009\u2264\u2009a\u2009\u2264\u2009n,\u20091\u2009\u2264\u2009b\u2009\u2264\u2009m).", "output_spec": "Print four integers x1,\u2009y1,\u2009x2,\u2009y2, which represent the founded sub-rectangle whose left-bottom point is (x1,\u2009y1) and right-up point is (x2,\u2009y2).", "sample_inputs": ["9 9 5 5 2 1", "100 100 52 50 46 56"], "sample_outputs": ["1 3 9 7", "17 8 86 92"], "notes": null}, "src_uid": "8f1211b995f35462ae83b2be27f54585"} {"nl": {"description": "Vasya has a non-negative integer n. He wants to round it to nearest integer, which ends up with 0. If n already ends up with 0, Vasya considers it already rounded.For example, if n\u2009=\u20094722 answer is 4720. If n\u2009=\u20095 Vasya can round it to 0 or to 10. Both ways are correct.For given n find out to which integer will Vasya round it.", "input_spec": "The first line contains single integer n (0\u2009\u2264\u2009n\u2009\u2264\u2009109)\u00a0\u2014 number that Vasya has.", "output_spec": "Print result of rounding n. Pay attention that in some cases answer isn't unique. In that case print any correct answer.", "sample_inputs": ["5", "113", "1000000000", "5432359"], "sample_outputs": ["0", "110", "1000000000", "5432360"], "notes": "NoteIn the first example n\u2009=\u20095. Nearest integers, that ends up with zero are 0 and 10. Any of these answers is correct, so you can print 0 or 10."}, "src_uid": "29c4d5fdf1328bbc943fa16d54d97aa9"} {"nl": {"description": "In this problem we assume the Earth to be a completely round ball and its surface a perfect sphere. The length of the equator and any meridian is considered to be exactly 40\u2009000 kilometers. Thus, travelling from North Pole to South Pole or vice versa takes exactly 20\u2009000 kilometers.Limak, a polar bear, lives on the North Pole. Close to the New Year, he helps somebody with delivering packages all around the world. Instead of coordinates of places to visit, Limak got a description how he should move, assuming that he starts from the North Pole. The description consists of n parts. In the i-th part of his journey, Limak should move ti kilometers in the direction represented by a string diri that is one of: \"North\", \"South\", \"West\", \"East\".Limak isn\u2019t sure whether the description is valid. You must help him to check the following conditions: If at any moment of time (before any of the instructions or while performing one of them) Limak is on the North Pole, he can move only to the South. If at any moment of time (before any of the instructions or while performing one of them) Limak is on the South Pole, he can move only to the North. The journey must end on the North Pole. Check if the above conditions are satisfied and print \"YES\" or \"NO\" on a single line.", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200950). The i-th of next n lines contains an integer ti and a string diri (1\u2009\u2264\u2009ti\u2009\u2264\u2009106, )\u00a0\u2014 the length and the direction of the i-th part of the journey, according to the description Limak got.", "output_spec": "Print \"YES\" if the description satisfies the three conditions, otherwise print \"NO\", both without the quotes.", "sample_inputs": ["5\n7500 South\n10000 East\n3500 North\n4444 West\n4000 North", "2\n15000 South\n4000 East", "5\n20000 South\n1000 North\n1000000 West\n9000 North\n10000 North", "3\n20000 South\n10 East\n20000 North", "2\n1000 North\n1000 South", "4\n50 South\n50 North\n15000 South\n15000 North"], "sample_outputs": ["YES", "NO", "YES", "NO", "NO", "YES"], "notes": "NoteDrawings below show how Limak's journey would look like in first two samples. In the second sample the answer is \"NO\" because he doesn't end on the North Pole. "}, "src_uid": "11ac96a9daa97ae1900f123be921e517"} {"nl": {"description": "You can't possibly imagine how cold our friends are this winter in Nvodsk! Two of them play the following game to warm up: initially a piece of paper has an integer q. During a move a player should write any integer number that is a non-trivial divisor of the last written number. Then he should run this number of circles around the hotel. Let us remind you that a number's divisor is called non-trivial if it is different from one and from the divided number itself. The first person who can't make a move wins as he continues to lie in his warm bed under three blankets while the other one keeps running. Determine which player wins considering that both players play optimally. If the first player wins, print any winning first move.", "input_spec": "The first line contains the only integer q (1\u2009\u2264\u2009q\u2009\u2264\u20091013). Please do not use the %lld specificator to read or write 64-bit integers in \u0421++. It is preferred to use the cin, cout streams or the %I64d specificator.", "output_spec": "In the first line print the number of the winning player (1 or 2). If the first player wins then the second line should contain another integer \u2014 his first move (if the first player can't even make the first move, print 0). If there are multiple solutions, print any of them.", "sample_inputs": ["6", "30", "1"], "sample_outputs": ["2", "1\n6", "1\n0"], "notes": "NoteNumber 6 has only two non-trivial divisors: 2 and 3. It is impossible to make a move after the numbers 2 and 3 are written, so both of them are winning, thus, number 6 is the losing number. A player can make a move and write number 6 after number 30; 6, as we know, is a losing number. Thus, this move will bring us the victory."}, "src_uid": "f0a138b9f6ad979c5ca32437e05d6f43"} {"nl": {"description": "Vasya has n burles. One bottle of Ber-Cola costs a burles and one Bars bar costs b burles. He can buy any non-negative integer number of bottles of Ber-Cola and any non-negative integer number of Bars bars.Find out if it's possible to buy some amount of bottles of Ber-Cola and Bars bars and spend exactly n burles.In other words, you should find two non-negative integers x and y such that Vasya can buy x bottles of Ber-Cola and y Bars bars and x\u00b7a\u2009+\u2009y\u00b7b\u2009=\u2009n or tell that it's impossible.", "input_spec": "First line contains single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200910\u2009000\u2009000)\u00a0\u2014 amount of money, that Vasya has. Second line contains single integer a (1\u2009\u2264\u2009a\u2009\u2264\u200910\u2009000\u2009000)\u00a0\u2014 cost of one bottle of Ber-Cola. Third line contains single integer b (1\u2009\u2264\u2009b\u2009\u2264\u200910\u2009000\u2009000)\u00a0\u2014 cost of one Bars bar.", "output_spec": "If Vasya can't buy Bars and Ber-Cola in such a way to spend exactly n burles print \u00abNO\u00bb (without quotes). Otherwise in first line print \u00abYES\u00bb (without quotes). In second line print two non-negative integers x and y\u00a0\u2014 number of bottles of Ber-Cola and number of Bars bars Vasya should buy in order to spend exactly n burles, i.e. x\u00b7a\u2009+\u2009y\u00b7b\u2009=\u2009n. If there are multiple answers print any of them. Any of numbers x and y can be equal 0.", "sample_inputs": ["7\n2\n3", "100\n25\n10", "15\n4\n8", "9960594\n2551\n2557"], "sample_outputs": ["YES\n2 1", "YES\n0 10", "NO", "YES\n1951 1949"], "notes": "NoteIn first example Vasya can buy two bottles of Ber-Cola and one Bars bar. He will spend exactly 2\u00b72\u2009+\u20091\u00b73\u2009=\u20097 burles.In second example Vasya can spend exactly n burles multiple ways: buy two bottles of Ber-Cola and five Bars bars; buy four bottles of Ber-Cola and don't buy Bars bars; don't buy Ber-Cola and buy 10 Bars bars. In third example it's impossible to but Ber-Cola and Bars bars in order to spend exactly n burles."}, "src_uid": "b031daf3b980e03218167f40f39e7b01"} {"nl": {"description": "Your friend recently gave you some slimes for your birthday. You have n slimes all initially with value 1.You are going to play a game with these slimes. Initially, you put a single slime by itself in a row. Then, you will add the other n\u2009-\u20091 slimes one by one. When you add a slime, you place it at the right of all already placed slimes. Then, while the last two slimes in the row have the same value v, you combine them together to create a slime with value v\u2009+\u20091.You would like to see what the final state of the row is after you've added all n slimes. Please print the values of the slimes in the row from left to right.", "input_spec": "The first line of the input will contain a single integer, n (1\u2009\u2264\u2009n\u2009\u2264\u2009100\u2009000).", "output_spec": "Output a single line with k integers, where k is the number of slimes in the row after you've finished the procedure described in the problem statement. The i-th of these numbers should be the value of the i-th slime from the left.", "sample_inputs": ["1", "2", "3", "8"], "sample_outputs": ["1", "2", "2 1", "4"], "notes": "NoteIn the first sample, we only have a single slime with value 1. The final state of the board is just a single slime with value 1.In the second sample, we perform the following steps:Initially we place a single slime in a row by itself. Thus, row is initially 1.Then, we will add another slime. The row is now 1 1. Since two rightmost slimes have the same values, we should replace these slimes with one with value 2. Thus, the final state of the board is 2.In the third sample, after adding the first two slimes, our row is 2. After adding one more slime, the row becomes 2 1.In the last sample, the steps look as follows: 1 2 2 1 3 3 1 3 2 3 2 1 4 "}, "src_uid": "757cd804aba01dc4bc108cb0722f68dc"} {"nl": {"description": "You will receive 3 points for solving this problem.Manao is designing the genetic code for a new type of algae to efficiently produce fuel. Specifically, Manao is focusing on a stretch of DNA that encodes one protein. The stretch of DNA is represented by a string containing only the characters 'A', 'T', 'G' and 'C'.Manao has determined that if the stretch of DNA contains a maximal sequence of consecutive identical nucleotides that is of even length, then the protein will be nonfunctional. For example, consider a protein described by DNA string \"GTTAAAG\". It contains four maximal sequences of consecutive identical nucleotides: \"G\", \"TT\", \"AAA\", and \"G\". The protein is nonfunctional because sequence \"TT\" has even length.Manao is trying to obtain a functional protein from the protein he currently has. Manao can insert additional nucleotides into the DNA stretch. Each additional nucleotide is a character from the set {'A', 'T', 'G', 'C'}. Manao wants to determine the minimum number of insertions necessary to make the DNA encode a functional protein.", "input_spec": "The input consists of a single line, containing a string s of length n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). Each character of s will be from the set {'A', 'T', 'G', 'C'}. This problem doesn't have subproblems. You will get 3 points for the correct submission.", "output_spec": "The program should print on one line a single integer representing the minimum number of 'A', 'T', 'G', 'C' characters that are required to be inserted into the input string in order to make all runs of identical characters have odd length.", "sample_inputs": ["GTTAAAG", "AACCAACCAAAAC"], "sample_outputs": ["1", "5"], "notes": "NoteIn the first example, it is sufficient to insert a single nucleotide of any type between the two 'T's in the sequence to restore the functionality of the protein."}, "src_uid": "8b26ca1ca2b28166c3d25dceb1f3d49f"} {"nl": {"description": "Vanya got n cubes. He decided to build a pyramid from them. Vanya wants to build the pyramid as follows: the top level of the pyramid must consist of 1 cube, the second level must consist of 1\u2009+\u20092\u2009=\u20093 cubes, the third level must have 1\u2009+\u20092\u2009+\u20093\u2009=\u20096 cubes, and so on. Thus, the i-th level of the pyramid must have 1\u2009+\u20092\u2009+\u2009...\u2009+\u2009(i\u2009-\u20091)\u2009+\u2009i cubes.Vanya wants to know what is the maximum height of the pyramid that he can make using the given cubes.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009104) \u2014 the number of cubes given to Vanya.", "output_spec": "Print the maximum possible height of the pyramid in the single line.", "sample_inputs": ["1", "25"], "sample_outputs": ["1", "4"], "notes": "NoteIllustration to the second sample: "}, "src_uid": "873a12edffc57a127fdfb1c65d43bdb0"} {"nl": {"description": "Wet Shark asked Rat Kwesh to generate three positive real numbers x, y and z, from 0.1 to 200.0, inclusive. Wet Krash wants to impress Wet Shark, so all generated numbers will have exactly one digit after the decimal point.Wet Shark knows Rat Kwesh will want a lot of cheese. So he will give the Rat an opportunity to earn a lot of cheese. He will hand the three numbers x, y and z to Rat Kwesh, and Rat Kwesh will pick one of the these twelve options: a1\u2009=\u2009xyz; a2\u2009=\u2009xzy; a3\u2009=\u2009(xy)z; a4\u2009=\u2009(xz)y; a5\u2009=\u2009yxz; a6\u2009=\u2009yzx; a7\u2009=\u2009(yx)z; a8\u2009=\u2009(yz)x; a9\u2009=\u2009zxy; a10\u2009=\u2009zyx; a11\u2009=\u2009(zx)y; a12\u2009=\u2009(zy)x. Let m be the maximum of all the ai, and c be the smallest index (from 1 to 12) such that ac\u2009=\u2009m. Rat's goal is to find that c, and he asks you to help him. Rat Kwesh wants to see how much cheese he gets, so he you will have to print the expression corresponding to that ac. ", "input_spec": "The only line of the input contains three space-separated real numbers x, y and z (0.1\u2009\u2264\u2009x,\u2009y,\u2009z\u2009\u2264\u2009200.0). Each of x, y and z is given with exactly one digit after the decimal point.", "output_spec": "Find the maximum value of expression among xyz, xzy, (xy)z, (xz)y, yxz, yzx, (yx)z, (yz)x, zxy, zyx, (zx)y, (zy)x and print the corresponding expression. If there are many maximums, print the one that comes first in the list. xyz should be outputted as x^y^z (without brackets), and (xy)z should be outputted as (x^y)^z (quotes for clarity). ", "sample_inputs": ["1.1 3.4 2.5", "2.0 2.0 2.0", "1.9 1.8 1.7"], "sample_outputs": ["z^y^x", "x^y^z", "(x^y)^z"], "notes": null}, "src_uid": "a71cb5cda754ad2bf479bc3b0164fc4c"} {"nl": {"description": "Iahub and his friend Floyd have started painting a wall. Iahub is painting the wall red and Floyd is painting it pink. You can consider the wall being made of a very large number of bricks, numbered 1, 2, 3 and so on. Iahub has the following scheme of painting: he skips x\u2009-\u20091 consecutive bricks, then he paints the x-th one. That is, he'll paint bricks x, 2\u00b7x, 3\u00b7x and so on red. Similarly, Floyd skips y\u2009-\u20091 consecutive bricks, then he paints the y-th one. Hence he'll paint bricks y, 2\u00b7y, 3\u00b7y and so on pink.After painting the wall all day, the boys observed that some bricks are painted both red and pink. Iahub has a lucky number a and Floyd has a lucky number b. Boys wonder how many bricks numbered no less than a and no greater than b are painted both red and pink. This is exactly your task: compute and print the answer to the question. ", "input_spec": "The input will have a single line containing four integers in this order: x, y, a, b. (1\u2009\u2264\u2009x,\u2009y\u2009\u2264\u20091000, 1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u20092\u00b7109, a\u2009\u2264\u2009b).", "output_spec": "Output a single integer \u2014 the number of bricks numbered no less than a and no greater than b that are painted both red and pink.", "sample_inputs": ["2 3 6 18"], "sample_outputs": ["3"], "notes": "NoteLet's look at the bricks from a to b (a\u2009=\u20096,\u2009b\u2009=\u200918). The bricks colored in red are numbered 6, 8, 10, 12, 14, 16, 18. The bricks colored in pink are numbered 6, 9, 12, 15, 18. The bricks colored in both red and pink are numbered with 6, 12 and 18. "}, "src_uid": "c7aa8a95d5f8832015853cffa1374c48"} {"nl": {"description": "Fox Ciel has n boxes in her room. They have the same size and weight, but they might have different strength. The i-th box can hold at most xi boxes on its top (we'll call xi the strength of the box). Since all the boxes have the same size, Ciel cannot put more than one box directly on the top of some box. For example, imagine Ciel has three boxes: the first has strength 2, the second has strength 1 and the third has strength 1. She cannot put the second and the third box simultaneously directly on the top of the first one. But she can put the second box directly on the top of the first one, and then the third box directly on the top of the second one. We will call such a construction of boxes a pile.Fox Ciel wants to construct piles from all the boxes. Each pile will contain some boxes from top to bottom, and there cannot be more than xi boxes on the top of i-th box. What is the minimal number of piles she needs to construct?", "input_spec": "The first line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). The next line contains n integers x1,\u2009x2,\u2009...,\u2009xn (0\u2009\u2264\u2009xi\u2009\u2264\u2009100).", "output_spec": "Output a single integer \u2014 the minimal possible number of piles.", "sample_inputs": ["3\n0 0 10", "5\n0 1 2 3 4", "4\n0 0 0 0", "9\n0 1 0 2 0 1 1 2 10"], "sample_outputs": ["2", "1", "4", "3"], "notes": "NoteIn example 1, one optimal way is to build 2 piles: the first pile contains boxes 1 and 3 (from top to bottom), the second pile contains only box 2.In example 2, we can build only 1 pile that contains boxes 1, 2, 3, 4, 5 (from top to bottom)."}, "src_uid": "7c710ae68f27f140e7e03564492f7214"} {"nl": {"description": "Sagheer is walking in the street when he comes to an intersection of two roads. Each road can be represented as two parts where each part has 3 lanes getting into the intersection (one for each direction) and 3 lanes getting out of the intersection, so we have 4 parts in total. Each part has 4 lights, one for each lane getting into the intersection (l \u2014 left, s \u2014 straight, r \u2014 right) and a light p for a pedestrian crossing. An accident is possible if a car can hit a pedestrian. This can happen if the light of a pedestrian crossing of some part and the light of a lane that can get to or from that same part are green at the same time.Now, Sagheer is monitoring the configuration of the traffic lights. Your task is to help him detect whether an accident is possible.", "input_spec": "The input consists of four lines with each line describing a road part given in a counter-clockwise order. Each line contains four integers l, s, r, p \u2014 for the left, straight, right and pedestrian lights, respectively. The possible values are 0 for red light and 1 for green light.", "output_spec": "On a single line, print \"YES\" if an accident is possible, and \"NO\" otherwise.", "sample_inputs": ["1 0 0 1\n0 1 0 0\n0 0 1 0\n0 0 0 1", "0 1 1 0\n1 0 1 0\n1 1 0 0\n0 0 0 1", "1 0 0 0\n0 0 0 1\n0 0 0 0\n1 0 1 0"], "sample_outputs": ["YES", "NO", "NO"], "notes": "NoteIn the first example, some accidents are possible because cars of part 1 can hit pedestrians of parts 1 and 4. Also, cars of parts 2 and 3 can hit pedestrians of part 4.In the second example, no car can pass the pedestrian crossing of part 4 which is the only green pedestrian light. So, no accident can occur."}, "src_uid": "44fdf71d56bef949ec83f00d17c29127"} {"nl": {"description": "Bob is decorating his kitchen, more precisely, the floor. He has found a prime candidate for the tiles he will use. They come in a simple form factor\u00a0\u2014\u00a0a square tile that is diagonally split into white and black part as depicted in the figure below. The dimension of this tile is perfect for this kitchen, as he will need exactly $$$w \\times h$$$ tiles without any scraps. That is, the width of the kitchen is $$$w$$$ tiles, and the height is $$$h$$$ tiles. As each tile can be rotated in one of four ways, he still needs to decide on how exactly he will tile the floor. There is a single aesthetic criterion that he wants to fulfil: two adjacent tiles must not share a colour on the edge\u00a0\u2014\u00a0i.e. one of the tiles must have a white colour on the shared border, and the second one must be black. The picture on the left shows one valid tiling of a $$$3 \\times 2$$$ kitchen. The picture on the right shows an invalid arrangement, as the bottom two tiles touch with their white parts. Find the number of possible tilings. As this number may be large, output its remainder when divided by $$$998244353$$$ (a prime number). ", "input_spec": "The only line contains two space separated integers $$$w$$$, $$$h$$$\u00a0($$$1 \\leq w,h \\leq 1\\,000$$$)\u00a0\u2014\u00a0the width and height of the kitchen, measured in tiles.", "output_spec": "Output a single integer $$$n$$$\u00a0\u2014\u00a0the remainder of the number of tilings when divided by $$$998244353$$$.", "sample_inputs": ["2 2", "2 4"], "sample_outputs": ["16", "64"], "notes": null}, "src_uid": "8b2a9ae21740c89079a6011a30cd6aee"} {"nl": {"description": "Valera the horse lives on a plane. The Cartesian coordinate system is defined on this plane. Also an infinite spiral is painted on the plane. The spiral consists of segments: [(0,\u20090),\u2009(1,\u20090)], [(1,\u20090),\u2009(1,\u20091)], [(1,\u20091),\u2009(\u2009-\u20091,\u20091)], [(\u2009-\u20091,\u20091),\u2009(\u2009-\u20091,\u2009\u2009-\u20091)], [(\u2009-\u20091,\u2009\u2009-\u20091),\u2009(2,\u2009\u2009-\u20091)], [(2,\u2009\u2009-\u20091),\u2009(2,\u20092)] and so on. Thus, this infinite spiral passes through each integer point of the plane.Valera the horse lives on the plane at coordinates (0,\u20090). He wants to walk along the spiral to point (x,\u2009y). Valera the horse has four legs, so he finds turning very difficult. Count how many times he will have to turn if he goes along a spiral from point (0,\u20090) to point (x,\u2009y).", "input_spec": "The first line contains two space-separated integers x and y (|x|,\u2009|y|\u2009\u2264\u2009100).", "output_spec": "Print a single integer, showing how many times Valera has to turn.", "sample_inputs": ["0 0", "1 0", "0 1", "-1 -1"], "sample_outputs": ["0", "0", "2", "3"], "notes": null}, "src_uid": "2fb2a129e01efc03cfc3ad91dac88382"} {"nl": {"description": "Amr doesn't like Maths as he finds it really boring, so he usually sleeps in Maths lectures. But one day the teacher suspected that Amr is sleeping and asked him a question to make sure he wasn't.First he gave Amr two positive integers n and k. Then he asked Amr, how many integer numbers x\u2009>\u20090 exist such that: Decimal representation of x (without leading zeroes) consists of exactly n digits; There exists some integer y\u2009>\u20090 such that: ; decimal representation of y is a suffix of decimal representation of x. As the answer to this question may be pretty huge the teacher asked Amr to output only its remainder modulo a number m.Can you help Amr escape this embarrassing situation?", "input_spec": "Input consists of three integers n,\u2009k,\u2009m (1\u2009\u2264\u2009n\u2009\u2264\u20091000, 1\u2009\u2264\u2009k\u2009\u2264\u2009100, 1\u2009\u2264\u2009m\u2009\u2264\u2009109).", "output_spec": "Print the required number modulo m.", "sample_inputs": ["1 2 1000", "2 2 1000", "5 3 1103"], "sample_outputs": ["4", "45", "590"], "notes": "NoteA suffix of a string S is a non-empty string that can be obtained by removing some number (possibly, zero) of first characters from S."}, "src_uid": "656bf8df1e79499aa2ab2c28712851f0"} {"nl": {"description": "Translator's note: in Russia's most widespread grading system, there are four grades: 5, 4, 3, 2, the higher the better, roughly corresponding to A, B, C and F respectively in American grading system.The term is coming to an end and students start thinking about their grades. Today, a professor told his students that the grades for his course would be given out automatically \u00a0\u2014 he would calculate the simple average (arithmetic mean) of all grades given out for lab works this term and round to the nearest integer. The rounding would be done in favour of the student\u00a0\u2014 $$$4.5$$$ would be rounded up to $$$5$$$ (as in example 3), but $$$4.4$$$ would be rounded down to $$$4$$$.This does not bode well for Vasya who didn't think those lab works would influence anything, so he may receive a grade worse than $$$5$$$ (maybe even the dreaded $$$2$$$). However, the professor allowed him to redo some of his works of Vasya's choosing to increase his average grade. Vasya wants to redo as as few lab works as possible in order to get $$$5$$$ for the course. Of course, Vasya will get $$$5$$$ for the lab works he chooses to redo.Help Vasya\u00a0\u2014 calculate the minimum amount of lab works Vasya has to redo.", "input_spec": "The first line contains a single integer $$$n$$$\u00a0\u2014 the number of Vasya's grades ($$$1 \\leq n \\leq 100$$$). The second line contains $$$n$$$ integers from $$$2$$$ to $$$5$$$\u00a0\u2014 Vasya's grades for his lab works.", "output_spec": "Output a single integer\u00a0\u2014 the minimum amount of lab works that Vasya has to redo. It can be shown that Vasya can always redo enough lab works to get a $$$5$$$.", "sample_inputs": ["3\n4 4 4", "4\n5 4 5 5", "4\n5 3 3 5"], "sample_outputs": ["2", "0", "1"], "notes": "NoteIn the first sample, it is enough to redo two lab works to make two $$$4$$$s into $$$5$$$s.In the second sample, Vasya's average is already $$$4.75$$$ so he doesn't have to redo anything to get a $$$5$$$.In the second sample Vasya has to redo one lab work to get rid of one of the $$$3$$$s, that will make the average exactly $$$4.5$$$ so the final grade would be $$$5$$$."}, "src_uid": "715608282b27a0a25b66f08574a6d5bd"} {"nl": {"description": "Chouti was doing a competitive programming competition. However, after having all the problems accepted, he got bored and decided to invent some small games.He came up with the following game. The player has a positive integer $$$n$$$. Initially the value of $$$n$$$ equals to $$$v$$$ and the player is able to do the following operation as many times as the player want (possibly zero): choose a positive integer $$$x$$$ that $$$x<n$$$ and $$$x$$$ is not a divisor of $$$n$$$, then subtract $$$x$$$ from $$$n$$$. The goal of the player is to minimize the value of $$$n$$$ in the end.Soon, Chouti found the game trivial. Can you also beat the game?", "input_spec": "The input contains only one integer in the first line: $$$v$$$ ($$$1 \\le v \\le 10^9$$$), the initial value of $$$n$$$.", "output_spec": "Output a single integer, the minimum value of $$$n$$$ the player can get.", "sample_inputs": ["8", "1"], "sample_outputs": ["1", "1"], "notes": "NoteIn the first example, the player can choose $$$x=3$$$ in the first turn, then $$$n$$$ becomes $$$5$$$. He can then choose $$$x=4$$$ in the second turn to get $$$n=1$$$ as the result. There are other ways to get this minimum. However, for example, he cannot choose $$$x=2$$$ in the first turn because $$$2$$$ is a divisor of $$$8$$$.In the second example, since $$$n=1$$$ initially, the player can do nothing."}, "src_uid": "c30b372a9cc0df4948dca48ef4c5d80d"} {"nl": {"description": "Polycarp has just invented a new binary protocol for data transmission. He is encoding positive integer decimal number to binary string using following algorithm: Each digit is represented with number of '1' characters equal to the value of that digit (for 0 it is zero ones). Digits are written one by one in order corresponding to number and separated by single '0' character. Though Polycarp learnt how to encode the numbers, he has no idea how to decode them back. Help him calculate the decoded number.", "input_spec": "The first line contains one integer number n (1\u2009\u2264\u2009n\u2009\u2264\u200989) \u2014 length of the string s. The second line contains string s \u2014 sequence of '0' and '1' characters, number in its encoded format. It is guaranteed that the number corresponding to the string is positive and doesn't exceed 109. The string always starts with '1'.", "output_spec": "Print the decoded number.", "sample_inputs": ["3\n111", "9\n110011101"], "sample_outputs": ["3", "2031"], "notes": null}, "src_uid": "a4b3da4cb9b6a7ed0a33a862e940cafa"} {"nl": {"description": "Each evening after the dinner the SIS's students gather together to play the game of Sport Mafia. For the tournament, Alya puts candies into the box, which will serve as a prize for a winner. To do that, she performs $$$n$$$ actions. The first action performed is to put a single candy into the box. For each of the remaining moves she can choose from two options: the first option, in case the box contains at least one candy, is to take exactly one candy out and eat it. This way the number of candies in the box decreased by $$$1$$$; the second option is to put candies in the box. In this case, Alya will put $$$1$$$ more candy, than she put in the previous time. Thus, if the box is empty, then it can only use the second option.For example, one possible sequence of Alya's actions look as follows: put one candy into the box; put two candies into the box; eat one candy from the box; eat one candy from the box; put three candies into the box; eat one candy from the box; put four candies into the box; eat one candy from the box; put five candies into the box; This way she will perform $$$9$$$ actions, the number of candies at the end will be $$$11$$$, while Alya will eat $$$4$$$ candies in total.You know the total number of actions $$$n$$$ and the number of candies at the end $$$k$$$. You need to find the total number of sweets Alya ate. That is the number of moves of the first option. It's guaranteed, that for the given $$$n$$$ and $$$k$$$ the answer always exists.Please note, that during an action of the first option, Alya takes out and eats exactly one candy.", "input_spec": "The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1 \\le n \\le 10^9$$$; $$$0 \\le k \\le 10^9$$$)\u00a0\u2014 the total number of moves and the number of candies in the box at the end. It's guaranteed, that for the given $$$n$$$ and $$$k$$$ the answer exists.", "output_spec": "Print a single integer\u00a0\u2014 the number of candies, which Alya ate. Please note, that in this problem there aren't multiple possible answers\u00a0\u2014 the answer is unique for any input data. ", "sample_inputs": ["1 1", "9 11", "5 0", "3 2"], "sample_outputs": ["0", "4", "3", "1"], "notes": "NoteIn the first example, Alya has made one move only. According to the statement, the first move is always putting one candy in the box. Hence Alya ate $$$0$$$ candies.In the second example the possible sequence of Alya's actions looks as follows: put $$$1$$$ candy, put $$$2$$$ candies, eat a candy, eat a candy, put $$$3$$$ candies, eat a candy, put $$$4$$$ candies, eat a candy, put $$$5$$$ candies. This way, she will make exactly $$$n=9$$$ actions and in the end the box will contain $$$1+2-1-1+3-1+4-1+5=11$$$ candies. The answer is $$$4$$$, since she ate $$$4$$$ candies in total."}, "src_uid": "17b5ec1c6263ef63c668c2b903db1d77"} {"nl": {"description": "Sereja showed an interesting game to his friends. The game goes like that. Initially, there is a table with an empty cup and n water mugs on it. Then all players take turns to move. During a move, a player takes a non-empty mug of water and pours all water from it into the cup. If the cup overfills, then we assume that this player lost.As soon as Sereja's friends heard of the game, they wanted to play it. Sereja, on the other hand, wanted to find out whether his friends can play the game in such a way that there are no losers. You are given the volumes of all mugs and the cup. Also, you know that Sereja has (n\u2009-\u20091) friends. Determine if Sereja's friends can play the game so that nobody loses.", "input_spec": "The first line contains integers n and s (2\u2009\u2264\u2009n\u2009\u2264\u2009100;\u00a01\u2009\u2264\u2009s\u2009\u2264\u20091000) \u2014 the number of mugs and the volume of the cup. The next line contains n integers a1, a2, ..., an (1\u2009\u2264\u2009ai\u2009\u2264\u200910). Number ai means the volume of the i-th mug.", "output_spec": "In a single line, print \"YES\" (without the quotes) if his friends can play in the described manner, and \"NO\" (without the quotes) otherwise.", "sample_inputs": ["3 4\n1 1 1", "3 4\n3 1 3", "3 4\n4 4 4"], "sample_outputs": ["YES", "YES", "NO"], "notes": null}, "src_uid": "496baae594b32c5ffda35b896ebde629"} {"nl": {"description": "It's New Year's Eve soon, so Ivan decided it's high time he started setting the table. Ivan has bought two cakes and cut them into pieces: the first cake has been cut into a pieces, and the second one \u2014 into b pieces.Ivan knows that there will be n people at the celebration (including himself), so Ivan has set n plates for the cakes. Now he is thinking about how to distribute the cakes between the plates. Ivan wants to do it in such a way that all following conditions are met: Each piece of each cake is put on some plate; Each plate contains at least one piece of cake; No plate contains pieces of both cakes. To make his guests happy, Ivan wants to distribute the cakes in such a way that the minimum number of pieces on the plate is maximized. Formally, Ivan wants to know the maximum possible number x such that he can distribute the cakes according to the aforementioned conditions, and each plate will contain at least x pieces of cake.Help Ivan to calculate this number x!", "input_spec": "The first line contains three integers n, a and b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009100, 2\u2009\u2264\u2009n\u2009\u2264\u2009a\u2009+\u2009b) \u2014 the number of plates, the number of pieces of the first cake, and the number of pieces of the second cake, respectively.", "output_spec": "Print the maximum possible number x such that Ivan can distribute the cake in such a way that each plate will contain at least x pieces of cake.", "sample_inputs": ["5 2 3", "4 7 10"], "sample_outputs": ["1", "3"], "notes": "NoteIn the first example there is only one way to distribute cakes to plates, all of them will have 1 cake on it.In the second example you can have two plates with 3 and 4 pieces of the first cake and two plates both with 5 pieces of the second cake. Minimal number of pieces is 3."}, "src_uid": "a254b1e3451c507cf7ce3e2496b3d69e"} {"nl": {"description": "A permutation of length $$$n$$$ is an array consisting of $$$n$$$ distinct integers from $$$1$$$ to $$$n$$$ in arbitrary order. For example, $$$[2,3,1,5,4]$$$ is a permutation, but $$$[1,2,2]$$$ is not a permutation ($$$2$$$ appears twice in the array) and $$$[1,3,4]$$$ is also not a permutation ($$$n=3$$$ but there is $$$4$$$ in the array).Consider a permutation $$$p$$$ of length $$$n$$$, we build a graph of size $$$n$$$ using it as follows: For every $$$1 \\leq i \\leq n$$$, find the largest $$$j$$$ such that $$$1 \\leq j < i$$$ and $$$p_j > p_i$$$, and add an undirected edge between node $$$i$$$ and node $$$j$$$ For every $$$1 \\leq i \\leq n$$$, find the smallest $$$j$$$ such that $$$i < j \\leq n$$$ and $$$p_j > p_i$$$, and add an undirected edge between node $$$i$$$ and node $$$j$$$ In cases where no such $$$j$$$ exists, we make no edges. Also, note that we make edges between the corresponding indices, not the values at those indices.For clarity, consider as an example $$$n = 4$$$, and $$$p = [3,1,4,2]$$$; here, the edges of the graph are $$$(1,3),(2,1),(2,3),(4,3)$$$.A permutation $$$p$$$ is cyclic if the graph built using $$$p$$$ has at least one simple cycle. Given $$$n$$$, find the number of cyclic permutations of length $$$n$$$. Since the number may be very large, output it modulo $$$10^9+7$$$.Please refer to the Notes section for the formal definition of a simple cycle", "input_spec": "The first and only line contains a single integer $$$n$$$ ($$$3 \\le n \\le 10^6$$$).", "output_spec": "Output a single integer $$$0 \\leq x < 10^9+7$$$, the number of cyclic permutations of length $$$n$$$ modulo $$$10^9+7$$$.", "sample_inputs": ["4", "583291"], "sample_outputs": ["16", "135712853"], "notes": "NoteThere are $$$16$$$ cyclic permutations for $$$n = 4$$$. $$$[4,2,1,3]$$$ is one such permutation, having a cycle of length four: $$$4 \\rightarrow 3 \\rightarrow 2 \\rightarrow 1 \\rightarrow 4$$$.Nodes $$$v_1$$$, $$$v_2$$$, $$$\\ldots$$$, $$$v_k$$$ form a simple cycle if the following conditions hold: $$$k \\geq 3$$$. $$$v_i \\neq v_j$$$ for any pair of indices $$$i$$$ and $$$j$$$. ($$$1 \\leq i < j \\leq k$$$) $$$v_i$$$ and $$$v_{i+1}$$$ share an edge for all $$$i$$$ ($$$1 \\leq i < k$$$), and $$$v_1$$$ and $$$v_k$$$ share an edge. "}, "src_uid": "3dc1ee09016a25421ae371fa8005fce1"} {"nl": {"description": "A triangular number is the number of dots in an equilateral triangle uniformly filled with dots. For example, three dots can be arranged in a triangle; thus three is a triangular number. The n-th triangular number is the number of dots in a triangle with n dots on a side. . You can learn more about these numbers from Wikipedia (http://en.wikipedia.org/wiki/Triangular_number).Your task is to find out if a given integer is a triangular number.", "input_spec": "The first line contains the single number n (1\u2009\u2264\u2009n\u2009\u2264\u2009500) \u2014 the given integer.", "output_spec": "If the given integer is a triangular number output YES, otherwise output NO.", "sample_inputs": ["1", "2", "3"], "sample_outputs": ["YES", "NO", "YES"], "notes": null}, "src_uid": "587d4775dbd6a41fc9e4b81f71da7301"} {"nl": {"description": "Ilya is a very clever lion, he lives in an unusual city ZooVille. In this city all the animals have their rights and obligations. Moreover, they even have their own bank accounts. The state of a bank account is an integer. The state of a bank account can be a negative number. This means that the owner of the account owes the bank money.Ilya the Lion has recently had a birthday, so he got a lot of gifts. One of them (the gift of the main ZooVille bank) is the opportunity to delete the last digit or the digit before last from the state of his bank account no more than once. For example, if the state of Ilya's bank account is -123, then Ilya can delete the last digit and get his account balance equal to -12, also he can remove its digit before last and get the account balance equal to -13. Of course, Ilya is permitted not to use the opportunity to delete a digit from the balance.Ilya is not very good at math, and that's why he asks you to help him maximize his bank account. Find the maximum state of the bank account that can be obtained using the bank's gift.", "input_spec": "The single line contains integer n (10\u2009\u2264\u2009|n|\u2009\u2264\u2009109) \u2014 the state of Ilya's bank account.", "output_spec": "In a single line print an integer \u2014 the maximum state of the bank account that Ilya can get. ", "sample_inputs": ["2230", "-10", "-100003"], "sample_outputs": ["2230", "0", "-10000"], "notes": "NoteIn the first test sample Ilya doesn't profit from using the present.In the second test sample you can delete digit 1 and get the state of the account equal to 0."}, "src_uid": "4b0a8798a6d53351226d4f06e3356b1e"} {"nl": {"description": "Your security guard friend recently got a new job at a new security company. The company requires him to patrol an area of the city encompassing exactly N city blocks, but they let him choose which blocks. That is, your friend must walk the perimeter of a region whose area is exactly N blocks. Your friend is quite lazy and would like your help to find the shortest possible route that meets the requirements. The city is laid out in a square grid pattern, and is large enough that for the sake of the problem it can be considered infinite.", "input_spec": "Input will consist of a single integer N (1\u2009\u2264\u2009N\u2009\u2264\u2009106), the number of city blocks that must be enclosed by the route.", "output_spec": "Print the minimum perimeter that can be achieved.", "sample_inputs": ["4", "11", "22"], "sample_outputs": ["8", "14", "20"], "notes": "NoteHere are some possible shapes for the examples:"}, "src_uid": "414cc57550e31d98c1a6a56be6722a12"} {"nl": {"description": "A boy Valera registered on site Codeforces as Valera, and wrote his first Codeforces Round #300. He boasted to a friend Arkady about winning as much as x points for his first contest. But Arkady did not believe his friend's words and decided to check whether Valera could have shown such a result.He knows that the contest number 300 was unusual because there were only two problems. The contest lasted for t minutes, the minutes are numbered starting from zero. The first problem had the initial cost of a points, and every minute its cost reduced by da points. The second problem had the initial cost of b points, and every minute this cost reduced by db points. Thus, as soon as the zero minute of the contest is over, the first problem will cost a\u2009-\u2009da points, and the second problem will cost b\u2009-\u2009db points. It is guaranteed that at any moment of the contest each problem has a non-negative cost.Arkady asks you to find out whether Valera could have got exactly x points for this contest. You should assume that Valera could have solved any number of the offered problems. You should also assume that for each problem Valera made no more than one attempt, besides, he could have submitted both problems at the same minute of the contest, starting with minute 0 and ending with minute number t\u2009-\u20091. Please note that Valera can't submit a solution exactly t minutes after the start of the contest or later.", "input_spec": "The single line of the input contains six integers x,\u2009t,\u2009a,\u2009b,\u2009da,\u2009db (0\u2009\u2264\u2009x\u2009\u2264\u2009600;\u00a01\u2009\u2264\u2009t,\u2009a,\u2009b,\u2009da,\u2009db\u2009\u2264\u2009300) \u2014 Valera's result, the contest's duration, the initial cost of the first problem, the initial cost of the second problem, the number of points that the first and the second problem lose per minute, correspondingly. It is guaranteed that at each minute of the contest each problem has a non-negative cost, that is, a\u2009-\u2009i\u00b7da\u2009\u2265\u20090 and b\u2009-\u2009i\u00b7db\u2009\u2265\u20090 for all 0\u2009\u2264\u2009i\u2009\u2264\u2009t\u2009-\u20091.", "output_spec": "If Valera could have earned exactly x points at a contest, print \"YES\", otherwise print \"NO\" (without the quotes).", "sample_inputs": ["30 5 20 20 3 5", "10 4 100 5 5 1"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample Valera could have acted like this: he could have submitted the first problem at minute 0 and the second problem \u2014 at minute 2. Then the first problem brings him 20 points and the second problem brings him 10 points, that in total gives the required 30 points."}, "src_uid": "f98168cdd72369303b82b5a7ac45c3af"} {"nl": {"description": "You can not just take the file and send it. When Polycarp trying to send a file in the social network \"Codehorses\", he encountered an unexpected problem. If the name of the file contains three or more \"x\" (lowercase Latin letters \"x\") in a row, the system considers that the file content does not correspond to the social network topic. In this case, the file is not sent and an error message is displayed.Determine the minimum number of characters to remove from the file name so after that the name does not contain \"xxx\" as a substring. Print 0 if the file name does not initially contain a forbidden substring \"xxx\".You can delete characters in arbitrary positions (not necessarily consecutive). If you delete a character, then the length of a string is reduced by $$$1$$$. For example, if you delete the character in the position $$$2$$$ from the string \"exxxii\", then the resulting string is \"exxii\".", "input_spec": "The first line contains integer $$$n$$$ $$$(3 \\le n \\le 100)$$$ \u2014 the length of the file name. The second line contains a string of length $$$n$$$ consisting of lowercase Latin letters only \u2014 the file name.", "output_spec": "Print the minimum number of characters to remove from the file name so after that the name does not contain \"xxx\" as a substring. If initially the file name dost not contain a forbidden substring \"xxx\", print 0.", "sample_inputs": ["6\nxxxiii", "5\nxxoxx", "10\nxxxxxxxxxx"], "sample_outputs": ["1", "0", "8"], "notes": "NoteIn the first example Polycarp tried to send a file with name contains number $$$33$$$, written in Roman numerals. But he can not just send the file, because it name contains three letters \"x\" in a row. To send the file he needs to remove any one of this letters."}, "src_uid": "8de14db41d0acee116bd5d8079cb2b02"} {"nl": {"description": "Two-gram is an ordered pair (i.e. string of length two) of capital Latin letters. For example, \"AZ\", \"AA\", \"ZA\" \u2014 three distinct two-grams.You are given a string $$$s$$$ consisting of $$$n$$$ capital Latin letters. Your task is to find any two-gram contained in the given string as a substring (i.e. two consecutive characters of the string) maximal number of times. For example, for string $$$s$$$ = \"BBAABBBA\" the answer is two-gram \"BB\", which contained in $$$s$$$ three times. In other words, find any most frequent two-gram.Note that occurrences of the two-gram can overlap with each other.", "input_spec": "The first line of the input contains integer number $$$n$$$ ($$$2 \\le n \\le 100$$$) \u2014 the length of string $$$s$$$. The second line of the input contains the string $$$s$$$ consisting of $$$n$$$ capital Latin letters.", "output_spec": "Print the only line containing exactly two capital Latin letters \u2014 any two-gram contained in the given string $$$s$$$ as a substring (i.e. two consecutive characters of the string) maximal number of times.", "sample_inputs": ["7\nABACABA", "5\nZZZAA"], "sample_outputs": ["AB", "ZZ"], "notes": "NoteIn the first example \"BA\" is also valid answer.In the second example the only two-gram \"ZZ\" can be printed because it contained in the string \"ZZZAA\" two times."}, "src_uid": "e78005d4be93dbaa518f3b40cca84ab1"} {"nl": {"description": "Recently Ivan the Fool decided to become smarter and study the probability theory. He thinks that he understands the subject fairly well, and so he began to behave like he already got PhD in that area.To prove his skills, Ivan decided to demonstrate his friends a concept of random picture. A picture is a field of $$$n$$$ rows and $$$m$$$ columns, where each cell is either black or white. Ivan calls the picture random if for every cell it has at most one adjacent cell of the same color. Two cells are considered adjacent if they share a side.Ivan's brothers spent some time trying to explain that it's not how the randomness usually works. Trying to convince Ivan, they want to count the number of different random (according to Ivan) pictures. Two pictures are considered different if at least one cell on those two picture is colored differently. Since the number of such pictures may be quite large, print it modulo $$$10^9 + 7$$$.", "input_spec": "The only line contains two integers $$$n$$$ and $$$m$$$ ($$$1 \\le n, m \\le 100\\,000$$$), the number of rows and the number of columns of the field.", "output_spec": "Print one integer, the number of random pictures modulo $$$10^9 + 7$$$.", "sample_inputs": ["2 3"], "sample_outputs": ["8"], "notes": "NoteThe picture below shows all possible random pictures of size $$$2$$$ by $$$3$$$. "}, "src_uid": "0f1ab296cbe0952faa904f2bebe0567b"} {"nl": {"description": "Dr. Evil kidnapped Mahmoud and Ehab in the evil land because of their performance in the Evil Olympiad in Informatics (EOI). He decided to give them some problems to let them go.Dr. Evil is interested in sets, He has a set of n integers. Dr. Evil calls a set of integers evil if the MEX of it is exactly x. the MEX of a set of integers is the minimum non-negative integer that doesn't exist in it. For example, the MEX of the set {0,\u20092,\u20094} is 1 and the MEX of the set {1,\u20092,\u20093} is 0 .Dr. Evil is going to make his set evil. To do this he can perform some operations. During each operation he can add some non-negative integer to his set or erase some element from it. What is the minimal number of operations Dr. Evil has to perform to make his set evil?", "input_spec": "The first line contains two integers n and x (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 0\u2009\u2264\u2009x\u2009\u2264\u2009100)\u00a0\u2014 the size of the set Dr. Evil owns, and the desired MEX. The second line contains n distinct non-negative integers not exceeding 100 that represent the set.", "output_spec": "The only line should contain one integer\u00a0\u2014 the minimal number of operations Dr. Evil should perform.", "sample_inputs": ["5 3\n0 4 5 6 7", "1 0\n0", "5 0\n1 2 3 4 5"], "sample_outputs": ["2", "1", "0"], "notes": "NoteFor the first test case Dr. Evil should add 1 and 2 to the set performing 2 operations.For the second test case Dr. Evil should erase 0 from the set. After that, the set becomes empty, so the MEX of it is 0.In the third test case the set is already evil."}, "src_uid": "21f579ba807face432a7664091581cd8"} {"nl": {"description": "You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like.Your task is to find such minimum number v, that you can form presents using numbers from a set 1,\u20092,\u2009...,\u2009v. Of course you may choose not to present some numbers at all.A positive integer number greater than 1 is called prime if it has no positive divisors other than 1 and itself.", "input_spec": "The only line contains four positive integers cnt1, cnt2, x, y (1\u2009\u2264\u2009cnt1,\u2009cnt2\u2009<\u2009109; cnt1\u2009+\u2009cnt2\u2009\u2264\u2009109; 2\u2009\u2264\u2009x\u2009<\u2009y\u2009\u2264\u20093\u00b7104)\u00a0\u2014 the numbers that are described in the statement. It is guaranteed that numbers x, y are prime.", "output_spec": "Print a single integer \u2014 the answer to the problem.", "sample_inputs": ["3 1 2 3", "1 3 2 3"], "sample_outputs": ["5", "4"], "notes": "NoteIn the first sample you give the set of numbers {1,\u20093,\u20095} to the first friend and the set of numbers {2} to the second friend. Note that if you give set {1,\u20093,\u20095} to the first friend, then we cannot give any of the numbers 1, 3, 5 to the second friend. In the second sample you give the set of numbers {3} to the first friend, and the set of numbers {1,\u20092,\u20094} to the second friend. Thus, the answer to the problem is 4."}, "src_uid": "ff3c39b759a049580a6e96c66c904fdc"} {"nl": {"description": "Kitahara Haruki has bought n apples for Touma Kazusa and Ogiso Setsuna. Now he wants to divide all the apples between the friends.Each apple weights 100 grams or 200 grams. Of course Kitahara Haruki doesn't want to offend any of his friend. Therefore the total weight of the apples given to Touma Kazusa must be equal to the total weight of the apples given to Ogiso Setsuna.But unfortunately Kitahara Haruki doesn't have a knife right now, so he cannot split any apple into some parts. Please, tell him: is it possible to divide all the apples in a fair way between his friends?", "input_spec": "The first line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of apples. The second line contains n integers w1,\u2009w2,\u2009...,\u2009wn (wi\u2009=\u2009100 or wi\u2009=\u2009200), where wi is the weight of the i-th apple.", "output_spec": "In a single line print \"YES\" (without the quotes) if it is possible to divide all the apples between his friends. Otherwise print \"NO\" (without the quotes).", "sample_inputs": ["3\n100 200 100", "4\n100 100 100 200"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first test sample Kitahara Haruki can give the first and the last apple to Ogiso Setsuna and the middle apple to Touma Kazusa."}, "src_uid": "9679acef82356004e47b1118f8fc836a"} {"nl": {"description": "At regular competition Vladik and Valera won a and b candies respectively. Vladik offered 1 his candy to Valera. After that Valera gave Vladik 2 his candies, so that no one thought that he was less generous. Vladik for same reason gave 3 candies to Valera in next turn.More formally, the guys take turns giving each other one candy more than they received in the previous turn.This continued until the moment when one of them couldn\u2019t give the right amount of candy. Candies, which guys got from each other, they don\u2019t consider as their own. You need to know, who is the first who can\u2019t give the right amount of candy.", "input_spec": "Single line of input data contains two space-separated integers a, b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009109) \u2014 number of Vladik and Valera candies respectively.", "output_spec": "Pring a single line \"Vladik\u2019\u2019 in case, if Vladik first who can\u2019t give right amount of candy, or \"Valera\u2019\u2019 otherwise.", "sample_inputs": ["1 1", "7 6"], "sample_outputs": ["Valera", "Vladik"], "notes": "NoteIllustration for first test case:Illustration for second test case:"}, "src_uid": "87e37a82be7e39e433060fd8cdb03270"} {"nl": {"description": "You are at a water bowling training. There are l people who play with their left hand, r people, who play with their right hand, and a ambidexters, who can play with left or right hand.The coach decided to form a team of even number of players, exactly half of the players should play with their right hand, and exactly half of the players should play with their left hand. One player should use only on of his hands.Ambidexters play as well with their right hand as with their left hand. In the team, an ambidexter can play with their left hand, or with their right hand.Please find the maximum possible size of the team, where equal number of players use their left and right hands, respectively.", "input_spec": "The only line contains three integers l, r and a (0\u2009\u2264\u2009l,\u2009r,\u2009a\u2009\u2264\u2009100) \u2014 the number of left-handers, the number of right-handers and the number of ambidexters at the training. ", "output_spec": "Print a single even integer\u00a0\u2014 the maximum number of players in the team. It is possible that the team can only have zero number of players.", "sample_inputs": ["1 4 2", "5 5 5", "0 2 0"], "sample_outputs": ["6", "14", "0"], "notes": "NoteIn the first example you can form a team of 6 players. You should take the only left-hander and two ambidexters to play with left hand, and three right-handers to play with right hand. The only person left can't be taken into the team.In the second example you can form a team of 14 people. You have to take all five left-handers, all five right-handers, two ambidexters to play with left hand and two ambidexters to play with right hand."}, "src_uid": "e8148140e61baffd0878376ac5f3857c"} {"nl": {"description": "Vasya the programmer lives in the middle of the Programming subway branch. He has two girlfriends: Dasha and Masha, who live at the different ends of the branch, each one is unaware of the other one's existence.When Vasya has some free time, he goes to one of his girlfriends. He descends into the subway at some time, waits the first train to come and rides on it to the end of the branch to the corresponding girl. However, the trains run with different frequencies: a train goes to Dasha's direction every a minutes, but a train goes to Masha's direction every b minutes. If two trains approach at the same time, Vasya goes toward the direction with the lower frequency of going trains, that is, to the girl, to whose directions the trains go less frequently (see the note to the third sample).We know that the trains begin to go simultaneously before Vasya appears. That is the train schedule is such that there exists a moment of time when the two trains arrive simultaneously.Help Vasya count to which girlfriend he will go more often.", "input_spec": "The first line contains two integers a and b (a\u2009\u2260\u2009b,\u20091\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009106).", "output_spec": "Print \"Dasha\" if Vasya will go to Dasha more frequently, \"Masha\" if he will go to Masha more frequently, or \"Equal\" if he will go to both girlfriends with the same frequency.", "sample_inputs": ["3 7", "5 3", "2 3"], "sample_outputs": ["Dasha", "Masha", "Equal"], "notes": "NoteLet's take a look at the third sample. Let the trains start to go at the zero moment of time. It is clear that the moments of the trains' arrival will be periodic with period 6. That's why it is enough to show that if Vasya descends to the subway at a moment of time inside the interval (0,\u20096], he will go to both girls equally often. If he descends to the subway at a moment of time from 0 to 2, he leaves for Dasha on the train that arrives by the second minute.If he descends to the subway at a moment of time from 2 to 3, he leaves for Masha on the train that arrives by the third minute.If he descends to the subway at a moment of time from 3 to 4, he leaves for Dasha on the train that arrives by the fourth minute.If he descends to the subway at a moment of time from 4 to 6, he waits for both trains to arrive by the sixth minute and goes to Masha as trains go less often in Masha's direction.In sum Masha and Dasha get equal time \u2014 three minutes for each one, thus, Vasya will go to both girlfriends equally often."}, "src_uid": "06eb66df61ff5d61d678bbb3bb6553cc"} {"nl": {"description": "The Smart Beaver from ABBYY decided to have a day off. But doing nothing the whole day turned out to be too boring, and he decided to play a game with pebbles. Initially, the Beaver has n pebbles. He arranges them in a equal rows, each row has b pebbles (a\u2009>\u20091). Note that the Beaver must use all the pebbles he has, i. e. n\u2009=\u2009a\u00b7b. 10 pebbles are arranged in two rows, each row has 5 pebbles Once the Smart Beaver has arranged the pebbles, he takes back any of the resulting rows (that is, b pebbles) and discards all other pebbles. Then he arranges all his pebbles again (possibly choosing other values of a and b) and takes back one row, and so on. The game continues until at some point the Beaver ends up with exactly one pebble. The game process can be represented as a finite sequence of integers c1,\u2009...,\u2009ck, where: c1\u2009=\u2009n ci\u2009+\u20091 is the number of pebbles that the Beaver ends up with after the i-th move, that is, the number of pebbles in a row after some arrangement of ci pebbles (1\u2009\u2264\u2009i\u2009<\u2009k). Note that ci\u2009>\u2009ci\u2009+\u20091. ck\u2009=\u20091 The result of the game is the sum of numbers ci. You are given n. Find the maximum possible result of the game.", "input_spec": "The single line of the input contains a single integer n \u2014 the initial number of pebbles the Smart Beaver has. The input limitations for getting 30 points are: 2\u2009\u2264\u2009n\u2009\u2264\u200950 The input limitations for getting 100 points are: 2\u2009\u2264\u2009n\u2009\u2264\u2009109 ", "output_spec": "Print a single number \u2014 the maximum possible result of the game.", "sample_inputs": ["10", "8"], "sample_outputs": ["16", "15"], "notes": "NoteConsider the first example (c1\u2009=\u200910). The possible options for the game development are: Arrange the pebbles in 10 rows, one pebble per row. Then c2\u2009=\u20091, and the game ends after the first move with the result of 11. Arrange the pebbles in 5 rows, two pebbles per row. Then c2\u2009=\u20092, and the game continues. During the second move we have two pebbles which can be arranged in a unique way (remember that you are not allowed to put all the pebbles in the same row!) \u2014 2 rows, one pebble per row. c3\u2009=\u20091, and the game ends with the result of 13. Finally, arrange the pebbles in two rows, five pebbles per row. The same logic leads us to c2\u2009=\u20095,\u2009c3\u2009=\u20091, and the game ends with the result of 16 \u2014 the maximum possible result. "}, "src_uid": "821c0e3b5fad197a47878bba5e520b6e"} {"nl": {"description": "Absent-minded Masha got set of n cubes for her birthday.At each of 6 faces of each cube, there is exactly one digit from 0 to 9. Masha became interested what is the largest natural x such she can make using her new cubes all integers from 1 to x.To make a number Masha can rotate her cubes and put them in a row. After that, she looks at upper faces of cubes from left to right and reads the number.The number can't contain leading zeros. It's not required to use all cubes to build a number.Pay attention: Masha can't make digit 6 from digit 9 and vice-versa using cube rotations.", "input_spec": "In first line integer n is given (1\u2009\u2264\u2009n\u2009\u2264\u20093)\u00a0\u2014 the number of cubes, Masha got for her birthday. Each of next n lines contains 6 integers aij (0\u2009\u2264\u2009aij\u2009\u2264\u20099)\u00a0\u2014 number on j-th face of i-th cube.", "output_spec": "Print single integer\u00a0\u2014 maximum number x such Masha can make any integers from 1 to x using her cubes or 0 if Masha can't make even 1.", "sample_inputs": ["3\n0 1 2 3 4 5\n6 7 8 9 0 1\n2 3 4 5 6 7", "3\n0 1 3 5 6 8\n1 2 4 5 7 8\n2 3 4 6 7 9"], "sample_outputs": ["87", "98"], "notes": "NoteIn the first test case, Masha can build all numbers from 1 to 87, but she can't make 88 because there are no two cubes with digit 8."}, "src_uid": "20aa53bffdfd47b4e853091ee6b11a4b"} {"nl": {"description": "Little Petya wanted to give an April Fools Day present to some scientists. After some hesitation he decided to give them the array that he got as a present in Codeforces Round #153 (Div.2). The scientists rejoiced at the gift and decided to put some important facts to this array. Here are the first few of the facts: The highest mountain above sea level in the world is Mount Everest. Its peak rises to 8848 m. The largest board game tournament consisted of 958 participants playing chapaev. The largest online maths competition consisted of 12766 participants. The Nile is credited as the longest river in the world. From its farthest stream in Burundi, it extends 6695 km in length. While not in flood, the main stretches of the Amazon river in South America can reach widths of up to 1100 km at its widest points. Angel Falls is the highest waterfall. Its greatest single drop measures 807 m. The Hotel Everest View above Namche, Nepal \u2014 the village closest to Everest base camp \u2013 is at a record height of 31962 m Uranium is the heaviest of all the naturally occurring elements. Its most common isotope has a nucleus containing 146 neutrons. The coldest permanently inhabited place is the Siberian village of Oymyakon, where the temperature of -68\u00b0C was registered in the twentieth century. The longest snake held in captivity is over 25 feet long. Its name is Medusa. Colonel Meow holds the world record for longest fur on a cat \u2014 almost 134 centimeters. Sea otters can have up to 10000 hairs per square inch. This is the most dense fur in the animal kingdom. The largest state of USA is Alaska; its area is 663268 square miles Alaska has a longer coastline than all of the other 49 U.S. States put together: it is 154103 miles long. Lake Baikal is the largest freshwater lake in the world. It reaches 1642\u00a0meters in depth and contains around one-fifth of the world\u2019s unfrozen fresh water. The most colorful national flag is the one of Turkmenistan, with 106 colors. ", "input_spec": "The input will contain a single integer between 1 and 16.", "output_spec": "Output a single integer.", "sample_inputs": ["1", "7"], "sample_outputs": ["1", "0"], "notes": null}, "src_uid": "6f9767b63a01424f939d85b597cf42f3"} {"nl": {"description": "After a probationary period in the game development company of IT City Petya was included in a group of the programmers that develops a new turn-based strategy game resembling the well known \"Heroes of Might & Magic\". A part of the game is turn-based fights of big squadrons of enemies on infinite fields where every cell is in form of a hexagon.Some of magic effects are able to affect several field cells at once, cells that are situated not farther than n cells away from the cell in which the effect was applied. The distance between cells is the minimum number of cell border crosses on a path from one cell to another.It is easy to see that the number of cells affected by a magic effect grows rapidly when n increases, so it can adversely affect the game performance. That's why Petya decided to write a program that can, given n, determine the number of cells that should be repainted after effect application, so that game designers can balance scale of the effects and the game performance. Help him to do it. Find the number of hexagons situated not farther than n cells away from a given cell. ", "input_spec": "The only line of the input contains one integer n (0\u2009\u2264\u2009n\u2009\u2264\u2009109).", "output_spec": "Output one integer \u2014 the number of hexagons situated not farther than n cells away from a given cell.", "sample_inputs": ["2"], "sample_outputs": ["19"], "notes": null}, "src_uid": "c046895a90f2e1381a7c1867020453bd"} {"nl": {"description": "One day Vasya came across three Berland coins. They didn't have any numbers that's why Vasya didn't understand how their denominations differ. He supposed that if one coin is heavier than the other one, then it should be worth more. Vasya weighed all the three pairs of coins on pan balance scales and told you the results. Find out how the deminations of the coins differ or if Vasya has a mistake in the weighting results. No two coins are equal.", "input_spec": "The input data contains the results of all the weighting, one result on each line. It is guaranteed that every coin pair was weighted exactly once. Vasya labelled the coins with letters \u00abA\u00bb, \u00abB\u00bb and \u00abC\u00bb. Each result is a line that appears as (letter)(> or < sign)(letter). For example, if coin \"A\" proved lighter than coin \"B\", the result of the weighting is A<B.", "output_spec": "It the results are contradictory, print Impossible. Otherwise, print without spaces the rearrangement of letters \u00abA\u00bb, \u00abB\u00bb and \u00abC\u00bb which represent the coins in the increasing order of their weights.", "sample_inputs": ["A>B\nC<B\nA>C", "A<B\nB>C\nC>A"], "sample_outputs": ["CBA", "ACB"], "notes": null}, "src_uid": "97fd9123d0fb511da165b900afbde5dc"} {"nl": {"description": "Polycarpus has postcards and photos hung in a row on the wall. He decided to put them away to the closet and hang on the wall a famous painter's picture. Polycarpus does it like that: he goes from the left to the right and removes the objects consecutively. As Polycarpus doesn't want any mix-ups to happen, he will not carry in his hands objects of two different types. In other words, Polycarpus can't carry both postcards and photos simultaneously. Sometimes he goes to the closet and puts the objects there, thus leaving his hands free. Polycarpus must put all the postcards and photos to the closet. He cannot skip objects. What minimum number of times he should visit the closet if he cannot carry more than 5 items?", "input_spec": "The only line of the input data contains a non-empty string consisting of letters \"\u0421\" and \"P\" whose length does not exceed 100 characters. If the i-th character in the string is the letter \"\u0421\", that means that the i-th object (the numbering goes from the left to the right) on Polycarpus' wall is a postcard. And if the i-th character is the letter \"P\", than the i-th object on the wall is a photo.", "output_spec": "Print the only number \u2014 the minimum number of times Polycarpus has to visit the closet.", "sample_inputs": ["CPCPCPC", "CCCCCCPPPPPP", "CCCCCCPPCPPPPPPPPPP", "CCCCCCCCCC"], "sample_outputs": ["7", "4", "6", "2"], "notes": "NoteIn the first sample Polycarpus needs to take one item to the closet 7 times.In the second sample Polycarpus can first take 3 postcards to the closet; then 3 more. He can take the 6 photos that are left in the similar way, going to the closet twice.In the third sample Polycarpus can visit the closet twice, both times carrying 3 postcards. Then he can take there 2 photos at once, then one postcard and finally, he can carry the last 10 photos if he visits the closet twice.In the fourth sample Polycarpus can visit the closet twice and take there all 10 postcards (5 items during each go)."}, "src_uid": "5257f6b50f5a610a17c35a47b3a0da11"} {"nl": {"description": "One very experienced problem writer decided to prepare a problem for April Fools Day contest. The task was very simple - given an arithmetic expression, return the result of evaluating this expression. However, looks like there is a bug in the reference solution...", "input_spec": "The only line of input data contains the arithmetic expression. The expression will contain between 2 and 10 operands, separated with arithmetic signs plus and/or minus. Each operand will be an integer between 0 and 255, inclusive.", "output_spec": "Reproduce the output of the reference solution, including the bug.", "sample_inputs": ["8-7+6-5+4-3+2-1-0", "2+2", "112-37"], "sample_outputs": ["4", "-46", "375"], "notes": null}, "src_uid": "db85fa18f00e560b58cfa7bab2fa957d"} {"nl": {"description": "When new students come to the Specialized Educational and Scientific Centre (SESC) they need to start many things from the beginning. Sometimes the teachers say (not always unfairly) that we cannot even count. So our teachers decided to teach us arithmetics from the start. And what is the best way to teach students add and subtract? \u2014 That's right, using counting sticks! An here's our new task: An expression of counting sticks is an expression of type:[ A sticks][sign +][B sticks][sign =][C sticks] (1\u2009\u2264\u2009A,\u2009B,\u2009C). Sign + consists of two crossed sticks: one vertical and one horizontal. Sign = consists of two horizontal sticks. The expression is arithmetically correct if A\u2009+\u2009B\u2009=\u2009C.We've got an expression that looks like A\u2009+\u2009B\u2009=\u2009C given by counting sticks. Our task is to shift at most one stick (or we can shift nothing) so that the expression became arithmetically correct. Note that we cannot remove the sticks from the expression, also we cannot shift the sticks from the signs + and =.We really aren't fabulous at arithmetics. Can you help us?", "input_spec": "The single line contains the initial expression. It is guaranteed that the expression looks like A\u2009+\u2009B\u2009=\u2009C, where 1\u2009\u2264\u2009A,\u2009B,\u2009C\u2009\u2264\u2009100.", "output_spec": "If there isn't a way to shift the stick so the expression becomes correct, print on a single line \"Impossible\" (without the quotes). If there is a way, print the resulting expression. Follow the format of the output from the test samples. Don't print extra space characters. If there are multiple correct answers, print any of them. For clarifications, you are recommended to see the test samples.", "sample_inputs": ["||+|=|||||", "|||||+||=||", "|+|=||||||", "||||+||=||||||"], "sample_outputs": ["|||+|=||||", "Impossible", "Impossible", "||||+||=||||||"], "notes": "NoteIn the first sample we can shift stick from the third group of sticks to the first one.In the second sample we cannot shift vertical stick from + sign to the second group of sticks. So we cannot make a - sign.There is no answer in the third sample because we cannot remove sticks from the expression.In the forth sample the initial expression is already arithmetically correct and that is why we don't have to shift sticks."}, "src_uid": "ee0aaa7acf127e9f3a9edafc58f4e2d6"} {"nl": {"description": "One day Vasya heard a story: \"In the city of High Bertown a bus number 62 left from the bus station. It had n grown-ups and m kids...\"The latter events happen to be of no importance to us. Vasya is an accountant and he loves counting money. So he wondered what maximum and minimum sum of money these passengers could have paid for the ride.The bus fare equals one berland ruble in High Bertown. However, not everything is that easy \u2014 no more than one child can ride for free with each grown-up passenger. That means that a grown-up passenger who rides with his k (k\u2009>\u20090) children, pays overall k rubles: a ticket for himself and (k\u2009-\u20091) tickets for his children. Also, a grown-up can ride without children, in this case he only pays one ruble.We know that in High Bertown children can't ride in a bus unaccompanied by grown-ups.Help Vasya count the minimum and the maximum sum in Berland rubles, that all passengers of this bus could have paid in total.", "input_spec": "The input file consists of a single line containing two space-separated numbers n and m (0\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009105) \u2014 the number of the grown-ups and the number of the children in the bus, correspondingly.", "output_spec": "If n grown-ups and m children could have ridden in the bus, then print on a single line two space-separated integers \u2014 the minimum and the maximum possible total bus fare, correspondingly. Otherwise, print \"Impossible\" (without the quotes).", "sample_inputs": ["1 2", "0 5", "2 2"], "sample_outputs": ["2 2", "Impossible", "2 3"], "notes": "NoteIn the first sample a grown-up rides with two children and pays two rubles.In the second sample there are only children in the bus, so the situation is impossible. In the third sample there are two cases: Each of the two grown-ups rides with one children and pays one ruble for the tickets. In this case the passengers pay two rubles in total. One of the grown-ups ride with two children's and pays two rubles, the another one rides alone and pays one ruble for himself. So, they pay three rubles in total. "}, "src_uid": "1e865eda33afe09302bda9077d613763"} {"nl": {"description": "Two boys decided to compete in text typing on the site \"Key races\". During the competition, they have to type a text consisting of s characters. The first participant types one character in v1 milliseconds and has ping t1 milliseconds. The second participant types one character in v2 milliseconds and has ping t2 milliseconds.If connection ping (delay) is t milliseconds, the competition passes for a participant as follows: Exactly after t milliseconds after the start of the competition the participant receives the text to be entered. Right after that he starts to type it. Exactly t milliseconds after he ends typing all the text, the site receives information about it. The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw.Given the length of the text and the information about participants, determine the result of the game.", "input_spec": "The first line contains five integers s, v1, v2, t1, t2 (1\u2009\u2264\u2009s,\u2009v1,\u2009v2,\u2009t1,\u2009t2\u2009\u2264\u20091000)\u00a0\u2014 the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant.", "output_spec": "If the first participant wins, print \"First\". If the second participant wins, print \"Second\". In case of a draw print \"Friendship\".", "sample_inputs": ["5 1 2 1 2", "3 3 1 1 1", "4 5 3 1 5"], "sample_outputs": ["First", "Second", "Friendship"], "notes": "NoteIn the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant\u00a0\u2014 in 14 milliseconds. So, the first wins.In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant\u00a0\u2014 in 5 milliseconds. So, the second wins.In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant\u00a0\u2014 in 22 milliseconds. So, it is be a draw."}, "src_uid": "10226b8efe9e3c473239d747b911a1ef"} {"nl": {"description": "Polycarp decided to relax on his weekend and visited to the performance of famous ropewalkers: Agafon, Boniface and Konrad.The rope is straight and infinite in both directions. At the beginning of the performance, Agafon, Boniface and Konrad are located in positions $$$a$$$, $$$b$$$ and $$$c$$$ respectively. At the end of the performance, the distance between each pair of ropewalkers was at least $$$d$$$.Ropewalkers can walk on the rope. In one second, only one ropewalker can change his position. Every ropewalker can change his position exactly by $$$1$$$ (i. e. shift by $$$1$$$ to the left or right direction on the rope). Agafon, Boniface and Konrad can not move at the same time (Only one of them can move at each moment). Ropewalkers can be at the same positions at the same time and can \"walk past each other\".You should find the minimum duration (in seconds) of the performance. In other words, find the minimum number of seconds needed so that the distance between each pair of ropewalkers can be greater or equal to $$$d$$$.Ropewalkers can walk to negative coordinates, due to the rope is infinite to both sides.", "input_spec": "The only line of the input contains four integers $$$a$$$, $$$b$$$, $$$c$$$, $$$d$$$ ($$$1 \\le a, b, c, d \\le 10^9$$$). It is possible that any two (or all three) ropewalkers are in the same position at the beginning of the performance.", "output_spec": "Output one integer \u2014 the minimum duration (in seconds) of the performance.", "sample_inputs": ["5 2 6 3", "3 1 5 6", "8 3 3 2", "2 3 10 4"], "sample_outputs": ["2", "8", "2", "3"], "notes": "NoteIn the first example: in the first two seconds Konrad moves for 2 positions to the right (to the position $$$8$$$), while Agafon and Boniface stay at their positions. Thus, the distance between Agafon and Boniface will be $$$|5 - 2| = 3$$$, the distance between Boniface and Konrad will be $$$|2 - 8| = 6$$$ and the distance between Agafon and Konrad will be $$$|5 - 8| = 3$$$. Therefore, all three pairwise distances will be at least $$$d=3$$$, so the performance could be finished within 2 seconds."}, "src_uid": "47c07e46517dbc937e2e779ec0d74eb3"} {"nl": {"description": "Numbers k-bonacci (k is integer, k\u2009>\u20091) are a generalization of Fibonacci numbers and are determined as follows: F(k,\u2009n)\u2009=\u20090, for integer n, 1\u2009\u2264\u2009n\u2009<\u2009k; F(k,\u2009k)\u2009=\u20091; F(k,\u2009n)\u2009=\u2009F(k,\u2009n\u2009-\u20091)\u2009+\u2009F(k,\u2009n\u2009-\u20092)\u2009+\u2009...\u2009+\u2009F(k,\u2009n\u2009-\u2009k), for integer n, n\u2009>\u2009k. Note that we determine the k-bonacci numbers, F(k,\u2009n), only for integer values of n and k.You've got a number s, represent it as a sum of several (at least two) distinct k-bonacci numbers. ", "input_spec": "The first line contains two integers s and k (1\u2009\u2264\u2009s,\u2009k\u2009\u2264\u2009109;\u00a0k\u2009>\u20091).", "output_spec": "In the first line print an integer m (m\u2009\u2265\u20092) that shows how many numbers are in the found representation. In the second line print m distinct integers a1,\u2009a2,\u2009...,\u2009am. Each printed integer should be a k-bonacci number. The sum of printed integers must equal s. It is guaranteed that the answer exists. If there are several possible answers, print any of them.", "sample_inputs": ["5 2", "21 5"], "sample_outputs": ["3\n0 2 3", "3\n4 1 16"], "notes": null}, "src_uid": "da793333b977ed179fdba900aa604b52"} {"nl": {"description": "You are given three positive integers x,\u2009y,\u2009n. Your task is to find the nearest fraction to fraction whose denominator is no more than n. Formally, you should find such pair of integers a,\u2009b (1\u2009\u2264\u2009b\u2009\u2264\u2009n;\u00a00\u2009\u2264\u2009a) that the value is as minimal as possible.If there are multiple \"nearest\" fractions, choose the one with the minimum denominator. If there are multiple \"nearest\" fractions with the minimum denominator, choose the one with the minimum numerator.", "input_spec": "A single line contains three integers x,\u2009y,\u2009n (1\u2009\u2264\u2009x,\u2009y,\u2009n\u2009\u2264\u2009105).", "output_spec": "Print the required fraction in the format \"a/b\" (without quotes).", "sample_inputs": ["3 7 6", "7 2 4"], "sample_outputs": ["2/5", "7/2"], "notes": null}, "src_uid": "827bc6f120aff6a6f04271bc84e863ee"} {"nl": {"description": "You are given two positive integers $$$x$$$ and $$$y$$$. You can perform the following operation with $$$x$$$: write it in its binary form without leading zeros, add $$$0$$$ or $$$1$$$ to the right of it, reverse the binary form and turn it into a decimal number which is assigned as the new value of $$$x$$$.For example: $$$34$$$ can be turned into $$$81$$$ via one operation: the binary form of $$$34$$$ is $$$100010$$$, if you add $$$1$$$, reverse it and remove leading zeros, you will get $$$1010001$$$, which is the binary form of $$$81$$$. $$$34$$$ can be turned into $$$17$$$ via one operation: the binary form of $$$34$$$ is $$$100010$$$, if you add $$$0$$$, reverse it and remove leading zeros, you will get $$$10001$$$, which is the binary form of $$$17$$$. $$$81$$$ can be turned into $$$69$$$ via one operation: the binary form of $$$81$$$ is $$$1010001$$$, if you add $$$0$$$, reverse it and remove leading zeros, you will get $$$1000101$$$, which is the binary form of $$$69$$$. $$$34$$$ can be turned into $$$69$$$ via two operations: first you turn $$$34$$$ into $$$81$$$ and then $$$81$$$ into $$$69$$$. Your task is to find out whether $$$x$$$ can be turned into $$$y$$$ after a certain number of operations (possibly zero).", "input_spec": "The only line of the input contains two integers $$$x$$$ and $$$y$$$ ($$$1 \\le x, y \\le 10^{18}$$$).", "output_spec": "Print YES if you can make $$$x$$$ equal to $$$y$$$ and NO if you can't.", "sample_inputs": ["3 3", "7 4", "2 8", "34 69", "8935891487501725 71487131900013807"], "sample_outputs": ["YES", "NO", "NO", "YES", "YES"], "notes": "NoteIn the first example, you don't even need to do anything.The fourth example is described in the statement."}, "src_uid": "9f39a3c160087beb0efab2e3cb510e89"} {"nl": {"description": "When Petya went to school, he got interested in large numbers and what they were called in ancient times. For instance, he learned that the Russian word \"tma\" (which now means \"too much to be counted\") used to stand for a thousand and \"tma tmyschaya\" (which literally means \"the tma of tmas\") used to stand for a million.Petya wanted to modernize the words we use for numbers and invented a word petricium that represents number k. Moreover, petricium la petricium stands for number k2, petricium la petricium la petricium stands for k3 and so on. All numbers of this form are called petriciumus cifera, and the number's importance is the number of articles la in its title.Petya's invention brought on a challenge that needed to be solved quickly: does some number l belong to the set petriciumus cifera? As Petya is a very busy schoolboy he needs to automate the process, he asked you to solve it.", "input_spec": "The first input line contains integer number k, the second line contains integer number l (2\u2009\u2264\u2009k,\u2009l\u2009\u2264\u2009231\u2009-\u20091).", "output_spec": "You should print in the first line of the output \"YES\", if the number belongs to the set petriciumus cifera and otherwise print \"NO\". If the number belongs to the set, then print on the seconds line the only number \u2014 the importance of number l.", "sample_inputs": ["5\n25", "3\n8"], "sample_outputs": ["YES\n1", "NO"], "notes": null}, "src_uid": "8ce89b754aa4080e7c3b2c3b10f4be46"} {"nl": {"description": "There are two strings s and t, consisting only of letters a and b. You can make the following operation several times: choose a prefix of s, a prefix of t and swap them. Prefixes can be empty, also a prefix can coincide with a whole string. Your task is to find a sequence of operations after which one of the strings consists only of a letters and the other consists only of b letters. The number of operations should be minimized.", "input_spec": "The first line contains a string s (1\u2009\u2264\u2009|s|\u2009\u2264\u20092\u00b7105). The second line contains a string t (1\u2009\u2264\u2009|t|\u2009\u2264\u20092\u00b7105). Here |s| and |t| denote the lengths of s and t, respectively. It is guaranteed that at least one of the strings contains at least one a letter and at least one of the strings contains at least one b letter.", "output_spec": "The first line should contain a single integer n (0\u2009\u2264\u2009n\u2009\u2264\u20095\u00b7105)\u00a0\u2014 the number of operations. Each of the next n lines should contain two space-separated integers ai, bi\u00a0\u2014 the lengths of prefixes of s and t to swap, respectively. If there are multiple possible solutions, you can print any of them. It's guaranteed that a solution with given constraints exists.", "sample_inputs": ["bab\nbb", "bbbb\naaa"], "sample_outputs": ["2\n1 0\n1 3", "0"], "notes": "NoteIn the first example, you can solve the problem in two operations: Swap the prefix of the first string with length 1 and the prefix of the second string with length 0. After this swap, you'll have strings ab and bbb. Swap the prefix of the first string with length 1 and the prefix of the second string with length 3. After this swap, you'll have strings bbbb and a. In the second example, the strings are already appropriate, so no operations are needed."}, "src_uid": "4a50c4147becea13946272230f3dde6d"} {"nl": {"description": "To celebrate the opening of the Winter Computer School the organizers decided to buy in n liters of cola. However, an unexpected difficulty occurred in the shop: it turned out that cola is sold in bottles 0.5, 1 and 2 liters in volume. At that, there are exactly a bottles 0.5 in volume, b one-liter bottles and c of two-liter ones. The organizers have enough money to buy any amount of cola. What did cause the heated arguments was how many bottles of every kind to buy, as this question is pivotal for the distribution of cola among the participants (and organizers as well).Thus, while the organizers are having the argument, discussing different variants of buying cola, the Winter School can't start. Your task is to count the number of all the possible ways to buy exactly n liters of cola and persuade the organizers that this number is too large, and if they keep on arguing, then the Winter Computer School will have to be organized in summer.All the bottles of cola are considered indistinguishable, i.e. two variants of buying are different from each other only if they differ in the number of bottles of at least one kind.", "input_spec": "The first line contains four integers \u2014 n, a, b, c (1\u2009\u2264\u2009n\u2009\u2264\u200910000, 0\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u20095000).", "output_spec": "Print the unique number \u2014 the solution to the problem. If it is impossible to buy exactly n liters of cola, print 0. ", "sample_inputs": ["10 5 5 5", "3 0 0 2"], "sample_outputs": ["9", "0"], "notes": null}, "src_uid": "474e527d41040446a18186596e8bdd83"} {"nl": {"description": "You are given a non-negative integer n, its decimal representation consists of at most 100 digits and doesn't contain leading zeroes.Your task is to determine if it is possible in this case to remove some of the digits (possibly not remove any digit at all) so that the result contains at least one digit, forms a non-negative integer, doesn't have leading zeroes and is divisible by 8. After the removing, it is forbidden to rearrange the digits.If a solution exists, you should print it.", "input_spec": "The single line of the input contains a non-negative integer n. The representation of number n doesn't contain any leading zeroes and its length doesn't exceed 100 digits. ", "output_spec": "Print \"NO\" (without quotes), if there is no such way to remove some digits from number n. Otherwise, print \"YES\" in the first line and the resulting number after removing digits from number n in the second line. The printed number must be divisible by 8. If there are multiple possible answers, you may print any of them.", "sample_inputs": ["3454", "10", "111111"], "sample_outputs": ["YES\n344", "YES\n0", "NO"], "notes": null}, "src_uid": "0a2a5927d24c70aca24fc17aa686499e"} {"nl": {"description": "On the way to Rio de Janeiro Ostap kills time playing with a grasshopper he took with him in a special box. Ostap builds a line of length n such that some cells of this line are empty and some contain obstacles. Then, he places his grasshopper to one of the empty cells and a small insect in another empty cell. The grasshopper wants to eat the insect.Ostap knows that grasshopper is able to jump to any empty cell that is exactly k cells away from the current (to the left or to the right). Note that it doesn't matter whether intermediate cells are empty or not as the grasshopper makes a jump over them. For example, if k\u2009=\u20091 the grasshopper can jump to a neighboring cell only, and if k\u2009=\u20092 the grasshopper can jump over a single cell.Your goal is to determine whether there is a sequence of jumps such that grasshopper will get from his initial position to the cell with an insect.", "input_spec": "The first line of the input contains two integers n and k (2\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009k\u2009\u2264\u2009n\u2009-\u20091)\u00a0\u2014 the number of cells in the line and the length of one grasshopper's jump. The second line contains a string of length n consisting of characters '.', '#', 'G' and 'T'. Character '.' means that the corresponding cell is empty, character '#' means that the corresponding cell contains an obstacle and grasshopper can't jump there. Character 'G' means that the grasshopper starts at this position and, finally, 'T' means that the target insect is located at this cell. It's guaranteed that characters 'G' and 'T' appear in this line exactly once.", "output_spec": "If there exists a sequence of jumps (each jump of length k), such that the grasshopper can get from his initial position to the cell with the insect, print \"YES\" (without quotes) in the only line of the input. Otherwise, print \"NO\" (without quotes).", "sample_inputs": ["5 2\n#G#T#", "6 1\nT....G", "7 3\nT..#..G", "6 2\n..GT.."], "sample_outputs": ["YES", "YES", "NO", "NO"], "notes": "NoteIn the first sample, the grasshopper can make one jump to the right in order to get from cell 2 to cell 4.In the second sample, the grasshopper is only able to jump to neighboring cells but the way to the insect is free\u00a0\u2014 he can get there by jumping left 5 times.In the third sample, the grasshopper can't make a single jump.In the fourth sample, the grasshopper can only jump to the cells with odd indices, thus he won't be able to reach the insect."}, "src_uid": "189a9b5ce669bdb04b9d371d74a5dd41"} {"nl": {"description": "JATC's math teacher always gives the class some interesting math problems so that they don't get bored. Today the problem is as follows. Given an integer $$$n$$$, you can perform the following operations zero or more times: mul $$$x$$$: multiplies $$$n$$$ by $$$x$$$ (where $$$x$$$ is an arbitrary positive integer). sqrt: replaces $$$n$$$ with $$$\\sqrt{n}$$$ (to apply this operation, $$$\\sqrt{n}$$$ must be an integer). You can perform these operations as many times as you like. What is the minimum value of $$$n$$$, that can be achieved and what is the minimum number of operations, to achieve that minimum value?Apparently, no one in the class knows the answer to this problem, maybe you can help them?", "input_spec": "The only line of the input contains a single integer $$$n$$$ ($$$1 \\le n \\le 10^6$$$)\u00a0\u2014 the initial number.", "output_spec": "Print two integers: the minimum integer $$$n$$$ that can be achieved using the described operations and the minimum number of operations required.", "sample_inputs": ["20", "5184"], "sample_outputs": ["10 2", "6 4"], "notes": "NoteIn the first example, you can apply the operation mul $$$5$$$ to get $$$100$$$ and then sqrt to get $$$10$$$.In the second example, you can first apply sqrt to get $$$72$$$, then mul $$$18$$$ to get $$$1296$$$ and finally two more sqrt and you get $$$6$$$.Note, that even if the initial value of $$$n$$$ is less or equal $$$10^6$$$, it can still become greater than $$$10^6$$$ after applying one or more operations."}, "src_uid": "212cda3d9d611cd45332bb10b80f0b56"} {"nl": {"description": "You are given a permutation p of numbers 1,\u20092,\u2009...,\u2009n. Let's define f(p) as the following sum:Find the lexicographically m-th permutation of length n in the set of permutations having the maximum possible value of f(p).", "input_spec": "The single line of input contains two integers n and m (1\u2009\u2264\u2009m\u2009\u2264\u2009cntn), where cntn is the number of permutations of length n with maximum possible value of f(p). The problem consists of two subproblems. The subproblems have different constraints on the input. You will get some score for the correct submission of the subproblem. The description of the subproblems follows. In subproblem B1 (3 points), the constraint 1\u2009\u2264\u2009n\u2009\u2264\u20098 will hold. In subproblem B2 (4 points), the constraint 1\u2009\u2264\u2009n\u2009\u2264\u200950 will hold. ", "output_spec": "Output n number forming the required permutation.", "sample_inputs": ["2 2", "3 2"], "sample_outputs": ["2 1", "1 3 2"], "notes": "NoteIn the first example, both permutations of numbers {1, 2} yield maximum possible f(p) which is equal to 4. Among them, (2,\u20091) comes second in lexicographical order."}, "src_uid": "a8da7cbd9ddaec8e0468c6cce884e7a2"} {"nl": {"description": "There are n children in Jzzhu's school. Jzzhu is going to give some candies to them. Let's number all the children from 1 to n. The i-th child wants to get at least ai candies.Jzzhu asks children to line up. Initially, the i-th child stands at the i-th place of the line. Then Jzzhu start distribution of the candies. He follows the algorithm: Give m candies to the first child of the line. If this child still haven't got enough candies, then the child goes to the end of the line, else the child go home. Repeat the first two steps while the line is not empty. Consider all the children in the order they go home. Jzzhu wants to know, which child will be the last in this order?", "input_spec": "The first line contains two integers n,\u2009m (1\u2009\u2264\u2009n\u2009\u2264\u2009100;\u00a01\u2009\u2264\u2009m\u2009\u2264\u2009100). The second line contains n integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009100).", "output_spec": "Output a single integer, representing the number of the last child.", "sample_inputs": ["5 2\n1 3 1 4 2", "6 4\n1 1 2 2 3 3"], "sample_outputs": ["4", "6"], "notes": "NoteLet's consider the first sample. Firstly child 1 gets 2 candies and go home. Then child 2 gets 2 candies and go to the end of the line. Currently the line looks like [3, 4, 5, 2] (indices of the children in order of the line). Then child 3 gets 2 candies and go home, and then child 4 gets 2 candies and goes to the end of the line. Currently the line looks like [5, 2, 4]. Then child 5 gets 2 candies and goes home. Then child 2 gets two candies and goes home, and finally child 4 gets 2 candies and goes home.Child 4 is the last one who goes home."}, "src_uid": "c0ef1e4d7df360c5c1e52bc6f16ca87c"} {"nl": {"description": "Fox Ciel is playing a game with numbers now. Ciel has n positive integers: x1, x2, ..., xn. She can do the following operation as many times as needed: select two different indexes i and j such that xi > xj hold, and then apply assignment xi = xi - xj. The goal is to make the sum of all numbers as small as possible.Please help Ciel to find this minimal sum.", "input_spec": "The first line contains an integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100). Then the second line contains n integers: x1, x2, ..., xn (1\u2009\u2264\u2009xi\u2009\u2264\u2009100).", "output_spec": "Output a single integer \u2014 the required minimal sum.", "sample_inputs": ["2\n1 2", "3\n2 4 6", "2\n12 18", "5\n45 12 27 30 18"], "sample_outputs": ["2", "6", "12", "15"], "notes": "NoteIn the first example the optimal way is to do the assignment: x2 = x2 - x1.In the second example the optimal sequence of operations is: x3 = x3 - x2, x2 = x2 - x1."}, "src_uid": "042cf938dc4a0f46ff33d47b97dc6ad4"} {"nl": {"description": "For a given positive integer n denote its k-rounding as the minimum positive integer x, such that x ends with k or more zeros in base 10 and is divisible by n.For example, 4-rounding of 375 is 375\u00b780\u2009=\u200930000. 30000 is the minimum integer such that it ends with 4 or more zeros and is divisible by 375.Write a program that will perform the k-rounding of n.", "input_spec": "The only line contains two integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u2009109, 0\u2009\u2264\u2009k\u2009\u2264\u20098).", "output_spec": "Print the k-rounding of n.", "sample_inputs": ["375 4", "10000 1", "38101 0", "123456789 8"], "sample_outputs": ["30000", "10000", "38101", "12345678900000000"], "notes": null}, "src_uid": "73566d4d9f20f7bbf71bc06bc9a4e9f3"} {"nl": {"description": "In some game by Playrix it takes t minutes for an oven to bake k carrot cakes, all cakes are ready at the same moment t minutes after they started baking. Arkady needs at least n cakes to complete a task, but he currently don't have any. However, he has infinitely many ingredients and one oven. Moreover, Arkady can build one more similar oven to make the process faster, it would take d minutes to build the oven. While the new oven is being built, only old one can bake cakes, after the new oven is built, both ovens bake simultaneously. Arkady can't build more than one oven.Determine if it is reasonable to build the second oven, i.e. will it decrease the minimum time needed to get n cakes or not. If the time needed with the second oven is the same as with one oven, then it is unreasonable.", "input_spec": "The only line contains four integers n, t, k, d (1\u2009\u2264\u2009n,\u2009t,\u2009k,\u2009d\u2009\u2264\u20091\u2009000)\u00a0\u2014 the number of cakes needed, the time needed for one oven to bake k cakes, the number of cakes baked at the same time, the time needed to build the second oven. ", "output_spec": "If it is reasonable to build the second oven, print \"YES\". Otherwise print \"NO\".", "sample_inputs": ["8 6 4 5", "8 6 4 6", "10 3 11 4", "4 2 1 4"], "sample_outputs": ["YES", "NO", "NO", "YES"], "notes": "NoteIn the first example it is possible to get 8 cakes in 12 minutes using one oven. The second oven can be built in 5 minutes, so after 6 minutes the first oven bakes 4 cakes, the second oven bakes 4 more ovens after 11 minutes. Thus, it is reasonable to build the second oven. In the second example it doesn't matter whether we build the second oven or not, thus it takes 12 minutes to bake 8 cakes in both cases. Thus, it is unreasonable to build the second oven.In the third example the first oven bakes 11 cakes in 3 minutes, that is more than needed 10. It is unreasonable to build the second oven, because its building takes more time that baking the needed number of cakes using the only oven."}, "src_uid": "32c866d3d394e269724b4930df5e4407"} {"nl": {"description": " You can preview the image in better quality by the link: http://assets.codeforces.com/files/656/without-text.png", "input_spec": "The only line of the input is a string (between 1 and 50 characters long, inclusive). Each character will be an alphanumeric character or a full stop \".\".", "output_spec": "Output the required answer.", "sample_inputs": ["Codeforces", "APRIL.1st"], "sample_outputs": ["-87", "17"], "notes": null}, "src_uid": "d3fa5a3a008048dc4a9fbce1ebc61d67"} {"nl": {"description": "You have unlimited number of coins with values $$$1, 2, \\ldots, n$$$. You want to select some set of coins having the total value of $$$S$$$. It is allowed to have multiple coins with the same value in the set. What is the minimum number of coins required to get sum $$$S$$$?", "input_spec": "The only line of the input contains two integers $$$n$$$ and $$$S$$$ ($$$1 \\le n \\le 100\\,000$$$, $$$1 \\le S \\le 10^9$$$)", "output_spec": "Print exactly one integer\u00a0\u2014 the minimum number of coins required to obtain sum $$$S$$$.", "sample_inputs": ["5 11", "6 16"], "sample_outputs": ["3", "3"], "notes": "NoteIn the first example, some of the possible ways to get sum $$$11$$$ with $$$3$$$ coins are: $$$(3, 4, 4)$$$ $$$(2, 4, 5)$$$ $$$(1, 5, 5)$$$ $$$(3, 3, 5)$$$ It is impossible to get sum $$$11$$$ with less than $$$3$$$ coins.In the second example, some of the possible ways to get sum $$$16$$$ with $$$3$$$ coins are: $$$(5, 5, 6)$$$ $$$(4, 6, 6)$$$ It is impossible to get sum $$$16$$$ with less than $$$3$$$ coins."}, "src_uid": "04c067326ec897091c3dbcf4d134df96"} {"nl": {"description": "There are $$$n$$$ benches in the Berland Central park. It is known that $$$a_i$$$ people are currently sitting on the $$$i$$$-th bench. Another $$$m$$$ people are coming to the park and each of them is going to have a seat on some bench out of $$$n$$$ available.Let $$$k$$$ be the maximum number of people sitting on one bench after additional $$$m$$$ people came to the park. Calculate the minimum possible $$$k$$$ and the maximum possible $$$k$$$.Nobody leaves the taken seat during the whole process.", "input_spec": "The first line contains a single integer $$$n$$$ $$$(1 \\le n \\le 100)$$$ \u2014 the number of benches in the park. The second line contains a single integer $$$m$$$ $$$(1 \\le m \\le 10\\,000)$$$ \u2014 the number of people additionally coming to the park. Each of the next $$$n$$$ lines contains a single integer $$$a_i$$$ $$$(1 \\le a_i \\le 100)$$$ \u2014 the initial number of people on the $$$i$$$-th bench.", "output_spec": "Print the minimum possible $$$k$$$ and the maximum possible $$$k$$$, where $$$k$$$ is the maximum number of people sitting on one bench after additional $$$m$$$ people came to the park.", "sample_inputs": ["4\n6\n1\n1\n1\n1", "1\n10\n5", "3\n6\n1\n6\n5", "3\n7\n1\n6\n5"], "sample_outputs": ["3 7", "15 15", "6 12", "7 13"], "notes": "NoteIn the first example, each of four benches is occupied by a single person. The minimum $$$k$$$ is $$$3$$$. For example, it is possible to achieve if two newcomers occupy the first bench, one occupies the second bench, one occupies the third bench, and two remaining \u2014 the fourth bench. The maximum $$$k$$$ is $$$7$$$. That requires all six new people to occupy the same bench.The second example has its minimum $$$k$$$ equal to $$$15$$$ and maximum $$$k$$$ equal to $$$15$$$, as there is just a single bench in the park and all $$$10$$$ people will occupy it."}, "src_uid": "78f696bd954c9f0f9bb502e515d85a8d"} {"nl": {"description": "Little Elephant loves magic squares very much.A magic square is a 3\u2009\u00d7\u20093 table, each cell contains some positive integer. At that the sums of integers in all rows, columns and diagonals of the table are equal. The figure below shows the magic square, the sum of integers in all its rows, columns and diagonals equals 15. The Little Elephant remembered one magic square. He started writing this square on a piece of paper, but as he wrote, he forgot all three elements of the main diagonal of the magic square. Fortunately, the Little Elephant clearly remembered that all elements of the magic square did not exceed 105. Help the Little Elephant, restore the original magic square, given the Elephant's notes.", "input_spec": "The first three lines of the input contain the Little Elephant's notes. The first line contains elements of the first row of the magic square. The second line contains the elements of the second row, the third line is for the third row. The main diagonal elements that have been forgotten by the Elephant are represented by zeroes. It is guaranteed that the notes contain exactly three zeroes and they are all located on the main diagonal. It is guaranteed that all positive numbers in the table do not exceed 105.", "output_spec": "Print three lines, in each line print three integers \u2014 the Little Elephant's magic square. If there are multiple magic squares, you are allowed to print any of them. Note that all numbers you print must be positive and not exceed 105. It is guaranteed that there exists at least one magic square that meets the conditions.", "sample_inputs": ["0 1 1\n1 0 1\n1 1 0", "0 3 6\n5 0 5\n4 7 0"], "sample_outputs": ["1 1 1\n1 1 1\n1 1 1", "6 3 6\n5 5 5\n4 7 4"], "notes": null}, "src_uid": "0c42eafb73d1e30f168958a06a0f9bca"} {"nl": {"description": "Once Volodya was at the museum and saw a regular chessboard as a museum piece. And there were only four chess pieces on it: two white rooks, a white king and a black king. \"Aha, blacks certainly didn't win!\", \u2014 Volodya said and was right for sure. And your task is to say whether whites had won or not.Pieces on the chessboard are guaranteed to represent a correct position (every piece occupies one cell, no two pieces occupy the same cell and kings cannot take each other). Thus, your task is only to decide whether whites mate blacks. We would remind you that it means that the black king can be taken by one of the opponent's pieces at the moment and also it cannot move to an unbeaten position. A rook moves vertically or horizontally by any number of free cells (assuming there are no other pieces on its path), a king \u2014 to the adjacent cells (either by corner or by side). Certainly, pieces cannot leave the board. The black king might be able to take opponent's rooks at his turn (see sample 3).", "input_spec": "The input contains 4 space-separated piece positions: positions of the two rooks, the white king and the black king. Each position on 8\u2009\u00d7\u20098 chessboard is denoted by two symbols \u2014 ('a' - 'h') and ('1' - '8') \u2014 which stand for horizontal and vertical coordinates of the cell occupied by the piece. It is guaranteed, that no two pieces occupy the same cell, and kings cannot take each other.", "output_spec": "Output should contain one word: \"CHECKMATE\" if whites mate blacks, and \"OTHER\" otherwise.", "sample_inputs": ["a6 b4 c8 a8", "a6 c4 b6 b8", "a2 b1 a3 a1"], "sample_outputs": ["CHECKMATE", "OTHER", "OTHER"], "notes": null}, "src_uid": "5d05af36c7ccb0cd26a4ab45966b28a3"} {"nl": {"description": "Nikolay has a lemons, b apples and c pears. He decided to cook a compote. According to the recipe the fruits should be in the ratio 1:\u20092:\u20094. It means that for each lemon in the compote should be exactly 2 apples and exactly 4 pears. You can't crumble up, break up or cut these fruits into pieces. These fruits\u00a0\u2014 lemons, apples and pears\u00a0\u2014 should be put in the compote as whole fruits.Your task is to determine the maximum total number of lemons, apples and pears from which Nikolay can cook the compote. It is possible that Nikolay can't use any fruits, in this case print 0. ", "input_spec": "The first line contains the positive integer a (1\u2009\u2264\u2009a\u2009\u2264\u20091000)\u00a0\u2014 the number of lemons Nikolay has. The second line contains the positive integer b (1\u2009\u2264\u2009b\u2009\u2264\u20091000)\u00a0\u2014 the number of apples Nikolay has. The third line contains the positive integer c (1\u2009\u2264\u2009c\u2009\u2264\u20091000)\u00a0\u2014 the number of pears Nikolay has.", "output_spec": "Print the maximum total number of lemons, apples and pears from which Nikolay can cook the compote.", "sample_inputs": ["2\n5\n7", "4\n7\n13", "2\n3\n2"], "sample_outputs": ["7", "21", "0"], "notes": "NoteIn the first example Nikolay can use 1 lemon, 2 apples and 4 pears, so the answer is 1\u2009+\u20092\u2009+\u20094\u2009=\u20097.In the second example Nikolay can use 3 lemons, 6 apples and 12 pears, so the answer is 3\u2009+\u20096\u2009+\u200912\u2009=\u200921.In the third example Nikolay don't have enough pears to cook any compote, so the answer is 0. "}, "src_uid": "82a4a60eac90765fb62f2a77d2305c01"} {"nl": {"description": "Let\u2019s define a grid to be a set of tiles with 2 rows and 13 columns. Each tile has an English letter written in it. The letters don't have to be unique: there might be two or more tiles with the same letter written on them. Here is an example of a grid: ABCDEFGHIJKLMNOPQRSTUVWXYZ We say that two tiles are adjacent if they share a side or a corner. In the example grid above, the tile with the letter 'A' is adjacent only to the tiles with letters 'B', 'N', and 'O'. A tile is not adjacent to itself.A sequence of tiles is called a path if each tile in the sequence is adjacent to the tile which follows it (except for the last tile in the sequence, which of course has no successor). In this example, \"ABC\" is a path, and so is \"KXWIHIJK\". \"MAB\" is not a path because 'M' is not adjacent to 'A'. A single tile can be used more than once by a path (though the tile cannot occupy two consecutive places in the path because no tile is adjacent to itself).You\u2019re given a string s which consists of 27 upper-case English letters. Each English letter occurs at least once in s. Find a grid that contains a path whose tiles, viewed in the order that the path visits them, form the string s. If there\u2019s no solution, print \"Impossible\" (without the quotes).", "input_spec": "The only line of the input contains the string s, consisting of 27 upper-case English letters. Each English letter occurs at least once in s.", "output_spec": "Output two lines, each consisting of 13 upper-case English characters, representing the rows of the grid. If there are multiple solutions, print any of them. If there is no solution print \"Impossible\".", "sample_inputs": ["ABCDEFGHIJKLMNOPQRSGTUVWXYZ", "BUVTYZFQSNRIWOXXGJLKACPEMDH"], "sample_outputs": ["YXWVUTGHIJKLM\nZABCDEFSRQPON", "Impossible"], "notes": null}, "src_uid": "56c5ea443dec7a732802b16aed5b934d"} {"nl": {"description": "Once Max found an electronic calculator from his grandfather Dovlet's chest. He noticed that the numbers were written with seven-segment indicators (https://en.wikipedia.org/wiki/Seven-segment_display). Max starts to type all the values from a to b. After typing each number Max resets the calculator. Find the total number of segments printed on the calculator.For example if a\u2009=\u20091 and b\u2009=\u20093 then at first the calculator will print 2 segments, then \u2014 5 segments and at last it will print 5 segments. So the total number of printed segments is 12.", "input_spec": "The only line contains two integers a,\u2009b (1\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u2009106) \u2014 the first and the last number typed by Max.", "output_spec": "Print the only integer a \u2014 the total number of printed segments.", "sample_inputs": ["1 3", "10 15"], "sample_outputs": ["12", "39"], "notes": null}, "src_uid": "1193de6f80a9feee8522a404d16425b9"} {"nl": {"description": "Consider the infinite sequence of integers: 1,\u20091,\u20092,\u20091,\u20092,\u20093,\u20091,\u20092,\u20093,\u20094,\u20091,\u20092,\u20093,\u20094,\u20095.... The sequence is built in the following way: at first the number 1 is written out, then the numbers from 1 to 2, then the numbers from 1 to 3, then the numbers from 1 to 4 and so on. Note that the sequence contains numbers, not digits. For example number 10 first appears in the sequence in position 55 (the elements are numerated from one).Find the number on the n-th position of the sequence.", "input_spec": "The only line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091014) \u2014 the position of the number to find. Note that the given number is too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.", "output_spec": "Print the element in the n-th position of the sequence (the elements are numerated from one).", "sample_inputs": ["3", "5", "10", "55", "56"], "sample_outputs": ["2", "2", "4", "10", "1"], "notes": null}, "src_uid": "1db5631847085815461c617854b08ee5"} {"nl": {"description": "Let's introduce some definitions that will be needed later.Let $$$prime(x)$$$ be the set of prime divisors of $$$x$$$. For example, $$$prime(140) = \\{ 2, 5, 7 \\}$$$, $$$prime(169) = \\{ 13 \\}$$$.Let $$$g(x, p)$$$ be the maximum possible integer $$$p^k$$$ where $$$k$$$ is an integer such that $$$x$$$ is divisible by $$$p^k$$$. For example: $$$g(45, 3) = 9$$$ ($$$45$$$ is divisible by $$$3^2=9$$$ but not divisible by $$$3^3=27$$$), $$$g(63, 7) = 7$$$ ($$$63$$$ is divisible by $$$7^1=7$$$ but not divisible by $$$7^2=49$$$). Let $$$f(x, y)$$$ be the product of $$$g(y, p)$$$ for all $$$p$$$ in $$$prime(x)$$$. For example: $$$f(30, 70) = g(70, 2) \\cdot g(70, 3) \\cdot g(70, 5) = 2^1 \\cdot 3^0 \\cdot 5^1 = 10$$$, $$$f(525, 63) = g(63, 3) \\cdot g(63, 5) \\cdot g(63, 7) = 3^2 \\cdot 5^0 \\cdot 7^1 = 63$$$. You have integers $$$x$$$ and $$$n$$$. Calculate $$$f(x, 1) \\cdot f(x, 2) \\cdot \\ldots \\cdot f(x, n) \\bmod{(10^{9} + 7)}$$$.", "input_spec": "The only line contains integers $$$x$$$ and $$$n$$$ ($$$2 \\le x \\le 10^{9}$$$, $$$1 \\le n \\le 10^{18}$$$)\u00a0\u2014 the numbers used in formula.", "output_spec": "Print the answer.", "sample_inputs": ["10 2", "20190929 1605", "947 987654321987654321"], "sample_outputs": ["2", "363165664", "593574252"], "notes": "NoteIn the first example, $$$f(10, 1) = g(1, 2) \\cdot g(1, 5) = 1$$$, $$$f(10, 2) = g(2, 2) \\cdot g(2, 5) = 2$$$.In the second example, actual value of formula is approximately $$$1.597 \\cdot 10^{171}$$$. Make sure you print the answer modulo $$$(10^{9} + 7)$$$.In the third example, be careful about overflow issue."}, "src_uid": "04610fbaa746c083dda30e21fa6e1a0c"} {"nl": {"description": "On a chessboard with a width of $$$n$$$ and a height of $$$n$$$, rows are numbered from bottom to top from $$$1$$$ to $$$n$$$, columns are numbered from left to right from $$$1$$$ to $$$n$$$. Therefore, for each cell of the chessboard, you can assign the coordinates $$$(r,c)$$$, where $$$r$$$ is the number of the row, and $$$c$$$ is the number of the column.The white king has been sitting in a cell with $$$(1,1)$$$ coordinates for a thousand years, while the black king has been sitting in a cell with $$$(n,n)$$$ coordinates. They would have sat like that further, but suddenly a beautiful coin fell on the cell with coordinates $$$(x,y)$$$...Each of the monarchs wanted to get it, so they decided to arrange a race according to slightly changed chess rules:As in chess, the white king makes the first move, the black king makes the second one, the white king makes the third one, and so on. However, in this problem, kings can stand in adjacent cells or even in the same cell at the same time.The player who reaches the coin first will win, that is to say, the player who reaches the cell with the coordinates $$$(x,y)$$$ first will win.Let's recall that the king is such a chess piece that can move one cell in all directions, that is, if the king is in the $$$(a,b)$$$ cell, then in one move he can move from $$$(a,b)$$$ to the cells $$$(a + 1,b)$$$, $$$(a - 1,b)$$$, $$$(a,b + 1)$$$, $$$(a,b - 1)$$$, $$$(a + 1,b - 1)$$$, $$$(a + 1,b + 1)$$$, $$$(a - 1,b - 1)$$$, or $$$(a - 1,b + 1)$$$. Going outside of the field is prohibited.Determine the color of the king, who will reach the cell with the coordinates $$$(x,y)$$$ first, if the white king moves first.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$2 \\le n \\le 10^{18}$$$)\u00a0\u2014 the length of the side of the chess field. The second line contains two integers $$$x$$$ and $$$y$$$ ($$$1 \\le x,y \\le n$$$)\u00a0\u2014 coordinates of the cell, where the coin fell.", "output_spec": "In a single line print the answer \"White\" (without quotes), if the white king will win, or \"Black\" (without quotes), if the black king will win. You can print each letter in any case (upper or lower).", "sample_inputs": ["4\n2 3", "5\n3 5", "2\n2 2"], "sample_outputs": ["White", "Black", "Black"], "notes": "NoteAn example of the race from the first sample where both the white king and the black king move optimally: The white king moves from the cell $$$(1,1)$$$ into the cell $$$(2,2)$$$. The black king moves form the cell $$$(4,4)$$$ into the cell $$$(3,3)$$$. The white king moves from the cell $$$(2,2)$$$ into the cell $$$(2,3)$$$. This is cell containing the coin, so the white king wins. An example of the race from the second sample where both the white king and the black king move optimally: The white king moves from the cell $$$(1,1)$$$ into the cell $$$(2,2)$$$. The black king moves form the cell $$$(5,5)$$$ into the cell $$$(4,4)$$$. The white king moves from the cell $$$(2,2)$$$ into the cell $$$(3,3)$$$. The black king moves from the cell $$$(4,4)$$$ into the cell $$$(3,5)$$$. This is the cell, where the coin fell, so the black king wins. In the third example, the coin fell in the starting cell of the black king, so the black king immediately wins. "}, "src_uid": "b8ece086b35a36ca873e2edecc674557"} {"nl": {"description": "Developing tools for creation of locations maps for turn-based fights in a new game, Petya faced the following problem.A field map consists of hexagonal cells. Since locations sizes are going to be big, a game designer wants to have a tool for quick filling of a field part with identical enemy units. This action will look like following: a game designer will select a rectangular area on the map, and each cell whose center belongs to the selected rectangle will be filled with the enemy unit.More formally, if a game designer selected cells having coordinates (x1,\u2009y1) and (x2,\u2009y2), where x1\u2009\u2264\u2009x2 and y1\u2009\u2264\u2009y2, then all cells having center coordinates (x,\u2009y) such that x1\u2009\u2264\u2009x\u2009\u2264\u2009x2 and y1\u2009\u2264\u2009y\u2009\u2264\u2009y2 will be filled. Orthogonal coordinates system is set up so that one of cell sides is parallel to OX axis, all hexagon centers have integer coordinates and for each integer x there are cells having center with such x coordinate and for each integer y there are cells having center with such y coordinate. It is guaranteed that difference x2\u2009-\u2009x1 is divisible by 2.Working on the problem Petya decided that before painting selected units he wants to output number of units that will be painted on the map.Help him implement counting of these units before painting. ", "input_spec": "The only line of input contains four integers x1,\u2009y1,\u2009x2,\u2009y2 (\u2009-\u2009109\u2009\u2264\u2009x1\u2009\u2264\u2009x2\u2009\u2264\u2009109,\u2009\u2009-\u2009109\u2009\u2264\u2009y1\u2009\u2264\u2009y2\u2009\u2264\u2009109) \u2014 the coordinates of the centers of two cells.", "output_spec": "Output one integer \u2014 the number of cells to be filled.", "sample_inputs": ["1 1 5 5"], "sample_outputs": ["13"], "notes": null}, "src_uid": "00cffd273df24d1676acbbfd9a39630d"} {"nl": {"description": "You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. Your task is to find the sum of lengths of all 12 edges of this parallelepiped.", "input_spec": "The first and the single line contains three space-separated integers \u2014 the areas of the parallelepiped's faces. The area's values are positive (\u2009>\u20090) and do not exceed 104. It is guaranteed that there exists at least one parallelepiped that satisfies the problem statement.", "output_spec": "Print a single number \u2014 the sum of all edges of the parallelepiped.", "sample_inputs": ["1 1 1", "4 6 6"], "sample_outputs": ["12", "28"], "notes": "NoteIn the first sample the parallelepiped has sizes 1\u2009\u00d7\u20091\u2009\u00d7\u20091, in the second one\u00a0\u2014 2\u2009\u00d7\u20092\u2009\u00d7\u20093."}, "src_uid": "c0a3290be3b87f3a232ec19d4639fefc"} {"nl": {"description": "Trouble came from the overseas lands: a three-headed dragon Gorynych arrived. The dragon settled at point C and began to terrorize the residents of the surrounding villages.A brave hero decided to put an end to the dragon. He moved from point A to fight with Gorynych. The hero rode from point A along a straight road and met point B on his way. The hero knows that in this land for every pair of roads it is true that they are either parallel to each other, or lie on a straight line, or are perpendicular to each other. He also knows well that points B and C are connected by a road. So the hero must either turn 90 degrees to the left or continue riding straight ahead or turn 90 degrees to the right. But he forgot where the point C is located.Fortunately, a Brave Falcon flew right by. It can see all three points from the sky. The hero asked him what way to go to get to the dragon's lair.If you have not got it, you are the falcon. Help the hero and tell him how to get him to point C: turn left, go straight or turn right.At this moment the hero is believed to stand at point B, turning his back to point A.", "input_spec": "The first input line contains two space-separated integers xa,\u2009ya (|xa|,\u2009|ya|\u2009\u2264\u2009109) \u2014 the coordinates of point A. The second line contains the coordinates of point B in the same form, the third line contains the coordinates of point C. It is guaranteed that all points are pairwise different. It is also guaranteed that either point B lies on segment AC, or angle ABC is right.", "output_spec": "Print a single line. If a hero must turn left, print \"LEFT\" (without the quotes); If he must go straight ahead, print \"TOWARDS\" (without the quotes); if he should turn right, print \"RIGHT\" (without the quotes).", "sample_inputs": ["0 0\n0 1\n1 1", "-1 -1\n-3 -3\n-4 -4", "-4 -6\n-3 -7\n-2 -6"], "sample_outputs": ["RIGHT", "TOWARDS", "LEFT"], "notes": "NoteThe picture to the first sample: The red color shows points A, B and C. The blue arrow shows the hero's direction. The green color shows the hero's trajectory.The picture to the second sample: "}, "src_uid": "f6e132d1969863e9f28c87e5a44c2b69"} {"nl": {"description": "In this task Anna and Maria play the following game. Initially they have a checkered piece of paper with a painted n\u2009\u00d7\u2009m rectangle (only the border, no filling). Anna and Maria move in turns and Anna starts. During each move one should paint inside the last-painted rectangle a new lesser rectangle (along the grid lines). The new rectangle should have no common points with the previous one. Note that when we paint a rectangle, we always paint only the border, the rectangles aren't filled.Nobody wins the game \u2014 Anna and Maria simply play until they have done k moves in total. Count the number of different ways to play this game.", "input_spec": "The first and only line contains three integers: n,\u2009m,\u2009k (1\u2009\u2264\u2009n,\u2009m,\u2009k\u2009\u2264\u20091000).", "output_spec": "Print the single number \u2014 the number of the ways to play the game. As this number can be very big, print the value modulo 1000000007 (109\u2009+\u20097).", "sample_inputs": ["3 3 1", "4 4 1", "6 7 2"], "sample_outputs": ["1", "9", "75"], "notes": "NoteTwo ways to play the game are considered different if the final pictures are different. In other words, if one way contains a rectangle that is not contained in the other way.In the first sample Anna, who performs her first and only move, has only one possible action plan \u2014 insert a 1\u2009\u00d7\u20091 square inside the given 3\u2009\u00d7\u20093 square.In the second sample Anna has as much as 9 variants: 4 ways to paint a 1\u2009\u00d7\u20091 square, 2 ways to insert a 1\u2009\u00d7\u20092 rectangle vertically, 2 more ways to insert it horizontally and one more way is to insert a 2\u2009\u00d7\u20092 square."}, "src_uid": "309d2d46086d526d160292717dfef308"} {"nl": {"description": "When preparing a tournament, Codeforces coordinators try treir best to make the first problem as easy as possible. This time the coordinator had chosen some problem and asked $$$n$$$ people about their opinions. Each person answered whether this problem is easy or hard.If at least one of these $$$n$$$ people has answered that the problem is hard, the coordinator decides to change the problem. For the given responses, check if the problem is easy enough.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$1 \\le n \\le 100$$$) \u2014 the number of people who were asked to give their opinions. The second line contains $$$n$$$ integers, each integer is either $$$0$$$ or $$$1$$$. If $$$i$$$-th integer is $$$0$$$, then $$$i$$$-th person thinks that the problem is easy; if it is $$$1$$$, then $$$i$$$-th person thinks that the problem is hard.", "output_spec": "Print one word: \"EASY\" if the problem is easy according to all responses, or \"HARD\" if there is at least one person who thinks the problem is hard. You may print every letter in any register: \"EASY\", \"easy\", \"EaSY\" and \"eAsY\" all will be processed correctly.", "sample_inputs": ["3\n0 0 1", "1\n0"], "sample_outputs": ["HARD", "EASY"], "notes": "NoteIn the first example the third person says it's a hard problem, so it should be replaced.In the second example the problem easy for the only person, so it doesn't have to be replaced."}, "src_uid": "060406cd57739d929f54b4518a7ba83e"} {"nl": {"description": "A classroom in a school has six rows with 3 desks in each row. Two people can use the same desk: one sitting on the left and one sitting on the right. Some places are already occupied, and some places are vacant. Petya has just entered the class and wants to occupy the most convenient place. The conveniences of the places are shown on the picture: Here, the desks in the top row are the closest to the blackboard, while the desks in the bottom row are the furthest from the blackboard.You are given a plan of the class, where '*' denotes an occupied place, '.' denotes a vacant place, and the aisles are denoted by '-'. Find any of the most convenient vacant places for Petya.", "input_spec": "The input consists of 6 lines. Each line describes one row of desks, starting from the closest to the blackboard. Each line is given in the following format: two characters, each is '*' or '.' \u2014 the description of the left desk in the current row; a character '-' \u2014 the aisle; two characters, each is '*' or '.' \u2014 the description of the center desk in the current row; a character '-' \u2014 the aisle; two characters, each is '*' or '.' \u2014 the description of the right desk in the current row. So, the length of each of the six lines is 8. It is guaranteed that there is at least one vacant place in the classroom.", "output_spec": "Print the plan of the classroom after Petya takes one of the most convenient for him places. Mark this place with the letter 'P'. There should be exactly one letter 'P' in the plan. Petya can only take a vacant place. In all other places the output should coincide with the input. If there are multiple answers, print any.", "sample_inputs": ["..-**-..\n..-**-..\n..-..-..\n..-..-..\n..-..-..\n..-..-..", "**-**-**\n**-**-**\n..-**-.*\n**-**-**\n..-..-..\n..-**-..", "**-**-*.\n*.-*.-**\n**-**-**\n**-**-**\n..-..-..\n..-**-.."], "sample_outputs": ["..-**-..\n..-**-..\n..-..-..\n..-P.-..\n..-..-..\n..-..-..", "**-**-**\n**-**-**\n..-**-.*\n**-**-**\n..-P.-..\n..-**-..", "**-**-*.\n*.-*P-**\n**-**-**\n**-**-**\n..-..-..\n..-**-.."], "notes": "NoteIn the first example the maximum convenience is 3.In the second example the maximum convenience is 2.In the third example the maximum convenience is 4."}, "src_uid": "35503a2aeb18c8c1b3eda9de2c6ce33e"} {"nl": {"description": "Vasya has found a strange device. On the front panel of a device there are: a red button, a blue button and a display showing some positive integer. After clicking the red button, device multiplies the displayed number by two. After clicking the blue button, device subtracts one from the number on the display. If at some point the number stops being positive, the device breaks down. The display can show arbitrarily large numbers. Initially, the display shows number n.Bob wants to get number m on the display. What minimum number of clicks he has to make in order to achieve this result?", "input_spec": "The first and the only line of the input contains two distinct integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009104), separated by a space .", "output_spec": "Print a single number \u2014 the minimum number of times one needs to push the button required to get the number m out of number n.", "sample_inputs": ["4 6", "10 1"], "sample_outputs": ["2", "9"], "notes": "NoteIn the first example you need to push the blue button once, and then push the red button once.In the second example, doubling the number is unnecessary, so we need to push the blue button nine times."}, "src_uid": "861f8edd2813d6d3a5ff7193a804486f"} {"nl": {"description": "While swimming at the beach, Mike has accidentally dropped his cellphone into the water. There was no worry as he bought a cheap replacement phone with an old-fashioned keyboard. The keyboard has only ten digital equal-sized keys, located in the following way: Together with his old phone, he lost all his contacts and now he can only remember the way his fingers moved when he put some number in. One can formally consider finger movements as a sequence of vectors connecting centers of keys pressed consecutively to put in a number. For example, the finger movements for number \"586\" are the same as finger movements for number \"253\": Mike has already put in a number by his \"finger memory\" and started calling it, so he is now worrying, can he be sure that he is calling the correct number? In other words, is there any other number, that has the same finger movements?", "input_spec": "The first line of the input contains the only integer n (1\u2009\u2264\u2009n\u2009\u2264\u20099)\u00a0\u2014 the number of digits in the phone number that Mike put in. The second line contains the string consisting of n digits (characters from '0' to '9') representing the number that Mike put in.", "output_spec": "If there is no other phone number with the same finger movements and Mike can be sure he is calling the correct number, print \"YES\" (without quotes) in the only line. Otherwise print \"NO\" (without quotes) in the first line.", "sample_inputs": ["3\n586", "2\n09", "9\n123456789", "3\n911"], "sample_outputs": ["NO", "NO", "YES", "YES"], "notes": "NoteYou can find the picture clarifying the first sample case in the statement above."}, "src_uid": "d0f5174bb0bcca5a486db327b492bf33"} {"nl": {"description": "After Fox Ciel won an onsite round of a programming contest, she took a bus to return to her castle. The fee of the bus was 220 yen. She met Rabbit Hanako in the bus. They decided to play the following game because they got bored in the bus. Initially, there is a pile that contains x 100-yen coins and y 10-yen coins. They take turns alternatively. Ciel takes the first turn. In each turn, they must take exactly 220 yen from the pile. In Ciel's turn, if there are multiple ways to take 220 yen, she will choose the way that contains the maximal number of 100-yen coins. In Hanako's turn, if there are multiple ways to take 220 yen, she will choose the way that contains the maximal number of 10-yen coins. If Ciel or Hanako can't take exactly 220 yen from the pile, she loses. Determine the winner of the game.", "input_spec": "The first line contains two integers x (0\u2009\u2264\u2009x\u2009\u2264\u2009106) and y (0\u2009\u2264\u2009y\u2009\u2264\u2009106), separated by a single space.", "output_spec": "If Ciel wins, print \"Ciel\". Otherwise, print \"Hanako\".", "sample_inputs": ["2 2", "3 22"], "sample_outputs": ["Ciel", "Hanako"], "notes": "NoteIn the first turn (Ciel's turn), she will choose 2 100-yen coins and 2 10-yen coins. In the second turn (Hanako's turn), she will choose 1 100-yen coin and 12 10-yen coins. In the third turn (Ciel's turn), she can't pay exactly 220 yen, so Ciel will lose."}, "src_uid": "8ffee18bbc4bb281027f91193002b7f5"} {"nl": {"description": "Two bored soldiers are playing card war. Their card deck consists of exactly n cards, numbered from 1 to n, all values are different. They divide cards between them in some manner, it's possible that they have different number of cards. Then they play a \"war\"-like card game. The rules are following. On each turn a fight happens. Each of them picks card from the top of his stack and puts on the table. The one whose card value is bigger wins this fight and takes both cards from the table to the bottom of his stack. More precisely, he first takes his opponent's card and puts to the bottom of his stack, and then he puts his card to the bottom of his stack. If after some turn one of the player's stack becomes empty, he loses and the other one wins. You have to calculate how many fights will happen and who will win the game, or state that game won't end.", "input_spec": "First line contains a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u200910), the number of cards. Second line contains integer k1 (1\u2009\u2264\u2009k1\u2009\u2264\u2009n\u2009-\u20091), the number of the first soldier's cards. Then follow k1 integers that are the values on the first soldier's cards, from top to bottom of his stack. Third line contains integer k2 (k1\u2009+\u2009k2\u2009=\u2009n), the number of the second soldier's cards. Then follow k2 integers that are the values on the second soldier's cards, from top to bottom of his stack. All card values are different.", "output_spec": "If somebody wins in this game, print 2 integers where the first one stands for the number of fights before end of game and the second one is 1 or 2 showing which player has won. If the game won't end and will continue forever output \u2009-\u20091.", "sample_inputs": ["4\n2 1 3\n2 4 2", "3\n1 2\n2 1 3"], "sample_outputs": ["6 2", "-1"], "notes": "NoteFirst sample: Second sample: "}, "src_uid": "f587b1867754e6958c3d7e0fe368ec6e"} {"nl": {"description": "Andrey received a postcard from Irina. It contained only the words \"Hello, Andrey!\", and a strange string consisting of lowercase Latin letters, snowflakes and candy canes. Andrey thought that this string is an encrypted message, and decided to decrypt it.Andrey noticed that snowflakes and candy canes always stand after the letters, so he supposed that the message was encrypted as follows. Candy cane means that the letter before it can be removed, or can be left. A snowflake means that the letter before it can be removed, left, or repeated several times.For example, consider the following string: This string can encode the message \u00abhappynewyear\u00bb. For this, candy canes and snowflakes should be used as follows: candy cane 1: remove the letter w, snowflake 1: repeat the letter p twice, candy cane 2: leave the letter n, snowflake 2: remove the letter w, snowflake 3: leave the letter e. Please note that the same string can encode different messages. For example, the string above can encode \u00abhayewyar\u00bb, \u00abhapppppynewwwwwyear\u00bb, and other messages.Andrey knows that messages from Irina usually have a length of $$$k$$$ letters. Help him to find out if a given string can encode a message of $$$k$$$ letters, and if so, give an example of such a message.", "input_spec": "The first line contains the string received in the postcard. The string consists only of lowercase Latin letters, as well as the characters \u00ab*\u00bb and \u00ab?\u00bb, meaning snowflake and candy cone, respectively. These characters can only appear immediately after the letter. The length of the string does not exceed $$$200$$$. The second line contains an integer number $$$k$$$ ($$$1 \\leq k \\leq 200$$$), the required message length.", "output_spec": "Print any message of length $$$k$$$ that the given string can encode, or \u00abImpossible\u00bb if such a message does not exist.", "sample_inputs": ["hw?ap*yn?eww*ye*ar\n12", "ab?a\n2", "ab?a\n3", "ababb\n5", "ab?a\n1"], "sample_outputs": ["happynewyear", "aa", "aba", "ababb", "Impossible"], "notes": null}, "src_uid": "90ad5e6bb5839f9b99a125ccb118a276"} {"nl": {"description": "String can be called correct if it consists of characters \"0\" and \"1\" and there are no redundant leading zeroes. Here are some examples: \"0\", \"10\", \"1001\".You are given a correct string s.You can perform two different operations on this string: swap any pair of adjacent characters (for example, \"101\" \"110\"); replace \"11\" with \"1\" (for example, \"110\" \"10\"). Let val(s) be such a number that s is its binary representation.Correct string a is less than some other correct string b iff val(a)\u2009<\u2009val(b).Your task is to find the minimum correct string that you can obtain from the given one using the operations described above. You can use these operations any number of times in any order (or even use no operations at all).", "input_spec": "The first line contains integer number n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the length of string s. The second line contains the string s consisting of characters \"0\" and \"1\". It is guaranteed that the string s is correct.", "output_spec": "Print one string \u2014 the minimum correct string that you can obtain from the given one.", "sample_inputs": ["4\n1001", "1\n1"], "sample_outputs": ["100", "1"], "notes": "NoteIn the first example you can obtain the answer by the following sequence of operations: \"1001\" \"1010\" \"1100\" \"100\".In the second example you can't obtain smaller answer no matter what operations you use."}, "src_uid": "ac244791f8b648d672ed3de32ce0074d"} {"nl": {"description": "Buses run between the cities A and B, the first one is at 05:00 AM and the last one departs not later than at 11:59 PM. A bus from the city A departs every a minutes and arrives to the city B in a ta minutes, and a bus from the city B departs every b minutes and arrives to the city A in a tb minutes.The driver Simion wants to make his job diverse, so he counts the buses going towards him. Simion doesn't count the buses he meet at the start and finish.You know the time when Simion departed from the city A to the city B. Calculate the number of buses Simion will meet to be sure in his counting.", "input_spec": "The first line contains two integers a,\u2009ta (1\u2009\u2264\u2009a,\u2009ta\u2009\u2264\u2009120) \u2014 the frequency of the buses from the city A to the city B and the travel time. Both values are given in minutes. The second line contains two integers b,\u2009tb (1\u2009\u2264\u2009b,\u2009tb\u2009\u2264\u2009120) \u2014 the frequency of the buses from the city B to the city A and the travel time. Both values are given in minutes. The last line contains the departure time of Simion from the city A in the format hh:mm. It is guaranteed that there are a bus from the city A at that time. Note that the hours and the minutes are given with exactly two digits.", "output_spec": "Print the only integer z \u2014 the number of buses Simion will meet on the way. Note that you should not count the encounters in cities A and B.", "sample_inputs": ["10 30\n10 35\n05:20", "60 120\n24 100\n13:00"], "sample_outputs": ["5", "9"], "notes": "NoteIn the first example Simion departs form the city A at 05:20 AM and arrives to the city B at 05:50 AM. He will meet the first 5 buses from the city B that departed in the period [05:00 AM - 05:40 AM]. Also Simion will meet a bus in the city B at 05:50 AM, but he will not count it.Also note that the first encounter will be between 05:26 AM and 05:27 AM (if we suggest that the buses are go with the sustained speed)."}, "src_uid": "1c4cf1c3cb464a483511a8a61f8685a7"} {"nl": {"description": "Today is Wednesday, the third day of the week. What's more interesting is that tomorrow is the last day of the year 2015.Limak is a little polar bear. He enjoyed this year a lot. Now, he is so eager to the coming year 2016.Limak wants to prove how responsible a bear he is. He is going to regularly save candies for the entire year 2016! He considers various saving plans. He can save one candy either on some fixed day of the week or on some fixed day of the month.Limak chose one particular plan. He isn't sure how many candies he will save in the 2016 with his plan. Please, calculate it and tell him.", "input_spec": "The only line of the input is in one of the following two formats: \"x of week\" where x (1\u2009\u2264\u2009x\u2009\u2264\u20097) denotes the day of the week. The 1-st day is Monday and the 7-th one is Sunday. \"x of month\" where x (1\u2009\u2264\u2009x\u2009\u2264\u200931) denotes the day of the month. ", "output_spec": "Print one integer\u00a0\u2014 the number of candies Limak will save in the year 2016.", "sample_inputs": ["4 of week", "30 of month"], "sample_outputs": ["52", "11"], "notes": "NotePolar bears use the Gregorian calendar. It is the most common calendar and you likely use it too. You can read about it on Wikipedia if you want to \u2013 https://en.wikipedia.org/wiki/Gregorian_calendar. The week starts with Monday.In the first sample Limak wants to save one candy on each Thursday (the 4-th day of the week). There are 52 Thursdays in the 2016. Thus, he will save 52 candies in total.In the second sample Limak wants to save one candy on the 30-th day of each month. There is the 30-th day in exactly 11 months in the 2016\u00a0\u2014 all months but February. It means that Limak will save 11 candies in total."}, "src_uid": "9b8543c1ae3666e6c163d268fdbeef6b"} {"nl": {"description": "Nothing is eternal in the world, Kostya understood it on the 7-th of January when he saw partially dead four-color garland.Now he has a goal to replace dead light bulbs, however he doesn't know how many light bulbs for each color are required. It is guaranteed that for each of four colors at least one light is working.It is known that the garland contains light bulbs of four colors: red, blue, yellow and green. The garland is made as follows: if you take any four consecutive light bulbs then there will not be light bulbs with the same color among them. For example, the garland can look like \"RYBGRYBGRY\", \"YBGRYBGRYBG\", \"BGRYB\", but can not look like \"BGRYG\", \"YBGRYBYGR\" or \"BGYBGY\". Letters denote colors: 'R'\u00a0\u2014 red, 'B'\u00a0\u2014 blue, 'Y'\u00a0\u2014 yellow, 'G'\u00a0\u2014 green.Using the information that for each color at least one light bulb still works count the number of dead light bulbs of each four colors.", "input_spec": "The first and the only line contains the string s (4\u2009\u2264\u2009|s|\u2009\u2264\u2009100), which describes the garland, the i-th symbol of which describes the color of the i-th light bulb in the order from the beginning of garland: 'R'\u00a0\u2014 the light bulb is red, 'B'\u00a0\u2014 the light bulb is blue, 'Y'\u00a0\u2014 the light bulb is yellow, 'G'\u00a0\u2014 the light bulb is green, '!'\u00a0\u2014 the light bulb is dead. The string s can not contain other symbols except those five which were described. It is guaranteed that in the given string at least once there is each of four letters 'R', 'B', 'Y' and 'G'. It is guaranteed that the string s is correct garland with some blown light bulbs, it means that for example the line \"GRBY!!!B\" can not be in the input data. ", "output_spec": "In the only line print four integers kr,\u2009kb,\u2009ky,\u2009kg\u00a0\u2014 the number of dead light bulbs of red, blue, yellow and green colors accordingly.", "sample_inputs": ["RYBGRYBGR", "!RGYB", "!!!!YGRB", "!GB!RG!Y!"], "sample_outputs": ["0 0 0 0", "0 1 0 0", "1 1 1 1", "2 1 1 0"], "notes": "NoteIn the first example there are no dead light bulbs.In the second example it is obvious that one blue bulb is blown, because it could not be light bulbs of other colors on its place according to the statements."}, "src_uid": "64fc6e9b458a9ece8ad70a8c72126b33"} {"nl": {"description": "Consider the following equation: where sign [a] represents the integer part of number a.Let's find all integer z (z\u2009>\u20090), for which this equation is unsolvable in positive integers. The phrase \"unsolvable in positive integers\" means that there are no such positive integers x and y (x,\u2009y\u2009>\u20090), for which the given above equation holds.Let's write out all such z in the increasing order: z1,\u2009z2,\u2009z3, and so on (zi\u2009<\u2009zi\u2009+\u20091). Your task is: given the number n, find the number zn.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200940).", "output_spec": "Print a single integer \u2014 the number zn modulo 1000000007 (109\u2009+\u20097). It is guaranteed that the answer exists.", "sample_inputs": ["1", "2", "3"], "sample_outputs": ["1", "3", "15"], "notes": null}, "src_uid": "c2cbc35012c6ff7ab0d6899e6015e4e7"} {"nl": {"description": "Misha and Vanya have played several table tennis sets. Each set consists of several serves, each serve is won by one of the players, he receives one point and the loser receives nothing. Once one of the players scores exactly k points, the score is reset and a new set begins.Across all the sets Misha scored a points in total, and Vanya scored b points. Given this information, determine the maximum number of sets they could have played, or that the situation is impossible.Note that the game consisted of several complete sets.", "input_spec": "The first line contains three space-separated integers k, a and b (1\u2009\u2264\u2009k\u2009\u2264\u2009109, 0\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009109, a\u2009+\u2009b\u2009>\u20090).", "output_spec": "If the situation is impossible, print a single number -1. Otherwise, print the maximum possible number of sets.", "sample_inputs": ["11 11 5", "11 2 3"], "sample_outputs": ["1", "-1"], "notes": "NoteNote that the rules of the game in this problem differ from the real table tennis game, for example, the rule of \"balance\" (the winning player has to be at least two points ahead to win a set) has no power within the present problem."}, "src_uid": "6e3b8193d1ca1a1d449dc7a4ad45b8f2"} {"nl": {"description": "Mislove had an array $$$a_1$$$, $$$a_2$$$, $$$\\cdots$$$, $$$a_n$$$ of $$$n$$$ positive integers, but he has lost it. He only remembers the following facts about it: The number of different numbers in the array is not less than $$$l$$$ and is not greater than $$$r$$$; For each array's element $$$a_i$$$ either $$$a_i = 1$$$ or $$$a_i$$$ is even and there is a number $$$\\dfrac{a_i}{2}$$$ in the array.For example, if $$$n=5$$$, $$$l=2$$$, $$$r=3$$$ then an array could be $$$[1,2,2,4,4]$$$ or $$$[1,1,1,1,2]$$$; but it couldn't be $$$[1,2,2,4,8]$$$ because this array contains $$$4$$$ different numbers; it couldn't be $$$[1,2,2,3,3]$$$ because $$$3$$$ is odd and isn't equal to $$$1$$$; and it couldn't be $$$[1,1,2,2,16]$$$ because there is a number $$$16$$$ in the array but there isn't a number $$$\\frac{16}{2} = 8$$$.According to these facts, he is asking you to count the minimal and the maximal possible sums of all elements in an array. ", "input_spec": "The only input line contains three integers $$$n$$$, $$$l$$$ and $$$r$$$ ($$$1 \\leq n \\leq 1\\,000$$$, $$$1 \\leq l \\leq r \\leq \\min(n, 20)$$$)\u00a0\u2014 an array's size, the minimal number and the maximal number of distinct elements in an array.", "output_spec": "Output two numbers\u00a0\u2014 the minimal and the maximal possible sums of all elements in an array.", "sample_inputs": ["4 2 2", "5 1 5"], "sample_outputs": ["5 7", "5 31"], "notes": "NoteIn the first example, an array could be the one of the following: $$$[1,1,1,2]$$$, $$$[1,1,2,2]$$$ or $$$[1,2,2,2]$$$. In the first case the minimal sum is reached and in the last case the maximal sum is reached.In the second example, the minimal sum is reached at the array $$$[1,1,1,1,1]$$$, and the maximal one is reached at the array $$$[1,2,4,8,16]$$$."}, "src_uid": "ce220726392fb0cacf0ec44a7490084a"} {"nl": {"description": "Ivan has number $$$b$$$. He is sorting through the numbers $$$a$$$ from $$$1$$$ to $$$10^{18}$$$, and for every $$$a$$$ writes $$$\\frac{[a, \\,\\, b]}{a}$$$ on blackboard. Here $$$[a, \\,\\, b]$$$ stands for least common multiple of $$$a$$$ and $$$b$$$. Ivan is very lazy, that's why this task bored him soon. But he is interested in how many different numbers he would write on the board if he would finish the task. Help him to find the quantity of different numbers he would write on the board.", "input_spec": "The only line contains one integer\u00a0\u2014 $$$b$$$ $$$(1 \\le b \\le 10^{10})$$$.", "output_spec": "Print one number\u00a0\u2014 answer for the problem.", "sample_inputs": ["1", "2"], "sample_outputs": ["1", "2"], "notes": "NoteIn the first example $$$[a, \\,\\, 1] = a$$$, therefore $$$\\frac{[a, \\,\\, b]}{a}$$$ is always equal to $$$1$$$.In the second example $$$[a, \\,\\, 2]$$$ can be equal to $$$a$$$ or $$$2 \\cdot a$$$ depending on parity of $$$a$$$. $$$\\frac{[a, \\,\\, b]}{a}$$$ can be equal to $$$1$$$ and $$$2$$$."}, "src_uid": "7fc9e7d7e25ab97d8ebc10ed8ae38fd1"} {"nl": {"description": "InputThe only line of the input contains a string of digits. The length of the string is between 1 and 10, inclusive.OutputOutput \"Yes\" or \"No\".ExamplesInput373OutputYesInput121OutputNoInput436OutputYes", "input_spec": "The only line of the input contains a string of digits. The length of the string is between 1 and 10, inclusive.", "output_spec": "Output \"Yes\" or \"No\".", "sample_inputs": ["373", "121", "436"], "sample_outputs": ["Yes", "No", "Yes"], "notes": null}, "src_uid": "0f11f41cefd7cf43f498e511405426c3"} {"nl": {"description": "Ann has recently started commuting by subway. We know that a one ride subway ticket costs a rubles. Besides, Ann found out that she can buy a special ticket for m rides (she can buy it several times). It costs b rubles. Ann did the math; she will need to use subway n times. Help Ann, tell her what is the minimum sum of money she will have to spend to make n rides?", "input_spec": "The single line contains four space-separated integers n, m, a, b (1\u2009\u2264\u2009n,\u2009m,\u2009a,\u2009b\u2009\u2264\u20091000) \u2014 the number of rides Ann has planned, the number of rides covered by the m ride ticket, the price of a one ride ticket and the price of an m ride ticket. ", "output_spec": "Print a single integer \u2014 the minimum sum in rubles that Ann will need to spend.", "sample_inputs": ["6 2 1 2", "5 2 2 3"], "sample_outputs": ["6", "8"], "notes": "NoteIn the first sample one of the optimal solutions is: each time buy a one ride ticket. There are other optimal solutions. For example, buy three m ride tickets."}, "src_uid": "faa343ad6028c5a069857a38fa19bb24"} {"nl": {"description": "Olesya loves numbers consisting of n digits, and Rodion only likes numbers that are divisible by t. Find some number that satisfies both of them.Your task is: given the n and t print an integer strictly larger than zero consisting of n digits that is divisible by t. If such number doesn't exist, print \u2009-\u20091.", "input_spec": "The single line contains two numbers, n and t (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 2\u2009\u2264\u2009t\u2009\u2264\u200910) \u2014 the length of the number and the number it should be divisible by.", "output_spec": "Print one such positive number without leading zeroes, \u2014 the answer to the problem, or \u2009-\u20091, if such number doesn't exist. If there are multiple possible answers, you are allowed to print any of them.", "sample_inputs": ["3 2"], "sample_outputs": ["712"], "notes": null}, "src_uid": "77ffc1e38c32087f98ab5b3cb11cd2ed"} {"nl": {"description": "A group of university students wants to get to the top of a mountain to have a picnic there. For that they decided to use a cableway.A cableway is represented by some cablecars, hanged onto some cable stations by a cable. A cable is scrolled cyclically between the first and the last cable stations (the first of them is located at the bottom of the mountain and the last one is located at the top). As the cable moves, the cablecar attached to it move as well.The number of cablecars is divisible by three and they are painted three colors: red, green and blue, in such manner that after each red cablecar goes a green one, after each green cablecar goes a blue one and after each blue cablecar goes a red one. Each cablecar can transport no more than two people, the cablecars arrive with the periodicity of one minute (i. e. every minute) and it takes exactly 30 minutes for a cablecar to get to the top.All students are divided into three groups: r of them like to ascend only in the red cablecars, g of them prefer only the green ones and b of them prefer only the blue ones. A student never gets on a cablecar painted a color that he doesn't like,The first cablecar to arrive (at the moment of time 0) is painted red. Determine the least time it will take all students to ascend to the mountain top.", "input_spec": "The first line contains three integers r, g and b (0\u2009\u2264\u2009r,\u2009g,\u2009b\u2009\u2264\u2009100). It is guaranteed that r\u2009+\u2009g\u2009+\u2009b\u2009>\u20090, it means that the group consists of at least one student. ", "output_spec": "Print a single number \u2014 the minimal time the students need for the whole group to ascend to the top of the mountain.", "sample_inputs": ["1 3 2", "3 2 1"], "sample_outputs": ["34", "33"], "notes": "NoteLet's analyze the first sample.At the moment of time 0 a red cablecar comes and one student from the r group get on it and ascends to the top at the moment of time 30.At the moment of time 1 a green cablecar arrives and two students from the g group get on it; they get to the top at the moment of time 31.At the moment of time 2 comes the blue cablecar and two students from the b group get on it. They ascend to the top at the moment of time 32.At the moment of time 3 a red cablecar arrives but the only student who is left doesn't like red and the cablecar leaves empty.At the moment of time 4 a green cablecar arrives and one student from the g group gets on it. He ascends to top at the moment of time 34.Thus, all the students are on the top, overall the ascension took exactly 34 minutes."}, "src_uid": "a45daac108076102da54e07e1e2a37d7"} {"nl": {"description": "Two players are playing a game. First each of them writes an integer from 1 to 6, and then a dice is thrown. The player whose written number got closer to the number on the dice wins. If both payers have the same difference, it's a draw.The first player wrote number a, the second player wrote number b. How many ways to throw a dice are there, at which the first player wins, or there is a draw, or the second player wins?", "input_spec": "The single line contains two integers a and b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u20096)\u00a0\u2014 the numbers written on the paper by the first and second player, correspondingly.", "output_spec": "Print three integers: the number of ways to throw the dice at which the first player wins, the game ends with a draw or the second player wins, correspondingly.", "sample_inputs": ["2 5", "2 4"], "sample_outputs": ["3 0 3", "2 1 3"], "notes": "NoteThe dice is a standard cube-shaped six-sided object with each side containing a number from 1 to 6, and where all numbers on all sides are distinct.You can assume that number a is closer to number x than number b, if |a\u2009-\u2009x|\u2009<\u2009|b\u2009-\u2009x|."}, "src_uid": "504b8aae3a3abedf873a3b8b127c5dd8"} {"nl": {"description": "The bear decided to store some raspberry for the winter. He cunningly found out the price for a barrel of honey in kilos of raspberry for each of the following n days. According to the bear's data, on the i-th (1\u2009\u2264\u2009i\u2009\u2264\u2009n) day, the price for one barrel of honey is going to is xi kilos of raspberry.Unfortunately, the bear has neither a honey barrel, nor the raspberry. At the same time, the bear's got a friend who is ready to lend him a barrel of honey for exactly one day for c kilograms of raspberry. That's why the bear came up with a smart plan. He wants to choose some day d (1\u2009\u2264\u2009d\u2009<\u2009n), lent a barrel of honey and immediately (on day d) sell it according to a daily exchange rate. The next day (d\u2009+\u20091) the bear wants to buy a new barrel of honey according to a daily exchange rate (as he's got some raspberry left from selling the previous barrel) and immediately (on day d\u2009+\u20091) give his friend the borrowed barrel of honey as well as c kilograms of raspberry for renting the barrel.The bear wants to execute his plan at most once and then hibernate. What maximum number of kilograms of raspberry can he earn? Note that if at some point of the plan the bear runs out of the raspberry, then he won't execute such a plan.", "input_spec": "The first line contains two space-separated integers, n and c (2\u2009\u2264\u2009n\u2009\u2264\u2009100,\u20090\u2009\u2264\u2009c\u2009\u2264\u2009100), \u2014 the number of days and the number of kilos of raspberry that the bear should give for borrowing the barrel. The second line contains n space-separated integers x1,\u2009x2,\u2009...,\u2009xn (0\u2009\u2264\u2009xi\u2009\u2264\u2009100), the price of a honey barrel on day i.", "output_spec": "Print a single integer \u2014 the answer to the problem.", "sample_inputs": ["5 1\n5 10 7 3 20", "6 2\n100 1 10 40 10 40", "3 0\n1 2 3"], "sample_outputs": ["3", "97", "0"], "notes": "NoteIn the first sample the bear will lend a honey barrel at day 3 and then sell it for 7. Then the bear will buy a barrel for 3 and return it to the friend. So, the profit is (7 - 3 - 1) = 3.In the second sample bear will lend a honey barrel at day 1 and then sell it for 100. Then the bear buy the barrel for 1 at the day 2. So, the profit is (100 - 1 - 2) = 97."}, "src_uid": "411539a86f2e94eb6386bb65c9eb9557"} {"nl": {"description": "Long time ago Alex created an interesting problem about parallelogram. The input data for this problem contained four integer points on the Cartesian plane, that defined the set of vertices of some non-degenerate (positive area) parallelogram. Points not necessary were given in the order of clockwise or counterclockwise traversal.Alex had very nice test for this problem, but is somehow happened that the last line of the input was lost and now he has only three out of four points of the original parallelogram. He remembers that test was so good that he asks you to restore it given only these three points.", "input_spec": "The input consists of three lines, each containing a pair of integer coordinates xi and yi (\u2009-\u20091000\u2009\u2264\u2009xi,\u2009yi\u2009\u2264\u20091000). It's guaranteed that these three points do not lie on the same line and no two of them coincide.", "output_spec": "First print integer k\u00a0\u2014 the number of ways to add one new integer point such that the obtained set defines some parallelogram of positive area. There is no requirement for the points to be arranged in any special order (like traversal), they just define the set of vertices. Then print k lines, each containing a pair of integer\u00a0\u2014 possible coordinates of the fourth point.", "sample_inputs": ["0 0\n1 0\n0 1"], "sample_outputs": ["3\n1 -1\n-1 1\n1 1"], "notes": "NoteIf you need clarification of what parallelogram is, please check Wikipedia page:https://en.wikipedia.org/wiki/Parallelogram"}, "src_uid": "7725f9906a1b87bf4e866df03112f1e0"} {"nl": {"description": "wHAT DO WE NEED cAPS LOCK FOR?Caps lock is a computer keyboard key. Pressing it sets an input mode in which typed letters are capital by default. If it is pressed by accident, it leads to accidents like the one we had in the first passage. Let's consider that a word has been typed with the Caps lock key accidentally switched on, if: either it only contains uppercase letters; or all letters except for the first one are uppercase. In this case we should automatically change the case of all letters. For example, the case of the letters that form words \"hELLO\", \"HTTP\", \"z\" should be changed.Write a program that applies the rule mentioned above. If the rule cannot be applied, the program should leave the word unchanged.", "input_spec": "The first line of the input data contains a word consisting of uppercase and lowercase Latin letters. The word's length is from 1 to 100 characters, inclusive.", "output_spec": "Print the result of the given word's processing.", "sample_inputs": ["cAPS", "Lock"], "sample_outputs": ["Caps", "Lock"], "notes": null}, "src_uid": "db0eb44d8cd8f293da407ba3adee10cf"} {"nl": {"description": "Calvin the robot lies in an infinite rectangular grid. Calvin's source code contains a list of n commands, each either 'U', 'R', 'D', or 'L'\u00a0\u2014 instructions to move a single square up, right, down, or left, respectively. How many ways can Calvin execute a non-empty contiguous substrings of commands and return to the same square he starts in? Two substrings are considered different if they have different starting or ending indices.", "input_spec": "The first line of the input contains a single positive integer, n (1\u2009\u2264\u2009n\u2009\u2264\u2009200)\u00a0\u2014 the number of commands. The next line contains n characters, each either 'U', 'R', 'D', or 'L'\u00a0\u2014 Calvin's source code.", "output_spec": "Print a single integer\u00a0\u2014 the number of contiguous substrings that Calvin can execute and return to his starting square.", "sample_inputs": ["6\nURLLDR", "4\nDLUU", "7\nRLRLRLR"], "sample_outputs": ["2", "0", "12"], "notes": "NoteIn the first case, the entire source code works, as well as the \"RL\" substring in the second and third characters.Note that, in the third case, the substring \"LR\" appears three times, and is therefore counted three times to the total result."}, "src_uid": "7bd5521531950e2de9a7b0904353184d"} {"nl": {"description": "Today in the scientific lyceum of the Kingdom of Kremland, there was a biology lesson. The topic of the lesson was the genomes. Let's call the genome the string \"ACTG\".Maxim was very boring to sit in class, so the teacher came up with a task for him: on a given string $$$s$$$ consisting of uppercase letters and length of at least $$$4$$$, you need to find the minimum number of operations that you need to apply, so that the genome appears in it as a substring. For one operation, you can replace any letter in the string $$$s$$$ with the next or previous in the alphabet. For example, for the letter \"D\" the previous one will be \"C\", and the next\u00a0\u2014 \"E\". In this problem, we assume that for the letter \"A\", the previous one will be the letter \"Z\", and the next one will be \"B\", and for the letter \"Z\", the previous one is the letter \"Y\", and the next one is the letter \"A\".Help Maxim solve the problem that the teacher gave him.A string $$$a$$$ is a substring of a string $$$b$$$ if $$$a$$$ can be obtained from $$$b$$$ by deletion of several (possibly, zero or all) characters from the beginning and several (possibly, zero or all) characters from the end.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$4 \\leq n \\leq 50$$$)\u00a0\u2014 the length of the string $$$s$$$. The second line contains the string $$$s$$$, consisting of exactly $$$n$$$ uppercase letters of the Latin alphabet.", "output_spec": "Output the minimum number of operations that need to be applied to the string $$$s$$$ so that the genome appears as a substring in it.", "sample_inputs": ["4\nZCTH", "5\nZDATG", "6\nAFBAKC"], "sample_outputs": ["2", "5", "16"], "notes": "NoteIn the first example, you should replace the letter \"Z\" with \"A\" for one operation, the letter \"H\"\u00a0\u2014 with the letter \"G\" for one operation. You will get the string \"ACTG\", in which the genome is present as a substring.In the second example, we replace the letter \"A\" with \"C\" for two operations, the letter \"D\"\u00a0\u2014 with the letter \"A\" for three operations. You will get the string \"ZACTG\", in which there is a genome."}, "src_uid": "ee4f88abe4c9fa776abd15c5f3a94543"} {"nl": {"description": "Jzzhu has a big rectangular chocolate bar that consists of n\u2009\u00d7\u2009m unit squares. He wants to cut this bar exactly k times. Each cut must meet the following requirements: each cut should be straight (horizontal or vertical); each cut should go along edges of unit squares (it is prohibited to divide any unit chocolate square with cut); each cut should go inside the whole chocolate bar, and all cuts must be distinct. The picture below shows a possible way to cut a 5\u2009\u00d7\u20096 chocolate for 5 times. Imagine Jzzhu have made k cuts and the big chocolate is splitted into several pieces. Consider the smallest (by area) piece of the chocolate, Jzzhu wants this piece to be as large as possible. What is the maximum possible area of smallest piece he can get with exactly k cuts? The area of a chocolate piece is the number of unit squares in it.", "input_spec": "A single line contains three integers n,\u2009m,\u2009k (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009109;\u00a01\u2009\u2264\u2009k\u2009\u2264\u20092\u00b7109).", "output_spec": "Output a single integer representing the answer. If it is impossible to cut the big chocolate k times, print -1.", "sample_inputs": ["3 4 1", "6 4 2", "2 3 4"], "sample_outputs": ["6", "8", "-1"], "notes": "NoteIn the first sample, Jzzhu can cut the chocolate following the picture below: In the second sample the optimal division looks like this: In the third sample, it's impossible to cut a 2\u2009\u00d7\u20093 chocolate 4 times."}, "src_uid": "bb453bbe60769bcaea6a824c72120f73"} {"nl": {"description": "As you may know, MemSQL has American offices in both San Francisco and Seattle. Being a manager in the company, you travel a lot between the two cities, always by plane.You prefer flying from Seattle to San Francisco than in the other direction, because it's warmer in San Francisco. You are so busy that you don't remember the number of flights you have made in either direction. However, for each of the last n days you know whether you were in San Francisco office or in Seattle office. You always fly at nights, so you never were at both offices on the same day. Given this information, determine if you flew more times from Seattle to San Francisco during the last n days, or not.", "input_spec": "The first line of input contains single integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of days. The second line contains a string of length n consisting of only capital 'S' and 'F' letters. If the i-th letter is 'S', then you were in Seattle office on that day. Otherwise you were in San Francisco. The days are given in chronological order, i.e. today is the last day in this sequence.", "output_spec": "Print \"YES\" if you flew more times from Seattle to San Francisco, and \"NO\" otherwise. You can print each letter in any case (upper or lower).", "sample_inputs": ["4\nFSSF", "2\nSF", "10\nFFFFFFFFFF", "10\nSSFFSFFSFF"], "sample_outputs": ["NO", "YES", "NO", "YES"], "notes": "NoteIn the first example you were initially at San Francisco, then flew to Seattle, were there for two days and returned to San Francisco. You made one flight in each direction, so the answer is \"NO\".In the second example you just flew from Seattle to San Francisco, so the answer is \"YES\".In the third example you stayed the whole period in San Francisco, so the answer is \"NO\".In the fourth example if you replace 'S' with ones, and 'F' with zeros, you'll get the first few digits of \u03c0 in binary representation. Not very useful information though."}, "src_uid": "ab8a2070ea758d118b3c09ee165d9517"} {"nl": {"description": "Anton likes to listen to fairy tales, especially when Danik, Anton's best friend, tells them. Right now Danik tells Anton a fairy tale:\"Once upon a time, there lived an emperor. He was very rich and had much grain. One day he ordered to build a huge barn to put there all his grain. Best builders were building that barn for three days and three nights. But they overlooked and there remained a little hole in the barn, from which every day sparrows came through. Here flew a sparrow, took a grain and flew away...\"More formally, the following takes place in the fairy tale. At the beginning of the first day the barn with the capacity of n grains was full. Then, every day (starting with the first day) the following happens: m grains are brought to the barn. If m grains doesn't fit to the barn, the barn becomes full and the grains that doesn't fit are brought back (in this problem we can assume that the grains that doesn't fit to the barn are not taken into account). Sparrows come and eat grain. In the i-th day i sparrows come, that is on the first day one sparrow come, on the second day two sparrows come and so on. Every sparrow eats one grain. If the barn is empty, a sparrow eats nothing. Anton is tired of listening how Danik describes every sparrow that eats grain from the barn. Anton doesn't know when the fairy tale ends, so he asked you to determine, by the end of which day the barn will become empty for the first time. Help Anton and write a program that will determine the number of that day!", "input_spec": "The only line of the input contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20091018)\u00a0\u2014 the capacity of the barn and the number of grains that are brought every day.", "output_spec": "Output one integer\u00a0\u2014 the number of the day when the barn will become empty for the first time. Days are numbered starting with one.", "sample_inputs": ["5 2", "8 1"], "sample_outputs": ["4", "5"], "notes": "NoteIn the first sample the capacity of the barn is five grains and two grains are brought every day. The following happens: At the beginning of the first day grain is brought to the barn. It's full, so nothing happens. At the end of the first day one sparrow comes and eats one grain, so 5\u2009-\u20091\u2009=\u20094 grains remain. At the beginning of the second day two grains are brought. The barn becomes full and one grain doesn't fit to it. At the end of the second day two sparrows come. 5\u2009-\u20092\u2009=\u20093 grains remain. At the beginning of the third day two grains are brought. The barn becomes full again. At the end of the third day three sparrows come and eat grain. 5\u2009-\u20093\u2009=\u20092 grains remain. At the beginning of the fourth day grain is brought again. 2\u2009+\u20092\u2009=\u20094 grains remain. At the end of the fourth day four sparrows come and eat grain. 4\u2009-\u20094\u2009=\u20090 grains remain. The barn is empty. So the answer is 4, because by the end of the fourth day the barn becomes empty."}, "src_uid": "3b585ea852ffc41034ef6804b6aebbd8"} {"nl": {"description": "Baby Badawy's first words were \"AND 0 SUM BIG\", so he decided to solve the following problem. Given two integers $$$n$$$ and $$$k$$$, count the number of arrays of length $$$n$$$ such that: all its elements are integers between $$$0$$$ and $$$2^k-1$$$ (inclusive); the bitwise AND of all its elements is $$$0$$$; the sum of its elements is as large as possible. Since the answer can be very large, print its remainder when divided by $$$10^9+7$$$.", "input_spec": "The first line contains an integer $$$t$$$ ($$$1 \\le t \\le 10$$$)\u00a0\u2014 the number of test cases you need to solve. Each test case consists of a line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \\le n \\le 10^{5}$$$, $$$1 \\le k \\le 20$$$).", "output_spec": "For each test case, print the number of arrays satisfying the conditions. Since the answer can be very large, print its remainder when divided by $$$10^9+7$$$.", "sample_inputs": ["2\n2 2\n100000 20"], "sample_outputs": ["4\n226732710"], "notes": "NoteIn the first example, the $$$4$$$ arrays are: $$$[3,0]$$$, $$$[0,3]$$$, $$$[1,2]$$$, $$$[2,1]$$$. "}, "src_uid": "2e7a9f3a97938e4a7e036520d812b97a"} {"nl": {"description": "Let's call a string good if and only if it consists of only two types of letters\u00a0\u2014 'a' and 'b' and every two consecutive letters are distinct. For example \"baba\" and \"aba\" are good strings and \"abb\" is a bad string.You have $$$a$$$ strings \"a\", $$$b$$$ strings \"b\" and $$$c$$$ strings \"ab\". You want to choose some subset of these strings and concatenate them in any arbitrarily order.What is the length of the longest good string you can obtain this way?", "input_spec": "The first line contains three positive integers $$$a$$$, $$$b$$$, $$$c$$$ ($$$1 \\leq a, b, c \\leq 10^9$$$)\u00a0\u2014 the number of strings \"a\", \"b\" and \"ab\" respectively.", "output_spec": "Print a single number\u00a0\u2014 the maximum possible length of the good string you can obtain.", "sample_inputs": ["1 1 1", "2 1 2", "3 5 2", "2 2 1", "1000000000 1000000000 1000000000"], "sample_outputs": ["4", "7", "11", "6", "4000000000"], "notes": "NoteIn the first example the optimal string is \"baba\".In the second example the optimal string is \"abababa\".In the third example the optimal string is \"bababababab\".In the fourth example the optimal string is \"ababab\"."}, "src_uid": "609f131325c13213aedcf8d55fc3ed77"} {"nl": {"description": "It seems like the year of 2013 came only yesterday. Do you know a curious fact? The year of 2013 is the first year after the old 1987 with only distinct digits.Now you are suggested to solve the following problem: given a year number, find the minimum year number which is strictly larger than the given one and has only distinct digits.", "input_spec": "The single line contains integer y (1000\u2009\u2264\u2009y\u2009\u2264\u20099000) \u2014 the year number.", "output_spec": "Print a single integer \u2014 the minimum year number that is strictly larger than y and all it's digits are distinct. It is guaranteed that the answer exists.", "sample_inputs": ["1987", "2013"], "sample_outputs": ["2013", "2014"], "notes": null}, "src_uid": "d62dabfbec52675b7ed7b582ad133acd"} {"nl": {"description": "Jamie loves sleeping. One day, he decides that he needs to wake up at exactly hh:\u2009mm. However, he hates waking up, so he wants to make waking up less painful by setting the alarm at a lucky time. He will then press the snooze button every x minutes until hh:\u2009mm is reached, and only then he will wake up. He wants to know what is the smallest number of times he needs to press the snooze button.A time is considered lucky if it contains a digit '7'. For example, 13:\u200907 and 17:\u200927 are lucky, while 00:\u200948 and 21:\u200934 are not lucky.Note that it is not necessary that the time set for the alarm and the wake-up time are on the same day. It is guaranteed that there is a lucky time Jamie can set so that he can wake at hh:\u2009mm.Formally, find the smallest possible non-negative integer y such that the time representation of the time x\u00b7y minutes before hh:\u2009mm contains the digit '7'.Jamie uses 24-hours clock, so after 23:\u200959 comes 00:\u200900.", "input_spec": "The first line contains a single integer x (1\u2009\u2264\u2009x\u2009\u2264\u200960). The second line contains two two-digit integers, hh and mm (00\u2009\u2264\u2009hh\u2009\u2264\u200923,\u200900\u2009\u2264\u2009mm\u2009\u2264\u200959).", "output_spec": "Print the minimum number of times he needs to press the button.", "sample_inputs": ["3\n11 23", "5\n01 07"], "sample_outputs": ["2", "0"], "notes": "NoteIn the first sample, Jamie needs to wake up at 11:23. So, he can set his alarm at 11:17. He would press the snooze button when the alarm rings at 11:17 and at 11:20.In the second sample, Jamie can set his alarm at exactly at 01:07 which is lucky."}, "src_uid": "5ecd569e02e0164a5da9ff549fca3ceb"} {"nl": {"description": "n participants of the competition were split into m teams in some manner so that each team has at least one participant. After the competition each pair of participants from the same team became friends.Your task is to write a program that will find the minimum and the maximum number of pairs of friends that could have formed by the end of the competition.", "input_spec": "The only line of input contains two integers n and m, separated by a single space (1\u2009\u2264\u2009m\u2009\u2264\u2009n\u2009\u2264\u2009109) \u2014 the number of participants and the number of teams respectively. ", "output_spec": "The only line of the output should contain two integers kmin and kmax \u2014 the minimum possible number of pairs of friends and the maximum possible number of pairs of friends respectively.", "sample_inputs": ["5 1", "3 2", "6 3"], "sample_outputs": ["10 10", "1 1", "3 6"], "notes": "NoteIn the first sample all the participants get into one team, so there will be exactly ten pairs of friends.In the second sample at any possible arrangement one team will always have two participants and the other team will always have one participant. Thus, the number of pairs of friends will always be equal to one.In the third sample minimum number of newly formed friendships can be achieved if participants were split on teams consisting of 2 people, maximum number can be achieved if participants were split on teams of 1, 1 and 4 people."}, "src_uid": "a081d400a5ce22899b91df38ba98eecc"} {"nl": {"description": "Top-model Izabella participates in the competition. She wants to impress judges and show her mathematical skills.Her problem is following: for given string, consisting of only 0 and 1, tell if it's possible to remove some digits in such a way, that remaining number is a representation of some positive integer, divisible by 64, in the binary numerical system.", "input_spec": "In the only line given a non-empty binary string s with length up to 100.", "output_spec": "Print \u00abyes\u00bb (without quotes) if it's possible to remove digits required way and \u00abno\u00bb otherwise.", "sample_inputs": ["100010001", "100"], "sample_outputs": ["yes", "no"], "notes": "NoteIn the first test case, you can get string 1 000 000 after removing two ones which is a representation of number 64 in the binary numerical system.You can read more about binary numeral system representation here: https://en.wikipedia.org/wiki/Binary_system"}, "src_uid": "88364b8d71f2ce2b90bdfaa729eb92ca"} {"nl": {"description": "The math faculty of Berland State University has suffered the sudden drop in the math skills of enrolling students. This year the highest grade on the entrance math test was 8. Out of 100! Thus, the decision was made to make the test easier.Future students will be asked just a single question. They are given a sequence of integer numbers $$$a_1, a_2, \\dots, a_n$$$, each number is from $$$1$$$ to $$$3$$$ and $$$a_i \\ne a_{i + 1}$$$ for each valid $$$i$$$. The $$$i$$$-th number represents a type of the $$$i$$$-th figure: circle; isosceles triangle with the length of height equal to the length of base; square. The figures of the given sequence are placed somewhere on a Cartesian plane in such a way that: $$$(i + 1)$$$-th figure is inscribed into the $$$i$$$-th one; each triangle base is parallel to OX; the triangle is oriented in such a way that the vertex opposite to its base is at the top; each square sides are parallel to the axes; for each $$$i$$$ from $$$2$$$ to $$$n$$$ figure $$$i$$$ has the maximum possible length of side for triangle and square and maximum radius for circle. Note that the construction is unique for some fixed position and size of just the first figure.The task is to calculate the number of distinct points (not necessarily with integer coordinates) where figures touch. The trick is, however, that the number is sometimes infinite. But that won't make the task difficult for you, will it?So can you pass the math test and enroll into Berland State University?", "input_spec": "The first line contains a single integer $$$n$$$ ($$$2 \\le n \\le 100$$$) \u2014 the number of figures. The second line contains $$$n$$$ integer numbers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 3$$$, $$$a_i \\ne a_{i + 1}$$$) \u2014 types of the figures.", "output_spec": "The first line should contain either the word \"Infinite\" if the number of distinct points where figures touch is infinite or \"Finite\" otherwise. If the number is finite than print it in the second line. It's guaranteed that the number fits into 32-bit integer type.", "sample_inputs": ["3\n2 1 3", "3\n1 2 3"], "sample_outputs": ["Finite\n7", "Infinite"], "notes": "NoteHere are the glorious pictures for the examples. Note that the triangle is not equilateral but just isosceles with the length of height equal to the length of base. Thus it fits into a square in a unique way.The distinct points where figures touch are marked red.In the second example the triangle and the square touch each other for the whole segment, it contains infinite number of points. "}, "src_uid": "6c8f028f655cc77b05ed89a668273702"} {"nl": {"description": "You are given a positive integer $$$n$$$.Let $$$S(x)$$$ be sum of digits in base 10 representation of $$$x$$$, for example, $$$S(123) = 1 + 2 + 3 = 6$$$, $$$S(0) = 0$$$.Your task is to find two integers $$$a, b$$$, such that $$$0 \\leq a, b \\leq n$$$, $$$a + b = n$$$ and $$$S(a) + S(b)$$$ is the largest possible among all such pairs.", "input_spec": "The only line of input contains an integer $$$n$$$ $$$(1 \\leq n \\leq 10^{12})$$$.", "output_spec": "Print largest $$$S(a) + S(b)$$$ among all pairs of integers $$$a, b$$$, such that $$$0 \\leq a, b \\leq n$$$ and $$$a + b = n$$$.", "sample_inputs": ["35", "10000000000"], "sample_outputs": ["17", "91"], "notes": "NoteIn the first example, you can choose, for example, $$$a = 17$$$ and $$$b = 18$$$, so that $$$S(17) + S(18) = 1 + 7 + 1 + 8 = 17$$$. It can be shown that it is impossible to get a larger answer.In the second test example, you can choose, for example, $$$a = 5000000001$$$ and $$$b = 4999999999$$$, with $$$S(5000000001) + S(4999999999) = 91$$$. It can be shown that it is impossible to get a larger answer."}, "src_uid": "5c61b4a4728070b9de49d72831cd2329"} {"nl": {"description": "Let us call a pair of integer numbers m-perfect, if at least one number in the pair is greater than or equal to m. Thus, the pairs (3, 3) and (0, 2) are 2-perfect while the pair (-1, 1) is not.Two integers x, y are written on the blackboard. It is allowed to erase one of them and replace it with the sum of the numbers, (x\u2009+\u2009y).What is the minimum number of such operations one has to perform in order to make the given pair of integers m-perfect?", "input_spec": "Single line of the input contains three integers x, y and m (\u2009-\u20091018\u2009\u2264\u2009x, y, m\u2009\u2264\u20091018). Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preffered to use the cin, cout streams or the %I64d specifier.", "output_spec": "Print the minimum number of operations or \"-1\" (without quotes), if it is impossible to transform the given pair to the m-perfect one.", "sample_inputs": ["1 2 5", "-1 4 15", "0 -1 5"], "sample_outputs": ["2", "4", "-1"], "notes": "NoteIn the first sample the following sequence of operations is suitable: (1, 2) (3, 2) (5, 2).In the second sample: (-1, 4) (3, 4) (7, 4) (11, 4) (15, 4).Finally, in the third sample x, y cannot be made positive, hence there is no proper sequence of operations."}, "src_uid": "82026a3c3d9a6bda2e2ac6e14979d821"} {"nl": {"description": "One day, the Grasshopper was jumping on the lawn and found a piece of paper with a string. Grasshopper became interested what is the minimum jump ability he should have in order to be able to reach the far end of the string, jumping only on vowels of the English alphabet. Jump ability is the maximum possible length of his jump. Formally, consider that at the begginning the Grasshopper is located directly in front of the leftmost character of the string. His goal is to reach the position right after the rightmost character of the string. In one jump the Grasshopper could jump to the right any distance from 1 to the value of his jump ability. The picture corresponds to the first example. The following letters are vowels: 'A', 'E', 'I', 'O', 'U' and 'Y'.", "input_spec": "The first line contains non-empty string consisting of capital English letters. It is guaranteed that the length of the string does not exceed 100. ", "output_spec": "Print single integer a\u00a0\u2014 the minimum jump ability of the Grasshopper (in the number of symbols) that is needed to overcome the given string, jumping only on vowels.", "sample_inputs": ["ABABBBACFEYUKOTT", "AAA"], "sample_outputs": ["4", "1"], "notes": null}, "src_uid": "1fc7e939cdeb015fe31f3cf1c0982fee"} {"nl": {"description": "Comrade Dujikov is busy choosing artists for Timofey's birthday and is recieving calls from Taymyr from Ilia-alpinist.Ilia-alpinist calls every n minutes, i.e. in minutes n, 2n, 3n and so on. Artists come to the comrade every m minutes, i.e. in minutes m, 2m, 3m and so on. The day is z minutes long, i.e. the day consists of minutes 1,\u20092,\u2009...,\u2009z. How many artists should be killed so that there are no artists in the room when Ilia calls? Consider that a call and a talk with an artist take exactly one minute.", "input_spec": "The only string contains three integers\u00a0\u2014 n, m and z (1\u2009\u2264\u2009n,\u2009m,\u2009z\u2009\u2264\u2009104).", "output_spec": "Print single integer\u00a0\u2014 the minimum number of artists that should be killed so that there are no artists in the room when Ilia calls.", "sample_inputs": ["1 1 10", "1 2 5", "2 3 9"], "sample_outputs": ["10", "2", "1"], "notes": "NoteTaymyr is a place in the north of Russia.In the first test the artists come each minute, as well as the calls, so we need to kill all of them.In the second test we need to kill artists which come on the second and the fourth minutes.In the third test\u00a0\u2014 only the artist which comes on the sixth minute. "}, "src_uid": "e7ad55ce26fc8610639323af1de36c2d"} {"nl": {"description": "Barney is standing in a bar and starring at a pretty girl. He wants to shoot her with his heart arrow but he needs to know the distance between him and the girl to make his shot accurate. Barney asked the bar tender Carl about this distance value, but Carl was so busy talking to the customers so he wrote the distance value (it's a real number) on a napkin. The problem is that he wrote it in scientific notation. The scientific notation of some real number x is the notation of form AeB, where A is a real number and B is an integer and x\u2009=\u2009A\u2009\u00d7\u200910B is true. In our case A is between 0 and 9 and B is non-negative.Barney doesn't know anything about scientific notation (as well as anything scientific at all). So he asked you to tell him the distance value in usual decimal representation with minimal number of digits after the decimal point (and no decimal point if it is an integer). See the output format for better understanding.", "input_spec": "The first and only line of input contains a single string of form a.deb where a, d and b are integers and e is usual character 'e' (0\u2009\u2264\u2009a\u2009\u2264\u20099,\u20090\u2009\u2264\u2009d\u2009<\u200910100,\u20090\u2009\u2264\u2009b\u2009\u2264\u2009100)\u00a0\u2014 the scientific notation of the desired distance value. a and b contain no leading zeros and d contains no trailing zeros (but may be equal to 0). Also, b can not be non-zero if a is zero.", "output_spec": "Print the only real number x (the desired distance value) in the only line in its decimal notation. Thus if x is an integer, print it's integer value without decimal part and decimal point and without leading zeroes. Otherwise print x in a form of p.q such that p is an integer that have no leading zeroes (but may be equal to zero), and q is an integer that have no trailing zeroes (and may not be equal to zero).", "sample_inputs": ["8.549e2", "8.549e3", "0.33e0"], "sample_outputs": ["854.9", "8549", "0.33"], "notes": null}, "src_uid": "a79358099f08f3ec50c013d47d910eef"} {"nl": {"description": "Bessie the cow and her best friend Elsie each received a sliding puzzle on Pi Day. Their puzzles consist of a 2\u2009\u00d7\u20092 grid and three tiles labeled 'A', 'B', and 'C'. The three tiles sit on top of the grid, leaving one grid cell empty. To make a move, Bessie or Elsie can slide a tile adjacent to the empty cell into the empty cell as shown below: In order to determine if they are truly Best Friends For Life (BFFLs), Bessie and Elsie would like to know if there exists a sequence of moves that takes their puzzles to the same configuration (moves can be performed in both puzzles). Two puzzles are considered to be in the same configuration if each tile is on top of the same grid cell in both puzzles. Since the tiles are labeled with letters, rotations and reflections are not allowed.", "input_spec": "The first two lines of the input consist of a 2\u2009\u00d7\u20092 grid describing the initial configuration of Bessie's puzzle. The next two lines contain a 2\u2009\u00d7\u20092 grid describing the initial configuration of Elsie's puzzle. The positions of the tiles are labeled 'A', 'B', and 'C', while the empty cell is labeled 'X'. It's guaranteed that both puzzles contain exactly one tile with each letter and exactly one empty position.", "output_spec": "Output \"YES\"(without quotes) if the puzzles can reach the same configuration (and Bessie and Elsie are truly BFFLs). Otherwise, print \"NO\" (without quotes).", "sample_inputs": ["AB\nXC\nXB\nAC", "AB\nXC\nAC\nBX"], "sample_outputs": ["YES", "NO"], "notes": "NoteThe solution to the first sample is described by the image. All Bessie needs to do is slide her 'A' tile down.In the second sample, the two puzzles can never be in the same configuration. Perhaps Bessie and Elsie are not meant to be friends after all..."}, "src_uid": "46f051f58d626587a5ec449c27407771"} {"nl": {"description": "Tanechka is shopping in the toy shop. There are exactly $$$n$$$ toys in the shop for sale, the cost of the $$$i$$$-th toy is $$$i$$$ burles. She wants to choose two toys in such a way that their total cost is $$$k$$$ burles. How many ways to do that does she have?Each toy appears in the shop exactly once. Pairs $$$(a, b)$$$ and $$$(b, a)$$$ are considered equal. Pairs $$$(a, b)$$$, where $$$a=b$$$, are not allowed.", "input_spec": "The first line of the input contains two integers $$$n$$$, $$$k$$$ ($$$1 \\le n, k \\le 10^{14}$$$) \u2014 the number of toys and the expected total cost of the pair of toys.", "output_spec": "Print the number of ways to choose the pair of toys satisfying the condition above. Print 0, if Tanechka can choose no pair of toys in such a way that their total cost is $$$k$$$ burles.", "sample_inputs": ["8 5", "8 15", "7 20", "1000000000000 1000000000001"], "sample_outputs": ["2", "1", "0", "500000000000"], "notes": "NoteIn the first example Tanechka can choose the pair of toys ($$$1, 4$$$) or the pair of toys ($$$2, 3$$$).In the second example Tanechka can choose only the pair of toys ($$$7, 8$$$).In the third example choosing any pair of toys will lead to the total cost less than $$$20$$$. So the answer is 0.In the fourth example she can choose the following pairs: $$$(1, 1000000000000)$$$, $$$(2, 999999999999)$$$, $$$(3, 999999999998)$$$, ..., $$$(500000000000, 500000000001)$$$. The number of such pairs is exactly $$$500000000000$$$."}, "src_uid": "98624ab2fcd2a50a75788a29e04999ad"} {"nl": {"description": " \u2014 Thanks a lot for today.\u2014 I experienced so many great things.\u2014 You gave me memories like dreams... But I have to leave now...\u2014 One last request, can you...\u2014 Help me solve a Codeforces problem?\u2014 ......\u2014 What?Chtholly has been thinking about a problem for days:If a number is palindrome and length of its decimal representation without leading zeros is even, we call it a zcy number. A number is palindrome means when written in decimal representation, it contains no leading zeros and reads the same forwards and backwards. For example 12321 and 1221 are palindromes and 123 and 12451 are not. Moreover, 1221 is zcy number and 12321 is not.Given integers k and p, calculate the sum of the k smallest zcy numbers and output this sum modulo p.Unfortunately, Willem isn't good at solving this kind of problems, so he asks you for help!", "input_spec": "The first line contains two integers k and p (1\u2009\u2264\u2009k\u2009\u2264\u2009105,\u20091\u2009\u2264\u2009p\u2009\u2264\u2009109).", "output_spec": "Output single integer\u00a0\u2014 answer to the problem.", "sample_inputs": ["2 100", "5 30"], "sample_outputs": ["33", "15"], "notes": "NoteIn the first example, the smallest zcy number is 11, and the second smallest zcy number is 22.In the second example, ."}, "src_uid": "00e90909a77ce9e22bb7cbf1285b0609"} {"nl": {"description": "Everybody in Russia uses Gregorian calendar. In this calendar there are 31 days in January, 28 or 29 days in February (depending on whether the year is leap or not), 31 days in March, 30 days in April, 31 days in May, 30 in June, 31 in July, 31 in August, 30 in September, 31 in October, 30 in November, 31 in December.A year is leap in one of two cases: either its number is divisible by 4, but not divisible by 100, or is divisible by 400. For example, the following years are leap: 2000, 2004, but years 1900 and 2018 are not leap.In this problem you are given n (1\u2009\u2264\u2009n\u2009\u2264\u200924) integers a1,\u2009a2,\u2009...,\u2009an, and you have to check if these integers could be durations in days of n consecutive months, according to Gregorian calendar. Note that these months could belong to several consecutive years. In other words, check if there is a month in some year, such that its duration is a1 days, duration of the next month is a2 days, and so on.", "input_spec": "The first line contains single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200924) \u2014 the number of integers. The second line contains n integers a1,\u2009a2,\u2009...,\u2009an (28\u2009\u2264\u2009ai\u2009\u2264\u200931) \u2014 the numbers you are to check.", "output_spec": "If there are several consecutive months that fit the sequence, print \"YES\" (without quotes). Otherwise, print \"NO\" (without quotes). You can print each letter in arbitrary case (small or large).", "sample_inputs": ["4\n31 31 30 31", "2\n30 30", "5\n29 31 30 31 30", "3\n31 28 30", "3\n31 31 28"], "sample_outputs": ["Yes", "No", "Yes", "No", "Yes"], "notes": "NoteIn the first example the integers can denote months July, August, September and October.In the second example the answer is no, because there are no two consecutive months each having 30 days.In the third example the months are: February (leap year) \u2014 March \u2014 April \u2013 May \u2014 June.In the fourth example the number of days in the second month is 28, so this is February. March follows February and has 31 days, but not 30, so the answer is NO.In the fifth example the months are: December \u2014 January \u2014 February (non-leap year)."}, "src_uid": "d60c8895cebcc5d0c6459238edbdb945"} {"nl": {"description": "Devu is a renowned classical singer. He is invited to many big functions/festivals. Recently he was invited to \"All World Classical Singing Festival\". Other than Devu, comedian Churu was also invited.Devu has provided organizers a list of the songs and required time for singing them. He will sing n songs, ith song will take ti minutes exactly. The Comedian, Churu will crack jokes. All his jokes are of 5 minutes exactly.People have mainly come to listen Devu. But you know that he needs rest of 10 minutes after each song. On the other hand, Churu being a very active person, doesn't need any rest.You as one of the organizers should make an optimal s\u0441hedule for the event. For some reasons you must follow the conditions: The duration of the event must be no more than d minutes; Devu must complete all his songs; With satisfying the two previous conditions the number of jokes cracked by Churu should be as many as possible. If it is not possible to find a way to conduct all the songs of the Devu, output -1. Otherwise find out maximum number of jokes that Churu can crack in the grand event.", "input_spec": "The first line contains two space separated integers n, d (1\u2009\u2264\u2009n\u2009\u2264\u2009100;\u00a01\u2009\u2264\u2009d\u2009\u2264\u200910000). The second line contains n space-separated integers: t1,\u2009t2,\u2009...,\u2009tn (1\u2009\u2264\u2009ti\u2009\u2264\u2009100).", "output_spec": "If there is no way to conduct all the songs of Devu, output -1. Otherwise output the maximum number of jokes that Churu can crack in the grand event.", "sample_inputs": ["3 30\n2 2 1", "3 20\n2 1 1"], "sample_outputs": ["5", "-1"], "notes": "NoteConsider the first example. The duration of the event is 30 minutes. There could be maximum 5 jokes in the following way: First Churu cracks a joke in 5 minutes. Then Devu performs the first song for 2 minutes. Then Churu cracks 2 jokes in 10 minutes. Now Devu performs second song for 2 minutes. Then Churu cracks 2 jokes in 10 minutes. Now finally Devu will perform his last song in 1 minutes. Total time spent is 5\u2009+\u20092\u2009+\u200910\u2009+\u20092\u2009+\u200910\u2009+\u20091\u2009=\u200930 minutes.Consider the second example. There is no way of organizing Devu's all songs. Hence the answer is -1. "}, "src_uid": "b16f5f5c4eeed2a3700506003e8ea8ea"} {"nl": {"description": "Polycarp urgently needs a shovel! He comes to the shop and chooses an appropriate one. The shovel that Policarp chooses is sold for k burles. Assume that there is an unlimited number of such shovels in the shop.In his pocket Polycarp has an unlimited number of \"10-burle coins\" and exactly one coin of r burles (1\u2009\u2264\u2009r\u2009\u2264\u20099).What is the minimum number of shovels Polycarp has to buy so that he can pay for the purchase without any change? It is obvious that he can pay for 10 shovels without any change (by paying the requied amount of 10-burle coins and not using the coin of r burles). But perhaps he can buy fewer shovels and pay without any change. Note that Polycarp should buy at least one shovel.", "input_spec": "The single line of input contains two integers k and r (1\u2009\u2264\u2009k\u2009\u2264\u20091000, 1\u2009\u2264\u2009r\u2009\u2264\u20099)\u00a0\u2014 the price of one shovel and the denomination of the coin in Polycarp's pocket that is different from \"10-burle coins\". Remember that he has an unlimited number of coins in the denomination of 10, that is, Polycarp has enough money to buy any number of shovels.", "output_spec": "Print the required minimum number of shovels Polycarp has to buy so that he can pay for them without any change. ", "sample_inputs": ["117 3", "237 7", "15 2"], "sample_outputs": ["9", "1", "2"], "notes": "NoteIn the first example Polycarp can buy 9 shovels and pay 9\u00b7117\u2009=\u20091053 burles. Indeed, he can pay this sum by using 10-burle coins and one 3-burle coin. He can't buy fewer shovels without any change.In the second example it is enough for Polycarp to buy one shovel.In the third example Polycarp should buy two shovels and pay 2\u00b715\u2009=\u200930 burles. It is obvious that he can pay this sum without any change. "}, "src_uid": "18cd1cd809df4744bb7bcd7cad94e2d3"} {"nl": {"description": "Dima and Inna are doing so great! At the moment, Inna is sitting on the magic lawn playing with a pink pony. Dima wanted to play too. He brought an n\u2009\u00d7\u2009m chessboard, a very tasty candy and two numbers a and b.Dima put the chessboard in front of Inna and placed the candy in position (i,\u2009j) on the board. The boy said he would give the candy if it reaches one of the corner cells of the board. He's got one more condition. There can only be actions of the following types: move the candy from position (x,\u2009y) on the board to position (x\u2009-\u2009a,\u2009y\u2009-\u2009b); move the candy from position (x,\u2009y) on the board to position (x\u2009+\u2009a,\u2009y\u2009-\u2009b); move the candy from position (x,\u2009y) on the board to position (x\u2009-\u2009a,\u2009y\u2009+\u2009b); move the candy from position (x,\u2009y) on the board to position (x\u2009+\u2009a,\u2009y\u2009+\u2009b). Naturally, Dima doesn't allow to move the candy beyond the chessboard borders.Inna and the pony started shifting the candy around the board. They wonder what is the minimum number of allowed actions that they need to perform to move the candy from the initial position (i,\u2009j) to one of the chessboard corners. Help them cope with the task! ", "input_spec": "The first line of the input contains six integers n,\u2009m,\u2009i,\u2009j,\u2009a,\u2009b (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009106;\u00a01\u2009\u2264\u2009i\u2009\u2264\u2009n;\u00a01\u2009\u2264\u2009j\u2009\u2264\u2009m;\u00a01\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009106). You can assume that the chessboard rows are numbered from 1 to n from top to bottom and the columns are numbered from 1 to m from left to right. Position (i,\u2009j) in the statement is a chessboard cell on the intersection of the i-th row and the j-th column. You can consider that the corners are: (1,\u2009m), (n,\u20091), (n,\u2009m), (1,\u20091).", "output_spec": "In a single line print a single integer \u2014 the minimum number of moves needed to get the candy. If Inna and the pony cannot get the candy playing by Dima's rules, print on a single line \"Poor Inna and pony!\" without the quotes.", "sample_inputs": ["5 7 1 3 2 2", "5 5 2 3 1 1"], "sample_outputs": ["2", "Poor Inna and pony!"], "notes": "NoteNote to sample 1:Inna and the pony can move the candy to position (1\u2009+\u20092,\u20093\u2009+\u20092)\u2009=\u2009(3,\u20095), from there they can move it to positions (3\u2009-\u20092,\u20095\u2009+\u20092)\u2009=\u2009(1,\u20097) and (3\u2009+\u20092,\u20095\u2009+\u20092)\u2009=\u2009(5,\u20097). These positions correspond to the corner squares of the chess board. Thus, the answer to the test sample equals two."}, "src_uid": "51155e9bfa90e0ff29d049cedc3e1862"} {"nl": {"description": "Vasya plays the sleuth with his friends. The rules of the game are as follows: those who play for the first time, that is Vasya is the sleuth, he should investigate a \"crime\" and find out what is happening. He can ask any questions whatsoever that can be answered with \"Yes\" or \"No\". All the rest agree beforehand to answer the questions like that: if the question\u2019s last letter is a vowel, they answer \"Yes\" and if the last letter is a consonant, they answer \"No\". Of course, the sleuth knows nothing about it and his task is to understand that.Unfortunately, Vasya is not very smart. After 5 hours of endless stupid questions everybody except Vasya got bored. That\u2019s why Vasya\u2019s friends ask you to write a program that would give answers instead of them.The English alphabet vowels are: A, E, I, O, U, YThe English alphabet consonants are: B, C, D, F, G, H, J, K, L, M, N, P, Q, R, S, T, V, W, X, Z", "input_spec": "The single line contains a question represented by a non-empty line consisting of large and small Latin letters, spaces and a question mark. The line length does not exceed 100. It is guaranteed that the question mark occurs exactly once in the line \u2014 as the last symbol and that the line contains at least one letter.", "output_spec": "Print answer for the question in a single line: YES if the answer is \"Yes\", NO if the answer is \"No\". Remember that in the reply to the question the last letter, not the last character counts. I. e. the spaces and the question mark do not count as letters.", "sample_inputs": ["Is it a melon?", "Is it an apple?", "Is it a banana ?", "Is it an apple and a banana simultaneouSLY?"], "sample_outputs": ["NO", "YES", "YES", "YES"], "notes": null}, "src_uid": "dea7eb04e086a4c1b3924eff255b9648"} {"nl": {"description": "Consider a playoff tournament where $$$2^n$$$ athletes compete. The athletes are numbered from $$$1$$$ to $$$2^n$$$.The tournament is held in $$$n$$$ stages. In each stage, the athletes are split into pairs in such a way that each athlete belongs exactly to one pair. In each pair, the athletes compete against each other, and exactly one of them wins. The winner of each pair advances to the next stage, the athlete who was defeated gets eliminated from the tournament.The pairs are formed as follows: in the first stage, athlete $$$1$$$ competes against athlete $$$2$$$; $$$3$$$ competes against $$$4$$$; $$$5$$$ competes against $$$6$$$, and so on; in the second stage, the winner of the match \"$$$1$$$\u2013$$$2$$$\" competes against the winner of the match \"$$$3$$$\u2013$$$4$$$\"; the winner of the match \"$$$5$$$\u2013$$$6$$$\" competes against the winner of the match \"$$$7$$$\u2013$$$8$$$\", and so on; the next stages are held according to the same rules. When athletes $$$x$$$ and $$$y$$$ compete, the winner is decided as follows: if $$$x+y$$$ is odd, the athlete with the lower index wins (i.\u2009e. if $$$x < y$$$, then $$$x$$$ wins, otherwise $$$y$$$ wins); if $$$x+y$$$ is even, the athlete with the higher index wins. The following picture describes the way the tournament with $$$n = 3$$$ goes. Your task is the following one: given the integer $$$n$$$, determine the index of the athlete who wins the tournament.", "input_spec": "The first line contains one integer $$$t$$$ ($$$1 \\le t \\le 30$$$) \u2014 the number of test cases. Each test case consists of one line containing one integer $$$n$$$ ($$$1 \\le n \\le 30$$$).", "output_spec": "For each test case, print one integer \u2014 the index of the winner of the tournament.", "sample_inputs": ["2\n3\n1"], "sample_outputs": ["7\n1"], "notes": "NoteThe case $$$n = 3$$$ is shown in the picture from the statement.If $$$n = 1$$$, then there's only one match between athletes $$$1$$$ and $$$2$$$. Since $$$1 + 2 = 3$$$ is an odd number, the athlete with the lower index wins. So, the athlete $$$1$$$ is the winner."}, "src_uid": "d5e66e34601cad6d78c3f02898fa09f4"} {"nl": {"description": "Kicker (table football) is a board game based on football, in which players control the footballers' figures mounted on rods by using bars to get the ball into the opponent's goal. When playing two on two, one player of each team controls the goalkeeper and the full-backs (plays defence), the other player controls the half-backs and forwards (plays attack).Two teams of company Q decided to battle each other. Let's enumerate players from both teams by integers from 1 to 4. The first and second player play in the first team, the third and the fourth one play in the second team. For each of the four players we know their game skills in defence and attack. The defence skill of the i-th player is ai, the attack skill is bi.Before the game, the teams determine how they will play. First the players of the first team decide who will play in the attack, and who will play in the defence. Then the second team players do the same, based on the choice of their opponents.We will define a team's defence as the defence skill of player of the team who plays defence. Similarly, a team's attack is the attack skill of the player of the team who plays attack. We assume that one team is guaranteed to beat the other one, if its defence is strictly greater than the opponent's attack and its attack is strictly greater than the opponent's defence.The teams of company Q know each other's strengths and therefore arrange their teams optimally. Identify the team that is guaranteed to win (if both teams act optimally) or tell that there is no such team.", "input_spec": "The input contain the players' description in four lines. The i-th line contains two space-separated integers ai and bi (1\u2009\u2264\u2009ai,\u2009bi\u2009\u2264\u2009100) \u2014 the defence and the attack skill of the i-th player, correspondingly.", "output_spec": "If the first team can win, print phrase \"Team 1\" (without the quotes), if the second team can win, print phrase \"Team 2\" (without the quotes). If no of the teams can definitely win, print \"Draw\" (without the quotes).", "sample_inputs": ["1 100\n100 1\n99 99\n99 99", "1 1\n2 2\n3 3\n2 2", "3 3\n2 2\n1 1\n2 2"], "sample_outputs": ["Team 1", "Team 2", "Draw"], "notes": "NoteLet consider the first test sample. The first team can definitely win if it will choose the following arrangement: the first player plays attack, the second player plays defence.Consider the second sample. The order of the choosing roles for players makes sense in this sample. As the members of the first team choose first, the members of the second team can beat them (because they know the exact defence value and attack value of the first team)."}, "src_uid": "1a70ed6f58028a7c7a86e73c28ff245f"} {"nl": {"description": "Alice got many presents these days. So she decided to pack them into boxes and send them to her friends.There are $$$n$$$ kinds of presents. Presents of one kind are identical (i.e. there is no way to distinguish two gifts of the same kind). Presents of different kinds are different (i.e. that is, two gifts of different kinds are distinguishable). The number of presents of each kind, that Alice has is very big, so we can consider Alice has an infinite number of gifts of each kind.Also, there are $$$m$$$ boxes. All of them are for different people, so they are pairwise distinct (consider that the names of $$$m$$$ friends are written on the boxes). For example, putting the first kind of present into the first box but not into the second box, is different from putting the first kind of present into the second box but not into the first box.Alice wants to pack presents with the following rules: She won't pack more than one present of each kind into the same box, so each box should contain presents of different kinds (i.e. each box contains a subset of $$$n$$$ kinds, empty boxes are allowed); For each kind at least one present should be packed into some box. Now Alice wants to know how many different ways to pack the presents exists. Please, help her and calculate this number. Since the answer can be huge, output it by modulo $$$10^9+7$$$.See examples and their notes for clarification.", "input_spec": "The first line contains two integers $$$n$$$ and $$$m$$$, separated by spaces ($$$1 \\leq n,m \\leq 10^9$$$)\u00a0\u2014 the number of kinds of presents and the number of boxes that Alice has.", "output_spec": "Print one integer \u00a0\u2014 the number of ways to pack the presents with Alice's rules, calculated by modulo $$$10^9+7$$$", "sample_inputs": ["1 3", "2 2"], "sample_outputs": ["7", "9"], "notes": "NoteIn the first example, there are seven ways to pack presents:$$$\\{1\\}\\{\\}\\{\\}$$$$$$\\{\\}\\{1\\}\\{\\}$$$$$$\\{\\}\\{\\}\\{1\\}$$$$$$\\{1\\}\\{1\\}\\{\\}$$$$$$\\{\\}\\{1\\}\\{1\\}$$$$$$\\{1\\}\\{\\}\\{1\\}$$$$$$\\{1\\}\\{1\\}\\{1\\}$$$In the second example there are nine ways to pack presents:$$$\\{\\}\\{1,2\\}$$$$$$\\{1\\}\\{2\\}$$$$$$\\{1\\}\\{1,2\\}$$$$$$\\{2\\}\\{1\\}$$$$$$\\{2\\}\\{1,2\\}$$$$$$\\{1,2\\}\\{\\}$$$$$$\\{1,2\\}\\{1\\}$$$$$$\\{1,2\\}\\{2\\}$$$$$$\\{1,2\\}\\{1,2\\}$$$For example, the way $$$\\{2\\}\\{2\\}$$$ is wrong, because presents of the first kind should be used in the least one box."}, "src_uid": "71029e5bf085b0f5f39d1835eb801891"} {"nl": {"description": "Dreamoon loves summing up something for no reason. One day he obtains two integers a and b occasionally. He wants to calculate the sum of all nice integers. Positive integer x is called nice if and , where k is some integer number in range [1,\u2009a].By we denote the quotient of integer division of x and y. By we denote the remainder of integer division of x and y. You can read more about these operations here: http://goo.gl/AcsXhT.The answer may be large, so please print its remainder modulo 1\u2009000\u2009000\u2009007 (109\u2009+\u20097). Can you compute it faster than Dreamoon?", "input_spec": "The single line of the input contains two integers a, b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009107).", "output_spec": "Print a single integer representing the answer modulo 1\u2009000\u2009000\u2009007 (109\u2009+\u20097).", "sample_inputs": ["1 1", "2 2"], "sample_outputs": ["0", "8"], "notes": "NoteFor the first sample, there are no nice integers because is always zero.For the second sample, the set of nice integers is {3,\u20095}."}, "src_uid": "cd351d1190a92d094b2d929bf1e5c44f"} {"nl": {"description": "Not so long ago the Codecraft-17 contest was held on Codeforces. The top 25 participants, and additionally random 25 participants out of those who got into top 500, will receive a Codeforces T-shirt.Unfortunately, you didn't manage to get into top 25, but you got into top 500, taking place p.Now the elimination round of 8VC Venture Cup 2017 is being held. It has been announced that the Codecraft-17 T-shirt winners will be chosen as follows. Let s be the number of points of the winner of the elimination round of 8VC Venture Cup 2017. Then the following pseudocode will be executed: i := (s div 50) mod 475repeat 25 times: i := (i * 96 + 42) mod 475 print (26 + i)Here \"div\" is the integer division operator, \"mod\" is the modulo (the remainder of division) operator.As the result of pseudocode execution, 25 integers between 26 and 500, inclusive, will be printed. These will be the numbers of places of the participants who get the Codecraft-17 T-shirts. It is guaranteed that the 25 printed integers will be pairwise distinct for any value of s.You're in the lead of the elimination round of 8VC Venture Cup 2017, having x points. You believe that having at least y points in the current round will be enough for victory.To change your final score, you can make any number of successful and unsuccessful hacks. A successful hack brings you 100 points, an unsuccessful one takes 50 points from you. It's difficult to do successful hacks, though.You want to win the current round and, at the same time, ensure getting a Codecraft-17 T-shirt. What is the smallest number of successful hacks you have to do to achieve that?", "input_spec": "The only line contains three integers p, x and y (26\u2009\u2264\u2009p\u2009\u2264\u2009500; 1\u2009\u2264\u2009y\u2009\u2264\u2009x\u2009\u2264\u200920000)\u00a0\u2014 your place in Codecraft-17, your current score in the elimination round of 8VC Venture Cup 2017, and the smallest number of points you consider sufficient for winning the current round.", "output_spec": "Output a single integer\u00a0\u2014 the smallest number of successful hacks you have to do in order to both win the elimination round of 8VC Venture Cup 2017 and ensure getting a Codecraft-17 T-shirt. It's guaranteed that your goal is achievable for any valid input data.", "sample_inputs": ["239 10880 9889", "26 7258 6123", "493 8000 8000", "101 6800 6500", "329 19913 19900"], "sample_outputs": ["0", "2", "24", "0", "8"], "notes": "NoteIn the first example, there is no need to do any hacks since 10880 points already bring the T-shirt to the 239-th place of Codecraft-17 (that is, you). In this case, according to the pseudocode, the T-shirts will be given to the participants at the following places: 475 422 84 411 453 210 157 294 146 188 420 367 29 356 398 155 102 239 91 133 365 312 449 301 343In the second example, you have to do two successful and one unsuccessful hack to make your score equal to 7408.In the third example, you need to do as many as 24 successful hacks to make your score equal to 10400.In the fourth example, it's sufficient to do 6 unsuccessful hacks (and no successful ones) to make your score equal to 6500, which is just enough for winning the current round and also getting the T-shirt."}, "src_uid": "c9c22e03c70a94a745b451fc79e112fd"} {"nl": {"description": "You are given an integer sequence $$$1, 2, \\dots, n$$$. You have to divide it into two sets $$$A$$$ and $$$B$$$ in such a way that each element belongs to exactly one set and $$$|sum(A) - sum(B)|$$$ is minimum possible.The value $$$|x|$$$ is the absolute value of $$$x$$$ and $$$sum(S)$$$ is the sum of elements of the set $$$S$$$.", "input_spec": "The first line of the input contains one integer $$$n$$$ ($$$1 \\le n \\le 2 \\cdot 10^9$$$).", "output_spec": "Print one integer \u2014 the minimum possible value of $$$|sum(A) - sum(B)|$$$ if you divide the initial sequence $$$1, 2, \\dots, n$$$ into two sets $$$A$$$ and $$$B$$$.", "sample_inputs": ["3", "5", "6"], "sample_outputs": ["0", "1", "1"], "notes": "NoteSome (not all) possible answers to examples:In the first example you can divide the initial sequence into sets $$$A = \\{1, 2\\}$$$ and $$$B = \\{3\\}$$$ so the answer is $$$0$$$.In the second example you can divide the initial sequence into sets $$$A = \\{1, 3, 4\\}$$$ and $$$B = \\{2, 5\\}$$$ so the answer is $$$1$$$.In the third example you can divide the initial sequence into sets $$$A = \\{1, 4, 5\\}$$$ and $$$B = \\{2, 3, 6\\}$$$ so the answer is $$$1$$$."}, "src_uid": "fa163c5b619d3892e33e1fb9c22043a9"} {"nl": {"description": "Let's call a string a phone number if it has length 11 and fits the pattern \"8xxxxxxxxxx\", where each \"x\" is replaced by a digit.For example, \"80123456789\" and \"80000000000\" are phone numbers, while \"8012345678\" and \"79000000000\" are not.You have $$$n$$$ cards with digits, and you want to use them to make as many phone numbers as possible. Each card must be used in at most one phone number, and you don't have to use all cards. The phone numbers do not necessarily have to be distinct.", "input_spec": "The first line contains an integer $$$n$$$\u00a0\u2014 the number of cards with digits that you have ($$$1 \\leq n \\leq 100$$$). The second line contains a string of $$$n$$$ digits (characters \"0\", \"1\", ..., \"9\") $$$s_1, s_2, \\ldots, s_n$$$. The string will not contain any other characters, such as leading or trailing spaces.", "output_spec": "If at least one phone number can be made from these cards, output the maximum number of phone numbers that can be made. Otherwise, output 0.", "sample_inputs": ["11\n00000000008", "22\n0011223344556677889988", "11\n31415926535"], "sample_outputs": ["1", "2", "0"], "notes": "NoteIn the first example, one phone number, \"8000000000\", can be made from these cards.In the second example, you can make two phone numbers from the cards, for example, \"80123456789\" and \"80123456789\".In the third example you can't make any phone number from the given cards."}, "src_uid": "259d01b81bef5536b969247ff2c2d776"} {"nl": {"description": "Luba has a ticket consisting of 6 digits. In one move she can choose digit in any position and replace it with arbitrary digit. She wants to know the minimum number of digits she needs to replace in order to make the ticket lucky.The ticket is considered lucky if the sum of first three digits equals to the sum of last three digits.", "input_spec": "You are given a string consisting of 6 characters (all characters are digits from 0 to 9) \u2014 this string denotes Luba's ticket. The ticket can start with the digit 0.", "output_spec": "Print one number \u2014 the minimum possible number of digits Luba needs to replace to make the ticket lucky.", "sample_inputs": ["000000", "123456", "111000"], "sample_outputs": ["0", "2", "1"], "notes": "NoteIn the first example the ticket is already lucky, so the answer is 0.In the second example Luba can replace 4 and 5 with zeroes, and the ticket will become lucky. It's easy to see that at least two replacements are required.In the third example Luba can replace any zero with 3. It's easy to see that at least one replacement is required."}, "src_uid": "09601fd1742ffdc9f822950f1d3e8494"} {"nl": {"description": "Reca company makes monitors, the most popular of their models is AB999 with the screen size a\u2009\u00d7\u2009b centimeters. Because of some production peculiarities a screen parameters are integer numbers. Recently the screen sides ratio x:\u2009y became popular with users. That's why the company wants to reduce monitor AB999 size so that its screen sides ratio becomes x:\u2009y, at the same time they want its total area to be maximal of all possible variants. Your task is to find the screen parameters of the reduced size model, or find out that such a reduction can't be performed.", "input_spec": "The first line of the input contains 4 integers \u2014 a, b, x and y (1\u2009\u2264\u2009a,\u2009b,\u2009x,\u2009y\u2009\u2264\u20092\u00b7109).", "output_spec": "If the answer exists, output 2 positive integers \u2014 screen parameters of the reduced size model. Output 0 0 otherwise.", "sample_inputs": ["800 600 4 3", "1920 1200 16 9", "1 1 1 2"], "sample_outputs": ["800 600", "1920 1080", "0 0"], "notes": null}, "src_uid": "97999cd7c6de79a4e39f56a41ff59e7a"} {"nl": {"description": "After passing a test, Vasya got himself a box of $$$n$$$ candies. He decided to eat an equal amount of candies each morning until there are no more candies. However, Petya also noticed the box and decided to get some candies for himself.This means the process of eating candies is the following: in the beginning Vasya chooses a single integer $$$k$$$, same for all days. After that, in the morning he eats $$$k$$$ candies from the box (if there are less than $$$k$$$ candies in the box, he eats them all), then in the evening Petya eats $$$10\\%$$$ of the candies remaining in the box. If there are still candies left in the box, the process repeats\u00a0\u2014 next day Vasya eats $$$k$$$ candies again, and Petya\u00a0\u2014 $$$10\\%$$$ of the candies left in a box, and so on.If the amount of candies in the box is not divisible by $$$10$$$, Petya rounds the amount he takes from the box down. For example, if there were $$$97$$$ candies in the box, Petya would eat only $$$9$$$ of them. In particular, if there are less than $$$10$$$ candies in a box, Petya won't eat any at all.Your task is to find out the minimal amount of $$$k$$$ that can be chosen by Vasya so that he would eat at least half of the $$$n$$$ candies he initially got. Note that the number $$$k$$$ must be integer.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$1 \\leq n \\leq 10^{18}$$$)\u00a0\u2014 the initial amount of candies in the box.", "output_spec": "Output a single integer\u00a0\u2014 the minimal amount of $$$k$$$ that would allow Vasya to eat at least half of candies he got.", "sample_inputs": ["68"], "sample_outputs": ["3"], "notes": "NoteIn the sample, the amount of candies, with $$$k=3$$$, would change in the following way (Vasya eats first):$$$68 \\to 65 \\to 59 \\to 56 \\to 51 \\to 48 \\to 44 \\to 41 \\\\ \\to 37 \\to 34 \\to 31 \\to 28 \\to 26 \\to 23 \\to 21 \\to 18 \\to 17 \\to 14 \\\\ \\to 13 \\to 10 \\to 9 \\to 6 \\to 6 \\to 3 \\to 3 \\to 0$$$.In total, Vasya would eat $$$39$$$ candies, while Petya\u00a0\u2014 $$$29$$$."}, "src_uid": "db1a50da538fa82038f8db6104d2ab93"} {"nl": {"description": "This task will exclusively concentrate only on the arrays where all elements equal 1 and/or 2.Array a is k-period if its length is divisible by k and there is such array b of length k, that a is represented by array b written exactly times consecutively. In other words, array a is k-periodic, if it has period of length k.For example, any array is n-periodic, where n is the array length. Array [2,\u20091,\u20092,\u20091,\u20092,\u20091] is at the same time 2-periodic and 6-periodic and array [1,\u20092,\u20091,\u20091,\u20092,\u20091,\u20091,\u20092,\u20091] is at the same time 3-periodic and 9-periodic.For the given array a, consisting only of numbers one and two, find the minimum number of elements to change to make the array k-periodic. If the array already is k-periodic, then the required value equals 0.", "input_spec": "The first line of the input contains a pair of integers n, k (1\u2009\u2264\u2009k\u2009\u2264\u2009n\u2009\u2264\u2009100), where n is the length of the array and the value n is divisible by k. The second line contains the sequence of elements of the given array a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u20092), ai is the i-th element of the array.", "output_spec": "Print the minimum number of array elements we need to change to make the array k-periodic. If the array already is k-periodic, then print 0.", "sample_inputs": ["6 2\n2 1 2 2 2 1", "8 4\n1 1 2 1 1 1 2 1", "9 3\n2 1 1 1 2 1 1 1 2"], "sample_outputs": ["1", "0", "3"], "notes": "NoteIn the first sample it is enough to change the fourth element from 2 to 1, then the array changes to [2,\u20091,\u20092,\u20091,\u20092,\u20091].In the second sample, the given array already is 4-periodic.In the third sample it is enough to replace each occurrence of number two by number one. In this case the array will look as [1,\u20091,\u20091,\u20091,\u20091,\u20091,\u20091,\u20091,\u20091] \u2014 this array is simultaneously 1-, 3- and 9-periodic."}, "src_uid": "5f94c2ecf1cf8fdbb6117cab801ed281"} {"nl": {"description": "In Berland prime numbers are fashionable \u2014 the respectable citizens dwell only on the floors with numbers that are prime numbers. The numismatists value particularly high the coins with prime nominal values. All the prime days are announced holidays!Yet even this is not enough to make the Berland people happy. On the main street of the capital stand n houses, numbered from 1 to n. The government decided to paint every house a color so that the sum of the numbers of the houses painted every color is a prime number.However it turned out that not all the citizens approve of this decision \u2014 many of them protest because they don't want many colored houses on the capital's main street. That's why it is decided to use the minimal possible number of colors. The houses don't have to be painted consecutively, but every one of n houses should be painted some color. The one-colored houses should not stand consecutively, any way of painting is acceptable.There are no more than 5 hours left before the start of painting, help the government find the way when the sum of house numbers for every color is a prime number and the number of used colors is minimal. ", "input_spec": "The single input line contains an integer n (2\u2009\u2264\u2009n\u2009\u2264\u20096000) \u2014 the number of houses on the main streets of the capital.", "output_spec": "Print the sequence of n numbers, where the i-th number stands for the number of color for house number i. Number the colors consecutively starting from 1. Any painting order is allowed. If there are several solutions to that problem, print any of them. If there's no such way of painting print the single number -1.", "sample_inputs": ["8"], "sample_outputs": ["1 2 2 1 1 1 1 2"], "notes": null}, "src_uid": "94ef0d901f21e1945849fd5bfc2d1449"} {"nl": {"description": "Polycarpus is an amateur businessman. Recently he was surprised to find out that the market for paper scissors is completely free! Without further ado, Polycarpus decided to start producing and selling such scissors.Polycaprus calculated that the optimal celling price for such scissors would be p bourles. However, he read somewhere that customers are attracted by prices that say something like \"Special Offer! Super price 999 bourles!\". So Polycarpus decided to lower the price a little if it leads to the desired effect.Polycarpus agrees to lower the price by no more than d bourles so that the number of nines at the end of the resulting price is maximum. If there are several ways to do it, he chooses the maximum possible price.Note, Polycarpus counts only the trailing nines in a price.", "input_spec": "The first line contains two integers p and d (1\u2009\u2264\u2009p\u2009\u2264\u20091018; 0\u2009\u2264\u2009d\u2009<\u2009p) \u2014 the initial price of scissors and the maximum possible price reduction. Please, do not use the %lld specifier to read or write 64-bit integers in \u0421++. It is preferred to use cin, cout streams or the %I64d specifier.", "output_spec": "Print the required price \u2014 the maximum price that ends with the largest number of nines and that is less than p by no more than d. The required number shouldn't have leading zeroes.", "sample_inputs": ["1029 102", "27191 17"], "sample_outputs": ["999", "27189"], "notes": null}, "src_uid": "c706cfcd4c37fbc1b1631aeeb2c02b6a"} {"nl": {"description": "A frog lives on the axis Ox and needs to reach home which is in the point n. She starts from the point 1. The frog can jump to the right at a distance not more than d. So, after she jumped from the point x she can reach the point x\u2009+\u2009a, where a is an integer from 1 to d.For each point from 1 to n is known if there is a lily flower in it. The frog can jump only in points with a lilies. Guaranteed that there are lilies in the points 1 and n.Determine the minimal number of jumps that the frog needs to reach home which is in the point n from the point 1. Consider that initially the frog is in the point 1. If the frog can not reach home, print -1.", "input_spec": "The first line contains two integers n and d (2\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009d\u2009\u2264\u2009n\u2009-\u20091) \u2014 the point, which the frog wants to reach, and the maximal length of the frog jump. The second line contains a string s of length n, consisting of zeros and ones. If a character of the string s equals to zero, then in the corresponding point there is no lily flower. In the other case, in the corresponding point there is a lily flower. Guaranteed that the first and the last characters of the string s equal to one.", "output_spec": "If the frog can not reach the home, print -1. In the other case, print the minimal number of jumps that the frog needs to reach the home which is in the point n from the point 1.", "sample_inputs": ["8 4\n10010101", "4 2\n1001", "8 4\n11100101", "12 3\n101111100101"], "sample_outputs": ["2", "-1", "3", "4"], "notes": "NoteIn the first example the from can reach home in two jumps: the first jump from the point 1 to the point 4 (the length of the jump is three), and the second jump from the point 4 to the point 8 (the length of the jump is four).In the second example the frog can not reach home, because to make it she need to jump on a distance three, but the maximum length of her jump equals to two."}, "src_uid": "c08d2ecdfc66cd07fbbd461b1f069c9e"} {"nl": {"description": "Little Petya very much likes computers. Recently he has received a new \"Ternatron IV\" as a gift from his mother. Unlike other modern computers, \"Ternatron IV\" operates with ternary and not binary logic. Petya immediately wondered how the xor operation is performed on this computer (and whether there is anything like it).It turned out that the operation does exist (however, it is called tor) and it works like this. Suppose that we need to calculate the value of the expression a tor b. Both numbers a and b are written in the ternary notation one under the other one (b under a). If they have a different number of digits, then leading zeroes are added to the shorter number until the lengths are the same. Then the numbers are summed together digit by digit. The result of summing each two digits is calculated modulo 3. Note that there is no carry between digits (i. e. during this operation the digits aren't transferred). For example: 1410 tor 5010\u2009=\u200901123 tor 12123\u2009=\u200910213\u2009=\u20093410.Petya wrote numbers a and c on a piece of paper. Help him find such number b, that a tor b\u2009=\u2009c. If there are several such numbers, print the smallest one.", "input_spec": "The first line contains two integers a and c (0\u2009\u2264\u2009a,\u2009c\u2009\u2264\u2009109). Both numbers are written in decimal notation.", "output_spec": "Print the single integer b, such that a tor b\u2009=\u2009c. If there are several possible numbers b, print the smallest one. You should print the number in decimal notation.", "sample_inputs": ["14 34", "50 34", "387420489 225159023", "5 5"], "sample_outputs": ["50", "14", "1000000001", "0"], "notes": null}, "src_uid": "5fb635d52ddccf6a4d5103805da02a88"} {"nl": {"description": "During the break the schoolchildren, boys and girls, formed a queue of n people in the canteen. Initially the children stood in the order they entered the canteen. However, after a while the boys started feeling awkward for standing in front of the girls in the queue and they started letting the girls move forward each second. Let's describe the process more precisely. Let's say that the positions in the queue are sequentially numbered by integers from 1 to n, at that the person in the position number 1 is served first. Then, if at time x a boy stands on the i-th position and a girl stands on the (i\u2009+\u20091)-th position, then at time x\u2009+\u20091 the i-th position will have a girl and the (i\u2009+\u20091)-th position will have a boy. The time is given in seconds.You've got the initial position of the children, at the initial moment of time. Determine the way the queue is going to look after t seconds.", "input_spec": "The first line contains two integers n and t (1\u2009\u2264\u2009n,\u2009t\u2009\u2264\u200950), which represent the number of children in the queue and the time after which the queue will transform into the arrangement you need to find. The next line contains string s, which represents the schoolchildren's initial arrangement. If the i-th position in the queue contains a boy, then the i-th character of string s equals \"B\", otherwise the i-th character equals \"G\".", "output_spec": "Print string a, which describes the arrangement after t seconds. If the i-th position has a boy after the needed time, then the i-th character a must equal \"B\", otherwise it must equal \"G\".", "sample_inputs": ["5 1\nBGGBG", "5 2\nBGGBG", "4 1\nGGGB"], "sample_outputs": ["GBGGB", "GGBGB", "GGGB"], "notes": null}, "src_uid": "964ed316c6e6715120039b0219cc653a"} {"nl": {"description": "Lengths are measures in Baden in inches and feet. To a length from centimeters it is enough to know that an inch equals three centimeters in Baden and one foot contains 12 inches.You are given a length equal to n centimeters. Your task is to convert it to feet and inches so that the number of feet was maximum. The result should be an integer rounded to the closest value containing an integral number of inches.Note that when you round up, 1 cm rounds up to 0 inches and 2 cm round up to 1 inch.", "input_spec": "The only line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u200910000).", "output_spec": "Print two non-negative space-separated integers a and b, where a is the numbers of feet and b is the number of inches.", "sample_inputs": ["42", "5"], "sample_outputs": ["1 2", "0 2"], "notes": null}, "src_uid": "5d4f38ffd1849862623325fdbe06cd00"} {"nl": {"description": "Kurt reaches nirvana when he finds the product of all the digits of some positive integer. Greater value of the product makes the nirvana deeper.Help Kurt find the maximum possible product of digits among all integers from $$$1$$$ to $$$n$$$.", "input_spec": "The only input line contains the integer $$$n$$$ ($$$1 \\le n \\le 2\\cdot10^9$$$).", "output_spec": "Print the maximum product of digits among all integers from $$$1$$$ to $$$n$$$.", "sample_inputs": ["390", "7", "1000000000"], "sample_outputs": ["216", "7", "387420489"], "notes": "NoteIn the first example the maximum product is achieved for $$$389$$$ (the product of digits is $$$3\\cdot8\\cdot9=216$$$).In the second example the maximum product is achieved for $$$7$$$ (the product of digits is $$$7$$$).In the third example the maximum product is achieved for $$$999999999$$$ (the product of digits is $$$9^9=387420489$$$)."}, "src_uid": "38690bd32e7d0b314f701f138ce19dfb"} {"nl": {"description": "Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.Petya calls a number almost lucky if it could be evenly divided by some lucky number. Help him find out if the given number n is almost lucky.", "input_spec": "The single line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091000) \u2014 the number that needs to be checked.", "output_spec": "In the only line print \"YES\" (without the quotes), if number n is almost lucky. Otherwise, print \"NO\" (without the quotes).", "sample_inputs": ["47", "16", "78"], "sample_outputs": ["YES", "YES", "NO"], "notes": "NoteNote that all lucky numbers are almost lucky as any number is evenly divisible by itself.In the first sample 47 is a lucky number. In the second sample 16 is divisible by 4."}, "src_uid": "78cf8bc7660dbd0602bf6e499bc6bb0d"} {"nl": {"description": "The following problem is well-known: given integers n and m, calculate , where 2n\u2009=\u20092\u00b72\u00b7...\u00b72 (n factors), and denotes the remainder of division of x by y.You are asked to solve the \"reverse\" problem. Given integers n and m, calculate . ", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009108). The second line contains a single integer m (1\u2009\u2264\u2009m\u2009\u2264\u2009108).", "output_spec": "Output a single integer\u00a0\u2014 the value of .", "sample_inputs": ["4\n42", "1\n58", "98765432\n23456789"], "sample_outputs": ["10", "0", "23456789"], "notes": "NoteIn the first example, the remainder of division of 42 by 24\u2009=\u200916 is equal to 10.In the second example, 58 is divisible by 21\u2009=\u20092 without remainder, and the answer is 0."}, "src_uid": "c649052b549126e600691931b512022f"} {"nl": {"description": "Mary has just graduated from one well-known University and is now attending celebration party. Students like to dream of a beautiful life, so they used champagne glasses to construct a small pyramid. The height of the pyramid is n. The top level consists of only 1 glass, that stands on 2 glasses on the second level (counting from the top), then 3 glasses on the third level and so on.The bottom level consists of n glasses.Vlad has seen in the movies many times how the champagne beautifully flows from top levels to bottom ones, filling all the glasses simultaneously. So he took a bottle and started to pour it in the glass located at the top of the pyramid.Each second, Vlad pours to the top glass the amount of champagne equal to the size of exactly one glass. If the glass is already full, but there is some champagne flowing in it, then it pours over the edge of the glass and is equally distributed over two glasses standing under. If the overflowed glass is at the bottom level, then the champagne pours on the table. For the purpose of this problem we consider that champagne is distributed among pyramid glasses immediately. Vlad is interested in the number of completely full glasses if he stops pouring champagne in t seconds.Pictures below illustrate the pyramid consisting of three levels. ", "input_spec": "The only line of the input contains two integers n and t (1\u2009\u2264\u2009n\u2009\u2264\u200910,\u20090\u2009\u2264\u2009t\u2009\u2264\u200910\u2009000)\u00a0\u2014 the height of the pyramid and the number of seconds Vlad will be pouring champagne from the bottle.", "output_spec": "Print the single integer\u00a0\u2014 the number of completely full glasses after t seconds.", "sample_inputs": ["3 5", "4 8"], "sample_outputs": ["4", "6"], "notes": "NoteIn the first sample, the glasses full after 5 seconds are: the top glass, both glasses on the second level and the middle glass at the bottom level. Left and right glasses of the bottom level will be half-empty."}, "src_uid": "b2b49b7f6e3279d435766085958fb69d"} {"nl": {"description": "Jzzhu has invented a kind of sequences, they meet the following property:You are given x and y, please calculate fn modulo 1000000007 (109\u2009+\u20097).", "input_spec": "The first line contains two integers x and y (|x|,\u2009|y|\u2009\u2264\u2009109). The second line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092\u00b7109).", "output_spec": "Output a single integer representing fn modulo 1000000007 (109\u2009+\u20097).", "sample_inputs": ["2 3\n3", "0 -1\n2"], "sample_outputs": ["1", "1000000006"], "notes": "NoteIn the first sample, f2\u2009=\u2009f1\u2009+\u2009f3, 3\u2009=\u20092\u2009+\u2009f3, f3\u2009=\u20091.In the second sample, f2\u2009=\u2009\u2009-\u20091; \u2009-\u20091 modulo (109\u2009+\u20097) equals (109\u2009+\u20096)."}, "src_uid": "2ff85140e3f19c90e587ce459d64338b"} {"nl": {"description": "In one very old text file there was written Great Wisdom. This Wisdom was so Great that nobody could decipher it, even Phong \u2014 the oldest among the inhabitants of Mainframe. But still he managed to get some information from there. For example, he managed to learn that User launches games for pleasure \u2014 and then terrible Game Cubes fall down on the city, bringing death to those modules, who cannot win the game...For sure, as guard Bob appeared in Mainframe many modules stopped fearing Game Cubes. Because Bob (as he is alive yet) has never been defeated by User, and he always meddles with Game Cubes, because he is programmed to this.However, unpleasant situations can happen, when a Game Cube falls down on Lost Angles. Because there lives a nasty virus \u2014 Hexadecimal, who is... mmm... very strange. And she likes to play very much. So, willy-nilly, Bob has to play with her first, and then with User.This time Hexadecimal invented the following entertainment: Bob has to leap over binary search trees with n nodes. We should remind you that a binary search tree is a binary tree, each node has a distinct key, for each node the following is true: the left sub-tree of a node contains only nodes with keys less than the node's key, the right sub-tree of a node contains only nodes with keys greater than the node's key. All the keys are different positive integer numbers from 1 to n. Each node of such a tree can have up to two children, or have no children at all (in the case when a node is a leaf).In Hexadecimal's game all the trees are different, but the height of each is not lower than h. In this problem \u00abheight\u00bb stands for the maximum amount of nodes on the way from the root to the remotest leaf, the root node and the leaf itself included. When Bob leaps over a tree, it disappears. Bob gets the access to a Cube, when there are no trees left. He knows how many trees he will have to leap over in the worst case. And you?", "input_spec": "The input data contains two space-separated positive integer numbers n and h (n\u2009\u2264\u200935, h\u2009\u2264\u2009n).", "output_spec": "Output one number \u2014 the answer to the problem. It is guaranteed that it does not exceed 9\u00b71018.", "sample_inputs": ["3 2", "3 3"], "sample_outputs": ["5", "4"], "notes": null}, "src_uid": "faf12a603d0c27f8be6bf6b02531a931"} {"nl": {"description": "A monster is chasing after Rick and Morty on another planet. They're so frightened that sometimes they scream. More accurately, Rick screams at times b,\u2009b\u2009+\u2009a,\u2009b\u2009+\u20092a,\u2009b\u2009+\u20093a,\u2009... and Morty screams at times d,\u2009d\u2009+\u2009c,\u2009d\u2009+\u20092c,\u2009d\u2009+\u20093c,\u2009.... The Monster will catch them if at any point they scream at the same time, so it wants to know when it will catch them (the first time they scream at the same time) or that they will never scream at the same time.", "input_spec": "The first line of input contains two integers a and b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009100). The second line contains two integers c and d (1\u2009\u2264\u2009c,\u2009d\u2009\u2264\u2009100).", "output_spec": "Print the first time Rick and Morty will scream at the same time, or \u2009-\u20091 if they will never scream at the same time.", "sample_inputs": ["20 2\n9 19", "2 1\n16 12"], "sample_outputs": ["82", "-1"], "notes": "NoteIn the first sample testcase, Rick's 5th scream and Morty's 8th time are at time 82. In the second sample testcase, all Rick's screams will be at odd times and Morty's will be at even times, so they will never scream at the same time."}, "src_uid": "158cb12d45f4ee3368b94b2b622693e7"} {"nl": {"description": "Year 2118. Androids are in mass production for decades now, and they do all the work for humans. But androids have to go to school to be able to solve creative tasks. Just like humans before.It turns out that high school struggles are not gone. If someone is not like others, he is bullied. Vasya-8800 is an economy-class android which is produced by a little-known company. His design is not perfect, his characteristics also could be better. So he is bullied by other androids.One of the popular pranks on Vasya is to force him to compare $$$x^y$$$ with $$$y^x$$$. Other androids can do it in milliseconds while Vasya's memory is too small to store such big numbers.Please help Vasya! Write a fast program to compare $$$x^y$$$ with $$$y^x$$$ for Vasya, maybe then other androids will respect him.", "input_spec": "On the only line of input there are two integers $$$x$$$ and $$$y$$$ ($$$1 \\le x, y \\le 10^{9}$$$).", "output_spec": "If $$$x^y < y^x$$$, then print '<' (without quotes). If $$$x^y > y^x$$$, then print '>' (without quotes). If $$$x^y = y^x$$$, then print '=' (without quotes).", "sample_inputs": ["5 8", "10 3", "6 6"], "sample_outputs": [">", "<", "="], "notes": "NoteIn the first example $$$5^8 = 5 \\cdot 5 \\cdot 5 \\cdot 5 \\cdot 5 \\cdot 5 \\cdot 5 \\cdot 5 = 390625$$$, and $$$8^5 = 8 \\cdot 8 \\cdot 8 \\cdot 8 \\cdot 8 = 32768$$$. So you should print '>'.In the second example $$$10^3 = 1000 < 3^{10} = 59049$$$.In the third example $$$6^6 = 46656 = 6^6$$$."}, "src_uid": "ec1e44ff41941f0e6436831b5ae543c6"} {"nl": {"description": "The three friends, Kuro, Shiro, and Katie, met up again! It's time for a party...What the cats do when they unite? Right, they have a party. Since they wanted to have as much fun as possible, they invited all their friends. Now $$$n$$$ cats are at the party, sitting in a circle and eating soup. The rules are simple: anyone having finished their soup leaves the circle.Katie suddenly notices that whenever a cat leaves, the place where she was sitting becomes an empty space, which means the circle is divided into smaller continuous groups of cats sitting next to each other. At the moment Katie observes, there are $$$m$$$ cats who left the circle. This raises a question for Katie: what is the maximum possible number of groups the circle is divided into at the moment?Could you help her with this curiosity?You can see the examples and their descriptions with pictures in the \"Note\" section.", "input_spec": "The only line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \\leq n \\leq 1000$$$, $$$0 \\leq m \\leq n$$$)\u00a0\u2014 the initial number of cats at the party and the number of cats who left the circle at the moment Katie observes, respectively.", "output_spec": "Print a single integer\u00a0\u2014 the maximum number of groups of cats at the moment Katie observes.", "sample_inputs": ["7 4", "6 2", "3 0", "2 2"], "sample_outputs": ["3", "2", "1", "0"], "notes": "NoteIn the first example, originally there are $$$7$$$ cats sitting as shown below, creating a single group: At the observed moment, $$$4$$$ cats have left the table. Suppose the cats $$$2$$$, $$$3$$$, $$$5$$$ and $$$7$$$ have left, then there are $$$3$$$ groups remaining. It is possible to show that it is the maximum possible number of groups remaining. In the second example, there are $$$6$$$ cats sitting as shown below: At the observed moment, $$$2$$$ cats have left the table. Suppose the cats numbered $$$3$$$ and $$$6$$$ left, then there will be $$$2$$$ groups remaining ($$$\\{1, 2\\}$$$ and $$$\\{4, 5\\}$$$). It is impossible to have more than $$$2$$$ groups of cats remaining. In the third example, no cats have left, so there is $$$1$$$ group consisting of all cats.In the fourth example, all cats have left the circle, so there are $$$0$$$ groups."}, "src_uid": "c05d0a9cabe04d8fb48c76d2ce033648"} {"nl": {"description": "Little Lesha loves listening to music via his smartphone. But the smartphone doesn't have much memory, so Lesha listens to his favorite songs in a well-known social network InTalk.Unfortunately, internet is not that fast in the city of Ekaterinozavodsk and the song takes a lot of time to download. But Lesha is quite impatient. The song's duration is T seconds. Lesha downloads the first S seconds of the song and plays it. When the playback reaches the point that has not yet been downloaded, Lesha immediately plays the song from the start (the loaded part of the song stays in his phone, and the download is continued from the same place), and it happens until the song is downloaded completely and Lesha listens to it to the end. For q seconds of real time the Internet allows you to download q\u2009-\u20091 seconds of the track.Tell Lesha, for how many times he will start the song, including the very first start.", "input_spec": "The single line contains three integers T,\u2009S,\u2009q (2\u2009\u2264\u2009q\u2009\u2264\u2009104, 1\u2009\u2264\u2009S\u2009<\u2009T\u2009\u2264\u2009105).", "output_spec": "Print a single integer\u00a0\u2014 the number of times the song will be restarted.", "sample_inputs": ["5 2 2", "5 4 7", "6 2 3"], "sample_outputs": ["2", "1", "1"], "notes": "NoteIn the first test, the song is played twice faster than it is downloaded, which means that during four first seconds Lesha reaches the moment that has not been downloaded, and starts the song again. After another two seconds, the song is downloaded completely, and thus, Lesha starts the song twice.In the second test, the song is almost downloaded, and Lesha will start it only once.In the third sample test the download finishes and Lesha finishes listening at the same moment. Note that song isn't restarted in this case."}, "src_uid": "0d01bf286fb2c7950ce5d5fa59a17dd9"} {"nl": {"description": "The hero of our story, Valera, and his best friend Arcady are still in school, and therefore they spend all the free time playing turn-based strategy \"GAGA: Go And Go Again\". The gameplay is as follows. There are two armies on the playing field each of which consists of n men (n is always even). The current player specifies for each of her soldiers an enemy's soldier he will shoot (a target) and then all the player's soldiers shot simultaneously. This is a game world, and so each soldier shoots perfectly, that is he absolutely always hits the specified target. If an enemy soldier is hit, he will surely die. It may happen that several soldiers had been indicated the same target. Killed soldiers do not participate in the game anymore. The game \"GAGA\" consists of three steps: first Valera makes a move, then Arcady, then Valera again and the game ends. You are asked to calculate the maximum total number of soldiers that may be killed during the game. ", "input_spec": "The input data consist of a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009108, n is even). Please note that before the game starts there are 2n soldiers on the fields. ", "output_spec": "Print a single number \u2014 a maximum total number of soldiers that could be killed in the course of the game in three turns.", "sample_inputs": ["2", "4"], "sample_outputs": ["3", "6"], "notes": "NoteThe first sample test:1) Valera's soldiers 1 and 2 shoot at Arcady's soldier 1.2) Arcady's soldier 2 shoots at Valera's soldier 1.3) Valera's soldier 1 shoots at Arcady's soldier 2.There are 3 soldiers killed in total: Valera's soldier 1 and Arcady's soldiers 1 and 2."}, "src_uid": "031e53952e76cff8fdc0988bb0d3239c"} {"nl": {"description": "In this problem you will meet the simplified model of game King of Thieves.In a new ZeptoLab game called \"King of Thieves\" your aim is to reach a chest with gold by controlling your character, avoiding traps and obstacles on your way. An interesting feature of the game is that you can design your own levels that will be available to other players. Let's consider the following simple design of a level.A dungeon consists of n segments located at a same vertical level, each segment is either a platform that character can stand on, or a pit with a trap that makes player lose if he falls into it. All segments have the same length, platforms on the scheme of the level are represented as '*' and pits are represented as '.'. One of things that affects speedrun characteristics of the level is a possibility to perform a series of consecutive jumps of the same length. More formally, when the character is on the platform number i1, he can make a sequence of jumps through the platforms i1\u2009<\u2009i2\u2009<\u2009...\u2009<\u2009ik, if i2\u2009-\u2009i1\u2009=\u2009i3\u2009-\u2009i2\u2009=\u2009...\u2009=\u2009ik\u2009-\u2009ik\u2009-\u20091. Of course, all segments i1,\u2009i2,\u2009... ik should be exactly the platforms, not pits. Let's call a level to be good if you can perform a sequence of four jumps of the same length or in the other words there must be a sequence i1,\u2009i2,\u2009...,\u2009i5, consisting of five platforms so that the intervals between consecutive platforms are of the same length. Given the scheme of the level, check if it is good.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of segments on the level. Next line contains the scheme of the level represented as a string of n characters '*' and '.'.", "output_spec": "If the level is good, print the word \"yes\" (without the quotes), otherwise print the word \"no\" (without the quotes).", "sample_inputs": ["16\n.**.*..*.***.**.", "11\n.*.*...*.*."], "sample_outputs": ["yes", "no"], "notes": "NoteIn the first sample test you may perform a sequence of jumps through platforms 2,\u20095,\u20098,\u200911,\u200914."}, "src_uid": "12d451eb1b401a8f426287c4c6909e4b"} {"nl": {"description": "You are given n rectangles. The corners of rectangles have integer coordinates and their edges are parallel to the Ox and Oy axes. The rectangles may touch each other, but they do not overlap (that is, there are no points that belong to the interior of more than one rectangle). Your task is to determine if the rectangles form a square. In other words, determine if the set of points inside or on the border of at least one rectangle is precisely equal to the set of points inside or on the border of some square.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20095). Next n lines contain four integers each, describing a single rectangle: x1, y1, x2, y2 (0\u2009\u2264\u2009x1\u2009<\u2009x2\u2009\u2264\u200931400,\u20090\u2009\u2264\u2009y1\u2009<\u2009y2\u2009\u2264\u200931400) \u2014 x1 and x2 are x-coordinates of the left and right edges of the rectangle, and y1 and y2 are y-coordinates of the bottom and top edges of the rectangle. No two rectangles overlap (that is, there are no points that belong to the interior of more than one rectangle).", "output_spec": "In a single line print \"YES\", if the given rectangles form a square, or \"NO\" otherwise.", "sample_inputs": ["5\n0 0 2 3\n0 3 3 5\n2 0 5 2\n3 2 5 5\n2 2 3 3", "4\n0 0 2 3\n0 3 3 5\n2 0 5 2\n3 2 5 5"], "sample_outputs": ["YES", "NO"], "notes": null}, "src_uid": "f63fc2d97fd88273241fce206cc217f2"} {"nl": {"description": "After winning gold and silver in IOI 2014, Akshat and Malvika want to have some fun. Now they are playing a game on a grid made of n horizontal and m vertical sticks.An intersection point is any point on the grid which is formed by the intersection of one horizontal stick and one vertical stick.In the grid shown below, n\u2009=\u20093 and m\u2009=\u20093. There are n\u2009+\u2009m\u2009=\u20096 sticks in total (horizontal sticks are shown in red and vertical sticks are shown in green). There are n\u00b7m\u2009=\u20099 intersection points, numbered from 1 to 9. The rules of the game are very simple. The players move in turns. Akshat won gold, so he makes the first move. During his/her move, a player must choose any remaining intersection point and remove from the grid all sticks which pass through this point. A player will lose the game if he/she cannot make a move (i.e. there are no intersection points remaining on the grid at his/her move).Assume that both players play optimally. Who will win the game?", "input_spec": "The first line of input contains two space-separated integers, n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100).", "output_spec": "Print a single line containing \"Akshat\" or \"Malvika\" (without the quotes), depending on the winner of the game.", "sample_inputs": ["2 2", "2 3", "3 3"], "sample_outputs": ["Malvika", "Malvika", "Akshat"], "notes": "NoteExplanation of the first sample:The grid has four intersection points, numbered from 1 to 4. If Akshat chooses intersection point 1, then he will remove two sticks (1\u2009-\u20092 and 1\u2009-\u20093). The resulting grid will look like this. Now there is only one remaining intersection point (i.e. 4). Malvika must choose it and remove both remaining sticks. After her move the grid will be empty.In the empty grid, Akshat cannot make any move, hence he will lose.Since all 4 intersection points of the grid are equivalent, Akshat will lose no matter which one he picks."}, "src_uid": "a4b9ce9c9f170a729a97af13e81b5fe4"} {"nl": {"description": "The HR manager was disappointed again. The last applicant failed the interview the same way as 24 previous ones. \"Do I give such a hard task?\" \u2014 the HR manager thought. \"Just raise number 5 to the power of n and get last two digits of the number. Yes, of course, n can be rather big, and one cannot find the power using a calculator, but we need people who are able to think, not just follow the instructions.\"Could you pass the interview in the machine vision company in IT City?", "input_spec": "The only line of the input contains a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u20092\u00b71018) \u2014 the power in which you need to raise number 5.", "output_spec": "Output the last two digits of 5n without spaces between them.", "sample_inputs": ["2"], "sample_outputs": ["25"], "notes": null}, "src_uid": "dcaff75492eafaf61d598779d6202c9d"} {"nl": {"description": "Dima and his friends have been playing hide and seek at Dima's place all night. As a result, Dima's place got messy. In the morning they decided that they need to clean the place.To decide who exactly would clean the apartment, the friends want to play a counting-out game. First, all the guys stand in a circle, and then each of them shows some number of fingers on one hand (one to five), and then the boys count in a circle, starting from Dima, the number of people, respective to the total number of fingers shown. The person on who the countdown stops will clean the apartment.For example, if Dima and one of his friends played hide and seek, and 7 fingers were shown during the counting-out, then Dima would clean the place. If there were 2 or say, 8 fingers shown, then his friend would clean the place.Dima knows how many fingers each of his friends will show during the counting-out. Now he is interested in the number of ways to show some number of fingers on one hand (one to five), so that he did not have to clean the place. Help Dima.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of Dima's friends. Dima himself isn't considered to be his own friend. The second line contains n positive integers, not exceeding 5, representing, how many fingers the Dima's friends will show. The numbers in the lines are separated by a single space.", "output_spec": "In a single line print the answer to the problem.", "sample_inputs": ["1\n1", "1\n2", "2\n3 5"], "sample_outputs": ["3", "2", "3"], "notes": "NoteIn the first sample Dima can show 1, 3 or 5 fingers. If Dima shows 3 fingers, then the counting-out will go like that: Dima, his friend, Dima, his friend.In the second sample Dima can show 2 or 4 fingers."}, "src_uid": "ff6b3fd358c758324c19a26283ab96a4"} {"nl": {"description": "A magic number is a number formed by concatenation of numbers 1, 14 and 144. We can use each of these numbers any number of times. Therefore 14144, 141414 and 1411 are magic numbers but 1444, 514 and 414 are not.You're given a number. Determine if it is a magic number or not.", "input_spec": "The first line of input contains an integer n, (1\u2009\u2264\u2009n\u2009\u2264\u2009109). This number doesn't contain leading zeros.", "output_spec": "Print \"YES\" if n is a magic number or print \"NO\" if it's not.", "sample_inputs": ["114114", "1111", "441231"], "sample_outputs": ["YES", "YES", "NO"], "notes": null}, "src_uid": "3153cfddae27fbd817caaf2cb7a6a4b5"} {"nl": {"description": "Pasha has two hamsters: Arthur and Alexander. Pasha put n apples in front of them. Pasha knows which apples Arthur likes. Similarly, Pasha knows which apples Alexander likes. Pasha doesn't want any conflict between the hamsters (as they may like the same apple), so he decided to distribute the apples between the hamsters on his own. He is going to give some apples to Arthur and some apples to Alexander. It doesn't matter how many apples each hamster gets but it is important that each hamster gets only the apples he likes. It is possible that somebody doesn't get any apples.Help Pasha distribute all the apples between the hamsters. Note that Pasha wants to distribute all the apples, not just some of them.", "input_spec": "The first line contains integers n, a, b (1\u2009\u2264\u2009n\u2009\u2264\u2009100;\u00a01\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009n) \u2014 the number of apples Pasha has, the number of apples Arthur likes and the number of apples Alexander likes, correspondingly. The next line contains a distinct integers \u2014 the numbers of the apples Arthur likes. The next line contains b distinct integers \u2014 the numbers of the apples Alexander likes. Assume that the apples are numbered from 1 to n. The input is such that the answer exists.", "output_spec": "Print n characters, each of them equals either 1 or 2. If the i-h character equals 1, then the i-th apple should be given to Arthur, otherwise it should be given to Alexander. If there are multiple correct answers, you are allowed to print any of them.", "sample_inputs": ["4 2 3\n1 2\n2 3 4", "5 5 2\n3 4 1 2 5\n2 3"], "sample_outputs": ["1 1 2 2", "1 1 1 1 1"], "notes": null}, "src_uid": "a35a27754c9c095c6f1b2d4adccbfe93"} {"nl": {"description": "Daenerys Targaryen has an army consisting of k groups of soldiers, the i-th group contains ai soldiers. She wants to bring her army to the other side of the sea to get the Iron Throne. She has recently bought an airplane to carry her army through the sea. The airplane has n rows, each of them has 8 seats. We call two seats neighbor, if they are in the same row and in seats {1,\u20092}, {3,\u20094}, {4,\u20095}, {5,\u20096} or {7,\u20098}. A row in the airplane Daenerys Targaryen wants to place her army in the plane so that there are no two soldiers from different groups sitting on neighboring seats.Your task is to determine if there is a possible arranging of her army in the airplane such that the condition above is satisfied.", "input_spec": "The first line contains two integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u200910000, 1\u2009\u2264\u2009k\u2009\u2264\u2009100)\u00a0\u2014 the number of rows and the number of groups of soldiers, respectively. The second line contains k integers a1,\u2009a2,\u2009a3,\u2009...,\u2009ak (1\u2009\u2264\u2009ai\u2009\u2264\u200910000), where ai denotes the number of soldiers in the i-th group. It is guaranteed that a1\u2009+\u2009a2\u2009+\u2009...\u2009+\u2009ak\u2009\u2264\u20098\u00b7n.", "output_spec": "If we can place the soldiers in the airplane print \"YES\" (without quotes). Otherwise print \"NO\" (without quotes). You can choose the case (lower or upper) for each letter arbitrary.", "sample_inputs": ["2 2\n5 8", "1 2\n7 1", "1 2\n4 4", "1 4\n2 2 1 2"], "sample_outputs": ["YES", "NO", "YES", "YES"], "notes": "NoteIn the first sample, Daenerys can place the soldiers like in the figure below: In the second sample, there is no way to place the soldiers in the plane since the second group soldier will always have a seat neighboring to someone from the first group.In the third example Daenerys can place the first group on seats (1,\u20092,\u20097,\u20098), and the second group an all the remaining seats.In the fourth example she can place the first two groups on seats (1,\u20092) and (7,\u20098), the third group on seats (3), and the fourth group on seats (5,\u20096)."}, "src_uid": "d1f88a97714d6c13309c88fcf7d86821"} {"nl": {"description": "You are given two lists of non-zero digits.Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?", "input_spec": "The first line contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20099) \u2014 the lengths of the first and the second lists, respectively. The second line contains n distinct digits a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u20099) \u2014 the elements of the first list. The third line contains m distinct digits b1,\u2009b2,\u2009...,\u2009bm (1\u2009\u2264\u2009bi\u2009\u2264\u20099) \u2014 the elements of the second list.", "output_spec": "Print the smallest pretty integer.", "sample_inputs": ["2 3\n4 2\n5 7 6", "8 8\n1 2 3 4 5 6 7 8\n8 7 6 5 4 3 2 1"], "sample_outputs": ["25", "1"], "notes": "NoteIn the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list.In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer."}, "src_uid": "3a0c1b6d710fd8f0b6daf420255d76ee"} {"nl": {"description": "One cold winter evening Alice and her older brother Bob was sitting at home near the fireplace and giving each other interesting problems to solve. When it was Alice's turn, she told the number n to Bob and said:\u2014Shuffle the digits in this number in order to obtain the smallest possible number without leading zeroes.\u2014No problem! \u2014 said Bob and immediately gave her an answer.Alice said a random number, so she doesn't know whether Bob's answer is correct. Help her to find this out, because impatient brother is waiting for the verdict.", "input_spec": "The first line contains one integer n (0\u2009\u2264\u2009n\u2009\u2264\u2009109) without leading zeroes. The second lines contains one integer m (0\u2009\u2264\u2009m\u2009\u2264\u2009109) \u2014 Bob's answer, possibly with leading zeroes.", "output_spec": "Print OK if Bob's answer is correct and WRONG_ANSWER otherwise.", "sample_inputs": ["3310\n1033", "4\n5"], "sample_outputs": ["OK", "WRONG_ANSWER"], "notes": null}, "src_uid": "d1e381b72a6c09a0723cfe72c0917372"} {"nl": {"description": "Two chess pieces, a rook and a knight, stand on a standard chessboard 8\u2009\u00d7\u20098 in size. The positions in which they are situated are known. It is guaranteed that none of them beats the other one.Your task is to find the number of ways to place another knight on the board so that none of the three pieces on the board beat another one. A new piece can only be placed on an empty square.", "input_spec": "The first input line contains the description of the rook's position on the board. This description is a line which is 2 in length. Its first symbol is a lower-case Latin letter from a to h, and its second symbol is a number from 1 to 8. The second line contains the description of the knight's position in a similar way. It is guaranteed that their positions do not coincide.", "output_spec": "Print a single number which is the required number of ways.", "sample_inputs": ["a1\nb2", "a8\nd4"], "sample_outputs": ["44", "38"], "notes": null}, "src_uid": "073023c6b72ce923df2afd6130719cfc"} {"nl": {"description": "A new delivery of clothing has arrived today to the clothing store. This delivery consists of $$$a$$$ ties, $$$b$$$ scarves, $$$c$$$ vests and $$$d$$$ jackets.The store does not sell single clothing items \u2014 instead, it sells suits of two types: a suit of the first type consists of one tie and one jacket; a suit of the second type consists of one scarf, one vest and one jacket. Each suit of the first type costs $$$e$$$ coins, and each suit of the second type costs $$$f$$$ coins.Calculate the maximum possible cost of a set of suits that can be composed from the delivered clothing items. Note that one item cannot be used in more than one suit (though some items may be left unused).", "input_spec": "The first line contains one integer $$$a$$$ $$$(1 \\le a \\le 100\\,000)$$$ \u2014 the number of ties. The second line contains one integer $$$b$$$ $$$(1 \\le b \\le 100\\,000)$$$ \u2014 the number of scarves. The third line contains one integer $$$c$$$ $$$(1 \\le c \\le 100\\,000)$$$ \u2014 the number of vests. The fourth line contains one integer $$$d$$$ $$$(1 \\le d \\le 100\\,000)$$$ \u2014 the number of jackets. The fifth line contains one integer $$$e$$$ $$$(1 \\le e \\le 1\\,000)$$$ \u2014 the cost of one suit of the first type. The sixth line contains one integer $$$f$$$ $$$(1 \\le f \\le 1\\,000)$$$ \u2014 the cost of one suit of the second type.", "output_spec": "Print one integer \u2014 the maximum total cost of some set of suits that can be composed from the delivered items. ", "sample_inputs": ["4\n5\n6\n3\n1\n2", "12\n11\n13\n20\n4\n6", "17\n14\n5\n21\n15\n17"], "sample_outputs": ["6", "102", "325"], "notes": "NoteIt is possible to compose three suits of the second type in the first example, and their total cost will be $$$6$$$. Since all jackets will be used, it's impossible to add anything to this set.The best course of action in the second example is to compose nine suits of the first type and eleven suits of the second type. The total cost is $$$9 \\cdot 4 + 11 \\cdot 6 = 102$$$."}, "src_uid": "84d9e7e9c9541d997e6573edb421ae0a"} {"nl": {"description": "Pasha has a wooden stick of some positive integer length n. He wants to perform exactly three cuts to get four parts of the stick. Each part must have some positive integer length and the sum of these lengths will obviously be n. Pasha likes rectangles but hates squares, so he wonders, how many ways are there to split a stick into four parts so that it's possible to form a rectangle using these parts, but is impossible to form a square.Your task is to help Pasha and count the number of such ways. Two ways to cut the stick are considered distinct if there exists some integer x, such that the number of parts of length x in the first way differ from the number of parts of length x in the second way.", "input_spec": "The first line of the input contains a positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092\u00b7109) \u2014 the length of Pasha's stick.", "output_spec": "The output should contain a single integer\u00a0\u2014 the number of ways to split Pasha's stick into four parts of positive integer length so that it's possible to make a rectangle by connecting the ends of these parts, but is impossible to form a square. ", "sample_inputs": ["6", "20"], "sample_outputs": ["1", "4"], "notes": "NoteThere is only one way to divide the stick in the first sample {1, 1, 2, 2}.Four ways to divide the stick in the second sample are {1, 1, 9, 9}, {2, 2, 8, 8}, {3, 3, 7, 7} and {4, 4, 6, 6}. Note that {5, 5, 5, 5} doesn't work."}, "src_uid": "32b59d23f71800bc29da74a3fe2e2b37"} {"nl": {"description": "InputThe input contains a single integer $$$a$$$ ($$$1 \\le a \\le 99$$$).OutputOutput \"YES\" or \"NO\".ExamplesInput\n5\nOutput\nYES\nInput\n13\nOutput\nNO\nInput\n24\nOutput\nNO\nInput\n46\nOutput\nYES\n", "input_spec": "The input contains a single integer $$$a$$$ ($$$1 \\le a \\le 99$$$).", "output_spec": "Output \"YES\" or \"NO\".", "sample_inputs": ["5", "13", "24", "46"], "sample_outputs": ["YES", "NO", "NO", "YES"], "notes": null}, "src_uid": "821529a4644b74483bcdf80fc318d1f8"} {"nl": {"description": "Two teams meet in The Game World Championship. Some scientists consider this game to be the most intellectually challenging game in the world. You are given two strings describing the teams' actions in the final battle. Figure out who became the champion.", "input_spec": "The input contains two strings of equal length (between 2 and 20 characters, inclusive). Each line describes the actions of one team.", "output_spec": "Output \"TEAM 1 WINS\" if the first team won, \"TEAM 2 WINS\" if the second team won, and \"TIE\" if there was a tie.", "sample_inputs": ["[]()[]8<\n8<[]()8<", "8<8<()\n[]8<[]"], "sample_outputs": ["TEAM 2 WINS", "TIE"], "notes": null}, "src_uid": "bdf2e78c47d078b4ba61741b6fbb23cf"} {"nl": {"description": "Let's consider a table consisting of n rows and n columns. The cell located at the intersection of i-th row and j-th column contains number i\u2009\u00d7\u2009j. The rows and columns are numbered starting from 1.You are given a positive integer x. Your task is to count the number of cells in a table that contain number x.", "input_spec": "The single line contains numbers n and x (1\u2009\u2264\u2009n\u2009\u2264\u2009105, 1\u2009\u2264\u2009x\u2009\u2264\u2009109) \u2014 the size of the table and the number that we are looking for in the table.", "output_spec": "Print a single number: the number of times x occurs in the table.", "sample_inputs": ["10 5", "6 12", "5 13"], "sample_outputs": ["2", "4", "0"], "notes": "NoteA table for the second sample test is given below. The occurrences of number 12 are marked bold. "}, "src_uid": "c4b139eadca94201596f1305b2f76496"} {"nl": {"description": "You are given an integer N. Consider all possible segments on the coordinate axis with endpoints at integer points with coordinates between 0 and N, inclusive; there will be of them.You want to draw these segments in several layers so that in each layer the segments don't overlap (they might touch at the endpoints though). You can not move the segments to a different location on the coordinate axis. Find the minimal number of layers you have to use for the given N.", "input_spec": "The only input line contains a single integer N (1\u2009\u2264\u2009N\u2009\u2264\u2009100).", "output_spec": "Output a single integer - the minimal number of layers required to draw the segments for the given N.", "sample_inputs": ["2", "3", "4"], "sample_outputs": ["2", "4", "6"], "notes": "NoteAs an example, here are the segments and their optimal arrangement into layers for N\u2009=\u20094. "}, "src_uid": "f8af5dfcf841a7f105ac4c144eb51319"} {"nl": {"description": "The Easter Rabbit laid n eggs in a circle and is about to paint them. Each egg should be painted one color out of 7: red, orange, yellow, green, blue, indigo or violet. Also, the following conditions should be satisfied: Each of the seven colors should be used to paint at least one egg. Any four eggs lying sequentially should be painted different colors. Help the Easter Rabbit paint the eggs in the required manner. We know that it is always possible.", "input_spec": "The only line contains an integer n \u2014 the amount of eggs (7\u2009\u2264\u2009n\u2009\u2264\u2009100).", "output_spec": "Print one line consisting of n characters. The i-th character should describe the color of the i-th egg in the order they lie in the circle. The colors should be represented as follows: \"R\" stands for red, \"O\" stands for orange, \"Y\" stands for yellow, \"G\" stands for green, \"B\" stands for blue, \"I\" stands for indigo, \"V\" stands for violet. If there are several answers, print any of them.", "sample_inputs": ["8", "13"], "sample_outputs": ["ROYGRBIV", "ROYGBIVGBIVYG"], "notes": "NoteThe way the eggs will be painted in the first sample is shown on the picture: "}, "src_uid": "dc3817c71b1fa5606f316e5e94732296"} {"nl": {"description": "Bran and his older sister Arya are from the same house. Bran like candies so much, so Arya is going to give him some Candies.At first, Arya and Bran have 0 Candies. There are n days, at the i-th day, Arya finds ai candies in a box, that is given by the Many-Faced God. Every day she can give Bran at most 8 of her candies. If she don't give him the candies at the same day, they are saved for her and she can give them to him later.Your task is to find the minimum number of days Arya needs to give Bran k candies before the end of the n-th day. Formally, you need to output the minimum day index to the end of which k candies will be given out (the days are indexed from 1 to n).Print -1 if she can't give him k candies during n given days.", "input_spec": "The first line contains two integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009k\u2009\u2264\u200910000). The second line contains n integers a1,\u2009a2,\u2009a3,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009100).", "output_spec": "If it is impossible for Arya to give Bran k candies within n days, print -1. Otherwise print a single integer\u00a0\u2014 the minimum number of days Arya needs to give Bran k candies before the end of the n-th day.", "sample_inputs": ["2 3\n1 2", "3 17\n10 10 10", "1 9\n10"], "sample_outputs": ["2", "3", "-1"], "notes": "NoteIn the first sample, Arya can give Bran 3 candies in 2 days.In the second sample, Arya can give Bran 17 candies in 3 days, because she can give him at most 8 candies per day.In the third sample, Arya can't give Bran 9 candies, because she can give him at most 8 candies per day and she must give him the candies within 1 day."}, "src_uid": "24695b6a2aa573e90f0fe661b0c0bd3a"} {"nl": {"description": "Malek lives in an apartment block with 100 floors numbered from 0 to 99. The apartment has an elevator with a digital counter showing the floor that the elevator is currently on. The elevator shows each digit of a number with 7 light sticks by turning them on or off. The picture below shows how the elevator shows each digit.One day when Malek wanted to go from floor 88 to floor 0 using the elevator he noticed that the counter shows number 89 instead of 88. Then when the elevator started moving the number on the counter changed to 87. After a little thinking Malek came to the conclusion that there is only one explanation for this: One of the sticks of the counter was broken. Later that day Malek was thinking about the broken stick and suddenly he came up with the following problem.Suppose the digital counter is showing number n. Malek calls an integer x (0\u2009\u2264\u2009x\u2009\u2264\u200999) good if it's possible that the digital counter was supposed to show x but because of some(possibly none) broken sticks it's showing n instead. Malek wants to know number of good integers for a specific n. So you must write a program that calculates this number. Please note that the counter always shows two digits.", "input_spec": "The only line of input contains exactly two digits representing number n (0\u2009\u2264\u2009n\u2009\u2264\u200999). Note that n may have a leading zero.", "output_spec": "In the only line of the output print the number of good integers.", "sample_inputs": ["89", "00", "73"], "sample_outputs": ["2", "4", "15"], "notes": "NoteIn the first sample the counter may be supposed to show 88 or 89.In the second sample the good integers are 00, 08, 80 and 88.In the third sample the good integers are 03,\u200908,\u200909,\u200933,\u200938,\u200939,\u200973,\u200978,\u200979,\u200983,\u200988,\u200989,\u200993,\u200998,\u200999."}, "src_uid": "76c8bfa6789db8364a8ece0574cd31f5"} {"nl": {"description": "You have two variables a and b. Consider the following sequence of actions performed with these variables: If a\u2009=\u20090 or b\u2009=\u20090, end the process. Otherwise, go to step 2; If a\u2009\u2265\u20092\u00b7b, then set the value of a to a\u2009-\u20092\u00b7b, and repeat step 1. Otherwise, go to step 3; If b\u2009\u2265\u20092\u00b7a, then set the value of b to b\u2009-\u20092\u00b7a, and repeat step 1. Otherwise, end the process.Initially the values of a and b are positive integers, and so the process will be finite.You have to determine the values of a and b after the process ends.", "input_spec": "The only line of the input contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20091018). n is the initial value of variable a, and m is the initial value of variable b.", "output_spec": "Print two integers \u2014 the values of a and b after the end of the process.", "sample_inputs": ["12 5", "31 12"], "sample_outputs": ["0 1", "7 12"], "notes": "NoteExplanations to the samples: a\u2009=\u200912, b\u2009=\u20095 a\u2009=\u20092, b\u2009=\u20095 a\u2009=\u20092, b\u2009=\u20091 a\u2009=\u20090, b\u2009=\u20091; a\u2009=\u200931, b\u2009=\u200912 a\u2009=\u20097, b\u2009=\u200912."}, "src_uid": "1f505e430eb930ea2b495ab531274114"} {"nl": {"description": "There are a lot of things which could be cut\u00a0\u2014 trees, paper, \"the rope\". In this problem you are going to cut a sequence of integers.There is a sequence of integers, which contains the equal number of even and odd numbers. Given a limited budget, you need to make maximum possible number of cuts such that each resulting segment will have the same number of odd and even integers.Cuts separate a sequence to continuous (contiguous) segments. You may think about each cut as a break between two adjacent elements in a sequence. So after cutting each element belongs to exactly one segment. Say, $$$[4, 1, 2, 3, 4, 5, 4, 4, 5, 5]$$$ $$$\\to$$$ two cuts $$$\\to$$$ $$$[4, 1 | 2, 3, 4, 5 | 4, 4, 5, 5]$$$. On each segment the number of even elements should be equal to the number of odd elements.The cost of the cut between $$$x$$$ and $$$y$$$ numbers is $$$|x - y|$$$ bitcoins. Find the maximum possible number of cuts that can be made while spending no more than $$$B$$$ bitcoins.", "input_spec": "First line of the input contains an integer $$$n$$$ ($$$2 \\le n \\le 100$$$) and an integer $$$B$$$ ($$$1 \\le B \\le 100$$$)\u00a0\u2014 the number of elements in the sequence and the number of bitcoins you have. Second line contains $$$n$$$ integers: $$$a_1$$$, $$$a_2$$$, ..., $$$a_n$$$ ($$$1 \\le a_i \\le 100$$$)\u00a0\u2014 elements of the sequence, which contains the equal number of even and odd numbers", "output_spec": "Print the maximum possible number of cuts which can be made while spending no more than $$$B$$$ bitcoins.", "sample_inputs": ["6 4\n1 2 5 10 15 20", "4 10\n1 3 2 4", "6 100\n1 2 3 4 5 6"], "sample_outputs": ["1", "0", "2"], "notes": "NoteIn the first sample the optimal answer is to split sequence between $$$2$$$ and $$$5$$$. Price of this cut is equal to $$$3$$$ bitcoins.In the second sample it is not possible to make even one cut even with unlimited number of bitcoins.In the third sample the sequence should be cut between $$$2$$$ and $$$3$$$, and between $$$4$$$ and $$$5$$$. The total price of the cuts is $$$1 + 1 = 2$$$ bitcoins."}, "src_uid": "b3f8e769ee7719ea5c9f458428b16a4e"} {"nl": {"description": "Allen has a LOT of money. He has $$$n$$$ dollars in the bank. For security reasons, he wants to withdraw it in cash (we will not disclose the reasons here). The denominations for dollar bills are $$$1$$$, $$$5$$$, $$$10$$$, $$$20$$$, $$$100$$$. What is the minimum number of bills Allen could receive after withdrawing his entire balance?", "input_spec": "The first and only line of input contains a single integer $$$n$$$ ($$$1 \\le n \\le 10^9$$$).", "output_spec": "Output the minimum number of bills that Allen could receive.", "sample_inputs": ["125", "43", "1000000000"], "sample_outputs": ["3", "5", "10000000"], "notes": "NoteIn the first sample case, Allen can withdraw this with a $$$100$$$ dollar bill, a $$$20$$$ dollar bill, and a $$$5$$$ dollar bill. There is no way for Allen to receive $$$125$$$ dollars in one or two bills.In the second sample case, Allen can withdraw two $$$20$$$ dollar bills and three $$$1$$$ dollar bills.In the third sample case, Allen can withdraw $$$100000000$$$ (ten million!) $$$100$$$ dollar bills."}, "src_uid": "8e81ad7110552c20297f08ad3e5f8ddc"} {"nl": {"description": "Salve, mi amice.Et tu quidem de lapis philosophorum. Barba non facit philosophum. Labor omnia vincit. Non potest creatio ex nihilo. Necesse est partibus.Rp:\u00a0\u00a0\u00a0\u00a0I Aqua Fortis\u00a0\u00a0\u00a0\u00a0I Aqua Regia\u00a0\u00a0\u00a0\u00a0II Amalgama\u00a0\u00a0\u00a0\u00a0VII Minium\u00a0\u00a0\u00a0\u00a0IV VitriolMisce in vitro et \u00e6stus, et nil admirari. Festina lente, et nulla tenaci invia est via.Fac et spera,Vale,Nicolas Flamel", "input_spec": "The first line of input contains several space-separated integers ai (0\u2009\u2264\u2009ai\u2009\u2264\u2009100).", "output_spec": "Print a single integer.", "sample_inputs": ["2 4 6 8 10"], "sample_outputs": ["1"], "notes": null}, "src_uid": "f914f9b7884cc04b990c7800c6be7b10"} {"nl": {"description": "Masha has three sticks of length $$$a$$$, $$$b$$$ and $$$c$$$ centimeters respectively. In one minute Masha can pick one arbitrary stick and increase its length by one centimeter. She is not allowed to break sticks.What is the minimum number of minutes she needs to spend increasing the stick's length in order to be able to assemble a triangle of positive area. Sticks should be used as triangle's sides (one stick for one side) and their endpoints should be located at triangle's vertices.", "input_spec": "The only line contains tree integers $$$a$$$, $$$b$$$ and $$$c$$$ ($$$1 \\leq a, b, c \\leq 100$$$)\u00a0\u2014 the lengths of sticks Masha possesses.", "output_spec": "Print a single integer\u00a0\u2014 the minimum number of minutes that Masha needs to spend in order to be able to make the triangle of positive area from her sticks.", "sample_inputs": ["3 4 5", "2 5 3", "100 10 10"], "sample_outputs": ["0", "1", "81"], "notes": "NoteIn the first example, Masha can make a triangle from the sticks without increasing the length of any of them.In the second example, Masha can't make a triangle of positive area from the sticks she has at the beginning, but she can spend one minute to increase the length $$$2$$$ centimeter stick by one and after that form a triangle with sides $$$3$$$, $$$3$$$ and $$$5$$$ centimeters.In the third example, Masha can take $$$33$$$ minutes to increase one of the $$$10$$$ centimeters sticks by $$$33$$$ centimeters, and after that take $$$48$$$ minutes to increase another $$$10$$$ centimeters stick by $$$48$$$ centimeters. This way she can form a triangle with lengths $$$43$$$, $$$58$$$ and $$$100$$$ centimeters in $$$81$$$ minutes. One can show that it is impossible to get a valid triangle faster."}, "src_uid": "3dc56bc08606a39dd9ca40a43c452f09"} {"nl": {"description": "There are n cards (n is even) in the deck. Each card has a positive integer written on it. n\u2009/\u20092 people will play new card game. At the beginning of the game each player gets two cards, each card is given to exactly one player. Find the way to distribute cards such that the sum of values written of the cards will be equal for each player. It is guaranteed that it is always possible.", "input_spec": "The first line of the input contains integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of cards in the deck. It is guaranteed that n is even. The second line contains the sequence of n positive integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009100), where ai is equal to the number written on the i-th card.", "output_spec": "Print n\u2009/\u20092 pairs of integers, the i-th pair denote the cards that should be given to the i-th player. Each card should be given to exactly one player. Cards are numbered in the order they appear in the input. It is guaranteed that solution exists. If there are several correct answers, you are allowed to print any of them.", "sample_inputs": ["6\n1 5 7 4 4 3", "4\n10 10 10 10"], "sample_outputs": ["1 3\n6 2\n4 5", "1 2\n3 4"], "notes": "NoteIn the first sample, cards are distributed in such a way that each player has the sum of numbers written on his cards equal to 8. In the second sample, all values ai are equal. Thus, any distribution is acceptable."}, "src_uid": "6e5011801ceff9d76e33e0908b695132"} {"nl": {"description": "Your friend has n cards.You know that each card has a lowercase English letter on one side and a digit on the other.Currently, your friend has laid out the cards on a table so only one side of each card is visible.You would like to know if the following statement is true for cards that your friend owns: \"If a card has a vowel on one side, then it has an even digit on the other side.\" More specifically, a vowel is one of 'a', 'e', 'i', 'o' or 'u', and even digit is one of '0', '2', '4', '6' or '8'.For example, if a card has 'a' on one side, and '6' on the other side, then this statement is true for it. Also, the statement is true, for example, for a card with 'b' and '4', and for a card with 'b' and '3' (since the letter is not a vowel). The statement is false, for example, for card with 'e' and '5'. You are interested if the statement is true for all cards. In particular, if no card has a vowel, the statement is true.To determine this, you can flip over some cards to reveal the other side. You would like to know what is the minimum number of cards you need to flip in the worst case in order to verify that the statement is true.", "input_spec": "The first and only line of input will contain a string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200950), denoting the sides of the cards that you can see on the table currently. Each character of s is either a lowercase English letter or a digit.", "output_spec": "Print a single integer, the minimum number of cards you must turn over to verify your claim.", "sample_inputs": ["ee", "z", "0ay1"], "sample_outputs": ["2", "0", "2"], "notes": "NoteIn the first sample, we must turn over both cards. Note that even though both cards have the same letter, they could possibly have different numbers on the other side.In the second sample, we don't need to turn over any cards. The statement is vacuously true, since you know your friend has no cards with a vowel on them.In the third sample, we need to flip the second and fourth cards."}, "src_uid": "b4af2b8a7e9844bf58ad3410c2cb5223"} {"nl": {"description": "Tattah is asleep if and only if Tattah is attending a lecture. This is a well-known formula among Tattah's colleagues.On a Wednesday afternoon, Tattah was attending Professor HH's lecture. At 12:21, right before falling asleep, he was staring at the digital watch around Saher's wrist. He noticed that the digits on the clock were the same when read from both directions i.e. a palindrome.In his sleep, he started dreaming about such rare moments of the day when the time displayed on a digital clock is a palindrome. As soon as he woke up, he felt destined to write a program that finds the next such moment.However, he still hasn't mastered the skill of programming while sleeping, so your task is to help him.", "input_spec": "The first and only line of the input starts with a string with the format \"HH:MM\" where \"HH\" is from \"00\" to \"23\" and \"MM\" is from \"00\" to \"59\". Both \"HH\" and \"MM\" have exactly two digits.", "output_spec": "Print the palindromic time of day that comes soonest after the time given in the input. If the input time is palindromic, output the soonest palindromic time after the input time.", "sample_inputs": ["12:21", "23:59"], "sample_outputs": ["13:31", "00:00"], "notes": null}, "src_uid": "158eae916daa3e0162d4eac0426fa87f"} {"nl": {"description": "Yet another education system reform has been carried out in Berland recently. The innovations are as follows:An academic year now consists of n days. Each day pupils study exactly one of m subjects, besides, each subject is studied for no more than one day. After the lessons of the i-th subject pupils get the home task that contains no less than ai and no more than bi exercises. Besides, each subject has a special attribute, the complexity (ci). A school can make its own timetable, considering the following conditions are satisfied: the timetable should contain the subjects in the order of the complexity's strict increasing; each day, except for the first one, the task should contain either k times more exercises, or more by k compared to the previous day (more formally: let's call the number of home task exercises in the i-th day as xi, then for each i (1\u2009<\u2009i\u2009\u2264\u2009n): either xi\u2009=\u2009k\u2009+\u2009xi\u2009-\u20091 or xi\u2009=\u2009k\u00b7xi\u2009-\u20091 must be true); the total number of exercises in all home tasks should be maximal possible. All limitations are separately set for each school.It turned out that in many cases ai and bi reach 1016 (however, as the Berland Minister of Education is famous for his love to half-measures, the value of bi\u2009-\u2009ai doesn't exceed 100). That also happened in the Berland School \u2116256. Nevertheless, you as the school's principal still have to work out the timetable for the next academic year...", "input_spec": "The first line contains three integers n, m, k (1\u2009\u2264\u2009n\u2009\u2264\u2009m\u2009\u2264\u200950, 1\u2009\u2264\u2009k\u2009\u2264\u2009100) which represent the number of days in an academic year, the number of subjects and the k parameter correspondingly. Each of the following m lines contains the description of a subject as three integers ai, bi, ci (1\u2009\u2264\u2009ai\u2009\u2264\u2009bi\u2009\u2264\u20091016, bi\u2009-\u2009ai\u2009\u2264\u2009100, 1\u2009\u2264\u2009ci\u2009\u2264\u2009100) \u2014 two limitations to the number of exercises on the i-th subject and the complexity of the i-th subject, correspondingly. Distinct subjects can have the same complexity. The subjects are numbered with integers from 1 to m. Please do not use the %lld specificator to read or write 64-bit numbers in \u0421++. It is preferred to use the cin stream or the %I64d specificator.", "output_spec": "If no valid solution exists, print the single word \"NO\" (without the quotes). Otherwise, the first line should contain the word \"YES\" (without the quotes) and the next n lines should contain any timetable that satisfies all the conditions. The i\u2009+\u20091-th line should contain two positive integers: the number of the subject to study on the i-th day and the number of home task exercises given for this subject. The timetable should contain exactly n subjects.", "sample_inputs": ["4 5 2\n1 10 1\n1 10 2\n1 10 3\n1 20 4\n1 100 5", "3 4 3\n1 3 1\n2 4 4\n2 3 3\n2 2 2"], "sample_outputs": ["YES\n2 8\n3 10\n4 20\n5 40", "NO"], "notes": null}, "src_uid": "c98fdad8e7ce09b8ac389108f72cecd9"} {"nl": {"description": "Ilya is an experienced player in tic-tac-toe on the 4\u2009\u00d7\u20094 field. He always starts and plays with Xs. He played a lot of games today with his friend Arseny. The friends became tired and didn't finish the last game. It was Ilya's turn in the game when they left it. Determine whether Ilya could have won the game by making single turn or not. The rules of tic-tac-toe on the 4\u2009\u00d7\u20094 field are as follows. Before the first turn all the field cells are empty. The two players take turns placing their signs into empty cells (the first player places Xs, the second player places Os). The player who places Xs goes first, the another one goes second. The winner is the player who first gets three of his signs in a row next to each other (horizontal, vertical or diagonal).", "input_spec": "The tic-tac-toe position is given in four lines. Each of these lines contains four characters. Each character is '.' (empty cell), 'x' (lowercase English letter x), or 'o' (lowercase English letter o). It is guaranteed that the position is reachable playing tic-tac-toe, and it is Ilya's turn now (in particular, it means that the game is not finished). It is possible that all the cells are empty, it means that the friends left without making single turn.", "output_spec": "Print single line: \"YES\" in case Ilya could have won by making single turn, and \"NO\" otherwise.", "sample_inputs": ["xx..\n.oo.\nx...\noox.", "x.ox\nox..\nx.o.\noo.x", "x..x\n..oo\no...\nx.xo", "o.x.\no...\n.x..\nooxx"], "sample_outputs": ["YES", "NO", "YES", "NO"], "notes": "NoteIn the first example Ilya had two winning moves: to the empty cell in the left column and to the leftmost empty cell in the first row.In the second example it wasn't possible to win by making single turn.In the third example Ilya could have won by placing X in the last row between two existing Xs.In the fourth example it wasn't possible to win by making single turn."}, "src_uid": "ca4a77fe9718b8bd0b3cc3d956e22917"} {"nl": {"description": "There are n walruses sitting in a circle. All of them are numbered in the clockwise order: the walrus number 2 sits to the left of the walrus number 1, the walrus number 3 sits to the left of the walrus number 2, ..., the walrus number 1 sits to the left of the walrus number n.The presenter has m chips. The presenter stands in the middle of the circle and starts giving the chips to the walruses starting from walrus number 1 and moving clockwise. The walrus number i gets i chips. If the presenter can't give the current walrus the required number of chips, then the presenter takes the remaining chips and the process ends. Determine by the given n and m how many chips the presenter will get in the end.", "input_spec": "The first line contains two integers n and m (1\u2009\u2264\u2009n\u2009\u2264\u200950, 1\u2009\u2264\u2009m\u2009\u2264\u2009104) \u2014 the number of walruses and the number of chips correspondingly.", "output_spec": "Print the number of chips the presenter ended up with.", "sample_inputs": ["4 11", "17 107", "3 8"], "sample_outputs": ["0", "2", "1"], "notes": "NoteIn the first sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, four chips to the walrus number 4, then again one chip to the walrus number 1. After that the presenter runs out of chips. He can't give anything to the walrus number 2 and the process finishes.In the third sample the presenter gives one chip to the walrus number 1, two chips to the walrus number 2, three chips to the walrus number 3, then again one chip to the walrus number 1. The presenter has one chip left and he can't give two chips to the walrus number 2, that's why the presenter takes the last chip."}, "src_uid": "5dd5ee90606d37cae5926eb8b8d250bb"} {"nl": {"description": "One tradition of welcoming the New Year is launching fireworks into the sky. Usually a launched firework flies vertically upward for some period of time, then explodes, splitting into several parts flying in different directions. Sometimes those parts also explode after some period of time, splitting into even more parts, and so on.Limak, who lives in an infinite grid, has a single firework. The behaviour of the firework is described with a recursion depth n and a duration for each level of recursion t1,\u2009t2,\u2009...,\u2009tn. Once Limak launches the firework in some cell, the firework starts moving upward. After covering t1 cells (including the starting cell), it explodes and splits into two parts, each moving in the direction changed by 45 degrees (see the pictures below for clarification). So, one part moves in the top-left direction, while the other one moves in the top-right direction. Each part explodes again after covering t2 cells, splitting into two parts moving in directions again changed by 45 degrees. The process continues till the n-th level of recursion, when all 2n\u2009-\u20091 existing parts explode and disappear without creating new parts. After a few levels of recursion, it's possible that some parts will be at the same place and at the same time\u00a0\u2014 it is allowed and such parts do not crash.Before launching the firework, Limak must make sure that nobody stands in cells which will be visited at least once by the firework. Can you count the number of those cells?", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200930)\u00a0\u2014 the total depth of the recursion. The second line contains n integers t1,\u2009t2,\u2009...,\u2009tn (1\u2009\u2264\u2009ti\u2009\u2264\u20095). On the i-th level each of 2i\u2009-\u20091 parts will cover ti cells before exploding.", "output_spec": "Print one integer, denoting the number of cells which will be visited at least once by any part of the firework.", "sample_inputs": ["4\n4 2 2 3", "6\n1 1 1 1 1 3", "1\n3"], "sample_outputs": ["39", "85", "3"], "notes": "NoteFor the first sample, the drawings below show the situation after each level of recursion. Limak launched the firework from the bottom-most red cell. It covered t1\u2009=\u20094 cells (marked red), exploded and divided into two parts (their further movement is marked green). All explosions are marked with an 'X' character. On the last drawing, there are 4 red, 4 green, 8 orange and 23 pink cells. So, the total number of visited cells is 4\u2009+\u20094\u2009+\u20098\u2009+\u200923\u2009=\u200939. For the second sample, the drawings below show the situation after levels 4, 5 and 6. The middle drawing shows directions of all parts that will move in the next level. "}, "src_uid": "a96bc7f93fe9d9d4b78018b49bbc68d9"} {"nl": {"description": "You have a plate and you want to add some gilding to it. The plate is a rectangle that we split into $$$w\\times h$$$ cells. There should be $$$k$$$ gilded rings, the first one should go along the edge of the plate, the second one\u00a0\u2014 $$$2$$$ cells away from the edge and so on. Each ring has a width of $$$1$$$ cell. Formally, the $$$i$$$-th of these rings should consist of all bordering cells on the inner rectangle of size $$$(w - 4(i - 1))\\times(h - 4(i - 1))$$$. The picture corresponds to the third example. Your task is to compute the number of cells to be gilded.", "input_spec": "The only line contains three integers $$$w$$$, $$$h$$$ and $$$k$$$ ($$$3 \\le w, h \\le 100$$$, $$$1 \\le k \\le \\left\\lfloor \\frac{min(n, m) + 1}{4}\\right\\rfloor$$$, where $$$\\lfloor x \\rfloor$$$ denotes the number $$$x$$$ rounded down) \u2014 the number of rows, columns and the number of rings, respectively.", "output_spec": "Print a single positive integer\u00a0\u2014 the number of cells to be gilded.", "sample_inputs": ["3 3 1", "7 9 1", "7 9 2"], "sample_outputs": ["8", "28", "40"], "notes": "NoteThe first example is shown on the picture below. The second example is shown on the picture below. The third example is shown in the problem description."}, "src_uid": "2c98d59917337cb321d76f72a1b3c057"} {"nl": {"description": "The city park of IT City contains n east to west paths and n north to south paths. Each east to west path crosses each north to south path, so there are n2 intersections.The city funded purchase of five benches. To make it seems that there are many benches it was decided to place them on as many paths as possible. Obviously this requirement is satisfied by the following scheme: each bench is placed on a cross of paths and each path contains not more than one bench.Help the park administration count the number of ways to place the benches.", "input_spec": "The only line of the input contains one integer n (5\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of east to west paths and north to south paths.", "output_spec": "Output one integer \u2014 the number of ways to place the benches.", "sample_inputs": ["5"], "sample_outputs": ["120"], "notes": null}, "src_uid": "92db14325cd8aee06b502c12d2e3dd81"} {"nl": {"description": "Petr wants to make a calendar for current month. For this purpose he draws a table in which columns correspond to weeks (a week is seven consequent days from Monday to Sunday), rows correspond to weekdays, and cells contain dates. For example, a calendar for January 2017 should look like on the picture: Petr wants to know how many columns his table should have given the month and the weekday of the first date of that month? Assume that the year is non-leap.", "input_spec": "The only line contain two integers m and d (1\u2009\u2264\u2009m\u2009\u2264\u200912, 1\u2009\u2264\u2009d\u2009\u2264\u20097)\u00a0\u2014 the number of month (January is the first month, December is the twelfth) and the weekday of the first date of this month (1 is Monday, 7 is Sunday).", "output_spec": "Print single integer: the number of columns the table should have.", "sample_inputs": ["1 7", "1 1", "11 6"], "sample_outputs": ["6", "5", "5"], "notes": "NoteThe first example corresponds to the January 2017 shown on the picture in the statements.In the second example 1-st January is Monday, so the whole month fits into 5 columns.In the third example 1-st November is Saturday and 5 columns is enough."}, "src_uid": "5b969b6f564df6f71e23d4adfb2ded74"} {"nl": {"description": "Vitaly is a very weird man. He's got two favorite digits a and b. Vitaly calls a positive integer good, if the decimal representation of this integer only contains digits a and b. Vitaly calls a good number excellent, if the sum of its digits is a good number.For example, let's say that Vitaly's favourite digits are 1 and 3, then number 12 isn't good and numbers 13 or 311 are. Also, number 111 is excellent and number 11 isn't. Now Vitaly is wondering, how many excellent numbers of length exactly n are there. As this number can be rather large, he asks you to count the remainder after dividing it by 1000000007 (109\u2009+\u20097).A number's length is the number of digits in its decimal representation without leading zeroes.", "input_spec": "The first line contains three integers: a, b, n (1\u2009\u2264\u2009a\u2009<\u2009b\u2009\u2264\u20099,\u20091\u2009\u2264\u2009n\u2009\u2264\u2009106).", "output_spec": "Print a single integer \u2014 the answer to the problem modulo 1000000007 (109\u2009+\u20097).", "sample_inputs": ["1 3 3", "2 3 10"], "sample_outputs": ["1", "165"], "notes": null}, "src_uid": "d3e3da5b6ba37c8ac5f22b18c140ce81"} {"nl": {"description": "Fangy collects cookies. Once he decided to take a box and put cookies into it in some way. If we take a square k\u2009\u00d7\u2009k in size, divided into blocks 1\u2009\u00d7\u20091 in size and paint there the main diagonal together with cells, which lie above it, then the painted area will be equal to the area occupied by one cookie k in size. Fangy also has a box with a square base 2n\u2009\u00d7\u20092n, divided into blocks 1\u2009\u00d7\u20091 in size. In a box the cookies should not overlap, and they should not be turned over or rotated. See cookies of sizes 2 and 4 respectively on the figure: To stack the cookies the little walrus uses the following algorithm. He takes out of the repository the largest cookie which can fit in some place in the box and puts it there. Everything could be perfect but alas, in the repository the little walrus has infinitely many cookies of size 2 and larger, and there are no cookies of size 1, therefore, empty cells will remain in the box. Fangy wants to know how many empty cells will be left in the end.", "input_spec": "The first line contains a single integer n (0\u2009\u2264\u2009n\u2009\u2264\u20091000).", "output_spec": "Print the single number, equal to the number of empty cells in the box. The answer should be printed modulo 106\u2009+\u20093.", "sample_inputs": ["3"], "sample_outputs": ["9"], "notes": "NoteIf the box possesses the base of 23\u2009\u00d7\u200923 (as in the example), then the cookies will be put there in the following manner: "}, "src_uid": "1a335a9638523ca0315282a67e18eec7"} {"nl": {"description": "The Little Elephant loves chess very much. One day the Little Elephant and his friend decided to play chess. They've got the chess pieces but the board is a problem. They've got an 8\u2009\u00d7\u20098 checkered board, each square is painted either black or white. The Little Elephant and his friend know that a proper chessboard doesn't have any side-adjacent cells with the same color and the upper left cell is white. To play chess, they want to make the board they have a proper chessboard. For that the friends can choose any row of the board and cyclically shift the cells of the chosen row, that is, put the last (rightmost) square on the first place in the row and shift the others one position to the right. You can run the described operation multiple times (or not run it at all).For example, if the first line of the board looks like that \"BBBBBBWW\" (the white cells of the line are marked with character \"W\", the black cells are marked with character \"B\"), then after one cyclic shift it will look like that \"WBBBBBBW\".Help the Little Elephant and his friend to find out whether they can use any number of the described operations to turn the board they have into a proper chessboard.", "input_spec": "The input consists of exactly eight lines. Each line contains exactly eight characters \"W\" or \"B\" without any spaces: the j-th character in the i-th line stands for the color of the j-th cell of the i-th row of the elephants' board. Character \"W\" stands for the white color, character \"B\" stands for the black color. Consider the rows of the board numbered from 1 to 8 from top to bottom, and the columns \u2014 from 1 to 8 from left to right. The given board can initially be a proper chessboard.", "output_spec": "In a single line print \"YES\" (without the quotes), if we can make the board a proper chessboard and \"NO\" (without the quotes) otherwise.", "sample_inputs": ["WBWBWBWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWBW\nWBWBWBWB\nWBWBWBWB\nBWBWBWBW\nWBWBWBWB", "WBWBWBWB\nWBWBWBWB\nBBWBWWWB\nBWBWBWBW\nBWBWBWBW\nBWBWBWWW\nBWBWBWBW\nBWBWBWBW"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample you should shift the following lines one position to the right: the 3-rd, the 6-th, the 7-th and the 8-th.In the second sample there is no way you can achieve the goal."}, "src_uid": "ca65e023be092b2ce25599f52acc1a67"} {"nl": {"description": "You are planning to build housing on a street. There are $$$n$$$ spots available on the street on which you can build a house. The spots are labeled from $$$1$$$ to $$$n$$$ from left to right. In each spot, you can build a house with an integer height between $$$0$$$ and $$$h$$$.In each spot, if a house has height $$$a$$$, you will gain $$$a^2$$$ dollars from it.The city has $$$m$$$ zoning restrictions. The $$$i$$$-th restriction says that the tallest house from spots $$$l_i$$$ to $$$r_i$$$ (inclusive) must be at most $$$x_i$$$.You would like to build houses to maximize your profit. Determine the maximum profit possible.", "input_spec": "The first line contains three integers $$$n$$$, $$$h$$$, and $$$m$$$ ($$$1 \\leq n,h,m \\leq 50$$$)\u00a0\u2014 the number of spots, the maximum height, and the number of restrictions. Each of the next $$$m$$$ lines contains three integers $$$l_i$$$, $$$r_i$$$, and $$$x_i$$$ ($$$1 \\leq l_i \\leq r_i \\leq n$$$, $$$0 \\leq x_i \\leq h$$$)\u00a0\u2014 left and right limits (inclusive) of the $$$i$$$-th restriction and the maximum possible height in that range.", "output_spec": "Print a single integer, the maximum profit you can make.", "sample_inputs": ["3 3 3\n1 1 1\n2 2 3\n3 3 2", "4 10 2\n2 3 8\n3 4 7"], "sample_outputs": ["14", "262"], "notes": "NoteIn the first example, there are $$$3$$$ houses, the maximum height of a house is $$$3$$$, and there are $$$3$$$ restrictions. The first restriction says the tallest house between $$$1$$$ and $$$1$$$ must be at most $$$1$$$. The second restriction says the tallest house between $$$2$$$ and $$$2$$$ must be at most $$$3$$$. The third restriction says the tallest house between $$$3$$$ and $$$3$$$ must be at most $$$2$$$.In this case, it is optimal to build houses with heights $$$[1, 3, 2]$$$. This fits within all the restrictions. The total profit in this case is $$$1^2 + 3^2 + 2^2 = 14$$$.In the second example, there are $$$4$$$ houses, the maximum height of a house is $$$10$$$, and there are $$$2$$$ restrictions. The first restriction says the tallest house from $$$2$$$ to $$$3$$$ must be at most $$$8$$$. The second restriction says the tallest house from $$$3$$$ to $$$4$$$ must be at most $$$7$$$.In this case, it's optimal to build houses with heights $$$[10, 8, 7, 7]$$$. We get a profit of $$$10^2+8^2+7^2+7^2 = 262$$$. Note that there are two restrictions on house $$$3$$$ and both of them must be satisfied. Also, note that even though there isn't any explicit restrictions on house $$$1$$$, we must still limit its height to be at most $$$10$$$ ($$$h=10$$$)."}, "src_uid": "f22b6dab443f63fb8d2d288b702f20ad"} {"nl": {"description": "Andrey thinks he is truly a successful developer, but in reality he didn't know about the binary search algorithm until recently. After reading some literature Andrey understood that this algorithm allows to quickly find a certain number $$$x$$$ in an array. For an array $$$a$$$ indexed from zero, and an integer $$$x$$$ the pseudocode of the algorithm is as follows: Note that the elements of the array are indexed from zero, and the division is done in integers (rounding down).Andrey read that the algorithm only works if the array is sorted. However, he found this statement untrue, because there certainly exist unsorted arrays for which the algorithm find $$$x$$$!Andrey wants to write a letter to the book authors, but before doing that he must consider the permutations of size $$$n$$$ such that the algorithm finds $$$x$$$ in them. A permutation of size $$$n$$$ is an array consisting of $$$n$$$ distinct integers between $$$1$$$ and $$$n$$$ in arbitrary order.Help Andrey and find the number of permutations of size $$$n$$$ which contain $$$x$$$ at position $$$pos$$$ and for which the given implementation of the binary search algorithm finds $$$x$$$ (returns true). As the result may be extremely large, print the remainder of its division by $$$10^9+7$$$.", "input_spec": "The only line of input contains integers $$$n$$$, $$$x$$$ and $$$pos$$$ ($$$1 \\le x \\le n \\le 1000$$$, $$$0 \\le pos \\le n - 1$$$) \u2014 the required length of the permutation, the number to search, and the required position of that number, respectively.", "output_spec": "Print a single number\u00a0\u2014 the remainder of the division of the number of valid permutations by $$$10^9+7$$$.", "sample_inputs": ["4 1 2", "123 42 24"], "sample_outputs": ["6", "824071958"], "notes": "NoteAll possible permutations in the first test case: $$$(2, 3, 1, 4)$$$, $$$(2, 4, 1, 3)$$$, $$$(3, 2, 1, 4)$$$, $$$(3, 4, 1, 2)$$$, $$$(4, 2, 1, 3)$$$, $$$(4, 3, 1, 2)$$$."}, "src_uid": "24e2f10463f440affccc2755f4462d8a"} {"nl": {"description": "You've got a rectangular table with length a and width b and the infinite number of plates of radius r. Two players play the following game: they take turns to put the plates on the table so that the plates don't lie on each other (but they can touch each other), and so that any point on any plate is located within the table's border. During the game one cannot move the plates that already lie on the table. The player who cannot make another move loses. Determine which player wins, the one who moves first or the one who moves second, provided that both players play optimally well.", "input_spec": "A single line contains three space-separated integers a, b, r (1\u2009\u2264\u2009a,\u2009b,\u2009r\u2009\u2264\u2009100) \u2014 the table sides and the plates' radius, correspondingly.", "output_spec": "If wins the player who moves first, print \"First\" (without the quotes). Otherwise print \"Second\" (without the quotes).", "sample_inputs": ["5 5 2", "6 7 4"], "sample_outputs": ["First", "Second"], "notes": "NoteIn the first sample the table has place for only one plate. The first player puts a plate on the table, the second player can't do that and loses. In the second sample the table is so small that it doesn't have enough place even for one plate. So the first player loses without making a single move. "}, "src_uid": "90b9ef939a13cf29715bc5bce26c9896"} {"nl": {"description": "The final match of the Berland Football Cup has been held recently. The referee has shown $$$n$$$ yellow cards throughout the match. At the beginning of the match there were $$$a_1$$$ players in the first team and $$$a_2$$$ players in the second team.The rules of sending players off the game are a bit different in Berland football. If a player from the first team receives $$$k_1$$$ yellow cards throughout the match, he can no longer participate in the match \u2014 he's sent off. And if a player from the second team receives $$$k_2$$$ yellow cards, he's sent off. After a player leaves the match, he can no longer receive any yellow cards. Each of $$$n$$$ yellow cards was shown to exactly one player. Even if all players from one team (or even from both teams) leave the match, the game still continues.The referee has lost his records on who has received each yellow card. Help him to determine the minimum and the maximum number of players that could have been thrown out of the game.", "input_spec": "The first line contains one integer $$$a_1$$$ $$$(1 \\le a_1 \\le 1\\,000)$$$ \u2014 the number of players in the first team. The second line contains one integer $$$a_2$$$ $$$(1 \\le a_2 \\le 1\\,000)$$$ \u2014 the number of players in the second team. The third line contains one integer $$$k_1$$$ $$$(1 \\le k_1 \\le 1\\,000)$$$ \u2014 the maximum number of yellow cards a player from the first team can receive (after receiving that many yellow cards, he leaves the game). The fourth line contains one integer $$$k_2$$$ $$$(1 \\le k_2 \\le 1\\,000)$$$ \u2014 the maximum number of yellow cards a player from the second team can receive (after receiving that many yellow cards, he leaves the game). The fifth line contains one integer $$$n$$$ $$$(1 \\le n \\le a_1 \\cdot k_1 + a_2 \\cdot k_2)$$$ \u2014 the number of yellow cards that have been shown during the match.", "output_spec": "Print two integers \u2014 the minimum and the maximum number of players that could have been thrown out of the game.", "sample_inputs": ["2\n3\n5\n1\n8", "3\n1\n6\n7\n25", "6\n4\n9\n10\n89"], "sample_outputs": ["0 4", "4 4", "5 9"], "notes": "NoteIn the first example it could be possible that no player left the game, so the first number in the output is $$$0$$$. The maximum possible number of players that could have been forced to leave the game is $$$4$$$ \u2014 one player from the first team, and three players from the second.In the second example the maximum possible number of yellow cards has been shown $$$(3 \\cdot 6 + 1 \\cdot 7 = 25)$$$, so in any case all players were sent off."}, "src_uid": "2be8e0b8ad4d3de2930576c0209e8b91"} {"nl": {"description": "Carl is a beginner magician. He has a blue, b violet and c orange magic spheres. In one move he can transform two spheres of the same color into one sphere of any other color. To make a spell that has never been seen before, he needs at least x blue, y violet and z orange spheres. Can he get them (possible, in multiple actions)?", "input_spec": "The first line of the input contains three integers a, b and c (0\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u20091\u2009000\u2009000)\u00a0\u2014 the number of blue, violet and orange spheres that are in the magician's disposal. The second line of the input contains three integers, x, y and z (0\u2009\u2264\u2009x,\u2009y,\u2009z\u2009\u2264\u20091\u2009000\u2009000)\u00a0\u2014 the number of blue, violet and orange spheres that he needs to get.", "output_spec": "If the wizard is able to obtain the required numbers of spheres, print \"Yes\". Otherwise, print \"No\".", "sample_inputs": ["4 4 0\n2 1 2", "5 6 1\n2 7 2", "3 3 3\n2 2 2"], "sample_outputs": ["Yes", "No", "Yes"], "notes": "NoteIn the first sample the wizard has 4 blue and 4 violet spheres. In his first action he can turn two blue spheres into one violet one. After that he will have 2 blue and 5 violet spheres. Then he turns 4 violet spheres into 2 orange spheres and he ends up with 2 blue, 1 violet and 2 orange spheres, which is exactly what he needs."}, "src_uid": "1db4ba9dc1000e26532bb73336cf12c3"} {"nl": {"description": "Alex, Bob and Carl will soon participate in a team chess tournament. Since they are all in the same team, they have decided to practise really hard before the tournament. But it's a bit difficult for them because chess is a game for two players, not three.So they play with each other according to following rules: Alex and Bob play the first game, and Carl is spectating; When the game ends, the one who lost the game becomes the spectator in the next game, and the one who was spectating plays against the winner. Alex, Bob and Carl play in such a way that there are no draws.Today they have played n games, and for each of these games they remember who was the winner. They decided to make up a log of games describing who won each game. But now they doubt if the information in the log is correct, and they want to know if the situation described in the log they made up was possible (that is, no game is won by someone who is spectating if Alex, Bob and Carl play according to the rules). Help them to check it!", "input_spec": "The first line contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of games Alex, Bob and Carl played. Then n lines follow, describing the game log. i-th line contains one integer ai (1\u2009\u2264\u2009ai\u2009\u2264\u20093) which is equal to 1 if Alex won i-th game, to 2 if Bob won i-th game and 3 if Carl won i-th game.", "output_spec": "Print YES if the situation described in the log was possible. Otherwise print NO.", "sample_inputs": ["3\n1\n1\n2", "2\n1\n2"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example the possible situation is: Alex wins, Carl starts playing instead of Bob; Alex wins, Bob replaces Carl; Bob wins. The situation in the second example is impossible because Bob loses the first game, so he cannot win the second one."}, "src_uid": "6c7ab07abdf157c24be92f49fd1d8d87"} {"nl": {"description": "Petya studies in a school and he adores Maths. His class has been studying arithmetic expressions. On the last class the teacher wrote three positive integers a, b, c on the blackboard. The task was to insert signs of operations '+' and '*', and probably brackets between the numbers so that the value of the resulting expression is as large as possible. Let's consider an example: assume that the teacher wrote numbers 1, 2 and 3 on the blackboard. Here are some ways of placing signs and brackets: 1+2*3=7 1*(2+3)=5 1*2*3=6 (1+2)*3=9 Note that you can insert operation signs only between a and b, and between b and c, that is, you cannot swap integers. For instance, in the given sample you cannot get expression (1+3)*2.It's easy to see that the maximum value that you can obtain is 9.Your task is: given a, b and c print the maximum value that you can get.", "input_spec": "The input contains three integers a, b and c, each on a single line (1\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u200910).", "output_spec": "Print the maximum value of the expression that you can obtain.", "sample_inputs": ["1\n2\n3", "2\n10\n3"], "sample_outputs": ["9", "60"], "notes": null}, "src_uid": "1cad9e4797ca2d80a12276b5a790ef27"} {"nl": {"description": "This year, as in previous years, MemSQL is inviting the top 25 competitors from the Start[c]up qualification round to compete onsite for the final round. Not everyone who is eligible to compete onsite can afford to travel to the office, though. Initially the top 25 contestants are invited to come onsite. Each eligible contestant must either accept or decline the invitation. Whenever a contestant declines, the highest ranked contestant not yet invited is invited to take the place of the one that declined. This continues until 25 contestants have accepted invitations.After the qualifying round completes, you know K of the onsite finalists, as well as their qualifying ranks (which start at 1, there are no ties). Determine the minimum possible number of contestants that declined the invitation to compete onsite in the final round.", "input_spec": "The first line of input contains K (1\u2009\u2264\u2009K\u2009\u2264\u200925), the number of onsite finalists you know. The second line of input contains r1,\u2009r2,\u2009...,\u2009rK (1\u2009\u2264\u2009ri\u2009\u2264\u2009106), the qualifying ranks of the finalists you know. All these ranks are distinct.", "output_spec": "Print the minimum possible number of contestants that declined the invitation to compete onsite.", "sample_inputs": ["25\n2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 28", "5\n16 23 8 15 4", "3\n14 15 92"], "sample_outputs": ["3", "0", "67"], "notes": "NoteIn the first example, you know all 25 onsite finalists. The contestants who ranked 1-st, 13-th, and 27-th must have declined, so the answer is 3."}, "src_uid": "ef657588b4f2fe8b2ff5f8edc0ab8afd"} {"nl": {"description": "Kirill plays a new computer game. He came to the potion store where he can buy any potion. Each potion is characterized by two integers\u00a0\u2014 amount of experience and cost. The efficiency of a potion is the ratio of the amount of experience to the cost. Efficiency may be a non-integer number.For each two integer numbers a and b such that l\u2009\u2264\u2009a\u2009\u2264\u2009r and x\u2009\u2264\u2009b\u2009\u2264\u2009y there is a potion with experience a and cost b in the store (that is, there are (r\u2009-\u2009l\u2009+\u20091)\u00b7(y\u2009-\u2009x\u2009+\u20091) potions).Kirill wants to buy a potion which has efficiency k. Will he be able to do this?", "input_spec": "First string contains five integer numbers l, r, x, y, k (1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u2009107, 1\u2009\u2264\u2009x\u2009\u2264\u2009y\u2009\u2264\u2009107, 1\u2009\u2264\u2009k\u2009\u2264\u2009107).", "output_spec": "Print \"YES\" without quotes if a potion with efficiency exactly k can be bought in the store and \"NO\" without quotes otherwise. You can output each of the letters in any register.", "sample_inputs": ["1 10 1 10 1", "1 5 6 10 1"], "sample_outputs": ["YES", "NO"], "notes": null}, "src_uid": "1110d3671e9f77fd8d66dca6e74d2048"} {"nl": {"description": "Limak is a little polar bear. He has n balls, the i-th ball has size ti.Limak wants to give one ball to each of his three friends. Giving gifts isn't easy\u00a0\u2014 there are two rules Limak must obey to make friends happy: No two friends can get balls of the same size. No two friends can get balls of sizes that differ by more than 2. For example, Limak can choose balls with sizes 4, 5 and 3, or balls with sizes 90, 91 and 92. But he can't choose balls with sizes 5, 5 and 6 (two friends would get balls of the same size), and he can't choose balls with sizes 30, 31 and 33 (because sizes 30 and 33 differ by more than 2).Your task is to check whether Limak can choose three balls that satisfy conditions above.", "input_spec": "The first line of the input contains one integer n (3\u2009\u2264\u2009n\u2009\u2264\u200950)\u00a0\u2014 the number of balls Limak has. The second line contains n integers t1,\u2009t2,\u2009...,\u2009tn (1\u2009\u2264\u2009ti\u2009\u2264\u20091000) where ti denotes the size of the i-th ball.", "output_spec": "Print \"YES\" (without quotes) if Limak can choose three balls of distinct sizes, such that any two of them differ by no more than 2. Otherwise, print \"NO\" (without quotes).", "sample_inputs": ["4\n18 55 16 17", "6\n40 41 43 44 44 44", "8\n5 972 3 4 1 4 970 971"], "sample_outputs": ["YES", "NO", "YES"], "notes": "NoteIn the first sample, there are 4 balls and Limak is able to choose three of them to satisfy the rules. He must must choose balls with sizes 18, 16 and 17.In the second sample, there is no way to give gifts to three friends without breaking the rules.In the third sample, there is even more than one way to choose balls: Choose balls with sizes 3, 4 and 5. Choose balls with sizes 972, 970, 971. "}, "src_uid": "d6c876a84c7b92141710be5d76536eab"} {"nl": {"description": "You are given a mysterious language (codenamed \"Secret\") available in \"Custom Test\" tab. Find out what this language is and write a program which outputs its name. Note that the program must be written in this language.", "input_spec": "This program has only one test, and it's empty (it doesn't give your program anything to read).", "output_spec": "Output the name of the mysterious language.", "sample_inputs": [], "sample_outputs": [], "notes": null}, "src_uid": "ef8239a0f77c538d2d9b246b86be63fe"} {"nl": {"description": "Polycarp likes squares and cubes of positive integers. Here is the beginning of the sequence of numbers he likes: $$$1$$$, $$$4$$$, $$$8$$$, $$$9$$$, ....For a given number $$$n$$$, count the number of integers from $$$1$$$ to $$$n$$$ that Polycarp likes. In other words, find the number of such $$$x$$$ that $$$x$$$ is a square of a positive integer number or a cube of a positive integer number (or both a square and a cube simultaneously).", "input_spec": "The first line contains an integer $$$t$$$ ($$$1 \\le t \\le 20$$$) \u2014 the number of test cases. Then $$$t$$$ lines contain the test cases, one per line. Each of the lines contains one integer $$$n$$$ ($$$1 \\le n \\le 10^9$$$).", "output_spec": "For each test case, print the answer you are looking for \u2014 the number of integers from $$$1$$$ to $$$n$$$ that Polycarp likes.", "sample_inputs": ["6\n10\n1\n25\n1000000000\n999999999\n500000000"], "sample_outputs": ["4\n1\n6\n32591\n32590\n23125"], "notes": null}, "src_uid": "015afbefe1514a0e18fcb9286c7b6624"} {"nl": {"description": "In Berland a money reform is being prepared. New coins are being introduced. After long economic calculations was decided that the most expensive coin should possess the denomination of exactly n Berland dollars. Also the following restriction has been introduced for comfort: the denomination of each coin should be divisible by the denomination of any cheaper coin. It is known that among all the possible variants the variant with the largest number of new coins will be chosen. Find this variant. Print in the order of decreasing of the coins' denominations.", "input_spec": "The first and only line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009106) which represents the denomination of the most expensive coin. ", "output_spec": "Print the denominations of all the coins in the order of decreasing. The number of coins must be the largest possible (with the given denomination n of the most expensive coin). Also, the denomination of every coin must be divisible by the denomination of any cheaper coin. Naturally, the denominations of all the coins should be different. If there are several solutins to that problem, print any of them.", "sample_inputs": ["10", "4", "3"], "sample_outputs": ["10 5 1", "4 2 1", "3 1"], "notes": null}, "src_uid": "2fc946bb72f56b6d86eabfaf60f9fa63"} {"nl": {"description": "You are locked in a room with a door that has a keypad with 10 keys corresponding to digits from 0 to 9. To escape from the room, you need to enter a correct code. You also have a sequence of digits.Some keys on the keypad have fingerprints. You believe the correct code is the longest not necessarily contiguous subsequence of the sequence you have that only contains digits with fingerprints on the corresponding keys. Find such code.", "input_spec": "The first line contains two integers $$$n$$$ and $$$m$$$ ($$$1 \\le n, m \\le 10$$$) representing the number of digits in the sequence you have and the number of keys on the keypad that have fingerprints. The next line contains $$$n$$$ distinct space-separated integers $$$x_1, x_2, \\ldots, x_n$$$ ($$$0 \\le x_i \\le 9$$$) representing the sequence. The next line contains $$$m$$$ distinct space-separated integers $$$y_1, y_2, \\ldots, y_m$$$ ($$$0 \\le y_i \\le 9$$$) \u2014 the keys with fingerprints.", "output_spec": "In a single line print a space-separated sequence of integers representing the code. If the resulting sequence is empty, both printing nothing and printing a single line break is acceptable.", "sample_inputs": ["7 3\n3 5 7 1 6 2 8\n1 2 7", "4 4\n3 4 1 0\n0 1 7 9"], "sample_outputs": ["7 1 2", "1 0"], "notes": "NoteIn the first example, the only digits with fingerprints are $$$1$$$, $$$2$$$ and $$$7$$$. All three of them appear in the sequence you know, $$$7$$$ first, then $$$1$$$ and then $$$2$$$. Therefore the output is 7 1 2. Note that the order is important, and shall be the same as the order in the original sequence.In the second example digits $$$0$$$, $$$1$$$, $$$7$$$ and $$$9$$$ have fingerprints, however only $$$0$$$ and $$$1$$$ appear in the original sequence. $$$1$$$ appears earlier, so the output is 1 0. Again, the order is important."}, "src_uid": "f9044a4b4c3a0c2751217d9b31cd0c72"} {"nl": {"description": "You are given two set of points. The first set is determined by the equation A1x\u2009+\u2009B1y\u2009+\u2009C1\u2009=\u20090, and the second one is determined by the equation A2x\u2009+\u2009B2y\u2009+\u2009C2\u2009=\u20090.Write the program which finds the number of points in the intersection of two given sets.", "input_spec": "The first line of the input contains three integer numbers A1,\u2009B1,\u2009C1 separated by space. The second line contains three integer numbers A2,\u2009B2,\u2009C2 separated by space. All the numbers are between -100 and 100, inclusive.", "output_spec": "Print the number of points in the intersection or -1 if there are infinite number of points.", "sample_inputs": ["1 1 0\n2 2 0", "1 1 0\n2 -2 0"], "sample_outputs": ["-1", "1"], "notes": null}, "src_uid": "c8e869cb17550e888733551c749f2e1a"} {"nl": {"description": "In Berland each high school student is characterized by academic performance \u2014 integer value between 1 and 5.In high school 0xFF there are two groups of pupils: the group A and the group B. Each group consists of exactly n students. An academic performance of each student is known \u2014 integer value between 1 and 5.The school director wants to redistribute students between groups so that each of the two groups has the same number of students whose academic performance is equal to 1, the same number of students whose academic performance is 2 and so on. In other words, the purpose of the school director is to change the composition of groups, so that for each value of academic performance the numbers of students in both groups are equal.To achieve this, there is a plan to produce a series of exchanges of students between groups. During the single exchange the director selects one student from the class A and one student of class B. After that, they both change their groups.Print the least number of exchanges, in order to achieve the desired equal numbers of students for each academic performance.", "input_spec": "The first line of the input contains integer number n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 number of students in both groups. The second line contains sequence of integer numbers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u20095), where ai is academic performance of the i-th student of the group A. The third line contains sequence of integer numbers b1,\u2009b2,\u2009...,\u2009bn (1\u2009\u2264\u2009bi\u2009\u2264\u20095), where bi is academic performance of the i-th student of the group B.", "output_spec": "Print the required minimum number of exchanges or -1, if the desired distribution of students can not be obtained.", "sample_inputs": ["4\n5 4 4 4\n5 5 4 5", "6\n1 1 1 1 1 1\n5 5 5 5 5 5", "1\n5\n3", "9\n3 2 5 5 2 3 3 3 2\n4 1 4 1 1 2 4 4 1"], "sample_outputs": ["1", "3", "-1", "4"], "notes": null}, "src_uid": "47da1dd95cd015acb8c7fd6ae5ec22a3"} {"nl": {"description": "Unary is a minimalistic Brainfuck dialect in which programs are written using only one token. Brainfuck programs use 8 commands: \"+\", \"-\", \"[\", \"]\", \"<\", \">\", \".\" and \",\" (their meaning is not important for the purposes of this problem). Unary programs are created from Brainfuck programs using the following algorithm. First, replace each command with a corresponding binary code, using the following conversion table: \">\" \u2009\u2192\u2009 1000, \"<\" \u2009\u2192\u2009 1001, \"+\" \u2009\u2192\u2009 1010, \"-\" \u2009\u2192\u2009 1011, \".\" \u2009\u2192\u2009 1100, \",\" \u2009\u2192\u2009 1101, \"[\" \u2009\u2192\u2009 1110, \"]\" \u2009\u2192\u2009 1111. Next, concatenate the resulting binary codes into one binary number in the same order as in the program. Finally, write this number using unary numeral system \u2014 this is the Unary program equivalent to the original Brainfuck one.You are given a Brainfuck program. Your task is to calculate the size of the equivalent Unary program, and print it modulo 1000003 (106\u2009+\u20093).", "input_spec": "The input will consist of a single line p which gives a Brainfuck program. String p will contain between 1 and 100 characters, inclusive. Each character of p will be \"+\", \"-\", \"[\", \"]\", \"<\", \">\", \".\" or \",\".", "output_spec": "Output the size of the equivalent Unary program modulo 1000003 (106\u2009+\u20093).", "sample_inputs": [",.", "++++[>,.<-]"], "sample_outputs": ["220", "61425"], "notes": "NoteTo write a number n in unary numeral system, one simply has to write 1 n times. For example, 5 written in unary system will be 11111.In the first example replacing Brainfuck commands with binary code will give us 1101 1100. After we concatenate the codes, we'll get 11011100 in binary system, or 220 in decimal. That's exactly the number of tokens in the equivalent Unary program."}, "src_uid": "04fc8dfb856056f35d296402ad1b2da1"} {"nl": {"description": "Vasya has got many devices that work on electricity. He's got n supply-line filters to plug the devices, the i-th supply-line filter has ai sockets.Overall Vasya has got m devices and k electrical sockets in his flat, he can plug the devices or supply-line filters directly. Of course, he can plug the supply-line filter to any other supply-line filter. The device (or the supply-line filter) is considered plugged to electricity if it is either plugged to one of k electrical sockets, or if it is plugged to some supply-line filter that is in turn plugged to electricity. What minimum number of supply-line filters from the given set will Vasya need to plug all the devices he has to electricity? Note that all devices and supply-line filters take one socket for plugging and that he can use one socket to plug either one device or one supply-line filter.", "input_spec": "The first line contains three integers n, m, k (1\u2009\u2264\u2009n,\u2009m,\u2009k\u2009\u2264\u200950) \u2014 the number of supply-line filters, the number of devices and the number of sockets that he can plug to directly, correspondingly. The second line contains n space-separated integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u200950) \u2014 number ai stands for the number of sockets on the i-th supply-line filter.", "output_spec": "Print a single number \u2014 the minimum number of supply-line filters that is needed to plug all the devices to electricity. If it is impossible to plug all the devices even using all the supply-line filters, print -1.", "sample_inputs": ["3 5 3\n3 1 2", "4 7 2\n3 3 2 4", "5 5 1\n1 3 1 2 1"], "sample_outputs": ["1", "2", "-1"], "notes": "NoteIn the first test case he can plug the first supply-line filter directly to electricity. After he plug it, he get 5 (3 on the supply-line filter and 2 remaining sockets for direct plugging) available sockets to plug. Thus, one filter is enough to plug 5 devices.One of the optimal ways in the second test sample is to plug the second supply-line filter directly and plug the fourth supply-line filter to one of the sockets in the second supply-line filter. Thus, he gets exactly 7 sockets, available to plug: one to plug to the electricity directly, 2 on the second supply-line filter, 4 on the fourth supply-line filter. There's no way he can plug 7 devices if he use one supply-line filter."}, "src_uid": "b32ab27503ee3c4196d6f0d0f133d13c"} {"nl": {"description": "What joy! Petya's parents went on a business trip for the whole year and the playful kid is left all by himself. Petya got absolutely happy. He jumped on the bed and threw pillows all day long, until... Today Petya opened the cupboard and found a scary note there. His parents had left him with duties: he should water their favourite flower all year, each day, in the morning, in the afternoon and in the evening. \"Wait a second!\" \u2014 thought Petya. He know for a fact that if he fulfills the parents' task in the i-th (1\u2009\u2264\u2009i\u2009\u2264\u200912) month of the year, then the flower will grow by ai centimeters, and if he doesn't water the flower in the i-th month, then the flower won't grow this month. Petya also knows that try as he might, his parents won't believe that he has been watering the flower if it grows strictly less than by k centimeters. Help Petya choose the minimum number of months when he will water the flower, given that the flower should grow no less than by k centimeters.", "input_spec": "The first line contains exactly one integer k (0\u2009\u2264\u2009k\u2009\u2264\u2009100). The next line contains twelve space-separated integers: the i-th (1\u2009\u2264\u2009i\u2009\u2264\u200912) number in the line represents ai (0\u2009\u2264\u2009ai\u2009\u2264\u2009100). ", "output_spec": "Print the only integer \u2014 the minimum number of months when Petya has to water the flower so that the flower grows no less than by k centimeters. If the flower can't grow by k centimeters in a year, print -1.", "sample_inputs": ["5\n1 1 1 1 2 2 3 2 2 1 1 1", "0\n0 0 0 0 0 0 0 1 1 2 3 0", "11\n1 1 4 1 1 5 1 1 4 1 1 1"], "sample_outputs": ["2", "0", "3"], "notes": "NoteLet's consider the first sample test. There it is enough to water the flower during the seventh and the ninth month. Then the flower grows by exactly five centimeters.In the second sample Petya's parents will believe him even if the flower doesn't grow at all (k\u2009=\u20090). So, it is possible for Petya not to water the flower at all."}, "src_uid": "59dfa7a4988375febc5dccc27aca90a8"} {"nl": {"description": "Amr is a young coder who likes music a lot. He always wanted to learn how to play music but he was busy coding so he got an idea.Amr has n instruments, it takes ai days to learn i-th instrument. Being busy, Amr dedicated k days to learn how to play the maximum possible number of instruments.Amr asked for your help to distribute his free days between instruments so that he can achieve his goal.", "input_spec": "The first line contains two numbers n, k (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 0\u2009\u2264\u2009k\u2009\u2264\u200910\u2009000), the number of instruments and number of days respectively. The second line contains n integers ai (1\u2009\u2264\u2009ai\u2009\u2264\u2009100), representing number of days required to learn the i-th instrument.", "output_spec": "In the first line output one integer m representing the maximum number of instruments Amr can learn. In the second line output m space-separated integers: the indices of instruments to be learnt. You may output indices in any order. if there are multiple optimal solutions output any. It is not necessary to use all days for studying.", "sample_inputs": ["4 10\n4 3 1 2", "5 6\n4 3 1 1 2", "1 3\n4"], "sample_outputs": ["4\n1 2 3 4", "3\n1 3 4", "0"], "notes": "NoteIn the first test Amr can learn all 4 instruments.In the second test other possible solutions are: {2,\u20093,\u20095} or {3,\u20094,\u20095}.In the third test Amr doesn't have enough time to learn the only presented instrument."}, "src_uid": "dbb164a8dd190e63cceba95a31690a7c"} {"nl": {"description": "Limak is a grizzly bear who desires power and adoration. He wants to win in upcoming elections and rule over the Bearland.There are n candidates, including Limak. We know how many citizens are going to vote for each candidate. Now i-th candidate would get ai votes. Limak is candidate number 1. To win in elections, he must get strictly more votes than any other candidate.Victory is more important than everything else so Limak decided to cheat. He will steal votes from his opponents by bribing some citizens. To bribe a citizen, Limak must give him or her one candy - citizens are bears and bears like candies. Limak doesn't have many candies and wonders - how many citizens does he have to bribe?", "input_spec": "The first line contains single integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100) - number of candidates. The second line contains n space-separated integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u20091000) - number of votes for each candidate. Limak is candidate number 1. Note that after bribing number of votes for some candidate might be zero or might be greater than 1000.", "output_spec": "Print the minimum number of citizens Limak must bribe to have strictly more votes than any other candidate.", "sample_inputs": ["5\n5 1 11 2 8", "4\n1 8 8 8", "2\n7 6"], "sample_outputs": ["4", "6", "0"], "notes": "NoteIn the first sample Limak has 5 votes. One of the ways to achieve victory is to bribe 4 citizens who want to vote for the third candidate. Then numbers of votes would be 9,\u20091,\u20097,\u20092,\u20098 (Limak would have 9 votes). Alternatively, Limak could steal only 3 votes from the third candidate and 1 vote from the second candidate to get situation 9,\u20090,\u20098,\u20092,\u20098.In the second sample Limak will steal 2 votes from each candidate. Situation will be 7,\u20096,\u20096,\u20096.In the third sample Limak is a winner without bribing any citizen."}, "src_uid": "aa8fabf7c817dfd3d585b96a07bb7f58"} {"nl": {"description": "Mishka got a six-faced dice. It has integer numbers from $$$2$$$ to $$$7$$$ written on its faces (all numbers on faces are different, so this is an almost usual dice).Mishka wants to get exactly $$$x$$$ points by rolling his dice. The number of points is just a sum of numbers written at the topmost face of the dice for all the rolls Mishka makes.Mishka doesn't really care about the number of rolls, so he just wants to know any number of rolls he can make to be able to get exactly $$$x$$$ points for them. Mishka is very lucky, so if the probability to get $$$x$$$ points with chosen number of rolls is non-zero, he will be able to roll the dice in such a way. Your task is to print this number. It is guaranteed that at least one answer exists.Mishka is also very curious about different number of points to score so you have to answer $$$t$$$ independent queries.", "input_spec": "The first line of the input contains one integer $$$t$$$ ($$$1 \\le t \\le 100$$$) \u2014 the number of queries. Each of the next $$$t$$$ lines contains one integer each. The $$$i$$$-th line contains one integer $$$x_i$$$ ($$$2 \\le x_i \\le 100$$$) \u2014 the number of points Mishka wants to get.", "output_spec": "Print $$$t$$$ lines. In the $$$i$$$-th line print the answer to the $$$i$$$-th query (i.e. any number of rolls Mishka can make to be able to get exactly $$$x_i$$$ points for them). It is guaranteed that at least one answer exists.", "sample_inputs": ["4\n2\n13\n37\n100"], "sample_outputs": ["1\n3\n8\n27"], "notes": "NoteIn the first query Mishka can roll a dice once and get $$$2$$$ points.In the second query Mishka can roll a dice $$$3$$$ times and get points $$$5$$$, $$$5$$$ and $$$3$$$ (for example).In the third query Mishka can roll a dice $$$8$$$ times and get $$$5$$$ points $$$7$$$ times and $$$2$$$ points with the remaining roll.In the fourth query Mishka can roll a dice $$$27$$$ times and get $$$2$$$ points $$$11$$$ times, $$$3$$$ points $$$6$$$ times and $$$6$$$ points $$$10$$$ times."}, "src_uid": "a661b6ce166fe4b2bbfd0ace56a7dc2c"} {"nl": {"description": "Fox Ciel has some flowers: r red flowers, g green flowers and b blue flowers. She wants to use these flowers to make several bouquets. There are 4 types of bouquets: To make a \"red bouquet\", it needs 3 red flowers. To make a \"green bouquet\", it needs 3 green flowers. To make a \"blue bouquet\", it needs 3 blue flowers. To make a \"mixing bouquet\", it needs 1 red, 1 green and 1 blue flower. Help Fox Ciel to find the maximal number of bouquets she can make.", "input_spec": "The first line contains three integers r, g and b (0\u2009\u2264\u2009r,\u2009g,\u2009b\u2009\u2264\u2009109) \u2014 the number of red, green and blue flowers.", "output_spec": "Print the maximal number of bouquets Fox Ciel can make.", "sample_inputs": ["3 6 9", "4 4 4", "0 0 0"], "sample_outputs": ["6", "4", "0"], "notes": "NoteIn test case 1, we can make 1 red bouquet, 2 green bouquets and 3 blue bouquets.In test case 2, we can make 1 red, 1 green, 1 blue and 1 mixing bouquet."}, "src_uid": "acddc9b0db312b363910a84bd4f14d8e"} {"nl": {"description": "Dante is engaged in a fight with \"The Savior\". Before he can fight it with his sword, he needs to break its shields. He has two guns, Ebony and Ivory, each of them is able to perform any non-negative number of shots.For every bullet that hits the shield, Ebony deals a units of damage while Ivory deals b units of damage. In order to break the shield Dante has to deal exactly c units of damage. Find out if this is possible.", "input_spec": "The first line of the input contains three integers a, b, c (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009100,\u20091\u2009\u2264\u2009c\u2009\u2264\u200910\u2009000)\u00a0\u2014 the number of units of damage dealt by Ebony gun and Ivory gun, and the total number of damage required to break the shield, respectively.", "output_spec": "Print \"Yes\" (without quotes) if Dante can deal exactly c damage to the shield and \"No\" (without quotes) otherwise.", "sample_inputs": ["4 6 15", "3 2 7", "6 11 6"], "sample_outputs": ["No", "Yes", "Yes"], "notes": "NoteIn the second sample, Dante can fire 1 bullet from Ebony and 2 from Ivory to deal exactly 1\u00b73\u2009+\u20092\u00b72\u2009=\u20097 damage. In the third sample, Dante can fire 1 bullet from ebony and no bullets from ivory to do 1\u00b76\u2009+\u20090\u00b711\u2009=\u20096 damage. "}, "src_uid": "e66ecb0021a34042885442b336f3d911"} {"nl": {"description": "You have a nuts and lots of boxes. The boxes have a wonderful feature: if you put x (x\u2009\u2265\u20090) divisors (the spacial bars that can divide a box) to it, you get a box, divided into x\u2009+\u20091 sections.You are minimalist. Therefore, on the one hand, you are against dividing some box into more than k sections. On the other hand, you are against putting more than v nuts into some section of the box. What is the minimum number of boxes you have to use if you want to put all the nuts in boxes, and you have b divisors?Please note that you need to minimize the number of used boxes, not sections. You do not have to minimize the number of used divisors.", "input_spec": "The first line contains four space-separated integers k, a, b, v (2\u2009\u2264\u2009k\u2009\u2264\u20091000; 1\u2009\u2264\u2009a,\u2009b,\u2009v\u2009\u2264\u20091000) \u2014 the maximum number of sections in the box, the number of nuts, the number of divisors and the capacity of each section of the box.", "output_spec": "Print a single integer \u2014 the answer to the problem.", "sample_inputs": ["3 10 3 3", "3 10 1 3", "100 100 1 1000"], "sample_outputs": ["2", "3", "1"], "notes": "NoteIn the first sample you can act like this: Put two divisors to the first box. Now the first box has three sections and we can put three nuts into each section. Overall, the first box will have nine nuts. Do not put any divisors into the second box. Thus, the second box has one section for the last nut. In the end we've put all the ten nuts into boxes.The second sample is different as we have exactly one divisor and we put it to the first box. The next two boxes will have one section each."}, "src_uid": "7cff20b1c63a694baca69bdf4bdb2652"} {"nl": {"description": "One day the Codeforces round author sat exams. He had n exams and he needed to get an integer from 2 to 5 for each exam. He will have to re-sit each failed exam, i.e. the exam that gets mark 2. The author would need to spend too much time and effort to make the sum of his marks strictly more than k. That could have spoilt the Codeforces round. On the other hand, if the sum of his marks is strictly less than k, the author's mum won't be pleased at all. The Codeforces authors are very smart and they always get the mark they choose themselves. Also, the Codeforces authors just hate re-sitting exams. Help the author and find the minimum number of exams he will have to re-sit if he passes the exams in the way that makes the sum of marks for all n exams equal exactly k.", "input_spec": "The single input line contains space-separated integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u200950, 1\u2009\u2264\u2009k\u2009\u2264\u2009250) \u2014 the number of exams and the required sum of marks. It is guaranteed that there exists a way to pass n exams in the way that makes the sum of marks equal exactly k.", "output_spec": "Print the single number \u2014 the minimum number of exams that the author will get a 2 for, considering that the sum of marks for all exams must equal k.", "sample_inputs": ["4 8", "4 10", "1 3"], "sample_outputs": ["4", "2", "0"], "notes": "NoteIn the first sample the author has to get a 2 for all his exams.In the second sample he should get a 3 for two exams and a 2 for two more.In the third sample he should get a 3 for one exam."}, "src_uid": "5a5e46042c3f18529a03cb5c868df7e8"} {"nl": {"description": "Petya studies positional notations. He has already learned to add and subtract numbers in the systems of notations with different radices and has moved on to a more complicated action \u2014 multiplication. To multiply large numbers one has to learn the multiplication table. Unfortunately, in the second grade students learn only the multiplication table of decimals (and some students even learn it in the first grade). Help Petya make a multiplication table for numbers in the system of notations with the radix k.", "input_spec": "The first line contains a single integer k (2\u2009\u2264\u2009k\u2009\u2264\u200910) \u2014 the radix of the system.", "output_spec": "Output the multiplication table for the system of notations with the radix k. The table must contain k\u2009-\u20091 rows and k\u2009-\u20091 columns. The element on the crossing of the i-th row and the j-th column is equal to the product of i and j in the system of notations with the radix k. Each line may have any number of spaces between the numbers (the extra spaces in the samples are put for clarity).", "sample_inputs": ["10", "3"], "sample_outputs": ["1 2 3 4 5 6 7 8 9\n2 4 6 8 10 12 14 16 18\n3 6 9 12 15 18 21 24 27\n4 8 12 16 20 24 28 32 36\n5 10 15 20 25 30 35 40 45\n6 12 18 24 30 36 42 48 54\n7 14 21 28 35 42 49 56 63\n8 16 24 32 40 48 56 64 72\n9 18 27 36 45 54 63 72 81", "1 2\n2 11"], "notes": null}, "src_uid": "a705144ace798d6b41068aa284d99050"} {"nl": {"description": "On her way to programming school tiger Dasha faced her first test \u2014 a huge staircase! The steps were numbered from one to infinity. As we know, tigers are very fond of all striped things, it is possible that it has something to do with their color. So on some interval of her way she calculated two values \u2014 the number of steps with even and odd numbers. You need to check whether there is an interval of steps from the l-th to the r-th (1\u2009\u2264\u2009l\u2009\u2264\u2009r), for which values that Dasha has found are correct.", "input_spec": "In the only line you are given two integers a, b (0\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009100) \u2014 the number of even and odd steps, accordingly.", "output_spec": "In the only line print \"YES\", if the interval of steps described above exists, and \"NO\" otherwise.", "sample_inputs": ["2 3", "3 1"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example one of suitable intervals is from 1 to 5. The interval contains two even steps\u00a0\u2014 2 and 4, and three odd: 1, 3 and 5."}, "src_uid": "ec5e3b3f5ee6a13eaf01b9a9a66ff037"} {"nl": {"description": "Holidays have finished. Thanks to the help of the hacker Leha, Noora managed to enter the university of her dreams which is located in a town Pavlopolis. It's well known that universities provide students with dormitory for the period of university studies. Consequently Noora had to leave Vi\u010dkopolis and move to Pavlopolis. Thus Leha was left completely alone in a quiet town Vi\u010dkopolis. He almost even fell into a depression from boredom!Leha came up with a task for himself to relax a little. He chooses two integers A and B and then calculates the greatest common divisor of integers \"A factorial\" and \"B factorial\". Formally the hacker wants to find out GCD(A!,\u2009B!). It's well known that the factorial of an integer x is a product of all positive integers less than or equal to x. Thus x!\u2009=\u20091\u00b72\u00b73\u00b7...\u00b7(x\u2009-\u20091)\u00b7x. For example 4!\u2009=\u20091\u00b72\u00b73\u00b74\u2009=\u200924. Recall that GCD(x,\u2009y) is the largest positive integer q that divides (without a remainder) both x and y.Leha has learned how to solve this task very effective. You are able to cope with it not worse, aren't you?", "input_spec": "The first and single line contains two integers A and B (1\u2009\u2264\u2009A,\u2009B\u2009\u2264\u2009109,\u2009min(A,\u2009B)\u2009\u2264\u200912).", "output_spec": "Print a single integer denoting the greatest common divisor of integers A! and B!.", "sample_inputs": ["4 3"], "sample_outputs": ["6"], "notes": "NoteConsider the sample.4!\u2009=\u20091\u00b72\u00b73\u00b74\u2009=\u200924. 3!\u2009=\u20091\u00b72\u00b73\u2009=\u20096. The greatest common divisor of integers 24 and 6 is exactly 6."}, "src_uid": "7bf30ceb24b66d91382e97767f9feeb6"} {"nl": {"description": "A permutation p of size n is an array such that every integer from 1 to n occurs exactly once in this array.Let's call a permutation an almost identity permutation iff there exist at least n\u2009-\u2009k indices i (1\u2009\u2264\u2009i\u2009\u2264\u2009n) such that pi\u2009=\u2009i.Your task is to count the number of almost identity permutations for given numbers n and k.", "input_spec": "The first line contains two integers n and k (4\u2009\u2264\u2009n\u2009\u2264\u20091000, 1\u2009\u2264\u2009k\u2009\u2264\u20094).", "output_spec": "Print the number of almost identity permutations for given n and k.", "sample_inputs": ["4 1", "4 2", "5 3", "5 4"], "sample_outputs": ["1", "7", "31", "76"], "notes": null}, "src_uid": "96d839dc2d038f8ae95fc47c217b2e2f"} {"nl": {"description": "The year 2015 is almost over.Limak is a little polar bear. He has recently learnt about the binary system. He noticed that the passing year has exactly one zero in its representation in the binary system\u00a0\u2014 201510\u2009=\u2009111110111112. Note that he doesn't care about the number of zeros in the decimal representation.Limak chose some interval of years. He is going to count all years from this interval that have exactly one zero in the binary representation. Can you do it faster?Assume that all positive integers are always written without leading zeros.", "input_spec": "The only line of the input contains two integers a and b (1\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u20091018)\u00a0\u2014 the first year and the last year in Limak's interval respectively.", "output_spec": "Print one integer\u00a0\u2013 the number of years Limak will count in his chosen interval.", "sample_inputs": ["5 10", "2015 2015", "100 105", "72057594000000000 72057595000000000"], "sample_outputs": ["2", "1", "0", "26"], "notes": "NoteIn the first sample Limak's interval contains numbers 510\u2009=\u20091012, 610\u2009=\u20091102, 710\u2009=\u20091112, 810\u2009=\u200910002, 910\u2009=\u200910012 and 1010\u2009=\u200910102. Two of them (1012 and 1102) have the described property."}, "src_uid": "581f61b1f50313bf4c75833cefd4d022"} {"nl": {"description": "The whole world got obsessed with robots,and to keep pace with the progress, great Berland's programmer Draude decided to build his own robot. He was working hard at the robot. He taught it to walk the shortest path from one point to another, to record all its movements, but like in many Draude's programs, there was a bug \u2014 the robot didn't always walk the shortest path. Fortunately, the robot recorded its own movements correctly. Now Draude wants to find out when his robot functions wrong. Heh, if Draude only remembered the map of the field, where he tested the robot, he would easily say if the robot walked in the right direction or not. But the field map was lost never to be found, that's why he asks you to find out if there exist at least one map, where the path recorded by the robot is the shortest.The map is an infinite checkered field, where each square is either empty, or contains an obstruction. It is also known that the robot never tries to run into the obstruction. By the recorded robot's movements find out if there exist at least one such map, that it is possible to choose for the robot a starting square (the starting square should be empty) such that when the robot moves from this square its movements coincide with the recorded ones (the robot doesn't run into anything, moving along empty squares only), and the path from the starting square to the end one is the shortest.In one movement the robot can move into the square (providing there are no obstrutions in this square) that has common sides with the square the robot is currently in.", "input_spec": "The first line of the input file contains the recording of the robot's movements. This recording is a non-empty string, consisting of uppercase Latin letters L, R, U and D, standing for movements left, right, up and down respectively. The length of the string does not exceed 100.", "output_spec": "In the first line output the only word OK (if the above described map exists), or BUG (if such a map does not exist).", "sample_inputs": ["LLUUUR", "RRUULLDD"], "sample_outputs": ["OK", "BUG"], "notes": null}, "src_uid": "bb7805cc9d1cc907b64371b209c564b3"} {"nl": {"description": "Catherine has a deck of n cards, each of which is either red, green, or blue. As long as there are at least two cards left, she can do one of two actions: take any two (not necessarily adjacent) cards with different colors and exchange them for a new card of the third color; take any two (not necessarily adjacent) cards with the same color and exchange them for a new card with that color. She repeats this process until there is only one card left. What are the possible colors for the final card?", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009200)\u00a0\u2014 the total number of cards. The next line contains a string s of length n \u2014 the colors of the cards. s contains only the characters 'B', 'G', and 'R', representing blue, green, and red, respectively.", "output_spec": "Print a single string of up to three characters\u00a0\u2014 the possible colors of the final card (using the same symbols as the input) in alphabetical order.", "sample_inputs": ["2\nRB", "3\nGRG", "5\nBBBBB"], "sample_outputs": ["G", "BR", "B"], "notes": "NoteIn the first sample, Catherine has one red card and one blue card, which she must exchange for a green card.In the second sample, Catherine has two green cards and one red card. She has two options: she can exchange the two green cards for a green card, then exchange the new green card and the red card for a blue card. Alternatively, she can exchange a green and a red card for a blue card, then exchange the blue card and remaining green card for a red card.In the third sample, Catherine only has blue cards, so she can only exchange them for more blue cards."}, "src_uid": "4cedd3b70d793bc8ed4a93fc5a827f8f"} {"nl": {"description": "A soldier wants to buy w bananas in the shop. He has to pay k dollars for the first banana, 2k dollars for the second one and so on (in other words, he has to pay i\u00b7k dollars for the i-th banana). He has n dollars. How many dollars does he have to borrow from his friend soldier to buy w bananas?", "input_spec": "The first line contains three positive integers k,\u2009n,\u2009w (1\u2009\u2009\u2264\u2009\u2009k,\u2009w\u2009\u2009\u2264\u2009\u20091000, 0\u2009\u2264\u2009n\u2009\u2264\u2009109), the cost of the first banana, initial number of dollars the soldier has and number of bananas he wants. ", "output_spec": "Output one integer \u2014 the amount of dollars that the soldier must borrow from his friend. If he doesn't have to borrow money, output 0.", "sample_inputs": ["3 17 4"], "sample_outputs": ["13"], "notes": null}, "src_uid": "e87d9798107734a885fd8263e1431347"} {"nl": {"description": "There is an old tradition of keeping 4 boxes of candies in the house in Cyberland. The numbers of candies are special if their arithmetic mean, their median and their range are all equal. By definition, for a set {x1,\u2009x2,\u2009x3,\u2009x4} (x1\u2009\u2264\u2009x2\u2009\u2264\u2009x3\u2009\u2264\u2009x4) arithmetic mean is , median is and range is x4\u2009-\u2009x1. The arithmetic mean and median are not necessary integer. It is well-known that if those three numbers are same, boxes will create a \"debugging field\" and codes in the field will have no bugs.For example, 1,\u20091,\u20093,\u20093 is the example of 4 numbers meeting the condition because their mean, median and range are all equal to 2.Jeff has 4 special boxes of candies. However, something bad has happened! Some of the boxes could have been lost and now there are only n (0\u2009\u2264\u2009n\u2009\u2264\u20094) boxes remaining. The i-th remaining box contains ai candies.Now Jeff wants to know: is there a possible way to find the number of candies of the 4\u2009-\u2009n missing boxes, meeting the condition above (the mean, median and range are equal)?", "input_spec": "The first line of input contains an only integer n (0\u2009\u2264\u2009n\u2009\u2264\u20094). The next n lines contain integers ai, denoting the number of candies in the i-th box (1\u2009\u2264\u2009ai\u2009\u2264\u2009500).", "output_spec": "In the first output line, print \"YES\" if a solution exists, or print \"NO\" if there is no solution. If a solution exists, you should output 4\u2009-\u2009n more lines, each line containing an integer b, denoting the number of candies in a missing box. All your numbers b must satisfy inequality 1\u2009\u2264\u2009b\u2009\u2264\u2009106. It is guaranteed that if there exists a positive integer solution, you can always find such b's meeting the condition. If there are multiple answers, you are allowed to print any of them. Given numbers ai may follow in any order in the input, not necessary in non-decreasing. ai may have stood at any positions in the original set, not necessary on lowest n first positions.", "sample_inputs": ["2\n1\n1", "3\n1\n1\n1", "4\n1\n2\n2\n3"], "sample_outputs": ["YES\n3\n3", "NO", "YES"], "notes": "NoteFor the first sample, the numbers of candies in 4 boxes can be 1,\u20091,\u20093,\u20093. The arithmetic mean, the median and the range of them are all 2.For the second sample, it's impossible to find the missing number of candies.In the third example no box has been lost and numbers satisfy the condition.You may output b in any order."}, "src_uid": "230e613abf0f6a768829cbc1f1a09219"} {"nl": {"description": "Nowadays all circuses in Berland have a round arena with diameter 13 meters, but in the past things were different.In Ancient Berland arenas in circuses were shaped as a regular (equiangular) polygon, the size and the number of angles could vary from one circus to another. In each corner of the arena there was a special pillar, and the rope strung between the pillars marked the arena edges.Recently the scientists from Berland have discovered the remains of the ancient circus arena. They found only three pillars, the others were destroyed by the time.You are given the coordinates of these three pillars. Find out what is the smallest area that the arena could have.", "input_spec": "The input file consists of three lines, each of them contains a pair of numbers \u2013\u2013 coordinates of the pillar. Any coordinate doesn't exceed 1000 by absolute value, and is given with at most six digits after decimal point.", "output_spec": "Output the smallest possible area of the ancient arena. This number should be accurate to at least 6 digits after the decimal point. It's guaranteed that the number of angles in the optimal polygon is not larger than 100.", "sample_inputs": ["0.000000 0.000000\n1.000000 1.000000\n0.000000 1.000000"], "sample_outputs": ["1.00000000"], "notes": null}, "src_uid": "980f4094b3cfc647d6f74e840b1bfb62"} {"nl": {"description": "Today, Osama gave Fadi an integer $$$X$$$, and Fadi was wondering about the minimum possible value of $$$max(a, b)$$$ such that $$$LCM(a, b)$$$ equals $$$X$$$. Both $$$a$$$ and $$$b$$$ should be positive integers.$$$LCM(a, b)$$$ is the smallest positive integer that is divisible by both $$$a$$$ and $$$b$$$. For example, $$$LCM(6, 8) = 24$$$, $$$LCM(4, 12) = 12$$$, $$$LCM(2, 3) = 6$$$.Of course, Fadi immediately knew the answer. Can you be just like Fadi and find any such pair?", "input_spec": "The first and only line contains an integer $$$X$$$ ($$$1 \\le X \\le 10^{12}$$$).", "output_spec": "Print two positive integers, $$$a$$$ and $$$b$$$, such that the value of $$$max(a, b)$$$ is minimum possible and $$$LCM(a, b)$$$ equals $$$X$$$. If there are several possible such pairs, you can print any.", "sample_inputs": ["2", "6", "4", "1"], "sample_outputs": ["1 2", "2 3", "1 4", "1 1"], "notes": null}, "src_uid": "e504a04cefef3da093573f9df711bcea"} {"nl": {"description": "Uncle Fyodor, Matroskin the Cat and Sharic the Dog live their simple but happy lives in Prostokvashino. Sometimes they receive parcels from Uncle Fyodor\u2019s parents and sometimes from anonymous benefactors, in which case it is hard to determine to which one of them the package has been sent. A photographic rifle is obviously for Sharic who loves hunting and fish is for Matroskin, but for whom was a new video game console meant? Every one of the three friends claimed that the present is for him and nearly quarreled. Uncle Fyodor had an idea how to solve the problem justly: they should suppose that the console was sent to all three of them and play it in turns. Everybody got relieved but then yet another burning problem popped up \u2014 who will play first? This time Matroskin came up with a brilliant solution, suggesting the most fair way to find it out: play rock-paper-scissors together. The rules of the game are very simple. On the count of three every player shows a combination with his hand (or paw). The combination corresponds to one of three things: a rock, scissors or paper. Some of the gestures win over some other ones according to well-known rules: the rock breaks the scissors, the scissors cut the paper, and the paper gets wrapped over the stone. Usually there are two players. Yet there are three friends, that\u2019s why they decided to choose the winner like that: If someone shows the gesture that wins over the other two players, then that player wins. Otherwise, another game round is required. Write a program that will determine the winner by the gestures they have shown.", "input_spec": "The first input line contains the name of the gesture that Uncle Fyodor showed, the second line shows which gesture Matroskin showed and the third line shows Sharic\u2019s gesture. ", "output_spec": "Print \"F\" (without quotes) if Uncle Fyodor wins. Print \"M\" if Matroskin wins and \"S\" if Sharic wins. If it is impossible to find the winner, print \"?\".", "sample_inputs": ["rock\nrock\nrock", "paper\nrock\nrock", "scissors\nrock\nrock", "scissors\npaper\nrock"], "sample_outputs": ["?", "F", "?", "?"], "notes": null}, "src_uid": "072c7d29a1b338609a72ab6b73988282"} {"nl": {"description": "There is a very secret base in Potatoland where potato mash is made according to a special recipe. The neighbours from Porridgia decided to seize this recipe and to sell it to Pilauland. For this mission they have been preparing special agent Pearlo for many years. When, finally, Pearlo learned all secrets of espionage, he penetrated into the Potatoland territory and reached the secret base.Now he is standing at the entrance, but to get inside he need to pass combination lock. Minute ago one of the workers entered the password on the terminal and opened the door. The terminal is a square digital keyboard 3\u2009\u00d7\u20093 with digits from 1 to 9.Pearlo knows that the password consists from distinct digits and is probably symmetric with respect to the central button of the terminal. He has heat sensor which allowed him to detect the digits which the worker pressed. Now he wants to check whether the password entered by the worker is symmetric with respect to the central button of the terminal. This fact can Help Pearlo to reduce the number of different possible password combinations.", "input_spec": "Input contains the matrix of three rows of three symbols each. Symbol \u00abX\u00bb means that the corresponding button was pressed, and \u00ab.\u00bb means that is was not pressed. The matrix may contain no \u00abX\u00bb, also it may contain no \u00ab.\u00bb.", "output_spec": "Print YES if the password is symmetric with respect to the central button of the terminal and NO otherwise.", "sample_inputs": ["XX.\n...\n.XX", "X.X\nX..\n..."], "sample_outputs": ["YES", "NO"], "notes": "NoteIf you are not familiar with the term \u00abcentral symmetry\u00bb, you may look into http://en.wikipedia.org/wiki/Central_symmetry"}, "src_uid": "6a5fe5fac8a4e3993dc3423180cdd6a9"} {"nl": {"description": "Dima loves representing an odd number as the sum of multiple primes, and Lisa loves it when there are at most three primes. Help them to represent the given number as the sum of at most than three primes.More formally, you are given an odd numer n. Find a set of numbers pi (1\u2009\u2264\u2009i\u2009\u2264\u2009k), such that 1\u2009\u2264\u2009k\u2009\u2264\u20093 pi is a prime The numbers pi do not necessarily have to be distinct. It is guaranteed that at least one possible solution exists.", "input_spec": "The single line contains an odd number n (3\u2009\u2264\u2009n\u2009<\u2009109).", "output_spec": "In the first line print k (1\u2009\u2264\u2009k\u2009\u2264\u20093), showing how many numbers are in the representation you found. In the second line print numbers pi in any order. If there are multiple possible solutions, you can print any of them.", "sample_inputs": ["27"], "sample_outputs": ["3\n5 11 11"], "notes": "NoteA prime is an integer strictly larger than one that is divisible only by one and by itself."}, "src_uid": "f2aaa149ce81bf332d0b5d80b2a13bc3"} {"nl": {"description": "Ivan likes to learn different things about numbers, but he is especially interested in really big numbers. Ivan thinks that a positive integer number x is really big if the difference between x and the sum of its digits (in decimal representation) is not less than s. To prove that these numbers may have different special properties, he wants to know how rare (or not rare) they are \u2014 in fact, he needs to calculate the quantity of really big numbers that are not greater than n.Ivan tried to do the calculations himself, but soon realized that it's too difficult for him. So he asked you to help him in calculations.", "input_spec": "The first (and the only) line contains two integers n and s (1\u2009\u2264\u2009n,\u2009s\u2009\u2264\u20091018).", "output_spec": "Print one integer \u2014 the quantity of really big numbers that are not greater than n.", "sample_inputs": ["12 1", "25 20", "10 9"], "sample_outputs": ["3", "0", "1"], "notes": "NoteIn the first example numbers 10, 11 and 12 are really big.In the second example there are no really big numbers that are not greater than 25 (in fact, the first really big number is 30: 30\u2009-\u20093\u2009\u2265\u200920).In the third example 10 is the only really big number (10\u2009-\u20091\u2009\u2265\u20099)."}, "src_uid": "9704e2ac6a158d5ced8fd1dc1edb356b"} {"nl": {"description": "Vasily the Programmer loves romance, so this year he decided to illuminate his room with candles.Vasily has a candles.When Vasily lights up a new candle, it first burns for an hour and then it goes out. Vasily is smart, so he can make b went out candles into a new candle. As a result, this new candle can be used like any other new candle.Now Vasily wonders: for how many hours can his candles light up the room if he acts optimally well? Help him find this number.", "input_spec": "The single line contains two integers, a and b (1\u2009\u2264\u2009a\u2009\u2264\u20091000;\u00a02\u2009\u2264\u2009b\u2009\u2264\u20091000).", "output_spec": "Print a single integer \u2014 the number of hours Vasily can light up the room for.", "sample_inputs": ["4 2", "6 3"], "sample_outputs": ["7", "8"], "notes": "NoteConsider the first sample. For the first four hours Vasily lights up new candles, then he uses four burned out candles to make two new ones and lights them up. When these candles go out (stop burning), Vasily can make another candle. Overall, Vasily can light up the room for 7 hours."}, "src_uid": "a349094584d3fdc6b61e39bffe96dece"} {"nl": {"description": "In a very ancient country the following game was popular. Two people play the game. Initially first player writes a string s1, consisting of exactly nine digits and representing a number that does not exceed a. After that second player looks at s1 and writes a string s2, consisting of exactly nine digits and representing a number that does not exceed b. Here a and b are some given constants, s1 and s2 are chosen by the players. The strings are allowed to contain leading zeroes.If a number obtained by the concatenation (joining together) of strings s1 and s2 is divisible by mod, then the second player wins. Otherwise the first player wins. You are given numbers a, b, mod. Your task is to determine who wins if both players play in the optimal manner. If the first player wins, you are also required to find the lexicographically minimum winning move.", "input_spec": "The first line contains three integers a, b, mod (0\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009109, 1\u2009\u2264\u2009mod\u2009\u2264\u2009107).", "output_spec": "If the first player wins, print \"1\" and the lexicographically minimum string s1 he has to write to win. If the second player wins, print the single number \"2\".", "sample_inputs": ["1 10 7", "4 0 9"], "sample_outputs": ["2", "1 000000001"], "notes": "NoteThe lexical comparison of strings is performed by the < operator in modern programming languages. String x is lexicographically less than string y if exists such i (1\u2009\u2264\u2009i\u2009\u2264\u20099), that xi\u2009<\u2009yi, and for any j (1\u2009\u2264\u2009j\u2009<\u2009i) xj\u2009=\u2009yj. These strings always have length 9."}, "src_uid": "8b6f633802293202531264446d33fee5"} {"nl": {"description": "Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.Petya calls a mask of a positive integer n the number that is obtained after successive writing of all lucky digits of number n from the left to the right. For example, the mask of number 72174994 is number 7744, the mask of 7 is 7, the mask of 9999047 is 47. Obviously, mask of any number is always a lucky number.Petya has two numbers \u2014 an arbitrary integer a and a lucky number b. Help him find the minimum number c (c\u2009>\u2009a) such that the mask of number c equals b.", "input_spec": "The only line contains two integers a and b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009105). It is guaranteed that number b is lucky.", "output_spec": "In the only line print a single number \u2014 the number c that is sought by Petya.", "sample_inputs": ["1 7", "100 47"], "sample_outputs": ["7", "147"], "notes": null}, "src_uid": "e5e4ea7a5bf785e059e10407b25d73fb"} {"nl": {"description": "Well, the series which Stepan watched for a very long time, ended. In total, the series had n episodes. For each of them, Stepan remembers either that he definitely has watched it, or that he definitely hasn't watched it, or he is unsure, has he watched this episode or not. Stepan's dissatisfaction is the maximum number of consecutive series that Stepan did not watch.Your task is to determine according to Stepan's memories if his dissatisfaction could be exactly equal to k.", "input_spec": "The first line contains two integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 0\u2009\u2264\u2009k\u2009\u2264\u2009n) \u2014 the number of episodes in the series and the dissatisfaction which should be checked. The second line contains the sequence which consists of n symbols \"Y\", \"N\" and \"?\". If the i-th symbol equals \"Y\", Stepan remembers that he has watched the episode number i. If the i-th symbol equals \"N\", Stepan remembers that he hasn't watched the epizode number i. If the i-th symbol equals \"?\", Stepan doesn't exactly remember if he has watched the episode number i or not.", "output_spec": "If Stepan's dissatisfaction can be exactly equal to k, then print \"YES\" (without qoutes). Otherwise print \"NO\" (without qoutes).", "sample_inputs": ["5 2\nNYNNY", "6 1\n????NN"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first test Stepan remembers about all the episodes whether he has watched them or not. His dissatisfaction is 2, because he hasn't watch two episodes in a row \u2014 the episode number 3 and the episode number 4. The answer is \"YES\", because k\u2009=\u20092.In the second test k\u2009=\u20091, Stepan's dissatisfaction is greater than or equal to 2 (because he remembers that he hasn't watch at least two episodes in a row \u2014 number 5 and number 6), even if he has watched the episodes from the first to the fourth, inclusive."}, "src_uid": "5bd578d3da5837c259b222336a194d12"} {"nl": {"description": "Modern text editors usually show some information regarding the document being edited. For example, the number of words, the number of pages, or the number of characters.In this problem you should implement the similar functionality.You are given a string which only consists of: uppercase and lowercase English letters, underscore symbols (they are used as separators), parentheses (both opening and closing). It is guaranteed that each opening parenthesis has a succeeding closing parenthesis. Similarly, each closing parentheses has a preceding opening parentheses matching it. For each pair of matching parentheses there are no other parenthesis between them. In other words, each parenthesis in the string belongs to a matching \"opening-closing\" pair, and such pairs can't be nested.For example, the following string is valid: \"_Hello_Vasya(and_Petya)__bye_(and_OK)\".Word is a maximal sequence of consecutive letters, i.e. such sequence that the first character to the left and the first character to the right of it is an underscore, a parenthesis, or it just does not exist. For example, the string above consists of seven words: \"Hello\", \"Vasya\", \"and\", \"Petya\", \"bye\", \"and\" and \"OK\". Write a program that finds: the length of the longest word outside the parentheses (print 0, if there is no word outside the parentheses), the number of words inside the parentheses (print 0, if there is no word inside the parentheses). ", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009255)\u00a0\u2014 the length of the given string. The second line contains the string consisting of only lowercase and uppercase English letters, parentheses and underscore symbols. ", "output_spec": "Print two space-separated integers: the length of the longest word outside the parentheses (print 0, if there is no word outside the parentheses), the number of words inside the parentheses (print 0, if there is no word inside the parentheses). ", "sample_inputs": ["37\n_Hello_Vasya(and_Petya)__bye_(and_OK)", "37\n_a_(_b___c)__de_f(g_)__h__i(j_k_l)m__", "27\n(LoooonG)__shOrt__(LoooonG)", "5\n(___)"], "sample_outputs": ["5 4", "2 6", "5 2", "0 0"], "notes": "NoteIn the first sample, the words \"Hello\", \"Vasya\" and \"bye\" are outside any of the parentheses, and the words \"and\", \"Petya\", \"and\" and \"OK\" are inside. Note, that the word \"and\" is given twice and you should count it twice in the answer."}, "src_uid": "fc86df4931e787fa3a1a40e2aecf0b92"} {"nl": {"description": "You are given set of n points in 5-dimensional space. The points are labeled from 1 to n. No two points coincide.We will call point a bad if there are different points b and c, not equal to a, from the given set such that angle between vectors and is acute (i.e. strictly less than ). Otherwise, the point is called good.The angle between vectors and in 5-dimensional space is defined as , where is the scalar product and is length of .Given the list of points, print the indices of the good points in ascending order.", "input_spec": "The first line of input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009103)\u00a0\u2014 the number of points. The next n lines of input contain five integers ai,\u2009bi,\u2009ci,\u2009di,\u2009ei (|ai|,\u2009|bi|,\u2009|ci|,\u2009|di|,\u2009|ei|\u2009\u2264\u2009103) \u00a0\u2014 the coordinates of the i-th point. All points are distinct.", "output_spec": "First, print a single integer k\u00a0\u2014 the number of good points. Then, print k integers, each on their own line\u00a0\u2014 the indices of the good points in ascending order.", "sample_inputs": ["6\n0 0 0 0 0\n1 0 0 0 0\n0 1 0 0 0\n0 0 1 0 0\n0 0 0 1 0\n0 0 0 0 1", "3\n0 0 1 2 0\n0 0 9 2 0\n0 0 5 9 0"], "sample_outputs": ["1\n1", "0"], "notes": "NoteIn the first sample, the first point forms exactly a angle with all other pairs of points, so it is good.In the second sample, along the cd plane, we can see the points look as follows:We can see that all angles here are acute, so no points are good."}, "src_uid": "c1cfe1f67217afd4c3c30a6327e0add9"} {"nl": {"description": "A string $$$s$$$ of length $$$n$$$ can be encrypted by the following algorithm: iterate over all divisors of $$$n$$$ in decreasing order (i.e. from $$$n$$$ to $$$1$$$), for each divisor $$$d$$$, reverse the substring $$$s[1 \\dots d]$$$ (i.e. the substring which starts at position $$$1$$$ and ends at position $$$d$$$). For example, the above algorithm applied to the string $$$s$$$=\"codeforces\" leads to the following changes: \"codeforces\" $$$\\to$$$ \"secrofedoc\" $$$\\to$$$ \"orcesfedoc\" $$$\\to$$$ \"rocesfedoc\" $$$\\to$$$ \"rocesfedoc\" (obviously, the last reverse operation doesn't change the string because $$$d=1$$$).You are given the encrypted string $$$t$$$. Your task is to decrypt this string, i.e., to find a string $$$s$$$ such that the above algorithm results in string $$$t$$$. It can be proven that this string $$$s$$$ always exists and is unique.", "input_spec": "The first line of input consists of a single integer $$$n$$$ ($$$1 \\le n \\le 100$$$) \u2014 the length of the string $$$t$$$. The second line of input consists of the string $$$t$$$. The length of $$$t$$$ is $$$n$$$, and it consists only of lowercase Latin letters.", "output_spec": "Print a string $$$s$$$ such that the above algorithm results in $$$t$$$.", "sample_inputs": ["10\nrocesfedoc", "16\nplmaetwoxesisiht", "1\nz"], "sample_outputs": ["codeforces", "thisisexampletwo", "z"], "notes": "NoteThe first example is described in the problem statement."}, "src_uid": "1b0b2ee44c63cb0634cb63f2ad65cdd3"} {"nl": {"description": "InputThe input contains a single integer a (1\u2009\u2264\u2009a\u2009\u2264\u200930).OutputOutput a single integer.ExampleInput3Output27", "input_spec": "The input contains a single integer a (1\u2009\u2264\u2009a\u2009\u2264\u200930).", "output_spec": "Output a single integer.", "sample_inputs": ["3"], "sample_outputs": ["27"], "notes": null}, "src_uid": "bf65a25185e9ea5b71e853723b838b04"} {"nl": {"description": "Limak is a little polar bear. Polar bears hate long strings and thus they like to compress them. You should also know that Limak is so young that he knows only first six letters of the English alphabet: 'a', 'b', 'c', 'd', 'e' and 'f'.You are given a set of q possible operations. Limak can perform them in any order, any operation may be applied any number of times. The i-th operation is described by a string ai of length two and a string bi of length one. No two of q possible operations have the same string ai.When Limak has a string s he can perform the i-th operation on s if the first two letters of s match a two-letter string ai. Performing the i-th operation removes first two letters of s and inserts there a string bi. See the notes section for further clarification.You may note that performing an operation decreases the length of a string s exactly by 1. Also, for some sets of operations there may be a string that cannot be compressed any further, because the first two letters don't match any ai.Limak wants to start with a string of length n and perform n\u2009-\u20091 operations to finally get a one-letter string \"a\". In how many ways can he choose the starting string to be able to get \"a\"? Remember that Limak can use only letters he knows.", "input_spec": "The first line contains two integers n and q (2\u2009\u2264\u2009n\u2009\u2264\u20096, 1\u2009\u2264\u2009q\u2009\u2264\u200936)\u00a0\u2014 the length of the initial string and the number of available operations. The next q lines describe the possible operations. The i-th of them contains two strings ai and bi (|ai|\u2009=\u20092,\u2009|bi|\u2009=\u20091). It's guaranteed that ai\u2009\u2260\u2009aj for i\u2009\u2260\u2009j and that all ai and bi consist of only first six lowercase English letters.", "output_spec": "Print the number of strings of length n that Limak will be able to transform to string \"a\" by applying only operations given in the input.", "sample_inputs": ["3 5\nab a\ncc c\nca a\nee c\nff d", "2 8\naf e\ndc d\ncc f\nbc b\nda b\neb a\nbb b\nff c", "6 2\nbb a\nba a"], "sample_outputs": ["4", "1", "0"], "notes": "NoteIn the first sample, we count initial strings of length 3 from which Limak can get a required string \"a\". There are 4 such strings: \"abb\", \"cab\", \"cca\", \"eea\". The first one Limak can compress using operation 1 two times (changing \"ab\" to a single \"a\"). The first operation would change \"abb\" to \"ab\" and the second operation would change \"ab\" to \"a\".Other three strings may be compressed as follows: \"cab\" \"ab\" \"a\" \"cca\" \"ca\" \"a\" \"eea\" \"ca\" \"a\" In the second sample, the only correct initial string is \"eb\" because it can be immediately compressed to \"a\"."}, "src_uid": "c42abec29bfd17de3f43385fa6bea534"} {"nl": {"description": "It's that time of the year when the Russians flood their countryside summer cottages (dachas) and the bus stop has a lot of people. People rarely go to the dacha on their own, it's usually a group, so the people stand in queue by groups.The bus stop queue has n groups of people. The i-th group from the beginning has ai people. Every 30 minutes an empty bus arrives at the bus stop, it can carry at most m people. Naturally, the people from the first group enter the bus first. Then go the people from the second group and so on. Note that the order of groups in the queue never changes. Moreover, if some group cannot fit all of its members into the current bus, it waits for the next bus together with other groups standing after it in the queue.Your task is to determine how many buses is needed to transport all n groups to the dacha countryside.", "input_spec": "The first line contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100). The next line contains n integers: a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009m).", "output_spec": "Print a single integer \u2014 the number of buses that is needed to transport all n groups to the dacha countryside.", "sample_inputs": ["4 3\n2 3 2 1", "3 4\n1 2 1"], "sample_outputs": ["3", "1"], "notes": null}, "src_uid": "5c73d6e3770dff034d210cdd572ccf0f"} {"nl": {"description": "Today's morning was exceptionally snowy. Meshanya decided to go outside and noticed a huge snowball rolling down the mountain! Luckily, there are two stones on that mountain.Initially, snowball is at height $$$h$$$ and it has weight $$$w$$$. Each second the following sequence of events happens: snowball's weights increases by $$$i$$$, where $$$i$$$\u00a0\u2014 is the current height of snowball, then snowball hits the stone (if it's present at the current height), then snowball moves one meter down. If the snowball reaches height zero, it stops.There are exactly two stones on the mountain. First stone has weight $$$u_1$$$ and is located at height $$$d_1$$$, the second one\u00a0\u2014 $$$u_2$$$ and $$$d_2$$$ respectively. When the snowball hits either of two stones, it loses weight equal to the weight of that stone. If after this snowball has negative weight, then its weight becomes zero, but the snowball continues moving as before. Find the weight of the snowball when it stops moving, that is, it reaches height\u00a00.", "input_spec": "First line contains two integers $$$w$$$ and $$$h$$$\u00a0\u2014 initial weight and height of the snowball ($$$0 \\le w \\le 100$$$; $$$1 \\le h \\le 100$$$). Second line contains two integers $$$u_1$$$ and $$$d_1$$$\u00a0\u2014 weight and height of the first stone ($$$0 \\le u_1 \\le 100$$$; $$$1 \\le d_1 \\le h$$$). Third line contains two integers $$$u_2$$$ and $$$d_2$$$\u00a0\u2014 weight and heigth of the second stone ($$$0 \\le u_2 \\le 100$$$; $$$1 \\le d_2 \\le h$$$; $$$d_1 \\ne d_2$$$). Notice that stones always have different heights.", "output_spec": "Output a single integer\u00a0\u2014 final weight of the snowball after it reaches height\u00a00.", "sample_inputs": ["4 3\n1 1\n1 2", "4 3\n9 2\n0 1"], "sample_outputs": ["8", "1"], "notes": "NoteIn the first example, initially a snowball of weight 4 is located at a height of 3, there are two stones of weight 1, at a height of 1 and 2, respectively. The following events occur sequentially: The weight of the snowball increases by 3 (current height), becomes equal to 7. The snowball moves one meter down, the current height becomes equal to 2. The weight of the snowball increases by 2 (current height), becomes equal to 9. The snowball hits the stone, its weight decreases by 1 (the weight of the stone), becomes equal to 8. The snowball moves one meter down, the current height becomes equal to 1. The weight of the snowball increases by 1 (current height), becomes equal to 9. The snowball hits the stone, its weight decreases by 1 (the weight of the stone), becomes equal to 8. The snowball moves one meter down, the current height becomes equal to 0. Thus, at the end the weight of the snowball is equal to 8."}, "src_uid": "084a12eb3a708b43b880734f3ee51374"} {"nl": {"description": "This winter is so cold in Nvodsk! A group of n friends decided to buy k bottles of a soft drink called \"Take-It-Light\" to warm up a bit. Each bottle has l milliliters of the drink. Also they bought c limes and cut each of them into d slices. After that they found p grams of salt.To make a toast, each friend needs nl milliliters of the drink, a slice of lime and np grams of salt. The friends want to make as many toasts as they can, provided they all drink the same amount. How many toasts can each friend make?", "input_spec": "The first and only line contains positive integers n, k, l, c, d, p, nl, np, not exceeding 1000 and no less than 1. The numbers are separated by exactly one space.", "output_spec": "Print a single integer \u2014 the number of toasts each friend can make.", "sample_inputs": ["3 4 5 10 8 100 3 1", "5 100 10 1 19 90 4 3", "10 1000 1000 25 23 1 50 1"], "sample_outputs": ["2", "3", "0"], "notes": "NoteA comment to the first sample: Overall the friends have 4\u2009*\u20095\u2009=\u200920 milliliters of the drink, it is enough to make 20\u2009/\u20093\u2009=\u20096 toasts. The limes are enough for 10\u2009*\u20098\u2009=\u200980 toasts and the salt is enough for 100\u2009/\u20091\u2009=\u2009100 toasts. However, there are 3 friends in the group, so the answer is min(6,\u200980,\u2009100)\u2009/\u20093\u2009=\u20092."}, "src_uid": "67410b7d36b9d2e6a97ca5c7cff317c1"} {"nl": {"description": "Sheldon, Leonard, Penny, Rajesh and Howard are in the queue for a \"Double Cola\" drink vending machine; there are no other people in the queue. The first one in the queue (Sheldon) buys a can, drinks it and doubles! The resulting two Sheldons go to the end of the queue. Then the next in the queue (Leonard) buys a can, drinks it and gets to the end of the queue as two Leonards, and so on. This process continues ad infinitum.For example, Penny drinks the third can of cola and the queue will look like this: Rajesh, Howard, Sheldon, Sheldon, Leonard, Leonard, Penny, Penny.Write a program that will print the name of a man who will drink the n-th can.Note that in the very beginning the queue looks like that: Sheldon, Leonard, Penny, Rajesh, Howard. The first person is Sheldon.", "input_spec": "The input data consist of a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009109). It is guaranteed that the pretests check the spelling of all the five names, that is, that they contain all the five possible answers.", "output_spec": "Print the single line \u2014 the name of the person who drinks the n-th can of cola. The cans are numbered starting from 1. Please note that you should spell the names like this: \"Sheldon\", \"Leonard\", \"Penny\", \"Rajesh\", \"Howard\" (without the quotes). In that order precisely the friends are in the queue initially.", "sample_inputs": ["1", "6", "1802"], "sample_outputs": ["Sheldon", "Sheldon", "Penny"], "notes": null}, "src_uid": "023b169765e81d896cdc1184e5a82b22"} {"nl": {"description": "You are given n k-digit integers. You have to rearrange the digits in the integers so that the difference between the largest and the smallest number was minimum. Digits should be rearranged by the same rule in all integers.", "input_spec": "The first line contains integers n and k \u2014 the number and digit capacity of numbers correspondingly (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u20098). Next n lines contain k-digit positive integers. Leading zeroes are allowed both in the initial integers and the integers resulting from the rearranging of digits.", "output_spec": "Print a single number: the minimally possible difference between the largest and the smallest number after the digits are rearranged in all integers by the same rule.", "sample_inputs": ["6 4\n5237\n2753\n7523\n5723\n5327\n2537", "3 3\n010\n909\n012", "7 5\n50808\n36603\n37198\n44911\n29994\n42543\n50156"], "sample_outputs": ["2700", "3", "20522"], "notes": "NoteIn the first sample, if we rearrange the digits in numbers as (3,1,4,2), then the 2-nd and the 4-th numbers will equal 5237 and 2537 correspondingly (they will be maximum and minimum for such order of digits).In the second sample, if we swap the second digits and the first ones, we get integers 100, 99 and 102."}, "src_uid": "08f85cd4ffbd135f0b630235209273a4"} {"nl": {"description": "Vasilisa the Wise from the Kingdom of Far Far Away got a magic box with a secret as a present from her friend Hellawisa the Wise from the Kingdom of A Little Closer. However, Vasilisa the Wise does not know what the box's secret is, since she cannot open it again. She hopes that you will help her one more time with that.The box's lock looks as follows: it contains 4 identical deepenings for gems as a 2\u2009\u00d7\u20092 square, and some integer numbers are written at the lock's edge near the deepenings. The example of a lock is given on the picture below. The box is accompanied with 9 gems. Their shapes match the deepenings' shapes and each gem contains one number from 1 to 9 (each number is written on exactly one gem). The box will only open after it is decorated with gems correctly: that is, each deepening in the lock should be filled with exactly one gem. Also, the sums of numbers in the square's rows, columns and two diagonals of the square should match the numbers written at the lock's edge. For example, the above lock will open if we fill the deepenings with gems with numbers as is shown on the picture below. Now Vasilisa the Wise wants to define, given the numbers on the box's lock, which gems she should put in the deepenings to open the box. Help Vasilisa to solve this challenging task.", "input_spec": "The input contains numbers written on the edges of the lock of the box. The first line contains space-separated integers r1 and r2 that define the required sums of numbers in the rows of the square. The second line contains space-separated integers c1 and c2 that define the required sums of numbers in the columns of the square. The third line contains space-separated integers d1 and d2 that define the required sums of numbers on the main and on the side diagonals of the square (1\u2009\u2264\u2009r1,\u2009r2,\u2009c1,\u2009c2,\u2009d1,\u2009d2\u2009\u2264\u200920). Correspondence between the above 6 variables and places where they are written is shown on the picture below. For more clarifications please look at the second sample test that demonstrates the example given in the problem statement. ", "output_spec": "Print the scheme of decorating the box with stones: two lines containing two space-separated integers from 1 to 9. The numbers should be pairwise different. If there is no solution for the given lock, then print the single number \"-1\" (without the quotes). If there are several solutions, output any.", "sample_inputs": ["3 7\n4 6\n5 5", "11 10\n13 8\n5 16", "1 2\n3 4\n5 6", "10 10\n10 10\n10 10"], "sample_outputs": ["1 2\n3 4", "4 7\n9 1", "-1", "-1"], "notes": "NotePay attention to the last test from the statement: it is impossible to open the box because for that Vasilisa the Wise would need 4 identical gems containing number \"5\". However, Vasilisa only has one gem with each number from 1 to 9."}, "src_uid": "6821f502f5b6ec95c505e5dd8f3cd5d3"} {"nl": {"description": "Once Vasya needed to transport m goats and m wolves from riverbank to the other as quickly as possible. The boat can hold n animals and Vasya, in addition, he is permitted to put less than n animals in the boat. If in one place (on one of the banks or in the boat) the wolves happen to strictly outnumber the goats, then the wolves eat the goats and Vasya gets upset. When Vasya swims on the boat from one shore to the other, he must take at least one animal to accompany him, otherwise he will get bored and he will, yet again, feel upset. When the boat reaches the bank, first all the animals get off simultaneously, and then the animals chosen by Vasya simultaneously get on the boat. That means that at the moment when the animals that have just arrived have already got off and the animals that are going to leave haven't yet got on, somebody might eat someone. Vasya needs to transport all the animals from one river bank to the other so that nobody eats anyone and Vasya doesn't get upset. What is the minimal number of times he will have to cross the river?", "input_spec": "The first line contains two space-separated numbers m and n (1\u2009\u2264\u2009m,\u2009n\u2009\u2264\u2009105) \u2014 the number of animals and the boat's capacity.", "output_spec": "If it is impossible to transport all the animals so that no one got upset, and all the goats survived, print -1. Otherwise print the single number \u2014 how many times Vasya will have to cross the river.", "sample_inputs": ["3 2", "33 3"], "sample_outputs": ["11", "-1"], "notes": "NoteThe first sample match to well-known problem for children."}, "src_uid": "83f1d50a1802e08dd154d4c9778e3d80"} {"nl": {"description": "Sometimes one has to spell email addresses over the phone. Then one usually pronounces a dot as dot, an at sign as at. As a result, we get something like vasyaatgmaildotcom. Your task is to transform it into a proper email address (vasya@gmail.com). It is known that a proper email address contains only such symbols as . @ and lower-case Latin letters, doesn't start with and doesn't end with a dot. Also, a proper email address doesn't start with and doesn't end with an at sign. Moreover, an email address contains exactly one such symbol as @, yet may contain any number (possible, zero) of dots. You have to carry out a series of replacements so that the length of the result was as short as possible and it was a proper email address. If the lengths are equal, you should print the lexicographically minimal result. Overall, two variants of replacement are possible: dot can be replaced by a dot, at can be replaced by an at. ", "input_spec": "The first line contains the email address description. It is guaranteed that that is a proper email address with all the dots replaced by dot an the at signs replaced by at. The line is not empty and its length does not exceed 100 symbols.", "output_spec": "Print the shortest email address, from which the given line could be made by the described above replacements. If there are several solutions to that problem, print the lexicographically minimal one (the lexicographical comparison of the lines are implemented with an operator < in modern programming languages). In the ASCII table the symbols go in this order: . @ ab...z", "sample_inputs": ["vasyaatgmaildotcom", "dotdotdotatdotdotat", "aatt"], "sample_outputs": ["vasya@gmail.com", "dot..@..at", "a@t"], "notes": null}, "src_uid": "a11c9679d8e2dca51be17d466202df6e"} {"nl": {"description": "One day Alex was creating a contest about his friends, but accidentally deleted it. Fortunately, all the problems were saved, but now he needs to find them among other problems.But there are too many problems, to do it manually. Alex asks you to write a program, which will determine if a problem is from this contest by its name.It is known, that problem is from this contest if and only if its name contains one of Alex's friends' name exactly once. His friends' names are \"Danil\", \"Olya\", \"Slava\", \"Ann\" and \"Nikita\".Names are case sensitive.", "input_spec": "The only line contains string from lowercase and uppercase letters and \"_\" symbols of length, not more than 100 \u2014 the name of the problem.", "output_spec": "Print \"YES\", if problem is from this contest, and \"NO\" otherwise.", "sample_inputs": ["Alex_and_broken_contest", "NikitaAndString", "Danil_and_Olya"], "sample_outputs": ["NO", "YES", "NO"], "notes": null}, "src_uid": "db2dc7500ff4d84dcc1a37aebd2b3710"} {"nl": {"description": "There are five people playing a game called \"Generosity\". Each person gives some non-zero number of coins b as an initial bet. After all players make their bets of b coins, the following operation is repeated for several times: a coin is passed from one player to some other player.Your task is to write a program that can, given the number of coins each player has at the end of the game, determine the size b of the initial bet or find out that such outcome of the game cannot be obtained for any positive number of coins b in the initial bet.", "input_spec": "The input consists of a single line containing five integers c1,\u2009c2,\u2009c3,\u2009c4 and c5 \u2014 the number of coins that the first, second, third, fourth and fifth players respectively have at the end of the game (0\u2009\u2264\u2009c1,\u2009c2,\u2009c3,\u2009c4,\u2009c5\u2009\u2264\u2009100).", "output_spec": "Print the only line containing a single positive integer b \u2014 the number of coins in the initial bet of each player. If there is no such value of b, then print the only value \"-1\" (quotes for clarity).", "sample_inputs": ["2 5 4 0 4", "4 5 9 2 1"], "sample_outputs": ["3", "-1"], "notes": "NoteIn the first sample the following sequence of operations is possible: One coin is passed from the fourth player to the second player; One coin is passed from the fourth player to the fifth player; One coin is passed from the first player to the third player; One coin is passed from the fourth player to the second player. "}, "src_uid": "af1ec6a6fc1f2360506fc8a34e3dcd20"} {"nl": {"description": "Ayoub had an array $$$a$$$ of integers of size $$$n$$$ and this array had two interesting properties: All the integers in the array were between $$$l$$$ and $$$r$$$ (inclusive). The sum of all the elements was divisible by $$$3$$$. Unfortunately, Ayoub has lost his array, but he remembers the size of the array $$$n$$$ and the numbers $$$l$$$ and $$$r$$$, so he asked you to find the number of ways to restore the array. Since the answer could be very large, print it modulo $$$10^9 + 7$$$ (i.e. the remainder when dividing by $$$10^9 + 7$$$). In case there are no satisfying arrays (Ayoub has a wrong memory), print $$$0$$$.", "input_spec": "The first and only line contains three integers $$$n$$$, $$$l$$$ and $$$r$$$ ($$$1 \\le n \\le 2 \\cdot 10^5 , 1 \\le l \\le r \\le 10^9$$$)\u00a0\u2014 the size of the lost array and the range of numbers in the array.", "output_spec": "Print the remainder when dividing by $$$10^9 + 7$$$ the number of ways to restore the array.", "sample_inputs": ["2 1 3", "3 2 2", "9 9 99"], "sample_outputs": ["3", "1", "711426616"], "notes": "NoteIn the first example, the possible arrays are : $$$[1,2], [2,1], [3, 3]$$$.In the second example, the only possible array is $$$[2, 2, 2]$$$."}, "src_uid": "4c4852df62fccb0a19ad8bc41145de61"} {"nl": {"description": "Running with barriers on the circle track is very popular in the country where Dasha lives, so no wonder that on her way to classes she saw the following situation:The track is the circle with length L, in distinct points of which there are n barriers. Athlete always run the track in counterclockwise direction if you look on him from above. All barriers are located at integer distance from each other along the track. Her friends the parrot Kefa and the leopard Sasha participated in competitions and each of them ran one lap. Each of the friends started from some integral point on the track. Both friends wrote the distance from their start along the track to each of the n barriers. Thus, each of them wrote n integers in the ascending order, each of them was between 0 and L\u2009-\u20091, inclusively. Consider an example. Let L\u2009=\u20098, blue points are barriers, and green points are Kefa's start (A) and Sasha's start (B). Then Kefa writes down the sequence [2,\u20094,\u20096], and Sasha writes down [1,\u20095,\u20097]. There are several tracks in the country, all of them have same length and same number of barriers, but the positions of the barriers can differ among different tracks. Now Dasha is interested if it is possible that Kefa and Sasha ran the same track or they participated on different tracks. Write the program which will check that Kefa's and Sasha's tracks coincide (it means that one can be obtained from the other by changing the start position). Note that they always run the track in one direction \u2014 counterclockwise, if you look on a track from above. ", "input_spec": "The first line contains two integers n and L (1\u2009\u2264\u2009n\u2009\u2264\u200950, n\u2009\u2264\u2009L\u2009\u2264\u2009100) \u2014 the number of barriers on a track and its length. The second line contains n distinct integers in the ascending order \u2014 the distance from Kefa's start to each barrier in the order of its appearance. All integers are in the range from 0 to L\u2009-\u20091 inclusively. The second line contains n distinct integers in the ascending order \u2014 the distance from Sasha's start to each barrier in the order of its overcoming. All integers are in the range from 0 to L\u2009-\u20091 inclusively.", "output_spec": "Print \"YES\" (without quotes), if Kefa and Sasha ran the coinciding tracks (it means that the position of all barriers coincides, if they start running from the same points on the track). Otherwise print \"NO\" (without quotes).", "sample_inputs": ["3 8\n2 4 6\n1 5 7", "4 9\n2 3 5 8\n0 1 3 6", "2 4\n1 3\n1 2"], "sample_outputs": ["YES", "YES", "NO"], "notes": "NoteThe first test is analyzed in the statement."}, "src_uid": "3d931684ca11fe6141c6461e85d91d63"} {"nl": {"description": "There have recently been elections in the zoo. Overall there were 7 main political parties: one of them is the Little Elephant Political Party, 6 other parties have less catchy names.Political parties find their number in the ballot highly important. Overall there are m possible numbers: 1,\u20092,\u2009...,\u2009m. Each of these 7 parties is going to be assigned in some way to exactly one number, at that, two distinct parties cannot receive the same number.The Little Elephant Political Party members believe in the lucky digits 4 and 7. They want to evaluate their chances in the elections. For that, they need to find out, how many correct assignments are there, such that the number of lucky digits in the Little Elephant Political Party ballot number is strictly larger than the total number of lucky digits in the ballot numbers of 6 other parties. Help the Little Elephant Political Party, calculate this number. As the answer can be rather large, print the remainder from dividing it by 1000000007 (109\u2009+\u20097).", "input_spec": "A single line contains a single positive integer m (7\u2009\u2264\u2009m\u2009\u2264\u2009109) \u2014 the number of possible numbers in the ballot.", "output_spec": "In a single line print a single integer \u2014 the answer to the problem modulo 1000000007 (109\u2009+\u20097).", "sample_inputs": ["7", "8"], "sample_outputs": ["0", "1440"], "notes": null}, "src_uid": "656ed7b1b80de84d65a253e5d14d62a9"} {"nl": {"description": "Iahub got bored, so he invented a game to be played on paper. He writes n integers a1,\u2009a2,\u2009...,\u2009an. Each of those integers can be either 0 or 1. He's allowed to do exactly one move: he chooses two indices i and j (1\u2009\u2264\u2009i\u2009\u2264\u2009j\u2009\u2264\u2009n) and flips all values ak for which their positions are in range [i,\u2009j] (that is i\u2009\u2264\u2009k\u2009\u2264\u2009j). Flip the value of x means to apply operation x\u2009=\u20091 - x.The goal of the game is that after exactly one move to obtain the maximum number of ones. Write a program to solve the little game of Iahub.", "input_spec": "The first line of the input contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). In the second line of the input there are n integers: a1,\u2009a2,\u2009...,\u2009an. It is guaranteed that each of those n values is either 0 or 1.", "output_spec": "Print an integer \u2014 the maximal number of 1s that can be obtained after exactly one move. ", "sample_inputs": ["5\n1 0 0 1 0", "4\n1 0 0 1"], "sample_outputs": ["4", "4"], "notes": "NoteIn the first case, flip the segment from 2 to 5 (i\u2009=\u20092,\u2009j\u2009=\u20095). That flip changes the sequence, it becomes: [1 1 1 0 1]. So, it contains four ones. There is no way to make the whole sequence equal to [1 1 1 1 1].In the second case, flipping only the second and the third element (i\u2009=\u20092,\u2009j\u2009=\u20093) will turn all numbers into 1."}, "src_uid": "9b543e07e805fe1dd8fa869d5d7c8b99"} {"nl": {"description": "A renowned abstract artist Sasha, drawing inspiration from nowhere, decided to paint a picture entitled \"Special Olympics\". He justly thought that, if the regular Olympic games have five rings, then the Special ones will do with exactly two rings just fine.Let us remind you that a ring is a region located between two concentric circles with radii r and R (r\u2009<\u2009R). These radii are called internal and external, respectively. Concentric circles are circles with centers located at the same point.Soon a white canvas, which can be considered as an infinite Cartesian plane, had two perfect rings, painted with solid black paint. As Sasha is very impulsive, the rings could have different radii and sizes, they intersect and overlap with each other in any way. We know only one thing for sure: the centers of the pair of rings are not the same.When Sasha got tired and fell into a deep sleep, a girl called Ilona came into the room and wanted to cut a circle for the sake of good memories. To make the circle beautiful, she decided to cut along the contour.We'll consider a contour to be a continuous closed line through which there is transition from one color to another (see notes for clarification). If the contour takes the form of a circle, then the result will be cutting out a circle, which Iona wants.But the girl's inquisitive mathematical mind does not rest: how many ways are there to cut a circle out of the canvas?", "input_spec": "The input contains two lines. Each line has four space-separated integers xi, yi, ri, Ri, that describe the i-th ring; xi and yi are coordinates of the ring's center, ri and Ri are the internal and external radii of the ring correspondingly (\u2009-\u2009100\u2009\u2264\u2009xi,\u2009yi\u2009\u2264\u2009100;\u00a01\u2009\u2264\u2009ri\u2009<\u2009Ri\u2009\u2264\u2009100). It is guaranteed that the centers of the rings do not coinside.", "output_spec": "A single integer \u2014 the number of ways to cut out a circle from the canvas.", "sample_inputs": ["60 60 45 55\n80 80 8 32", "60 60 45 55\n80 60 15 25", "50 50 35 45\n90 50 35 45"], "sample_outputs": ["1", "4", "0"], "notes": "NoteFigures for test samples are given below. The possible cuts are marked with red dotted line. "}, "src_uid": "4c2865e4742a29460ca64860740b84f4"} {"nl": {"description": "\"Contestant who earns a score equal to or greater than the k-th place finisher's score will advance to the next round, as long as the contestant earns a positive score...\" \u2014 an excerpt from contest rules.A total of n participants took part in the contest (n\u2009\u2265\u2009k), and you already know their scores. Calculate how many participants will advance to the next round.", "input_spec": "The first line of the input contains two integers n and k (1\u2009\u2264\u2009k\u2009\u2264\u2009n\u2009\u2264\u200950) separated by a single space. The second line contains n space-separated integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u2009100), where ai is the score earned by the participant who got the i-th place. The given sequence is non-increasing (that is, for all i from 1 to n\u2009-\u20091 the following condition is fulfilled: ai\u2009\u2265\u2009ai\u2009+\u20091).", "output_spec": "Output the number of participants who advance to the next round.", "sample_inputs": ["8 5\n10 9 8 7 7 7 5 5", "4 2\n0 0 0 0"], "sample_outputs": ["6", "0"], "notes": "NoteIn the first example the participant on the 5th place earned 7 points. As the participant on the 6th place also earned 7 points, there are 6 advancers.In the second example nobody got a positive score."}, "src_uid": "193ec1226ffe07522caf63e84a7d007f"} {"nl": {"description": "You are given a string q. A sequence of k strings s1,\u2009s2,\u2009...,\u2009sk is called beautiful, if the concatenation of these strings is string q (formally, s1\u2009+\u2009s2\u2009+\u2009...\u2009+\u2009sk\u2009=\u2009q) and the first characters of these strings are distinct.Find any beautiful sequence of strings or determine that the beautiful sequence doesn't exist.", "input_spec": "The first line contains a positive integer k (1\u2009\u2264\u2009k\u2009\u2264\u200926) \u2014 the number of strings that should be in a beautiful sequence. The second line contains string q, consisting of lowercase Latin letters. The length of the string is within range from 1 to 100, inclusive.", "output_spec": "If such sequence doesn't exist, then print in a single line \"NO\" (without the quotes). Otherwise, print in the first line \"YES\" (without the quotes) and in the next k lines print the beautiful sequence of strings s1,\u2009s2,\u2009...,\u2009sk. If there are multiple possible answers, print any of them.", "sample_inputs": ["1\nabca", "2\naaacas", "4\nabc"], "sample_outputs": ["YES\nabca", "YES\naaa\ncas", "NO"], "notes": "NoteIn the second sample there are two possible answers: {\"aaaca\",\u2009\"s\"} and {\"aaa\",\u2009\"cas\"}."}, "src_uid": "c1b071f09ef375f19031ce99d10e90ab"} {"nl": {"description": "qd ucyhf yi q fhycu dkcruh mxeiu huluhiu yi q tyvvuhudj fhycu dkcruh. oekh jqia yi je vydt jxu djx ucyhf.", "input_spec": "jxu ydfkj sediyiji ev q iydwbu ydjuwuh d (1\u2009\u2264\u2009d\u2009\u2264\u200911184) \u2014 jxu edu-rqiut ydtun ev jxu ucyhf je vydt.", "output_spec": "ekjfkj q iydwbu dkcruh.", "sample_inputs": ["1"], "sample_outputs": ["13"], "notes": null}, "src_uid": "53879e79cccbacfa6586d40cf3436657"} {"nl": {"description": "Alice is the leader of the State Refactoring Party, and she is about to become the prime minister. The elections have just taken place. There are $$$n$$$ parties, numbered from $$$1$$$ to $$$n$$$. The $$$i$$$-th party has received $$$a_i$$$ seats in the parliament.Alice's party has number $$$1$$$. In order to become the prime minister, she needs to build a coalition, consisting of her party and possibly some other parties. There are two conditions she needs to fulfil: The total number of seats of all parties in the coalition must be a strict majority of all the seats, i.e. it must have strictly more than half of the seats. For example, if the parliament has $$$200$$$ (or $$$201$$$) seats, then the majority is $$$101$$$ or more seats. Alice's party must have at least $$$2$$$ times more seats than any other party in the coalition. For example, to invite a party with $$$50$$$ seats, Alice's party must have at least $$$100$$$ seats. For example, if $$$n=4$$$ and $$$a=[51, 25, 99, 25]$$$ (note that Alice'a party has $$$51$$$ seats), then the following set $$$[a_1=51, a_2=25, a_4=25]$$$ can create a coalition since both conditions will be satisfied. However, the following sets will not create a coalition: $$$[a_2=25, a_3=99, a_4=25]$$$ since Alice's party is not there; $$$[a_1=51, a_2=25]$$$ since coalition should have a strict majority; $$$[a_1=51, a_2=25, a_3=99]$$$ since Alice's party should have at least $$$2$$$ times more seats than any other party in the coalition. Alice does not have to minimise the number of parties in a coalition. If she wants, she can invite as many parties as she wants (as long as the conditions are satisfied). If Alice's party has enough people to create a coalition on her own, she can invite no parties.Note that Alice can either invite a party as a whole or not at all. It is not possible to invite only some of the deputies (seats) from another party. In other words, if Alice invites a party, she invites all its deputies.Find and print any suitable coalition.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$2 \\leq n \\leq 100$$$)\u00a0\u2014 the number of parties. The second line contains $$$n$$$ space separated integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\leq a_i \\leq 100$$$)\u00a0\u2014 the number of seats the $$$i$$$-th party has.", "output_spec": "If no coalition satisfying both conditions is possible, output a single line with an integer $$$0$$$. Otherwise, suppose there are $$$k$$$ ($$$1 \\leq k \\leq n$$$) parties in the coalition (Alice does not have to minimise the number of parties in a coalition), and their indices are $$$c_1, c_2, \\dots, c_k$$$ ($$$1 \\leq c_i \\leq n$$$). Output two lines, first containing the integer $$$k$$$, and the second the space-separated indices $$$c_1, c_2, \\dots, c_k$$$. You may print the parties in any order. Alice's party (number $$$1$$$) must be on that list. If there are multiple solutions, you may print any of them.", "sample_inputs": ["3\n100 50 50", "3\n80 60 60", "2\n6 5", "4\n51 25 99 25"], "sample_outputs": ["2\n1 2", "0", "1\n1", "3\n1 2 4"], "notes": "NoteIn the first example, Alice picks the second party. Note that she can also pick the third party or both of them. However, she cannot become prime minister without any of them, because $$$100$$$ is not a strict majority out of $$$200$$$.In the second example, there is no way of building a majority, as both other parties are too large to become a coalition partner.In the third example, Alice already has the majority. The fourth example is described in the problem statement."}, "src_uid": "0a71fdaaf08c18396324ad762b7379d7"} {"nl": {"description": "So nearly half of the winter is over and Maria is dreaming about summer. She's fed up with skates and sleds, she was dreaming about Hopscotch all night long. It's a very popular children's game. The game field, the court, looks as is shown in the figure (all blocks are square and are numbered from bottom to top, blocks in the same row are numbered from left to right). Let us describe the hopscotch with numbers that denote the number of squares in the row, staring from the lowest one: 1-1-2-1-2-1-2-(1-2)..., where then the period is repeated (1-2). The coordinate system is defined as shown in the figure. Side of all the squares are equal and have length a.Maria is a very smart and clever girl, and she is concerned with quite serious issues: if she throws a stone into a point with coordinates (x,\u2009y), then will she hit some square? If the answer is positive, you are also required to determine the number of the square.It is believed that the stone has fallen into the square if it is located strictly inside it. In other words a stone that has fallen on the square border is not considered a to hit a square.", "input_spec": "The only input line contains three integers: a, x, y, where a (1\u2009\u2264\u2009a\u2009\u2264\u2009100) is the side of the square, x and y (\u2009-\u2009106\u2009\u2264\u2009x\u2009\u2264\u2009106,\u20090\u2009\u2264\u2009y\u2009\u2264\u2009106) are coordinates of the stone.", "output_spec": "Print the number of the square, inside which the stone fell. If the stone is on a border of some stone or outside the court, print \"-1\" without the quotes.", "sample_inputs": ["1 0 0", "3 1 1", "3 0 10", "3 0 7", "3 4 0"], "sample_outputs": ["-1", "1", "5", "-1", "-1"], "notes": null}, "src_uid": "cf48ff6ba3e77ba5d4afccb8f775fb02"} {"nl": {"description": "Statistics claims that students sleep no more than three hours a day. But even in the world of their dreams, while they are snoring peacefully, the sense of impending doom is still upon them.A poor student is dreaming that he is sitting the mathematical analysis exam. And he is examined by the most formidable professor of all times, a three times Soviet Union Hero, a Noble Prize laureate in student expulsion, venerable Petr Palych.The poor student couldn't answer a single question. Thus, instead of a large spacious office he is going to apply for a job to thorium mines. But wait a minute! Petr Palych decided to give the student the last chance! Yes, that is possible only in dreams. So the professor began: \"Once a Venusian girl and a Marsian boy met on the Earth and decided to take a walk holding hands. But the problem is the girl has al fingers on her left hand and ar fingers on the right one. The boy correspondingly has bl and br fingers. They can only feel comfortable when holding hands, when no pair of the girl's fingers will touch each other. That is, they are comfortable when between any two girl's fingers there is a boy's finger. And in addition, no three fingers of the boy should touch each other. Determine if they can hold hands so that the both were comfortable.\"The boy any the girl don't care who goes to the left and who goes to the right. The difference is only that if the boy goes to the left of the girl, he will take her left hand with his right one, and if he goes to the right of the girl, then it is vice versa.", "input_spec": "The first line contains two positive integers not exceeding 100. They are the number of fingers on the Venusian girl's left and right hand correspondingly. The second line contains two integers not exceeding 100. They are the number of fingers on the Marsian boy's left and right hands correspondingly.", "output_spec": "Print YES or NO, that is, the answer to Petr Palych's question.", "sample_inputs": ["5 1\n10 5", "4 5\n3 3", "1 2\n11 6"], "sample_outputs": ["YES", "YES", "NO"], "notes": "NoteThe boy and the girl don't really care who goes to the left."}, "src_uid": "36b7478e162be6e985613b2dad0974dd"} {"nl": {"description": "Bear Limak wants to become the largest of bears, or at least to become larger than his brother Bob.Right now, Limak and Bob weigh a and b respectively. It's guaranteed that Limak's weight is smaller than or equal to his brother's weight.Limak eats a lot and his weight is tripled after every year, while Bob's weight is doubled after every year.After how many full years will Limak become strictly larger (strictly heavier) than Bob?", "input_spec": "The only line of the input contains two integers a and b (1\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u200910)\u00a0\u2014 the weight of Limak and the weight of Bob respectively.", "output_spec": "Print one integer, denoting the integer number of years after which Limak will become strictly larger than Bob.", "sample_inputs": ["4 7", "4 9", "1 1"], "sample_outputs": ["2", "3", "1"], "notes": "NoteIn the first sample, Limak weighs 4 and Bob weighs 7 initially. After one year their weights are 4\u00b73\u2009=\u200912 and 7\u00b72\u2009=\u200914 respectively (one weight is tripled while the other one is doubled). Limak isn't larger than Bob yet. After the second year weights are 36 and 28, so the first weight is greater than the second one. Limak became larger than Bob after two years so you should print 2.In the second sample, Limak's and Bob's weights in next years are: 12 and 18, then 36 and 36, and finally 108 and 72 (after three years). The answer is 3. Remember that Limak wants to be larger than Bob and he won't be satisfied with equal weights.In the third sample, Limak becomes larger than Bob after the first year. Their weights will be 3 and 2 then."}, "src_uid": "a1583b07a9d093e887f73cc5c29e444a"} {"nl": {"description": "Pasha has a positive integer a without leading zeroes. Today he decided that the number is too small and he should make it larger. Unfortunately, the only operation Pasha can do is to swap two adjacent decimal digits of the integer.Help Pasha count the maximum number he can get if he has the time to make at most k swaps.", "input_spec": "The single line contains two integers a and k (1\u2009\u2264\u2009a\u2009\u2264\u20091018;\u00a00\u2009\u2264\u2009k\u2009\u2264\u2009100).", "output_spec": "Print the maximum number that Pasha can get if he makes at most k swaps.", "sample_inputs": ["1990 1", "300 0", "1034 2", "9090000078001234 6"], "sample_outputs": ["9190", "300", "3104", "9907000008001234"], "notes": null}, "src_uid": "e56f6c343167745821f0b18dcf0d0cde"} {"nl": {"description": "The princess is going to escape the dragon's cave, and she needs to plan it carefully.The princess runs at vp miles per hour, and the dragon flies at vd miles per hour. The dragon will discover the escape after t hours and will chase the princess immediately. Looks like there's no chance to success, but the princess noticed that the dragon is very greedy and not too smart. To delay him, the princess decides to borrow a couple of bijous from his treasury. Once the dragon overtakes the princess, she will drop one bijou to distract him. In this case he will stop, pick up the item, return to the cave and spend f hours to straighten the things out in the treasury. Only after this will he resume the chase again from the very beginning.The princess is going to run on the straight. The distance between the cave and the king's castle she's aiming for is c miles. How many bijous will she need to take from the treasury to be able to reach the castle? If the dragon overtakes the princess at exactly the same moment she has reached the castle, we assume that she reached the castle before the dragon reached her, and doesn't need an extra bijou to hold him off.", "input_spec": "The input data contains integers vp,\u2009vd,\u2009t,\u2009f and c, one per line (1\u2009\u2264\u2009vp,\u2009vd\u2009\u2264\u2009100, 1\u2009\u2264\u2009t,\u2009f\u2009\u2264\u200910, 1\u2009\u2264\u2009c\u2009\u2264\u20091000).", "output_spec": "Output the minimal number of bijous required for the escape to succeed.", "sample_inputs": ["1\n2\n1\n1\n10", "1\n2\n1\n1\n8"], "sample_outputs": ["2", "1"], "notes": "NoteIn the first case one hour after the escape the dragon will discover it, and the princess will be 1 mile away from the cave. In two hours the dragon will overtake the princess 2 miles away from the cave, and she will need to drop the first bijou. Return to the cave and fixing the treasury will take the dragon two more hours; meanwhile the princess will be 4 miles away from the cave. Next time the dragon will overtake the princess 8 miles away from the cave, and she will need the second bijou, but after this she will reach the castle without any further trouble.The second case is similar to the first one, but the second time the dragon overtakes the princess when she has reached the castle, and she won't need the second bijou."}, "src_uid": "c9c03666278acec35f0e273691fe0fff"} {"nl": {"description": "Some country is populated by wizards. They want to organize a demonstration.There are n people living in the city, x of them are the wizards who will surely go to the demonstration. Other city people (n\u2009-\u2009x people) do not support the wizards and aren't going to go to the demonstration. We know that the city administration will react only to the demonstration involving at least y percent of the city people. Having considered the matter, the wizards decided to create clone puppets which can substitute the city people on the demonstration. So all in all, the demonstration will involve only the wizards and their puppets. The city administration cannot tell the difference between a puppet and a person, so, as they calculate the percentage, the administration will consider the city to be consisting of only n people and not containing any clone puppets. Help the wizards and find the minimum number of clones to create to that the demonstration had no less than y percent of the city people.", "input_spec": "The first line contains three space-separated integers, n, x, y (1\u2009\u2264\u2009n,\u2009x,\u2009y\u2009\u2264\u2009104,\u2009x\u2009\u2264\u2009n) \u2014 the number of citizens in the city, the number of wizards and the percentage the administration needs, correspondingly. Please note that y can exceed 100 percent, that is, the administration wants to see on a demonstration more people that actually live in the city (\u2009>\u2009n).", "output_spec": "Print a single integer \u2014 the answer to the problem, the minimum number of clones to create, so that the demonstration involved no less than y percent of n (the real total city population). ", "sample_inputs": ["10 1 14", "20 10 50", "1000 352 146"], "sample_outputs": ["1", "0", "1108"], "notes": "NoteIn the first sample it is necessary that at least 14% of 10 people came to the demonstration. As the number of people should be integer, then at least two people should come. There is only one wizard living in the city and he is going to come. That isn't enough, so he needs to create one clone. In the second sample 10 people should come to the demonstration. The city has 10 wizards. They will all come to the demonstration, so nobody has to create any clones."}, "src_uid": "7038d7b31e1900588da8b61b325e4299"} {"nl": {"description": "As technologies develop, manufacturers are making the process of unlocking a phone as user-friendly as possible. To unlock its new phone, Arkady's pet dog Mu-mu has to bark the password once. The phone represents a password as a string of two lowercase English letters.Mu-mu's enemy Kashtanka wants to unlock Mu-mu's phone to steal some sensible information, but it can only bark n distinct words, each of which can be represented as a string of two lowercase English letters. Kashtanka wants to bark several words (not necessarily distinct) one after another to pronounce a string containing the password as a substring. Tell if it's possible to unlock the phone in this way, or not.", "input_spec": "The first line contains two lowercase English letters\u00a0\u2014 the password on the phone. The second line contains single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of words Kashtanka knows. The next n lines contain two lowercase English letters each, representing the words Kashtanka knows. The words are guaranteed to be distinct.", "output_spec": "Print \"YES\" if Kashtanka can bark several words in a line forming a string containing the password, and \"NO\" otherwise. You can print each letter in arbitrary case (upper or lower).", "sample_inputs": ["ya\n4\nah\noy\nto\nha", "hp\n2\nht\ntp", "ah\n1\nha"], "sample_outputs": ["YES", "NO", "YES"], "notes": "NoteIn the first example the password is \"ya\", and Kashtanka can bark \"oy\" and then \"ah\", and then \"ha\" to form the string \"oyahha\" which contains the password. So, the answer is \"YES\".In the second example Kashtanka can't produce a string containing password as a substring. Note that it can bark \"ht\" and then \"tp\" producing \"http\", but it doesn't contain the password \"hp\" as a substring.In the third example the string \"hahahaha\" contains \"ah\" as a substring."}, "src_uid": "cad8283914da16bc41680857bd20fe9f"} {"nl": {"description": "At the beginning of the school year Berland State University starts two city school programming groups, for beginners and for intermediate coders. The children were tested in order to sort them into groups. According to the results, each student got some score from 1 to m points. We know that c1 schoolchildren got 1 point, c2 children got 2 points, ..., cm children got m points. Now you need to set the passing rate k (integer from 1 to m): all schoolchildren who got less than k points go to the beginner group and those who get at strictly least k points go to the intermediate group. We know that if the size of a group is more than y, then the university won't find a room for them. We also know that if a group has less than x schoolchildren, then it is too small and there's no point in having classes with it. So, you need to split all schoolchildren into two groups so that the size of each group was from x to y, inclusive. Help the university pick the passing rate in a way that meets these requirements.", "input_spec": "The first line contains integer m (2\u2009\u2264\u2009m\u2009\u2264\u2009100). The second line contains m integers c1, c2, ..., cm, separated by single spaces (0\u2009\u2264\u2009ci\u2009\u2264\u2009100). The third line contains two space-separated integers x and y (1\u2009\u2264\u2009x\u2009\u2264\u2009y\u2009\u2264\u200910000). At least one ci is greater than 0.", "output_spec": "If it is impossible to pick a passing rate in a way that makes the size of each resulting groups at least x and at most y, print 0. Otherwise, print an integer from 1 to m \u2014 the passing rate you'd like to suggest. If there are multiple possible answers, print any of them.", "sample_inputs": ["5\n3 4 3 2 1\n6 8", "5\n0 3 3 4 2\n3 10", "2\n2 5\n3 6"], "sample_outputs": ["3", "4", "0"], "notes": "NoteIn the first sample the beginner group has 7 students, the intermediate group has 6 of them. In the second sample another correct answer is 3."}, "src_uid": "e595a1d0c0e4bbcc99454d3148b4557b"} {"nl": {"description": "In order to put away old things and welcome a fresh new year, a thorough cleaning of the house is a must.Little Tommy finds an old polynomial and cleaned it up by taking it modulo another. But now he regrets doing this...Given two integers p and k, find a polynomial f(x) with non-negative integer coefficients strictly less than k, whose remainder is p when divided by (x\u2009+\u2009k). That is, f(x)\u2009=\u2009q(x)\u00b7(x\u2009+\u2009k)\u2009+\u2009p, where q(x) is a polynomial (not necessarily with integer coefficients).", "input_spec": "The only line of input contains two space-separated integers p and k (1\u2009\u2264\u2009p\u2009\u2264\u20091018, 2\u2009\u2264\u2009k\u2009\u2264\u20092\u2009000).", "output_spec": "If the polynomial does not exist, print a single integer -1, or output two lines otherwise. In the first line print a non-negative integer d \u2014 the number of coefficients in the polynomial. In the second line print d space-separated integers a0,\u2009a1,\u2009...,\u2009ad\u2009-\u20091, describing a polynomial fulfilling the given requirements. Your output should satisfy 0\u2009\u2264\u2009ai\u2009<\u2009k for all 0\u2009\u2264\u2009i\u2009\u2264\u2009d\u2009-\u20091, and ad\u2009-\u20091\u2009\u2260\u20090. If there are many possible solutions, print any of them.", "sample_inputs": ["46 2", "2018 214"], "sample_outputs": ["7\n0 1 0 0 1 1 1", "3\n92 205 1"], "notes": "NoteIn the first example, f(x)\u2009=\u2009x6\u2009+\u2009x5\u2009+\u2009x4\u2009+\u2009x\u2009=\u2009(x5\u2009-\u2009x4\u2009+\u20093x3\u2009-\u20096x2\u2009+\u200912x\u2009-\u200923)\u00b7(x\u2009+\u20092)\u2009+\u200946.In the second example, f(x)\u2009=\u2009x2\u2009+\u2009205x\u2009+\u200992\u2009=\u2009(x\u2009-\u20099)\u00b7(x\u2009+\u2009214)\u2009+\u20092018."}, "src_uid": "f4dbaa8deb2bd5c054fe34bb83bc6cd5"} {"nl": {"description": "Little Petya was given this problem for homework:You are given function (here represents the operation of taking the remainder). His task is to count the number of integers x in range [a;b] with property f(x)\u2009=\u2009x.It is a pity that Petya forgot the order in which the remainders should be taken and wrote down only 4 numbers. Each of 24 possible orders of taking the remainder has equal probability of being chosen. For example, if Petya has numbers 1, 2, 3, 4 then he can take remainders in that order or first take remainder modulo 4, then modulo 2, 3, 1. There also are 22 other permutations of these numbers that represent orders in which remainder can be taken. In this problem 4 numbers wrote down by Petya will be pairwise distinct.Now it is impossible for Petya to complete the task given by teacher but just for fun he decided to find the number of integers with property that probability that f(x)\u2009=\u2009x is not less than 31.4159265352718281828459045%. In other words, Petya will pick up the number x if there exist at least 7 permutations of numbers p1,\u2009p2,\u2009p3,\u2009p4, for which f(x)\u2009=\u2009x.", "input_spec": "First line of the input will contain 6 integers, separated by spaces: p1,\u2009p2,\u2009p3,\u2009p4,\u2009a,\u2009b (1\u2009\u2264\u2009p1,\u2009p2,\u2009p3,\u2009p4\u2009\u2264\u20091000,\u20090\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u200931415). It is guaranteed that numbers p1,\u2009p2,\u2009p3,\u2009p4 will be pairwise distinct.", "output_spec": "Output the number of integers in the given range that have the given property.", "sample_inputs": ["2 7 1 8 2 8", "20 30 40 50 0 100", "31 41 59 26 17 43"], "sample_outputs": ["0", "20", "9"], "notes": null}, "src_uid": "63b9dc70e6ad83d89a487ffebe007b0a"} {"nl": {"description": "A girl named Xenia has a cupboard that looks like an arc from ahead. The arc is made of a semicircle with radius r (the cupboard's top) and two walls of height h (the cupboard's sides). The cupboard's depth is r, that is, it looks like a rectangle with base r and height h\u2009+\u2009r from the sides. The figure below shows what the cupboard looks like (the front view is on the left, the side view is on the right). Xenia got lots of balloons for her birthday. The girl hates the mess, so she wants to store the balloons in the cupboard. Luckily, each balloon is a sphere with radius . Help Xenia calculate the maximum number of balloons she can put in her cupboard. You can say that a balloon is in the cupboard if you can't see any part of the balloon on the left or right view. The balloons in the cupboard can touch each other. It is not allowed to squeeze the balloons or deform them in any way. You can assume that the cupboard's walls are negligibly thin.", "input_spec": "The single line contains two integers r,\u2009h (1\u2009\u2264\u2009r,\u2009h\u2009\u2264\u2009107).", "output_spec": "Print a single integer \u2014 the maximum number of balloons Xenia can put in the cupboard.", "sample_inputs": ["1 1", "1 2", "2 1"], "sample_outputs": ["3", "5", "2"], "notes": null}, "src_uid": "ae883bf16842c181ea4bd123dee12ef9"} {"nl": {"description": "Ternary numeric notation is quite popular in Berland. To telegraph the ternary number the Borze alphabet is used. Digit 0 is transmitted as \u00ab.\u00bb, 1 as \u00ab-.\u00bb and 2 as \u00ab--\u00bb. You are to decode the Borze code, i.e. to find out the ternary number given its representation in Borze alphabet.", "input_spec": "The first line contains a number in Borze code. The length of the string is between 1 and 200 characters. It's guaranteed that the given string is a valid Borze code of some ternary number (this number can have leading zeroes).", "output_spec": "Output the decoded ternary number. It can have leading zeroes.", "sample_inputs": [".-.--", "--.", "-..-.--"], "sample_outputs": ["012", "20", "1012"], "notes": null}, "src_uid": "46b5a1cd1bd2985f2752662b7dbb1869"} {"nl": {"description": "You are given two integer numbers, $$$n$$$ and $$$x$$$. You may perform several operations with the integer $$$x$$$.Each operation you perform is the following one: choose any digit $$$y$$$ that occurs in the decimal representation of $$$x$$$ at least once, and replace $$$x$$$ by $$$x \\cdot y$$$.You want to make the length of decimal representation of $$$x$$$ (without leading zeroes) equal to $$$n$$$. What is the minimum number of operations required to do that?", "input_spec": "The only line of the input contains two integers $$$n$$$ and $$$x$$$ ($$$2 \\le n \\le 19$$$; $$$1 \\le x < 10^{n-1}$$$).", "output_spec": "Print one integer \u2014 the minimum number of operations required to make the length of decimal representation of $$$x$$$ (without leading zeroes) equal to $$$n$$$, or $$$-1$$$ if it is impossible.", "sample_inputs": ["2 1", "3 2", "13 42"], "sample_outputs": ["-1", "4", "12"], "notes": "NoteIn the second example, the following sequence of operations achieves the goal: multiply $$$x$$$ by $$$2$$$, so $$$x = 2 \\cdot 2 = 4$$$; multiply $$$x$$$ by $$$4$$$, so $$$x = 4 \\cdot 4 = 16$$$; multiply $$$x$$$ by $$$6$$$, so $$$x = 16 \\cdot 6 = 96$$$; multiply $$$x$$$ by $$$9$$$, so $$$x = 96 \\cdot 9 = 864$$$. "}, "src_uid": "cedcc3cee864bf8684148df93804d029"} {"nl": {"description": "Ksenia has her winter exams. Today she is learning combinatorics. Here's one of the problems she needs to learn to solve.How many distinct trees are there consisting of n vertices, each with the following properties: the tree is marked, that is, the vertices of the tree are numbered from 1 to n; each vertex of the tree is connected with at most three other vertices, and at the same moment the vertex with number 1 is connected with at most two other vertices; the size of the tree's maximum matching equals k. Two trees are considered distinct if there are such two vertices u and v, that in one tree they are connected by an edge and in the other tree they are not.Help Ksenia solve the problem for the given n and k. As the answer to the problem can be very huge you should output it modulo 1000000007\u00a0(109\u2009+\u20097).", "input_spec": "The first line contains two integers n,\u2009k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u200950).", "output_spec": "Print a single integer \u2014 the answer to the problem modulo 1000000007\u00a0(109\u2009+\u20097).", "sample_inputs": ["1 1", "2 1", "3 1", "4 2"], "sample_outputs": ["0", "1", "3", "12"], "notes": "NoteIf you aren't familiar with matchings, please, read the following link: http://en.wikipedia.org/wiki/Matching_(graph_theory)."}, "src_uid": "f98b740183281943eafd90328854746b"} {"nl": {"description": " Walking through the streets of Marshmallow City, Slastyona have spotted some merchants selling a kind of useless toy which is very popular nowadays\u00a0\u2013 caramel spinner! Wanting to join the craze, she has immediately bought the strange contraption.Spinners in Sweetland have the form of V-shaped pieces of caramel. Each spinner can, well, spin around an invisible magic axis. At a specific point in time, a spinner can take 4 positions shown below (each one rotated 90 degrees relative to the previous, with the fourth one followed by the first one): After the spinner was spun, it starts its rotation, which is described by a following algorithm: the spinner maintains its position for a second then majestically switches to the next position in clockwise or counter-clockwise order, depending on the direction the spinner was spun in.Slastyona managed to have spinner rotating for exactly n seconds. Being fascinated by elegance of the process, she completely forgot the direction the spinner was spun in! Lucky for her, she managed to recall the starting position, and wants to deduct the direction given the information she knows. Help her do this.", "input_spec": "There are two characters in the first string\u00a0\u2013 the starting and the ending position of a spinner. The position is encoded with one of the following characters: v (ASCII code 118, lowercase v), < (ASCII code 60), ^ (ASCII code 94) or > (ASCII code 62) (see the picture above for reference). Characters are separated by a single space. In the second strings, a single number n is given (0\u2009\u2264\u2009n\u2009\u2264\u2009109)\u00a0\u2013 the duration of the rotation. It is guaranteed that the ending position of a spinner is a result of a n second spin in any of the directions, assuming the given starting position.", "output_spec": "Output cw, if the direction is clockwise, ccw\u00a0\u2013 if counter-clockwise, and undefined otherwise.", "sample_inputs": ["^ >\n1", "< ^\n3", "^ v\n6"], "sample_outputs": ["cw", "ccw", "undefined"], "notes": null}, "src_uid": "fb99ef80fd21f98674fe85d80a2e5298"} {"nl": {"description": "Overlooking the captivating blend of myriads of vernal hues, Arkady the painter lays out a long, long canvas.Arkady has a sufficiently large amount of paint of three colours: cyan, magenta, and yellow. On the one-dimensional canvas split into n consecutive segments, each segment needs to be painted in one of the colours.Arkady has already painted some (possibly none or all) segments and passes the paintbrush to you. You are to determine whether there are at least two ways of colouring all the unpainted segments so that no two adjacent segments are of the same colour. Two ways are considered different if and only if a segment is painted in different colours in them.", "input_spec": "The first line contains a single positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the length of the canvas. The second line contains a string s of n characters, the i-th of which is either 'C' (denoting a segment painted in cyan), 'M' (denoting one painted in magenta), 'Y' (one painted in yellow), or '?' (an unpainted one).", "output_spec": "If there are at least two different ways of painting, output \"Yes\"; otherwise output \"No\" (both without quotes). You can print each character in any case (upper or lower).", "sample_inputs": ["5\nCY??Y", "5\nC?C?Y", "5\n?CYC?", "5\nC??MM", "3\nMMY"], "sample_outputs": ["Yes", "Yes", "Yes", "No", "No"], "notes": "NoteFor the first example, there are exactly two different ways of colouring: CYCMY and CYMCY.For the second example, there are also exactly two different ways of colouring: CMCMY and CYCMY.For the third example, there are four ways of colouring: MCYCM, MCYCY, YCYCM, and YCYCY.For the fourth example, no matter how the unpainted segments are coloured, the existing magenta segments will prevent the painting from satisfying the requirements. The similar is true for the fifth example."}, "src_uid": "f8adfa0dde7ac1363f269dbdf00212c3"} {"nl": {"description": "The \"Bulls and Cows\" game needs two people to play. The thinker thinks of a number and the guesser tries to guess it.The thinker thinks of a four-digit number in the decimal system. All the digits in the number are different and the number may have a leading zero. It can't have more than one leading zero, because all it's digits should be different. The guesser tries to guess the number. He makes a series of guesses, trying experimental numbers and receives answers from the first person in the format \"x bulls y cows\". x represents the number of digits in the experimental number that occupy the same positions as in the sought number. y represents the number of digits of the experimental number that present in the sought number, but occupy different positions. Naturally, the experimental numbers, as well as the sought number, are represented by four-digit numbers where all digits are different and a leading zero can be present.For example, let's suppose that the thinker thought of the number 0123. Then the guessers' experimental number 1263 will receive a reply \"1 bull 2 cows\" (3 occupies the same positions in both numbers and 1 and 2 are present in both numbers but they occupy different positions). Also, the answer to number 8103 will be \"2 bulls 1 cow\" (analogically, 1 and 3 occupy the same positions and 0 occupies a different one). When the guesser is answered \"4 bulls 0 cows\", the game is over.Now the guesser has already made several guesses and wants to know whether his next guess can possibly be the last one.", "input_spec": "The first input line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u200910) which represents the number of already made guesses. Then follow n lines in the form of \"ai bi ci\", where ai is the i-th experimental number, bi is the number of bulls, ci is the number of cows (1\u2009\u2264\u2009i\u2009\u2264\u2009n, 0\u2009\u2264\u2009bi,\u2009ci,\u2009bi\u2009+\u2009ci\u2009\u2264\u20094). The experimental numbers are correct, i.e., each of them contains exactly four digits, in each of them all the four digits are different, and there can be a leading zero. All the experimental numbers are different. As the guesser hasn't guessed the number yet, the answer \"4 bulls 0 cows\" is not present.", "output_spec": "If the input data is enough to determine the sought number, print the number with four digits on a single line. If it has less than four digits, add leading zero. If the data is not enough, print \"Need more data\" without the quotes. If the thinker happens to have made a mistake in his replies, print \"Incorrect data\" without the quotes.", "sample_inputs": ["2\n1263 1 2\n8103 2 1", "2\n1234 2 2\n1256 0 2", "2\n0123 1 1\n4567 1 2"], "sample_outputs": ["Need more data", "2134", "Incorrect data"], "notes": null}, "src_uid": "142e5f2f08724e53c234fc2379216b4c"} {"nl": {"description": "Xenia the beginner mathematician is a third year student at elementary school. She is now learning the addition operation.The teacher has written down the sum of multiple numbers. Pupils should calculate the sum. To make the calculation easier, the sum only contains numbers 1, 2 and 3. Still, that isn't enough for Xenia. She is only beginning to count, so she can calculate a sum only if the summands follow in non-decreasing order. For example, she can't calculate sum 1+3+2+1 but she can calculate sums 1+1+2 and 3+3.You've got the sum that was written on the board. Rearrange the summans and print the sum in such a way that Xenia can calculate the sum.", "input_spec": "The first line contains a non-empty string s \u2014 the sum Xenia needs to count. String s contains no spaces. It only contains digits and characters \"+\". Besides, string s is a correct sum of numbers 1, 2 and 3. String s is at most 100 characters long.", "output_spec": "Print the new sum that Xenia can count.", "sample_inputs": ["3+2+1", "1+1+3+1+3", "2"], "sample_outputs": ["1+2+3", "1+1+1+3+3", "2"], "notes": null}, "src_uid": "76c7312733ef9d8278521cf09d3ccbc8"} {"nl": {"description": "Bomboslav likes to look out of the window in his room and watch lads outside playing famous shell game. The game is played by two persons: operator and player. Operator takes three similar opaque shells and places a ball beneath one of them. Then he shuffles the shells by swapping some pairs and the player has to guess the current position of the ball.Bomboslav noticed that guys are not very inventive, so the operator always swaps the left shell with the middle one during odd moves (first, third, fifth, etc.) and always swaps the middle shell with the right one during even moves (second, fourth, etc.).Let's number shells from 0 to 2 from left to right. Thus the left shell is assigned number 0, the middle shell is 1 and the right shell is 2. Bomboslav has missed the moment when the ball was placed beneath the shell, but he knows that exactly n movements were made by the operator and the ball was under shell x at the end. Now he wonders, what was the initial position of the ball?", "input_spec": "The first line of the input contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092\u00b7109)\u00a0\u2014 the number of movements made by the operator. The second line contains a single integer x (0\u2009\u2264\u2009x\u2009\u2264\u20092)\u00a0\u2014 the index of the shell where the ball was found after n movements.", "output_spec": "Print one integer from 0 to 2\u00a0\u2014 the index of the shell where the ball was initially placed.", "sample_inputs": ["4\n2", "1\n1"], "sample_outputs": ["1", "0"], "notes": "NoteIn the first sample, the ball was initially placed beneath the middle shell and the operator completed four movements. During the first move operator swapped the left shell and the middle shell. The ball is now under the left shell. During the second move operator swapped the middle shell and the right one. The ball is still under the left shell. During the third move operator swapped the left shell and the middle shell again. The ball is again in the middle. Finally, the operators swapped the middle shell and the right shell. The ball is now beneath the right shell. "}, "src_uid": "7853e03d520cd71571a6079cdfc4c4b0"} {"nl": {"description": "$$$k$$$ people want to split $$$n$$$ candies between them. Each candy should be given to exactly one of them or be thrown away.The people are numbered from $$$1$$$ to $$$k$$$, and Arkady is the first of them. To split the candies, Arkady will choose an integer $$$x$$$ and then give the first $$$x$$$ candies to himself, the next $$$x$$$ candies to the second person, the next $$$x$$$ candies to the third person and so on in a cycle. The leftover (the remainder that is not divisible by $$$x$$$) will be thrown away.Arkady can't choose $$$x$$$ greater than $$$M$$$ as it is considered greedy. Also, he can't choose such a small $$$x$$$ that some person will receive candies more than $$$D$$$ times, as it is considered a slow splitting.Please find what is the maximum number of candies Arkady can receive by choosing some valid $$$x$$$.", "input_spec": "The only line contains four integers $$$n$$$, $$$k$$$, $$$M$$$ and $$$D$$$ ($$$2 \\le n \\le 10^{18}$$$, $$$2 \\le k \\le n$$$, $$$1 \\le M \\le n$$$, $$$1 \\le D \\le \\min{(n, 1000)}$$$, $$$M \\cdot D \\cdot k \\ge n$$$)\u00a0\u2014 the number of candies, the number of people, the maximum number of candies given to a person at once, the maximum number of times a person can receive candies.", "output_spec": "Print a single integer\u00a0\u2014 the maximum possible number of candies Arkady can give to himself. Note that it is always possible to choose some valid $$$x$$$.", "sample_inputs": ["20 4 5 2", "30 9 4 1"], "sample_outputs": ["8", "4"], "notes": "NoteIn the first example Arkady should choose $$$x = 4$$$. He will give $$$4$$$ candies to himself, $$$4$$$ candies to the second person, $$$4$$$ candies to the third person, then $$$4$$$ candies to the fourth person and then again $$$4$$$ candies to himself. No person is given candies more than $$$2$$$ times, and Arkady receives $$$8$$$ candies in total.Note that if Arkady chooses $$$x = 5$$$, he will receive only $$$5$$$ candies, and if he chooses $$$x = 3$$$, he will receive only $$$3 + 3 = 6$$$ candies as well as the second person, the third and the fourth persons will receive $$$3$$$ candies, and $$$2$$$ candies will be thrown away. He can't choose $$$x = 1$$$ nor $$$x = 2$$$ because in these cases he will receive candies more than $$$2$$$ times.In the second example Arkady has to choose $$$x = 4$$$, because any smaller value leads to him receiving candies more than $$$1$$$ time."}, "src_uid": "ac2e795cd44061db8da13e3947ba791b"} {"nl": {"description": "Bishwock is a chess figure that consists of three squares resembling an \"L-bar\". This figure can be rotated by 90, 180 and 270 degrees so it can have four possible states: XX XX .X X.X. .X XX XX Bishwocks don't attack any squares and can even occupy on the adjacent squares as long as they don't occupy the same square. Vasya has a board with $$$2\\times n$$$ squares onto which he wants to put some bishwocks. To his dismay, several squares on this board are already occupied by pawns and Vasya can't put bishwocks there. However, pawns also don't attack bishwocks and they can occupy adjacent squares peacefully.Knowing the positions of pawns on the board, help Vasya to determine the maximum amount of bishwocks he can put onto the board so that they wouldn't occupy the same squares and wouldn't occupy squares with pawns.", "input_spec": "The input contains two nonempty strings that describe Vasya's board. Those strings contain only symbols \"0\" (zero) that denote the empty squares and symbols \"X\" (uppercase English letter) that denote the squares occupied by pawns. Strings are nonempty and are of the same length that does not exceed $$$100$$$.", "output_spec": "Output a single integer\u00a0\u2014 the maximum amount of bishwocks that can be placed onto the given board.", "sample_inputs": ["00\n00", "00X00X0XXX0\n0XXX0X00X00", "0X0X0\n0X0X0", "0XXX0\n00000"], "sample_outputs": ["1", "4", "0", "2"], "notes": null}, "src_uid": "e6b3e787919e96fc893a034eae233fc6"} {"nl": {"description": "Santa Claus is the first who came to the Christmas Olympiad, and he is going to be the first to take his place at a desk! In the classroom there are n lanes of m desks each, and there are two working places at each of the desks. The lanes are numbered from 1 to n from the left to the right, the desks in a lane are numbered from 1 to m starting from the blackboard. Note that the lanes go perpendicularly to the blackboard, not along it (see picture).The organizers numbered all the working places from 1 to 2nm. The places are numbered by lanes (i.\u00a0e. all the places of the first lane go first, then all the places of the second lane, and so on), in a lane the places are numbered starting from the nearest to the blackboard (i.\u00a0e. from the first desk in the lane), at each desk, the place on the left is numbered before the place on the right. The picture illustrates the first and the second samples. Santa Clause knows that his place has number k. Help him to determine at which lane at which desk he should sit, and whether his place is on the left or on the right!", "input_spec": "The only line contains three integers n, m and k (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u200910\u2009000, 1\u2009\u2264\u2009k\u2009\u2264\u20092nm)\u00a0\u2014 the number of lanes, the number of desks in each lane and the number of Santa Claus' place.", "output_spec": "Print two integers: the number of lane r, the number of desk d, and a character s, which stands for the side of the desk Santa Claus. The character s should be \"L\", if Santa Clause should sit on the left, and \"R\" if his place is on the right.", "sample_inputs": ["4 3 9", "4 3 24", "2 4 4"], "sample_outputs": ["2 2 L", "4 3 R", "1 2 R"], "notes": "NoteThe first and the second samples are shown on the picture. The green place corresponds to Santa Claus' place in the first example, the blue place corresponds to Santa Claus' place in the second example.In the third sample there are two lanes with four desks in each, and Santa Claus has the fourth place. Thus, his place is in the first lane at the second desk on the right."}, "src_uid": "d6929926b44c2d5b1a8e6b7f965ca1bb"} {"nl": {"description": "Recently you have received two positive integer numbers $$$x$$$ and $$$y$$$. You forgot them, but you remembered a shuffled list containing all divisors of $$$x$$$ (including $$$1$$$ and $$$x$$$) and all divisors of $$$y$$$ (including $$$1$$$ and $$$y$$$). If $$$d$$$ is a divisor of both numbers $$$x$$$ and $$$y$$$ at the same time, there are two occurrences of $$$d$$$ in the list.For example, if $$$x=4$$$ and $$$y=6$$$ then the given list can be any permutation of the list $$$[1, 2, 4, 1, 2, 3, 6]$$$. Some of the possible lists are: $$$[1, 1, 2, 4, 6, 3, 2]$$$, $$$[4, 6, 1, 1, 2, 3, 2]$$$ or $$$[1, 6, 3, 2, 4, 1, 2]$$$.Your problem is to restore suitable positive integer numbers $$$x$$$ and $$$y$$$ that would yield the same list of divisors (possibly in different order).It is guaranteed that the answer exists, i.e. the given list of divisors corresponds to some positive integers $$$x$$$ and $$$y$$$.", "input_spec": "The first line contains one integer $$$n$$$ ($$$2 \\le n \\le 128$$$) \u2014 the number of divisors of $$$x$$$ and $$$y$$$. The second line of the input contains $$$n$$$ integers $$$d_1, d_2, \\dots, d_n$$$ ($$$1 \\le d_i \\le 10^4$$$), where $$$d_i$$$ is either divisor of $$$x$$$ or divisor of $$$y$$$. If a number is divisor of both numbers $$$x$$$ and $$$y$$$ then there are two copies of this number in the list.", "output_spec": "Print two positive integer numbers $$$x$$$ and $$$y$$$ \u2014 such numbers that merged list of their divisors is the permutation of the given list of integers. It is guaranteed that the answer exists.", "sample_inputs": ["10\n10 2 8 1 2 4 1 20 4 5"], "sample_outputs": ["20 8"], "notes": null}, "src_uid": "868407df0a93085057d06367aecaf9be"} {"nl": {"description": "Vasya works as a watchman in the gallery. Unfortunately, one of the most expensive paintings was stolen while he was on duty. He doesn't want to be fired, so he has to quickly restore the painting. He remembers some facts about it. The painting is a square 3\u2009\u00d7\u20093, each cell contains a single integer from 1 to n, and different cells may contain either different or equal integers. The sum of integers in each of four squares 2\u2009\u00d7\u20092 is equal to the sum of integers in the top left square 2\u2009\u00d7\u20092. Four elements a, b, c and d are known and are located as shown on the picture below. Help Vasya find out the number of distinct squares the satisfy all the conditions above. Note, that this number may be equal to 0, meaning Vasya remembers something wrong.Two squares are considered to be different, if there exists a cell that contains two different integers in different squares.", "input_spec": "The first line of the input contains five integers n, a, b, c and d (1\u2009\u2264\u2009n\u2009\u2264\u2009100\u2009000, 1\u2009\u2264\u2009a,\u2009b,\u2009c,\u2009d\u2009\u2264\u2009n)\u00a0\u2014 maximum possible value of an integer in the cell and four integers that Vasya remembers.", "output_spec": "Print one integer\u00a0\u2014 the number of distinct valid squares.", "sample_inputs": ["2 1 1 1 2", "3 3 1 2 3"], "sample_outputs": ["2", "6"], "notes": "NoteBelow are all the possible paintings for the first sample. In the second sample, only paintings displayed below satisfy all the rules. "}, "src_uid": "b732869015baf3dee5094c51a309e32c"} {"nl": {"description": "At a geometry lesson Bob learnt that a triangle is called right-angled if it is nondegenerate and one of its angles is right. Bob decided to draw such a triangle immediately: on a sheet of paper he drew three points with integer coordinates, and joined them with segments of straight lines, then he showed the triangle to Peter. Peter said that Bob's triangle is not right-angled, but is almost right-angled: the triangle itself is not right-angled, but it is possible to move one of the points exactly by distance 1 so, that all the coordinates remain integer, and the triangle become right-angled. Bob asks you to help him and find out if Peter tricks him. By the given coordinates of the triangle you should find out if it is right-angled, almost right-angled, or neither of these.", "input_spec": "The first input line contains 6 space-separated integers x1,\u2009y1,\u2009x2,\u2009y2,\u2009x3,\u2009y3 \u2014 coordinates of the triangle's vertices. All the coordinates are integer and don't exceed 100 in absolute value. It's guaranteed that the triangle is nondegenerate, i.e. its total area is not zero.", "output_spec": "If the given triangle is right-angled, output RIGHT, if it is almost right-angled, output ALMOST, and if it is neither of these, output NEITHER.", "sample_inputs": ["0 0 2 0 0 1", "2 3 4 5 6 6", "-1 0 2 0 0 1"], "sample_outputs": ["RIGHT", "NEITHER", "ALMOST"], "notes": null}, "src_uid": "8324fa542297c21bda1a4aed0bd45a2d"} {"nl": {"description": "Our bear's forest has a checkered field. The checkered field is an n\u2009\u00d7\u2009n table, the rows are numbered from 1 to n from top to bottom, the columns are numbered from 1 to n from left to right. Let's denote a cell of the field on the intersection of row x and column y by record (x,\u2009y). Each cell of the field contains growing raspberry, at that, the cell (x,\u2009y) of the field contains x\u2009+\u2009y raspberry bushes.The bear came out to walk across the field. At the beginning of the walk his speed is (dx,\u2009dy). Then the bear spends exactly t seconds on the field. Each second the following takes place: Let's suppose that at the current moment the bear is in cell (x,\u2009y). First the bear eats the raspberry from all the bushes he has in the current cell. After the bear eats the raspberry from k bushes, he increases each component of his speed by k. In other words, if before eating the k bushes of raspberry his speed was (dx,\u2009dy), then after eating the berry his speed equals (dx\u2009+\u2009k,\u2009dy\u2009+\u2009k). Let's denote the current speed of the bear (dx,\u2009dy) (it was increased after the previous step). Then the bear moves from cell (x,\u2009y) to cell (((x\u2009+\u2009dx\u2009-\u20091)\u00a0mod\u00a0n)\u2009+\u20091,\u2009((y\u2009+\u2009dy\u2009-\u20091)\u00a0mod\u00a0n)\u2009+\u20091). Then one additional raspberry bush grows in each cell of the field. You task is to predict the bear's actions. Find the cell he ends up in if he starts from cell (sx,\u2009sy). Assume that each bush has infinitely much raspberry and the bear will never eat all of it.", "input_spec": "The first line of the input contains six space-separated integers: n, sx, sy, dx, dy, t (1\u2009\u2264\u2009n\u2009\u2264\u2009109;\u00a01\u2009\u2264\u2009sx,\u2009sy\u2009\u2264\u2009n;\u00a0\u2009-\u2009100\u2009\u2264\u2009dx,\u2009dy\u2009\u2264\u2009100;\u00a00\u2009\u2264\u2009t\u2009\u2264\u20091018).", "output_spec": "Print two integers \u2014 the coordinates of the cell the bear will end up in after t seconds.", "sample_inputs": ["5 1 2 0 1 2", "1 1 1 -1 -1 2"], "sample_outputs": ["3 1", "1 1"], "notes": "NoteOperation a\u00a0mod\u00a0b means taking the remainder after dividing a by b. Note that the result of the operation is always non-negative. For example, (\u2009-\u20091)\u00a0mod\u00a03\u2009=\u20092.In the first sample before the first move the speed vector will equal (3,4) and the bear will get to cell (4,1). Before the second move the speed vector will equal (9,10) and he bear will get to cell (3,1). Don't forget that at the second move, the number of berry bushes increased by 1.In the second sample before the first move the speed vector will equal (1,1) and the bear will get to cell (1,1). Before the second move, the speed vector will equal (4,4) and the bear will get to cell (1,1). Don't forget that at the second move, the number of berry bushes increased by 1."}, "src_uid": "ee9fa8be2ae05a4e831a4f608c0cc785"} {"nl": {"description": "What are you doing at the end of the world? Are you busy? Will you save us?Nephren is playing a game with little leprechauns.She gives them an infinite array of strings, f0... \u221e.f0 is \"What are you doing at the end of the world? Are you busy? Will you save us?\".She wants to let more people know about it, so she defines fi\u2009=\u2009 \"What are you doing while sending \"fi\u2009-\u20091\"? Are you busy? Will you send \"fi\u2009-\u20091\"?\" for all i\u2009\u2265\u20091.For example, f1 is\"What are you doing while sending \"What are you doing at the end of the world? Are you busy? Will you save us?\"? Are you busy? Will you send \"What are you doing at the end of the world? Are you busy? Will you save us?\"?\". Note that the quotes in the very beginning and in the very end are for clarity and are not a part of f1.It can be seen that the characters in fi are letters, question marks, (possibly) quotation marks and spaces.Nephren will ask the little leprechauns q times. Each time she will let them find the k-th character of fn. The characters are indexed starting from 1. If fn consists of less than k characters, output '.' (without quotes).Can you answer her queries?", "input_spec": "The first line contains one integer q (1\u2009\u2264\u2009q\u2009\u2264\u200910)\u00a0\u2014 the number of Nephren's questions. Each of the next q lines describes Nephren's question and contains two integers n and k (0\u2009\u2264\u2009n\u2009\u2264\u2009105,\u20091\u2009\u2264\u2009k\u2009\u2264\u20091018).", "output_spec": "One line containing q characters. The i-th character in it should be the answer for the i-th query.", "sample_inputs": ["3\n1 1\n1 2\n1 111111111111", "5\n0 69\n1 194\n1 139\n0 47\n1 66", "10\n4 1825\n3 75\n3 530\n4 1829\n4 1651\n3 187\n4 584\n4 255\n4 774\n2 474"], "sample_outputs": ["Wh.", "abdef", "Areyoubusy"], "notes": "NoteFor the first two examples, refer to f0 and f1 given in the legend."}, "src_uid": "da09a893a33f2bf8fd00e321e16ab149"} {"nl": {"description": "Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.Let next(x) be the minimum lucky number which is larger than or equals x. Petya is interested what is the value of the expression next(l)\u2009+\u2009next(l\u2009+\u20091)\u2009+\u2009...\u2009+\u2009next(r\u2009-\u20091)\u2009+\u2009next(r). Help him solve this problem.", "input_spec": "The single line contains two integers l and r (1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u2009109) \u2014 the left and right interval limits.", "output_spec": "In the single line print the only number \u2014 the sum next(l)\u2009+\u2009next(l\u2009+\u20091)\u2009+\u2009...\u2009+\u2009next(r\u2009-\u20091)\u2009+\u2009next(r). Please do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specificator.", "sample_inputs": ["2 7", "7 7"], "sample_outputs": ["33", "7"], "notes": "NoteIn the first sample: next(2)\u2009+\u2009next(3)\u2009+\u2009next(4)\u2009+\u2009next(5)\u2009+\u2009next(6)\u2009+\u2009next(7)\u2009=\u20094\u2009+\u20094\u2009+\u20094\u2009+\u20097\u2009+\u20097\u2009+\u20097\u2009=\u200933In the second sample: next(7)\u2009=\u20097"}, "src_uid": "8a45fe8956d3ac9d501f4a13b55638dd"} {"nl": {"description": "Drazil is playing a math game with Varda.Let's define for positive integer x as a product of factorials of its digits. For example, .First, they choose a decimal number a consisting of n digits that contains at least one digit larger than 1. This number may possibly start with leading zeroes. Then they should find maximum positive number x satisfying following two conditions:1. x doesn't contain neither digit 0 nor digit 1.2. = .Help friends find such number.", "input_spec": "The first line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u200915) \u2014 the number of digits in a. The second line contains n digits of a. There is at least one digit in a that is larger than 1. Number a may possibly contain leading zeroes.", "output_spec": "Output a maximum possible integer satisfying the conditions above. There should be no zeroes and ones in this number decimal representation.", "sample_inputs": ["4\n1234", "3\n555"], "sample_outputs": ["33222", "555"], "notes": "NoteIn the first case, "}, "src_uid": "60dbfc7a65702ae8bd4a587db1e06398"} {"nl": {"description": "Arpa is researching the Mexican wave.There are n spectators in the stadium, labeled from 1 to n. They start the Mexican wave at time 0. At time 1, the first spectator stands. At time 2, the second spectator stands. ... At time k, the k-th spectator stands. At time k\u2009+\u20091, the (k\u2009+\u20091)-th spectator stands and the first spectator sits. At time k\u2009+\u20092, the (k\u2009+\u20092)-th spectator stands and the second spectator sits. ... At time n, the n-th spectator stands and the (n\u2009-\u2009k)-th spectator sits. At time n\u2009+\u20091, the (n\u2009+\u20091\u2009-\u2009k)-th spectator sits. ... At time n\u2009+\u2009k, the n-th spectator sits. Arpa wants to know how many spectators are standing at time t.", "input_spec": "The first line contains three integers n, k, t (1\u2009\u2264\u2009n\u2009\u2264\u2009109, 1\u2009\u2264\u2009k\u2009\u2264\u2009n, 1\u2009\u2264\u2009t\u2009<\u2009n\u2009+\u2009k).", "output_spec": "Print single integer: how many spectators are standing at time t.", "sample_inputs": ["10 5 3", "10 5 7", "10 5 12"], "sample_outputs": ["3", "5", "3"], "notes": "NoteIn the following a sitting spectator is represented as -, a standing spectator is represented as ^. At t\u2009=\u20090\u2002 ---------- number of standing spectators = 0. At t\u2009=\u20091\u2002 ^--------- number of standing spectators = 1. At t\u2009=\u20092\u2002 ^^-------- number of standing spectators = 2. At t\u2009=\u20093\u2002 ^^^------- number of standing spectators = 3. At t\u2009=\u20094\u2002 ^^^^------ number of standing spectators = 4. At t\u2009=\u20095\u2002 ^^^^^----- number of standing spectators = 5. At t\u2009=\u20096\u2002 -^^^^^---- number of standing spectators = 5. At t\u2009=\u20097\u2002 --^^^^^--- number of standing spectators = 5. At t\u2009=\u20098\u2002 ---^^^^^-- number of standing spectators = 5. At t\u2009=\u20099\u2002 ----^^^^^- number of standing spectators = 5. At t\u2009=\u200910 -----^^^^^ number of standing spectators = 5. At t\u2009=\u200911 ------^^^^ number of standing spectators = 4. At t\u2009=\u200912 -------^^^ number of standing spectators = 3. At t\u2009=\u200913 --------^^ number of standing spectators = 2. At t\u2009=\u200914 ---------^ number of standing spectators = 1. At t\u2009=\u200915 ---------- number of standing spectators = 0. "}, "src_uid": "7e614526109a2052bfe7934381e7f6c2"} {"nl": {"description": "There are n boys and m girls attending a theatre club. To set a play \"The Big Bang Theory\", they need to choose a group containing exactly t actors containing no less than 4 boys and no less than one girl. How many ways are there to choose a group? Of course, the variants that only differ in the composition of the troupe are considered different.Perform all calculations in the 64-bit type: long long for \u0421/\u0421++, int64 for Delphi and long for Java.", "input_spec": "The only line of the input data contains three integers n, m, t (4\u2009\u2264\u2009n\u2009\u2264\u200930,\u20091\u2009\u2264\u2009m\u2009\u2264\u200930,\u20095\u2009\u2264\u2009t\u2009\u2264\u2009n\u2009+\u2009m).", "output_spec": "Find the required number of ways. Please do not use the %lld specificator to read or write 64-bit integers in \u0421++. It is preferred to use cin, cout streams or the %I64d specificator.", "sample_inputs": ["5 2 5", "4 3 5"], "sample_outputs": ["10", "3"], "notes": null}, "src_uid": "489e69c7a2fba5fac34e89d7388ed4b8"} {"nl": {"description": "Ilya got tired of sports programming, left university and got a job in the subway. He was given the task to determine the escalator load factor. Let's assume that n people stand in the queue for the escalator. At each second one of the two following possibilities takes place: either the first person in the queue enters the escalator with probability p, or the first person in the queue doesn't move with probability (1\u2009-\u2009p), paralyzed by his fear of escalators and making the whole queue wait behind him.Formally speaking, the i-th person in the queue cannot enter the escalator until people with indices from 1 to i\u2009-\u20091 inclusive enter it. In one second only one person can enter the escalator. The escalator is infinite, so if a person enters it, he never leaves it, that is he will be standing on the escalator at any following second. Ilya needs to count the expected value of the number of people standing on the escalator after t seconds. Your task is to help him solve this complicated task.", "input_spec": "The first line of the input contains three numbers n,\u2009p,\u2009t (1\u2009\u2264\u2009n,\u2009t\u2009\u2264\u20092000, 0\u2009\u2264\u2009p\u2009\u2264\u20091). Numbers n and t are integers, number p is real, given with exactly two digits after the decimal point.", "output_spec": "Print a single real number \u2014 the expected number of people who will be standing on the escalator after t seconds. The absolute or relative error mustn't exceed 10\u2009-\u20096.", "sample_inputs": ["1 0.50 1", "1 0.50 4", "4 0.20 2"], "sample_outputs": ["0.5", "0.9375", "0.4"], "notes": null}, "src_uid": "20873b1e802c7aa0e409d9f430516c1e"} {"nl": {"description": "You are solving the crossword problem K from IPSC 2014. You solved all the clues except for one: who does Eevee evolve into? You are not very into pokemons, but quick googling helped you find out, that Eevee can evolve into eight different pokemons: Vaporeon, Jolteon, Flareon, Espeon, Umbreon, Leafeon, Glaceon, and Sylveon.You know the length of the word in the crossword, and you already know some letters. Designers of the crossword made sure that the answer is unambiguous, so you can assume that exactly one pokemon out of the 8 that Eevee evolves into fits the length and the letters given. Your task is to find it.", "input_spec": "First line contains an integer n (6\u2009\u2264\u2009n\u2009\u2264\u20098) \u2013 the length of the string. Next line contains a string consisting of n characters, each of which is either a lower case english letter (indicating a known letter) or a dot character (indicating an empty cell in the crossword).", "output_spec": "Print a name of the pokemon that Eevee can evolve into that matches the pattern in the input. Use lower case letters only to print the name (in particular, do not capitalize the first letter).", "sample_inputs": ["7\nj......", "7\n...feon", "7\n.l.r.o."], "sample_outputs": ["jolteon", "leafeon", "flareon"], "notes": "NoteHere's a set of names in a form you can paste into your solution:[\"vaporeon\", \"jolteon\", \"flareon\", \"espeon\", \"umbreon\", \"leafeon\", \"glaceon\", \"sylveon\"]{\"vaporeon\", \"jolteon\", \"flareon\", \"espeon\", \"umbreon\", \"leafeon\", \"glaceon\", \"sylveon\"}"}, "src_uid": "ec3d15ff198d1e4ab9fd04dd3b12e6c0"} {"nl": {"description": "You won't find this sequence on OEIS.", "input_spec": "One integer $$$r$$$ ($$$-45 \\le r \\le 2999$$$).", "output_spec": "One integer.", "sample_inputs": ["2999"], "sample_outputs": ["3000"], "notes": null}, "src_uid": "22725effa6dc68b9c2a499d148e613c2"} {"nl": {"description": "You're given a string of lower-case Latin letters. Your task is to find the length of its longest substring that can be met in the string at least twice. These occurrences can overlap (see sample test 2).", "input_spec": "The first input line contains the string. It's guaranteed, that the string is non-empty, consists of lower-case Latin letters, and its length doesn't exceed 100.", "output_spec": "Output one number \u2014 length of the longest substring that can be met in the string at least twice.", "sample_inputs": ["abcd", "ababa", "zzz"], "sample_outputs": ["0", "3", "2"], "notes": null}, "src_uid": "13b5cf94f2fabd053375a5ccf3fd44c7"} {"nl": {"description": "Valera the Horse is going to the party with friends. He has been following the fashion trends for a while, and he knows that it is very popular to wear all horseshoes of different color. Valera has got four horseshoes left from the last year, but maybe some of them have the same color. In this case he needs to go to the store and buy some few more horseshoes, not to lose face in front of his stylish comrades.Fortunately, the store sells horseshoes of all colors under the sun and Valera has enough money to buy any four of them. However, in order to save the money, he would like to spend as little money as possible, so you need to help Valera and determine what is the minimum number of horseshoes he needs to buy to wear four horseshoes of different colors to a party.", "input_spec": "The first line contains four space-separated integers s1,\u2009s2,\u2009s3,\u2009s4 (1\u2009\u2264\u2009s1,\u2009s2,\u2009s3,\u2009s4\u2009\u2264\u2009109) \u2014 the colors of horseshoes Valera has. Consider all possible colors indexed with integers.", "output_spec": "Print a single integer \u2014 the minimum number of horseshoes Valera needs to buy.", "sample_inputs": ["1 7 3 3", "7 7 7 7"], "sample_outputs": ["1", "3"], "notes": null}, "src_uid": "38c4864937e57b35d3cce272f655e20f"} {"nl": {"description": "Eighth-grader Vova is on duty today in the class. After classes, he went into the office to wash the board, and found on it the number n. He asked what is this number and the teacher of mathematics Inna Petrovna answered Vova that n is the answer to the arithmetic task for first-graders. In the textbook, a certain positive integer x was given. The task was to add x to the sum of the digits of the number x written in decimal numeral system.Since the number n on the board was small, Vova quickly guessed which x could be in the textbook. Now he wants to get a program which will search for arbitrary values of the number n for all suitable values of x or determine that such x does not exist. Write such a program for Vova.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009109).", "output_spec": "In the first line print one integer k\u00a0\u2014 number of different values of x satisfying the condition. In next k lines print these values in ascending order.", "sample_inputs": ["21", "20"], "sample_outputs": ["1\n15", "0"], "notes": "NoteIn the first test case x\u2009=\u200915 there is only one variant: 15\u2009+\u20091\u2009+\u20095\u2009=\u200921.In the second test case there are no such x."}, "src_uid": "ae20ae2a16273a0d379932d6e973f878"} {"nl": {"description": " ", "input_spec": "The input contains two integers a,\u2009b (1\u2009\u2264\u2009a\u2009\u2264\u200910,\u20090\u2009\u2264\u2009b\u2009\u2264\u200922\u00b7a\u2009-\u20091) separated by a single space.", "output_spec": "Output two integers separated by a single space.", "sample_inputs": ["1 0", "2 15", "4 160"], "sample_outputs": ["0 0", "3 0", "12 12"], "notes": null}, "src_uid": "879ac20ae5d3e7f1002afe907d9887df"} {"nl": {"description": "Victor tries to write his own text editor, with word correction included. However, the rules of word correction are really strange.Victor thinks that if a word contains two consecutive vowels, then it's kinda weird and it needs to be replaced. So the word corrector works in such a way: as long as there are two consecutive vowels in the word, it deletes the first vowel in a word such that there is another vowel right before it. If there are no two consecutive vowels in the word, it is considered to be correct.You are given a word s. Can you predict what will it become after correction?In this problem letters a, e, i, o, u and y are considered to be vowels.", "input_spec": "The first line contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of letters in word s before the correction. The second line contains a string s consisting of exactly n lowercase Latin letters \u2014 the word before the correction.", "output_spec": "Output the word s after the correction.", "sample_inputs": ["5\nweird", "4\nword", "5\naaeaa"], "sample_outputs": ["werd", "word", "a"], "notes": "NoteExplanations of the examples: There is only one replace: weird werd; No replace needed since there are no two consecutive vowels; aaeaa aeaa aaa aa a. "}, "src_uid": "63a4a5795d94f698b0912bb8d4cdf690"} {"nl": {"description": "Luba is surfing the Internet. She currently has n opened tabs in her browser, indexed from 1 to n from left to right. The mouse cursor is currently located at the pos-th tab. Luba needs to use the tabs with indices from l to r (inclusive) for her studies, and she wants to close all the tabs that don't belong to this segment as fast as possible.Each second Luba can either try moving the cursor to the left or to the right (if the cursor is currently at the tab i, then she can move it to the tab max(i\u2009-\u20091,\u2009a) or to the tab min(i\u2009+\u20091,\u2009b)) or try closing all the tabs to the left or to the right of the cursor (if the cursor is currently at the tab i, she can close all the tabs with indices from segment [a,\u2009i\u2009-\u20091] or from segment [i\u2009+\u20091,\u2009b]). In the aforementioned expressions a and b denote the minimum and maximum index of an unclosed tab, respectively. For example, if there were 7 tabs initially and tabs 1, 2 and 7 are closed, then a\u2009=\u20093, b\u2009=\u20096.What is the minimum number of seconds Luba has to spend in order to leave only the tabs with initial indices from l to r inclusive opened?", "input_spec": "The only line of input contains four integer numbers n, pos, l, r (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009pos\u2009\u2264\u2009n, 1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u2009n) \u2014 the number of the tabs, the cursor position and the segment which Luba needs to leave opened.", "output_spec": "Print one integer equal to the minimum number of seconds required to close all the tabs outside the segment [l,\u2009r].", "sample_inputs": ["6 3 2 4", "6 3 1 3", "5 2 1 5"], "sample_outputs": ["5", "1", "0"], "notes": "NoteIn the first test Luba can do the following operations: shift the mouse cursor to the tab 2, close all the tabs to the left of it, shift the mouse cursor to the tab 3, then to the tab 4, and then close all the tabs to the right of it.In the second test she only needs to close all the tabs to the right of the current position of the cursor.In the third test Luba doesn't need to do anything."}, "src_uid": "5deaac7bd3afedee9b10e61997940f78"} {"nl": {"description": "Given an integer $$$x$$$, find 2 integers $$$a$$$ and $$$b$$$ such that: $$$1 \\le a,b \\le x$$$ $$$b$$$ divides $$$a$$$ ($$$a$$$ is divisible by $$$b$$$). $$$a \\cdot b>x$$$. $$$\\frac{a}{b}<x$$$. ", "input_spec": "The only line contains the integer $$$x$$$ $$$(1 \\le x \\le 100)$$$.", "output_spec": "You should output two integers $$$a$$$ and $$$b$$$, satisfying the given conditions, separated by a space. If no pair of integers satisfy the conditions above, print \"-1\" (without quotes).", "sample_inputs": ["10", "1"], "sample_outputs": ["6 3", "-1"], "notes": null}, "src_uid": "883f67177474d23d7a320d9dbfa70dd3"} {"nl": {"description": "Polycarp plays \"Game 23\". Initially he has a number $$$n$$$ and his goal is to transform it to $$$m$$$. In one move, he can multiply $$$n$$$ by $$$2$$$ or multiply $$$n$$$ by $$$3$$$. He can perform any number of moves.Print the number of moves needed to transform $$$n$$$ to $$$m$$$. Print -1 if it is impossible to do so.It is easy to prove that any way to transform $$$n$$$ to $$$m$$$ contains the same number of moves (i.e. number of moves doesn't depend on the way of transformation).", "input_spec": "The only line of the input contains two integers $$$n$$$ and $$$m$$$ ($$$1 \\le n \\le m \\le 5\\cdot10^8$$$).", "output_spec": "Print the number of moves to transform $$$n$$$ to $$$m$$$, or -1 if there is no solution.", "sample_inputs": ["120 51840", "42 42", "48 72"], "sample_outputs": ["7", "0", "-1"], "notes": "NoteIn the first example, the possible sequence of moves is: $$$120 \\rightarrow 240 \\rightarrow 720 \\rightarrow 1440 \\rightarrow 4320 \\rightarrow 12960 \\rightarrow 25920 \\rightarrow 51840.$$$ The are $$$7$$$ steps in total.In the second example, no moves are needed. Thus, the answer is $$$0$$$.In the third example, it is impossible to transform $$$48$$$ to $$$72$$$."}, "src_uid": "3f9980ad292185f63a80bce10705e806"} {"nl": {"description": "In a small but very proud high school it was decided to win ACM ICPC. This goal requires to compose as many teams of three as possible, but since there were only 6 students who wished to participate, the decision was to build exactly two teams.After practice competition, participant number i got a score of ai. Team score is defined as sum of scores of its participants. High school management is interested if it's possible to build two teams with equal scores. Your task is to answer that question.", "input_spec": "The single line contains six integers a1,\u2009...,\u2009a6 (0\u2009\u2264\u2009ai\u2009\u2264\u20091000) \u2014 scores of the participants", "output_spec": "Print \"YES\" (quotes for clarity), if it is possible to build teams with equal score, and \"NO\" otherwise. You can print each character either upper- or lowercase (\"YeS\" and \"yes\" are valid when the answer is \"YES\").", "sample_inputs": ["1 3 2 1 2 1", "1 1 1 1 1 99"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample, first team can be composed of 1st, 2nd and 6th participant, second \u2014 of 3rd, 4th and 5th: team scores are 1\u2009+\u20093\u2009+\u20091\u2009=\u20092\u2009+\u20091\u2009+\u20092\u2009=\u20095.In the second sample, score of participant number 6 is too high: his team score will be definitely greater."}, "src_uid": "2acf686862a34c337d1d2cbc0ac3fd11"} {"nl": {"description": "Tavak and Seyyed are good friends. Seyyed is very funny and he told Tavak to solve the following problem instead of longest-path.You are given l and r. For all integers from l to r, inclusive, we wrote down all of their integer divisors except 1. Find the integer that we wrote down the maximum number of times.Solve the problem to show that it's not a NP problem.", "input_spec": "The first line contains two integers l and r (2\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u2009109).", "output_spec": "Print single integer, the integer that appears maximum number of times in the divisors. If there are multiple answers, print any of them.", "sample_inputs": ["19 29", "3 6"], "sample_outputs": ["2", "3"], "notes": "NoteDefinition of a divisor: https://www.mathsisfun.com/definitions/divisor-of-an-integer-.htmlThe first example: from 19 to 29 these numbers are divisible by 2: {20,\u200922,\u200924,\u200926,\u200928}.The second example: from 3 to 6 these numbers are divisible by 3: {3,\u20096}."}, "src_uid": "a8d992ab26a528f0be327c93fb499c15"} {"nl": {"description": "Mr. Santa asks all the great programmers of the world to solve a trivial problem. He gives them an integer m and asks for the number of positive integers n, such that the factorial of n ends with exactly m zeroes. Are you among those great programmers who can solve this problem?", "input_spec": "The only line of input contains an integer m (1\u2009\u2264\u2009m\u2009\u2264\u2009100\u2009000)\u00a0\u2014 the required number of trailing zeroes in factorial.", "output_spec": "First print k\u00a0\u2014 the number of values of n such that the factorial of n ends with m zeroes. Then print these k integers in increasing order.", "sample_inputs": ["1", "5"], "sample_outputs": ["5\n5 6 7 8 9", "0"], "notes": "NoteThe factorial of n is equal to the product of all integers from 1 to n inclusive, that is n!\u2009=\u20091\u00b72\u00b73\u00b7...\u00b7n.In the first sample, 5!\u2009=\u2009120, 6!\u2009=\u2009720, 7!\u2009=\u20095040, 8!\u2009=\u200940320 and 9!\u2009=\u2009362880."}, "src_uid": "c27ecc6e4755b21f95a6b1b657ef0744"} {"nl": {"description": "You have $$$n$$$ coins, each of the same value of $$$1$$$.Distribute them into packets such that any amount $$$x$$$ ($$$1 \\leq x \\leq n$$$) can be formed using some (possibly one or all) number of these packets.Each packet may only be used entirely or not used at all. No packet may be used more than once in the formation of the single $$$x$$$, however it may be reused for the formation of other $$$x$$$'s.Find the minimum number of packets in such a distribution.", "input_spec": "The only line contains a single integer $$$n$$$ ($$$1 \\leq n \\leq 10^9$$$)\u00a0\u2014 the number of coins you have.", "output_spec": "Output a single integer\u00a0\u2014 the minimum possible number of packets, satisfying the condition above.", "sample_inputs": ["6", "2"], "sample_outputs": ["3", "2"], "notes": "NoteIn the first example, three packets with $$$1$$$, $$$2$$$ and $$$3$$$ coins can be made to get any amount $$$x$$$ ($$$1\\leq x\\leq 6$$$). To get $$$1$$$ use the packet with $$$1$$$ coin. To get $$$2$$$ use the packet with $$$2$$$ coins. To get $$$3$$$ use the packet with $$$3$$$ coins. To get $$$4$$$ use packets with $$$1$$$ and $$$3$$$ coins. To get $$$5$$$ use packets with $$$2$$$ and $$$3$$$ coins To get $$$6$$$ use all packets. In the second example, two packets with $$$1$$$ and $$$1$$$ coins can be made to get any amount $$$x$$$ ($$$1\\leq x\\leq 2$$$)."}, "src_uid": "95cb79597443461085e62d974d67a9a0"} {"nl": {"description": "After seeing the \"ALL YOUR BASE ARE BELONG TO US\" meme for the first time, numbers X and Y realised that they have different bases, which complicated their relations.You're given a number X represented in base bx and a number Y represented in base by. Compare those two numbers.", "input_spec": "The first line of the input contains two space-separated integers n and bx (1\u2009\u2264\u2009n\u2009\u2264\u200910, 2\u2009\u2264\u2009bx\u2009\u2264\u200940), where n is the number of digits in the bx-based representation of X. The second line contains n space-separated integers x1,\u2009x2,\u2009...,\u2009xn (0\u2009\u2264\u2009xi\u2009<\u2009bx) \u2014 the digits of X. They are given in the order from the most significant digit to the least significant one. The following two lines describe Y in the same way: the third line contains two space-separated integers m and by (1\u2009\u2264\u2009m\u2009\u2264\u200910, 2\u2009\u2264\u2009by\u2009\u2264\u200940, bx\u2009\u2260\u2009by), where m is the number of digits in the by-based representation of Y, and the fourth line contains m space-separated integers y1,\u2009y2,\u2009...,\u2009ym (0\u2009\u2264\u2009yi\u2009<\u2009by) \u2014 the digits of Y. There will be no leading zeroes. Both X and Y will be positive. All digits of both numbers are given in the standard decimal numeral system.", "output_spec": "Output a single character (quotes for clarity): '<' if X\u2009<\u2009Y '>' if X\u2009>\u2009Y '=' if X\u2009=\u2009Y ", "sample_inputs": ["6 2\n1 0 1 1 1 1\n2 10\n4 7", "3 3\n1 0 2\n2 5\n2 4", "7 16\n15 15 4 0 0 7 10\n7 9\n4 8 0 3 1 5 0"], "sample_outputs": ["=", "<", ">"], "notes": "NoteIn the first sample, X\u2009=\u20091011112\u2009=\u20094710\u2009=\u2009Y.In the second sample, X\u2009=\u20091023\u2009=\u2009215 and Y\u2009=\u2009245\u2009=\u20091123, thus X\u2009<\u2009Y.In the third sample, and Y\u2009=\u200948031509. We may notice that X starts with much larger digits and bx is much larger than by, so X is clearly larger than Y."}, "src_uid": "d6ab5f75a7bee28f0af2bf168a0b2e67"} {"nl": {"description": "Today Tavas got his test result as an integer score and he wants to share it with his girlfriend, Nafas.His phone operating system is Tavdroid, and its keyboard doesn't have any digits! He wants to share his score with Nafas via text, so he has no choice but to send this number using words. He ate coffee mix without water again, so right now he's really messed up and can't think.Your task is to help him by telling him what to type.", "input_spec": "The first and only line of input contains an integer s (0\u2009\u2264\u2009s\u2009\u2264\u200999), Tavas's score. ", "output_spec": "In the first and only line of output, print a single string consisting only from English lowercase letters and hyphens ('-'). Do not use spaces.", "sample_inputs": ["6", "99", "20"], "sample_outputs": ["six", "ninety-nine", "twenty"], "notes": "NoteYou can find all you need to know about English numerals in http://en.wikipedia.org/wiki/English_numerals ."}, "src_uid": "a49ca177b2f1f9d5341462a38a25d8b7"} {"nl": {"description": "Dima and Seryozha live in an ordinary dormitory room for two. One day Dima had a date with his girl and he asked Seryozha to leave the room. As a compensation, Seryozha made Dima do his homework.The teacher gave Seryozha the coordinates of n distinct points on the abscissa axis and asked to consecutively connect them by semi-circus in a certain order: first connect the first point with the second one, then connect the second point with the third one, then the third one with the fourth one and so on to the n-th point. Two points with coordinates (x1,\u20090) and (x2,\u20090) should be connected by a semi-circle that passes above the abscissa axis with the diameter that coincides with the segment between points. Seryozha needs to find out if the line on the picture intersects itself. For clarifications, see the picture Seryozha showed to Dima (the left picture has self-intersections, the right picture doesn't have any). Seryozha is not a small boy, so the coordinates of the points can be rather large. Help Dima cope with the problem.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009103). The second line contains n distinct integers x1,\u2009x2,\u2009...,\u2009xn (\u2009-\u2009106\u2009\u2264\u2009xi\u2009\u2264\u2009106) \u2014 the i-th point has coordinates (xi,\u20090). The points are not necessarily sorted by their x coordinate.", "output_spec": "In the single line print \"yes\" (without the quotes), if the line has self-intersections. Otherwise, print \"no\" (without the quotes).", "sample_inputs": ["4\n0 10 5 15", "4\n0 15 5 10"], "sample_outputs": ["yes", "no"], "notes": "NoteThe first test from the statement is on the picture to the left, the second test is on the picture to the right."}, "src_uid": "f1b6b81ebd49f31428fe57913dfc604d"} {"nl": {"description": "IT City company developing computer games decided to upgrade its way to reward its employees. Now it looks the following way. After a new game release users start buying it actively, and the company tracks the number of sales with precision to each transaction. Every time when the next number of sales is not divisible by any number from 2 to 10 every developer of this game gets a small bonus.A game designer Petya knows that the company is just about to release a new game that was partly developed by him. On the basis of his experience he predicts that n people will buy the game during the first month. Now Petya wants to determine how many times he will get the bonus. Help him to know it.", "input_spec": "The only line of the input contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091018) \u2014 the prediction on the number of people who will buy the game.", "output_spec": "Output one integer showing how many numbers from 1 to n are not divisible by any number from 2 to 10.", "sample_inputs": ["12"], "sample_outputs": ["2"], "notes": null}, "src_uid": "e392be5411ffccc1df50e65ec1f5c589"} {"nl": {"description": "Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5 + 7 + 1.Two prime numbers are called neighboring if there are no other prime numbers between them.You are to help Nick, and find out if he is right or wrong.", "input_spec": "The first line of the input contains two integers n (2\u2009\u2264\u2009n\u2009\u2264\u20091000) and k (0\u2009\u2264\u2009k\u2009\u2264\u20091000).", "output_spec": "Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.", "sample_inputs": ["27 2", "45 7"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample the answer is YES since at least two numbers can be expressed as it was described (for example, 13 and 19). In the second sample the answer is NO since it is impossible to express 7 prime numbers from 2 to 45 in the desired form."}, "src_uid": "afd2b818ed3e2a931da9d682f6ad660d"} {"nl": {"description": "Limak and Radewoosh are going to compete against each other in the upcoming algorithmic contest. They are equally skilled but they won't solve problems in the same order.There will be n problems. The i-th problem has initial score pi and it takes exactly ti minutes to solve it. Problems are sorted by difficulty\u00a0\u2014 it's guaranteed that pi\u2009<\u2009pi\u2009+\u20091 and ti\u2009<\u2009ti\u2009+\u20091.A constant c is given too, representing the speed of loosing points. Then, submitting the i-th problem at time x (x minutes after the start of the contest) gives max(0,\u2009 pi\u2009-\u2009c\u00b7x) points.Limak is going to solve problems in order 1,\u20092,\u2009...,\u2009n (sorted increasingly by pi). Radewoosh is going to solve them in order n,\u2009n\u2009-\u20091,\u2009...,\u20091 (sorted decreasingly by pi). Your task is to predict the outcome\u00a0\u2014 print the name of the winner (person who gets more points at the end) or a word \"Tie\" in case of a tie.You may assume that the duration of the competition is greater or equal than the sum of all ti. That means both Limak and Radewoosh will accept all n problems.", "input_spec": "The first line contains two integers n and c (1\u2009\u2264\u2009n\u2009\u2264\u200950,\u20091\u2009\u2264\u2009c\u2009\u2264\u20091000)\u00a0\u2014 the number of problems and the constant representing the speed of loosing points. The second line contains n integers p1,\u2009p2,\u2009...,\u2009pn (1\u2009\u2264\u2009pi\u2009\u2264\u20091000,\u2009pi\u2009<\u2009pi\u2009+\u20091)\u00a0\u2014 initial scores. The third line contains n integers t1,\u2009t2,\u2009...,\u2009tn (1\u2009\u2264\u2009ti\u2009\u2264\u20091000,\u2009ti\u2009<\u2009ti\u2009+\u20091) where ti denotes the number of minutes one needs to solve the i-th problem.", "output_spec": "Print \"Limak\" (without quotes) if Limak will get more points in total. Print \"Radewoosh\" (without quotes) if Radewoosh will get more points in total. Print \"Tie\" (without quotes) if Limak and Radewoosh will get the same total number of points.", "sample_inputs": ["3 2\n50 85 250\n10 15 25", "3 6\n50 85 250\n10 15 25", "8 1\n10 20 30 40 50 60 70 80\n8 10 58 63 71 72 75 76"], "sample_outputs": ["Limak", "Radewoosh", "Tie"], "notes": "NoteIn the first sample, there are 3 problems. Limak solves them as follows: Limak spends 10 minutes on the 1-st problem and he gets 50\u2009-\u2009c\u00b710\u2009=\u200950\u2009-\u20092\u00b710\u2009=\u200930 points. Limak spends 15 minutes on the 2-nd problem so he submits it 10\u2009+\u200915\u2009=\u200925 minutes after the start of the contest. For the 2-nd problem he gets 85\u2009-\u20092\u00b725\u2009=\u200935 points. He spends 25 minutes on the 3-rd problem so he submits it 10\u2009+\u200915\u2009+\u200925\u2009=\u200950 minutes after the start. For this problem he gets 250\u2009-\u20092\u00b750\u2009=\u2009150 points. So, Limak got 30\u2009+\u200935\u2009+\u2009150\u2009=\u2009215 points.Radewoosh solves problem in the reversed order: Radewoosh solves 3-rd problem after 25 minutes so he gets 250\u2009-\u20092\u00b725\u2009=\u2009200 points. He spends 15 minutes on the 2-nd problem so he submits it 25\u2009+\u200915\u2009=\u200940 minutes after the start. He gets 85\u2009-\u20092\u00b740\u2009=\u20095 points for this problem. He spends 10 minutes on the 1-st problem so he submits it 25\u2009+\u200915\u2009+\u200910\u2009=\u200950 minutes after the start. He gets max(0,\u200950\u2009-\u20092\u00b750)\u2009=\u2009max(0,\u2009\u2009-\u200950)\u2009=\u20090 points. Radewoosh got 200\u2009+\u20095\u2009+\u20090\u2009=\u2009205 points in total. Limak has 215 points so Limak wins.In the second sample, Limak will get 0 points for each problem and Radewoosh will first solve the hardest problem and he will get 250\u2009-\u20096\u00b725\u2009=\u2009100 points for that. Radewoosh will get 0 points for other two problems but he is the winner anyway.In the third sample, Limak will get 2 points for the 1-st problem and 2 points for the 2-nd problem. Radewoosh will get 4 points for the 8-th problem. They won't get points for other problems and thus there is a tie because 2\u2009+\u20092\u2009=\u20094."}, "src_uid": "8c704de75ab85f9e2c04a926143c8b4a"} {"nl": {"description": "Nauuo is a girl who loves writing comments.One day, she posted a comment on Codeforces, wondering whether she would get upvotes or downvotes.It's known that there were $$$x$$$ persons who would upvote, $$$y$$$ persons who would downvote, and there were also another $$$z$$$ persons who would vote, but you don't know whether they would upvote or downvote. Note that each of the $$$x+y+z$$$ people would vote exactly one time.There are three different results: if there are more people upvote than downvote, the result will be \"+\"; if there are more people downvote than upvote, the result will be \"-\"; otherwise the result will be \"0\".Because of the $$$z$$$ unknown persons, the result may be uncertain (i.e. there are more than one possible results). More formally, the result is uncertain if and only if there exist two different situations of how the $$$z$$$ persons vote, that the results are different in the two situations.Tell Nauuo the result or report that the result is uncertain.", "input_spec": "The only line contains three integers $$$x$$$, $$$y$$$, $$$z$$$ ($$$0\\le x,y,z\\le100$$$), corresponding to the number of persons who would upvote, downvote or unknown.", "output_spec": "If there is only one possible result, print the result : \"+\", \"-\" or \"0\". Otherwise, print \"?\" to report that the result is uncertain.", "sample_inputs": ["3 7 0", "2 0 1", "1 1 0", "0 0 1"], "sample_outputs": ["-", "+", "0", "?"], "notes": "NoteIn the first example, Nauuo would definitely get three upvotes and seven downvotes, so the only possible result is \"-\".In the second example, no matter the person unknown downvotes or upvotes, Nauuo would get more upvotes than downvotes. So the only possible result is \"+\".In the third example, Nauuo would definitely get one upvote and one downvote, so the only possible result is \"0\".In the fourth example, if the only one person upvoted, the result would be \"+\", otherwise, the result would be \"-\". There are two possible results, so the result is uncertain."}, "src_uid": "66398694a4a142b4a4e709d059aca0fa"} {"nl": {"description": "Little girl Alyona is in a shop to buy some copybooks for school. She study four subjects so she wants to have equal number of copybooks for each of the subjects. There are three types of copybook's packs in the shop: it is possible to buy one copybook for a rubles, a pack of two copybooks for b rubles, and a pack of three copybooks for c rubles. Alyona already has n copybooks.What is the minimum amount of rubles she should pay to buy such number of copybooks k that n\u2009+\u2009k is divisible by 4? There are infinitely many packs of any type in the shop. Alyona can buy packs of different type in the same purchase.", "input_spec": "The only line contains 4 integers n, a, b, c (1\u2009\u2264\u2009n,\u2009a,\u2009b,\u2009c\u2009\u2264\u2009109).", "output_spec": "Print the minimum amount of rubles she should pay to buy such number of copybooks k that n\u2009+\u2009k is divisible by 4.", "sample_inputs": ["1 1 3 4", "6 2 1 1", "4 4 4 4", "999999999 1000000000 1000000000 1000000000"], "sample_outputs": ["3", "1", "0", "1000000000"], "notes": "NoteIn the first example Alyona can buy 3 packs of 1 copybook for 3a\u2009=\u20093 rubles in total. After that she will have 4 copybooks which she can split between the subjects equally. In the second example Alyuna can buy a pack of 2 copybooks for b\u2009=\u20091 ruble. She will have 8 copybooks in total.In the third example Alyona can split the copybooks she already has between the 4 subject equally, so she doesn't need to buy anything.In the fourth example Alyona should buy one pack of one copybook."}, "src_uid": "c74537b7e2032c1d928717dfe15ccfb8"} {"nl": {"description": "Last week, Hamed learned about a new type of equations in his math class called Modular Equations. Lets define i modulo j as the remainder of division of i by j and denote it by . A Modular Equation, as Hamed's teacher described, is an equation of the form in which a and b are two non-negative integers and x is a variable. We call a positive integer x for which a solution of our equation.Hamed didn't pay much attention to the class since he was watching a movie. He only managed to understand the definitions of these equations.Now he wants to write his math exercises but since he has no idea how to do that, he asked you for help. He has told you all he knows about Modular Equations and asked you to write a program which given two numbers a and b determines how many answers the Modular Equation has.", "input_spec": "In the only line of the input two space-separated integers a and b (0\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009109) are given.", "output_spec": "If there is an infinite number of answers to our equation, print \"infinity\" (without the quotes). Otherwise print the number of solutions of the Modular Equation .", "sample_inputs": ["21 5", "9435152 272", "10 10"], "sample_outputs": ["2", "282", "infinity"], "notes": "NoteIn the first sample the answers of the Modular Equation are 8 and 16 since "}, "src_uid": "6e0715f9239787e085b294139abb2475"} {"nl": {"description": "Tokitsukaze is playing a game derivated from Japanese mahjong. In this game, she has three tiles in her hand. Each tile she owns is a suited tile, which means it has a suit (manzu, pinzu or souzu) and a number (a digit ranged from $$$1$$$ to $$$9$$$). In this problem, we use one digit and one lowercase letter, which is the first character of the suit, to represent a suited tile. All possible suited tiles are represented as 1m, 2m, $$$\\ldots$$$, 9m, 1p, 2p, $$$\\ldots$$$, 9p, 1s, 2s, $$$\\ldots$$$, 9s.In order to win the game, she must have at least one mentsu (described below) in her hand, so sometimes she should draw extra suited tiles. After drawing a tile, the number of her tiles increases by one. She can draw any tiles she wants, including those already in her hand.Do you know the minimum number of extra suited tiles she needs to draw so that she can win?Here are some useful definitions in this game: A mentsu, also known as meld, is formed by a koutsu or a shuntsu; A koutsu, also known as triplet, is made of three identical tiles, such as [1m, 1m, 1m], however, [1m, 1p, 1s] or [1m, 4m, 7m] is NOT a koutsu; A shuntsu, also known as sequence, is made of three sequential numbered tiles in the same suit, such as [1m, 2m, 3m] and [5s, 7s, 6s], however, [9m, 1m, 2m] or [1m, 2p, 3s] is NOT a shuntsu. Some examples: [2m, 3p, 2s, 4m, 1s, 2s, 4s] \u2014 it contains no koutsu or shuntsu, so it includes no mentsu; [4s, 3m, 3p, 4s, 5p, 4s, 5p] \u2014 it contains a koutsu, [4s, 4s, 4s], but no shuntsu, so it includes a mentsu; [5p, 5s, 9m, 4p, 1s, 7p, 7m, 6p] \u2014 it contains no koutsu but a shuntsu, [5p, 4p, 6p] or [5p, 7p, 6p], so it includes a mentsu. Note that the order of tiles is unnecessary and you can assume the number of each type of suited tiles she can draw is infinite.", "input_spec": "The only line contains three strings\u00a0\u2014 the tiles in Tokitsukaze's hand. For each string, the first character is a digit ranged from $$$1$$$ to $$$9$$$ and the second character is m, p or s.", "output_spec": "Print a single integer\u00a0\u2014 the minimum number of extra suited tiles she needs to draw.", "sample_inputs": ["1s 2s 3s", "9m 9m 9m", "3p 9m 2p"], "sample_outputs": ["0", "0", "1"], "notes": "NoteIn the first example, Tokitsukaze already has a shuntsu.In the second example, Tokitsukaze already has a koutsu.In the third example, Tokitsukaze can get a shuntsu by drawing one suited tile\u00a0\u2014 1p or 4p. The resulting tiles will be [3p, 9m, 2p, 1p] or [3p, 9m, 2p, 4p]."}, "src_uid": "7e42cebc670e76ace967e01021f752d3"} {"nl": {"description": "Given 2 integers $$$u$$$ and $$$v$$$, find the shortest array such that bitwise-xor of its elements is $$$u$$$, and the sum of its elements is $$$v$$$.", "input_spec": "The only line contains 2 integers $$$u$$$ and $$$v$$$ $$$(0 \\le u,v \\le 10^{18})$$$.", "output_spec": "If there's no array that satisfies the condition, print \"-1\". Otherwise: The first line should contain one integer, $$$n$$$, representing the length of the desired array. The next line should contain $$$n$$$ positive integers, the array itself. If there are multiple possible answers, print any.", "sample_inputs": ["2 4", "1 3", "8 5", "0 0"], "sample_outputs": ["2\n3 1", "3\n1 1 1", "-1", "0"], "notes": "NoteIn the first sample, $$$3\\oplus 1 = 2$$$ and $$$3 + 1 = 4$$$. There is no valid array of smaller length.Notice that in the fourth sample the array is empty."}, "src_uid": "490f23ced6c43f9e12f1bcbecbb14904"} {"nl": {"description": "The circle line of the Roflanpolis subway has $$$n$$$ stations.There are two parallel routes in the subway. The first one visits stations in order $$$1 \\to 2 \\to \\ldots \\to n \\to 1 \\to 2 \\to \\ldots$$$ (so the next stop after station $$$x$$$ is equal to $$$(x+1)$$$ if $$$x < n$$$ and $$$1$$$ otherwise). The second route visits stations in order $$$n \\to (n-1) \\to \\ldots \\to 1 \\to n \\to (n-1) \\to \\ldots$$$ (so the next stop after station $$$x$$$ is equal to $$$(x-1)$$$ if $$$x>1$$$ and $$$n$$$ otherwise). All trains depart their stations simultaneously, and it takes exactly $$$1$$$ minute to arrive at the next station.Two toads live in this city, their names are Daniel and Vlad.Daniel is currently in a train of the first route at station $$$a$$$ and will exit the subway when his train reaches station $$$x$$$.Coincidentally, Vlad is currently in a train of the second route at station $$$b$$$ and he will exit the subway when his train reaches station $$$y$$$.Surprisingly, all numbers $$$a,x,b,y$$$ are distinct.Toad Ilya asks you to check if Daniel and Vlad will ever be at the same station at the same time during their journey. In other words, check if there is a moment when their trains stop at the same station. Note that this includes the moments when Daniel or Vlad enter or leave the subway.", "input_spec": "The first line contains five space-separated integers $$$n$$$, $$$a$$$, $$$x$$$, $$$b$$$, $$$y$$$ ($$$4 \\leq n \\leq 100$$$, $$$1 \\leq a, x, b, y \\leq n$$$, all numbers among $$$a$$$, $$$x$$$, $$$b$$$, $$$y$$$ are distinct)\u00a0\u2014 the number of stations in Roflanpolis, Daniel's start station, Daniel's finish station, Vlad's start station and Vlad's finish station, respectively.", "output_spec": "Output \"YES\" if there is a time moment when Vlad and Daniel are at the same station, and \"NO\" otherwise. You can print each letter in any case (upper or lower).", "sample_inputs": ["5 1 4 3 2", "10 2 1 9 10"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example, Daniel and Vlad start at the stations $$$(1, 3)$$$. One minute later they are at stations $$$(2, 2)$$$. They are at the same station at this moment. Note that Vlad leaves the subway right after that.Consider the second example, let's look at the stations Vlad and Daniel are at. They are: initially $$$(2, 9)$$$, after $$$1$$$ minute $$$(3, 8)$$$, after $$$2$$$ minutes $$$(4, 7)$$$, after $$$3$$$ minutes $$$(5, 6)$$$, after $$$4$$$ minutes $$$(6, 5)$$$, after $$$5$$$ minutes $$$(7, 4)$$$, after $$$6$$$ minutes $$$(8, 3)$$$, after $$$7$$$ minutes $$$(9, 2)$$$, after $$$8$$$ minutes $$$(10, 1)$$$, after $$$9$$$ minutes $$$(1, 10)$$$. After that, they both leave the subway because they are at their finish stations, so there is no moment when they both are at the same station."}, "src_uid": "5b889751f82c9f32f223cdee0c0095e4"} {"nl": {"description": "Tonight is brain dinner night and all zombies will gather together to scarf down some delicious brains. The artful Heidi plans to crash the party, incognito, disguised as one of them. Her objective is to get away with at least one brain, so she can analyze the zombies' mindset back home and gain a strategic advantage.They will be N guests tonight: N\u2009-\u20091 real zombies and a fake one, our Heidi. The living-dead love hierarchies as much as they love brains: each one has a unique rank in the range 1 to N\u2009-\u20091, and Heidi, who still appears slightly different from the others, is attributed the highest rank, N. Tonight there will be a chest with brains on display and every attendee sees how many there are. These will then be split among the attendees according to the following procedure:The zombie of the highest rank makes a suggestion on who gets how many brains (every brain is an indivisible entity). A vote follows. If at least half of the attendees accept the offer, the brains are shared in the suggested way and the feast begins. But if majority is not reached, then the highest-ranked zombie is killed, and the next zombie in hierarchy has to make a suggestion. If he is killed too, then the third highest-ranked makes one, etc. (It's enough to have exactly half of the votes \u2013 in case of a tie, the vote of the highest-ranked alive zombie counts twice, and he will of course vote in favor of his own suggestion in order to stay alive.)You should know that zombies are very greedy and sly, and they know this too \u2013 basically all zombie brains are alike. Consequently, a zombie will never accept an offer which is suboptimal for him. That is, if an offer is not strictly better than a potential later offer, he will vote against it. And make no mistake: while zombies may normally seem rather dull, tonight their intellects are perfect. Each zombie's priorities for tonight are, in descending order: survive the event (they experienced death already once and know it is no fun), get as many brains as possible. Heidi goes first and must make an offer which at least half of the attendees will accept, and which allocates at least one brain for Heidi herself.What is the smallest number of brains that have to be in the chest for this to be possible?", "input_spec": "The only line of input contains one integer: N, the number of attendees (1\u2009\u2264\u2009N\u2009\u2264\u2009109).", "output_spec": "Output one integer: the smallest number of brains in the chest which allows Heidi to take one brain home.", "sample_inputs": ["1", "4"], "sample_outputs": ["1", "2"], "notes": "Note"}, "src_uid": "30e95770f12c631ce498a2b20c2931c7"} {"nl": {"description": "One spring day on his way to university Lesha found an array A. Lesha likes to split arrays into several parts. This time Lesha decided to split the array A into several, possibly one, new arrays so that the sum of elements in each of the new arrays is not zero. One more condition is that if we place the new arrays one after another they will form the old array A.Lesha is tired now so he asked you to split the array. Help Lesha!", "input_spec": "The first line contains single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of elements in the array A. The next line contains n integers a1,\u2009a2,\u2009...,\u2009an (\u2009-\u2009103\u2009\u2264\u2009ai\u2009\u2264\u2009103)\u00a0\u2014 the elements of the array A.", "output_spec": "If it is not possible to split the array A and satisfy all the constraints, print single line containing \"NO\" (without quotes). Otherwise in the first line print \"YES\" (without quotes). In the next line print single integer k\u00a0\u2014 the number of new arrays. In each of the next k lines print two integers li and ri which denote the subarray A[li... ri] of the initial array A being the i-th new array. Integers li, ri should satisfy the following conditions: l1\u2009=\u20091 rk\u2009=\u2009n ri\u2009+\u20091\u2009=\u2009li\u2009+\u20091 for each 1\u2009\u2264\u2009i\u2009<\u2009k. If there are multiple answers, print any of them.", "sample_inputs": ["3\n1 2 -3", "8\n9 -12 3 4 -4 -10 7 3", "1\n0", "4\n1 2 3 -5"], "sample_outputs": ["YES\n2\n1 2\n3 3", "YES\n2\n1 2\n3 8", "NO", "YES\n4\n1 1\n2 2\n3 3\n4 4"], "notes": null}, "src_uid": "3a9258070ff179daf33a4515def9897a"} {"nl": {"description": "Valera has got n domino pieces in a row. Each piece consists of two halves \u2014 the upper one and the lower one. Each of the halves contains a number from 1 to 6. Valera loves even integers very much, so he wants the sum of the numbers on the upper halves and the sum of the numbers on the lower halves to be even.To do that, Valera can rotate the dominoes by 180 degrees. After the rotation the upper and the lower halves swap places. This action takes one second. Help Valera find out the minimum time he must spend rotating dominoes to make his wish come true.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100), denoting the number of dominoes Valera has. Next n lines contain two space-separated integers xi,\u2009yi (1\u2009\u2264\u2009xi,\u2009yi\u2009\u2264\u20096). Number xi is initially written on the upper half of the i-th domino, yi is initially written on the lower half.", "output_spec": "Print a single number \u2014 the minimum required number of seconds. If Valera can't do the task in any time, print \u2009-\u20091.", "sample_inputs": ["2\n4 2\n6 4", "1\n2 3", "3\n1 4\n2 3\n4 4"], "sample_outputs": ["0", "-1", "1"], "notes": "NoteIn the first test case the sum of the numbers on the upper halves equals 10 and the sum of the numbers on the lower halves equals 6. Both numbers are even, so Valera doesn't required to do anything.In the second sample Valera has only one piece of domino. It is written 3 on the one of its halves, therefore one of the sums will always be odd.In the third case Valera can rotate the first piece, and after that the sum on the upper halves will be equal to 10, and the sum on the lower halves will be equal to 8."}, "src_uid": "f9bc04aed2b84c7dd288749ac264bb43"} {"nl": {"description": "Cucumber boy is fan of Kyubeat, a famous music game.Kyubeat has 16 panels for playing arranged in 4\u2009\u00d7\u20094 table. When a panel lights up, he has to press that panel.Each panel has a timing to press (the preffered time when a player should press it), and Cucumber boy is able to press at most k panels in a time with his one hand. Cucumber boy is trying to press all panels in perfect timing, that is he wants to press each panel exactly in its preffered time. If he cannot press the panels with his two hands in perfect timing, his challenge to press all the panels in perfect timing will fail.You are given one scene of Kyubeat's panel from the music Cucumber boy is trying. Tell him is he able to press all the panels in perfect timing.", "input_spec": "The first line contains a single integer k (1\u2009\u2264\u2009k\u2009\u2264\u20095) \u2014 the number of panels Cucumber boy can press with his one hand. Next 4 lines contain 4 characters each (digits from 1 to 9, or period) \u2014 table of panels. If a digit i was written on the panel, it means the boy has to press that panel in time i. If period was written on the panel, he doesn't have to press that panel.", "output_spec": "Output \"YES\" (without quotes), if he is able to press all the panels in perfect timing. If not, output \"NO\" (without quotes).", "sample_inputs": ["1\n.135\n1247\n3468\n5789", "5\n..1.\n1111\n..1.\n..1.", "1\n....\n12.1\n.2..\n.2.."], "sample_outputs": ["YES", "YES", "NO"], "notes": "NoteIn the third sample boy cannot press all panels in perfect timing. He can press all the panels in timing in time 1, but he cannot press the panels in time 2 in timing with his two hands."}, "src_uid": "5fdaf8ee7763cb5815f49c0c38398f16"} {"nl": {"description": "Today Patrick waits for a visit from his friend Spongebob. To prepare for the visit, Patrick needs to buy some goodies in two stores located near his house. There is a d1 meter long road between his house and the first shop and a d2 meter long road between his house and the second shop. Also, there is a road of length d3 directly connecting these two shops to each other. Help Patrick calculate the minimum distance that he needs to walk in order to go to both shops and return to his house. Patrick always starts at his house. He should visit both shops moving only along the three existing roads and return back to his house. He doesn't mind visiting the same shop or passing the same road multiple times. The only goal is to minimize the total distance traveled.", "input_spec": "The first line of the input contains three integers d1, d2, d3 (1\u2009\u2264\u2009d1,\u2009d2,\u2009d3\u2009\u2264\u2009108)\u00a0\u2014 the lengths of the paths. d1 is the length of the path connecting Patrick's house and the first shop; d2 is the length of the path connecting Patrick's house and the second shop; d3 is the length of the path connecting both shops. ", "output_spec": "Print the minimum distance that Patrick will have to walk in order to visit both shops and return to his house.", "sample_inputs": ["10 20 30", "1 1 5"], "sample_outputs": ["60", "4"], "notes": "NoteThe first sample is shown on the picture in the problem statement. One of the optimal routes is: house first shop second shop house.In the second sample one of the optimal routes is: house first shop house second shop house."}, "src_uid": "26cd7954a21866dbb2824d725473673e"} {"nl": {"description": "\u00abOne dragon. Two dragon. Three dragon\u00bb, \u2014 the princess was counting. She had trouble falling asleep, and she got bored of counting lambs when she was nine.However, just counting dragons was boring as well, so she entertained herself at best she could. Tonight she imagined that all dragons were here to steal her, and she was fighting them off. Every k-th dragon got punched in the face with a frying pan. Every l-th dragon got his tail shut into the balcony door. Every m-th dragon got his paws trampled with sharp heels. Finally, she threatened every n-th dragon to call her mom, and he withdrew in panic.How many imaginary dragons suffered moral or physical damage tonight, if the princess counted a total of d dragons?", "input_spec": "Input data contains integer numbers k,\u2009l,\u2009m,\u2009n and d, each number in a separate line (1\u2009\u2264\u2009k,\u2009l,\u2009m,\u2009n\u2009\u2264\u200910, 1\u2009\u2264\u2009d\u2009\u2264\u2009105).", "output_spec": "Output the number of damaged dragons.", "sample_inputs": ["1\n2\n3\n4\n12", "2\n3\n4\n5\n24"], "sample_outputs": ["12", "17"], "notes": "NoteIn the first case every first dragon got punched with a frying pan. Some of the dragons suffered from other reasons as well, but the pan alone would be enough.In the second case dragons 1, 7, 11, 13, 17, 19 and 23 escaped unharmed."}, "src_uid": "46bfdec9bfc1e91bd2f5022f3d3c8ce7"} {"nl": {"description": "Petya and Vasya decided to play a little. They found n red cubes and m blue cubes. The game goes like that: the players take turns to choose a cube of some color (red or blue) and put it in a line from left to right (overall the line will have n\u2009+\u2009m cubes). Petya moves first. Petya's task is to get as many pairs of neighbouring cubes of the same color as possible. Vasya's task is to get as many pairs of neighbouring cubes of different colors as possible. The number of Petya's points in the game is the number of pairs of neighboring cubes of the same color in the line, the number of Vasya's points in the game is the number of neighbouring cubes of the different color in the line. Your task is to calculate the score at the end of the game (Petya's and Vasya's points, correspondingly), if both boys are playing optimally well. To \"play optimally well\" first of all means to maximize the number of one's points, and second \u2014 to minimize the number of the opponent's points.", "input_spec": "The only line contains two space-separated integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009105) \u2014 the number of red and blue cubes, correspondingly.", "output_spec": "On a single line print two space-separated integers \u2014 the number of Petya's and Vasya's points correspondingly provided that both players play optimally well.", "sample_inputs": ["3 1", "2 4"], "sample_outputs": ["2 1", "3 2"], "notes": "NoteIn the first test sample the optimal strategy for Petya is to put the blue cube in the line. After that there will be only red cubes left, so by the end of the game the line of cubes from left to right will look as [blue, red, red, red]. So, Petya gets 2 points and Vasya gets 1 point. If Petya would choose the red cube during his first move, then, provided that both boys play optimally well, Petya would get 1 point and Vasya would get 2 points."}, "src_uid": "c8378e6fcaab30d15469a55419f38b39"} {"nl": {"description": "Petya and Vasya decided to play a game. They have n cards (n is an even number). A single integer is written on each card.Before the game Petya will choose an integer and after that Vasya will choose another integer (different from the number that Petya chose). During the game each player takes all the cards with number he chose. For example, if Petya chose number 5 before the game he will take all cards on which 5 is written and if Vasya chose number 10 before the game he will take all cards on which 10 is written.The game is considered fair if Petya and Vasya can take all n cards, and the number of cards each player gets is the same.Determine whether Petya and Vasya can choose integer numbers before the game so that the game is fair. ", "input_spec": "The first line contains a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 number of cards. It is guaranteed that n is an even number. The following n lines contain a sequence of integers a1,\u2009a2,\u2009...,\u2009an (one integer per line, 1\u2009\u2264\u2009ai\u2009\u2264\u2009100) \u2014 numbers written on the n cards.", "output_spec": "If it is impossible for Petya and Vasya to choose numbers in such a way that the game will be fair, print \"NO\" (without quotes) in the first line. In this case you should not print anything more. In the other case print \"YES\" (without quotes) in the first line. In the second line print two distinct integers \u2014 number that Petya should choose and the number that Vasya should choose to make the game fair. If there are several solutions, print any of them.", "sample_inputs": ["4\n11\n27\n27\n11", "2\n6\n6", "6\n10\n20\n30\n20\n10\n20", "6\n1\n1\n2\n2\n3\n3"], "sample_outputs": ["YES\n11 27", "NO", "NO", "NO"], "notes": "NoteIn the first example the game will be fair if, for example, Petya chooses number 11, and Vasya chooses number 27. Then the will take all cards \u2014 Petya will take cards 1 and 4, and Vasya will take cards 2 and 3. Thus, each of them will take exactly two cards.In the second example fair game is impossible because the numbers written on the cards are equal, but the numbers that Petya and Vasya should choose should be distinct.In the third example it is impossible to take all cards. Petya and Vasya can take at most five cards \u2014 for example, Petya can choose number 10 and Vasya can choose number 20. But for the game to be fair it is necessary to take 6 cards."}, "src_uid": "2860b4fb22402ea9574c2f9e403d63d8"} {"nl": {"description": "Recently Adaltik discovered japanese crosswords. Japanese crossword is a picture, represented as a table sized a\u2009\u00d7\u2009b squares, and each square is colored white or black. There are integers to the left of the rows and to the top of the columns, encrypting the corresponding row or column. The number of integers represents how many groups of black squares there are in corresponding row or column, and the integers themselves represents the number of consecutive black squares in corresponding group (you can find more detailed explanation in Wikipedia https://en.wikipedia.org/wiki/Japanese_crossword).Adaltik decided that the general case of japanese crossword is too complicated and drew a row consisting of n squares (e.g. japanese crossword sized 1\u2009\u00d7\u2009n), which he wants to encrypt in the same way as in japanese crossword. The example of encrypting of a single row of japanese crossword. Help Adaltik find the numbers encrypting the row he drew.", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the length of the row. The second line of the input contains a single string consisting of n characters 'B' or 'W', ('B' corresponds to black square, 'W'\u00a0\u2014 to white square in the row that Adaltik drew).", "output_spec": "The first line should contain a single integer k\u00a0\u2014 the number of integers encrypting the row, e.g. the number of groups of black squares in the row. The second line should contain k integers, encrypting the row, e.g. corresponding to sizes of groups of consecutive black squares in the order from left to right.", "sample_inputs": ["3\nBBW", "5\nBWBWB", "4\nWWWW", "4\nBBBB", "13\nWBBBBWWBWBBBW"], "sample_outputs": ["1\n2", "3\n1 1 1", "0", "1\n4", "3\n4 1 3"], "notes": "NoteThe last sample case correspond to the picture in the statement."}, "src_uid": "e4b3a2707ba080b93a152f4e6e983973"} {"nl": {"description": "Artem has an array of n positive integers. Artem decided to play with it. The game consists of n moves. Each move goes like this. Artem chooses some element of the array and removes it. For that, he gets min(a,\u2009b) points, where a and b are numbers that were adjacent with the removed number. If the number doesn't have an adjacent number to the left or right, Artem doesn't get any points. After the element is removed, the two parts of the array glue together resulting in the new array that Artem continues playing with. Borya wondered what maximum total number of points Artem can get as he plays this game.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20095\u00b7105) \u2014 the number of elements in the array. The next line contains n integers ai (1\u2009\u2264\u2009ai\u2009\u2264\u2009106) \u2014 the values of the array elements.", "output_spec": "In a single line print a single integer \u2014 the maximum number of points Artem can get.", "sample_inputs": ["5\n3 1 5 2 6", "5\n1 2 3 4 5", "5\n1 100 101 100 1"], "sample_outputs": ["11", "6", "102"], "notes": null}, "src_uid": "e7e0f9069166fe992abe6f0e19caa6a1"} {"nl": {"description": "A famous Berland's painter Kalevitch likes to shock the public. One of his last obsessions is chess. For more than a thousand years people have been playing this old game on uninteresting, monotonous boards. Kalevitch decided to put an end to this tradition and to introduce a new attitude to chessboards.As before, the chessboard is a square-checkered board with the squares arranged in a 8\u2009\u00d7\u20098 grid, each square is painted black or white. Kalevitch suggests that chessboards should be painted in the following manner: there should be chosen a horizontal or a vertical line of 8 squares (i.e. a row or a column), and painted black. Initially the whole chessboard is white, and it can be painted in the above described way one or more times. It is allowed to paint a square many times, but after the first time it does not change its colour any more and remains black. Kalevitch paints chessboards neatly, and it is impossible to judge by an individual square if it was painted with a vertical or a horizontal stroke.Kalevitch hopes that such chessboards will gain popularity, and he will be commissioned to paint chessboards, which will help him ensure a comfortable old age. The clients will inform him what chessboard they want to have, and the painter will paint a white chessboard meeting the client's requirements.It goes without saying that in such business one should economize on everything \u2014 for each commission he wants to know the minimum amount of strokes that he has to paint to fulfill the client's needs. You are asked to help Kalevitch with this task.", "input_spec": "The input file contains 8 lines, each of the lines contains 8 characters. The given matrix describes the client's requirements, W character stands for a white square, and B character \u2014 for a square painted black. It is guaranteed that client's requirments can be fulfilled with a sequence of allowed strokes (vertical/column or horizontal/row).", "output_spec": "Output the only number \u2014 the minimum amount of rows and columns that Kalevitch has to paint on the white chessboard to meet the client's requirements.", "sample_inputs": ["WWWBWWBW\nBBBBBBBB\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW\nWWWBWWBW", "WWWWWWWW\nBBBBBBBB\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW\nWWWWWWWW"], "sample_outputs": ["3", "1"], "notes": null}, "src_uid": "8b6ae2190413b23f47e2958a7d4e7bc0"} {"nl": {"description": "The final round of Bayan Programming Contest will be held in Tehran, and the participants will be carried around with a yellow bus. The bus has 34 passenger seats: 4 seats in the last row and 3 seats in remaining rows. The event coordinator has a list of k participants who should be picked up at the airport. When a participant gets on the bus, he will sit in the last row with an empty seat. If there is more than one empty seat in that row, he will take the leftmost one. In order to keep track of the people who are on the bus, the event coordinator needs a figure showing which seats are going to be taken by k participants. Your task is to draw the figure representing occupied seats.", "input_spec": "The only line of input contains integer k, (0\u2009\u2264\u2009k\u2009\u2264\u200934), denoting the number of participants.", "output_spec": "Print the figure of a bus with k passengers as described in sample tests. Character '#' denotes an empty seat, while 'O' denotes a taken seat. 'D' is the bus driver and other characters in the output are for the purpose of beautifying the figure. Strictly follow the sample test cases output format. Print exactly six lines. Do not output extra space or other characters.", "sample_inputs": ["9", "20"], "sample_outputs": ["+------------------------+\n|O.O.O.#.#.#.#.#.#.#.#.|D|)\n|O.O.O.#.#.#.#.#.#.#.#.|.|\n|O.......................|\n|O.O.#.#.#.#.#.#.#.#.#.|.|)\n+------------------------+", "+------------------------+\n|O.O.O.O.O.O.O.#.#.#.#.|D|)\n|O.O.O.O.O.O.#.#.#.#.#.|.|\n|O.......................|\n|O.O.O.O.O.O.#.#.#.#.#.|.|)\n+------------------------+"], "notes": null}, "src_uid": "075f83248f6d4d012e0ca1547fc67993"} {"nl": {"description": "Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He has 26 photos, labeled \"a\" to \"z\", and he has compiled them into a photo booklet with some photos in some order (possibly with some photos being duplicated). A photo booklet can be described as a string of lowercase letters, consisting of the photos in the booklet in order. He now wants to sell some \"special edition\" photobooks, each with one extra photo inserted anywhere in the book. He wants to make as many distinct photobooks as possible, so he can make more money. He asks Haruhi, how many distinct photobooks can he make by inserting one extra photo into the photobook he already has?Please help Haruhi solve this problem.", "input_spec": "The first line of input will be a single string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200920). String s consists only of lowercase English letters. ", "output_spec": "Output a single integer equal to the number of distinct photobooks Kyoya Ootori can make.", "sample_inputs": ["a", "hi"], "sample_outputs": ["51", "76"], "notes": "NoteIn the first case, we can make 'ab','ac',...,'az','ba','ca',...,'za', and 'aa', producing a total of 51 distinct photo booklets. "}, "src_uid": "556684d96d78264ad07c0cdd3b784bc9"} {"nl": {"description": "There is a sequence of colorful stones. The color of each stone is one of red, green, or blue. You are given a string s. The i-th (1-based) character of s represents the color of the i-th stone. If the character is \"R\", \"G\", or \"B\", the color of the corresponding stone is red, green, or blue, respectively.Initially Squirrel Liss is standing on the first stone. You perform instructions one or more times.Each instruction is one of the three types: \"RED\", \"GREEN\", or \"BLUE\". After an instruction c, if Liss is standing on a stone whose colors is c, Liss will move one stone forward, else she will not move.You are given a string t. The number of instructions is equal to the length of t, and the i-th character of t represents the i-th instruction.Calculate the final position of Liss (the number of the stone she is going to stand on in the end) after performing all the instructions, and print its 1-based position. It is guaranteed that Liss don't move out of the sequence.", "input_spec": "The input contains two lines. The first line contains the string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200950). The second line contains the string t (1\u2009\u2264\u2009|t|\u2009\u2264\u200950). The characters of each string will be one of \"R\", \"G\", or \"B\". It is guaranteed that Liss don't move out of the sequence.", "output_spec": "Print the final 1-based position of Liss in a single line.", "sample_inputs": ["RGB\nRRR", "RRRBGBRBBB\nBBBRR", "BRRBGBRGRBGRGRRGGBGBGBRGBRGRGGGRBRRRBRBBBGRRRGGBBB\nBBRBGGRGRGBBBRBGRBRBBBBRBRRRBGBBGBBRRBBGGRBRRBRGRB"], "sample_outputs": ["2", "3", "15"], "notes": null}, "src_uid": "f5a907d6d35390b1fb11c8ce247d0252"} {"nl": {"description": "The only difference between easy and hard versions is the number of elements in the array.You are given an array $$$a$$$ consisting of $$$n$$$ integers. In one move you can choose any $$$a_i$$$ and divide it by $$$2$$$ rounding down (in other words, in one move you can set $$$a_i := \\lfloor\\frac{a_i}{2}\\rfloor$$$).You can perform such an operation any (possibly, zero) number of times with any $$$a_i$$$.Your task is to calculate the minimum possible number of operations required to obtain at least $$$k$$$ equal numbers in the array.Don't forget that it is possible to have $$$a_i = 0$$$ after some operations, thus the answer always exists.", "input_spec": "The first line of the input contains two integers $$$n$$$ and $$$k$$$ ($$$1 \\le k \\le n \\le 50$$$) \u2014 the number of elements in the array and the number of equal numbers required. The second line of the input contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 2 \\cdot 10^5$$$), where $$$a_i$$$ is the $$$i$$$-th element of $$$a$$$.", "output_spec": "Print one integer \u2014 the minimum possible number of operations required to obtain at least $$$k$$$ equal numbers in the array.", "sample_inputs": ["5 3\n1 2 2 4 5", "5 3\n1 2 3 4 5", "5 3\n1 2 3 3 3"], "sample_outputs": ["1", "2", "0"], "notes": null}, "src_uid": "ed1a2ae733121af6486568e528fe2d84"} {"nl": {"description": "Sergey is testing a next-generation processor. Instead of bytes the processor works with memory cells consisting of n bits. These bits are numbered from 1 to n. An integer is stored in the cell in the following way: the least significant bit is stored in the first bit of the cell, the next significant bit is stored in the second bit, and so on; the most significant bit is stored in the n-th bit.Now Sergey wants to test the following instruction: \"add 1 to the value of the cell\". As a result of the instruction, the integer that is written in the cell must be increased by one; if some of the most significant bits of the resulting number do not fit into the cell, they must be discarded.Sergey wrote certain values \u200b\u200bof the bits in the cell and is going to add one to its value. How many bits of the cell will change after the operation?", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of bits in the cell. The second line contains a string consisting of n characters \u2014 the initial state of the cell. The first character denotes the state of the first bit of the cell. The second character denotes the second least significant bit and so on. The last character denotes the state of the most significant bit.", "output_spec": "Print a single integer \u2014 the number of bits in the cell which change their state after we add 1 to the cell.", "sample_inputs": ["4\n1100", "4\n1111"], "sample_outputs": ["3", "4"], "notes": "NoteIn the first sample the cell ends up with value 0010, in the second sample \u2014 with 0000."}, "src_uid": "54cb2e987f2cc06c02c7638ea879a1ab"} {"nl": {"description": "Where do odds begin, and where do they end? Where does hope emerge, and will they ever break?Given an integer sequence a1,\u2009a2,\u2009...,\u2009an of length n. Decide whether it is possible to divide it into an odd number of non-empty subsegments, the each of which has an odd length and begins and ends with odd numbers.A subsegment is a contiguous slice of the whole sequence. For example, {3,\u20094,\u20095} and {1} are subsegments of sequence {1,\u20092,\u20093,\u20094,\u20095,\u20096}, while {1,\u20092,\u20094} and {7} are not.", "input_spec": "The first line of input contains a non-negative integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the length of the sequence. The second line contains n space-separated non-negative integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u2009100) \u2014 the elements of the sequence.", "output_spec": "Output \"Yes\" if it's possible to fulfill the requirements, and \"No\" otherwise. You can output each letter in any case (upper or lower).", "sample_inputs": ["3\n1 3 5", "5\n1 0 1 5 1", "3\n4 3 1", "4\n3 9 9 3"], "sample_outputs": ["Yes", "Yes", "No", "No"], "notes": "NoteIn the first example, divide the sequence into 1 subsegment: {1,\u20093,\u20095} and the requirements will be met.In the second example, divide the sequence into 3 subsegments: {1,\u20090,\u20091}, {5}, {1}.In the third example, one of the subsegments must start with 4 which is an even number, thus the requirements cannot be met.In the fourth example, the sequence can be divided into 2 subsegments: {3,\u20099,\u20099}, {3}, but this is not a valid solution because 2 is an even number."}, "src_uid": "2b8c2deb5d7e49e8e3ededabfd4427db"} {"nl": {"description": "Arpa is taking a geometry exam. Here is the last problem of the exam.You are given three points a,\u2009b,\u2009c.Find a point and an angle such that if we rotate the page around the point by the angle, the new position of a is the same as the old position of b, and the new position of b is the same as the old position of c.Arpa is doubting if the problem has a solution or not (i.e. if there exists a point and an angle satisfying the condition). Help Arpa determine if the question has a solution or not.", "input_spec": "The only line contains six integers ax,\u2009ay,\u2009bx,\u2009by,\u2009cx,\u2009cy (|ax|,\u2009|ay|,\u2009|bx|,\u2009|by|,\u2009|cx|,\u2009|cy|\u2009\u2264\u2009109). It's guaranteed that the points are distinct.", "output_spec": "Print \"Yes\" if the problem has a solution, \"No\" otherwise. You can print each letter in any case (upper or lower).", "sample_inputs": ["0 1 1 1 1 0", "1 1 0 0 1000 1000"], "sample_outputs": ["Yes", "No"], "notes": "NoteIn the first sample test, rotate the page around (0.5,\u20090.5) by .In the second sample test, you can't find any solution."}, "src_uid": "05ec6ec3e9ffcc0e856dc0d461e6eeab"} {"nl": {"description": "Sasha is a very happy guy, that's why he is always on the move. There are $$$n$$$ cities in the country where Sasha lives. They are all located on one straight line, and for convenience, they are numbered from $$$1$$$ to $$$n$$$ in increasing order. The distance between any two adjacent cities is equal to $$$1$$$ kilometer. Since all roads in the country are directed, it's possible to reach the city $$$y$$$ from the city $$$x$$$ only if $$$x < y$$$. Once Sasha decided to go on a trip around the country and to visit all $$$n$$$ cities. He will move with the help of his car, Cheetah-2677. The tank capacity of this model is $$$v$$$ liters, and it spends exactly $$$1$$$ liter of fuel for $$$1$$$ kilometer of the way. At the beginning of the journey, the tank is empty. Sasha is located in the city with the number $$$1$$$ and wants to get to the city with the number $$$n$$$. There is a gas station in each city. In the $$$i$$$-th city, the price of $$$1$$$ liter of fuel is $$$i$$$ dollars. It is obvious that at any moment of time, the tank can contain at most $$$v$$$ liters of fuel.Sasha doesn't like to waste money, that's why he wants to know what is the minimum amount of money is needed to finish the trip if he can buy fuel in any city he wants. Help him to figure it out!", "input_spec": "The first line contains two integers $$$n$$$ and $$$v$$$ ($$$2 \\le n \\le 100$$$, $$$1 \\le v \\le 100$$$) \u00a0\u2014 the number of cities in the country and the capacity of the tank.", "output_spec": "Print one integer\u00a0\u2014 the minimum amount of money that is needed to finish the trip.", "sample_inputs": ["4 2", "7 6"], "sample_outputs": ["4", "6"], "notes": "NoteIn the first example, Sasha can buy $$$2$$$ liters for $$$2$$$ dollars ($$$1$$$ dollar per liter) in the first city, drive to the second city, spend $$$1$$$ liter of fuel on it, then buy $$$1$$$ liter for $$$2$$$ dollars in the second city and then drive to the $$$4$$$-th city. Therefore, the answer is $$$1+1+2=4$$$.In the second example, the capacity of the tank allows to fill the tank completely in the first city, and drive to the last city without stops in other cities."}, "src_uid": "f8eb96deeb82d9f011f13d7dac1e1ab7"} {"nl": {"description": "Alice likes word \"nineteen\" very much. She has a string s and wants the string to contain as many such words as possible. For that reason she can rearrange the letters of the string.For example, if she has string \"xiineteenppnnnewtnee\", she can get string \"xnineteenppnineteenw\", containing (the occurrences marked) two such words. More formally, word \"nineteen\" occurs in the string the number of times you can read it starting from some letter of the string. Of course, you shouldn't skip letters.Help her to find the maximum number of \"nineteen\"s that she can get in her string.", "input_spec": "The first line contains a non-empty string s, consisting only of lowercase English letters. The length of string s doesn't exceed 100.", "output_spec": "Print a single integer \u2014 the maximum number of \"nineteen\"s that she can get in her string.", "sample_inputs": ["nniinneetteeeenn", "nneteenabcnneteenabcnneteenabcnneteenabcnneteenabcii", "nineteenineteen"], "sample_outputs": ["2", "2", "2"], "notes": null}, "src_uid": "bb433cdb8299afcf46cb2797cbfbf724"} {"nl": {"description": "One hot summer day Pete and his friend Billy decided to buy a watermelon. They chose the biggest and the ripest one, in their opinion. After that the watermelon was weighed, and the scales showed w kilos. They rushed home, dying of thirst, and decided to divide the berry, however they faced a hard problem.Pete and Billy are great fans of even numbers, that's why they want to divide the watermelon in such a way that each of the two parts weighs even number of kilos, at the same time it is not obligatory that the parts are equal. The boys are extremely tired and want to start their meal as soon as possible, that's why you should help them and find out, if they can divide the watermelon in the way they want. For sure, each of them should get a part of positive weight.", "input_spec": "The first (and the only) input line contains integer number w (1\u2009\u2264\u2009w\u2009\u2264\u2009100) \u2014 the weight of the watermelon bought by the boys.", "output_spec": "Print YES, if the boys can divide the watermelon into two parts, each of them weighing even number of kilos; and NO in the opposite case.", "sample_inputs": ["8"], "sample_outputs": ["YES"], "notes": "NoteFor example, the boys can divide the watermelon into two parts of 2 and 6 kilos respectively (another variant \u2014 two parts of 4 and 4 kilos)."}, "src_uid": "230a3c4d7090401e5fa3c6b9d994cdf2"} {"nl": {"description": "Mashmokh works in a factory. At the end of each day he must turn off all of the lights. The lights on the factory are indexed from 1 to n. There are n buttons in Mashmokh's room indexed from 1 to n as well. If Mashmokh pushes button with index i, then each light with index not less than i that is still turned on turns off.Mashmokh is not very clever. So instead of pushing the first button he pushes some of the buttons randomly each night. He pushed m distinct buttons b1,\u2009b2,\u2009...,\u2009bm (the buttons were pushed consecutively in the given order) this night. Now he wants to know for each light the index of the button that turned this light off. Please note that the index of button bi is actually bi, not i.Please, help Mashmokh, print these indices.", "input_spec": "The first line of the input contains two space-separated integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100), the number of the factory lights and the pushed buttons respectively. The next line contains m distinct space-separated integers b1,\u2009b2,\u2009...,\u2009bm\u00a0(1\u2009\u2264\u2009bi\u2009\u2264\u2009n). It is guaranteed that all lights will be turned off after pushing all buttons.", "output_spec": "Output n space-separated integers where the i-th number is index of the button that turns the i-th light off.", "sample_inputs": ["5 4\n4 3 1 2", "5 5\n5 4 3 2 1"], "sample_outputs": ["1 1 3 4 4", "1 2 3 4 5"], "notes": "NoteIn the first sample, after pressing button number 4, lights 4 and 5 are turned off and lights 1, 2 and 3 are still on. Then after pressing button number 3, light number 3 is turned off as well. Pressing button number 1 turns off lights number 1 and 2 as well so pressing button number 2 in the end has no effect. Thus button number 4 turned lights 4 and 5 off, button number 3 turned light 3 off and button number 1 turned light 1 and 2 off."}, "src_uid": "2e44c8aabab7ef7b06bbab8719a8d863"} {"nl": {"description": "Recently, Vladimir got bad mark in algebra again. To avoid such unpleasant events in future he decided to train his arithmetic skills. He wrote four integer numbers a, b, c, d on the blackboard. During each of the next three minutes he took two numbers from the blackboard (not necessarily adjacent) and replaced them with their sum or their product. In the end he got one number. Unfortunately, due to the awful memory he forgot that number, but he remembers four original numbers, sequence of the operations and his surprise because of the very small result. Help Vladimir remember the forgotten number: find the smallest number that can be obtained from the original numbers by the given sequence of operations.", "input_spec": "First line contains four integers separated by space: 0\u2009\u2264\u2009a,\u2009b,\u2009c,\u2009d\u2009\u2264\u20091000 \u2014 the original numbers. Second line contains three signs ('+' or '*' each) separated by space \u2014 the sequence of the operations in the order of performing. ('+' stands for addition, '*' \u2014 multiplication)", "output_spec": "Output one integer number \u2014 the minimal result which can be obtained. Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).", "sample_inputs": ["1 1 1 1\n+ + *", "2 2 2 2\n* * +", "1 2 3 4\n* + +"], "sample_outputs": ["3", "8", "9"], "notes": null}, "src_uid": "7a66fae63d9b27e444d84447012e484c"} {"nl": {"description": "You are given names of two days of the week.Please, determine whether it is possible that during some non-leap year the first day of some month was equal to the first day of the week you are given, while the first day of the next month was equal to the second day of the week you are given. Both months should belong to one year.In this problem, we consider the Gregorian calendar to be used. The number of months in this calendar is equal to 12. The number of days in months during any non-leap year is: 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31.Names of the days of the week are given with lowercase English letters: \"monday\", \"tuesday\", \"wednesday\", \"thursday\", \"friday\", \"saturday\", \"sunday\".", "input_spec": "The input consists of two lines, each of them containing the name of exactly one day of the week. It's guaranteed that each string in the input is from the set \"monday\", \"tuesday\", \"wednesday\", \"thursday\", \"friday\", \"saturday\", \"sunday\".", "output_spec": "Print \"YES\" (without quotes) if such situation is possible during some non-leap year. Otherwise, print \"NO\" (without quotes).", "sample_inputs": ["monday\ntuesday", "sunday\nsunday", "saturday\ntuesday"], "sample_outputs": ["NO", "YES", "YES"], "notes": "NoteIn the second sample, one can consider February 1 and March 1 of year 2015. Both these days were Sundays.In the third sample, one can consider July 1 and August 1 of year 2017. First of these two days is Saturday, while the second one is Tuesday."}, "src_uid": "2a75f68a7374b90b80bb362c6ead9a35"} {"nl": {"description": "Vasya plays The Elder Trolls IV: Oblivon. Oh, those creators of computer games! What they do not come up with! Absolutely unique monsters have been added to the The Elder Trolls IV: Oblivon. One of these monsters is Unkillable Slug. Why it is \"Unkillable\"? Firstly, because it can be killed with cutting weapon only, so lovers of two-handed amber hammers should find suitable knife themselves. Secondly, it is necessary to make so many cutting strokes to Unkillable Slug. Extremely many. Too many! Vasya has already promoted his character to 80-th level and in order to gain level 81 he was asked to kill Unkillable Slug. The monster has a very interesting shape. It looks like a rectangular parallelepiped with size x\u2009\u00d7\u2009y\u2009\u00d7\u2009z, consisting of undestructable cells 1\u2009\u00d7\u20091\u2009\u00d7\u20091. At one stroke Vasya can cut the Slug along an imaginary grid, i.e. cut with a plane parallel to one of the parallelepiped side. Monster dies when amount of parts it is divided reaches some critical value.All parts of monster do not fall after each cut, they remains exactly on its places. I. e. Vasya can cut several parts with one cut.Vasya wants to know what the maximum number of pieces he can cut the Unkillable Slug into striking him at most k times.Vasya's character uses absolutely thin sword with infinite length.", "input_spec": "The first line of input contains four integer numbers x,\u2009y,\u2009z,\u2009k (1\u2009\u2264\u2009x,\u2009y,\u2009z\u2009\u2264\u2009106,\u20090\u2009\u2264\u2009k\u2009\u2264\u2009109).", "output_spec": "Output the only number \u2014 the answer for the problem. Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cout (also you may use %I64d).", "sample_inputs": ["2 2 2 3", "2 2 2 1"], "sample_outputs": ["8", "2"], "notes": "NoteIn the first sample Vasya make 3 pairwise perpendicular cuts. He cuts monster on two parts with the first cut, then he divides each part on two with the second cut, and finally he divides each of the 4 parts on two."}, "src_uid": "8787c5d46d7247d93d806264a8957639"} {"nl": {"description": "Kolya got string s for his birthday, the string consists of small English letters. He immediately added k more characters to the right of the string.Then Borya came and said that the new string contained a tandem repeat of length l as a substring. How large could l be?See notes for definition of a tandem repeat.", "input_spec": "The first line contains s (1\u2009\u2264\u2009|s|\u2009\u2264\u2009200). This string contains only small English letters. The second line contains number k (1\u2009\u2264\u2009k\u2009\u2264\u2009200) \u2014 the number of the added characters.", "output_spec": "Print a single number \u2014 the maximum length of the tandem repeat that could have occurred in the new string.", "sample_inputs": ["aaba\n2", "aaabbbb\n2", "abracadabra\n10"], "sample_outputs": ["6", "6", "20"], "notes": "NoteA tandem repeat of length 2n is string s, where for any position i (1\u2009\u2264\u2009i\u2009\u2264\u2009n) the following condition fulfills: si\u2009=\u2009si\u2009+\u2009n.In the first sample Kolya could obtain a string aabaab, in the second \u2014 aaabbbbbb, in the third \u2014 abracadabrabracadabra."}, "src_uid": "bb65667b65ff069a9c0c9e8fe31da8ab"} {"nl": {"description": "A and B are preparing themselves for programming contests.To train their logical thinking and solve problems better, A and B decided to play chess. During the game A wondered whose position is now stronger.For each chess piece we know its weight: the queen's weight is 9, the rook's weight is 5, the bishop's weight is 3, the knight's weight is 3, the pawn's weight is 1, the king's weight isn't considered in evaluating position. The player's weight equals to the sum of weights of all his pieces on the board.As A doesn't like counting, he asked you to help him determine which player has the larger position weight.", "input_spec": "The input contains eight lines, eight characters each \u2014 the board's description. The white pieces on the board are marked with uppercase letters, the black pieces are marked with lowercase letters. The white pieces are denoted as follows: the queen is represented is 'Q', the rook \u2014 as 'R', the bishop \u2014 as'B', the knight \u2014 as 'N', the pawn \u2014 as 'P', the king \u2014 as 'K'. The black pieces are denoted as 'q', 'r', 'b', 'n', 'p', 'k', respectively. An empty square of the board is marked as '.' (a dot). It is not guaranteed that the given chess position can be achieved in a real game. Specifically, there can be an arbitrary (possibly zero) number pieces of each type, the king may be under attack and so on.", "output_spec": "Print \"White\" (without quotes) if the weight of the position of the white pieces is more than the weight of the position of the black pieces, print \"Black\" if the weight of the black pieces is more than the weight of the white pieces and print \"Draw\" if the weights of the white and black pieces are equal.", "sample_inputs": ["...QK...\n........\n........\n........\n........\n........\n........\n...rk...", "rnbqkbnr\npppppppp\n........\n........\n........\n........\nPPPPPPPP\nRNBQKBNR", "rppppppr\n...k....\n........\n........\n........\n........\nK...Q...\n........"], "sample_outputs": ["White", "Draw", "Black"], "notes": "NoteIn the first test sample the weight of the position of the white pieces equals to 9, the weight of the position of the black pieces equals 5.In the second test sample the weights of the positions of the black and the white pieces are equal to 39.In the third test sample the weight of the position of the white pieces equals to 9, the weight of the position of the black pieces equals to 16."}, "src_uid": "44bed0ca7a8fb42fb72c1584d39a4442"} {"nl": {"description": "Vasya has a pack of 54 cards (52 standard cards and 2 distinct jokers). That is all he has at the moment. Not to die from boredom, Vasya plays Solitaire with them.Vasya lays out nm cards as a rectangle n\u2009\u00d7\u2009m. If there are jokers among them, then Vasya should change them with some of the rest of 54\u2009-\u2009nm cards (which are not layed out) so that there were no jokers left. Vasya can pick the cards to replace the jokers arbitrarily. Remember, that each card presents in pack exactly once (i. e. in a single copy). Vasya tries to perform the replacements so that the solitaire was solved.Vasya thinks that the solitaire is solved if after the jokers are replaced, there exist two non-overlapping squares 3\u2009\u00d7\u20093, inside each of which all the cards either have the same suit, or pairwise different ranks.Determine by the initial position whether the solitaire can be solved or not. If it can be solved, show the way in which it is possible.", "input_spec": "The first line contains integers n and m (3\u2009\u2264\u2009n,\u2009m\u2009\u2264\u200917, n\u2009\u00d7\u2009m\u2009\u2264\u200952). Next n lines contain m words each. Each word consists of two letters. The jokers are defined as \"J1\" and \"J2\" correspondingly. For the rest of the cards, the first letter stands for the rank and the second one \u2014 for the suit. The possible ranks are: \"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"T\", \"J\", \"Q\", \"K\" and \"A\". The possible suits are: \"C\", \"D\", \"H\" and \"S\". All the cards are different.", "output_spec": "If the Solitaire can be solved, print on the first line \"Solution exists.\" without the quotes. On the second line print in what way the jokers can be replaced. Three variants are possible: \"There are no jokers.\", if there are no jokers in the input data. \"Replace Jx with y.\", if there is one joker. x is its number, and y is the card it should be replaced with. \"Replace J1 with x and J2 with y.\", if both jokers are present in the input data. x and y here represent distinct cards with which one should replace the first and the second jokers correspondingly. On the third line print the coordinates of the upper left corner of the first square 3\u2009\u00d7\u20093 in the format \"Put the first square to (r, c).\", where r and c are the row and the column correspondingly. In the same manner print on the fourth line the coordinates of the second square 3\u2009\u00d7\u20093 in the format \"Put the second square to (r, c).\". If there are several solutions to that problem, print any of them. If there are no solutions, print of the single line \"No solution.\" without the quotes. See the samples to understand the output format better.", "sample_inputs": ["4 6\n2S 3S 4S 7S 8S AS\n5H 6H 7H 5S TC AC\n8H 9H TH 7C 8C 9C\n2D 2C 3C 4C 5C 6C", "4 6\n2S 3S 4S 7S 8S AS\n5H 6H 7H J1 TC AC\n8H 9H TH 7C 8C 9C\n2D 2C 3C 4C 5C 6C", "4 6\n2S 3S 4S 7S 8S AS\n5H 6H 7H QC TC AC\n8H 9H TH 7C 8C 9C\n2D 2C 3C 4C 5C 6C"], "sample_outputs": ["No solution.", "Solution exists.\nReplace J1 with 2H.\nPut the first square to (1, 1).\nPut the second square to (2, 4).", "Solution exists.\nThere are no jokers.\nPut the first square to (1, 1).\nPut the second square to (2, 4)."], "notes": "NoteThe pretests cover all the possible output formats."}, "src_uid": "b3f29d9c27cbfeadb96b6ac9ffd6bc8f"} {"nl": {"description": "Today, Mezo is playing a game. Zoma, a character in that game, is initially at position $$$x = 0$$$. Mezo starts sending $$$n$$$ commands to Zoma. There are two possible commands: 'L' (Left) sets the position $$$x: =x - 1$$$; 'R' (Right) sets the position $$$x: =x + 1$$$. Unfortunately, Mezo's controller malfunctions sometimes. Some commands are sent successfully and some are ignored. If the command is ignored then the position $$$x$$$ doesn't change and Mezo simply proceeds to the next command.For example, if Mezo sends commands \"LRLR\", then here are some possible outcomes (underlined commands are sent successfully): \"LRLR\" \u2014 Zoma moves to the left, to the right, to the left again and to the right for the final time, ending up at position $$$0$$$; \"LRLR\" \u2014 Zoma recieves no commands, doesn't move at all and ends up at position $$$0$$$ as well; \"LRLR\" \u2014 Zoma moves to the left, then to the left again and ends up in position $$$-2$$$. Mezo doesn't know which commands will be sent successfully beforehand. Thus, he wants to know how many different positions may Zoma end up at.", "input_spec": "The first line contains $$$n$$$ $$$(1 \\le n \\le 10^5)$$$ \u2014 the number of commands Mezo sends. The second line contains a string $$$s$$$ of $$$n$$$ commands, each either 'L' (Left) or 'R' (Right).", "output_spec": "Print one integer \u2014 the number of different positions Zoma may end up at.", "sample_inputs": ["4\nLRLR"], "sample_outputs": ["5"], "notes": "NoteIn the example, Zoma may end up anywhere between $$$-2$$$ and $$$2$$$."}, "src_uid": "098ade88ed90664da279fe8a5a54b5ba"} {"nl": {"description": "Vasya studies positional numeral systems. Unfortunately, he often forgets to write the base of notation in which the expression is written. Once he saw a note in his notebook saying a\u2009+\u2009b\u2009=\u2009?, and that the base of the positional notation wasn\u2019t written anywhere. Now Vasya has to choose a base p and regard the expression as written in the base p positional notation. Vasya understood that he can get different results with different bases, and some bases are even invalid. For example, expression 78\u2009+\u200987 in the base 16 positional notation is equal to FF16, in the base 15 positional notation it is equal to 11015, in the base 10 one \u2014 to 16510, in the base 9 one \u2014 to 1769, and in the base 8 or lesser-based positional notations the expression is invalid as all the numbers should be strictly less than the positional notation base. Vasya got interested in what is the length of the longest possible expression value. Help him to find this length.The length of a number should be understood as the number of numeric characters in it. For example, the length of the longest answer for 78\u2009+\u200987\u2009=\u2009? is 3. It is calculated like that in the base 15 (11015), base 10 (16510), base 9 (1769) positional notations, for example, and in some other ones.", "input_spec": "The first letter contains two space-separated numbers a and b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u20091000) which represent the given summands.", "output_spec": "Print a single number \u2014 the length of the longest answer.", "sample_inputs": ["78 87", "1 1"], "sample_outputs": ["3", "2"], "notes": null}, "src_uid": "8ccfb9b1fef6a992177cc49bd56fab7b"} {"nl": {"description": "A large banner with word CODEFORCES was ordered for the 1000-th onsite round of Codeforces\u03c9 that takes place on the Miami beach. Unfortunately, the company that made the banner mixed up two orders and delivered somebody else's banner that contains someone else's word. The word on the banner consists only of upper-case English letters.There is very little time to correct the mistake. All that we can manage to do is to cut out some substring from the banner, i.e. several consecutive letters. After that all the resulting parts of the banner will be glued into a single piece (if the beginning or the end of the original banner was cut out, only one part remains); it is not allowed change the relative order of parts of the banner (i.e. after a substring is cut, several first and last letters are left, it is allowed only to glue the last letters to the right of the first letters). Thus, for example, for example, you can cut a substring out from string 'TEMPLATE' and get string 'TEMPLE' (if you cut out string AT), 'PLATE' (if you cut out TEM), 'T' (if you cut out EMPLATE), etc.Help the organizers of the round determine whether it is possible to cut out of the banner some substring in such a way that the remaining parts formed word CODEFORCES.", "input_spec": "The single line of the input contains the word written on the banner. The word only consists of upper-case English letters. The word is non-empty and its length doesn't exceed 100 characters. It is guaranteed that the word isn't word CODEFORCES.", "output_spec": "Print 'YES', if there exists a way to cut out the substring, and 'NO' otherwise (without the quotes).", "sample_inputs": ["CODEWAITFORITFORCES", "BOTTOMCODER", "DECODEFORCES", "DOGEFORCES"], "sample_outputs": ["YES", "NO", "YES", "NO"], "notes": null}, "src_uid": "bda4b15827c94b526643dfefc4bc36e7"} {"nl": {"description": "Can you imagine our life if we removed all zeros from it? For sure we will have many problems.In this problem we will have a simple example if we removed all zeros from our life, it's the addition operation. Let's assume you are given this equation a\u2009+\u2009b\u2009=\u2009c, where a and b are positive integers, and c is the sum of a and b. Now let's remove all zeros from this equation. Will the equation remain correct after removing all zeros?For example if the equation is 101\u2009+\u2009102\u2009=\u2009203, if we removed all zeros it will be 11\u2009+\u200912\u2009=\u200923 which is still a correct equation.But if the equation is 105\u2009+\u2009106\u2009=\u2009211, if we removed all zeros it will be 15\u2009+\u200916\u2009=\u2009211 which is not a correct equation.", "input_spec": "The input will consist of two lines, the first line will contain the integer a, and the second line will contain the integer b which are in the equation as described above (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009109). There won't be any leading zeros in both. The value of c should be calculated as c\u2009=\u2009a\u2009+\u2009b.", "output_spec": "The output will be just one line, you should print \"YES\" if the equation will remain correct after removing all zeros, and print \"NO\" otherwise.", "sample_inputs": ["101\n102", "105\n106"], "sample_outputs": ["YES", "NO"], "notes": null}, "src_uid": "ac6971f4feea0662d82da8e0862031ad"} {"nl": {"description": "Students Vasya and Petya are studying at the BSU (Byteland State University). At one of the breaks they decided to order a pizza. In this problem pizza is a circle of some radius. The pizza was delivered already cut into n pieces. The i-th piece is a sector of angle equal to ai. Vasya and Petya want to divide all pieces of pizza into two continuous sectors in such way that the difference between angles of these sectors is minimal. Sector angle is sum of angles of all pieces in it. Pay attention, that one of sectors can be empty.", "input_spec": "The first line contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009360) \u00a0\u2014 the number of pieces into which the delivered pizza was cut. The second line contains n integers ai (1\u2009\u2264\u2009ai\u2009\u2264\u2009360) \u00a0\u2014 the angles of the sectors into which the pizza was cut. The sum of all ai is 360.", "output_spec": "Print one integer \u00a0\u2014 the minimal difference between angles of sectors that will go to Vasya and Petya.", "sample_inputs": ["4\n90 90 90 90", "3\n100 100 160", "1\n360", "4\n170 30 150 10"], "sample_outputs": ["0", "40", "360", "0"], "notes": "NoteIn first sample Vasya can take 1 and 2 pieces, Petya can take 3 and 4 pieces. Then the answer is |(90\u2009+\u200990)\u2009-\u2009(90\u2009+\u200990)|\u2009=\u20090.In third sample there is only one piece of pizza that can be taken by only one from Vasya and Petya. So the answer is |360\u2009-\u20090|\u2009=\u2009360.In fourth sample Vasya can take 1 and 4 pieces, then Petya will take 2 and 3 pieces. So the answer is |(170\u2009+\u200910)\u2009-\u2009(30\u2009+\u2009150)|\u2009=\u20090.Picture explaning fourth sample:Both red and green sectors consist of two adjacent pieces of pizza. So Vasya can take green sector, then Petya will take red sector."}, "src_uid": "1b6a6aff81911865356ec7cbf6883e82"} {"nl": {"description": "There is a field of size $$$2 \\times 2$$$. Each cell of this field can either contain grass or be empty. The value $$$a_{i, j}$$$ is $$$1$$$ if the cell $$$(i, j)$$$ contains grass, or $$$0$$$ otherwise.In one move, you can choose one row and one column and cut all the grass in this row and this column. In other words, you choose the row $$$x$$$ and the column $$$y$$$, then you cut the grass in all cells $$$a_{x, i}$$$ and all cells $$$a_{i, y}$$$ for all $$$i$$$ from $$$1$$$ to $$$2$$$. After you cut the grass from a cell, it becomes empty (i.\u2009e. its value is replaced by $$$0$$$).Your task is to find the minimum number of moves required to cut the grass in all non-empty cells of the field (i.\u2009e. make all $$$a_{i, j}$$$ zeros).You have to answer $$$t$$$ independent test cases.", "input_spec": "The first line of the input contains one integer $$$t$$$ ($$$1 \\le t \\le 16$$$) \u2014 the number of test cases. Then $$$t$$$ test cases follow. The test case consists of two lines, each of these lines contains two integers. The $$$j$$$-th integer in the $$$i$$$-th row is $$$a_{i, j}$$$. If $$$a_{i, j} = 0$$$ then the cell $$$(i, j)$$$ is empty, and if $$$a_{i, j} = 1$$$ the cell $$$(i, j)$$$ contains grass.", "output_spec": "For each test case, print one integer \u2014 the minimum number of moves required to cut the grass in all non-empty cells of the field (i.\u2009e. make all $$$a_{i, j}$$$ zeros) in the corresponding test case.", "sample_inputs": ["3\n\n0 0\n\n0 0\n\n1 0\n\n0 1\n\n1 1\n\n1 1"], "sample_outputs": ["0\n1\n2"], "notes": null}, "src_uid": "7336b8becd2438f0439240ee8f9610ec"} {"nl": {"description": "A + B is often used as an example of the easiest problem possible to show some contest platform. However, some scientists have observed that sometimes this problem is not so easy to get accepted. Want to try?", "input_spec": "The input contains two integers a and b (0\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009103), separated by a single space.", "output_spec": "Output the sum of the given integers.", "sample_inputs": ["5 14", "381 492"], "sample_outputs": ["19", "873"], "notes": null}, "src_uid": "b6e3f9c9b124ec3ec20eb8fcea075add"} {"nl": {"description": "Some days ago, I learned the concept of LCM (least common multiple). I've played with it for several times and I want to make a big number with it.But I also don't want to use many numbers, so I'll choose three positive integers (they don't have to be distinct) which are not greater than n. Can you help me to find the maximum possible least common multiple of these three integers?", "input_spec": "The first line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009106) \u2014 the n mentioned in the statement.", "output_spec": "Print a single integer \u2014 the maximum possible LCM of three not necessarily distinct positive integers that are not greater than n.", "sample_inputs": ["9", "7"], "sample_outputs": ["504", "210"], "notes": "NoteThe least common multiple of some positive integers is the least positive integer which is multiple for each of them.The result may become very large, 32-bit integer won't be enough. So using 64-bit integers is recommended.For the last example, we can chose numbers 7, 6, 5 and the LCM of them is 7\u00b76\u00b75\u2009=\u2009210. It is the maximum value we can get."}, "src_uid": "25e5afcdf246ee35c9cef2fcbdd4566e"} {"nl": {"description": "Bizon the Champion is called the Champion for a reason. Bizon the Champion has recently got a present \u2014 a new glass cupboard with n shelves and he decided to put all his presents there. All the presents can be divided into two types: medals and cups. Bizon the Champion has a1 first prize cups, a2 second prize cups and a3 third prize cups. Besides, he has b1 first prize medals, b2 second prize medals and b3 third prize medals. Naturally, the rewards in the cupboard must look good, that's why Bizon the Champion decided to follow the rules: any shelf cannot contain both cups and medals at the same time; no shelf can contain more than five cups; no shelf can have more than ten medals. Help Bizon the Champion find out if we can put all the rewards so that all the conditions are fulfilled.", "input_spec": "The first line contains integers a1, a2 and a3 (0\u2009\u2264\u2009a1,\u2009a2,\u2009a3\u2009\u2264\u2009100). The second line contains integers b1, b2 and b3 (0\u2009\u2264\u2009b1,\u2009b2,\u2009b3\u2009\u2264\u2009100). The third line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100). The numbers in the lines are separated by single spaces.", "output_spec": "Print \"YES\" (without the quotes) if all the rewards can be put on the shelves in the described manner. Otherwise, print \"NO\" (without the quotes).", "sample_inputs": ["1 1 1\n1 1 1\n4", "1 1 3\n2 3 4\n2", "1 0 0\n1 0 0\n1"], "sample_outputs": ["YES", "YES", "NO"], "notes": null}, "src_uid": "fe6301816dea7d9cea1c3a06a7d1ea7e"} {"nl": {"description": "Rock... Paper!After Karen have found the deterministic winning (losing?) strategy for rock-paper-scissors, her brother, Koyomi, comes up with a new game as a substitute. The game works as follows.A positive integer n is decided first. Both Koyomi and Karen independently choose n distinct positive integers, denoted by x1,\u2009x2,\u2009...,\u2009xn and y1,\u2009y2,\u2009...,\u2009yn respectively. They reveal their sequences, and repeat until all of 2n integers become distinct, which is the only final state to be kept and considered.Then they count the number of ordered pairs (i,\u2009j) (1\u2009\u2264\u2009i,\u2009j\u2009\u2264\u2009n) such that the value xi xor yj equals to one of the 2n integers. Here xor means the bitwise exclusive or operation on two integers, and is denoted by operators ^ and/or xor in most programming languages.Karen claims a win if the number of such pairs is even, and Koyomi does otherwise. And you're here to help determine the winner of their latest game.", "input_spec": "The first line of input contains a positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092\u2009000) \u2014 the length of both sequences. The second line contains n space-separated integers x1,\u2009x2,\u2009...,\u2009xn (1\u2009\u2264\u2009xi\u2009\u2264\u20092\u00b7106) \u2014 the integers finally chosen by Koyomi. The third line contains n space-separated integers y1,\u2009y2,\u2009...,\u2009yn (1\u2009\u2264\u2009yi\u2009\u2264\u20092\u00b7106) \u2014 the integers finally chosen by Karen. Input guarantees that the given 2n integers are pairwise distinct, that is, no pair (i,\u2009j) (1\u2009\u2264\u2009i,\u2009j\u2009\u2264\u2009n) exists such that one of the following holds: xi\u2009=\u2009yj; i\u2009\u2260\u2009j and xi\u2009=\u2009xj; i\u2009\u2260\u2009j and yi\u2009=\u2009yj.", "output_spec": "Output one line \u2014 the name of the winner, that is, \"Koyomi\" or \"Karen\" (without quotes). Please be aware of the capitalization.", "sample_inputs": ["3\n1 2 3\n4 5 6", "5\n2 4 6 8 10\n9 7 5 3 1"], "sample_outputs": ["Karen", "Karen"], "notes": "NoteIn the first example, there are 6 pairs satisfying the constraint: (1,\u20091), (1,\u20092), (2,\u20091), (2,\u20093), (3,\u20092) and (3,\u20093). Thus, Karen wins since 6 is an even number.In the second example, there are 16 such pairs, and Karen wins again."}, "src_uid": "1649d2592eadaa8f8d076eae2866cffc"} {"nl": {"description": "JATC and his friend Giraffe are currently in their room, solving some problems. Giraffe has written on the board an array $$$a_1$$$, $$$a_2$$$, ..., $$$a_n$$$ of integers, such that $$$1 \\le a_1 < a_2 < \\ldots < a_n \\le 10^3$$$, and then went to the bathroom.JATC decided to prank his friend by erasing some consecutive elements in the array. Since he doesn't want for the prank to go too far, he will only erase in a way, such that Giraffe can still restore the array using the information from the remaining elements. Because Giraffe has created the array, he's also aware that it's an increasing array and all the elements are integers in the range $$$[1, 10^3]$$$.JATC wonders what is the greatest number of elements he can erase?", "input_spec": "The first line of the input contains a single integer $$$n$$$ ($$$1 \\le n \\le 100$$$)\u00a0\u2014 the number of elements in the array. The second line of the input contains $$$n$$$ integers $$$a_i$$$ ($$$1 \\le a_1<a_2<\\dots<a_n \\le 10^3$$$)\u00a0\u2014 the array written by Giraffe.", "output_spec": "Print a single integer\u00a0\u2014 the maximum number of consecutive elements in the array that JATC can erase. If it is impossible to erase even a single element, print $$$0$$$.", "sample_inputs": ["6\n1 3 4 5 6 9", "3\n998 999 1000", "5\n1 2 3 4 5"], "sample_outputs": ["2", "2", "4"], "notes": "NoteIn the first example, JATC can erase the third and fourth elements, leaving the array $$$[1, 3, \\_, \\_, 6, 9]$$$. As you can see, there is only one way to fill in the blanks.In the second example, JATC can erase the second and the third elements. The array will become $$$[998, \\_, \\_]$$$. Because all the elements are less than or equal to $$$1000$$$, the array is still can be restored. Note, that he can't erase the first $$$2$$$ elements.In the third example, JATC can erase the first $$$4$$$ elements. Since all the elements are greater than or equal to $$$1$$$, Giraffe can still restore the array. Note, that he can't erase the last $$$4$$$ elements."}, "src_uid": "858b5e75e21c4cba6d08f3f66be0c198"} {"nl": {"description": "Greg is a beginner bodybuilder. Today the gym coach gave him the training plan. All it had was n integers a1,\u2009a2,\u2009...,\u2009an. These numbers mean that Greg needs to do exactly n exercises today. Besides, Greg should repeat the i-th in order exercise ai times.Greg now only does three types of exercises: \"chest\" exercises, \"biceps\" exercises and \"back\" exercises. Besides, his training is cyclic, that is, the first exercise he does is a \"chest\" one, the second one is \"biceps\", the third one is \"back\", the fourth one is \"chest\", the fifth one is \"biceps\", and so on to the n-th exercise.Now Greg wonders, which muscle will get the most exercise during his training. We know that the exercise Greg repeats the maximum number of times, trains the corresponding muscle the most. Help Greg, determine which muscle will get the most training.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u200920). The second line contains n integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u200925) \u2014 the number of times Greg repeats the exercises.", "output_spec": "Print word \"chest\" (without the quotes), if the chest gets the most exercise, \"biceps\" (without the quotes), if the biceps gets the most exercise and print \"back\" (without the quotes) if the back gets the most exercise. It is guaranteed that the input is such that the answer to the problem is unambiguous.", "sample_inputs": ["2\n2 8", "3\n5 1 10", "7\n3 3 2 7 9 6 8"], "sample_outputs": ["biceps", "back", "chest"], "notes": "NoteIn the first sample Greg does 2 chest, 8 biceps and zero back exercises, so the biceps gets the most exercises.In the second sample Greg does 5 chest, 1 biceps and 10 back exercises, so the back gets the most exercises.In the third sample Greg does 18 chest, 12 biceps and 8 back exercises, so the chest gets the most exercise."}, "src_uid": "579021de624c072f5e0393aae762117e"} {"nl": {"description": "Array of integers is unimodal, if: it is strictly increasing in the beginning; after that it is constant; after that it is strictly decreasing. The first block (increasing) and the last block (decreasing) may be absent. It is allowed that both of this blocks are absent.For example, the following three arrays are unimodal: [5,\u20097,\u200911,\u200911,\u20092,\u20091], [4,\u20094,\u20092], [7], but the following three are not unimodal: [5,\u20095,\u20096,\u20096,\u20091], [1,\u20092,\u20091,\u20092], [4,\u20095,\u20095,\u20096].Write a program that checks if an array is unimodal.", "input_spec": "The first line contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of elements in the array. The second line contains n integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u20091\u2009000) \u2014 the elements of the array.", "output_spec": "Print \"YES\" if the given array is unimodal. Otherwise, print \"NO\". You can output each letter in any case (upper or lower).", "sample_inputs": ["6\n1 5 5 5 4 2", "5\n10 20 30 20 10", "4\n1 2 1 2", "7\n3 3 3 3 3 3 3"], "sample_outputs": ["YES", "YES", "NO", "YES"], "notes": "NoteIn the first example the array is unimodal, because it is strictly increasing in the beginning (from position 1 to position 2, inclusively), that it is constant (from position 2 to position 4, inclusively) and then it is strictly decreasing (from position 4 to position 6, inclusively)."}, "src_uid": "5482ed8ad02ac32d28c3888299bf3658"} {"nl": {"description": "Small, but very brave, mouse Brain was not accepted to summer school of young villains. He was upset and decided to postpone his plans of taking over the world, but to become a photographer instead.As you may know, the coolest photos are on the film (because you can specify the hashtag #film for such).Brain took a lot of colourful pictures on colored and black-and-white film. Then he developed and translated it into a digital form. But now, color and black-and-white photos are in one folder, and to sort them, one needs to spend more than one hour!As soon as Brain is a photographer not programmer now, he asks you to help him determine for a single photo whether it is colored or black-and-white.Photo can be represented as a matrix sized n\u2009\u00d7\u2009m, and each element of the matrix stores a symbol indicating corresponding pixel color. There are only 6 colors: 'C' (cyan) 'M' (magenta) 'Y' (yellow) 'W' (white) 'G' (grey) 'B' (black) The photo is considered black-and-white if it has only white, black and grey pixels in it. If there are any of cyan, magenta or yellow pixels in the photo then it is considered colored.", "input_spec": "The first line of the input contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100)\u00a0\u2014 the number of photo pixel matrix rows and columns respectively. Then n lines describing matrix rows follow. Each of them contains m space-separated characters describing colors of pixels in a row. Each character in the line is one of the 'C', 'M', 'Y', 'W', 'G' or 'B'.", "output_spec": "Print the \"#Black&White\" (without quotes), if the photo is black-and-white and \"#Color\" (without quotes), if it is colored, in the only line.", "sample_inputs": ["2 2\nC M\nY Y", "3 2\nW W\nW W\nB B", "1 1\nW"], "sample_outputs": ["#Color", "#Black&White", "#Black&White"], "notes": null}, "src_uid": "19c311c02380f9a73cd477e4fde27454"} {"nl": {"description": "You have a positive integer m and a non-negative integer s. Your task is to find the smallest and the largest of the numbers that have length m and sum of digits s. The required numbers should be non-negative integers written in the decimal base without leading zeroes.", "input_spec": "The single line of the input contains a pair of integers m, s (1\u2009\u2264\u2009m\u2009\u2264\u2009100,\u20090\u2009\u2264\u2009s\u2009\u2264\u2009900) \u2014 the length and the sum of the digits of the required numbers.", "output_spec": "In the output print the pair of the required non-negative integer numbers \u2014 first the minimum possible number, then \u2014 the maximum possible number. If no numbers satisfying conditions required exist, print the pair of numbers \"-1 -1\" (without the quotes).", "sample_inputs": ["2 15", "3 0"], "sample_outputs": ["69 96", "-1 -1"], "notes": null}, "src_uid": "75d062cece5a2402920d6706c655cad7"} {"nl": {"description": "You are given three integers $$$a$$$, $$$b$$$ and $$$x$$$. Your task is to construct a binary string $$$s$$$ of length $$$n = a + b$$$ such that there are exactly $$$a$$$ zeroes, exactly $$$b$$$ ones and exactly $$$x$$$ indices $$$i$$$ (where $$$1 \\le i < n$$$) such that $$$s_i \\ne s_{i + 1}$$$. It is guaranteed that the answer always exists.For example, for the string \"01010\" there are four indices $$$i$$$ such that $$$1 \\le i < n$$$ and $$$s_i \\ne s_{i + 1}$$$ ($$$i = 1, 2, 3, 4$$$). For the string \"111001\" there are two such indices $$$i$$$ ($$$i = 3, 5$$$).Recall that binary string is a non-empty sequence of characters where each character is either 0 or 1.", "input_spec": "The first line of the input contains three integers $$$a$$$, $$$b$$$ and $$$x$$$ ($$$1 \\le a, b \\le 100, 1 \\le x < a + b)$$$.", "output_spec": "Print only one string $$$s$$$, where $$$s$$$ is any binary string satisfying conditions described above. It is guaranteed that the answer always exists.", "sample_inputs": ["2 2 1", "3 3 3", "5 3 6"], "sample_outputs": ["1100", "101100", "01010100"], "notes": "NoteAll possible answers for the first example: 1100; 0011. All possible answers for the second example: 110100; 101100; 110010; 100110; 011001; 001101; 010011; 001011. "}, "src_uid": "ef4123b8f3f3b511fde8b79ea9a6b20c"} {"nl": {"description": "A new airplane SuperPuperJet has an infinite number of rows, numbered with positive integers starting with 1 from cockpit to tail. There are six seats in each row, denoted with letters from 'a' to 'f'. Seats 'a', 'b' and 'c' are located to the left of an aisle (if one looks in the direction of the cockpit), while seats 'd', 'e' and 'f' are located to the right. Seats 'a' and 'f' are located near the windows, while seats 'c' and 'd' are located near the aisle. \u00a0It's lunch time and two flight attendants have just started to serve food. They move from the first rows to the tail, always maintaining a distance of two rows from each other because of the food trolley. Thus, at the beginning the first attendant serves row 1 while the second attendant serves row 3. When both rows are done they move one row forward: the first attendant serves row 2 while the second attendant serves row 4. Then they move three rows forward and the first attendant serves row 5 while the second attendant serves row 7. Then they move one row forward again and so on.Flight attendants work with the same speed: it takes exactly 1 second to serve one passenger and 1 second to move one row forward. Each attendant first serves the passengers on the seats to the right of the aisle and then serves passengers on the seats to the left of the aisle (if one looks in the direction of the cockpit). Moreover, they always serve passengers in order from the window to the aisle. Thus, the first passenger to receive food in each row is located in seat 'f', and the last one\u00a0\u2014 in seat 'c'. Assume that all seats are occupied.Vasya has seat s in row n and wants to know how many seconds will pass before he gets his lunch.", "input_spec": "The only line of input contains a description of Vasya's seat in the format ns, where n (1\u2009\u2264\u2009n\u2009\u2264\u20091018) is the index of the row and s is the seat in this row, denoted as letter from 'a' to 'f'. The index of the row and the seat are not separated by a space.", "output_spec": "Print one integer\u00a0\u2014 the number of seconds Vasya has to wait until he gets his lunch.", "sample_inputs": ["1f", "2d", "4a", "5e"], "sample_outputs": ["1", "10", "11", "18"], "notes": "NoteIn the first sample, the first flight attendant serves Vasya first, so Vasya gets his lunch after 1 second.In the second sample, the flight attendants will spend 6 seconds to serve everyone in the rows 1 and 3, then they will move one row forward in 1 second. As they first serve seats located to the right of the aisle in order from window to aisle, Vasya has to wait 3 more seconds. The total is 6\u2009+\u20091\u2009+\u20093\u2009=\u200910."}, "src_uid": "069d0cb9b7c798a81007fb5b63fa0f45"} {"nl": {"description": "Nothing has changed since the last round. Dima and Inna still love each other and want to be together. They've made a deal with Seryozha and now they need to make a deal with the dorm guards...There are four guardposts in Dima's dorm. Each post contains two guards (in Russia they are usually elderly women). You can bribe a guard by a chocolate bar or a box of juice. For each guard you know the minimum price of the chocolate bar she can accept as a gift and the minimum price of the box of juice she can accept as a gift. If a chocolate bar for some guard costs less than the minimum chocolate bar price for this guard is, or if a box of juice for some guard costs less than the minimum box of juice price for this guard is, then the guard doesn't accept such a gift.In order to pass through a guardpost, one needs to bribe both guards.The shop has an unlimited amount of juice and chocolate of any price starting with 1. Dima wants to choose some guardpost, buy one gift for each guard from the guardpost and spend exactly n rubles on it.Help him choose a post through which he can safely sneak Inna or otherwise say that this is impossible. Mind you, Inna would be very sorry to hear that!", "input_spec": "The first line of the input contains integer n\u00a0(1\u2009\u2264\u2009n\u2009\u2264\u2009105) \u2014 the money Dima wants to spend. Then follow four lines describing the guardposts. Each line contains four integers a,\u2009b,\u2009c,\u2009d\u00a0(1\u2009\u2264\u2009a,\u2009b,\u2009c,\u2009d\u2009\u2264\u2009105) \u2014 the minimum price of the chocolate and the minimum price of the juice for the first guard and the minimum price of the chocolate and the minimum price of the juice for the second guard, correspondingly.", "output_spec": "In a single line of the output print three space-separated integers: the number of the guardpost, the cost of the first present and the cost of the second present. If there is no guardpost Dima can sneak Inna through at such conditions, print -1 in a single line. The guardposts are numbered from 1 to 4 according to the order given in the input. If there are multiple solutions, you can print any of them.", "sample_inputs": ["10\n5 6 5 6\n6 6 7 7\n5 8 6 6\n9 9 9 9", "10\n6 6 6 6\n7 7 7 7\n4 4 4 4\n8 8 8 8", "5\n3 3 3 3\n3 3 3 3\n3 3 3 3\n3 3 3 3"], "sample_outputs": ["1 5 5", "3 4 6", "-1"], "notes": "NoteExplanation of the first example.The only way to spend 10 rubles to buy the gifts that won't be less than the minimum prices is to buy two 5 ruble chocolates to both guards from the first guardpost.Explanation of the second example.Dima needs 12 rubles for the first guardpost, 14 for the second one, 16 for the fourth one. So the only guardpost we can sneak through is the third one. So, Dima can buy 4 ruble chocolate for the first guard and 6 ruble juice of the second guard."}, "src_uid": "6e7ee0da980beb99ca49a5ddd04089a5"} {"nl": {"description": "The only difference between easy and hard versions is constraints.The BerTV channel every day broadcasts one episode of one of the $$$k$$$ TV shows. You know the schedule for the next $$$n$$$ days: a sequence of integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le k$$$), where $$$a_i$$$ is the show, the episode of which will be shown in $$$i$$$-th day.The subscription to the show is bought for the entire show (i.e. for all its episodes), for each show the subscription is bought separately.How many minimum subscriptions do you need to buy in order to have the opportunity to watch episodes of purchased shows $$$d$$$ ($$$1 \\le d \\le n$$$) days in a row? In other words, you want to buy the minimum number of TV shows so that there is some segment of $$$d$$$ consecutive days in which all episodes belong to the purchased shows.", "input_spec": "The first line contains an integer $$$t$$$ ($$$1 \\le t \\le 100$$$) \u2014 the number of test cases in the input. Then $$$t$$$ test case descriptions follow. The first line of each test case contains three integers $$$n, k$$$ and $$$d$$$ ($$$1 \\le n \\le 100$$$, $$$1 \\le k \\le 100$$$, $$$1 \\le d \\le n$$$). The second line contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le k$$$), where $$$a_i$$$ is the show that is broadcasted on the $$$i$$$-th day. It is guaranteed that the sum of the values \u200b\u200bof $$$n$$$ for all test cases in the input does not exceed $$$100$$$.", "output_spec": "Print $$$t$$$ integers \u2014 the answers to the test cases in the input in the order they follow. The answer to a test case is the minimum number of TV shows for which you need to purchase a subscription so that you can watch episodes of the purchased TV shows on BerTV for $$$d$$$ consecutive days. Please note that it is permissible that you will be able to watch more than $$$d$$$ days in a row.", "sample_inputs": ["4\n5 2 2\n1 2 1 2 1\n9 3 3\n3 3 3 2 2 2 1 1 1\n4 10 4\n10 8 6 4\n16 9 8\n3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3"], "sample_outputs": ["2\n1\n4\n5"], "notes": "NoteIn the first test case to have an opportunity to watch shows for two consecutive days, you need to buy a subscription on show $$$1$$$ and on show $$$2$$$. So the answer is two.In the second test case, you can buy a subscription to any show because for each show you can find a segment of three consecutive days, consisting only of episodes of this show.In the third test case in the unique segment of four days, you have four different shows, so you need to buy a subscription to all these four shows.In the fourth test case, you can buy subscriptions to shows $$$3,5,7,8,9$$$, and you will be able to watch shows for the last eight days."}, "src_uid": "56da4ec7cd849c4330d188d8c9bd6094"} {"nl": {"description": "Vitaly is a diligent student who never missed a lesson in his five years of studying in the university. He always does his homework on time and passes his exams in time. During the last lesson the teacher has provided two strings s and t to Vitaly. The strings have the same length, they consist of lowercase English letters, string s is lexicographically smaller than string t. Vitaly wondered if there is such string that is lexicographically larger than string s and at the same is lexicographically smaller than string t. This string should also consist of lowercase English letters and have the length equal to the lengths of strings s and t. Let's help Vitaly solve this easy problem!", "input_spec": "The first line contains string s (1\u2009\u2264\u2009|s|\u2009\u2264\u2009100), consisting of lowercase English letters. Here, |s| denotes the length of the string. The second line contains string t (|t|\u2009=\u2009|s|), consisting of lowercase English letters. It is guaranteed that the lengths of strings s and t are the same and string s is lexicographically less than string t.", "output_spec": "If the string that meets the given requirements doesn't exist, print a single string \"No such string\" (without the quotes). If such string exists, print it. If there are multiple valid strings, you may print any of them.", "sample_inputs": ["a\nc", "aaa\nzzz", "abcdefg\nabcdefh"], "sample_outputs": ["b", "kkk", "No such string"], "notes": "NoteString s\u2009=\u2009s1s2... sn is said to be lexicographically smaller than t\u2009=\u2009t1t2... tn, if there exists such i, that s1\u2009=\u2009t1,\u2009s2\u2009=\u2009t2,\u2009... si\u2009-\u20091\u2009=\u2009ti\u2009-\u20091,\u2009si\u2009<\u2009ti."}, "src_uid": "47618510d2a17b1cc1e6a688201d51a3"} {"nl": {"description": "Vus the Cossack holds a programming competition, in which $$$n$$$ people participate. He decided to award them all with pens and notebooks. It is known that Vus has exactly $$$m$$$ pens and $$$k$$$ notebooks.Determine whether the Cossack can reward all participants, giving each of them at least one pen and at least one notebook.", "input_spec": "The first line contains three integers $$$n$$$, $$$m$$$, and $$$k$$$ ($$$1 \\leq n, m, k \\leq 100$$$)\u00a0\u2014 the number of participants, the number of pens, and the number of notebooks respectively.", "output_spec": "Print \"Yes\" if it possible to reward all the participants. Otherwise, print \"No\". You can print each letter in any case (upper or lower).", "sample_inputs": ["5 8 6", "3 9 3", "8 5 20"], "sample_outputs": ["Yes", "Yes", "No"], "notes": "NoteIn the first example, there are $$$5$$$ participants. The Cossack has $$$8$$$ pens and $$$6$$$ notebooks. Therefore, he has enough pens and notebooks.In the second example, there are $$$3$$$ participants. The Cossack has $$$9$$$ pens and $$$3$$$ notebooks. He has more than enough pens but only the minimum needed number of notebooks.In the third example, there are $$$8$$$ participants but only $$$5$$$ pens. Since the Cossack does not have enough pens, the answer is \"No\"."}, "src_uid": "6cd07298b23cc6ce994bb1811b9629c4"} {"nl": {"description": "A string is called bracket sequence if it does not contain any characters other than \"(\" and \")\". A bracket sequence is called regular if it it is possible to obtain correct arithmetic expression by inserting characters \"+\" and \"1\" into this sequence. For example, \"\", \"(())\" and \"()()\" are regular bracket sequences; \"))\" and \")((\" are bracket sequences (but not regular ones), and \"(a)\" and \"(1)+(1)\" are not bracket sequences at all.You have a number of strings; each string is a bracket sequence of length $$$2$$$. So, overall you have $$$cnt_1$$$ strings \"((\", $$$cnt_2$$$ strings \"()\", $$$cnt_3$$$ strings \")(\" and $$$cnt_4$$$ strings \"))\". You want to write all these strings in some order, one after another; after that, you will get a long bracket sequence of length $$$2(cnt_1 + cnt_2 + cnt_3 + cnt_4)$$$. You wonder: is it possible to choose some order of the strings you have such that you will get a regular bracket sequence? Note that you may not remove any characters or strings, and you may not add anything either.", "input_spec": "The input consists of four lines, $$$i$$$-th of them contains one integer $$$cnt_i$$$ ($$$0 \\le cnt_i \\le 10^9$$$).", "output_spec": "Print one integer: $$$1$$$ if it is possible to form a regular bracket sequence by choosing the correct order of the given strings, $$$0$$$ otherwise.", "sample_inputs": ["3\n1\n4\n3", "0\n0\n0\n0", "1\n2\n3\n4"], "sample_outputs": ["1", "1", "0"], "notes": "NoteIn the first example it is possible to construct a string \"(())()(()((()()()())))\", which is a regular bracket sequence.In the second example it is possible to construct a string \"\", which is a regular bracket sequence."}, "src_uid": "b99578086043537297d374dc01eeb6f8"} {"nl": {"description": "Polycarp takes part in a quadcopter competition. According to the rules a flying robot should: start the race from some point of a field, go around the flag, close cycle returning back to the starting point. Polycarp knows the coordinates of the starting point (x1,\u2009y1) and the coordinates of the point where the flag is situated (x2,\u2009y2). Polycarp\u2019s quadcopter can fly only parallel to the sides of the field each tick changing exactly one coordinate by 1. It means that in one tick the quadcopter can fly from the point (x,\u2009y) to any of four points: (x\u2009-\u20091,\u2009y), (x\u2009+\u20091,\u2009y), (x,\u2009y\u2009-\u20091) or (x,\u2009y\u2009+\u20091).Thus the quadcopter path is a closed cycle starting and finishing in (x1,\u2009y1) and containing the point (x2,\u2009y2) strictly inside. The picture corresponds to the first example: the starting (and finishing) point is in (1,\u20095) and the flag is in (5,\u20092). What is the minimal length of the quadcopter path?", "input_spec": "The first line contains two integer numbers x1 and y1 (\u2009-\u2009100\u2009\u2264\u2009x1,\u2009y1\u2009\u2264\u2009100) \u2014 coordinates of the quadcopter starting (and finishing) point. The second line contains two integer numbers x2 and y2 (\u2009-\u2009100\u2009\u2264\u2009x2,\u2009y2\u2009\u2264\u2009100) \u2014 coordinates of the flag. It is guaranteed that the quadcopter starting point and the flag do not coincide.", "output_spec": "Print the length of minimal path of the quadcopter to surround the flag and return back.", "sample_inputs": ["1 5\n5 2", "0 1\n0 0"], "sample_outputs": ["18", "8"], "notes": null}, "src_uid": "f54ce13fb92e51ebd5e82ffbdd1acbed"} {"nl": {"description": "Student Andrey has been skipping physical education lessons for the whole term, and now he must somehow get a passing grade on this subject. Obviously, it is impossible to do this by legal means, but Andrey doesn't give up. Having obtained an empty certificate from a local hospital, he is going to use his knowledge of local doctor's handwriting to make a counterfeit certificate of illness. However, after writing most of the certificate, Andrey suddenly discovered that doctor's signature is impossible to forge. Or is it?For simplicity, the signature is represented as an $$$n\\times m$$$ grid, where every cell is either filled with ink or empty. Andrey's pen can fill a $$$3\\times3$$$ square without its central cell if it is completely contained inside the grid, as shown below. xxxx.xxxx Determine whether is it possible to forge the signature on an empty $$$n\\times m$$$ grid.", "input_spec": "The first line of input contains two integers $$$n$$$ and $$$m$$$ ($$$3 \\le n, m \\le 1000$$$). Then $$$n$$$ lines follow, each contains $$$m$$$ characters. Each of the characters is either '.', representing an empty cell, or '#', representing an ink filled cell.", "output_spec": "If Andrey can forge the signature, output \"YES\". Otherwise output \"NO\". You can print each letter in any case (upper or lower).", "sample_inputs": ["3 3\n###\n#.#\n###", "3 3\n###\n###\n###", "4 3\n###\n###\n###\n###", "5 7\n.......\n.#####.\n.#.#.#.\n.#####.\n......."], "sample_outputs": ["YES", "NO", "YES", "YES"], "notes": "NoteIn the first sample Andrey can paint the border of the square with the center in $$$(2, 2)$$$.In the second sample the signature is impossible to forge.In the third sample Andrey can paint the borders of the squares with the centers in $$$(2, 2)$$$ and $$$(3, 2)$$$: we have a clear paper: ............ use the pen with center at $$$(2, 2)$$$. ####.####... use the pen with center at $$$(3, 2)$$$. ############ In the fourth sample Andrey can paint the borders of the squares with the centers in $$$(3, 3)$$$ and $$$(3, 5)$$$."}, "src_uid": "49e5eabe8d69b3d27a251cccc001ab25"} {"nl": {"description": "Petya loves football very much. One day, as he was watching a football match, he was writing the players' current positions on a piece of paper. To simplify the situation he depicted it as a string consisting of zeroes and ones. A zero corresponds to players of one team; a one corresponds to players of another team. If there are at least 7 players of some team standing one after another, then the situation is considered dangerous. For example, the situation 00100110111111101 is dangerous and 11110111011101 is not. You are given the current situation. Determine whether it is dangerous or not.", "input_spec": "The first input line contains a non-empty string consisting of characters \"0\" and \"1\", which represents players. The length of the string does not exceed 100 characters. There's at least one player from each team present on the field.", "output_spec": "Print \"YES\" if the situation is dangerous. Otherwise, print \"NO\".", "sample_inputs": ["001001", "1000000001"], "sample_outputs": ["NO", "YES"], "notes": null}, "src_uid": "ed9a763362abc6ed40356731f1036b38"} {"nl": {"description": "Furik loves math lessons very much, so he doesn't attend them, unlike Rubik. But now Furik wants to get a good mark for math. For that Ms. Ivanova, his math teacher, gave him a new task. Furik solved the task immediately. Can you?You are given a system of equations: You should count, how many there are pairs of integers (a,\u2009b) (0\u2009\u2264\u2009a,\u2009b) which satisfy the system.", "input_spec": "A single line contains two integers n,\u2009m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20091000) \u2014 the parameters of the system. The numbers on the line are separated by a space.", "output_spec": "On a single line print the answer to the problem.", "sample_inputs": ["9 3", "14 28", "4 20"], "sample_outputs": ["1", "1", "0"], "notes": "NoteIn the first sample the suitable pair is integers (3,\u20090). In the second sample the suitable pair is integers (3,\u20095). In the third sample there is no suitable pair."}, "src_uid": "03caf4ddf07c1783e42e9f9085cc6efd"} {"nl": {"description": "You may have heard of the pie rule before. It states that if two people wish to fairly share a slice of pie, one person should cut the slice in half, and the other person should choose who gets which slice. Alice and Bob have many slices of pie, and rather than cutting the slices in half, each individual slice will be eaten by just one person.The way Alice and Bob decide who eats each slice is as follows. First, the order in which the pies are to be handed out is decided. There is a special token called the \"decider\" token, initially held by Bob. Until all the pie is handed out, whoever has the decider token will give the next slice of pie to one of the participants, and the decider token to the other participant. They continue until no slices of pie are left.All of the slices are of excellent quality, so each participant obviously wants to maximize the total amount of pie they get to eat. Assuming both players make their decisions optimally, how much pie will each participant receive?", "input_spec": "Input will begin with an integer N (1\u2009\u2264\u2009N\u2009\u2264\u200950), the number of slices of pie. Following this is a line with N integers indicating the sizes of the slices (each between 1 and 100000, inclusive), in the order in which they must be handed out.", "output_spec": "Print two integers. First, the sum of the sizes of slices eaten by Alice, then the sum of the sizes of the slices eaten by Bob, assuming both players make their decisions optimally.", "sample_inputs": ["3\n141 592 653", "5\n10 21 10 21 10"], "sample_outputs": ["653 733", "31 41"], "notes": "NoteIn the first example, Bob takes the size 141 slice for himself and gives the decider token to Alice. Then Alice gives the size 592 slice to Bob and keeps the decider token for herself, so that she can then give the size 653 slice to herself."}, "src_uid": "414540223db9d4cfcec6a973179a0216"} {"nl": {"description": "The king Copa often has been reported about the Codeforces site, which is rapidly getting more and more popular among the brightest minds of the humanity, who are using it for training and competing. Recently Copa understood that to conquer the world he needs to organize the world Codeforces tournament. He hopes that after it the brightest minds will become his subordinates, and the toughest part of conquering the world will be completed.The final round of the Codeforces World Finals 20YY is scheduled for DD.MM.YY, where DD is the day of the round, MM is the month and YY are the last two digits of the year. Bob is lucky to be the first finalist form Berland. But there is one problem: according to the rules of the competition, all participants must be at least 18 years old at the moment of the finals. Bob was born on BD.BM.BY. This date is recorded in his passport, the copy of which he has already mailed to the organizers. But Bob learned that in different countries the way, in which the dates are written, differs. For example, in the US the month is written first, then the day and finally the year. Bob wonders if it is possible to rearrange the numbers in his date of birth so that he will be at least 18 years old on the day DD.MM.YY. He can always tell that in his motherland dates are written differently. Help him.According to another strange rule, eligible participant must be born in the same century as the date of the finals. If the day of the finals is participant's 18-th birthday, he is allowed to participate. As we are considering only the years from 2001 to 2099 for the year of the finals, use the following rule: the year is leap if it's number is divisible by four.", "input_spec": "The first line contains the date DD.MM.YY, the second line contains the date BD.BM.BY. It is guaranteed that both dates are correct, and YY and BY are always in [01;99]. It could be that by passport Bob was born after the finals. In this case, he can still change the order of numbers in date.", "output_spec": "If it is possible to rearrange the numbers in the date of birth so that Bob will be at least 18 years old on the DD.MM.YY, output YES. In the other case, output NO. Each number contains exactly two digits and stands for day, month or year in a date. Note that it is permitted to rearrange only numbers, not digits.", "sample_inputs": ["01.01.98\n01.01.80", "20.10.20\n10.02.30", "28.02.74\n28.02.64"], "sample_outputs": ["YES", "NO", "NO"], "notes": null}, "src_uid": "5418c98fe362909f7b28f95225837d33"} {"nl": {"description": "A mouse encountered a nice big cake and decided to take a walk across it, eating the berries on top of the cake on its way. The cake is rectangular, neatly divided into squares; some of the squares have a berry in them, and some don't.The mouse is in a bit of a hurry, though, so once she enters the cake from its northwest corner (the top left cell in the input data), she will only go east (right) or south (down), until she reaches the southeast corner (the bottom right cell). She will eat every berry in the squares she passes through, but not in the other squares.The mouse tries to choose her path so as to maximize the number of berries consumed. However, her haste and hunger might be clouding her judgement, leading her to suboptimal decisions...", "input_spec": "The first line of input contains two integers $$$H$$$ and $$$W$$$ ($$$1 \\le H, W \\le 5$$$), separated by a space, \u2014 the height and the width of the cake. The next $$$H$$$ lines contain a string of $$$W$$$ characters each, representing the squares of the cake in that row: '.' represents an empty square, and '*' represents a square with a berry.", "output_spec": "Output the number of berries the mouse will eat following her strategy.", "sample_inputs": ["4 3\n*..\n.*.\n..*\n...", "4 4\n.*..\n*...\n...*\n..*.", "3 4\n..**\n*...\n....", "5 5\n..*..\n.....\n**...\n**...\n**..."], "sample_outputs": ["3", "2", "1", "1"], "notes": null}, "src_uid": "f985d7a6e7650a9b855a4cef26fd9b0d"} {"nl": {"description": "You have two integers $$$l$$$ and $$$r$$$. Find an integer $$$x$$$ which satisfies the conditions below: $$$l \\le x \\le r$$$. All digits of $$$x$$$ are different. If there are multiple answers, print any of them.", "input_spec": "The first line contains two integers $$$l$$$ and $$$r$$$ ($$$1 \\le l \\le r \\le 10^{5}$$$).", "output_spec": "If an answer exists, print any of them. Otherwise, print $$$-1$$$.", "sample_inputs": ["121 130", "98766 100000"], "sample_outputs": ["123", "-1"], "notes": "NoteIn the first example, $$$123$$$ is one of the possible answers. However, $$$121$$$ can't be the answer, because there are multiple $$$1$$$s on different digits.In the second example, there is no valid answer."}, "src_uid": "3041b1240e59341ad9ec9ac823e57dd7"} {"nl": {"description": "One day a highly important task was commissioned to Vasya \u2014 writing a program in a night. The program consists of n lines of code. Vasya is already exhausted, so he works like that: first he writes v lines of code, drinks a cup of tea, then he writes as much as lines, drinks another cup of tea, then he writes lines and so on: , , , ...The expression is regarded as the integral part from dividing number a by number b.The moment the current value equals 0, Vasya immediately falls asleep and he wakes up only in the morning, when the program should already be finished.Vasya is wondering, what minimum allowable value v can take to let him write not less than n lines of code before he falls asleep.", "input_spec": "The input consists of two integers n and k, separated by spaces \u2014 the size of the program in lines and the productivity reduction coefficient, 1\u2009\u2264\u2009n\u2009\u2264\u2009109, 2\u2009\u2264\u2009k\u2009\u2264\u200910.", "output_spec": "Print the only integer \u2014 the minimum value of v that lets Vasya write the program in one night.", "sample_inputs": ["7 2", "59 9"], "sample_outputs": ["4", "54"], "notes": "NoteIn the first sample the answer is v\u2009=\u20094. Vasya writes the code in the following portions: first 4 lines, then 2, then 1, and then Vasya falls asleep. Thus, he manages to write 4\u2009+\u20092\u2009+\u20091\u2009=\u20097 lines in a night and complete the task.In the second sample the answer is v\u2009=\u200954. Vasya writes the code in the following portions: 54, 6. The total sum is 54\u2009+\u20096\u2009=\u200960, that's even more than n\u2009=\u200959."}, "src_uid": "41dfc86d341082dd96e089ac5433dc04"} {"nl": {"description": "THE SxPLAY & KIV\u039b - \u6f02\u6d41 KIV\u039b & Nikki Simmons - PerspectivesWith a new body, our idol Aroma White (or should we call her Kaori Minamiya?) begins to uncover her lost past through the OS space.The space can be considered a 2D plane, with an infinite number of data nodes, indexed from $$$0$$$, with their coordinates defined as follows: The coordinates of the $$$0$$$-th node is $$$(x_0, y_0)$$$ For $$$i > 0$$$, the coordinates of $$$i$$$-th node is $$$(a_x \\cdot x_{i-1} + b_x, a_y \\cdot y_{i-1} + b_y)$$$ Initially Aroma stands at the point $$$(x_s, y_s)$$$. She can stay in OS space for at most $$$t$$$ seconds, because after this time she has to warp back to the real world. She doesn't need to return to the entry point $$$(x_s, y_s)$$$ to warp home.While within the OS space, Aroma can do the following actions: From the point $$$(x, y)$$$, Aroma can move to one of the following points: $$$(x-1, y)$$$, $$$(x+1, y)$$$, $$$(x, y-1)$$$ or $$$(x, y+1)$$$. This action requires $$$1$$$ second. If there is a data node at where Aroma is staying, she can collect it. We can assume this action costs $$$0$$$ seconds. Of course, each data node can be collected at most once. Aroma wants to collect as many data as possible before warping back. Can you help her in calculating the maximum number of data nodes she could collect within $$$t$$$ seconds?", "input_spec": "The first line contains integers $$$x_0$$$, $$$y_0$$$, $$$a_x$$$, $$$a_y$$$, $$$b_x$$$, $$$b_y$$$ ($$$1 \\leq x_0, y_0 \\leq 10^{16}$$$, $$$2 \\leq a_x, a_y \\leq 100$$$, $$$0 \\leq b_x, b_y \\leq 10^{16}$$$), which define the coordinates of the data nodes. The second line contains integers $$$x_s$$$, $$$y_s$$$, $$$t$$$ ($$$1 \\leq x_s, y_s, t \\leq 10^{16}$$$)\u00a0\u2013 the initial Aroma's coordinates and the amount of time available.", "output_spec": "Print a single integer\u00a0\u2014 the maximum number of data nodes Aroma can collect within $$$t$$$ seconds.", "sample_inputs": ["1 1 2 3 1 0\n2 4 20", "1 1 2 3 1 0\n15 27 26", "1 1 2 3 1 0\n2 2 1"], "sample_outputs": ["3", "2", "0"], "notes": "NoteIn all three examples, the coordinates of the first $$$5$$$ data nodes are $$$(1, 1)$$$, $$$(3, 3)$$$, $$$(7, 9)$$$, $$$(15, 27)$$$ and $$$(31, 81)$$$ (remember that nodes are numbered from $$$0$$$).In the first example, the optimal route to collect $$$3$$$ nodes is as follows: Go to the coordinates $$$(3, 3)$$$ and collect the $$$1$$$-st node. This takes $$$|3 - 2| + |3 - 4| = 2$$$ seconds. Go to the coordinates $$$(1, 1)$$$ and collect the $$$0$$$-th node. This takes $$$|1 - 3| + |1 - 3| = 4$$$ seconds. Go to the coordinates $$$(7, 9)$$$ and collect the $$$2$$$-nd node. This takes $$$|7 - 1| + |9 - 1| = 14$$$ seconds. In the second example, the optimal route to collect $$$2$$$ nodes is as follows: Collect the $$$3$$$-rd node. This requires no seconds. Go to the coordinates $$$(7, 9)$$$ and collect the $$$2$$$-th node. This takes $$$|15 - 7| + |27 - 9| = 26$$$ seconds. In the third example, Aroma can't collect any nodes. She should have taken proper rest instead of rushing into the OS space like that."}, "src_uid": "d8a7ae2959b3781a8a4566a2f75a4e28"} {"nl": {"description": "Every year, hundreds of people come to summer camps, they learn new algorithms and solve hard problems.This is your first year at summer camp, and you are asked to solve the following problem. All integers starting with 1 are written in one line. The prefix of these line is \"123456789101112131415...\". Your task is to print the n-th digit of this string (digits are numbered starting with 1.", "input_spec": "The only line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091000)\u00a0\u2014 the position of the digit you need to print.", "output_spec": "Print the n-th digit of the line.", "sample_inputs": ["3", "11"], "sample_outputs": ["3", "0"], "notes": "NoteIn the first sample the digit at position 3 is '3', as both integers 1 and 2 consist on one digit.In the second sample, the digit at position 11 is '0', it belongs to the integer 10."}, "src_uid": "2d46e34839261eda822f0c23c6e19121"} {"nl": {"description": "Gerald bought two very rare paintings at the Sotheby's auction and he now wants to hang them on the wall. For that he bought a special board to attach it to the wall and place the paintings on the board. The board has shape of an a1\u2009\u00d7\u2009b1 rectangle, the paintings have shape of a a2\u2009\u00d7\u2009b2 and a3\u2009\u00d7\u2009b3 rectangles.Since the paintings are painted in the style of abstract art, it does not matter exactly how they will be rotated, but still, one side of both the board, and each of the paintings must be parallel to the floor. The paintings can touch each other and the edges of the board, but can not overlap or go beyond the edge of the board. Gerald asks whether it is possible to place the paintings on the board, or is the board he bought not large enough?", "input_spec": "The first line contains two space-separated numbers a1 and b1 \u2014 the sides of the board. Next two lines contain numbers a2,\u2009b2,\u2009a3 and b3 \u2014 the sides of the paintings. All numbers ai,\u2009bi in the input are integers and fit into the range from 1 to 1000.", "output_spec": "If the paintings can be placed on the wall, print \"YES\" (without the quotes), and if they cannot, print \"NO\" (without the quotes).", "sample_inputs": ["3 2\n1 3\n2 1", "5 5\n3 3\n3 3", "4 2\n2 3\n1 2"], "sample_outputs": ["YES", "NO", "YES"], "notes": "NoteThat's how we can place the pictures in the first test:And that's how we can do it in the third one."}, "src_uid": "2ff30d9c4288390fd7b5b37715638ad9"} {"nl": {"description": "Bizon the Champion isn't just a bison. He also is a favorite of the \"Bizons\" team.At a competition the \"Bizons\" got the following problem: \"You are given two distinct words (strings of English letters), s and t. You need to transform word s into word t\". The task looked simple to the guys because they know the suffix data structures well. Bizon Senior loves suffix automaton. By applying it once to a string, he can remove from this string any single character. Bizon Middle knows suffix array well. By applying it once to a string, he can swap any two characters of this string. The guys do not know anything about the suffix tree, but it can help them do much more. Bizon the Champion wonders whether the \"Bizons\" can solve the problem. Perhaps, the solution do not require both data structures. Find out whether the guys can solve the problem and if they can, how do they do it? Can they solve it either only with use of suffix automaton or only with use of suffix array or they need both structures? Note that any structure may be used an unlimited number of times, the structures may be used in any order.", "input_spec": "The first line contains a non-empty word s. The second line contains a non-empty word t. Words s and t are different. Each word consists only of lowercase English letters. Each word contains at most 100 letters.", "output_spec": "In the single line print the answer to the problem. Print \"need tree\" (without the quotes) if word s cannot be transformed into word t even with use of both suffix array and suffix automaton. Print \"automaton\" (without the quotes) if you need only the suffix automaton to solve the problem. Print \"array\" (without the quotes) if you need only the suffix array to solve the problem. Print \"both\" (without the quotes), if you need both data structures to solve the problem. It's guaranteed that if you can solve the problem only with use of suffix array, then it is impossible to solve it only with use of suffix automaton. This is also true for suffix automaton.", "sample_inputs": ["automaton\ntomat", "array\narary", "both\nhot", "need\ntree"], "sample_outputs": ["automaton", "array", "both", "need tree"], "notes": "NoteIn the third sample you can act like that: first transform \"both\" into \"oth\" by removing the first character using the suffix automaton and then make two swaps of the string using the suffix array and get \"hot\"."}, "src_uid": "edb9d51e009a59a340d7d589bb335c14"} {"nl": {"description": "Recently Anton found a box with digits in his room. There are k2 digits 2, k3 digits 3, k5 digits 5 and k6 digits 6.Anton's favorite integers are 32 and 256. He decided to compose this integers from digits he has. He wants to make the sum of these integers as large as possible. Help him solve this task!Each digit can be used no more than once, i.e. the composed integers should contain no more than k2 digits 2, k3 digits 3 and so on. Of course, unused digits are not counted in the sum.", "input_spec": "The only line of the input contains four integers k2, k3, k5 and k6\u00a0\u2014 the number of digits 2, 3, 5 and 6 respectively (0\u2009\u2264\u2009k2,\u2009k3,\u2009k5,\u2009k6\u2009\u2264\u20095\u00b7106).", "output_spec": "Print one integer\u00a0\u2014 maximum possible sum of Anton's favorite integers that can be composed using digits from the box.", "sample_inputs": ["5 1 3 4", "1 1 1 1"], "sample_outputs": ["800", "256"], "notes": "NoteIn the first sample, there are five digits 2, one digit 3, three digits 5 and four digits 6. Anton can compose three integers 256 and one integer 32 to achieve the value 256\u2009+\u2009256\u2009+\u2009256\u2009+\u200932\u2009=\u2009800. Note, that there is one unused integer 2 and one unused integer 6. They are not counted in the answer.In the second sample, the optimal answer is to create on integer 256, thus the answer is 256."}, "src_uid": "082b31cc156a7ba1e0a982f07ecc207e"} {"nl": {"description": "One day Igor K. stopped programming and took up math. One late autumn evening he was sitting at a table reading a book and thinking about something. The following statement caught his attention: \"Among any six people there are either three pairwise acquainted people or three pairwise unacquainted people\"Igor just couldn't get why the required minimum is 6 people. \"Well, that's the same for five people, too!\" \u2014 he kept on repeating in his mind. \u2014 \"Let's take, say, Max, Ilya, Vova \u2014 here, they all know each other! And now let's add Dima and Oleg to Vova \u2014 none of them is acquainted with each other! Now, that math is just rubbish!\"Igor K. took 5 friends of his and wrote down who of them is friends with whom. Now he wants to check whether it is true for the five people that among them there are either three pairwise acquainted or three pairwise not acquainted people.", "input_spec": "The first line contains an integer m (0\u2009\u2264\u2009m\u2009\u2264\u200910), which is the number of relations of acquaintances among the five friends of Igor's. Each of the following m lines contains two integers ai and bi (1\u2009\u2264\u2009ai,\u2009bi\u2009\u2264\u20095;ai\u2009\u2260\u2009bi), where (ai,\u2009bi) is a pair of acquainted people. It is guaranteed that each pair of the acquaintances is described exactly once. The acquaintance relation is symmetrical, i.e. if x is acquainted with y, then y is also acquainted with x.", "output_spec": "Print \"FAIL\", if among those five people there are no either three pairwise acquainted or three pairwise unacquainted people. Otherwise print \"WIN\".", "sample_inputs": ["4\n1 3\n2 3\n1 4\n5 3", "5\n1 2\n2 3\n3 4\n4 5\n5 1"], "sample_outputs": ["WIN", "FAIL"], "notes": null}, "src_uid": "2bc18799c85ecaba87564a86a94e0322"} {"nl": {"description": "HQ9+ is a joke programming language which has only four one-character instructions: \"H\" prints \"Hello, World!\", \"Q\" prints the source code of the program itself, \"9\" prints the lyrics of \"99 Bottles of Beer\" song, \"+\" increments the value stored in the internal accumulator.Instructions \"H\" and \"Q\" are case-sensitive and must be uppercase. The characters of the program which are not instructions are ignored.You are given a program written in HQ9+. You have to figure out whether executing this program will produce any output.", "input_spec": "The input will consist of a single line p which will give a program in HQ9+. String p will contain between 1 and 100 characters, inclusive. ASCII-code of each character of p will be between 33 (exclamation mark) and 126 (tilde), inclusive.", "output_spec": "Output \"YES\", if executing the program will produce any output, and \"NO\" otherwise.", "sample_inputs": ["Hi!", "Codeforces"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first case the program contains only one instruction \u2014 \"H\", which prints \"Hello, World!\".In the second case none of the program characters are language instructions."}, "src_uid": "1baf894c1c7d5aeea01129c7900d3c12"} {"nl": {"description": "Pasha has many hamsters and he makes them work out. Today, n hamsters (n is even) came to work out. The hamsters lined up and each hamster either sat down or stood up.For another exercise, Pasha needs exactly hamsters to stand up and the other hamsters to sit down. In one minute, Pasha can make some hamster ether sit down or stand up. How many minutes will he need to get what he wants if he acts optimally well?", "input_spec": "The first line contains integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009200; n is even). The next line contains n characters without spaces. These characters describe the hamsters' position: the i-th character equals 'X', if the i-th hamster in the row is standing, and 'x', if he is sitting.", "output_spec": "In the first line, print a single integer \u2014 the minimum required number of minutes. In the second line, print a string that describes the hamsters' position after Pasha makes the required changes. If there are multiple optimal positions, print any of them.", "sample_inputs": ["4\nxxXx", "2\nXX", "6\nxXXxXx"], "sample_outputs": ["1\nXxXx", "1\nxX", "0\nxXXxXx"], "notes": null}, "src_uid": "fa6311c72d90d8363d97854b903f849d"} {"nl": {"description": "Misha and Vasya participated in a Codeforces contest. Unfortunately, each of them solved only one problem, though successfully submitted it at the first attempt. Misha solved the problem that costs a points and Vasya solved the problem that costs b points. Besides, Misha submitted the problem c minutes after the contest started and Vasya submitted the problem d minutes after the contest started. As you know, on Codeforces the cost of a problem reduces as a round continues. That is, if you submit a problem that costs p points t minutes after the contest started, you get points. Misha and Vasya are having an argument trying to find out who got more points. Help them to find out the truth.", "input_spec": "The first line contains four integers a, b, c, d (250\u2009\u2264\u2009a,\u2009b\u2009\u2264\u20093500, 0\u2009\u2264\u2009c,\u2009d\u2009\u2264\u2009180). It is guaranteed that numbers a and b are divisible by 250 (just like on any real Codeforces round).", "output_spec": "Output on a single line: \"Misha\" (without the quotes), if Misha got more points than Vasya. \"Vasya\" (without the quotes), if Vasya got more points than Misha. \"Tie\" (without the quotes), if both of them got the same number of points.", "sample_inputs": ["500 1000 20 30", "1000 1000 1 1", "1500 1000 176 177"], "sample_outputs": ["Vasya", "Tie", "Misha"], "notes": null}, "src_uid": "95b19d7569d6b70bd97d46a8541060d0"} {"nl": {"description": "The football season has just ended in Berland. According to the rules of Berland football, each match is played between two teams. The result of each match is either a draw, or a victory of one of the playing teams. If a team wins the match, it gets $$$w$$$ points, and the opposing team gets $$$0$$$ points. If the game results in a draw, both teams get $$$d$$$ points.The manager of the Berland capital team wants to summarize the results of the season, but, unfortunately, all information about the results of each match is lost. The manager only knows that the team has played $$$n$$$ games and got $$$p$$$ points for them.You have to determine three integers $$$x$$$, $$$y$$$ and $$$z$$$ \u2014 the number of wins, draws and loses of the team. If there are multiple answers, print any of them. If there is no suitable triple $$$(x, y, z)$$$, report about it.", "input_spec": "The first line contains four integers $$$n$$$, $$$p$$$, $$$w$$$ and $$$d$$$ $$$(1 \\le n \\le 10^{12}, 0 \\le p \\le 10^{17}, 1 \\le d < w \\le 10^{5})$$$ \u2014 the number of games, the number of points the team got, the number of points awarded for winning a match, and the number of points awarded for a draw, respectively. Note that $$$w > d$$$, so the number of points awarded for winning is strictly greater than the number of points awarded for draw.", "output_spec": "If there is no answer, print $$$-1$$$. Otherwise print three non-negative integers $$$x$$$, $$$y$$$ and $$$z$$$ \u2014 the number of wins, draws and losses of the team. If there are multiple possible triples $$$(x, y, z)$$$, print any of them. The numbers should meet the following conditions: $$$x \\cdot w + y \\cdot d = p$$$, $$$x + y + z = n$$$. ", "sample_inputs": ["30 60 3 1", "10 51 5 4", "20 0 15 5"], "sample_outputs": ["17 9 4", "-1", "0 0 20"], "notes": "NoteOne of the possible answers in the first example \u2014 $$$17$$$ wins, $$$9$$$ draws and $$$4$$$ losses. Then the team got $$$17 \\cdot 3 + 9 \\cdot 1 = 60$$$ points in $$$17 + 9 + 4 = 30$$$ games.In the second example the maximum possible score is $$$10 \\cdot 5 = 50$$$. Since $$$p = 51$$$, there is no answer.In the third example the team got $$$0$$$ points, so all $$$20$$$ games were lost."}, "src_uid": "503116e144d19eb953954d99c5526a7d"} {"nl": {"description": "Polycarp is preparing the first programming contest for robots. There are $$$n$$$ problems in it, and a lot of robots are going to participate in it. Each robot solving the problem $$$i$$$ gets $$$p_i$$$ points, and the score of each robot in the competition is calculated as the sum of $$$p_i$$$ over all problems $$$i$$$ solved by it. For each problem, $$$p_i$$$ is an integer not less than $$$1$$$.Two corporations specializing in problem-solving robot manufacturing, \"Robo-Coder Inc.\" and \"BionicSolver Industries\", are going to register two robots (one for each corporation) for participation as well. Polycarp knows the advantages and flaws of robots produced by these companies, so, for each problem, he knows precisely whether each robot will solve it during the competition. Knowing this, he can try predicting the results \u2014 or manipulating them. For some reason (which absolutely cannot involve bribing), Polycarp wants the \"Robo-Coder Inc.\" robot to outperform the \"BionicSolver Industries\" robot in the competition. Polycarp wants to set the values of $$$p_i$$$ in such a way that the \"Robo-Coder Inc.\" robot gets strictly more points than the \"BionicSolver Industries\" robot. However, if the values of $$$p_i$$$ will be large, it may look very suspicious \u2014 so Polycarp wants to minimize the maximum value of $$$p_i$$$ over all problems. Can you help Polycarp to determine the minimum possible upper bound on the number of points given for solving the problems?", "input_spec": "The first line contains one integer $$$n$$$ ($$$1 \\le n \\le 100$$$) \u2014 the number of problems. The second line contains $$$n$$$ integers $$$r_1$$$, $$$r_2$$$, ..., $$$r_n$$$ ($$$0 \\le r_i \\le 1$$$). $$$r_i = 1$$$ means that the \"Robo-Coder Inc.\" robot will solve the $$$i$$$-th problem, $$$r_i = 0$$$ means that it won't solve the $$$i$$$-th problem. The third line contains $$$n$$$ integers $$$b_1$$$, $$$b_2$$$, ..., $$$b_n$$$ ($$$0 \\le b_i \\le 1$$$). $$$b_i = 1$$$ means that the \"BionicSolver Industries\" robot will solve the $$$i$$$-th problem, $$$b_i = 0$$$ means that it won't solve the $$$i$$$-th problem.", "output_spec": "If \"Robo-Coder Inc.\" robot cannot outperform the \"BionicSolver Industries\" robot by any means, print one integer $$$-1$$$. Otherwise, print the minimum possible value of $$$\\max \\limits_{i = 1}^{n} p_i$$$, if all values of $$$p_i$$$ are set in such a way that the \"Robo-Coder Inc.\" robot gets strictly more points than the \"BionicSolver Industries\" robot.", "sample_inputs": ["5\n1 1 1 0 0\n0 1 1 1 1", "3\n0 0 0\n0 0 0", "4\n1 1 1 1\n1 1 1 1", "8\n1 0 0 0 0 0 0 0\n0 1 1 0 1 1 1 1"], "sample_outputs": ["3", "-1", "-1", "7"], "notes": "NoteIn the first example, one of the valid score assignments is $$$p = [3, 1, 3, 1, 1]$$$. Then the \"Robo-Coder\" gets $$$7$$$ points, the \"BionicSolver\" \u2014 $$$6$$$ points.In the second example, both robots get $$$0$$$ points, and the score distribution does not matter.In the third example, both robots solve all problems, so their points are equal."}, "src_uid": "b62338bff0cbb4df4e5e27e1a3ffaa07"} {"nl": {"description": "Polycarp loves ciphers. He has invented his own cipher called Right-Left.Right-Left cipher is used for strings. To encrypt the string $$$s=s_{1}s_{2} \\dots s_{n}$$$ Polycarp uses the following algorithm: he writes down $$$s_1$$$, he appends the current word with $$$s_2$$$ (i.e. writes down $$$s_2$$$ to the right of the current result), he prepends the current word with $$$s_3$$$ (i.e. writes down $$$s_3$$$ to the left of the current result), he appends the current word with $$$s_4$$$ (i.e. writes down $$$s_4$$$ to the right of the current result), he prepends the current word with $$$s_5$$$ (i.e. writes down $$$s_5$$$ to the left of the current result), and so on for each position until the end of $$$s$$$. For example, if $$$s$$$=\"techno\" the process is: \"t\" $$$\\to$$$ \"te\" $$$\\to$$$ \"cte\" $$$\\to$$$ \"cteh\" $$$\\to$$$ \"ncteh\" $$$\\to$$$ \"ncteho\". So the encrypted $$$s$$$=\"techno\" is \"ncteho\".Given string $$$t$$$ \u2014 the result of encryption of some string $$$s$$$. Your task is to decrypt it, i.e. find the string $$$s$$$.", "input_spec": "The only line of the input contains $$$t$$$ \u2014 the result of encryption of some string $$$s$$$. It contains only lowercase Latin letters. The length of $$$t$$$ is between $$$1$$$ and $$$50$$$, inclusive.", "output_spec": "Print such string $$$s$$$ that after encryption it equals $$$t$$$.", "sample_inputs": ["ncteho", "erfdcoeocs", "z"], "sample_outputs": ["techno", "codeforces", "z"], "notes": null}, "src_uid": "992ae43e66f1808f19c86b1def1f6b41"} {"nl": {"description": "The translation from the Berland language into the Birland language is not an easy task. Those languages are very similar: a berlandish word differs from a birlandish word with the same meaning a little: it is spelled (and pronounced) reversely. For example, a Berlandish word code corresponds to a Birlandish word edoc. However, it's easy to make a mistake during the \u00abtranslation\u00bb. Vasya translated word s from Berlandish into Birlandish as t. Help him: find out if he translated the word correctly.", "input_spec": "The first line contains word s, the second line contains word t. The words consist of lowercase Latin letters. The input data do not consist unnecessary spaces. The words are not empty and their lengths do not exceed 100 symbols.", "output_spec": "If the word t is a word s, written reversely, print YES, otherwise print NO.", "sample_inputs": ["code\nedoc", "abb\naba", "code\ncode"], "sample_outputs": ["YES", "NO", "NO"], "notes": null}, "src_uid": "35a4be326690b58bf9add547fb63a5a5"} {"nl": {"description": "Ivan's classes at the university have just finished, and now he wants to go to the local CFK cafe and eat some fried chicken.CFK sells chicken chunks in small and large portions. A small portion contains 3 chunks; a large one \u2014 7 chunks. Ivan wants to eat exactly x chunks. Now he wonders whether he can buy exactly this amount of chicken.Formally, Ivan wants to know if he can choose two non-negative integers a and b in such a way that a small portions and b large ones contain exactly x chunks.Help Ivan to answer this question for several values of x!", "input_spec": "The first line contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of testcases. The i-th of the following n lines contains one integer xi (1\u2009\u2264\u2009xi\u2009\u2264\u2009100) \u2014 the number of chicken chunks Ivan wants to eat.", "output_spec": "Print n lines, in i-th line output YES if Ivan can buy exactly xi chunks. Otherwise, print NO.", "sample_inputs": ["2\n6\n5"], "sample_outputs": ["YES\nNO"], "notes": "NoteIn the first example Ivan can buy two small portions.In the second example Ivan cannot buy exactly 5 chunks, since one small portion is not enough, but two small portions or one large is too much."}, "src_uid": "cfd1182be98fb5f0c426f8b68e48d452"} {"nl": {"description": "Pupils decided to go to amusement park. Some of them were with parents. In total, n people came to the park and they all want to get to the most extreme attraction and roll on it exactly once.Tickets for group of x people are sold on the attraction, there should be at least one adult in each group (it is possible that the group consists of one adult). The ticket price for such group is c1\u2009+\u2009c2\u00b7(x\u2009-\u20091)2 (in particular, if the group consists of one person, then the price is c1). All pupils who came to the park and their parents decided to split into groups in such a way that each visitor join exactly one group, and the total price of visiting the most extreme attraction is as low as possible. You are to determine this minimum possible total price. There should be at least one adult in each group. ", "input_spec": "The first line contains three integers n, c1 and c2 (1\u2009\u2264\u2009n\u2009\u2264\u2009200\u2009000, 1\u2009\u2264\u2009c1,\u2009c2\u2009\u2264\u2009107)\u00a0\u2014 the number of visitors and parameters for determining the ticket prices for a group. The second line contains the string of length n, which consists of zeros and ones. If the i-th symbol of the string is zero, then the i-th visitor is a pupil, otherwise the i-th person is an adult. It is guaranteed that there is at least one adult. It is possible that there are no pupils.", "output_spec": "Print the minimum price of visiting the most extreme attraction for all pupils and their parents. Each of them should roll on the attraction exactly once.", "sample_inputs": ["3 4 1\n011", "4 7 2\n1101"], "sample_outputs": ["8", "18"], "notes": "NoteIn the first test one group of three people should go to the attraction. Then they have to pay 4\u2009+\u20091\u2009*\u2009(3\u2009-\u20091)2\u2009=\u20098.In the second test it is better to go to the attraction in two groups. The first group should consist of two adults (for example, the first and the second person), the second should consist of one pupil and one adult (the third and the fourth person). Then each group will have a size of two and for each the price of ticket is 7\u2009+\u20092\u2009*\u2009(2\u2009-\u20091)2\u2009=\u20099. Thus, the total price for two groups is 18."}, "src_uid": "78d013b01497053b8e321fe7b6ce3760"} {"nl": {"description": "Lenny is playing a game on a 3\u2009\u00d7\u20093 grid of lights. In the beginning of the game all lights are switched on. Pressing any of the lights will toggle it and all side-adjacent lights. The goal of the game is to switch all the lights off. We consider the toggling as follows: if the light was switched on then it will be switched off, if it was switched off then it will be switched on.Lenny has spent some time playing with the grid and by now he has pressed each light a certain number of times. Given the number of times each light is pressed, you have to print the current state of each light.", "input_spec": "The input consists of three rows. Each row contains three integers each between 0 to 100 inclusive. The j-th number in the i-th row is the number of times the j-th light of the i-th row of the grid is pressed.", "output_spec": "Print three lines, each containing three characters. The j-th character of the i-th line is \"1\" if and only if the corresponding light is switched on, otherwise it's \"0\".", "sample_inputs": ["1 0 0\n0 0 0\n0 0 1", "1 0 1\n8 8 8\n2 0 3"], "sample_outputs": ["001\n010\n100", "010\n011\n100"], "notes": null}, "src_uid": "b045abf40c75bb66a80fd6148ecc5bd6"} {"nl": {"description": "Santa Claus has n candies, he dreams to give them as gifts to children.What is the maximal number of children for whose he can give candies if Santa Claus want each kid should get distinct positive integer number of candies. Santa Class wants to give all n candies he has.", "input_spec": "The only line contains positive integer number n (1\u2009\u2264\u2009n\u2009\u2264\u20091000) \u2014 number of candies Santa Claus has.", "output_spec": "Print to the first line integer number k \u2014 maximal number of kids which can get candies. Print to the second line k distinct integer numbers: number of candies for each of k kid. The sum of k printed numbers should be exactly n. If there are many solutions, print any of them.", "sample_inputs": ["5", "9", "2"], "sample_outputs": ["2\n2 3", "3\n3 5 1", "1\n2"], "notes": null}, "src_uid": "356a7bcebbbd354c268cddbb5454d5fc"} {"nl": {"description": "During the winter holidays, the demand for Christmas balls is exceptionally high. Since it's already 2018, the advances in alchemy allow easy and efficient ball creation by utilizing magic crystals.Grisha needs to obtain some yellow, green and blue balls. It's known that to produce a yellow ball one needs two yellow crystals, green\u00a0\u2014 one yellow and one blue, and for a blue ball, three blue crystals are enough.Right now there are A yellow and B blue crystals in Grisha's disposal. Find out how many additional crystals he should acquire in order to produce the required number of balls.", "input_spec": "The first line features two integers A and B (0\u2009\u2264\u2009A,\u2009B\u2009\u2264\u2009109), denoting the number of yellow and blue crystals respectively at Grisha's disposal. The next line contains three integers x, y and z (0\u2009\u2264\u2009x,\u2009y,\u2009z\u2009\u2264\u2009109)\u00a0\u2014 the respective amounts of yellow, green and blue balls to be obtained.", "output_spec": "Print a single integer\u00a0\u2014 the minimum number of crystals that Grisha should acquire in addition.", "sample_inputs": ["4 3\n2 1 1", "3 9\n1 1 3", "12345678 87654321\n43043751 1000000000 53798715"], "sample_outputs": ["2", "1", "2147483648"], "notes": "NoteIn the first sample case, Grisha needs five yellow and four blue crystals to create two yellow balls, one green ball, and one blue ball. To do that, Grisha needs to obtain two additional crystals: one yellow and one blue."}, "src_uid": "35202a4601a03d25e18dda1539c5beba"} {"nl": {"description": "One day Vasya was going home when he saw a box lying on the road. The box can be represented as a rectangular parallelepiped. Vasya needed no time to realize that the box is special, as all its edges are parallel to the coordinate axes, one of its vertices is at point (0,\u20090,\u20090), and the opposite one is at point (x1,\u2009y1,\u2009z1). The six faces of the box contain some numbers a1,\u2009a2,\u2009...,\u2009a6, exactly one number right in the center of each face. The numbers are located on the box like that: number a1 is written on the face that lies on the ZOX plane; a2 is written on the face, parallel to the plane from the previous point; a3 is written on the face that lies on the XOY plane; a4 is written on the face, parallel to the plane from the previous point; a5 is written on the face that lies on the YOZ plane; a6 is written on the face, parallel to the plane from the previous point. At the moment Vasya is looking at the box from point (x,\u2009y,\u2009z). Find the sum of numbers that Vasya sees. Note that all faces of the box are not transparent and Vasya can't see the numbers through the box. The picture contains transparent faces just to make it easier to perceive. You can consider that if Vasya is looking from point, lying on the plane of some face, than he can not see the number that is written on this face. It is enough to see the center of a face to see the corresponding number for Vasya. Also note that Vasya always reads correctly the ai numbers that he sees, independently of their rotation, angle and other factors (that is, for example, if Vasya sees some ai\u2009=\u20096, then he can't mistake this number for 9 and so on). ", "input_spec": "The fist input line contains three space-separated integers x, y and z (|x|,\u2009|y|,\u2009|z|\u2009\u2264\u2009106) \u2014 the coordinates of Vasya's position in space. The second line contains three space-separated integers x1, y1, z1 (1\u2009\u2264\u2009x1,\u2009y1,\u2009z1\u2009\u2264\u2009106) \u2014 the coordinates of the box's vertex that is opposite to the vertex at point (0,\u20090,\u20090). The third line contains six space-separated integers a1,\u2009a2,\u2009...,\u2009a6 (1\u2009\u2264\u2009ai\u2009\u2264\u2009106) \u2014 the numbers that are written on the box faces. It is guaranteed that point (x,\u2009y,\u2009z) is located strictly outside the box.", "output_spec": "Print a single integer \u2014 the sum of all numbers on the box faces that Vasya sees.", "sample_inputs": ["2 2 2\n1 1 1\n1 2 3 4 5 6", "0 0 10\n3 2 3\n1 2 3 4 5 6"], "sample_outputs": ["12", "4"], "notes": "NoteThe first sample corresponds to perspective, depicted on the picture. Vasya sees numbers a2 (on the top face that is the darkest), a6 (on the right face that is the lightest) and a4 (on the left visible face).In the second sample Vasya can only see number a4."}, "src_uid": "c7889a8f64c57cf7be4df870f68f749e"} {"nl": {"description": "Even if the world is full of counterfeits, I still regard it as wonderful.Pile up herbs and incense, and arise again from the flames and ashes of its predecessor\u00a0\u2014 as is known to many, the phoenix does it like this.The phoenix has a rather long lifespan, and reincarnates itself once every a! years. Here a! denotes the factorial of integer a, that is, a!\u2009=\u20091\u2009\u00d7\u20092\u2009\u00d7\u2009...\u2009\u00d7\u2009a. Specifically, 0!\u2009=\u20091.Koyomi doesn't care much about this, but before he gets into another mess with oddities, he is interested in the number of times the phoenix will reincarnate in a timespan of b! years, that is, . Note that when b\u2009\u2265\u2009a this value is always integer.As the answer can be quite large, it would be enough for Koyomi just to know the last digit of the answer in decimal representation. And you're here to provide Koyomi with this knowledge.", "input_spec": "The first and only line of input contains two space-separated integers a and b (0\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u20091018).", "output_spec": "Output one line containing a single decimal digit\u00a0\u2014 the last digit of the value that interests Koyomi.", "sample_inputs": ["2 4", "0 10", "107 109"], "sample_outputs": ["2", "0", "2"], "notes": "NoteIn the first example, the last digit of is 2;In the second example, the last digit of is 0;In the third example, the last digit of is 2."}, "src_uid": "2ed5a7a6176ed9b0bda1de21aad13d60"} {"nl": {"description": "Fafa owns a company that works on huge projects. There are n employees in Fafa's company. Whenever the company has a new project to start working on, Fafa has to divide the tasks of this project among all the employees.Fafa finds doing this every time is very tiring for him. So, he decided to choose the best l employees in his company as team leaders. Whenever there is a new project, Fafa will divide the tasks among only the team leaders and each team leader will be responsible of some positive number of employees to give them the tasks. To make this process fair for the team leaders, each one of them should be responsible for the same number of employees. Moreover, every employee, who is not a team leader, has to be under the responsibility of exactly one team leader, and no team leader is responsible for another team leader.Given the number of employees n, find in how many ways Fafa could choose the number of team leaders l in such a way that it is possible to divide employees between them evenly.", "input_spec": "The input consists of a single line containing a positive integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009105) \u2014 the number of employees in Fafa's company.", "output_spec": "Print a single integer representing the answer to the problem.", "sample_inputs": ["2", "10"], "sample_outputs": ["1", "3"], "notes": "NoteIn the second sample Fafa has 3 ways: choose only 1 employee as a team leader with 9 employees under his responsibility. choose 2 employees as team leaders with 4 employees under the responsibility of each of them. choose 5 employees as team leaders with 1 employee under the responsibility of each of them. "}, "src_uid": "89f6c1659e5addbf909eddedb785d894"} {"nl": {"description": "Several months later Alex finally got his brother Bob's creation by post. And now, in his turn, Alex wants to boast about something to his brother. He thought for a while, and came to the conclusion that he has no ready creations, and decided to write a program for rectangles detection. According to his plan, the program detects if the four given segments form a rectangle of a positive area and with sides parallel to coordinate axes. As Alex does badly at school and can't write this program by himself, he asks you to help him.", "input_spec": "The input data contain four lines. Each of these lines contains four integers x1, y1, x2, y2 (\u2009-\u2009109\u2009\u2264\u2009x1,\u2009y1,\u2009x2,\u2009y2\u2009\u2264\u2009109) \u2014 coordinates of segment's beginning and end positions. The given segments can degenerate into points.", "output_spec": "Output the word \u00abYES\u00bb, if the given four segments form the required rectangle, otherwise output \u00abNO\u00bb.", "sample_inputs": ["1 1 6 1\n1 0 6 0\n6 0 6 1\n1 1 1 0", "0 0 0 3\n2 0 0 0\n2 2 2 0\n0 2 2 2"], "sample_outputs": ["YES", "NO"], "notes": null}, "src_uid": "ad105c08f63e9761fe90f69630628027"} {"nl": {"description": "Alice and Bob are decorating a Christmas Tree. Alice wants only $$$3$$$ types of ornaments to be used on the Christmas Tree: yellow, blue and red. They have $$$y$$$ yellow ornaments, $$$b$$$ blue ornaments and $$$r$$$ red ornaments.In Bob's opinion, a Christmas Tree will be beautiful if: the number of blue ornaments used is greater by exactly $$$1$$$ than the number of yellow ornaments, and the number of red ornaments used is greater by exactly $$$1$$$ than the number of blue ornaments. That is, if they have $$$8$$$ yellow ornaments, $$$13$$$ blue ornaments and $$$9$$$ red ornaments, we can choose $$$4$$$ yellow, $$$5$$$ blue and $$$6$$$ red ornaments ($$$5=4+1$$$ and $$$6=5+1$$$).Alice wants to choose as many ornaments as possible, but she also wants the Christmas Tree to be beautiful according to Bob's opinion.In the example two paragraphs above, we would choose $$$7$$$ yellow, $$$8$$$ blue and $$$9$$$ red ornaments. If we do it, we will use $$$7+8+9=24$$$ ornaments. That is the maximum number.Since Alice and Bob are busy with preparing food to the New Year's Eve, they are asking you to find out the maximum number of ornaments that can be used in their beautiful Christmas Tree! It is guaranteed that it is possible to choose at least $$$6$$$ ($$$1+2+3=6$$$) ornaments.", "input_spec": "The only line contains three integers $$$y$$$, $$$b$$$, $$$r$$$ ($$$1 \\leq y \\leq 100$$$, $$$2 \\leq b \\leq 100$$$, $$$3 \\leq r \\leq 100$$$)\u00a0\u2014 the number of yellow, blue and red ornaments. It is guaranteed that it is possible to choose at least $$$6$$$ ($$$1+2+3=6$$$) ornaments.", "output_spec": "Print one number\u00a0\u2014 the maximum number of ornaments that can be used. ", "sample_inputs": ["8 13 9", "13 3 6"], "sample_outputs": ["24", "9"], "notes": "NoteIn the first example, the answer is $$$7+8+9=24$$$.In the second example, the answer is $$$2+3+4=9$$$."}, "src_uid": "03ac8efe10de17590e1ae151a7bae1a5"} {"nl": {"description": "Greatest common divisor GCD(a,\u2009b) of two positive integers a and b is equal to the biggest integer d such that both integers a and b are divisible by d. There are many efficient algorithms to find greatest common divisor GCD(a,\u2009b), for example, Euclid algorithm. Formally, find the biggest integer d, such that all integers a,\u2009a\u2009+\u20091,\u2009a\u2009+\u20092,\u2009...,\u2009b are divisible by d. To make the problem even more complicated we allow a and b to be up to googol, 10100\u00a0\u2014 such number do not fit even in 64-bit integer type!", "input_spec": "The only line of the input contains two integers a and b (1\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u200910100).", "output_spec": "Output one integer\u00a0\u2014 greatest common divisor of all integers from a to b inclusive.", "sample_inputs": ["1 2", "61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576"], "sample_outputs": ["1", "61803398874989484820458683436563811772030917980576"], "notes": null}, "src_uid": "9c5b6d8a20414d160069010b2965b896"} {"nl": {"description": "Vasya decided to learn to play chess. Classic chess doesn't seem interesting to him, so he plays his own sort of chess.The queen is the piece that captures all squares on its vertical, horizontal and diagonal lines. If the cell is located on the same vertical, horizontal or diagonal line with queen, and the cell contains a piece of the enemy color, the queen is able to move to this square. After that the enemy's piece is removed from the board. The queen cannot move to a cell containing an enemy piece if there is some other piece between it and the queen. There is an n\u2009\u00d7\u2009n chessboard. We'll denote a cell on the intersection of the r-th row and c-th column as (r,\u2009c). The square (1,\u20091) contains the white queen and the square (1,\u2009n) contains the black queen. All other squares contain green pawns that don't belong to anyone.The players move in turns. The player that moves first plays for the white queen, his opponent plays for the black queen.On each move the player has to capture some piece with his queen (that is, move to a square that contains either a green pawn or the enemy queen). The player loses if either he cannot capture any piece during his move or the opponent took his queen during the previous move. Help Vasya determine who wins if both players play with an optimal strategy on the board n\u2009\u00d7\u2009n.", "input_spec": "The input contains a single number n (2\u2009\u2264\u2009n\u2009\u2264\u2009109) \u2014 the size of the board.", "output_spec": "On the first line print the answer to problem \u2014 string \"white\" or string \"black\", depending on who wins if the both players play optimally. If the answer is \"white\", then you should also print two integers r and c representing the cell (r,\u2009c), where the first player should make his first move to win. If there are multiple such cells, print the one with the minimum r. If there are still multiple squares, print the one with the minimum c.", "sample_inputs": ["2", "3"], "sample_outputs": ["white\n1 2", "black"], "notes": "NoteIn the first sample test the white queen can capture the black queen at the first move, so the white player wins.In the second test from the statement if the white queen captures the green pawn located on the central vertical line, then it will be captured by the black queen during the next move. So the only move for the white player is to capture the green pawn located at (2,\u20091). Similarly, the black queen doesn't have any other options but to capture the green pawn located at (2,\u20093), otherwise if it goes to the middle vertical line, it will be captured by the white queen.During the next move the same thing happens \u2014 neither the white, nor the black queen has other options rather than to capture green pawns situated above them. Thus, the white queen ends up on square (3,\u20091), and the black queen ends up on square (3,\u20093). In this situation the white queen has to capture any of the green pawns located on the middle vertical line, after that it will be captured by the black queen. Thus, the player who plays for the black queen wins."}, "src_uid": "52e07d176aa1d370788f94ee2e61df93"} {"nl": {"description": "Arkady and his friends love playing checkers on an $$$n \\times n$$$ field. The rows and the columns of the field are enumerated from $$$1$$$ to $$$n$$$.The friends have recently won a championship, so Arkady wants to please them with some candies. Remembering an old parable (but not its moral), Arkady wants to give to his friends one set of candies per each cell of the field: the set of candies for cell $$$(i, j)$$$ will have exactly $$$(i^2 + j^2)$$$ candies of unique type.There are $$$m$$$ friends who deserve the present. How many of these $$$n \\times n$$$ sets of candies can be split equally into $$$m$$$ parts without cutting a candy into pieces? Note that each set has to be split independently since the types of candies in different sets are different.", "input_spec": "The only line contains two integers $$$n$$$ and $$$m$$$ ($$$1 \\le n \\le 10^9$$$, $$$1 \\le m \\le 1000$$$)\u00a0\u2014 the size of the field and the number of parts to split the sets into.", "output_spec": "Print a single integer\u00a0\u2014 the number of sets that can be split equally.", "sample_inputs": ["3 3", "6 5", "1000000000 1"], "sample_outputs": ["1", "13", "1000000000000000000"], "notes": "NoteIn the first example, only the set for cell $$$(3, 3)$$$ can be split equally ($$$3^2 + 3^2 = 18$$$, which is divisible by $$$m=3$$$).In the second example, the sets for the following cells can be divided equally: $$$(1, 2)$$$ and $$$(2, 1)$$$, since $$$1^2 + 2^2 = 5$$$, which is divisible by $$$5$$$; $$$(1, 3)$$$ and $$$(3, 1)$$$; $$$(2, 4)$$$ and $$$(4, 2)$$$; $$$(2, 6)$$$ and $$$(6, 2)$$$; $$$(3, 4)$$$ and $$$(4, 3)$$$; $$$(3, 6)$$$ and $$$(6, 3)$$$; $$$(5, 5)$$$. In the third example, sets in all cells can be divided equally, since $$$m = 1$$$."}, "src_uid": "2ec9e7cddc634d7830575e14363a4657"} {"nl": {"description": "Vasya plays Robot Bicorn Attack.The game consists of three rounds. For each one a non-negative integer amount of points is given. The result of the game is the sum of obtained points. Vasya has already played three rounds and wrote obtained points one by one (without leading zeros) into the string s. Vasya decided to brag about his achievement to the friends. However, he has forgotten how many points he got for each round. The only thing he remembers is the string s.Help Vasya to find out what is the maximum amount of points he could get. Take into account that Vasya played Robot Bicorn Attack for the first time, so he could not get more than 1000000 (106) points for one round.", "input_spec": "The only line of input contains non-empty string s obtained by Vasya. The string consists of digits only. The string length does not exceed 30 characters.", "output_spec": "Print the only number \u2014 the maximum amount of points Vasya could get. If Vasya is wrong and the string could not be obtained according to the rules then output number -1.", "sample_inputs": ["1234", "9000", "0009"], "sample_outputs": ["37", "90", "-1"], "notes": "NoteIn the first example the string must be split into numbers 1, 2 and 34.In the second example the string must be split into numbers 90, 0 and 0. In the third example the string is incorrect, because after splitting the string into 3 numbers number 00 or 09 will be obtained, but numbers cannot have leading zeroes."}, "src_uid": "bf4e72636bd1998ad3d034ad72e63097"} {"nl": {"description": "Any resemblance to any real championship and sport is accidental.The Berland National team takes part in the local Football championship which now has a group stage. Let's describe the formal rules of the local championship: the team that kicked most balls in the enemy's goal area wins the game; the victory gives 3 point to the team, the draw gives 1 point and the defeat gives 0 points; a group consists of four teams, the teams are ranked by the results of six games: each team plays exactly once with each other team; the teams that get places 1 and 2 in the group stage results, go to the next stage of the championship. In the group stage the team's place is defined by the total number of scored points: the more points, the higher the place is. If two or more teams have the same number of points, then the following criteria are used (the criteria are listed in the order of falling priority, starting from the most important one): the difference between the total number of scored goals and the total number of missed goals in the championship: the team with a higher value gets a higher place; the total number of scored goals in the championship: the team with a higher value gets a higher place; the lexicographical order of the name of the teams' countries: the country with the lexicographically smaller name gets a higher place. The Berland team plays in the group where the results of 5 out of 6 games are already known. To be exact, there is the last game left. There the Berand national team plays with some other team. The coach asks you to find such score X:Y (where X is the number of goals Berland scored and Y is the number of goals the opponent scored in the game), that fulfills the following conditions: X > Y, that is, Berland is going to win this game; after the game Berland gets the 1st or the 2nd place in the group; if there are multiple variants, you should choose such score X:Y, where value X\u2009-\u2009Y is minimum; if it is still impossible to come up with one score, you should choose the score where value Y (the number of goals Berland misses) is minimum. ", "input_spec": "The input has five lines. Each line describes a game as \"team1 team2 goals1:goals2\" (without the quotes), what means that team team1 played a game with team team2, besides, team1 scored goals1 goals and team2 scored goals2 goals. The names of teams team1 and team2 are non-empty strings, consisting of uppercase English letters, with length of no more than 20 characters; goals1,\u2009goals2 are integers from 0 to 9. The Berland team is called \"BERLAND\". It is guaranteed that the Berland team and one more team played exactly 2 games and the the other teams played exactly 3 games.", "output_spec": "Print the required score in the last game as X:Y, where X is the number of goals Berland scored and Y is the number of goals the opponent scored. If the Berland team does not get the first or the second place in the group, whatever this game's score is, then print on a single line \"IMPOSSIBLE\" (without the quotes). Note, that the result score can be very huge, 10:0 for example.", "sample_inputs": ["AERLAND DERLAND 2:1\nDERLAND CERLAND 0:3\nCERLAND AERLAND 0:1\nAERLAND BERLAND 2:0\nDERLAND BERLAND 4:0", "AERLAND DERLAND 2:2\nDERLAND CERLAND 2:3\nCERLAND AERLAND 1:3\nAERLAND BERLAND 2:1\nDERLAND BERLAND 4:1"], "sample_outputs": ["6:0", "IMPOSSIBLE"], "notes": "NoteIn the first sample \"BERLAND\" plays the last game with team \"CERLAND\". If Berland wins with score 6:0, the results' table looks like that in the end: AERLAND (points: 9, the difference between scored and missed goals: 4, scored goals: 5) BERLAND (points: 3, the difference between scored and missed goals: 0, scored goals: 6) DERLAND (points: 3, the difference between scored and missed goals: 0, scored goals: 5) CERLAND (points: 3, the difference between scored and missed goals: -4, scored goals: 3) In the second sample teams \"AERLAND\" and \"DERLAND\" have already won 7 and 4 points, respectively. The Berland team wins only 3 points, which is not enough to advance to the next championship stage."}, "src_uid": "5033d51c67b7ae0b1a2d9fd292fdced1"} {"nl": {"description": "Mad scientist Mike is building a time machine in his spare time. To finish the work, he needs a resistor with a certain resistance value.However, all Mike has is lots of identical resistors with unit resistance R0\u2009=\u20091. Elements with other resistance can be constructed from these resistors. In this problem, we will consider the following as elements: one resistor; an element and one resistor plugged in sequence; an element and one resistor plugged in parallel. With the consecutive connection the resistance of the new element equals R\u2009=\u2009Re\u2009+\u2009R0. With the parallel connection the resistance of the new element equals . In this case Re equals the resistance of the element being connected.Mike needs to assemble an element with a resistance equal to the fraction . Determine the smallest possible number of resistors he needs to make such an element.", "input_spec": "The single input line contains two space-separated integers a and b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u20091018). It is guaranteed that the fraction is irreducible. It is guaranteed that a solution always exists.", "output_spec": "Print a single number \u2014 the answer to the problem. Please do not use the %lld specifier to read or write 64-bit integers in \u0421++. It is recommended to use the cin, cout streams or the %I64d specifier.", "sample_inputs": ["1 1", "3 2", "199 200"], "sample_outputs": ["1", "3", "200"], "notes": "NoteIn the first sample, one resistor is enough.In the second sample one can connect the resistors in parallel, take the resulting element and connect it to a third resistor consecutively. Then, we get an element with resistance . We cannot make this element using two resistors."}, "src_uid": "792efb147f3668a84c866048361970f8"} {"nl": {"description": "You found a mysterious function f. The function takes two strings s1 and s2. These strings must consist only of lowercase English letters, and must be the same length.The output of the function f is another string of the same length. The i-th character of the output is equal to the minimum of the i-th character of s1 and the i-th character of s2.For example, f(\"ab\", \"ba\") = \"aa\", and f(\"nzwzl\", \"zizez\") = \"niwel\".You found two strings x and y of the same length and consisting of only lowercase English letters. Find any string z such that f(x,\u2009z)\u2009=\u2009y, or print -1 if no such string z exists.", "input_spec": "The first line of input contains the string x. The second line of input contains the string y. Both x and y consist only of lowercase English letters, x and y have same length and this length is between 1 and 100.", "output_spec": "If there is no string z such that f(x,\u2009z)\u2009=\u2009y, print -1. Otherwise, print a string z such that f(x,\u2009z)\u2009=\u2009y. If there are multiple possible answers, print any of them. The string z should be the same length as x and y and consist only of lowercase English letters.", "sample_inputs": ["ab\naa", "nzwzl\nniwel", "ab\nba"], "sample_outputs": ["ba", "xiyez", "-1"], "notes": "NoteThe first case is from the statement.Another solution for the second case is \"zizez\"There is no solution for the third case. That is, there is no z such that f(\"ab\", z)\u2009=\u2009 \"ba\"."}, "src_uid": "ce0cb995e18501f73e34c76713aec182"} {"nl": {"description": "Gerald got a very curious hexagon for his birthday. The boy found out that all the angles of the hexagon are equal to . Then he measured the length of its sides, and found that each of them is equal to an integer number of centimeters. There the properties of the hexagon ended and Gerald decided to draw on it.He painted a few lines, parallel to the sides of the hexagon. The lines split the hexagon into regular triangles with sides of 1 centimeter. Now Gerald wonders how many triangles he has got. But there were so many of them that Gerald lost the track of his counting. Help the boy count the triangles.", "input_spec": "The first and the single line of the input contains 6 space-separated integers a1,\u2009a2,\u2009a3,\u2009a4,\u2009a5 and a6 (1\u2009\u2264\u2009ai\u2009\u2264\u20091000) \u2014 the lengths of the sides of the hexagons in centimeters in the clockwise order. It is guaranteed that the hexagon with the indicated properties and the exactly such sides exists.", "output_spec": "Print a single integer \u2014 the number of triangles with the sides of one 1 centimeter, into which the hexagon is split.", "sample_inputs": ["1 1 1 1 1 1", "1 2 1 2 1 2"], "sample_outputs": ["6", "13"], "notes": "NoteThis is what Gerald's hexagon looks like in the first sample:And that's what it looks like in the second sample:"}, "src_uid": "382475475427f0e76c6b4ac6e7a02e21"} {"nl": {"description": "On his free time, Chouti likes doing some housework. He has got one new task, paint some bricks in the yard.There are $$$n$$$ bricks lined in a row on the ground. Chouti has got $$$m$$$ paint buckets of different colors at hand, so he painted each brick in one of those $$$m$$$ colors.Having finished painting all bricks, Chouti was satisfied. He stood back and decided to find something fun with these bricks. After some counting, he found there are $$$k$$$ bricks with a color different from the color of the brick on its left (the first brick is not counted, for sure).So as usual, he needs your help in counting how many ways could he paint the bricks. Two ways of painting bricks are different if there is at least one brick painted in different colors in these two ways. Because the answer might be quite big, you only need to output the number of ways modulo $$$998\\,244\\,353$$$.", "input_spec": "The first and only line contains three integers $$$n$$$, $$$m$$$ and $$$k$$$ ($$$1 \\leq n,m \\leq 2000, 0 \\leq k \\leq n-1$$$)\u00a0\u2014 the number of bricks, the number of colors, and the number of bricks, such that its color differs from the color of brick to the left of it.", "output_spec": "Print one integer\u00a0\u2014 the number of ways to color bricks modulo $$$998\\,244\\,353$$$.", "sample_inputs": ["3 3 0", "3 2 1"], "sample_outputs": ["3", "4"], "notes": "NoteIn the first example, since $$$k=0$$$, the color of every brick should be the same, so there will be exactly $$$m=3$$$ ways to color the bricks.In the second example, suppose the two colors in the buckets are yellow and lime, the following image shows all $$$4$$$ possible colorings. "}, "src_uid": "b2b9bee53e425fab1aa4d5468b9e578b"} {"nl": {"description": "Sereja owns a restaurant for n people. The restaurant hall has a coat rack with n hooks. Each restaurant visitor can use a hook to hang his clothes on it. Using the i-th hook costs ai rubles. Only one person can hang clothes on one hook.Tonight Sereja expects m guests in the restaurant. Naturally, each guest wants to hang his clothes on an available hook with minimum price (if there are multiple such hooks, he chooses any of them). However if the moment a guest arrives the rack has no available hooks, Sereja must pay a d ruble fine to the guest. Help Sereja find out the profit in rubles (possibly negative) that he will get tonight. You can assume that before the guests arrive, all hooks on the rack are available, all guests come at different time, nobody besides the m guests is visiting Sereja's restaurant tonight.", "input_spec": "The first line contains two integers n and d (1\u2009\u2264\u2009n,\u2009d\u2009\u2264\u2009100). The next line contains integers a1, a2, ..., an (1\u2009\u2264\u2009ai\u2009\u2264\u2009100). The third line contains integer m (1\u2009\u2264\u2009m\u2009\u2264\u2009100).", "output_spec": "In a single line print a single integer \u2014 the answer to the problem.", "sample_inputs": ["2 1\n2 1\n2", "2 1\n2 1\n10"], "sample_outputs": ["3", "-5"], "notes": "NoteIn the first test both hooks will be used, so Sereja gets 1\u2009+\u20092\u2009=\u20093 rubles.In the second test both hooks will be used but Sereja pays a fine 8 times, so the answer is 3\u2009-\u20098\u2009=\u2009\u2009-\u20095."}, "src_uid": "5c21e2dd658825580522af525142397d"} {"nl": {"description": "Two participants are each given a pair of distinct numbers from 1 to 9 such that there's exactly one number that is present in both pairs. They want to figure out the number that matches by using a communication channel you have access to without revealing it to you.Both participants communicated to each other a set of pairs of numbers, that includes the pair given to them. Each pair in the communicated sets comprises two different numbers.Determine if you can with certainty deduce the common number, or if you can determine with certainty that both participants know the number but you do not.", "input_spec": "The first line contains two integers $$$n$$$ and $$$m$$$ ($$$1 \\le n, m \\le 12$$$) \u2014 the number of pairs the first participant communicated to the second and vice versa. The second line contains $$$n$$$ pairs of integers, each between $$$1$$$ and $$$9$$$, \u2014 pairs of numbers communicated from first participant to the second. The third line contains $$$m$$$ pairs of integers, each between $$$1$$$ and $$$9$$$, \u2014 pairs of numbers communicated from the second participant to the first. All pairs within each set are distinct (in particular, if there is a pair $$$(1,2)$$$, there will be no pair $$$(2,1)$$$ within the same set), and no pair contains the same number twice. It is guaranteed that the two sets do not contradict the statements, in other words, there is pair from the first set and a pair from the second set that share exactly one number.", "output_spec": "If you can deduce the shared number with certainty, print that number. If you can with certainty deduce that both participants know the shared number, but you do not know it, print $$$0$$$. Otherwise print $$$-1$$$.", "sample_inputs": ["2 2\n1 2 3 4\n1 5 3 4", "2 2\n1 2 3 4\n1 5 6 4", "2 3\n1 2 4 5\n1 2 1 3 2 3"], "sample_outputs": ["1", "0", "-1"], "notes": "NoteIn the first example the first participant communicated pairs $$$(1,2)$$$ and $$$(3,4)$$$, and the second communicated $$$(1,5)$$$, $$$(3,4)$$$. Since we know that the actual pairs they received share exactly one number, it can't be that they both have $$$(3,4)$$$. Thus, the first participant has $$$(1,2)$$$ and the second has $$$(1,5)$$$, and at this point you already know the shared number is $$$1$$$.In the second example either the first participant has $$$(1,2)$$$ and the second has $$$(1,5)$$$, or the first has $$$(3,4)$$$ and the second has $$$(6,4)$$$. In the first case both of them know the shared number is $$$1$$$, in the second case both of them know the shared number is $$$4$$$. You don't have enough information to tell $$$1$$$ and $$$4$$$ apart.In the third case if the first participant was given $$$(1,2)$$$, they don't know what the shared number is, since from their perspective the second participant might have been given either $$$(1,3)$$$, in which case the shared number is $$$1$$$, or $$$(2,3)$$$, in which case the shared number is $$$2$$$. While the second participant does know the number with certainty, neither you nor the first participant do, so the output is $$$-1$$$."}, "src_uid": "cb4de190ae26127df6eeb7a1a1db8a6d"} {"nl": {"description": "Not so long ago as a result of combat operations the main Berland place of interest \u2014 the magic clock \u2014 was damaged. The cannon's balls made several holes in the clock, that's why the residents are concerned about the repair. The magic clock can be represented as an infinite Cartesian plane, where the origin corresponds to the clock center. The clock was painted two colors as is shown in the picture: The picture shows only the central part of the clock. This coloring naturally extends to infinity.The balls can be taken to be points on the plane. Your task is to find the color of the area, damaged by the given ball.All the points located on the border of one of the areas have to be considered painted black.", "input_spec": "The first and single line contains two integers x and y \u2014 the coordinates of the hole made in the clock by the ball. Each of the numbers x and y has an absolute value that does not exceed 1000.", "output_spec": "Find the required color. All the points between which and the origin of coordinates the distance is integral-value are painted black.", "sample_inputs": ["-2 1", "2 1", "4 3"], "sample_outputs": ["white", "black", "black"], "notes": null}, "src_uid": "8c92aac1bef5822848a136a1328346c6"} {"nl": {"description": "Karen is getting ready for a new school day! It is currently hh:mm, given in a 24-hour format. As you know, Karen loves palindromes, and she believes that it is good luck to wake up when the time is a palindrome.What is the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome?Remember that a palindrome is a string that reads the same forwards and backwards. For instance, 05:39 is not a palindrome, because 05:39 backwards is 93:50. On the other hand, 05:50 is a palindrome, because 05:50 backwards is 05:50.", "input_spec": "The first and only line of input contains a single string in the format hh:mm (00\u2009\u2264\u2009 hh \u2009\u2264\u200923, 00\u2009\u2264\u2009 mm \u2009\u2264\u200959).", "output_spec": "Output a single integer on a line by itself, the minimum number of minutes she should sleep, such that, when she wakes up, the time is a palindrome.", "sample_inputs": ["05:39", "13:31", "23:59"], "sample_outputs": ["11", "0", "1"], "notes": "NoteIn the first test case, the minimum number of minutes Karen should sleep for is 11. She can wake up at 05:50, when the time is a palindrome.In the second test case, Karen can wake up immediately, as the current time, 13:31, is already a palindrome.In the third test case, the minimum number of minutes Karen should sleep for is 1 minute. She can wake up at 00:00, when the time is a palindrome."}, "src_uid": "3ad3b8b700f6f34b3a53fdb63af351a5"} {"nl": {"description": "Maxim wants to buy an apartment in a new house at Line Avenue of Metropolis. The house has n apartments that are numbered from 1 to n and are arranged in a row. Two apartments are adjacent if their indices differ by 1. Some of the apartments can already be inhabited, others are available for sale.Maxim often visits his neighbors, so apartment is good for him if it is available for sale and there is at least one already inhabited apartment adjacent to it. Maxim knows that there are exactly k already inhabited apartments, but he doesn't know their indices yet.Find out what could be the minimum possible and the maximum possible number of apartments that are good for Maxim.", "input_spec": "The only line of the input contains two integers: n and k (1\u2009\u2264\u2009n\u2009\u2264\u2009109, 0\u2009\u2264\u2009k\u2009\u2264\u2009n).", "output_spec": "Print the minimum possible and the maximum possible number of apartments good for Maxim.", "sample_inputs": ["6 3"], "sample_outputs": ["1 3"], "notes": "NoteIn the sample test, the number of good apartments could be minimum possible if, for example, apartments with indices 1, 2 and 3 were inhabited. In this case only apartment 4 is good. The maximum possible number could be, for example, if apartments with indices 1, 3 and 5 were inhabited. In this case all other apartments: 2, 4 and 6 are good."}, "src_uid": "bdccf34b5a5ae13238c89a60814b9f86"} {"nl": {"description": "ZS the Coder loves to read the dictionary. He thinks that a word is nice if there exists a substring (contiguous segment of letters) of it of length 26 where each letter of English alphabet appears exactly once. In particular, if the string has length strictly less than 26, no such substring exists and thus it is not nice.Now, ZS the Coder tells you a word, where some of its letters are missing as he forgot them. He wants to determine if it is possible to fill in the missing letters so that the resulting word is nice. If it is possible, he needs you to find an example of such a word as well. Can you help him?", "input_spec": "The first and only line of the input contains a single string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200950\u2009000), the word that ZS the Coder remembers. Each character of the string is the uppercase letter of English alphabet ('A'-'Z') or is a question mark ('?'), where the question marks denotes the letters that ZS the Coder can't remember.", "output_spec": "If there is no way to replace all the question marks with uppercase letters such that the resulting word is nice, then print \u2009-\u20091 in the only line. Otherwise, print a string which denotes a possible nice word that ZS the Coder learned. This string should match the string from the input, except for the question marks replaced with uppercase English letters. If there are multiple solutions, you may print any of them.", "sample_inputs": ["ABC??FGHIJK???OPQR?TUVWXY?", "WELCOMETOCODEFORCESROUNDTHREEHUNDREDANDSEVENTYTWO", "??????????????????????????", "AABCDEFGHIJKLMNOPQRSTUVW??M"], "sample_outputs": ["ABCDEFGHIJKLMNOPQRZTUVWXYS", "-1", "MNBVCXZLKJHGFDSAQPWOEIRUYT", "-1"], "notes": "NoteIn the first sample case, ABCDEFGHIJKLMNOPQRZTUVWXYS is a valid answer beacuse it contains a substring of length 26 (the whole string in this case) which contains all the letters of the English alphabet exactly once. Note that there are many possible solutions, such as ABCDEFGHIJKLMNOPQRSTUVWXYZ or ABCEDFGHIJKLMNOPQRZTUVWXYS.In the second sample case, there are no missing letters. In addition, the given string does not have a substring of length 26 that contains all the letters of the alphabet, so the answer is \u2009-\u20091.In the third sample case, any string of length 26 that contains all letters of the English alphabet fits as an answer."}, "src_uid": "a249431a4b0b1ade652997fe0b82edf3"} {"nl": {"description": "\u0422\u0440\u0438 \u0431\u0440\u0430\u0442\u0430 \u0434\u043e\u0433\u043e\u0432\u043e\u0440\u0438\u043b\u0438\u0441\u044c \u043e \u0432\u0441\u0442\u0440\u0435\u0447\u0435. \u041f\u0440\u043e\u043d\u0443\u043c\u0435\u0440\u0443\u0435\u043c \u0431\u0440\u0430\u0442\u044c\u0435\u0432 \u0441\u043b\u0435\u0434\u0443\u044e\u0449\u0438\u043c \u043e\u0431\u0440\u0430\u0437\u043e\u043c: \u043f\u0443\u0441\u0442\u044c \u0441\u0442\u0430\u0440\u0448\u0438\u0439 \u0431\u0440\u0430\u0442 \u0438\u043c\u0435\u0435\u0442 \u043d\u043e\u043c\u0435\u0440 1, \u0441\u0440\u0435\u0434\u043d\u0438\u0439 \u0431\u0440\u0430\u0442 \u0438\u043c\u0435\u0435\u0442 \u043d\u043e\u043c\u0435\u0440 2, \u0430 \u043c\u043b\u0430\u0434\u0448\u0438\u0439 \u0431\u0440\u0430\u0442\u00a0\u2014 \u043d\u043e\u043c\u0435\u0440 3. \u041a\u043e\u0433\u0434\u0430 \u043f\u0440\u0438\u0448\u043b\u043e \u0432\u0440\u0435\u043c\u044f \u0432\u0441\u0442\u0440\u0435\u0447\u0438, \u043e\u0434\u0438\u043d \u0438\u0437 \u0431\u0440\u0430\u0442\u044c\u0435\u0432 \u043e\u043f\u043e\u0437\u0434\u0430\u043b. \u041f\u043e \u0437\u0430\u0434\u0430\u043d\u043d\u044b\u043c \u043d\u043e\u043c\u0435\u0440\u0430\u043c \u0434\u0432\u0443\u0445 \u0431\u0440\u0430\u0442\u044c\u0435\u0432, \u043a\u043e\u0442\u043e\u0440\u044b\u0435 \u043f\u0440\u0438\u0448\u043b\u0438 \u0432\u043e\u0432\u0440\u0435\u043c\u044f, \u0432\u0430\u043c \u043f\u0440\u0435\u0434\u0441\u0442\u043e\u0438\u0442 \u043e\u043f\u0440\u0435\u0434\u0435\u043b\u0438\u0442\u044c \u043d\u043e\u043c\u0435\u0440 \u043e\u043f\u043e\u0437\u0434\u0430\u0432\u0448\u0435\u0433\u043e \u0431\u0440\u0430\u0442\u0430.", "input_spec": "\u0412 \u043f\u0435\u0440\u0432\u043e\u0439 \u0441\u0442\u0440\u043e\u043a\u0435 \u0432\u0445\u043e\u0434\u043d\u044b\u0445 \u0434\u0430\u043d\u043d\u044b\u0445 \u0441\u043b\u0435\u0434\u0443\u044e\u0442 \u0434\u0432\u0430 \u0440\u0430\u0437\u043b\u0438\u0447\u043d\u044b\u0445 \u0446\u0435\u043b\u044b\u0445 \u0447\u0438\u0441\u043b\u0430 a \u0438 b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u20093, a\u2009\u2260\u2009b)\u00a0\u2014 \u043d\u043e\u043c\u0435\u0440\u0430 \u0431\u0440\u0430\u0442\u044c\u0435\u0432, \u043a\u043e\u0442\u043e\u0440\u044b\u0435 \u043f\u0440\u0438\u0448\u043b\u0438 \u043d\u0430 \u0432\u0441\u0442\u0440\u0435\u0447\u0443 \u0432\u043e\u0432\u0440\u0435\u043c\u044f. \u041d\u043e\u043c\u0435\u0440\u0430 \u0434\u0430\u043d\u044b \u0432 \u043f\u0440\u043e\u0438\u0437\u0432\u043e\u043b\u044c\u043d\u043e\u043c \u043f\u043e\u0440\u044f\u0434\u043a\u0435.", "output_spec": "\u0412\u044b\u0432\u0435\u0434\u0438\u0442\u0435 \u0435\u0434\u0438\u043d\u0441\u0442\u0432\u0435\u043d\u043d\u043e\u0435 \u0446\u0435\u043b\u043e\u0435 \u0447\u0438\u0441\u043b\u043e\u00a0\u2014 \u043d\u043e\u043c\u0435\u0440 \u0431\u0440\u0430\u0442\u0430, \u043a\u043e\u0442\u043e\u0440\u044b\u0439 \u043e\u043f\u043e\u0437\u0434\u0430\u043b \u043d\u0430 \u0432\u0441\u0442\u0440\u0435\u0447\u0443.", "sample_inputs": ["3 1"], "sample_outputs": ["2"], "notes": null}, "src_uid": "e167dc35a0d3b98c0414c66099e35920"} {"nl": {"description": "To make a paper airplane, one has to use a rectangular piece of paper. From a sheet of standard size you can make $$$s$$$ airplanes.A group of $$$k$$$ people decided to make $$$n$$$ airplanes each. They are going to buy several packs of paper, each of them containing $$$p$$$ sheets, and then distribute the sheets between the people. Each person should have enough sheets to make $$$n$$$ airplanes. How many packs should they buy?", "input_spec": "The only line contains four integers $$$k$$$, $$$n$$$, $$$s$$$, $$$p$$$ ($$$1 \\le k, n, s, p \\le 10^4$$$)\u00a0\u2014 the number of people, the number of airplanes each should make, the number of airplanes that can be made using one sheet and the number of sheets in one pack, respectively.", "output_spec": "Print a single integer\u00a0\u2014 the minimum number of packs they should buy.", "sample_inputs": ["5 3 2 3", "5 3 100 1"], "sample_outputs": ["4", "5"], "notes": "NoteIn the first sample they have to buy $$$4$$$ packs of paper: there will be $$$12$$$ sheets in total, and giving $$$2$$$ sheets to each person is enough to suit everyone's needs.In the second sample they have to buy a pack for each person as they can't share sheets."}, "src_uid": "73f0c7cfc06a9b04e4766d6aa61fc780"} {"nl": {"description": "Alas, finding one's true love is not easy. Masha has been unsuccessful in that yet. Her friend Dasha told Masha about a way to determine the phone number of one's Prince Charming through arithmancy. The phone number is divined like that. First one needs to write down one's own phone numbers. For example, let's suppose that Masha's phone number is 12345. After that one should write her favorite digit from 0 to 9 under the first digit of her number. That will be the first digit of the needed number. For example, Masha's favorite digit is 9. The second digit is determined as a half sum of the second digit of Masha's number and the already written down first digit from her beloved one's number. In this case the arithmetic average equals to (2\u2009+\u20099)\u2009/\u20092\u2009=\u20095.5. Masha can round the number up or down, depending on her wishes. For example, she chooses the digit 5. Having written down the resulting digit under the second digit of her number, Masha moves to finding the third digit in the same way, i.e. finding the half sum the the third digit of her number and the second digit of the new number. The result is (5\u2009+\u20093)\u2009/\u20092\u2009=\u20094. In this case the answer is unique. Thus, every i-th digit is determined as an arithmetic average of the i-th digit of Masha's number and the i\u2009-\u20091-th digit of her true love's number. If needed, the digit can be rounded up or down. For example, Masha can get: 12345 95444 Unfortunately, when Masha tried dialing the number, she got disappointed: as it turned out, the number was unavailable or outside the coverage area. But Masha won't give up. Perhaps, she rounded to a wrong digit or chose the first digit badly. That's why she keeps finding more and more new numbers and calling them. Count the number of numbers Masha calls. Masha calls all the possible numbers that can be found by the described means of arithmancy, except for, perhaps, her own one.", "input_spec": "The first line contains nonempty sequence consisting of digits from 0 to 9 \u2014 Masha's phone number. The sequence length does not exceed 50.", "output_spec": "Output the single number \u2014 the number of phone numbers Masha will dial.", "sample_inputs": ["12345", "09"], "sample_outputs": ["48", "15"], "notes": null}, "src_uid": "2dd8bb6e8182278d037aa3a59ca3517b"} {"nl": {"description": "Yakko, Wakko and Dot, world-famous animaniacs, decided to rest from acting in cartoons, and take a leave to travel a bit. Yakko dreamt to go to Pennsylvania, his Motherland and the Motherland of his ancestors. Wakko thought about Tasmania, its beaches, sun and sea. Dot chose Transylvania as the most mysterious and unpredictable place.But to their great regret, the leave turned to be very short, so it will be enough to visit one of the three above named places. That's why Yakko, as the cleverest, came up with a truly genius idea: let each of the three roll an ordinary six-sided die, and the one with the highest amount of points will be the winner, and will take the other two to the place of his/her dreams.Yakko thrown a die and got Y points, Wakko \u2014 W points. It was Dot's turn. But she didn't hurry. Dot wanted to know for sure what were her chances to visit Transylvania.It is known that Yakko and Wakko are true gentlemen, that's why if they have the same amount of points with Dot, they will let Dot win.", "input_spec": "The only line of the input file contains two natural numbers Y and W \u2014 the results of Yakko's and Wakko's die rolls.", "output_spec": "Output the required probability in the form of irreducible fraction in format \u00abA/B\u00bb, where A \u2014 the numerator, and B \u2014 the denominator. If the required probability equals to zero, output \u00ab0/1\u00bb. If the required probability equals to 1, output \u00ab1/1\u00bb. ", "sample_inputs": ["4 2"], "sample_outputs": ["1/2"], "notes": "NoteDot will go to Transylvania, if she is lucky to roll 4, 5 or 6 points."}, "src_uid": "f97eb4ecffb6cbc8679f0c621fd59414"} {"nl": {"description": "Imagine a city with n horizontal streets crossing m vertical streets, forming an (n\u2009-\u20091)\u2009\u00d7\u2009(m\u2009-\u20091) grid. In order to increase the traffic flow, mayor of the city has decided to make each street one way. This means in each horizontal street, the traffic moves only from west to east or only from east to west. Also, traffic moves only from north to south or only from south to north in each vertical street. It is possible to enter a horizontal street from a vertical street, or vice versa, at their intersection. The mayor has received some street direction patterns. Your task is to check whether it is possible to reach any junction from any other junction in the proposed street direction pattern.", "input_spec": "The first line of input contains two integers n and m, (2\u2009\u2264\u2009n,\u2009m\u2009\u2264\u200920), denoting the number of horizontal streets and the number of vertical streets. The second line contains a string of length n, made of characters '<' and '>', denoting direction of each horizontal street. If the i-th character is equal to '<', the street is directed from east to west otherwise, the street is directed from west to east. Streets are listed in order from north to south. The third line contains a string of length m, made of characters '^' and 'v', denoting direction of each vertical street. If the i-th character is equal to '^', the street is directed from south to north, otherwise the street is directed from north to south. Streets are listed in order from west to east.", "output_spec": "If the given pattern meets the mayor's criteria, print a single line containing \"YES\", otherwise print a single line containing \"NO\".", "sample_inputs": ["3 3\n><>\nv^v", "4 6\n<><>\nv^v^v^"], "sample_outputs": ["NO", "YES"], "notes": "NoteThe figure above shows street directions in the second sample test case."}, "src_uid": "eab5c84c9658eb32f5614cd2497541cf"} {"nl": {"description": "We've got no test cases. A big olympiad is coming up. But the problemsetters' number one priority should be adding another problem to the round. The diameter of a multiset of points on the line is the largest distance between two points from this set. For example, the diameter of the multiset {1,\u20093,\u20092,\u20091} is 2.Diameter of multiset consisting of one point is 0.You are given n points on the line. What is the minimum number of points you have to remove, so that the diameter of the multiset of the remaining points will not exceed d?", "input_spec": "The first line contains two integers n and d (1\u2009\u2264\u2009n\u2009\u2264\u2009100,\u20090\u2009\u2264\u2009d\u2009\u2264\u2009100)\u00a0\u2014 the amount of points and the maximum allowed diameter respectively. The second line contains n space separated integers (1\u2009\u2264\u2009xi\u2009\u2264\u2009100)\u00a0\u2014 the coordinates of the points.", "output_spec": "Output a single integer\u00a0\u2014 the minimum number of points you have to remove.", "sample_inputs": ["3 1\n2 1 4", "3 0\n7 7 7", "6 3\n1 3 4 6 9 10"], "sample_outputs": ["1", "0", "3"], "notes": "NoteIn the first test case the optimal strategy is to remove the point with coordinate 4. The remaining points will have coordinates 1 and 2, so the diameter will be equal to 2\u2009-\u20091\u2009=\u20091.In the second test case the diameter is equal to 0, so its is unnecessary to remove any points. In the third test case the optimal strategy is to remove points with coordinates 1, 9 and 10. The remaining points will have coordinates 3, 4 and 6, so the diameter will be equal to 6\u2009-\u20093\u2009=\u20093."}, "src_uid": "6bcb324c072f796f4d50bafea5f624b2"} {"nl": {"description": "Polycarp is crazy about round numbers. He especially likes the numbers divisible by 10k.In the given number of n Polycarp wants to remove the least number of digits to get a number that is divisible by 10k. For example, if k\u2009=\u20093, in the number 30020 it is enough to delete a single digit (2). In this case, the result is 3000 that is divisible by 103\u2009=\u20091000.Write a program that prints the minimum number of digits to be deleted from the given integer number n, so that the result is divisible by 10k. The result should not start with the unnecessary leading zero (i.e., zero can start only the number 0, which is required to be written as exactly one digit).It is guaranteed that the answer exists.", "input_spec": "The only line of the input contains two integer numbers n and k (0\u2009\u2264\u2009n\u2009\u2264\u20092\u2009000\u2009000\u2009000, 1\u2009\u2264\u2009k\u2009\u2264\u20099). It is guaranteed that the answer exists. All numbers in the input are written in traditional notation of integers, that is, without any extra leading zeros.", "output_spec": "Print w \u2014 the required minimal number of digits to erase. After removing the appropriate w digits from the number n, the result should have a value that is divisible by 10k. The result can start with digit 0 in the single case (the result is zero and written by exactly the only digit 0).", "sample_inputs": ["30020 3", "100 9", "10203049 2"], "sample_outputs": ["1", "2", "3"], "notes": "NoteIn the example 2 you can remove two digits: 1 and any 0. The result is number 0 which is divisible by any number."}, "src_uid": "7a8890417aa48c2b93b559ca118853f9"} {"nl": {"description": "The recent All-Berland Olympiad in Informatics featured n participants with each scoring a certain amount of points.As the head of the programming committee, you are to determine the set of participants to be awarded with diplomas with respect to the following criteria: At least one participant should get a diploma. None of those with score equal to zero should get awarded. When someone is awarded, all participants with score not less than his score should also be awarded. Determine the number of ways to choose a subset of participants that will receive the diplomas.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of participants. The next line contains a sequence of n integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u2009600)\u00a0\u2014 participants' scores. It's guaranteed that at least one participant has non-zero score.", "output_spec": "Print a single integer\u00a0\u2014 the desired number of ways.", "sample_inputs": ["4\n1 3 3 2", "3\n1 1 1", "4\n42 0 0 42"], "sample_outputs": ["3", "1", "1"], "notes": "NoteThere are three ways to choose a subset in sample case one. Only participants with 3 points will get diplomas. Participants with 2 or 3 points will get diplomas. Everyone will get a diploma! The only option in sample case two is to award everyone.Note that in sample case three participants with zero scores cannot get anything."}, "src_uid": "3b520c15ea9a11b16129da30dcfb5161"} {"nl": {"description": "Kolya Gerasimov loves kefir very much. He lives in year 1984 and knows all the details of buying this delicious drink. One day, as you probably know, he found himself in year 2084, and buying kefir there is much more complicated.Kolya is hungry, so he went to the nearest milk shop. In 2084 you may buy kefir in a plastic liter bottle, that costs a rubles, or in glass liter bottle, that costs b rubles. Also, you may return empty glass bottle and get c (c\u2009<\u2009b) rubles back, but you cannot return plastic bottles.Kolya has n rubles and he is really hungry, so he wants to drink as much kefir as possible. There were no plastic bottles in his 1984, so Kolya doesn't know how to act optimally and asks for your help.", "input_spec": "First line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091018)\u00a0\u2014 the number of rubles Kolya has at the beginning. Then follow three lines containing integers a, b and c (1\u2009\u2264\u2009a\u2009\u2264\u20091018, 1\u2009\u2264\u2009c\u2009<\u2009b\u2009\u2264\u20091018)\u00a0\u2014 the cost of one plastic liter bottle, the cost of one glass liter bottle and the money one can get back by returning an empty glass bottle, respectively.", "output_spec": "Print the only integer\u00a0\u2014 maximum number of liters of kefir, that Kolya can drink.", "sample_inputs": ["10\n11\n9\n8", "10\n5\n6\n1"], "sample_outputs": ["2", "2"], "notes": "NoteIn the first sample, Kolya can buy one glass bottle, then return it and buy one more glass bottle. Thus he will drink 2 liters of kefir.In the second sample, Kolya can buy two plastic bottle and get two liters of kefir, or he can buy one liter glass bottle, then return it and buy one plastic bottle. In both cases he will drink two liters of kefir."}, "src_uid": "0ee9abec69230eab25de51aef0984f8f"} {"nl": {"description": "A car moves from point A to point B at speed v meters per second. The action takes place on the X-axis. At the distance d meters from A there are traffic lights. Starting from time 0, for the first g seconds the green light is on, then for the following r seconds the red light is on, then again the green light is on for the g seconds, and so on.The car can be instantly accelerated from 0 to v and vice versa, can instantly slow down from the v to 0. Consider that it passes the traffic lights at the green light instantly. If the car approaches the traffic lights at the moment when the red light has just turned on, it doesn't have time to pass it. But if it approaches the traffic lights at the moment when the green light has just turned on, it can move. The car leaves point A at the time 0.What is the minimum time for the car to get from point A to point B without breaking the traffic rules?", "input_spec": "The first line contains integers l, d, v, g, r (1\u2009\u2264\u2009l,\u2009d,\u2009v,\u2009g,\u2009r\u2009\u2264\u20091000,\u2009d\u2009<\u2009l) \u2014 the distance between A and B (in meters), the distance from A to the traffic lights, car's speed, the duration of green light and the duration of red light.", "output_spec": "Output a single number \u2014 the minimum time that the car needs to get from point A to point B. Your output must have relative or absolute error less than 10\u2009-\u20096.", "sample_inputs": ["2 1 3 4 5", "5 4 3 1 1"], "sample_outputs": ["0.66666667", "2.33333333"], "notes": null}, "src_uid": "e4a4affb439365c843c9f9828d81b42c"} {"nl": {"description": "Tokitsukaze is one of the characters in the game \"Kantai Collection\". In this game, every character has a common attribute\u00a0\u2014 health points, shortened to HP.In general, different values of HP are grouped into $$$4$$$ categories: Category $$$A$$$ if HP is in the form of $$$(4 n + 1)$$$, that is, when divided by $$$4$$$, the remainder is $$$1$$$; Category $$$B$$$ if HP is in the form of $$$(4 n + 3)$$$, that is, when divided by $$$4$$$, the remainder is $$$3$$$; Category $$$C$$$ if HP is in the form of $$$(4 n + 2)$$$, that is, when divided by $$$4$$$, the remainder is $$$2$$$; Category $$$D$$$ if HP is in the form of $$$4 n$$$, that is, when divided by $$$4$$$, the remainder is $$$0$$$. The above-mentioned $$$n$$$ can be any integer.These $$$4$$$ categories ordered from highest to lowest as $$$A > B > C > D$$$, which means category $$$A$$$ is the highest and category $$$D$$$ is the lowest.While playing the game, players can increase the HP of the character. Now, Tokitsukaze wants you to increase her HP by at most $$$2$$$ (that is, either by $$$0$$$, $$$1$$$ or $$$2$$$). How much should she increase her HP so that it has the highest possible category?", "input_spec": "The only line contains a single integer $$$x$$$ ($$$30 \\leq x \\leq 100$$$)\u00a0\u2014 the value Tokitsukaze's HP currently.", "output_spec": "Print an integer $$$a$$$ ($$$0 \\leq a \\leq 2$$$) and an uppercase letter $$$b$$$ ($$$b \\in \\lbrace A, B, C, D \\rbrace$$$), representing that the best way is to increase her HP by $$$a$$$, and then the category becomes $$$b$$$. Note that the output characters are case-sensitive.", "sample_inputs": ["33", "98"], "sample_outputs": ["0 A", "1 B"], "notes": "NoteFor the first example, the category of Tokitsukaze's HP is already $$$A$$$, so you don't need to enhance her ability.For the second example: If you don't increase her HP, its value is still $$$98$$$, which equals to $$$(4 \\times 24 + 2)$$$, and its category is $$$C$$$. If you increase her HP by $$$1$$$, its value becomes $$$99$$$, which equals to $$$(4 \\times 24 + 3)$$$, and its category becomes $$$B$$$. If you increase her HP by $$$2$$$, its value becomes $$$100$$$, which equals to $$$(4 \\times 25)$$$, and its category becomes $$$D$$$. Therefore, the best way is to increase her HP by $$$1$$$ so that the category of her HP becomes $$$B$$$."}, "src_uid": "488e809bd0c55531b0b47f577996627e"} {"nl": {"description": "Polycarp invited all his friends to the tea party to celebrate the holiday. He has n cups, one for each of his n friends, with volumes a1,\u2009a2,\u2009...,\u2009an. His teapot stores w milliliters of tea (w\u2009\u2264\u2009a1\u2009+\u2009a2\u2009+\u2009...\u2009+\u2009an). Polycarp wants to pour tea in cups in such a way that: Every cup will contain tea for at least half of its volume Every cup will contain integer number of milliliters of tea All the tea from the teapot will be poured into cups All friends will be satisfied. Friend with cup i won't be satisfied, if there exists such cup j that cup i contains less tea than cup j but ai\u2009>\u2009aj.For each cup output how many milliliters of tea should be poured in it. If it's impossible to pour all the tea and satisfy all conditions then output -1.", "input_spec": "The first line contains two integer numbers n and w (1\u2009\u2264\u2009n\u2009\u2264\u2009100, ). The second line contains n numbers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009100).", "output_spec": "Output how many milliliters of tea every cup should contain. If there are multiple answers, print any of them. If it's impossible to pour all the tea and satisfy all conditions then output -1.", "sample_inputs": ["2 10\n8 7", "4 4\n1 1 1 1", "3 10\n9 8 10"], "sample_outputs": ["6 4", "1 1 1 1", "-1"], "notes": "NoteIn the third example you should pour to the first cup at least 5 milliliters, to the second one at least 4, to the third one at least 5. It sums up to 14, which is greater than 10 milliliters available."}, "src_uid": "5d3bb9e03f4c5c8ecb6233bd5f90f3a3"} {"nl": {"description": "Little boy Valera studies an algorithm of sorting an integer array. After studying the theory, he went on to the practical tasks. As a result, he wrote a program that sorts an array of n integers a1,\u2009a2,\u2009...,\u2009an in the non-decreasing order. The pseudocode of the program, written by Valera, is given below. The input of the program gets number n and array a.loop integer variable i from 1 to n\u2009-\u20091\u00a0\u00a0\u00a0\u00a0loop integer variable j from i to n\u2009-\u20091\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0if (aj\u2009>\u2009aj\u2009+\u20091), then swap the values of elements aj and aj\u2009+\u20091But Valera could have made a mistake, because he hasn't yet fully learned the sorting algorithm. If Valera made a mistake in his program, you need to give a counter-example that makes his program work improperly (that is, the example that makes the program sort the array not in the non-decreasing order). If such example for the given value of n doesn't exist, print -1.", "input_spec": "You've got a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200950) \u2014 the size of the sorted array.", "output_spec": "Print n space-separated integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009100) \u2014 the counter-example, for which Valera's algorithm won't work correctly. If the counter-example that meets the described conditions is impossible to give, print -1. If there are several counter-examples, consisting of n numbers, you are allowed to print any of them.", "sample_inputs": ["1"], "sample_outputs": ["-1"], "notes": null}, "src_uid": "fe8a0332119bd182a0a5b7758716317e"} {"nl": {"description": "Let's define a split of $$$n$$$ as a nonincreasing sequence of positive integers, the sum of which is $$$n$$$. For example, the following sequences are splits of $$$8$$$: $$$[4, 4]$$$, $$$[3, 3, 2]$$$, $$$[2, 2, 1, 1, 1, 1]$$$, $$$[5, 2, 1]$$$.The following sequences aren't splits of $$$8$$$: $$$[1, 7]$$$, $$$[5, 4]$$$, $$$[11, -3]$$$, $$$[1, 1, 4, 1, 1]$$$.The weight of a split is the number of elements in the split that are equal to the first element. For example, the weight of the split $$$[1, 1, 1, 1, 1]$$$ is $$$5$$$, the weight of the split $$$[5, 5, 3, 3, 3]$$$ is $$$2$$$ and the weight of the split $$$[9]$$$ equals $$$1$$$.For a given $$$n$$$, find out the number of different weights of its splits.", "input_spec": "The first line contains one integer $$$n$$$ ($$$1 \\leq n \\leq 10^9$$$).", "output_spec": "Output one integer\u00a0\u2014 the answer to the problem.", "sample_inputs": ["7", "8", "9"], "sample_outputs": ["4", "5", "5"], "notes": "NoteIn the first sample, there are following possible weights of splits of $$$7$$$:Weight 1: [$$$\\textbf 7$$$] Weight 2: [$$$\\textbf 3$$$, $$$\\textbf 3$$$, 1] Weight 3: [$$$\\textbf 2$$$, $$$\\textbf 2$$$, $$$\\textbf 2$$$, 1] Weight 7: [$$$\\textbf 1$$$, $$$\\textbf 1$$$, $$$\\textbf 1$$$, $$$\\textbf 1$$$, $$$\\textbf 1$$$, $$$\\textbf 1$$$, $$$\\textbf 1$$$]"}, "src_uid": "5551742f6ab39fdac3930d866f439e3e"} {"nl": {"description": "Let quasi-palindromic number be such number that adding some leading zeros (possible none) to it produces a palindromic string. String t is called a palindrome, if it reads the same from left to right and from right to left.For example, numbers 131 and 2010200 are quasi-palindromic, they can be transformed to strings \"131\" and \"002010200\", respectively, which are palindromes.You are given some integer number x. Check if it's a quasi-palindromic number.", "input_spec": "The first line contains one integer number x (1\u2009\u2264\u2009x\u2009\u2264\u2009109). This number is given without any leading zeroes.", "output_spec": "Print \"YES\" if number x is quasi-palindromic. Otherwise, print \"NO\" (without quotes).", "sample_inputs": ["131", "320", "2010200"], "sample_outputs": ["YES", "NO", "YES"], "notes": null}, "src_uid": "d82278932881e3aa997086c909f29051"} {"nl": {"description": "Hongcow is learning to spell! One day, his teacher gives him a word that he needs to learn to spell. Being a dutiful student, he immediately learns how to spell the word.Hongcow has decided to try to make new words from this one. He starts by taking the word he just learned how to spell, and moves the last character of the word to the beginning of the word. He calls this a cyclic shift. He can apply cyclic shift many times. For example, consecutively applying cyclic shift operation to the word \"abracadabra\" Hongcow will get words \"aabracadabr\", \"raabracadab\" and so on.Hongcow is now wondering how many distinct words he can generate by doing the cyclic shift arbitrarily many times. The initial string is also counted.", "input_spec": "The first line of input will be a single string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200950), the word Hongcow initially learns how to spell. The string s consists only of lowercase English letters ('a'\u2013'z').", "output_spec": "Output a single integer equal to the number of distinct strings that Hongcow can obtain by applying the cyclic shift arbitrarily many times to the given string.", "sample_inputs": ["abcd", "bbb", "yzyz"], "sample_outputs": ["4", "1", "2"], "notes": "NoteFor the first sample, the strings Hongcow can generate are \"abcd\", \"dabc\", \"cdab\", and \"bcda\".For the second sample, no matter how many times Hongcow does the cyclic shift, Hongcow can only generate \"bbb\".For the third sample, the two strings Hongcow can generate are \"yzyz\" and \"zyzy\"."}, "src_uid": "8909ac99ed4ab2ee4d681ec864c7831e"} {"nl": {"description": "Programmers' kids solve this riddle in 5-10 minutes. How fast can you do it?", "input_spec": "The input contains a single integer n (0\u2009\u2264\u2009n\u2009\u2264\u20092000000000).", "output_spec": "Output a single integer.", "sample_inputs": ["11", "14", "61441", "571576", "2128506"], "sample_outputs": ["2", "0", "2", "10", "3"], "notes": null}, "src_uid": "16a784cb9953bc91cb2e7767b04b76f2"} {"nl": {"description": "Ivan has a robot which is situated on an infinite grid. Initially the robot is standing in the starting cell (0,\u20090). The robot can process commands. There are four types of commands it can perform: U \u2014 move from the cell (x,\u2009y) to (x,\u2009y\u2009+\u20091); D \u2014 move from (x,\u2009y) to (x,\u2009y\u2009-\u20091); L \u2014 move from (x,\u2009y) to (x\u2009-\u20091,\u2009y); R \u2014 move from (x,\u2009y) to (x\u2009+\u20091,\u2009y). Ivan entered a sequence of n commands, and the robot processed it. After this sequence the robot ended up in the starting cell (0,\u20090), but Ivan doubts that the sequence is such that after performing it correctly the robot ends up in the same cell. He thinks that some commands were ignored by robot. To acknowledge whether the robot is severely bugged, he needs to calculate the maximum possible number of commands that were performed correctly. Help Ivan to do the calculations!", "input_spec": "The first line contains one number n \u2014 the length of sequence of commands entered by Ivan (1\u2009\u2264\u2009n\u2009\u2264\u2009100). The second line contains the sequence itself \u2014 a string consisting of n characters. Each character can be U, D, L or R.", "output_spec": "Print the maximum possible number of commands from the sequence the robot could perform to end up in the starting cell.", "sample_inputs": ["4\nLDUR", "5\nRRRUU", "6\nLLRRRR"], "sample_outputs": ["4", "0", "4"], "notes": null}, "src_uid": "b9fa2bb8001bd064ede531a5281cfd8a"} {"nl": {"description": "Gennady owns a small hotel in the countryside where he lives a peaceful life. He loves to take long walks, watch sunsets and play cards with tourists staying in his hotel. His favorite game is called \"Mau-Mau\".To play Mau-Mau, you need a pack of $$$52$$$ cards. Each card has a suit (Diamonds \u2014 D, Clubs \u2014 C, Spades \u2014 S, or Hearts \u2014 H), and a rank (2, 3, 4, 5, 6, 7, 8, 9, T, J, Q, K, or A).At the start of the game, there is one card on the table and you have five cards in your hand. You can play a card from your hand if and only if it has the same rank or the same suit as the card on the table.In order to check if you'd be a good playing partner, Gennady has prepared a task for you. Given the card on the table and five cards in your hand, check if you can play at least one card.", "input_spec": "The first line of the input contains one string which describes the card on the table. The second line contains five strings which describe the cards in your hand. Each string is two characters long. The first character denotes the rank and belongs to the set $$$\\{{\\tt 2}, {\\tt 3}, {\\tt 4}, {\\tt 5}, {\\tt 6}, {\\tt 7}, {\\tt 8}, {\\tt 9}, {\\tt T}, {\\tt J}, {\\tt Q}, {\\tt K}, {\\tt A}\\}$$$. The second character denotes the suit and belongs to the set $$$\\{{\\tt D}, {\\tt C}, {\\tt S}, {\\tt H}\\}$$$. All the cards in the input are different.", "output_spec": "If it is possible to play a card from your hand, print one word \"YES\". Otherwise, print \"NO\". You can print each letter in any case (upper or lower).", "sample_inputs": ["AS\n2H 4C TH JH AD", "2H\n3D 4C AC KD AS", "4D\nAS AC AD AH 5H"], "sample_outputs": ["YES", "NO", "YES"], "notes": "NoteIn the first example, there is an Ace of Spades (AS) on the table. You can play an Ace of Diamonds (AD) because both of them are Aces.In the second example, you cannot play any card.In the third example, you can play an Ace of Diamonds (AD) because it has the same suit as a Four of Diamonds (4D), which lies on the table."}, "src_uid": "699444eb6366ad12bc77e7ac2602d74b"} {"nl": {"description": "\u0412 \u0411\u0435\u0440\u043b\u044f\u043d\u0434\u0441\u043a\u043e\u043c \u0433\u043e\u0441\u0443\u0434\u0430\u0440\u0441\u0442\u0432\u0435\u043d\u043d\u043e\u043c \u0443\u043d\u0438\u0432\u0435\u0440\u0441\u0438\u0442\u0435\u0442\u0435 \u043b\u043e\u043a\u0430\u043b\u044c\u043d\u0430\u044f \u0441\u0435\u0442\u044c \u043c\u0435\u0436\u0434\u0443 \u0441\u0435\u0440\u0432\u0435\u0440\u0430\u043c\u0438 \u043d\u0435 \u0432\u0441\u0435\u0433\u0434\u0430 \u0440\u0430\u0431\u043e\u0442\u0430\u0435\u0442 \u0431\u0435\u0437 \u043e\u0448\u0438\u0431\u043e\u043a. \u041f\u0440\u0438 \u043f\u0435\u0440\u0435\u0434\u0430\u0447\u0435 \u0434\u0432\u0443\u0445 \u043e\u0434\u0438\u043d\u0430\u043a\u043e\u0432\u044b\u0445 \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0439 \u043f\u043e\u0434\u0440\u044f\u0434 \u0432\u043e\u0437\u043c\u043e\u0436\u043d\u0430 \u043e\u0448\u0438\u0431\u043a\u0430, \u0432 \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430\u0442\u0435 \u043a\u043e\u0442\u043e\u0440\u043e\u0439 \u044d\u0442\u0438 \u0434\u0432\u0430 \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u044f \u0441\u043b\u0438\u0432\u0430\u044e\u0442\u0441\u044f \u0432 \u043e\u0434\u043d\u043e. \u041f\u0440\u0438 \u0442\u0430\u043a\u043e\u043c \u0441\u043b\u0438\u044f\u043d\u0438\u0438 \u043a\u043e\u043d\u0435\u0446 \u043f\u0435\u0440\u0432\u043e\u0433\u043e \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u044f \u0441\u043e\u0432\u043c\u0435\u0449\u0430\u0435\u0442\u0441\u044f \u0441 \u043d\u0430\u0447\u0430\u043b\u043e\u043c \u0432\u0442\u043e\u0440\u043e\u0433\u043e. \u041a\u043e\u043d\u0435\u0447\u043d\u043e, \u0441\u043e\u0432\u043c\u0435\u0449\u0435\u043d\u0438\u0435 \u043c\u043e\u0436\u0435\u0442 \u043f\u0440\u043e\u0438\u0441\u0445\u043e\u0434\u0438\u0442\u044c \u0442\u043e\u043b\u044c\u043a\u043e \u043f\u043e \u043e\u0434\u0438\u043d\u0430\u043a\u043e\u0432\u044b\u043c \u0441\u0438\u043c\u0432\u043e\u043b\u0430\u043c. \u0414\u043b\u0438\u043d\u0430 \u0441\u043e\u0432\u043c\u0435\u0449\u0435\u043d\u0438\u044f \u0434\u043e\u043b\u0436\u043d\u0430 \u0431\u044b\u0442\u044c \u043f\u043e\u043b\u043e\u0436\u0438\u0442\u0435\u043b\u044c\u043d\u044b\u043c \u0447\u0438\u0441\u043b\u043e\u043c, \u043c\u0435\u043d\u044c\u0448\u0438\u043c \u0434\u043b\u0438\u043d\u044b \u0442\u0435\u043a\u0441\u0442\u0430 \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u044f. \u041d\u0430\u043f\u0440\u0438\u043c\u0435\u0440, \u043f\u0440\u0438 \u043f\u0435\u0440\u0435\u0434\u0430\u0447\u0435 \u0434\u0432\u0443\u0445 \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0439 \u00ababrakadabra\u00bb \u043f\u043e\u0434\u0440\u044f\u0434 \u0432\u043e\u0437\u043c\u043e\u0436\u043d\u043e, \u0447\u0442\u043e \u043e\u043d\u043e \u0431\u0443\u0434\u0435\u0442 \u043f\u0435\u0440\u0435\u0434\u0430\u043d\u043e \u0441 \u043e\u0448\u0438\u0431\u043a\u043e\u0439 \u043e\u043f\u0438\u0441\u0430\u043d\u043d\u043e\u0433\u043e \u0432\u0438\u0434\u0430, \u0438 \u0442\u043e\u0433\u0434\u0430 \u0431\u0443\u0434\u0435\u0442 \u043f\u043e\u043b\u0443\u0447\u0435\u043d\u043e \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0435 \u0432\u0438\u0434\u0430 \u00ababrakadabrabrakadabra\u00bb \u0438\u043b\u0438 \u00ababrakadabrakadabra\u00bb (\u0432 \u043f\u0435\u0440\u0432\u043e\u043c \u0441\u043b\u0443\u0447\u0430\u0435 \u0441\u043e\u0432\u043c\u0435\u0449\u0435\u043d\u0438\u0435 \u043f\u0440\u043e\u0438\u0437\u043e\u0448\u043b\u043e \u043f\u043e \u043e\u0434\u043d\u043e\u043c\u0443 \u0441\u0438\u043c\u0432\u043e\u043b\u0443, \u0430 \u0432\u043e \u0432\u0442\u043e\u0440\u043e\u043c \u2014 \u043f\u043e \u0447\u0435\u0442\u044b\u0440\u0435\u043c).\u041f\u043e \u043f\u043e\u043b\u0443\u0447\u0435\u043d\u043d\u043e\u043c\u0443 \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u044e t \u043e\u043f\u0440\u0435\u0434\u0435\u043b\u0438\u0442\u0435, \u0432\u043e\u0437\u043c\u043e\u0436\u043d\u043e \u043b\u0438, \u0447\u0442\u043e \u044d\u0442\u043e \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430\u0442 \u043e\u0448\u0438\u0431\u043a\u0438 \u043e\u043f\u0438\u0441\u0430\u043d\u043d\u043e\u0433\u043e \u0432\u0438\u0434\u0430 \u0440\u0430\u0431\u043e\u0442\u044b \u043b\u043e\u043a\u0430\u043b\u044c\u043d\u043e\u0439 \u0441\u0435\u0442\u0438, \u0438 \u0435\u0441\u043b\u0438 \u0432\u043e\u0437\u043c\u043e\u0436\u043d\u043e, \u043e\u043f\u0440\u0435\u0434\u0435\u043b\u0438\u0442\u0435 \u0432\u043e\u0437\u043c\u043e\u0436\u043d\u043e\u0435 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0435 s. \u041d\u0435 \u0441\u043b\u0435\u0434\u0443\u0435\u0442 \u0441\u0447\u0438\u0442\u0430\u0442\u044c \u043e\u0448\u0438\u0431\u043a\u043e\u0439 \u0441\u0438\u0442\u0443\u0430\u0446\u0438\u044e \u043f\u043e\u043b\u043d\u043e\u0433\u043e \u043d\u0430\u043b\u043e\u0436\u0435\u043d\u0438\u044f \u0434\u0440\u0443\u0433\u0430 \u043d\u0430 \u0434\u0440\u0443\u0433\u0430 \u0434\u0432\u0443\u0445 \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0439. \u041a \u043f\u0440\u0438\u043c\u0435\u0440\u0443, \u0435\u0441\u043b\u0438 \u043f\u043e\u043b\u0443\u0447\u0435\u043d\u043e \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0435 \u00ababcd\u00bb, \u0441\u043b\u0435\u0434\u0443\u0435\u0442 \u0441\u0447\u0438\u0442\u0430\u0442\u044c, \u0447\u0442\u043e \u0432 \u043d\u0451\u043c \u043e\u0448\u0438\u0431\u043a\u0438 \u043d\u0435\u0442. \u0410\u043d\u0430\u043b\u043e\u0433\u0438\u0447\u043d\u043e, \u043f\u0440\u043e\u0441\u0442\u043e\u0435 \u0434\u043e\u043f\u0438\u0441\u044b\u0432\u0430\u043d\u0438\u0435 \u043e\u0434\u043d\u043e\u0433\u043e \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u044f \u0432\u0441\u043b\u0435\u0434 \u0437\u0430 \u0434\u0440\u0443\u0433\u0438\u043c \u043d\u0435 \u044f\u0432\u043b\u044f\u0435\u0442\u0441\u044f \u043f\u0440\u0438\u0437\u043d\u0430\u043a\u043e\u043c \u043e\u0448\u0438\u0431\u043a\u0438. \u041d\u0430\u043f\u0440\u0438\u043c\u0435\u0440, \u0435\u0441\u043b\u0438 \u043f\u043e\u043b\u0443\u0447\u0435\u043d\u043e \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0435 \u00ababcabc\u00bb, \u0441\u043b\u0435\u0434\u0443\u0435\u0442 \u0441\u0447\u0438\u0442\u0430\u0442\u044c, \u0447\u0442\u043e \u0432 \u043d\u0451\u043c \u043e\u0448\u0438\u0431\u043a\u0438 \u043d\u0435\u0442.", "input_spec": "\u0412 \u0435\u0434\u0438\u043d\u0441\u0442\u0432\u0435\u043d\u043d\u043e\u0439 \u0441\u0442\u0440\u043e\u043a\u0435 \u0432\u044b\u0445\u043e\u0434\u043d\u044b\u0445 \u0434\u0430\u043d\u043d\u044b\u0445 \u0441\u043b\u0435\u0434\u0443\u0435\u0442 \u043d\u0435\u043f\u0443\u0441\u0442\u0430\u044f \u0441\u0442\u0440\u043e\u043a\u0430 t, \u0441\u043e\u0441\u0442\u043e\u044f\u0449\u0430\u044f \u0438\u0437 \u0441\u0442\u0440\u043e\u0447\u043d\u044b\u0445 \u0431\u0443\u043a\u0432 \u043b\u0430\u0442\u0438\u043d\u0441\u043a\u043e\u0433\u043e \u0430\u043b\u0444\u0430\u0432\u0438\u0442\u0430. \u0414\u043b\u0438\u043d\u0430 \u0441\u0442\u0440\u043e\u043a\u0438 t \u043d\u0435 \u043f\u0440\u0435\u0432\u043e\u0441\u0445\u043e\u0434\u0438\u0442 100 \u0441\u0438\u043c\u0432\u043e\u043b\u043e\u0432.", "output_spec": "\u0415\u0441\u043b\u0438 \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0435 t \u043d\u0435 \u043c\u043e\u0436\u0435\u0442 \u0441\u043e\u0434\u0435\u0440\u0436\u0430\u0442\u044c \u043e\u0448\u0438\u0431\u043a\u0438, \u0432\u044b\u0432\u0435\u0434\u0438\u0442\u0435 \u00abNO\u00bb (\u0431\u0435\u0437 \u043a\u0430\u0432\u044b\u0447\u0435\u043a) \u0432 \u0435\u0434\u0438\u043d\u0441\u0442\u0432\u0435\u043d\u043d\u0443\u044e \u0441\u0442\u0440\u043e\u043a\u0443 \u0432\u044b\u0445\u043e\u0434\u043d\u044b\u0445 \u0434\u0430\u043d\u043d\u044b\u0445. \u0412 \u043f\u0440\u043e\u0442\u0438\u0432\u043d\u043e\u043c \u0441\u043b\u0443\u0447\u0430\u0435 \u0432 \u043f\u0435\u0440\u0432\u043e\u0439 \u0441\u0442\u0440\u043e\u043a\u0435 \u0432\u044b\u0432\u0435\u0434\u0438\u0442\u0435 \u00abYES\u00bb (\u0431\u0435\u0437 \u043a\u0430\u0432\u044b\u0447\u0435\u043a), \u0430 \u0432 \u0441\u043b\u0435\u0434\u0443\u044e\u0449\u0435\u0439 \u0441\u0442\u0440\u043e\u043a\u0435 \u0432\u044b\u0432\u0435\u0434\u0438\u0442\u0435 \u0441\u0442\u0440\u043e\u043a\u0443 s\u00a0\u2014 \u0432\u043e\u0437\u043c\u043e\u0436\u043d\u043e\u0435 \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0435, \u043a\u043e\u0442\u043e\u0440\u043e\u0435 \u043c\u043e\u0433\u043b\u043e \u043f\u0440\u0438\u0432\u0435\u0441\u0442\u0438 \u043a \u043e\u0448\u0438\u0431\u043a\u0435. \u0415\u0441\u043b\u0438 \u0432\u043e\u0437\u043c\u043e\u0436\u043d\u044b\u0445 \u043e\u0442\u0432\u0435\u0442\u043e\u0432 \u043d\u0435\u0441\u043a\u043e\u043b\u044c\u043a\u043e, \u0440\u0430\u0437\u0440\u0435\u0448\u0430\u0435\u0442\u0441\u044f \u0432\u044b\u0432\u0435\u0441\u0442\u0438 \u043b\u044e\u0431\u043e\u0439 \u0438\u0437 \u043d\u0438\u0445.", "sample_inputs": ["abrakadabrabrakadabra", "acacacaca", "abcabc", "abababab", "tatbt"], "sample_outputs": ["YES\nabrakadabra", "YES\nacaca", "NO", "YES\nababab", "NO"], "notes": "\u041f\u0440\u0438\u043c\u0435\u0447\u0430\u043d\u0438\u0435\u0412\u043e \u0432\u0442\u043e\u0440\u043e\u043c \u043f\u0440\u0438\u043c\u0435\u0440\u0435 \u043f\u043e\u0434\u0445\u043e\u0434\u044f\u0449\u0438\u043c \u043e\u0442\u0432\u0435\u0442\u043e\u043c \u0442\u0430\u043a\u0436\u0435 \u044f\u0432\u043b\u044f\u0435\u0442\u0441\u044f \u0441\u0442\u0440\u043e\u043a\u0430 acacaca. "}, "src_uid": "bfa78f72af4875f670f7adc5ed127033"} {"nl": {"description": "Polycarp takes part in a math show. He is given n tasks, each consists of k subtasks, numbered 1 through k. It takes him tj minutes to solve the j-th subtask of any task. Thus, time required to solve a subtask depends only on its index, but not on the task itself. Polycarp can solve subtasks in any order.By solving subtask of arbitrary problem he earns one point. Thus, the number of points for task is equal to the number of solved subtasks in it. Moreover, if Polycarp completely solves the task (solves all k of its subtasks), he recieves one extra point. Thus, total number of points he recieves for the complete solution of the task is k\u2009+\u20091.Polycarp has M minutes of time. What is the maximum number of points he can earn?", "input_spec": "The first line contains three integer numbers n, k and M (1\u2009\u2264\u2009n\u2009\u2264\u200945, 1\u2009\u2264\u2009k\u2009\u2264\u200945, 0\u2009\u2264\u2009M\u2009\u2264\u20092\u00b7109). The second line contains k integer numbers, values tj (1\u2009\u2264\u2009tj\u2009\u2264\u20091000000), where tj is the time in minutes required to solve j-th subtask of any task.", "output_spec": "Print the maximum amount of points Polycarp can earn in M minutes.", "sample_inputs": ["3 4 11\n1 2 3 4", "5 5 10\n1 2 4 8 16"], "sample_outputs": ["6", "7"], "notes": "NoteIn the first example Polycarp can complete the first task and spend 1\u2009+\u20092\u2009+\u20093\u2009+\u20094\u2009=\u200910 minutes. He also has the time to solve one subtask of the second task in one minute.In the second example Polycarp can solve the first subtask of all five tasks and spend 5\u00b71\u2009=\u20095 minutes. Also he can solve the second subtasks of two tasks and spend 2\u00b72\u2009=\u20094 minutes. Thus, he earns 5\u2009+\u20092\u2009=\u20097 points in total."}, "src_uid": "d659e92a410c1bc836be64fc1c0db160"} {"nl": {"description": "This problem's actual name, \"Lexicographically Largest Palindromic Subsequence\" is too long to fit into the page headline.You are given string s consisting of lowercase English letters only. Find its lexicographically largest palindromic subsequence.We'll call a non-empty string s[p1p2... pk] = sp1sp2... spk (1 \u2009\u2264\u2009 p1\u2009<\u2009p2\u2009<\u2009...\u2009<\u2009pk \u2009\u2264\u2009 |s|) a subsequence of string s = s1s2... s|s|, where |s| is the length of string s. For example, strings \"abcb\", \"b\" and \"abacaba\" are subsequences of string \"abacaba\".String x = x1x2... x|x| is lexicographically larger than string y = y1y2... y|y| if either |x| > |y| and x1\u2009=\u2009y1, x2\u2009=\u2009y2, ...,\u2009x|y|\u2009=\u2009y|y|, or there exists such number r (r\u2009<\u2009|x|, r\u2009<\u2009|y|) that x1\u2009=\u2009y1, x2\u2009=\u2009y2, ..., xr\u2009=\u2009yr and xr\u2009\u2009+\u2009\u20091\u2009>\u2009yr\u2009\u2009+\u2009\u20091. Characters in the strings are compared according to their ASCII codes. For example, string \"ranger\" is lexicographically larger than string \"racecar\" and string \"poster\" is lexicographically larger than string \"post\".String s = s1s2... s|s| is a palindrome if it matches string rev(s) = s|s|s|s|\u2009-\u20091... s1. In other words, a string is a palindrome if it reads the same way from left to right and from right to left. For example, palindromic strings are \"racecar\", \"refer\" and \"z\".", "input_spec": "The only input line contains a non-empty string s consisting of lowercase English letters only. Its length does not exceed 10.", "output_spec": "Print the lexicographically largest palindromic subsequence of string s.", "sample_inputs": ["radar", "bowwowwow", "codeforces", "mississipp"], "sample_outputs": ["rr", "wwwww", "s", "ssss"], "notes": "NoteAmong all distinct subsequences of string \"radar\" the following ones are palindromes: \"a\", \"d\", \"r\", \"aa\", \"rr\", \"ada\", \"rar\", \"rdr\", \"raar\" and \"radar\". The lexicographically largest of them is \"rr\"."}, "src_uid": "9a40e9b122962a1f83b74ddee6246a40"} {"nl": {"description": "You've decided to carry out a survey in the theory of prime numbers. Let us remind you that a prime number is a positive integer that has exactly two distinct positive integer divisors.Consider positive integers a, a\u2009+\u20091, ..., b (a\u2009\u2264\u2009b). You want to find the minimum integer l (1\u2009\u2264\u2009l\u2009\u2264\u2009b\u2009-\u2009a\u2009+\u20091) such that for any integer x (a\u2009\u2264\u2009x\u2009\u2264\u2009b\u2009-\u2009l\u2009+\u20091) among l integers x, x\u2009+\u20091, ..., x\u2009+\u2009l\u2009-\u20091 there are at least k prime numbers. Find and print the required minimum l. If no value l meets the described limitations, print -1.", "input_spec": "A single line contains three space-separated integers a,\u2009b,\u2009k (1\u2009\u2264\u2009a,\u2009b,\u2009k\u2009\u2264\u2009106;\u00a0a\u2009\u2264\u2009b).", "output_spec": "In a single line print a single integer \u2014 the required minimum l. If there's no solution, print -1.", "sample_inputs": ["2 4 2", "6 13 1", "1 4 3"], "sample_outputs": ["3", "4", "-1"], "notes": null}, "src_uid": "3e1751a2990134f2132d743afe02a10e"} {"nl": {"description": "Consider some square matrix A with side n consisting of zeros and ones. There are n rows numbered from 1 to n from top to bottom and n columns numbered from 1 to n from left to right in this matrix. We'll denote the element of the matrix which is located at the intersection of the i-row and the j-th column as Ai,\u2009j.Let's call matrix A clear if no two cells containing ones have a common side.Let's call matrix A symmetrical if it matches the matrices formed from it by a horizontal and/or a vertical reflection. Formally, for each pair (i,\u2009j) (1\u2009\u2264\u2009i,\u2009j\u2009\u2264\u2009n) both of the following conditions must be met: Ai,\u2009j\u2009=\u2009An\u2009-\u2009i\u2009+\u20091,\u2009j and Ai,\u2009j\u2009=\u2009Ai,\u2009n\u2009-\u2009j\u2009+\u20091.Let's define the sharpness of matrix A as the number of ones in it.Given integer x, your task is to find the smallest positive integer n such that there exists a clear symmetrical matrix A with side n and sharpness x.", "input_spec": "The only line contains a single integer x (1\u2009\u2264\u2009x\u2009\u2264\u2009100) \u2014 the required sharpness of the matrix.", "output_spec": "Print a single number \u2014 the sought value of n.", "sample_inputs": ["4", "9"], "sample_outputs": ["3", "5"], "notes": "NoteThe figure below shows the matrices that correspond to the samples: "}, "src_uid": "01eccb722b09a0474903b7e5abc4c47a"} {"nl": {"description": "Today an outstanding event is going to happen in the forest\u00a0\u2014 hedgehog Filya will come to his old fried Sonya!Sonya is an owl and she sleeps during the day and stay awake from minute l1 to minute r1 inclusive. Also, during the minute k she prinks and is unavailable for Filya.Filya works a lot and he plans to visit Sonya from minute l2 to minute r2 inclusive.Calculate the number of minutes they will be able to spend together.", "input_spec": "The only line of the input contains integers l1, r1, l2, r2 and k (1\u2009\u2264\u2009l1,\u2009r1,\u2009l2,\u2009r2,\u2009k\u2009\u2264\u20091018, l1\u2009\u2264\u2009r1, l2\u2009\u2264\u2009r2), providing the segments of time for Sonya and Filya and the moment of time when Sonya prinks.", "output_spec": "Print one integer\u00a0\u2014 the number of minutes Sonya and Filya will be able to spend together.", "sample_inputs": ["1 10 9 20 1", "1 100 50 200 75"], "sample_outputs": ["2", "50"], "notes": "NoteIn the first sample, they will be together during minutes 9 and 10.In the second sample, they will be together from minute 50 to minute 74 and from minute 76 to minute 100."}, "src_uid": "9a74b3b0e9f3a351f2136842e9565a82"} {"nl": {"description": "Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.One day Petya dreamt of a lexicographically k-th permutation of integers from 1 to n. Determine how many lucky numbers in the permutation are located on the positions whose indexes are also lucky numbers.", "input_spec": "The first line contains two integers n and k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u2009109) \u2014 the number of elements in the permutation and the lexicographical number of the permutation.", "output_spec": "If the k-th permutation of numbers from 1 to n does not exist, print the single number \"-1\" (without the quotes). Otherwise, print the answer to the problem: the number of such indexes i, that i and ai are both lucky numbers.", "sample_inputs": ["7 4", "4 7"], "sample_outputs": ["1", "1"], "notes": "NoteA permutation is an ordered set of n elements, where each integer from 1 to n occurs exactly once. The element of permutation in position with index i is denoted as ai (1\u2009\u2264\u2009i\u2009\u2264\u2009n). Permutation a is lexicographically smaller that permutation b if there is such a i (1\u2009\u2264\u2009i\u2009\u2264\u2009n), that ai\u2009<\u2009bi, and for any j (1\u2009\u2264\u2009j\u2009<\u2009i) aj\u2009=\u2009bj. Let's make a list of all possible permutations of n elements and sort it in the order of lexicographical increasing. Then the lexicographically k-th permutation is the k-th element of this list of permutations.In the first sample the permutation looks like that:1 2 3 4 6 7 5The only suitable position is 4.In the second sample the permutation looks like that:2 1 3 4The only suitable position is 4."}, "src_uid": "cb2aa02772f95fefd1856960b6ceac4c"} {"nl": {"description": "Vasya has got an undirected graph consisting of $$$n$$$ vertices and $$$m$$$ edges. This graph doesn't contain any self-loops or multiple edges. Self-loop is an edge connecting a vertex to itself. Multiple edges are a pair of edges such that they connect the same pair of vertices. Since the graph is undirected, the pair of edges $$$(1, 2)$$$ and $$$(2, 1)$$$ is considered to be multiple edges. Isolated vertex of the graph is a vertex such that there is no edge connecting this vertex to any other vertex.Vasya wants to know the minimum and maximum possible number of isolated vertices in an undirected graph consisting of $$$n$$$ vertices and $$$m$$$ edges. ", "input_spec": "The only line contains two integers $$$n$$$ and $$$m~(1 \\le n \\le 10^5, 0 \\le m \\le \\frac{n (n - 1)}{2})$$$. It is guaranteed that there exists a graph without any self-loops or multiple edges with such number of vertices and edges.", "output_spec": "In the only line print two numbers $$$min$$$ and $$$max$$$ \u2014 the minimum and maximum number of isolated vertices, respectively.", "sample_inputs": ["4 2", "3 1"], "sample_outputs": ["0 1", "1 1"], "notes": "NoteIn the first example it is possible to construct a graph with $$$0$$$ isolated vertices: for example, it should contain edges $$$(1, 2)$$$ and $$$(3, 4)$$$. To get one isolated vertex, we may construct a graph with edges $$$(1, 2)$$$ and $$$(1, 3)$$$. In the second example the graph will always contain exactly one isolated vertex."}, "src_uid": "daf0dd781bf403f7c1bb668925caa64d"} {"nl": {"description": "Captain Bill the Hummingbird and his crew recieved an interesting challenge offer. Some stranger gave them a map, potion of teleportation and said that only this potion might help them to reach the treasure. Bottle with potion has two values x and y written on it. These values define four moves which can be performed using the potion: Map shows that the position of Captain Bill the Hummingbird is (x1,\u2009y1) and the position of the treasure is (x2,\u2009y2).You task is to tell Captain Bill the Hummingbird whether he should accept this challenge or decline. If it is possible for Captain to reach the treasure using the potion then output \"YES\", otherwise \"NO\" (without quotes).The potion can be used infinite amount of times.", "input_spec": "The first line contains four integer numbers x1,\u2009y1,\u2009x2,\u2009y2 (\u2009-\u2009105\u2009\u2264\u2009x1,\u2009y1,\u2009x2,\u2009y2\u2009\u2264\u2009105) \u2014 positions of Captain Bill the Hummingbird and treasure respectively. The second line contains two integer numbers x,\u2009y (1\u2009\u2264\u2009x,\u2009y\u2009\u2264\u2009105) \u2014 values on the potion bottle.", "output_spec": "Print \"YES\" if it is possible for Captain to reach the treasure using the potion, otherwise print \"NO\" (without quotes).", "sample_inputs": ["0 0 0 6\n2 3", "1 1 3 6\n1 5"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example there exists such sequence of moves: \u2014 the first type of move \u2014 the third type of move "}, "src_uid": "1c80040104e06c9f24abfcfe654a851f"} {"nl": {"description": "Famous Brazil city Rio de Janeiro holds a tennis tournament and Ostap Bender doesn't want to miss this event. There will be n players participating, and the tournament will follow knockout rules from the very first game. That means, that if someone loses a game he leaves the tournament immediately.Organizers are still arranging tournament grid (i.e. the order games will happen and who is going to play with whom) but they have already fixed one rule: two players can play against each other only if the number of games one of them has already played differs by no more than one from the number of games the other one has already played. Of course, both players had to win all their games in order to continue participating in the tournament.Tournament hasn't started yet so the audience is a bit bored. Ostap decided to find out what is the maximum number of games the winner of the tournament can take part in (assuming the rule above is used). However, it is unlikely he can deal with this problem without your help.", "input_spec": "The only line of the input contains a single integer n (2\u2009\u2264\u2009n\u2009\u2264\u20091018)\u00a0\u2014 the number of players to participate in the tournament.", "output_spec": "Print the maximum number of games in which the winner of the tournament can take part.", "sample_inputs": ["2", "3", "4", "10"], "sample_outputs": ["1", "2", "2", "4"], "notes": "NoteIn all samples we consider that player number 1 is the winner.In the first sample, there would be only one game so the answer is 1.In the second sample, player 1 can consequently beat players 2 and 3. In the third sample, player 1 can't play with each other player as after he plays with players 2 and 3 he can't play against player 4, as he has 0 games played, while player 1 already played 2. Thus, the answer is 2 and to achieve we make pairs (1,\u20092) and (3,\u20094) and then clash the winners."}, "src_uid": "3d3432b4f7c6a3b901161fa24b415b14"} {"nl": {"description": "Luba thinks about watering her garden. The garden can be represented as a segment of length k. Luba has got n buckets, the i-th bucket allows her to water some continuous subsegment of garden of length exactly ai each hour. Luba can't water any parts of the garden that were already watered, also she can't water the ground outside the garden.Luba has to choose one of the buckets in order to water the garden as fast as possible (as mentioned above, each hour she will water some continuous subsegment of length ai if she chooses the i-th bucket). Help her to determine the minimum number of hours she has to spend watering the garden. It is guaranteed that Luba can always choose a bucket so it is possible water the garden.See the examples for better understanding.", "input_spec": "The first line of input contains two integer numbers n and k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u2009100) \u2014 the number of buckets and the length of the garden, respectively. The second line of input contains n integer numbers ai (1\u2009\u2264\u2009ai\u2009\u2264\u2009100) \u2014 the length of the segment that can be watered by the i-th bucket in one hour. It is guaranteed that there is at least one bucket such that it is possible to water the garden in integer number of hours using only this bucket.", "output_spec": "Print one integer number \u2014 the minimum number of hours required to water the garden.", "sample_inputs": ["3 6\n2 3 5", "6 7\n1 2 3 4 5 6"], "sample_outputs": ["2", "7"], "notes": "NoteIn the first test the best option is to choose the bucket that allows to water the segment of length 3. We can't choose the bucket that allows to water the segment of length 5 because then we can't water the whole garden.In the second test we can choose only the bucket that allows us to water the segment of length 1."}, "src_uid": "80520be9916045aca3a7de7bc925af1f"} {"nl": {"description": "InputThe only line of the input is a string of 7 characters. The first character is letter A, followed by 6 digits. The input is guaranteed to be valid (for certain definition of \"valid\").OutputOutput a single integer.ExamplesInputA221033Output21InputA223635Output22InputA232726Output23", "input_spec": "The only line of the input is a string of 7 characters. The first character is letter A, followed by 6 digits. The input is guaranteed to be valid (for certain definition of \"valid\").", "output_spec": "Output a single integer.", "sample_inputs": ["A221033", "A223635", "A232726"], "sample_outputs": ["21", "22", "23"], "notes": null}, "src_uid": "47287f8bc61fec72d729638d5e0e67f5"} {"nl": {"description": "Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal representations contain only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.Unfortunately, not all numbers are lucky. Petya calls a number nearly lucky if the number of lucky digits in it is a lucky number. He wonders whether number n is a nearly lucky number.", "input_spec": "The only line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091018). Please do not use the %lld specificator to read or write 64-bit numbers in \u0421++. It is preferred to use the cin, cout streams or the %I64d specificator.", "output_spec": "Print on the single line \"YES\" if n is a nearly lucky number. Otherwise, print \"NO\" (without the quotes).", "sample_inputs": ["40047", "7747774", "1000000000000000000"], "sample_outputs": ["NO", "YES", "NO"], "notes": "NoteIn the first sample there are 3 lucky digits (first one and last two), so the answer is \"NO\".In the second sample there are 7 lucky digits, 7 is lucky number, so the answer is \"YES\".In the third sample there are no lucky digits, so the answer is \"NO\"."}, "src_uid": "33b73fd9e7f19894ea08e98b790d07f1"} {"nl": {"description": "To get money for a new aeonic blaster, ranger Qwerty decided to engage in trade for a while. He wants to buy some number of items (or probably not to buy anything at all) on one of the planets, and then sell the bought items on another planet. Note that this operation is not repeated, that is, the buying and the selling are made only once. To carry out his plan, Qwerty is going to take a bank loan that covers all expenses and to return the loaned money at the end of the operation (the money is returned without the interest). At the same time, Querty wants to get as much profit as possible.The system has n planets in total. On each of them Qwerty can buy or sell items of m types (such as food, medicine, weapons, alcohol, and so on). For each planet i and each type of items j Qwerty knows the following: aij \u2014 the cost of buying an item; bij \u2014 the cost of selling an item; cij \u2014 the number of remaining items.It is not allowed to buy more than cij items of type j on planet i, but it is allowed to sell any number of items of any kind.Knowing that the hold of Qwerty's ship has room for no more than k items, determine the maximum profit which Qwerty can get.", "input_spec": "The first line contains three space-separated integers n, m and k (2\u2009\u2264\u2009n\u2009\u2264\u200910, 1\u2009\u2264\u2009m,\u2009k\u2009\u2264\u2009100) \u2014 the number of planets, the number of question types and the capacity of Qwerty's ship hold, correspondingly. Then follow n blocks describing each planet. The first line of the i-th block has the planet's name as a string with length from 1 to 10 Latin letters. The first letter of the name is uppercase, the rest are lowercase. Then in the i-th block follow m lines, the j-th of them contains three integers aij, bij and cij (1\u2009\u2264\u2009bij\u2009<\u2009aij\u2009\u2264\u20091000, 0\u2009\u2264\u2009cij\u2009\u2264\u2009100) \u2014 the numbers that describe money operations with the j-th item on the i-th planet. The numbers in the lines are separated by spaces. It is guaranteed that the names of all planets are different.", "output_spec": "Print a single number \u2014 the maximum profit Qwerty can get.", "sample_inputs": ["3 3 10\nVenus\n6 5 3\n7 6 5\n8 6 10\nEarth\n10 9 0\n8 6 4\n10 9 3\nMars\n4 3 0\n8 4 12\n7 2 5"], "sample_outputs": ["16"], "notes": "NoteIn the first test case you should fly to planet Venus, take a loan on 74 units of money and buy three items of the first type and 7 items of the third type (3\u00b76\u2009+\u20097\u00b78\u2009=\u200974). Then the ranger should fly to planet Earth and sell there all the items he has bought. He gets 3\u00b79\u2009+\u20097\u00b79\u2009=\u200990 units of money for the items, he should give 74 of them for the loan. The resulting profit equals 16 units of money. We cannot get more profit in this case."}, "src_uid": "7419c4268a9815282fadca6581f28ec1"} {"nl": {"description": "The main street of Berland is a straight line with n houses built along it (n is an even number). The houses are located at both sides of the street. The houses with odd numbers are at one side of the street and are numbered from 1 to n\u2009-\u20091 in the order from the beginning of the street to the end (in the picture: from left to right). The houses with even numbers are at the other side of the street and are numbered from 2 to n in the order from the end of the street to its beginning (in the picture: from right to left). The corresponding houses with even and odd numbers are strictly opposite each other, that is, house 1 is opposite house n, house 3 is opposite house n\u2009-\u20092, house 5 is opposite house n\u2009-\u20094 and so on. Vasya needs to get to house number a as quickly as possible. He starts driving from the beginning of the street and drives his car to house a. To get from the beginning of the street to houses number 1 and n, he spends exactly 1 second. He also spends exactly one second to drive the distance between two neighbouring houses. Vasya can park at any side of the road, so the distance between the beginning of the street at the houses that stand opposite one another should be considered the same.Your task is: find the minimum time Vasya needs to reach house a.", "input_spec": "The first line of the input contains two integers, n and a (1\u2009\u2264\u2009a\u2009\u2264\u2009n\u2009\u2264\u2009100\u2009000)\u00a0\u2014 the number of houses on the street and the number of the house that Vasya needs to reach, correspondingly. It is guaranteed that number n is even.", "output_spec": "Print a single integer \u2014 the minimum time Vasya needs to get from the beginning of the street to house a.", "sample_inputs": ["4 2", "8 5"], "sample_outputs": ["2", "3"], "notes": "NoteIn the first sample there are only four houses on the street, two houses at each side. House 2 will be the last at Vasya's right.The second sample corresponds to picture with n\u2009=\u20098. House 5 is the one before last at Vasya's left."}, "src_uid": "aa62dcdc47d0abbba7956284c1561de8"} {"nl": {"description": "Arkady decided to buy roses for his girlfriend.A flower shop has white, orange and red roses, and the total amount of them is n. Arkady thinks that red roses are not good together with white roses, so he won't buy a bouquet containing both red and white roses. Also, Arkady won't buy a bouquet where all roses have the same color. Arkady wants to buy exactly k roses. For each rose in the shop he knows its beauty and color: the beauty of the i-th rose is bi, and its color is ci ('W' for a white rose, 'O' for an orange rose and 'R' for a red rose). Compute the maximum possible total beauty of a bouquet of k roses satisfying the constraints above or determine that it is not possible to make such a bouquet.", "input_spec": "The first line contains two integers n and k (1\u2009\u2264\u2009k\u2009\u2264\u2009n\u2009\u2264\u2009200\u2009000) \u2014 the number of roses in the show and the number of roses Arkady wants to buy. The second line contains a sequence of integers b1,\u2009b2,\u2009...,\u2009bn (1\u2009\u2264\u2009bi\u2009\u2264\u200910\u2009000), where bi equals the beauty of the i-th rose. The third line contains a string c of length n, consisting of uppercase English letters 'W', 'O' and 'R', where ci denotes the color of the i-th rose: 'W' denotes white, 'O' \u00a0\u2014 orange, 'R' \u2014 red.", "output_spec": "Print the maximum possible total beauty of a bouquet of k roses that satisfies the constraints above. If it is not possible to make a single such bouquet, print -1.", "sample_inputs": ["5 3\n4 3 4 1 6\nRROWW", "5 2\n10 20 14 20 11\nRRRRR", "11 5\n5 6 3 2 3 4 7 5 4 5 6\nRWOORWORROW"], "sample_outputs": ["11", "-1", "28"], "notes": "NoteIn the first example Arkady wants to buy 3 roses. He can, for example, buy both red roses (their indices are 1 and 2, and their total beauty is 7) and the only orange rose (its index is 3, its beauty is 4). This way the total beauty of the bouquet is 11. In the second example Arkady can not buy a bouquet because all roses have the same color."}, "src_uid": "104cf5253e027929f257364b3874c38b"} {"nl": {"description": "One day Misha and Andrew were playing a very simple game. First, each player chooses an integer in the range from 1 to n. Let's assume that Misha chose number m, and Andrew chose number a.Then, by using a random generator they choose a random integer c in the range between 1 and n (any integer from 1 to n is chosen with the same probability), after which the winner is the player, whose number was closer to c. The boys agreed that if m and a are located on the same distance from c, Misha wins.Andrew wants to win very much, so he asks you to help him. You know the number selected by Misha, and number n. You need to determine which value of a Andrew must choose, so that the probability of his victory is the highest possible.More formally, you need to find such integer a (1\u2009\u2264\u2009a\u2009\u2264\u2009n), that the probability that is maximal, where c is the equiprobably chosen integer from 1 to n (inclusive).", "input_spec": "The first line contains two integers n and m (1\u2009\u2264\u2009m\u2009\u2264\u2009n\u2009\u2264\u2009109) \u2014 the range of numbers in the game, and the number selected by Misha respectively.", "output_spec": "Print a single number \u2014 such value a, that probability that Andrew wins is the highest. If there are multiple such values, print the minimum of them.", "sample_inputs": ["3 1", "4 3"], "sample_outputs": ["2", "2"], "notes": "NoteIn the first sample test: Andrew wins if c is equal to 2 or 3. The probability that Andrew wins is 2\u2009/\u20093. If Andrew chooses a\u2009=\u20093, the probability of winning will be 1\u2009/\u20093. If a\u2009=\u20091, the probability of winning is 0.In the second sample test: Andrew wins if c is equal to 1 and 2. The probability that Andrew wins is 1\u2009/\u20092. For other choices of a the probability of winning is less."}, "src_uid": "f6a80c0f474cae1e201032e1df10e9f7"} {"nl": {"description": "In Omkar's last class of math, he learned about the least common multiple, or $$$LCM$$$. $$$LCM(a, b)$$$ is the smallest positive integer $$$x$$$ which is divisible by both $$$a$$$ and $$$b$$$.Omkar, having a laudably curious mind, immediately thought of a problem involving the $$$LCM$$$ operation: given an integer $$$n$$$, find positive integers $$$a$$$ and $$$b$$$ such that $$$a + b = n$$$ and $$$LCM(a, b)$$$ is the minimum value possible.Can you help Omkar solve his ludicrously challenging math problem?", "input_spec": "Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \\leq t \\leq 10$$$). Description of the test cases follows. Each test case consists of a single integer $$$n$$$ ($$$2 \\leq n \\leq 10^{9}$$$).", "output_spec": "For each test case, output two positive integers $$$a$$$ and $$$b$$$, such that $$$a + b = n$$$ and $$$LCM(a, b)$$$ is the minimum possible.", "sample_inputs": ["3\n4\n6\n9"], "sample_outputs": ["2 2\n3 3\n3 6"], "notes": "NoteFor the first test case, the numbers we can choose are $$$1, 3$$$ or $$$2, 2$$$. $$$LCM(1, 3) = 3$$$ and $$$LCM(2, 2) = 2$$$, so we output $$$2 \\ 2$$$.For the second test case, the numbers we can choose are $$$1, 5$$$, $$$2, 4$$$, or $$$3, 3$$$. $$$LCM(1, 5) = 5$$$, $$$LCM(2, 4) = 4$$$, and $$$LCM(3, 3) = 3$$$, so we output $$$3 \\ 3$$$.For the third test case, $$$LCM(3, 6) = 6$$$. It can be shown that there are no other pairs of numbers which sum to $$$9$$$ that have a lower $$$LCM$$$."}, "src_uid": "3fd60db24b1873e906d6dee9c2508ac5"} {"nl": {"description": "Gerald is setting the New Year table. The table has the form of a circle; its radius equals R. Gerald invited many guests and is concerned whether the table has enough space for plates for all those guests. Consider all plates to be round and have the same radii that equal r. Each plate must be completely inside the table and must touch the edge of the table. Of course, the plates must not intersect, but they can touch each other. Help Gerald determine whether the table is large enough for n plates.", "input_spec": "The first line contains three integers n, R and r (1\u2009\u2264\u2009n\u2009\u2264\u2009100, 1\u2009\u2264\u2009r,\u2009R\u2009\u2264\u20091000) \u2014 the number of plates, the radius of the table and the plates' radius.", "output_spec": "Print \"YES\" (without the quotes) if it is possible to place n plates on the table by the rules given above. If it is impossible, print \"NO\". Remember, that each plate must touch the edge of the table. ", "sample_inputs": ["4 10 4", "5 10 4", "1 10 10"], "sample_outputs": ["YES", "NO", "YES"], "notes": "NoteThe possible arrangement of the plates for the first sample is: "}, "src_uid": "2fedbfccd893cde8f2fab2b5bf6fb6f6"} {"nl": {"description": "A sequence of non-negative integers a1,\u2009a2,\u2009...,\u2009an of length n is called a wool sequence if and only if there exists two integers l and r (1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u2009n) such that . In other words each wool sequence contains a subsequence of consecutive elements with xor equal to 0.The expression means applying the operation of a bitwise xor to numbers x and y. The given operation exists in all modern programming languages, for example, in languages C++ and Java it is marked as \"^\", in Pascal \u2014 as \"xor\".In this problem you are asked to compute the number of sequences made of n integers from 0 to 2m\u2009-\u20091 that are not a wool sequence. You should print this number modulo 1000000009 (109\u2009+\u20099).", "input_spec": "The only line of input contains two space-separated integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009105).", "output_spec": "Print the required number of sequences modulo 1000000009 (109\u2009+\u20099) on the only line of output.", "sample_inputs": ["3 2"], "sample_outputs": ["6"], "notes": "NoteSequences of length 3 made of integers 0, 1, 2 and 3 that are not a wool sequence are (1, 3, 1), (1, 2, 1), (2, 1, 2), (2, 3, 2), (3, 1, 3) and (3, 2, 3)."}, "src_uid": "fef4d9c94a93fcf6d536f33503b1d4b8"} {"nl": {"description": "Vasilisa the Wise from a far away kingdom got a present from her friend Helga the Wise from a farther away kingdom. The present is a surprise box, yet Vasilisa the Wise doesn't know yet what the surprise actually is because she cannot open the box. She hopes that you can help her in that.The box's lock is constructed like that. The box itself is represented by an absolutely perfect black cube with the identical deepening on each face (those are some foreign nanotechnologies that the far away kingdom scientists haven't dreamt of). The box is accompanied by six gems whose form matches the deepenings in the box's faces. The box can only be opened after it is correctly decorated by the gems, that is, when each deepening contains exactly one gem. Two ways of decorating the box are considered the same if they can be obtained one from the other one by arbitrarily rotating the box (note that the box is represented by a perfect nanotechnological cube)Now Vasilisa the Wise wants to know by the given set of colors the following: in how many ways would she decorate the box in the worst case to open it? To answer this question it is useful to know that two gems of one color are indistinguishable from each other. Help Vasilisa to solve this challenging problem.", "input_spec": "The first line contains exactly 6 characters without spaces from the set {R, O, Y, G, B, V} \u2014 they are the colors of gems with which the box should be decorated.", "output_spec": "Print the required number of different ways to decorate the box.", "sample_inputs": ["YYYYYY", "BOOOOB", "ROYGBV"], "sample_outputs": ["1", "2", "30"], "notes": null}, "src_uid": "8176c709c774fa87ca0e45a5a502a409"} {"nl": {"description": "Giga Tower is the tallest and deepest building in Cyberland. There are 17\u2009777\u2009777\u2009777 floors, numbered from \u2009-\u20098\u2009888\u2009888\u2009888 to 8\u2009888\u2009888\u2009888. In particular, there is floor 0 between floor \u2009-\u20091 and floor 1. Every day, thousands of tourists come to this place to enjoy the wonderful view. In Cyberland, it is believed that the number \"8\" is a lucky number (that's why Giga Tower has 8\u2009888\u2009888\u2009888 floors above the ground), and, an integer is lucky, if and only if its decimal notation contains at least one digit \"8\". For example, 8,\u2009\u2009-\u2009180,\u2009808 are all lucky while 42,\u2009\u2009-\u200910 are not. In the Giga Tower, if you write code at a floor with lucky floor number, good luck will always be with you (Well, this round is #278, also lucky, huh?).Tourist Henry goes to the tower to seek good luck. Now he is at the floor numbered a. He wants to find the minimum positive integer b, such that, if he walks b floors higher, he will arrive at a floor with a lucky number. ", "input_spec": "The only line of input contains an integer a (\u2009-\u2009109\u2009\u2264\u2009a\u2009\u2264\u2009109).", "output_spec": "Print the minimum b in a line.", "sample_inputs": ["179", "-1", "18"], "sample_outputs": ["1", "9", "10"], "notes": "NoteFor the first sample, he has to arrive at the floor numbered 180.For the second sample, he will arrive at 8.Note that b should be positive, so the answer for the third sample is 10, not 0."}, "src_uid": "4e57740be015963c190e0bfe1ab74cb9"} {"nl": {"description": "Little Petya loves playing with squares. Mum bought him a square 2n\u2009\u00d7\u20092n in size. Petya marked a cell inside the square and now he is solving the following task.The task is to draw a broken line that would go along the grid lines and that would cut the square into two equal parts. The cutting line should not have any common points with the marked cell and the resulting two parts should be equal up to rotation.Petya wants to determine whether it is possible to cut the square in the required manner given the sizes of the square side and the coordinates of the marked cell. Help him.", "input_spec": "The first line contains three space-separated integers 2n, x and y (2\u2009\u2264\u20092n\u2009\u2264\u2009100,\u20091\u2009\u2264\u2009x,\u2009y\u2009\u2264\u20092n), representing the length of a square's side and the coordinates of the marked cell. It is guaranteed that 2n is even. The coordinates of the marked cell are represented by a pair of numbers x y, where x represents the number of the row and y represents the number of the column. The rows and columns are numbered by consecutive integers from 1 to 2n. The rows are numbered from top to bottom and the columns are numbered from the left to the right.", "output_spec": "If the square is possible to cut, print \"YES\", otherwise print \"NO\" (without the quotes).", "sample_inputs": ["4 1 1", "2 2 2"], "sample_outputs": ["YES", "NO"], "notes": "NoteA sample test from the statement and one of the possible ways of cutting the square are shown in the picture: "}, "src_uid": "dc891d57bcdad3108dcb4ccf9c798789"} {"nl": {"description": "There is a building consisting of $$$10~000$$$ apartments numbered from $$$1$$$ to $$$10~000$$$, inclusive.Call an apartment boring, if its number consists of the same digit. Examples of boring apartments are $$$11, 2, 777, 9999$$$ and so on.Our character is a troublemaker, and he calls the intercoms of all boring apartments, till someone answers the call, in the following order: First he calls all apartments consisting of digit $$$1$$$, in increasing order ($$$1, 11, 111, 1111$$$). Next he calls all apartments consisting of digit $$$2$$$, in increasing order ($$$2, 22, 222, 2222$$$) And so on. The resident of the boring apartment $$$x$$$ answers the call, and our character stops calling anyone further.Our character wants to know how many digits he pressed in total and your task is to help him to count the total number of keypresses.For example, if the resident of boring apartment $$$22$$$ answered, then our character called apartments with numbers $$$1, 11, 111, 1111, 2, 22$$$ and the total number of digits he pressed is $$$1 + 2 + 3 + 4 + 1 + 2 = 13$$$.You have to answer $$$t$$$ independent test cases.", "input_spec": "The first line of the input contains one integer $$$t$$$ ($$$1 \\le t \\le 36$$$) \u2014 the number of test cases. The only line of the test case contains one integer $$$x$$$ ($$$1 \\le x \\le 9999$$$) \u2014 the apartment number of the resident who answered the call. It is guaranteed that $$$x$$$ consists of the same digit.", "output_spec": "For each test case, print the answer: how many digits our character pressed in total.", "sample_inputs": ["4\n22\n9999\n1\n777"], "sample_outputs": ["13\n90\n1\n66"], "notes": null}, "src_uid": "289a55128be89bb86a002d218d31b57f"} {"nl": {"description": "In mathematics, the Pythagorean theorem \u2014 is a relation in Euclidean geometry among the three sides of a right-angled triangle. In terms of areas, it states: \u007fIn any right-angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides that meet at a right angle). The theorem can be written as an equation relating the lengths of the sides a, b and c, often called the Pythagorean equation:a2\u2009+\u2009b2\u2009=\u2009c2where c represents the length of the hypotenuse, and a and b represent the lengths of the other two sides. Given n, your task is to count how many right-angled triangles with side-lengths a, b and c that satisfied an inequality 1\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u2009c\u2009\u2264\u2009n.", "input_spec": "The only line contains one integer n\u00a0(1\u2009\u2264\u2009n\u2009\u2264\u2009104) as we mentioned above.", "output_spec": "Print a single integer \u2014 the answer to the problem.", "sample_inputs": ["5", "74"], "sample_outputs": ["1", "35"], "notes": null}, "src_uid": "36a211f7814e77339eb81dc132e115e1"} {"nl": {"description": "Vasya works as a DJ in the best Berland nightclub, and he often uses dubstep music in his performance. Recently, he has decided to take a couple of old songs and make dubstep remixes from them.Let's assume that a song consists of some number of words. To make the dubstep remix of this song, Vasya inserts a certain number of words \"WUB\" before the first word of the song (the number may be zero), after the last word (the number may be zero), and between words (at least one between any pair of neighbouring words), and then the boy glues together all the words, including \"WUB\", in one string and plays the song at the club.For example, a song with words \"I AM X\" can transform into a dubstep remix as \"WUBWUBIWUBAMWUBWUBX\" and cannot transform into \"WUBWUBIAMWUBX\".Recently, Petya has heard Vasya's new dubstep track, but since he isn't into modern music, he decided to find out what was the initial song that Vasya remixed. Help Petya restore the original song.", "input_spec": "The input consists of a single non-empty string, consisting only of uppercase English letters, the string's length doesn't exceed 200 characters. It is guaranteed that before Vasya remixed the song, no word contained substring \"WUB\" in it; Vasya didn't change the word order. It is also guaranteed that initially the song had at least one word.", "output_spec": "Print the words of the initial song that Vasya used to make a dubsteb remix. Separate the words with a space.", "sample_inputs": ["WUBWUBABCWUB", "WUBWEWUBAREWUBWUBTHEWUBCHAMPIONSWUBMYWUBFRIENDWUB"], "sample_outputs": ["ABC", "WE ARE THE CHAMPIONS MY FRIEND"], "notes": "NoteIn the first sample: \"WUBWUBABCWUB\" = \"WUB\" + \"WUB\" + \"ABC\" + \"WUB\". That means that the song originally consisted of a single word \"ABC\", and all words \"WUB\" were added by Vasya.In the second sample Vasya added a single word \"WUB\" between all neighbouring words, in the beginning and in the end, except for words \"ARE\" and \"THE\" \u2014 between them Vasya added two \"WUB\"."}, "src_uid": "edede580da1395fe459a480f6a0a548d"} {"nl": {"description": "Nowadays, most of the internet advertisements are not statically linked to a web page. Instead, what will be shown to the person opening a web page is determined within 100 milliseconds after the web page is opened. Usually, multiple companies compete for each ad slot on the web page in an auction. Each of them receives a request with details about the user, web page and ad slot and they have to respond within those 100 milliseconds with a bid they would pay for putting an advertisement on that ad slot. The company that suggests the highest bid wins the auction and gets to place its advertisement. If there are several companies tied for the highest bid, the winner gets picked at random.However, the company that won the auction does not have to pay the exact amount of its bid. In most of the cases, a second-price auction is used. This means that the amount paid by the company is equal to the maximum of all the other bids placed for this ad slot.Let's consider one such bidding. There are n companies competing for placing an ad. The i-th of these companies will bid an integer number of microdollars equiprobably randomly chosen from the range between Li and Ri, inclusive. In the other words, the value of the i-th company bid can be any integer from the range [Li,\u2009Ri] with the same probability. Determine the expected value that the winner will have to pay in a second-price auction.", "input_spec": "The first line of input contains an integer number n (2\u2009\u2264\u2009n\u2009\u2264\u20095). n lines follow, the i-th of them containing two numbers Li and Ri (1\u2009\u2264\u2009Li\u2009\u2264\u2009Ri\u2009\u2264\u200910000) describing the i-th company's bid preferences. This problem doesn't have subproblems. You will get 8 points for the correct submission.", "output_spec": "Output the answer with absolute or relative error no more than 1e\u2009-\u20099.", "sample_inputs": ["3\n4 7\n8 10\n5 5", "3\n2 5\n3 4\n1 6"], "sample_outputs": ["5.7500000000", "3.5000000000"], "notes": "NoteConsider the first example. The first company bids a random integer number of microdollars in range [4,\u20097]; the second company bids between 8 and 10, and the third company bids 5 microdollars. The second company will win regardless of the exact value it bids, however the price it will pay depends on the value of first company's bid. With probability 0.5 the first company will bid at most 5 microdollars, and the second-highest price of the whole auction will be 5. With probability 0.25 it will bid 6 microdollars, and with probability 0.25 it will bid 7 microdollars. Thus, the expected value the second company will have to pay is 0.5\u00b75\u2009+\u20090.25\u00b76\u2009+\u20090.25\u00b77\u2009=\u20095.75."}, "src_uid": "5258ce738eb268b9750cfef309d265ef"} {"nl": {"description": "The Rebel fleet is afraid that the Empire might want to strike back again. Princess Heidi needs to know if it is possible to assign R Rebel spaceships to guard B bases so that every base has exactly one guardian and each spaceship has exactly one assigned base (in other words, the assignment is a perfect matching). Since she knows how reckless her pilots are, she wants to be sure that any two (straight) paths \u2013 from a base to its assigned spaceship \u2013 do not intersect in the galaxy plane (that is, in 2D), and so there is no risk of collision.", "input_spec": "The first line contains two space-separated integers R,\u2009B(1\u2009\u2264\u2009R,\u2009B\u2009\u2264\u200910). For 1\u2009\u2264\u2009i\u2009\u2264\u2009R, the i\u2009+\u20091-th line contains two space-separated integers xi and yi (|xi|,\u2009|yi|\u2009\u2264\u200910000) denoting the coordinates of the i-th Rebel spaceship. The following B lines have the same format, denoting the position of bases. It is guaranteed that no two points coincide and that no three points are on the same line.", "output_spec": "If it is possible to connect Rebel spaceships and bases so as satisfy the constraint, output Yes, otherwise output No (without quote).", "sample_inputs": ["3 3\n0 0\n2 0\n3 1\n-2 1\n0 3\n2 2", "2 1\n1 0\n2 2\n3 1"], "sample_outputs": ["Yes", "No"], "notes": "NoteFor the first example, one possible way is to connect the Rebels and bases in order.For the second example, there is no perfect matching between Rebels and bases."}, "src_uid": "65f81f621c228c09915adcb05256c634"} {"nl": {"description": "Monocarp has decided to buy a new TV set and hang it on the wall in his flat. The wall has enough free space so Monocarp can buy a TV set with screen width not greater than $$$a$$$ and screen height not greater than $$$b$$$. Monocarp is also used to TV sets with a certain aspect ratio: formally, if the width of the screen is $$$w$$$, and the height of the screen is $$$h$$$, then the following condition should be met: $$$\\frac{w}{h} = \\frac{x}{y}$$$.There are many different TV sets in the shop. Monocarp is sure that for any pair of positive integers $$$w$$$ and $$$h$$$ there is a TV set with screen width $$$w$$$ and height $$$h$$$ in the shop.Monocarp isn't ready to choose the exact TV set he is going to buy. Firstly he wants to determine the optimal screen resolution. He has decided to try all possible variants of screen size. But he must count the number of pairs of positive integers $$$w$$$ and $$$h$$$, beforehand, such that $$$(w \\le a)$$$, $$$(h \\le b)$$$ and $$$(\\frac{w}{h} = \\frac{x}{y})$$$.In other words, Monocarp wants to determine the number of TV sets having aspect ratio $$$\\frac{x}{y}$$$, screen width not exceeding $$$a$$$, and screen height not exceeding $$$b$$$. Two TV sets are considered different if they have different screen width or different screen height.", "input_spec": "The first line contains four integers $$$a$$$, $$$b$$$, $$$x$$$, $$$y$$$ ($$$1 \\le a, b, x, y \\le 10^{18}$$$)\u00a0\u2014 the constraints on the screen width and height, and on the aspect ratio.", "output_spec": "Print one integer\u00a0\u2014 the number of different variants to choose TV screen width and screen height so that they meet the aforementioned constraints.", "sample_inputs": ["17 15 5 3", "14 16 7 22", "4 2 6 4", "1000000000000000000 1000000000000000000 999999866000004473 999999822000007597"], "sample_outputs": ["3", "0", "1", "1000000063"], "notes": "NoteIn the first example, there are $$$3$$$ possible variants: $$$(5, 3)$$$, $$$(10, 6)$$$, $$$(15, 9)$$$.In the second example, there is no TV set meeting the constraints.In the third example, there is only one variant: $$$(3, 2)$$$."}, "src_uid": "907ac56260e84dbb6d98a271bcb2d62d"} {"nl": {"description": "Kolya is developing an economy simulator game. His most favourite part of the development process is in-game testing. Once he was entertained by the testing so much, that he found out his game-coin score become equal to 0.Kolya remembers that at the beginning of the game his game-coin score was equal to n and that he have bought only some houses (for 1\u2009234\u2009567 game-coins each), cars (for 123\u2009456 game-coins each) and computers (for 1\u2009234 game-coins each).Kolya is now interested, whether he could have spent all of his initial n game-coins buying only houses, cars and computers or there is a bug in the game. Formally, is there a triple of non-negative integers a, b and c such that a\u2009\u00d7\u20091\u2009234\u2009567\u2009+\u2009b\u2009\u00d7\u2009123\u2009456\u2009+\u2009c\u2009\u00d7\u20091\u2009234\u2009=\u2009n?Please help Kolya answer this question.", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009109)\u00a0\u2014 Kolya's initial game-coin score.", "output_spec": "Print \"YES\" (without quotes) if it's possible that Kolya spent all of his initial n coins buying only houses, cars and computers. Otherwise print \"NO\" (without quotes).", "sample_inputs": ["1359257", "17851817"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample, one of the possible solutions is to buy one house, one car and one computer, spending 1\u2009234\u2009567\u2009+\u2009123\u2009456\u2009+\u20091234\u2009=\u20091\u2009359\u2009257 game-coins in total."}, "src_uid": "72d7e422a865cc1f85108500bdf2adf2"} {"nl": {"description": "You have an initially empty cauldron, and you want to brew a potion in it. The potion consists of two ingredients: magic essence and water. The potion you want to brew should contain exactly $$$k\\ \\%$$$ magic essence and $$$(100 - k)\\ \\%$$$ water.In one step, you can pour either one liter of magic essence or one liter of water into the cauldron. What is the minimum number of steps to brew a potion? You don't care about the total volume of the potion, only about the ratio between magic essence and water in it.A small reminder: if you pour $$$e$$$ liters of essence and $$$w$$$ liters of water ($$$e + w > 0$$$) into the cauldron, then it contains $$$\\frac{e}{e + w} \\cdot 100\\ \\%$$$ (without rounding) magic essence and $$$\\frac{w}{e + w} \\cdot 100\\ \\%$$$ water.", "input_spec": "The first line contains the single $$$t$$$ ($$$1 \\le t \\le 100$$$)\u00a0\u2014 the number of test cases. The first and only line of each test case contains a single integer $$$k$$$ ($$$1 \\le k \\le 100$$$)\u00a0\u2014 the percentage of essence in a good potion.", "output_spec": "For each test case, print the minimum number of steps to brew a good potion. It can be proved that it's always possible to achieve it in a finite number of steps.", "sample_inputs": ["3\n3\n100\n25"], "sample_outputs": ["100\n1\n4"], "notes": "NoteIn the first test case, you should pour $$$3$$$ liters of magic essence and $$$97$$$ liters of water into the cauldron to get a potion with $$$3\\ \\%$$$ of magic essence.In the second test case, you can pour only $$$1$$$ liter of essence to get a potion with $$$100\\ \\%$$$ of magic essence.In the third test case, you can pour $$$1$$$ liter of magic essence and $$$3$$$ liters of water."}, "src_uid": "19a2bcb727510c729efe442a13c2ff7c"} {"nl": {"description": "You are given an array of $$$n$$$ integers: $$$a_1, a_2, \\ldots, a_n$$$. Your task is to find some non-zero integer $$$d$$$ ($$$-10^3 \\leq d \\leq 10^3$$$) such that, after each number in the array is divided by $$$d$$$, the number of positive numbers that are presented in the array is greater than or equal to half of the array size (i.e., at least $$$\\lceil\\frac{n}{2}\\rceil$$$). Note that those positive numbers do not need to be an integer (e.g., a $$$2.5$$$ counts as a positive number). If there are multiple values of $$$d$$$ that satisfy the condition, you may print any of them. In case that there is no such $$$d$$$, print a single integer $$$0$$$.Recall that $$$\\lceil x \\rceil$$$ represents the smallest integer that is not less than $$$x$$$ and that zero ($$$0$$$) is neither positive nor negative.", "input_spec": "The first line contains one integer $$$n$$$ ($$$1 \\le n \\le 100$$$)\u00a0\u2014 the number of elements in the array. The second line contains $$$n$$$ space-separated integers $$$a_1, a_2, \\ldots, a_n$$$ ($$$-10^3 \\le a_i \\le 10^3$$$).", "output_spec": "Print one integer $$$d$$$ ($$$-10^3 \\leq d \\leq 10^3$$$ and $$$d \\neq 0$$$) that satisfies the given condition. If there are multiple values of $$$d$$$ that satisfy the condition, you may print any of them. In case that there is no such $$$d$$$, print a single integer $$$0$$$.", "sample_inputs": ["5\n10 0 -7 2 6", "7\n0 0 1 -1 0 0 2"], "sample_outputs": ["4", "0"], "notes": "NoteIn the first sample, $$$n = 5$$$, so we need at least $$$\\lceil\\frac{5}{2}\\rceil = 3$$$ positive numbers after division. If $$$d = 4$$$, the array after division is $$$[2.5, 0, -1.75, 0.5, 1.5]$$$, in which there are $$$3$$$ positive numbers (namely: $$$2.5$$$, $$$0.5$$$, and $$$1.5$$$).In the second sample, there is no valid $$$d$$$, so $$$0$$$ should be printed."}, "src_uid": "a13cb35197f896cd34614c6c0b369a49"} {"nl": {"description": "Dreamoon wants to climb up a stair of n steps. He can climb 1 or 2 steps at each move. Dreamoon wants the number of moves to be a multiple of an integer m. What is the minimal number of moves making him climb to the top of the stairs that satisfies his condition?", "input_spec": "The single line contains two space separated integers n, m (0\u2009<\u2009n\u2009\u2264\u200910000,\u20091\u2009<\u2009m\u2009\u2264\u200910).", "output_spec": "Print a single integer \u2014 the minimal number of moves being a multiple of m. If there is no way he can climb satisfying condition print \u2009-\u20091 instead.", "sample_inputs": ["10 2", "3 5"], "sample_outputs": ["6", "-1"], "notes": "NoteFor the first sample, Dreamoon could climb in 6 moves with following sequence of steps: {2, 2, 2, 2, 1, 1}.For the second sample, there are only three valid sequence of steps {2, 1}, {1, 2}, {1, 1, 1} with 2, 2, and 3 steps respectively. All these numbers are not multiples of 5."}, "src_uid": "0fa526ebc0b4fa3a5866c7c5b3a4656f"} {"nl": {"description": "Mr. Kitayuta has kindly given you a string s consisting of lowercase English letters. You are asked to insert exactly one lowercase English letter into s to make it a palindrome. A palindrome is a string that reads the same forward and backward. For example, \"noon\", \"testset\" and \"a\" are all palindromes, while \"test\" and \"kitayuta\" are not.You can choose any lowercase English letter, and insert it to any position of s, possibly to the beginning or the end of s. You have to insert a letter even if the given string is already a palindrome.If it is possible to insert one lowercase English letter into s so that the resulting string will be a palindrome, print the string after the insertion. Otherwise, print \"NA\" (without quotes, case-sensitive). In case there is more than one palindrome that can be obtained, you are allowed to print any of them.", "input_spec": "The only line of the input contains a string s (1\u2009\u2264\u2009|s|\u2009\u2264\u200910). Each character in s is a lowercase English letter.", "output_spec": "If it is possible to turn s into a palindrome by inserting one lowercase English letter, print the resulting string in a single line. Otherwise, print \"NA\" (without quotes, case-sensitive). In case there is more than one solution, any of them will be accepted. ", "sample_inputs": ["revive", "ee", "kitayuta"], "sample_outputs": ["reviver", "eye", "NA"], "notes": "NoteFor the first sample, insert 'r' to the end of \"revive\" to obtain a palindrome \"reviver\".For the second sample, there is more than one solution. For example, \"eve\" will also be accepted.For the third sample, it is not possible to turn \"kitayuta\" into a palindrome by just inserting one letter."}, "src_uid": "24e8aaa7e3e1776adf342ffa1baad06b"} {"nl": {"description": "InputThe input contains a single integer a (1\u2009\u2264\u2009a\u2009\u2264\u200940).OutputOutput a single string.ExamplesInput2OutputAdamsInput8OutputVan BurenInput29OutputHarding", "input_spec": "The input contains a single integer a (1\u2009\u2264\u2009a\u2009\u2264\u200940).", "output_spec": "Output a single string.", "sample_inputs": ["2", "8", "29"], "sample_outputs": ["Adams", "Van Buren", "Harding"], "notes": null}, "src_uid": "0b51a8318c9ec0c80c0f4dc04fe0bfb3"} {"nl": {"description": "Baby Ehab was toying around with arrays. He has an array $$$a$$$ of length $$$n$$$. He defines an array to be good if there's no way to partition it into $$$2$$$ subsequences such that the sum of the elements in the first is equal to the sum of the elements in the second. Now he wants to remove the minimum number of elements in $$$a$$$ so that it becomes a good array. Can you help him?A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero or all) elements. A partitioning of an array is a way to divide it into $$$2$$$ subsequences such that every element belongs to exactly one subsequence, so you must use all the elements, and you can't share any elements.", "input_spec": "The first line contains an integer $$$n$$$ ($$$2 \\le n \\le 100$$$)\u00a0\u2014 the length of the array $$$a$$$. The second line contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\\ldots$$$, $$$a_{n}$$$ ($$$1 \\le a_i \\le 2000$$$)\u00a0\u2014 the elements of the array $$$a$$$.", "output_spec": "The first line should contain the minimum number of elements you need to remove. The second line should contain the indices of the elements you're removing, separated by spaces. We can show that an answer always exists. If there are multiple solutions, you can print any.", "sample_inputs": ["4\n6 3 9 12", "2\n1 2"], "sample_outputs": ["1\n2", "0"], "notes": "NoteIn the first example, you can partition the array into $$$[6,9]$$$ and $$$[3,12]$$$, so you must remove at least $$$1$$$ element. Removing $$$3$$$ is sufficient.In the second example, the array is already good, so you don't need to remove any elements."}, "src_uid": "29063ad54712b4911c6bf871969ee147"} {"nl": {"description": "Once upon a time there were several little pigs and several wolves on a two-dimensional grid of size n\u2009\u00d7\u2009m. Each cell in this grid was either empty, containing one little pig, or containing one wolf.A little pig and a wolf are adjacent if the cells that they are located at share a side. The little pigs are afraid of wolves, so there will be at most one wolf adjacent to each little pig. But each wolf may be adjacent to any number of little pigs.They have been living peacefully for several years. But today the wolves got hungry. One by one, each wolf will choose one of the little pigs adjacent to it (if any), and eats the poor little pig. This process is not repeated. That is, each wolf will get to eat at most one little pig. Once a little pig gets eaten, it disappears and cannot be eaten by any other wolf.What is the maximum number of little pigs that may be eaten by the wolves?", "input_spec": "The first line contains integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u200910) which denotes the number of rows and columns in our two-dimensional grid, respectively. Then follow n lines containing m characters each \u2014 that is the grid description. \".\" means that this cell is empty. \"P\" means that this cell contains a little pig. \"W\" means that this cell contains a wolf. It is guaranteed that there will be at most one wolf adjacent to any little pig.", "output_spec": "Print a single number \u2014 the maximal number of little pigs that may be eaten by the wolves.", "sample_inputs": ["2 3\nPPW\nW.P", "3 3\nP.W\n.P.\nW.P"], "sample_outputs": ["2", "0"], "notes": "NoteIn the first example, one possible scenario in which two little pigs get eaten by the wolves is as follows. "}, "src_uid": "969b24ed98d916184821b2b2f8fd3aac"} {"nl": {"description": "Professor GukiZ makes a new robot. The robot are in the point with coordinates (x1,\u2009y1) and should go to the point (x2,\u2009y2). In a single step the robot can change any of its coordinates (maybe both of them) by one (decrease or increase). So the robot can move in one of the 8 directions. Find the minimal number of steps the robot should make to get the finish position.", "input_spec": "The first line contains two integers x1,\u2009y1 (\u2009-\u2009109\u2009\u2264\u2009x1,\u2009y1\u2009\u2264\u2009109) \u2014 the start position of the robot. The second line contains two integers x2,\u2009y2 (\u2009-\u2009109\u2009\u2264\u2009x2,\u2009y2\u2009\u2264\u2009109) \u2014 the finish position of the robot.", "output_spec": "Print the only integer d \u2014 the minimal number of steps to get the finish position.", "sample_inputs": ["0 0\n4 5", "3 4\n6 1"], "sample_outputs": ["5", "3"], "notes": "NoteIn the first example robot should increase both of its coordinates by one four times, so it will be in position (4,\u20094). After that robot should simply increase its y coordinate and get the finish position.In the second example robot should simultaneously increase x coordinate and decrease y coordinate by one three times."}, "src_uid": "a6e9405bc3d4847fe962446bc1c457b4"} {"nl": {"description": "Manao works on a sports TV. He's spent much time watching the football games of some country. After a while he began to notice different patterns. For example, each team has two sets of uniforms: home uniform and guest uniform. When a team plays a game at home, the players put on the home uniform. When a team plays as a guest on somebody else's stadium, the players put on the guest uniform. The only exception to that rule is: when the home uniform color of the host team matches the guests' uniform, the host team puts on its guest uniform as well. For each team the color of the home and guest uniform is different.There are n teams taking part in the national championship. The championship consists of n\u00b7(n\u2009-\u20091) games: each team invites each other team to its stadium. At this point Manao wondered: how many times during the championship is a host team going to put on the guest uniform? Note that the order of the games does not affect this number.You know the colors of the home and guest uniform for each team. For simplicity, the colors are numbered by integers in such a way that no two distinct colors have the same number. Help Manao find the answer to his question.", "input_spec": "The first line contains an integer n (2\u2009\u2264\u2009n\u2009\u2264\u200930). Each of the following n lines contains a pair of distinct space-separated integers hi, ai (1\u2009\u2264\u2009hi,\u2009ai\u2009\u2264\u2009100) \u2014 the colors of the i-th team's home and guest uniforms, respectively.", "output_spec": "In a single line print the number of games where the host team is going to play in the guest uniform.", "sample_inputs": ["3\n1 2\n2 4\n3 4", "4\n100 42\n42 100\n5 42\n100 5", "2\n1 2\n1 2"], "sample_outputs": ["1", "5", "0"], "notes": "NoteIn the first test case the championship consists of 6 games. The only game with the event in question is the game between teams 2 and 1 on the stadium of team 2.In the second test sample the host team will have to wear guest uniform in the games between teams: 1 and 2, 2 and 1, 2 and 3, 3 and 4, 4 and 2 (the host team is written first)."}, "src_uid": "745f81dcb4f23254bf6602f9f389771b"} {"nl": {"description": "Little Dima misbehaved during a math lesson a lot and the nasty teacher Mr. Pickles gave him the following problem as a punishment. Find all integer solutions x (0\u2009<\u2009x\u2009<\u2009109) of the equation:x\u2009=\u2009b\u00b7s(x)a\u2009+\u2009c,\u2009 where a, b, c are some predetermined constant values and function s(x) determines the sum of all digits in the decimal representation of number x.The teacher gives this problem to Dima for each lesson. He changes only the parameters of the equation: a, b, c. Dima got sick of getting bad marks and he asks you to help him solve this challenging problem.", "input_spec": "The first line contains three space-separated integers: a,\u2009b,\u2009c (1\u2009\u2264\u2009a\u2009\u2264\u20095;\u00a01\u2009\u2264\u2009b\u2009\u2264\u200910000;\u00a0\u2009-\u200910000\u2009\u2264\u2009c\u2009\u2264\u200910000).", "output_spec": "Print integer n \u2014 the number of the solutions that you've found. Next print n integers in the increasing order \u2014 the solutions of the given equation. Print only integer solutions that are larger than zero and strictly less than 109.", "sample_inputs": ["3 2 8", "1 2 -18", "2 2 -1"], "sample_outputs": ["3\n10 2008 13726", "0", "4\n1 31 337 967"], "notes": null}, "src_uid": "e477185b94f93006d7ae84c8f0817009"} {"nl": {"description": "A few years ago, Hitagi encountered a giant crab, who stole the whole of her body weight. Ever since, she tried to avoid contact with others, for fear that this secret might be noticed.To get rid of the oddity and recover her weight, a special integer sequence is needed. Hitagi's sequence has been broken for a long time, but now Kaiki provides an opportunity.Hitagi's sequence a has a length of n. Lost elements in it are denoted by zeros. Kaiki provides another sequence b, whose length k equals the number of lost elements in a (i.e. the number of zeros). Hitagi is to replace each zero in a with an element from b so that each element in b should be used exactly once. Hitagi knows, however, that, apart from 0, no integer occurs in a and b more than once in total.If the resulting sequence is not an increasing sequence, then it has the power to recover Hitagi from the oddity. You are to determine whether this is possible, or Kaiki's sequence is just another fake. In other words, you should detect whether it is possible to replace each zero in a with an integer from b so that each integer from b is used exactly once, and the resulting sequence is not increasing.", "input_spec": "The first line of input contains two space-separated positive integers n (2\u2009\u2264\u2009n\u2009\u2264\u2009100) and k (1\u2009\u2264\u2009k\u2009\u2264\u2009n) \u2014 the lengths of sequence a and b respectively. The second line contains n space-separated integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u2009200) \u2014 Hitagi's broken sequence with exactly k zero elements. The third line contains k space-separated integers b1,\u2009b2,\u2009...,\u2009bk (1\u2009\u2264\u2009bi\u2009\u2264\u2009200) \u2014 the elements to fill into Hitagi's sequence. Input guarantees that apart from 0, no integer occurs in a and b more than once in total.", "output_spec": "Output \"Yes\" if it's possible to replace zeros in a with elements in b and make the resulting sequence not increasing, and \"No\" otherwise.", "sample_inputs": ["4 2\n11 0 0 14\n5 4", "6 1\n2 3 0 8 9 10\n5", "4 1\n8 94 0 4\n89", "7 7\n0 0 0 0 0 0 0\n1 2 3 4 5 6 7"], "sample_outputs": ["Yes", "No", "Yes", "Yes"], "notes": "NoteIn the first sample: Sequence a is 11,\u20090,\u20090,\u200914. Two of the elements are lost, and the candidates in b are 5 and 4. There are two possible resulting sequences: 11,\u20095,\u20094,\u200914 and 11,\u20094,\u20095,\u200914, both of which fulfill the requirements. Thus the answer is \"Yes\". In the second sample, the only possible resulting sequence is 2,\u20093,\u20095,\u20098,\u20099,\u200910, which is an increasing sequence and therefore invalid."}, "src_uid": "40264e84c041fcfb4f8c0af784df102a"} {"nl": {"description": " The number \"zero\" is called \"love\" (or \"l'oeuf\" to be precise, literally means \"egg\" in French), for example when denoting the zero score in a game of tennis. Aki is fond of numbers, especially those with trailing zeros. For example, the number $$$9200$$$ has two trailing zeros. Aki thinks the more trailing zero digits a number has, the prettier it is.However, Aki believes, that the number of trailing zeros of a number is not static, but depends on the base (radix) it is represented in. Thus, he considers a few scenarios with some numbers and bases. And now, since the numbers he used become quite bizarre, he asks you to help him to calculate the beauty of these numbers.Given two integers $$$n$$$ and $$$b$$$ (in decimal notation), your task is to calculate the number of trailing zero digits in the $$$b$$$-ary (in the base/radix of $$$b$$$) representation of $$$n\\,!$$$ (factorial of $$$n$$$). ", "input_spec": "The only line of the input contains two integers $$$n$$$ and $$$b$$$ ($$$1 \\le n \\le 10^{18}$$$, $$$2 \\le b \\le 10^{12}$$$).", "output_spec": "Print an only integer\u00a0\u2014 the number of trailing zero digits in the $$$b$$$-ary representation of $$$n!$$$", "sample_inputs": ["6 9", "38 11", "5 2", "5 10"], "sample_outputs": ["1", "3", "3", "1"], "notes": "NoteIn the first example, $$$6!_{(10)} = 720_{(10)} = 880_{(9)}$$$.In the third and fourth example, $$$5!_{(10)} = 120_{(10)} = 1111000_{(2)}$$$.The representation of the number $$$x$$$ in the $$$b$$$-ary base is $$$d_1, d_2, \\ldots, d_k$$$ if $$$x = d_1 b^{k - 1} + d_2 b^{k - 2} + \\ldots + d_k b^0$$$, where $$$d_i$$$ are integers and $$$0 \\le d_i \\le b - 1$$$. For example, the number $$$720$$$ from the first example is represented as $$$880_{(9)}$$$ since $$$720 = 8 \\cdot 9^2 + 8 \\cdot 9 + 0 \\cdot 1$$$.You can read more about bases here."}, "src_uid": "491748694c1a53771be69c212a5e0e25"} {"nl": {"description": "Little Petya is learning to play chess. He has already learned how to move a king, a rook and a bishop. Let us remind you the rules of moving chess pieces. A chessboard is 64 square fields organized into an 8\u2009\u00d7\u20098 table. A field is represented by a pair of integers (r,\u2009c) \u2014 the number of the row and the number of the column (in a classical game the columns are traditionally indexed by letters). Each chess piece takes up exactly one field. To make a move is to move a chess piece, the pieces move by the following rules: A rook moves any number of fields horizontally or vertically. A bishop moves any number of fields diagonally. A king moves one field in any direction \u2014 horizontally, vertically or diagonally. The pieces move like that Petya is thinking about the following problem: what minimum number of moves is needed for each of these pieces to move from field (r1,\u2009c1) to field (r2,\u2009c2)? At that, we assume that there are no more pieces besides this one on the board. Help him solve this problem.", "input_spec": "The input contains four integers r1,\u2009c1,\u2009r2,\u2009c2 (1\u2009\u2264\u2009r1,\u2009c1,\u2009r2,\u2009c2\u2009\u2264\u20098) \u2014 the coordinates of the starting and the final field. The starting field doesn't coincide with the final one. You can assume that the chessboard rows are numbered from top to bottom 1 through 8, and the columns are numbered from left to right 1 through 8.", "output_spec": "Print three space-separated integers: the minimum number of moves the rook, the bishop and the king (in this order) is needed to move from field (r1,\u2009c1) to field (r2,\u2009c2). If a piece cannot make such a move, print a 0 instead of the corresponding number.", "sample_inputs": ["4 3 1 6", "5 5 5 6"], "sample_outputs": ["2 1 3", "1 0 1"], "notes": null}, "src_uid": "7dbf58806db185f0fe70c00b60973f4b"} {"nl": {"description": "Vector Willman and Array Bolt are the two most famous athletes of Byteforces. They are going to compete in a race with a distance of L meters today. Willman and Bolt have exactly the same speed, so when they compete the result is always a tie. That is a problem for the organizers because they want a winner. While watching previous races the organizers have noticed that Willman can perform only steps of length equal to w meters, and Bolt can perform only steps of length equal to b meters. Organizers decided to slightly change the rules of the race. Now, at the end of the racetrack there will be an abyss, and the winner will be declared the athlete, who manages to run farther from the starting point of the the racetrack (which is not the subject to change by any of the athletes). Note that none of the athletes can run infinitely far, as they both will at some moment of time face the point, such that only one step further will cause them to fall in the abyss. In other words, the athlete will not fall into the abyss if the total length of all his steps will be less or equal to the chosen distance L.Since the organizers are very fair, the are going to set the length of the racetrack as an integer chosen randomly and uniformly in range from 1 to t (both are included). What is the probability that Willman and Bolt tie again today?", "input_spec": "The first line of the input contains three integers t, w and b (1\u2009\u2264\u2009t,\u2009w,\u2009b\u2009\u2264\u20095\u00b71018) \u2014 the maximum possible length of the racetrack, the length of Willman's steps and the length of Bolt's steps respectively.", "output_spec": "Print the answer to the problem as an irreducible fraction . Follow the format of the samples output. The fraction (p and q are integers, and both p\u2009\u2265\u20090 and q\u2009>\u20090 holds) is called irreducible, if there is no such integer d\u2009>\u20091, that both p and q are divisible by d.", "sample_inputs": ["10 3 2", "7 1 2"], "sample_outputs": ["3/10", "3/7"], "notes": "NoteIn the first sample Willman and Bolt will tie in case 1, 6 or 7 are chosen as the length of the racetrack."}, "src_uid": "7a1d8ca25bce0073c4eb5297b94501b5"} {"nl": {"description": "Vasya is very upset that many people on the Net mix uppercase and lowercase letters in one word. That's why he decided to invent an extension for his favorite browser that would change the letters' register in every word so that it either only consisted of lowercase letters or, vice versa, only of uppercase ones. At that as little as possible letters should be changed in the word. For example, the word HoUse must be replaced with house, and the word ViP \u2014 with VIP. If a word contains an equal number of uppercase and lowercase letters, you should replace all the letters with lowercase ones. For example, maTRIx should be replaced by matrix. Your task is to use the given method on one given word.", "input_spec": "The first line contains a word s \u2014 it consists of uppercase and lowercase Latin letters and possesses the length from 1 to 100.", "output_spec": "Print the corrected word s. If the given word s has strictly more uppercase letters, make the word written in the uppercase register, otherwise - in the lowercase one.", "sample_inputs": ["HoUse", "ViP", "maTRIx"], "sample_outputs": ["house", "VIP", "matrix"], "notes": null}, "src_uid": "b432dfa66bae2b542342f0b42c0a2598"} {"nl": {"description": "Mahmoud has n line segments, the i-th of them has length ai. Ehab challenged him to use exactly 3 line segments to form a non-degenerate triangle. Mahmoud doesn't accept challenges unless he is sure he can win, so he asked you to tell him if he should accept the challenge. Given the lengths of the line segments, check if he can choose exactly 3 of them to form a non-degenerate triangle.Mahmoud should use exactly 3 line segments, he can't concatenate two line segments or change any length. A non-degenerate triangle is a triangle with positive area.", "input_spec": "The first line contains single integer n (3\u2009\u2264\u2009n\u2009\u2264\u2009105)\u00a0\u2014 the number of line segments Mahmoud has. The second line contains n integers a1,\u2009a2,\u2009...,\u2009an (1\u2009\u2264\u2009ai\u2009\u2264\u2009109)\u00a0\u2014 the lengths of line segments Mahmoud has.", "output_spec": "In the only line print \"YES\" if he can choose exactly three line segments and form a non-degenerate triangle with them, and \"NO\" otherwise.", "sample_inputs": ["5\n1 5 3 2 4", "3\n4 1 2"], "sample_outputs": ["YES", "NO"], "notes": "NoteFor the first example, he can use line segments with lengths 2, 4 and 5 to form a non-degenerate triangle."}, "src_uid": "897bd80b79df7b1143b652655b9a6790"} {"nl": {"description": "A few years ago Sajjad left his school and register to another one due to security reasons. Now he wishes to find Amir, one of his schoolmates and good friends.There are n schools numerated from 1 to n. One can travel between each pair of them, to do so, he needs to buy a ticket. The ticker between schools i and j costs and can be used multiple times. Help Sajjad to find the minimum cost he needs to pay for tickets to visit all schools. He can start and finish in any school.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009105)\u00a0\u2014 the number of schools.", "output_spec": "Print single integer: the minimum cost of tickets needed to visit all schools.", "sample_inputs": ["2", "10"], "sample_outputs": ["0", "4"], "notes": "NoteIn the first example we can buy a ticket between the schools that costs ."}, "src_uid": "dfe9446431325c73e88b58ba204d0e47"} {"nl": {"description": "The finalists of the \"Russian Code Cup\" competition in 2214 will be the participants who win in one of the elimination rounds.The elimination rounds are divided into main and additional. Each of the main elimination rounds consists of c problems, the winners of the round are the first n people in the rating list. Each of the additional elimination rounds consists of d problems. The winner of the additional round is one person. Besides, k winners of the past finals are invited to the finals without elimination.As a result of all elimination rounds at least n\u00b7m people should go to the finals. You need to organize elimination rounds in such a way, that at least n\u00b7m people go to the finals, and the total amount of used problems in all rounds is as small as possible.", "input_spec": "The first line contains two integers c and d (1\u2009\u2264\u2009c,\u2009d\u2009\u2264\u2009100)\u00a0\u2014 the number of problems in the main and additional rounds, correspondingly. The second line contains two integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100). Finally, the third line contains an integer k (1\u2009\u2264\u2009k\u2009\u2264\u2009100)\u00a0\u2014 the number of the pre-chosen winners. ", "output_spec": "In the first line, print a single integer \u2014 the minimum number of problems the jury needs to prepare.", "sample_inputs": ["1 10\n7 2\n1", "2 2\n2 1\n2"], "sample_outputs": ["2", "0"], "notes": null}, "src_uid": "c6ec932b852e0e8c30c822a226ef7bcb"} {"nl": {"description": "Valeric and Valerko missed the last Euro football game, so they decided to watch the game's key moments on the Net. They want to start watching as soon as possible but the connection speed is too low. If they turn on the video right now, it will \"hang up\" as the size of data to watch per second will be more than the size of downloaded data per second.The guys want to watch the whole video without any pauses, so they have to wait some integer number of seconds for a part of the video to download. After this number of seconds passes, they can start watching. Waiting for the whole video to download isn't necessary as the video can download after the guys started to watch.Let's suppose that video's length is c seconds and Valeric and Valerko wait t seconds before the watching. Then for any moment of time t0, t\u2009\u2264\u2009t0\u2009\u2264\u2009c\u2009+\u2009t, the following condition must fulfill: the size of data received in t0 seconds is not less than the size of data needed to watch t0\u2009-\u2009t seconds of the video.Of course, the guys want to wait as little as possible, so your task is to find the minimum integer number of seconds to wait before turning the video on. The guys must watch the video without pauses.", "input_spec": "The first line contains three space-separated integers a, b and c (1\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u20091000,\u2009a\u2009>\u2009b). The first number (a) denotes the size of data needed to watch one second of the video. The second number (b) denotes the size of data Valeric and Valerko can download from the Net per second. The third number (c) denotes the video's length in seconds.", "output_spec": "Print a single number \u2014 the minimum integer number of seconds that Valeric and Valerko must wait to watch football without pauses.", "sample_inputs": ["4 1 1", "10 3 2", "13 12 1"], "sample_outputs": ["3", "5", "1"], "notes": "NoteIn the first sample video's length is 1 second and it is necessary 4 units of data for watching 1 second of video, so guys should download 4 \u00b7 1 = 4 units of data to watch the whole video. The most optimal way is to wait 3 seconds till 3 units of data will be downloaded and then start watching. While guys will be watching video 1 second, one unit of data will be downloaded and Valerik and Valerko will have 4 units of data by the end of watching. Also every moment till the end of video guys will have more data then necessary for watching.In the second sample guys need 2 \u00b7 10 = 20 units of data, so they have to wait 5 seconds and after that they will have 20 units before the second second ends. However, if guys wait 4 seconds, they will be able to watch first second of video without pauses, but they will download 18 units of data by the end of second second and it is less then necessary."}, "src_uid": "7dd098ec3ad5b29ad681787173eba341"} {"nl": {"description": "Once upon a time in the Kingdom of Far Far Away lived Sir Lancelot, the chief Royal General. He was very proud of his men and he liked to invite the King to come and watch drill exercises which demonstrated the fighting techniques and tactics of the squad he was in charge of. But time went by and one day Sir Lancelot had a major argument with the Fairy Godmother (there were rumors that the argument occurred after the general spoke badly of the Godmother's flying techniques. That seemed to hurt the Fairy Godmother very deeply). As the result of the argument, the Godmother put a rather strange curse upon the general. It sounded all complicated and quite harmless: \"If the squared distance between some two soldiers equals to 5, then those soldiers will conflict with each other!\"The drill exercises are held on a rectangular n\u2009\u00d7\u2009m field, split into nm square 1\u2009\u00d7\u20091 segments for each soldier. Thus, the square of the distance between the soldiers that stand on squares (x1,\u2009y1) and (x2,\u2009y2) equals exactly (x1\u2009-\u2009x2)2\u2009+\u2009(y1\u2009-\u2009y2)2. Now not all nm squad soldiers can participate in the drill exercises as it was before the Fairy Godmother's curse. Unless, of course, the general wants the soldiers to fight with each other or even worse... For example, if he puts a soldier in the square (2,\u20092), then he cannot put soldiers in the squares (1,\u20094), (3,\u20094), (4,\u20091) and (4,\u20093) \u2014 each of them will conflict with the soldier in the square (2,\u20092).Your task is to help the general. You are given the size of the drill exercise field. You are asked to calculate the maximum number of soldiers that can be simultaneously positioned on this field, so that no two soldiers fall under the Fairy Godmother's curse.", "input_spec": "The single line contains space-separated integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20091000) that represent the size of the drill exercise field.", "output_spec": "Print the desired maximum number of warriors.", "sample_inputs": ["2 4", "3 4"], "sample_outputs": ["4", "6"], "notes": "NoteIn the first sample test Sir Lancelot can place his 4 soldiers on the 2\u2009\u00d7\u20094 court as follows (the soldiers' locations are marked with gray circles on the scheme): In the second sample test he can place 6 soldiers on the 3\u2009\u00d7\u20094 site in the following manner: "}, "src_uid": "e858e7f22d91aaadd7a48a174d7b2dc9"} {"nl": {"description": "Petya is having a party soon, and he has decided to invite his $$$n$$$ friends.He wants to make invitations in the form of origami. For each invitation, he needs two red sheets, five green sheets, and eight blue sheets. The store sells an infinite number of notebooks of each color, but each notebook consists of only one color with $$$k$$$ sheets. That is, each notebook contains $$$k$$$ sheets of either red, green, or blue.Find the minimum number of notebooks that Petya needs to buy to invite all $$$n$$$ of his friends.", "input_spec": "The first line contains two integers $$$n$$$ and $$$k$$$ ($$$1\\leq n, k\\leq 10^8$$$)\u00a0\u2014 the number of Petya's friends and the number of sheets in each notebook respectively.", "output_spec": "Print one number\u00a0\u2014 the minimum number of notebooks that Petya needs to buy.", "sample_inputs": ["3 5", "15 6"], "sample_outputs": ["10", "38"], "notes": "NoteIn the first example, we need $$$2$$$ red notebooks, $$$3$$$ green notebooks, and $$$5$$$ blue notebooks.In the second example, we need $$$5$$$ red notebooks, $$$13$$$ green notebooks, and $$$20$$$ blue notebooks."}, "src_uid": "d259a3a5c38af34b2a15d61157cc0a39"} {"nl": {"description": "Today Vasya visited a widely known site and learned that the continuation of his favourite game Codecraft II will appear after exactly k months. He looked at the calendar and learned that at the moment is the month number s. Vasya immediately got interested in what month Codecraft III will appear. Help him understand that.All the twelve months in Vasya's calendar are named using their usual English names: January, February, March, April, May, June, July, August, September, October, November, December.", "input_spec": "The first input line contains the name of the current month. It is guaranteed that it is a proper English name of one of twelve months. The first letter is uppercase, the rest are lowercase. The second line contains integer k (0\u2009\u2264\u2009k\u2009\u2264\u2009100) \u2014 the number of months left till the appearance of Codecraft III.", "output_spec": "Print starting from an uppercase letter the name of the month in which the continuation of Codeforces II will appear. The printed name must be contained in the list January, February, March, April, May, June, July, August, September, October, November, December.", "sample_inputs": ["November\n3", "May\n24"], "sample_outputs": ["February", "May"], "notes": null}, "src_uid": "a307b402b20554ce177a73db07170691"} {"nl": {"description": "Vasya has n days of vacations! So he decided to improve his IT skills and do sport. Vasya knows the following information about each of this n days: whether that gym opened and whether a contest was carried out in the Internet on that day. For the i-th day there are four options: on this day the gym is closed and the contest is not carried out; on this day the gym is closed and the contest is carried out; on this day the gym is open and the contest is not carried out; on this day the gym is open and the contest is carried out. On each of days Vasya can either have a rest or write the contest (if it is carried out on this day), or do sport (if the gym is open on this day).Find the minimum number of days on which Vasya will have a rest (it means, he will not do sport and write the contest at the same time). The only limitation that Vasya has \u2014 he does not want to do the same activity on two consecutive days: it means, he will not do sport on two consecutive days, and write the contest on two consecutive days.", "input_spec": "The first line contains a positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100) \u2014 the number of days of Vasya's vacations. The second line contains the sequence of integers a1,\u2009a2,\u2009...,\u2009an (0\u2009\u2264\u2009ai\u2009\u2264\u20093) separated by space, where: ai equals 0, if on the i-th day of vacations the gym is closed and the contest is not carried out; ai equals 1, if on the i-th day of vacations the gym is closed, but the contest is carried out; ai equals 2, if on the i-th day of vacations the gym is open and the contest is not carried out; ai equals 3, if on the i-th day of vacations the gym is open and the contest is carried out.", "output_spec": "Print the minimum possible number of days on which Vasya will have a rest. Remember that Vasya refuses: to do sport on any two consecutive days, to write the contest on any two consecutive days. ", "sample_inputs": ["4\n1 3 2 0", "7\n1 3 3 2 1 2 3", "2\n2 2"], "sample_outputs": ["2", "0", "1"], "notes": "NoteIn the first test Vasya can write the contest on the day number 1 and do sport on the day number 3. Thus, he will have a rest for only 2 days.In the second test Vasya should write contests on days number 1, 3, 5 and 7, in other days do sport. Thus, he will not have a rest for a single day.In the third test Vasya can do sport either on a day number 1 or number 2. He can not do sport in two days, because it will be contrary to the his limitation. Thus, he will have a rest for only one day."}, "src_uid": "08f1ba79ced688958695a7cfcfdda035"} {"nl": {"description": "Someday, Drazil wanted to go on date with Varda. Drazil and Varda live on Cartesian plane. Drazil's home is located in point (0,\u20090) and Varda's home is located in point (a,\u2009b). In each step, he can move in a unit distance in horizontal or vertical direction. In other words, from position (x,\u2009y) he can go to positions (x\u2009+\u20091,\u2009y), (x\u2009-\u20091,\u2009y), (x,\u2009y\u2009+\u20091) or (x,\u2009y\u2009-\u20091). Unfortunately, Drazil doesn't have sense of direction. So he randomly chooses the direction he will go to in each step. He may accidentally return back to his house during his travel. Drazil may even not notice that he has arrived to (a,\u2009b) and continue travelling. Luckily, Drazil arrived to the position (a,\u2009b) successfully. Drazil said to Varda: \"It took me exactly s steps to travel from my house to yours\". But Varda is confused about his words, she is not sure that it is possible to get from (0,\u20090) to (a,\u2009b) in exactly s steps. Can you find out if it is possible for Varda?", "input_spec": "You are given three integers a, b, and s (\u2009-\u2009109\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009109, 1\u2009\u2264\u2009s\u2009\u2264\u20092\u00b7109) in a single line.", "output_spec": "If you think Drazil made a mistake and it is impossible to take exactly s steps and get from his home to Varda's home, print \"No\" (without quotes). Otherwise, print \"Yes\".", "sample_inputs": ["5 5 11", "10 15 25", "0 5 1", "0 0 2"], "sample_outputs": ["No", "Yes", "No", "Yes"], "notes": "NoteIn fourth sample case one possible route is: ."}, "src_uid": "9a955ce0775018ff4e5825700c13ed36"} {"nl": {"description": "The on-board computer on Polycarp's car measured that the car speed at the beginning of some section of the path equals v1 meters per second, and in the end it is v2 meters per second. We know that this section of the route took exactly t seconds to pass.Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by d meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed d in absolute value), find the maximum possible length of the path section in meters.", "input_spec": "The first line contains two integers v1 and v2 (1\u2009\u2264\u2009v1,\u2009v2\u2009\u2264\u2009100) \u2014 the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively. The second line contains two integers t (2\u2009\u2264\u2009t\u2009\u2264\u2009100) \u2014 the time when the car moves along the segment in seconds, d (0\u2009\u2264\u2009d\u2009\u2264\u200910) \u2014 the maximum value of the speed change between adjacent seconds. It is guaranteed that there is a way to complete the segment so that: the speed in the first second equals v1, the speed in the last second equals v2, the absolute value of difference of speeds between any two adjacent seconds doesn't exceed d. ", "output_spec": "Print the maximum possible length of the path segment in meters. ", "sample_inputs": ["5 6\n4 2", "10 10\n10 0"], "sample_outputs": ["26", "100"], "notes": "NoteIn the first sample the sequence of speeds of Polycarpus' car can look as follows: 5, 7, 8, 6. Thus, the total path is 5\u2009+\u20097\u2009+\u20098\u2009+\u20096\u2009=\u200926 meters.In the second sample, as d\u2009=\u20090, the car covers the whole segment at constant speed v\u2009=\u200910. In t\u2009=\u200910 seconds it covers the distance of 100 meters."}, "src_uid": "9246aa2f506fcbcb47ad24793d09f2cf"} {"nl": {"description": "Petya has an array $$$a$$$ consisting of $$$n$$$ integers. He wants to remove duplicate (equal) elements.Petya wants to leave only the rightmost entry (occurrence) for each element of the array. The relative order of the remaining unique elements should not be changed.", "input_spec": "The first line contains a single integer $$$n$$$ ($$$1 \\le n \\le 50$$$) \u2014 the number of elements in Petya's array. The following line contains a sequence $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 1\\,000$$$) \u2014 the Petya's array.", "output_spec": "In the first line print integer $$$x$$$ \u2014 the number of elements which will be left in Petya's array after he removed the duplicates. In the second line print $$$x$$$ integers separated with a space \u2014 Petya's array after he removed the duplicates. For each unique element only the rightmost entry should be left.", "sample_inputs": ["6\n1 5 5 1 6 1", "5\n2 4 2 4 4", "5\n6 6 6 6 6"], "sample_outputs": ["3\n5 6 1", "2\n2 4", "1\n6"], "notes": "NoteIn the first example you should remove two integers $$$1$$$, which are in the positions $$$1$$$ and $$$4$$$. Also you should remove the integer $$$5$$$, which is in the position $$$2$$$.In the second example you should remove integer $$$2$$$, which is in the position $$$1$$$, and two integers $$$4$$$, which are in the positions $$$2$$$ and $$$4$$$.In the third example you should remove four integers $$$6$$$, which are in the positions $$$1$$$, $$$2$$$, $$$3$$$ and $$$4$$$."}, "src_uid": "1b9d3dfcc2353eac20b84c75c27fab5a"} {"nl": {"description": "Quite recently a creative student Lesha had a lecture on trees. After the lecture Lesha was inspired and came up with the tree of his own which he called a k-tree.A k-tree is an infinite rooted tree where: each vertex has exactly k children; each edge has some weight; if we look at the edges that goes from some vertex to its children (exactly k edges), then their weights will equal 1,\u20092,\u20093,\u2009...,\u2009k. The picture below shows a part of a 3-tree. As soon as Dima, a good friend of Lesha, found out about the tree, he immediately wondered: \"How many paths of total weight n (the sum of all weights of the edges in the path) are there, starting from the root of a k-tree and also containing at least one edge of weight at least d?\".Help Dima find an answer to his question. As the number of ways can be rather large, print it modulo 1000000007 (109\u2009+\u20097). ", "input_spec": "A single line contains three space-separated integers: n, k and d (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u2009100; 1\u2009\u2264\u2009d\u2009\u2264\u2009k).", "output_spec": "Print a single integer \u2014 the answer to the problem modulo 1000000007 (109\u2009+\u20097). ", "sample_inputs": ["3 3 2", "3 3 3", "4 3 2", "4 5 2"], "sample_outputs": ["3", "1", "6", "7"], "notes": null}, "src_uid": "894a58c9bba5eba11b843c5c5ca0025d"} {"nl": {"description": "Theatre Square in the capital city of Berland has a rectangular shape with the size n\u2009\u00d7\u2009m meters. On the occasion of the city's anniversary, a decision was taken to pave the Square with square granite flagstones. Each flagstone is of the size a\u2009\u00d7\u2009a.What is the least number of flagstones needed to pave the Square? It's allowed to cover the surface larger than the Theatre Square, but the Square has to be covered. It's not allowed to break the flagstones. The sides of flagstones should be parallel to the sides of the Square.", "input_spec": "The input contains three positive integer numbers in the first line: n,\u2009\u2009m and a (1\u2009\u2264\u2009\u2009n,\u2009m,\u2009a\u2009\u2264\u2009109).", "output_spec": "Write the needed number of flagstones.", "sample_inputs": ["6 6 4"], "sample_outputs": ["4"], "notes": null}, "src_uid": "ef971874d8c4da37581336284b688517"} {"nl": {"description": "Vanya has a scales for weighing loads and weights of masses w0,\u2009w1,\u2009w2,\u2009...,\u2009w100 grams where w is some integer not less than 2 (exactly one weight of each nominal value). Vanya wonders whether he can weight an item with mass m using the given weights, if the weights can be put on both pans of the scales. Formally speaking, your task is to determine whether it is possible to place an item of mass m and some weights on the left pan of the scales, and some weights on the right pan of the scales so that the pans of the scales were in balance.", "input_spec": "The first line contains two integers w,\u2009m (2\u2009\u2264\u2009w\u2009\u2264\u2009109, 1\u2009\u2264\u2009m\u2009\u2264\u2009109) \u2014 the number defining the masses of the weights and the mass of the item.", "output_spec": "Print word 'YES' if the item can be weighted and 'NO' if it cannot.", "sample_inputs": ["3 7", "100 99", "100 50"], "sample_outputs": ["YES", "YES", "NO"], "notes": "NoteNote to the first sample test. One pan can have an item of mass 7 and a weight of mass 3, and the second pan can have two weights of masses 9 and 1, correspondingly. Then 7\u2009+\u20093\u2009=\u20099\u2009+\u20091.Note to the second sample test. One pan of the scales can have an item of mass 99 and the weight of mass 1, and the second pan can have the weight of mass 100.Note to the third sample test. It is impossible to measure the weight of the item in the manner described in the input. "}, "src_uid": "a74adcf0314692f8ac95f54d165d9582"} {"nl": {"description": "You are given a string s consisting of |s| small english letters.In one move you can replace any character of this string to the next character in alphabetical order (a will be replaced with b, s will be replaced with t, etc.). You cannot replace letter z with any other letter.Your target is to make some number of moves (not necessary minimal) to get string abcdefghijklmnopqrstuvwxyz (english alphabet) as a subsequence. Subsequence of the string is the string that is obtained by deleting characters at some positions. You need to print the string that will be obtained from the given string and will be contain english alphabet as a subsequence or say that it is impossible.", "input_spec": "The only one line of the input consisting of the string s consisting of |s| (1\u2009\u2264\u2009|s|\u2009\u2264\u2009105) small english letters.", "output_spec": "If you can get a string that can be obtained from the given string and will contain english alphabet as a subsequence, print it. Otherwise print \u00ab-1\u00bb (without quotes).", "sample_inputs": ["aacceeggiikkmmooqqssuuwwyy", "thereisnoanswer"], "sample_outputs": ["abcdefghijklmnopqrstuvwxyz", "-1"], "notes": null}, "src_uid": "f8ad543d499bcc0da0121a71a26db854"} {"nl": {"description": "A little bear Limak plays a game. He has five cards. There is one number written on each card. Each number is a positive integer.Limak can discard (throw out) some cards. His goal is to minimize the sum of numbers written on remaining (not discarded) cards.He is allowed to at most once discard two or three cards with the same number. Of course, he won't discard cards if it's impossible to choose two or three cards with the same number.Given five numbers written on cards, cay you find the minimum sum of numbers on remaining cards?", "input_spec": "The only line of the input contains five integers t1, t2, t3, t4 and t5 (1\u2009\u2264\u2009ti\u2009\u2264\u2009100)\u00a0\u2014 numbers written on cards.", "output_spec": "Print the minimum possible sum of numbers written on remaining cards.", "sample_inputs": ["7 3 7 3 20", "7 9 3 1 8", "10 10 10 10 10"], "sample_outputs": ["26", "28", "20"], "notes": "NoteIn the first sample, Limak has cards with numbers 7, 3, 7, 3 and 20. Limak can do one of the following. Do nothing and the sum would be 7\u2009+\u20093\u2009+\u20097\u2009+\u20093\u2009+\u200920\u2009=\u200940. Remove two cards with a number 7. The remaining sum would be 3\u2009+\u20093\u2009+\u200920\u2009=\u200926. Remove two cards with a number 3. The remaining sum would be 7\u2009+\u20097\u2009+\u200920\u2009=\u200934. You are asked to minimize the sum so the answer is 26.In the second sample, it's impossible to find two or three cards with the same number. Hence, Limak does nothing and the sum is 7\u2009+\u20099\u2009+\u20091\u2009+\u20093\u2009+\u20098\u2009=\u200928.In the third sample, all cards have the same number. It's optimal to discard any three cards. The sum of two remaining numbers is 10\u2009+\u200910\u2009=\u200920."}, "src_uid": "a9c17ce5fd5f39ffd70917127ce3408a"} {"nl": {"description": "There is a card game called \"Durak\", which means \"Fool\" in Russian. The game is quite popular in the countries that used to form USSR. The problem does not state all the game's rules explicitly \u2014 you can find them later yourselves if you want.To play durak you need a pack of 36 cards. Each card has a suit (\"S\", \"H\", \"D\" and \"C\") and a rank (in the increasing order \"6\", \"7\", \"8\", \"9\", \"T\", \"J\", \"Q\", \"K\" and \"A\"). At the beginning of the game one suit is arbitrarily chosen as trump. The players move like that: one player puts one or several of his cards on the table and the other one should beat each of them with his cards.A card beats another one if both cards have similar suits and the first card has a higher rank then the second one. Besides, a trump card can beat any non-trump card whatever the cards\u2019 ranks are. In all other cases you can not beat the second card with the first one.You are given the trump suit and two different cards. Determine whether the first one beats the second one or not.", "input_spec": "The first line contains the tramp suit. It is \"S\", \"H\", \"D\" or \"C\". The second line contains the description of the two different cards. Each card is described by one word consisting of two symbols. The first symbol stands for the rank (\"6\", \"7\", \"8\", \"9\", \"T\", \"J\", \"Q\", \"K\" and \"A\"), and the second one stands for the suit (\"S\", \"H\", \"D\" and \"C\").", "output_spec": "Print \"YES\" (without the quotes) if the first cards beats the second one. Otherwise, print \"NO\" (also without the quotes).", "sample_inputs": ["H\nQH 9S", "S\n8D 6D", "C\n7H AS"], "sample_outputs": ["YES", "YES", "NO"], "notes": null}, "src_uid": "da13bd5a335c7f81c5a963b030655c26"} {"nl": {"description": "A boy named Vasya wants to play an old Russian solitaire called \"Accordion\". In this solitaire, the player must observe the following rules: A deck of n cards is carefully shuffled, then all n cards are put on the table in a line from left to right; Before each move the table has several piles of cards lying in a line (initially there are n piles, each pile has one card). Let's number the piles from left to right, from 1 to x. During one move, a player can take the whole pile with the maximum number x (that is the rightmost of remaining) and put it on the top of pile x\u2009-\u20091 (if it exists) or on the top of pile x\u2009-\u20093 (if it exists). The player can put one pile on top of another one only if the piles' top cards have the same suits or values. Please note that if pile x goes on top of pile y, then the top card of pile x becomes the top card of the resulting pile. Also note that each move decreases the total number of piles by 1; The solitaire is considered completed if all cards are in the same pile. Vasya has already shuffled the cards and put them on the table, help him understand whether completing this solitaire is possible or not. ", "input_spec": "The first input line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u200952) \u2014 the number of cards in Vasya's deck. The next line contains n space-separated strings c1,\u2009c2,\u2009...,\u2009cn, where string ci describes the i-th card on the table. Each string ci consists of exactly two characters, the first one represents the card's value, the second one represents its suit. Cards on the table are numbered from left to right. A card's value is specified by one of these characters: \"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"T\", \"J\", \"Q\", \"K\", \"A\". A card's suit is specified by one of these characters: \"S\", \"D\", \"H\", \"C\". It is not guaranteed that the deck has all possible cards. Also, the cards in Vasya's deck can repeat.", "output_spec": "On a single line print the answer to the problem: string \"YES\" (without the quotes) if completing the solitaire is possible, string \"NO\" (without the quotes) otherwise.", "sample_inputs": ["4\n2S 2S 2C 2C", "2\n3S 2C"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample you can act like that: put the 4-th pile on the 1-st one; put the 3-rd pile on the 2-nd one; put the 2-nd pile on the 1-st one. In the second sample there is no way to complete the solitaire."}, "src_uid": "1805771e194d323edacf2526a1eb6768"} {"nl": {"description": "Mad scientist Mike is busy carrying out experiments in chemistry. Today he will attempt to join three atoms into one molecule.A molecule consists of atoms, with some pairs of atoms connected by atomic bonds. Each atom has a valence number \u2014 the number of bonds the atom must form with other atoms. An atom can form one or multiple bonds with any other atom, but it cannot form a bond with itself. The number of bonds of an atom in the molecule must be equal to its valence number. Mike knows valence numbers of the three atoms. Find a molecule that can be built from these atoms according to the stated rules, or determine that it is impossible.", "input_spec": "The single line of the input contains three space-separated integers a, b and c (1\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u2009106) \u2014 the valence numbers of the given atoms.", "output_spec": "If such a molecule can be built, print three space-separated integers \u2014 the number of bonds between the 1-st and the 2-nd, the 2-nd and the 3-rd, the 3-rd and the 1-st atoms, correspondingly. If there are multiple solutions, output any of them. If there is no solution, print \"Impossible\" (without the quotes).", "sample_inputs": ["1 1 2", "3 4 5", "4 1 1"], "sample_outputs": ["0 1 1", "1 3 2", "Impossible"], "notes": "NoteThe first sample corresponds to the first figure. There are no bonds between atoms 1 and 2 in this case.The second sample corresponds to the second figure. There is one or more bonds between each pair of atoms.The third sample corresponds to the third figure. There is no solution, because an atom cannot form bonds with itself.The configuration in the fourth figure is impossible as each atom must have at least one atomic bond."}, "src_uid": "b3b986fddc3770fed64b878fa42ab1bc"} {"nl": {"description": "Mishka is decorating the Christmas tree. He has got three garlands, and all of them will be put on the tree. After that Mishka will switch these garlands on.When a garland is switched on, it periodically changes its state \u2014 sometimes it is lit, sometimes not. Formally, if i-th garland is switched on during x-th second, then it is lit only during seconds x, x\u2009+\u2009ki, x\u2009+\u20092ki, x\u2009+\u20093ki and so on.Mishka wants to switch on the garlands in such a way that during each second after switching the garlands on there would be at least one lit garland. Formally, Mishka wants to choose three integers x1, x2 and x3 (not necessarily distinct) so that he will switch on the first garland during x1-th second, the second one \u2014 during x2-th second, and the third one \u2014 during x3-th second, respectively, and during each second starting from max(x1,\u2009x2,\u2009x3) at least one garland will be lit.Help Mishka by telling him if it is possible to do this!", "input_spec": "The first line contains three integers k1, k2 and k3 (1\u2009\u2264\u2009ki\u2009\u2264\u20091500) \u2014 time intervals of the garlands.", "output_spec": "If Mishka can choose moments of time to switch on the garlands in such a way that each second after switching the garlands on at least one garland will be lit, print YES. Otherwise, print NO.", "sample_inputs": ["2 2 3", "4 2 3"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first example Mishka can choose x1\u2009=\u20091, x2\u2009=\u20092, x3\u2009=\u20091. The first garland will be lit during seconds 1,\u20093,\u20095,\u20097,\u2009..., the second \u2014 2,\u20094,\u20096,\u20098,\u2009..., which already cover all the seconds after the 2-nd one. It doesn't even matter what x3 is chosen. Our choice will lead third to be lit during seconds 1,\u20094,\u20097,\u200910,\u2009..., though.In the second example there is no way to choose such moments of time, there always be some seconds when no garland is lit."}, "src_uid": "df48af9f5e68cb6efc1214f7138accf9"} {"nl": {"description": "It is a balmy spring afternoon, and Farmer John's n cows are ruminating about link-cut cacti in their stalls. The cows, labeled 1 through n, are arranged so that the i-th cow occupies the i-th stall from the left. However, Elsie, after realizing that she will forever live in the shadows beyond Bessie's limelight, has formed the Mischievous Mess Makers and is plotting to disrupt this beautiful pastoral rhythm. While Farmer John takes his k minute long nap, Elsie and the Mess Makers plan to repeatedly choose two distinct stalls and swap the cows occupying those stalls, making no more than one swap each minute.Being the meticulous pranksters that they are, the Mischievous Mess Makers would like to know the maximum messiness attainable in the k minutes that they have. We denote as pi the label of the cow in the i-th stall. The messiness of an arrangement of cows is defined as the number of pairs (i,\u2009j) such that i\u2009<\u2009j and pi\u2009>\u2009pj.", "input_spec": "The first line of the input contains two integers n and k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u2009100\u2009000)\u00a0\u2014 the number of cows and the length of Farmer John's nap, respectively.", "output_spec": "Output a single integer, the maximum messiness that the Mischievous Mess Makers can achieve by performing no more than k swaps. ", "sample_inputs": ["5 2", "1 10"], "sample_outputs": ["10", "0"], "notes": "NoteIn the first sample, the Mischievous Mess Makers can swap the cows in the stalls 1 and 5 during the first minute, then the cows in stalls 2 and 4 during the second minute. This reverses the arrangement of cows, giving us a total messiness of 10.In the second sample, there is only one cow, so the maximum possible messiness is 0."}, "src_uid": "ea36ca0a3c336424d5b7e1b4c56947b0"} {"nl": {"description": "Amr bought a new video game \"Guess Your Way Out!\". The goal of the game is to find an exit from the maze that looks like a perfect binary tree of height h. The player is initially standing at the root of the tree and the exit from the tree is located at some leaf node. Let's index all the leaf nodes from the left to the right from 1 to 2h. The exit is located at some node n where 1\u2009\u2264\u2009n\u2009\u2264\u20092h, the player doesn't know where the exit is so he has to guess his way out!Amr follows simple algorithm to choose the path. Let's consider infinite command string \"LRLRLRLRL...\" (consisting of alternating characters 'L' and 'R'). Amr sequentially executes the characters of the string using following rules: Character 'L' means \"go to the left child of the current node\"; Character 'R' means \"go to the right child of the current node\"; If the destination node is already visited, Amr skips current command, otherwise he moves to the destination node; If Amr skipped two consecutive commands, he goes back to the parent of the current node before executing next command; If he reached a leaf node that is not the exit, he returns to the parent of the current node; If he reaches an exit, the game is finished. Now Amr wonders, if he follows this algorithm, how many nodes he is going to visit before reaching the exit?", "input_spec": "Input consists of two integers h,\u2009n (1\u2009\u2264\u2009h\u2009\u2264\u200950, 1\u2009\u2264\u2009n\u2009\u2264\u20092h).", "output_spec": "Output a single integer representing the number of nodes (excluding the exit node) Amr is going to visit before reaching the exit by following this algorithm.", "sample_inputs": ["1 2", "2 3", "3 6", "10 1024"], "sample_outputs": ["2", "5", "10", "2046"], "notes": "NoteA perfect binary tree of height h is a binary tree consisting of h\u2009+\u20091 levels. Level 0 consists of a single node called root, level h consists of 2h nodes called leaves. Each node that is not a leaf has exactly two children, left and right one. Following picture illustrates the sample test number 3. Nodes are labeled according to the order of visit."}, "src_uid": "3dc25ccb394e2d5ceddc6b3a26cb5781"} {"nl": {"description": "On the planet Mars a year lasts exactly n days (there are no leap years on Mars). But Martians have the same weeks as earthlings\u00a0\u2014 5 work days and then 2 days off. Your task is to determine the minimum possible and the maximum possible number of days off per year on Mars.", "input_spec": "The first line of the input contains a positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091\u2009000\u2009000)\u00a0\u2014 the number of days in a year on Mars.", "output_spec": "Print two integers\u00a0\u2014 the minimum possible and the maximum possible number of days off per year on Mars.", "sample_inputs": ["14", "2"], "sample_outputs": ["4 4", "0 2"], "notes": "NoteIn the first sample there are 14 days in a year on Mars, and therefore independently of the day a year starts with there will be exactly 4 days off .In the second sample there are only 2 days in a year on Mars, and they can both be either work days or days off."}, "src_uid": "8152daefb04dfa3e1a53f0a501544c35"} {"nl": {"description": "One Sunday Petr went to a bookshop and bought a new book on sports programming. The book had exactly n pages.Petr decided to start reading it starting from the next day, that is, from Monday. Petr's got a very tight schedule and for each day of the week he knows how many pages he will be able to read on that day. Some days are so busy that Petr will have no time to read whatsoever. However, we know that he will be able to read at least one page a week.Assuming that Petr will not skip days and will read as much as he can every day, determine on which day of the week he will read the last page of the book.", "input_spec": "The first input line contains the single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091000) \u2014 the number of pages in the book. The second line contains seven non-negative space-separated integers that do not exceed 1000 \u2014 those integers represent how many pages Petr can read on Monday, Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday correspondingly. It is guaranteed that at least one of those numbers is larger than zero.", "output_spec": "Print a single number \u2014 the number of the day of the week, when Petr will finish reading the book. The days of the week are numbered starting with one in the natural order: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday.", "sample_inputs": ["100\n15 20 20 15 10 30 45", "2\n1 0 0 0 0 0 0"], "sample_outputs": ["6", "1"], "notes": "NoteNote to the first sample:By the end of Monday and therefore, by the beginning of Tuesday Petr has 85 pages left. He has 65 pages left by Wednesday, 45 by Thursday, 30 by Friday, 20 by Saturday and on Saturday Petr finishes reading the book (and he also has time to read 10 pages of something else).Note to the second sample:On Monday of the first week Petr will read the first page. On Monday of the second week Petr will read the second page and will finish reading the book."}, "src_uid": "007a779d966e2e9219789d6d9da7002c"} {"nl": {"description": "For a positive integer n let's define a function f:f(n)\u2009=\u2009\u2009-\u20091\u2009+\u20092\u2009-\u20093\u2009+\u2009..\u2009+\u2009(\u2009-\u20091)nn Your task is to calculate f(n) for a given integer n.", "input_spec": "The single line contains the positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091015).", "output_spec": "Print f(n) in a single line.", "sample_inputs": ["4", "5"], "sample_outputs": ["2", "-3"], "notes": "Notef(4)\u2009=\u2009\u2009-\u20091\u2009+\u20092\u2009-\u20093\u2009+\u20094\u2009=\u20092f(5)\u2009=\u2009\u2009-\u20091\u2009+\u20092\u2009-\u20093\u2009+\u20094\u2009-\u20095\u2009=\u2009\u2009-\u20093"}, "src_uid": "689e7876048ee4eb7479e838c981f068"} {"nl": {"description": "You are developing a new feature for the website which sells airline tickets: being able to sort tickets by price! You have already extracted the tickets' prices, so there's just the last step to be done...You are given an array of integers. Sort it in non-descending order.", "input_spec": "The input consists of a single line of space-separated integers. The first number is n (1\u2009\u2264\u2009n\u2009\u2264\u200910) \u2014 the size of the array. The following n numbers are the elements of the array (1\u2009\u2264\u2009ai\u2009\u2264\u2009100).", "output_spec": "Output space-separated elements of the sorted array.", "sample_inputs": ["3 3 1 2"], "sample_outputs": ["1 2 3"], "notes": "NoteRemember, this is a very important feature, and you have to make sure the customers appreciate it!"}, "src_uid": "29e481abfa9ad1f18e6157c9e833f16e"} {"nl": {"description": "Qwerty the Ranger took up a government job and arrived on planet Mars. He should stay in the secret lab and conduct some experiments on bacteria that have funny and abnormal properties. The job isn't difficult, but the salary is high.At the beginning of the first experiment there is a single bacterium in the test tube. Every second each bacterium in the test tube divides itself into k bacteria. After that some abnormal effects create b more bacteria in the test tube. Thus, if at the beginning of some second the test tube had x bacteria, then at the end of the second it will have kx\u2009+\u2009b bacteria.The experiment showed that after n seconds there were exactly z bacteria and the experiment ended at this point.For the second experiment Qwerty is going to sterilize the test tube and put there t bacteria. He hasn't started the experiment yet but he already wonders, how many seconds he will need to grow at least z bacteria. The ranger thinks that the bacteria will divide by the same rule as in the first experiment. Help Qwerty and find the minimum number of seconds needed to get a tube with at least z bacteria in the second experiment.", "input_spec": "The first line contains four space-separated integers k, b, n and t (1\u2009\u2264\u2009k,\u2009b,\u2009n,\u2009t\u2009\u2264\u2009106) \u2014 the parameters of bacterial growth, the time Qwerty needed to grow z bacteria in the first experiment and the initial number of bacteria in the second experiment, correspondingly.", "output_spec": "Print a single number \u2014 the minimum number of seconds Qwerty needs to grow at least z bacteria in the tube.", "sample_inputs": ["3 1 3 5", "1 4 4 7", "2 2 4 100"], "sample_outputs": ["2", "3", "0"], "notes": null}, "src_uid": "e2357a1f54757bce77dce625772e4f18"} {"nl": {"description": "Moamen and Ezzat are playing a game. They create an array $$$a$$$ of $$$n$$$ non-negative integers where every element is less than $$$2^k$$$.Moamen wins if $$$a_1 \\,\\&\\, a_2 \\,\\&\\, a_3 \\,\\&\\, \\ldots \\,\\&\\, a_n \\ge a_1 \\oplus a_2 \\oplus a_3 \\oplus \\ldots \\oplus a_n$$$.Here $$$\\&$$$ denotes the bitwise AND operation, and $$$\\oplus$$$ denotes the bitwise XOR operation.Please calculate the number of winning for Moamen arrays $$$a$$$.As the result may be very large, print the value modulo $$$1\\,000\\,000\\,007$$$ ($$$10^9 + 7$$$).", "input_spec": "The first line contains a single integer $$$t$$$ ($$$1 \\le t \\le 5$$$)\u2014 the number of test cases. Each test case consists of one line containing two integers $$$n$$$ and $$$k$$$ ($$$1 \\le n\\le 2\\cdot 10^5$$$, $$$0 \\le k \\le 2\\cdot 10^5$$$).", "output_spec": "For each test case, print a single value \u2014 the number of different arrays that Moamen wins with. Print the result modulo $$$1\\,000\\,000\\,007$$$ ($$$10^9 + 7$$$).", "sample_inputs": ["3\n3 1\n2 1\n4 0"], "sample_outputs": ["5\n2\n1"], "notes": "NoteIn the first example, $$$n = 3$$$, $$$k = 1$$$. As a result, all the possible arrays are $$$[0,0,0]$$$, $$$[0,0,1]$$$, $$$[0,1,0]$$$, $$$[1,0,0]$$$, $$$[1,1,0]$$$, $$$[0,1,1]$$$, $$$[1,0,1]$$$, and $$$[1,1,1]$$$.Moamen wins in only $$$5$$$ of them: $$$[0,0,0]$$$, $$$[1,1,0]$$$, $$$[0,1,1]$$$, $$$[1,0,1]$$$, and $$$[1,1,1]$$$."}, "src_uid": "02f5fe43ea60939dd4a53299b5fa0881"} {"nl": {"description": "Petya loves lucky numbers. Everybody knows that positive integers are lucky if their decimal representation doesn't contain digits other than 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.Lucky number is super lucky if it's decimal representation contains equal amount of digits 4 and 7. For example, numbers 47, 7744, 474477 are super lucky and 4, 744, 467 are not.One day Petya came across a positive integer n. Help him to find the least super lucky number which is not less than n.", "input_spec": "The only line contains a positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u200910100000). This number doesn't have leading zeroes.", "output_spec": "Output the least super lucky number that is more than or equal to n.", "sample_inputs": ["4500", "47"], "sample_outputs": ["4747", "47"], "notes": null}, "src_uid": "77b5f83cdadf4b0743618a46b646a849"} {"nl": {"description": "Meg the Rabbit decided to do something nice, specifically \u2014 to determine the shortest distance between two points on the surface of our planet. But Meg... what can you say, she wants everything simple. So, she already regards our planet as a two-dimensional circle. No, wait, it's even worse \u2014 as a square of side n. Thus, the task has been reduced to finding the shortest path between two dots on a square (the path should go through the square sides). To simplify the task let us consider the vertices of the square to lie at points whose coordinates are: (0,\u20090), (n,\u20090), (0,\u2009n) and (n,\u2009n).", "input_spec": "The single line contains 5 space-separated integers: n,\u2009x1,\u2009y1,\u2009x2,\u2009y2 (1\u2009\u2264\u2009n\u2009\u2264\u20091000,\u20090\u2009\u2264\u2009x1,\u2009y1,\u2009x2,\u2009y2\u2009\u2264\u2009n) which correspondingly represent a side of the square, the coordinates of the first point and the coordinates of the second point. It is guaranteed that the points lie on the sides of the square.", "output_spec": "You must print on a single line the shortest distance between the points.", "sample_inputs": ["2 0 0 1 0", "2 0 1 2 1", "100 0 0 100 100"], "sample_outputs": ["1", "4", "200"], "notes": null}, "src_uid": "685fe16c217b5b71eafdb4198822250e"} {"nl": {"description": "DZY loves Fast Fourier Transformation, and he enjoys using it.Fast Fourier Transformation is an algorithm used to calculate convolution. Specifically, if a, b and c are sequences with length n, which are indexed from 0 to n\u2009-\u20091, andWe can calculate c fast using Fast Fourier Transformation.DZY made a little change on this formula. NowTo make things easier, a is a permutation of integers from 1 to n, and b is a sequence only containing 0 and 1. Given a and b, DZY needs your help to calculate c.Because he is naughty, DZY provides a special way to get a and b. What you need is only three integers n, d, x. After getting them, use the code below to generate a and b.//x is 64-bit variable;function getNextX() { x = (x * 37 + 10007) % 1000000007; return x;}function initAB() { for(i = 0; i < n; i = i + 1){ a[i] = i + 1; } for(i = 0; i < n; i = i + 1){ swap(a[i], a[getNextX() % (i + 1)]); } for(i = 0; i < n; i = i + 1){ if (i < d) b[i] = 1; else b[i] = 0; } for(i = 0; i < n; i = i + 1){ swap(b[i], b[getNextX() % (i + 1)]); }}Operation x % y denotes remainder after division x by y. Function swap(x, y) swaps two values x and y.", "input_spec": "The only line of input contains three space-separated integers n,\u2009d,\u2009x\u00a0(1\u2009\u2264\u2009d\u2009\u2264\u2009n\u2009\u2264\u2009100000;\u00a00\u2009\u2264\u2009x\u2009\u2264\u20091000000006). Because DZY is naughty, x can't be equal to 27777500.", "output_spec": "Output n lines, the i-th line should contain an integer ci\u2009-\u20091.", "sample_inputs": ["3 1 1", "5 4 2", "5 4 3"], "sample_outputs": ["1\n3\n2", "2\n2\n4\n5\n5", "5\n5\n5\n5\n4"], "notes": "NoteIn the first sample, a is [1 3 2], b is [1 0 0], so c0\u2009=\u2009max(1\u00b71)\u2009=\u20091, c1\u2009=\u2009max(1\u00b70,\u20093\u00b71)\u2009=\u20093, c2\u2009=\u2009max(1\u00b70,\u20093\u00b70,\u20092\u00b71)\u2009=\u20092.In the second sample, a is [2 1 4 5 3], b is [1 1 1 0 1].In the third sample, a is [5 2 1 4 3], b is [1 1 1 1 0]."}, "src_uid": "948ae7a0189ada07c8c67a1757f691f0"} {"nl": {"description": "A little girl loves problems on bitwise operations very much. Here's one of them.You are given two integers l and r. Let's consider the values of for all pairs of integers a and b (l\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u2009r). Your task is to find the maximum value among all considered ones.Expression means applying bitwise excluding or operation to integers x and y. The given operation exists in all modern programming languages, for example, in languages C++ and Java it is represented as \"^\", in Pascal \u2014 as \"xor\".", "input_spec": "The single line contains space-separated integers l and r (1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u20091018). Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.", "output_spec": "In a single line print a single integer \u2014 the maximum value of for all pairs of integers a, b (l\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u2009r).", "sample_inputs": ["1 2", "8 16", "1 1"], "sample_outputs": ["3", "31", "0"], "notes": null}, "src_uid": "d90e99d539b16590c17328d79a5921e0"} {"nl": {"description": "Katie, Kuro and Shiro are best friends. They have known each other since kindergarten. That's why they often share everything with each other and work together on some very hard problems.Today is Shiro's birthday. She really loves pizza so she wants to invite her friends to the pizza restaurant near her house to celebrate her birthday, including her best friends Katie and Kuro.She has ordered a very big round pizza, in order to serve her many friends. Exactly $$$n$$$ of Shiro's friends are here. That's why she has to divide the pizza into $$$n + 1$$$ slices (Shiro also needs to eat). She wants the slices to be exactly the same size and shape. If not, some of her friends will get mad and go home early, and the party will be over.Shiro is now hungry. She wants to cut the pizza with minimum of straight cuts. A cut is a straight segment, it might have ends inside or outside the pizza. But she is too lazy to pick up the calculator.As usual, she will ask Katie and Kuro for help. But they haven't come yet. Could you help Shiro with this problem?", "input_spec": "A single line contains one non-negative integer $$$n$$$ ($$$0 \\le n \\leq 10^{18}$$$)\u00a0\u2014 the number of Shiro's friends. The circular pizza has to be sliced into $$$n + 1$$$ pieces.", "output_spec": "A single integer\u00a0\u2014 the number of straight cuts Shiro needs.", "sample_inputs": ["3", "4"], "sample_outputs": ["2", "5"], "notes": "NoteTo cut the round pizza into quarters one has to make two cuts through the center with angle $$$90^{\\circ}$$$ between them.To cut the round pizza into five equal parts one has to make five cuts."}, "src_uid": "236177ff30dafe68295b5d33dc501828"} {"nl": {"description": "You have n problems. You have estimated the difficulty of the i-th one as integer ci. Now you want to prepare a problemset for a contest, using some of the problems you've made.A problemset for the contest must consist of at least two problems. You think that the total difficulty of the problems of the contest must be at least l and at most r. Also, you think that the difference between difficulties of the easiest and the hardest of the chosen problems must be at least x.Find the number of ways to choose a problemset for the contest.", "input_spec": "The first line contains four integers n, l, r, x (1\u2009\u2264\u2009n\u2009\u2264\u200915, 1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u2009109, 1\u2009\u2264\u2009x\u2009\u2264\u2009106) \u2014 the number of problems you have, the minimum and maximum value of total difficulty of the problemset and the minimum difference in difficulty between the hardest problem in the pack and the easiest one, respectively. The second line contains n integers c1,\u2009c2,\u2009...,\u2009cn (1\u2009\u2264\u2009ci\u2009\u2264\u2009106) \u2014 the difficulty of each problem.", "output_spec": "Print the number of ways to choose a suitable problemset for the contest. ", "sample_inputs": ["3 5 6 1\n1 2 3", "4 40 50 10\n10 20 30 25", "5 25 35 10\n10 10 20 10 20"], "sample_outputs": ["2", "2", "6"], "notes": "NoteIn the first example two sets are suitable, one consisting of the second and third problem, another one consisting of all three problems.In the second example, two sets of problems are suitable \u2014 the set of problems with difficulties 10 and 30 as well as the set of problems with difficulties 20 and 30.In the third example any set consisting of one problem of difficulty 10 and one problem of difficulty 20 is suitable."}, "src_uid": "0d43104a0de924cdcf8e4aced5aa825d"} {"nl": {"description": "InputThe only line of the input contains a 7-digit hexadecimal number. The first \"digit\" of the number is letter A, the rest of the \"digits\" are decimal digits 0-9.OutputOutput a single integer.ExamplesInput\nA278832\nOutput\n0\nInput\nA089956\nOutput\n0\nInput\nA089957\nOutput\n1\nInput\nA144045\nOutput\n1\n", "input_spec": "The only line of the input contains a 7-digit hexadecimal number. The first \"digit\" of the number is letter A, the rest of the \"digits\" are decimal digits 0-9.", "output_spec": "Output a single integer.", "sample_inputs": ["A278832", "A089956", "A089957", "A144045"], "sample_outputs": ["0", "0", "1", "1"], "notes": null}, "src_uid": "e52bc741bb72bb8e79cf392b2d15354f"} {"nl": {"description": "Each student eagerly awaits the day he would pass the exams successfully. Thus, Vasya was ready to celebrate, but, alas, he didn't pass it. However, many of Vasya's fellow students from the same group were more successful and celebrated after the exam.Some of them celebrated in the BugDonalds restaurant, some of them\u00a0\u2014 in the BeaverKing restaurant, the most successful ones were fast enough to celebrate in both of restaurants. Students which didn't pass the exam didn't celebrate in any of those restaurants and elected to stay home to prepare for their reexamination. However, this quickly bored Vasya and he started checking celebration photos on the Kilogramm. He found out that, in total, BugDonalds was visited by $$$A$$$ students, BeaverKing\u00a0\u2014 by $$$B$$$ students and $$$C$$$ students visited both restaurants. Vasya also knows that there are $$$N$$$ students in his group.Based on this info, Vasya wants to determine either if his data contradicts itself or, if it doesn't, how many students in his group didn't pass the exam. Can you help him so he won't waste his valuable preparation time?", "input_spec": "The first line contains four integers\u00a0\u2014 $$$A$$$, $$$B$$$, $$$C$$$ and $$$N$$$ ($$$0 \\leq A, B, C, N \\leq 100$$$).", "output_spec": "If a distribution of $$$N$$$ students exists in which $$$A$$$ students visited BugDonalds, $$$B$$$ \u2014 BeaverKing, $$$C$$$ \u2014 both of the restaurants and at least one student is left home (it is known that Vasya didn't pass the exam and stayed at home), output one integer\u00a0\u2014 amount of students (including Vasya) who did not pass the exam. If such a distribution does not exist and Vasya made a mistake while determining the numbers $$$A$$$, $$$B$$$, $$$C$$$ or $$$N$$$ (as in samples 2 and 3), output $$$-1$$$.", "sample_inputs": ["10 10 5 20", "2 2 0 4", "2 2 2 1"], "sample_outputs": ["5", "-1", "-1"], "notes": "NoteThe first sample describes following situation: $$$5$$$ only visited BugDonalds, $$$5$$$ students only visited BeaverKing, $$$5$$$ visited both of them and $$$5$$$ students (including Vasya) didn't pass the exam.In the second sample $$$2$$$ students only visited BugDonalds and $$$2$$$ only visited BeaverKing, but that means all $$$4$$$ students in group passed the exam which contradicts the fact that Vasya didn't pass meaning that this situation is impossible.The third sample describes a situation where $$$2$$$ students visited BugDonalds but the group has only $$$1$$$ which makes it clearly impossible."}, "src_uid": "959d56affbe2ff5dd999a7e8729f60ce"} {"nl": {"description": "This night wasn't easy on Vasya. His favorite team lost, and he didn't find himself victorious either\u00a0\u2014 although he played perfectly, his teammates let him down every time. He had to win at least one more time, but the losestreak only grew longer and longer... It's no wonder he didn't get any sleep this night at all.In the morning, Vasya was waiting the bus to the university on the bus stop. Vasya's thoughts were hazy and so he couldn't remember the right bus' number quite right and got onto the bus with the number $$$n$$$.In the bus, Vasya thought that he could get the order of the digits in the number of the bus wrong. Futhermore, he could \"see\" some digits several times, but the digits he saw were definitely in the real number of the bus. For example, if Vasya saw the number 2028, it could mean that the real bus number could be 2028, 8022, 2820 or just 820. However, numbers 80, 22208, 52 definitely couldn't be the number of the bus. Also, real bus number couldn't start with the digit 0, this meaning that, for example, number 082 couldn't be the real bus number too.Given $$$n$$$, determine the total number of possible bus number variants.", "input_spec": "The first line contains one integer $$$n$$$ ($$$1 \\leq n \\leq 10^{18}$$$)\u00a0\u2014 the number of the bus that was seen by Vasya. It is guaranteed that this number does not start with $$$0$$$.", "output_spec": "Output a single integer\u00a0\u2014 the amount of possible variants of the real bus number.", "sample_inputs": ["97", "2028"], "sample_outputs": ["2", "13"], "notes": "NoteIn the first sample, only variants $$$97$$$ and $$$79$$$ are possible.In the second sample, the variants (in the increasing order) are the following: $$$208$$$, $$$280$$$, $$$802$$$, $$$820$$$, $$$2028$$$, $$$2082$$$, $$$2208$$$, $$$2280$$$, $$$2802$$$, $$$2820$$$, $$$8022$$$, $$$8202$$$, $$$8220$$$."}, "src_uid": "7f4e533f49b73cc2b96b4c56847295f2"} {"nl": {"description": "Polycarpus has a ribbon, its length is n. He wants to cut the ribbon in a way that fulfils the following two conditions: After the cutting each ribbon piece should have length a, b or c. After the cutting the number of ribbon pieces should be maximum. Help Polycarpus and find the number of ribbon pieces after the required cutting.", "input_spec": "The first line contains four space-separated integers n, a, b and c (1\u2009\u2264\u2009n,\u2009a,\u2009b,\u2009c\u2009\u2264\u20094000) \u2014 the length of the original ribbon and the acceptable lengths of the ribbon pieces after the cutting, correspondingly. The numbers a, b and c can coincide.", "output_spec": "Print a single number \u2014 the maximum possible number of ribbon pieces. It is guaranteed that at least one correct ribbon cutting exists.", "sample_inputs": ["5 5 3 2", "7 5 5 2"], "sample_outputs": ["2", "2"], "notes": "NoteIn the first example Polycarpus can cut the ribbon in such way: the first piece has length 2, the second piece has length 3.In the second example Polycarpus can cut the ribbon in such way: the first piece has length 5, the second piece has length 2."}, "src_uid": "062a171cc3ea717ea95ede9d7a1c3a43"} {"nl": {"description": "Students in a class are making towers of blocks. Each student makes a (non-zero) tower by stacking pieces lengthwise on top of each other. n of the students use pieces made of two blocks and m of the students use pieces made of three blocks.The students don\u2019t want to use too many blocks, but they also want to be unique, so no two students\u2019 towers may contain the same number of blocks. Find the minimum height necessary for the tallest of the students' towers.", "input_spec": "The first line of the input contains two space-separated integers n and m (0\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20091\u2009000\u2009000, n\u2009+\u2009m\u2009>\u20090)\u00a0\u2014 the number of students using two-block pieces and the number of students using three-block pieces, respectively.", "output_spec": "Print a single integer, denoting the minimum possible height of the tallest tower.", "sample_inputs": ["1 3", "3 2", "5 0"], "sample_outputs": ["9", "8", "10"], "notes": "NoteIn the first case, the student using two-block pieces can make a tower of height 4, and the students using three-block pieces can make towers of height 3, 6, and 9 blocks. The tallest tower has a height of 9 blocks.In the second case, the students can make towers of heights 2, 4, and 8 with two-block pieces and towers of heights 3 and 6 with three-block pieces, for a maximum height of 8 blocks."}, "src_uid": "23f2c8cac07403899199abdcfd947a5a"} {"nl": {"description": "Mister B once received a gift: it was a book about aliens, which he started read immediately. This book had c pages.At first day Mister B read v0 pages, but after that he started to speed up. Every day, starting from the second, he read a pages more than on the previous day (at first day he read v0 pages, at second\u00a0\u2014 v0\u2009+\u2009a pages, at third\u00a0\u2014 v0\u2009+\u20092a pages, and so on). But Mister B is just a human, so he physically wasn't able to read more than v1 pages per day.Also, to refresh his memory, every day, starting from the second, Mister B had to reread last l pages he read on the previous day. Mister B finished the book when he read the last page for the first time.Help Mister B to calculate how many days he needed to finish the book.", "input_spec": "First and only line contains five space-separated integers: c, v0, v1, a and l (1\u2009\u2264\u2009c\u2009\u2264\u20091000, 0\u2009\u2264\u2009l\u2009<\u2009v0\u2009\u2264\u2009v1\u2009\u2264\u20091000, 0\u2009\u2264\u2009a\u2009\u2264\u20091000) \u2014 the length of the book in pages, the initial reading speed, the maximum reading speed, the acceleration in reading speed and the number of pages for rereading.", "output_spec": "Print one integer \u2014 the number of days Mister B needed to finish the book.", "sample_inputs": ["5 5 10 5 4", "12 4 12 4 1", "15 1 100 0 0"], "sample_outputs": ["1", "3", "15"], "notes": "NoteIn the first sample test the book contains 5 pages, so Mister B read it right at the first day.In the second sample test at first day Mister B read pages number 1\u2009-\u20094, at second day\u00a0\u2014 4\u2009-\u200911, at third day\u00a0\u2014 11\u2009-\u200912 and finished the book.In third sample test every day Mister B read 1 page of the book, so he finished in 15 days."}, "src_uid": "b743110117ce13e2090367fd038d3b50"} {"nl": {"description": "You can find anything whatsoever in our Galaxy! A cubical planet goes round an icosahedral star. Let us introduce a system of axes so that the edges of the cubical planet are parallel to the coordinate axes and two opposite vertices lay in the points (0,\u20090,\u20090) and (1,\u20091,\u20091). Two flies live on the planet. At the moment they are sitting on two different vertices of the cubical planet. Your task is to determine whether they see each other or not. The flies see each other when the vertices they occupy lie on the same face of the cube.", "input_spec": "The first line contains three space-separated integers (0 or 1) \u2014 the coordinates of the first fly, the second line analogously contains the coordinates of the second fly.", "output_spec": "Output \"YES\" (without quotes) if the flies see each other. Otherwise, output \"NO\".", "sample_inputs": ["0 0 0\n0 1 0", "1 1 0\n0 1 0", "0 0 0\n1 1 1"], "sample_outputs": ["YES", "YES", "NO"], "notes": null}, "src_uid": "91c9dbbceb467d5fd420e92c2919ecb6"} {"nl": {"description": "One day, $$$n$$$ people ($$$n$$$ is an even number) met on a plaza and made two round dances, each round dance consists of exactly $$$\\frac{n}{2}$$$ people. Your task is to find the number of ways $$$n$$$ people can make two round dances if each round dance consists of exactly $$$\\frac{n}{2}$$$ people. Each person should belong to exactly one of these two round dances.Round dance is a dance circle consisting of $$$1$$$ or more people. Two round dances are indistinguishable (equal) if one can be transformed to another by choosing the first participant. For example, round dances $$$[1, 3, 4, 2]$$$, $$$[4, 2, 1, 3]$$$ and $$$[2, 1, 3, 4]$$$ are indistinguishable.For example, if $$$n=2$$$ then the number of ways is $$$1$$$: one round dance consists of the first person and the second one of the second person.For example, if $$$n=4$$$ then the number of ways is $$$3$$$. Possible options: one round dance \u2014 $$$[1,2]$$$, another \u2014 $$$[3,4]$$$; one round dance \u2014 $$$[2,4]$$$, another \u2014 $$$[3,1]$$$; one round dance \u2014 $$$[4,1]$$$, another \u2014 $$$[3,2]$$$. Your task is to find the number of ways $$$n$$$ people can make two round dances if each round dance consists of exactly $$$\\frac{n}{2}$$$ people.", "input_spec": "The input contains one integer $$$n$$$ ($$$2 \\le n \\le 20$$$), $$$n$$$ is an even number.", "output_spec": "Print one integer \u2014 the number of ways to make two round dances. It is guaranteed that the answer fits in the $$$64$$$-bit integer data type.", "sample_inputs": ["2", "4", "8", "20"], "sample_outputs": ["1", "3", "1260", "12164510040883200"], "notes": null}, "src_uid": "ad0985c56a207f76afa2ecd642f56728"} {"nl": {"description": "The Smart Beaver from ABBYY got hooked on square matrices. Now he is busy studying an n\u2009\u00d7\u2009n size matrix, where n is odd. The Smart Beaver considers the following matrix elements good: Elements of the main diagonal. Elements of the secondary diagonal. Elements of the \"middle\" row \u2014 the row which has exactly rows above it and the same number of rows below it. Elements of the \"middle\" column \u2014 the column that has exactly columns to the left of it and the same number of columns to the right of it. The figure shows a 5\u2009\u00d7\u20095 matrix. The good elements are marked with green. Help the Smart Beaver count the sum of good elements of the given matrix.", "input_spec": "The first line of input data contains a single odd integer n. Each of the next n lines contains n integers aij (0\u2009\u2264\u2009aij\u2009\u2264\u2009100) separated by single spaces \u2014 the elements of the given matrix. The input limitations for getting 30 points are: 1\u2009\u2264\u2009n\u2009\u2264\u20095 The input limitations for getting 100 points are: 1\u2009\u2264\u2009n\u2009\u2264\u2009101 ", "output_spec": "Print a single integer \u2014 the sum of good matrix elements.", "sample_inputs": ["3\n1 2 3\n4 5 6\n7 8 9", "5\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1\n1 1 1 1 1"], "sample_outputs": ["45", "17"], "notes": "NoteIn the first sample all matrix elements will be good. Good elements in the second sample are shown on the figure."}, "src_uid": "5ebfad36e56d30c58945c5800139b880"} {"nl": {"description": "An n\u2009\u00d7\u2009n table a is defined as follows: The first row and the first column contain ones, that is: ai,\u20091\u2009=\u2009a1,\u2009i\u2009=\u20091 for all i\u2009=\u20091,\u20092,\u2009...,\u2009n. Each of the remaining numbers in the table is equal to the sum of the number above it and the number to the left of it. In other words, the remaining elements are defined by the formula ai,\u2009j\u2009=\u2009ai\u2009-\u20091,\u2009j\u2009+\u2009ai,\u2009j\u2009-\u20091. These conditions define all the values in the table.You are given a number n. You need to determine the maximum value in the n\u2009\u00d7\u2009n table defined by the rules above.", "input_spec": "The only line of input contains a positive integer n (1\u2009\u2264\u2009n\u2009\u2264\u200910) \u2014 the number of rows and columns of the table.", "output_spec": "Print a single line containing a positive integer m \u2014 the maximum value in the table.", "sample_inputs": ["1", "5"], "sample_outputs": ["1", "70"], "notes": "NoteIn the second test the rows of the table look as follows: {1,\u20091,\u20091,\u20091,\u20091},\u2009 {1,\u20092,\u20093,\u20094,\u20095},\u2009 {1,\u20093,\u20096,\u200910,\u200915},\u2009 {1,\u20094,\u200910,\u200920,\u200935},\u2009 {1,\u20095,\u200915,\u200935,\u200970}."}, "src_uid": "2f650aae9dfeb02533149ced402b60dc"} {"nl": {"description": "Polycarp knows that if the sum of the digits of a number is divisible by $$$3$$$, then the number itself is divisible by $$$3$$$. He assumes that the numbers, the sum of the digits of which is divisible by $$$4$$$, are also somewhat interesting. Thus, he considers a positive integer $$$n$$$ interesting if its sum of digits is divisible by $$$4$$$.Help Polycarp find the nearest larger or equal interesting number for the given number $$$a$$$. That is, find the interesting number $$$n$$$ such that $$$n \\ge a$$$ and $$$n$$$ is minimal.", "input_spec": "The only line in the input contains an integer $$$a$$$ ($$$1 \\le a \\le 1000$$$).", "output_spec": "Print the nearest greater or equal interesting number for the given number $$$a$$$. In other words, print the interesting number $$$n$$$ such that $$$n \\ge a$$$ and $$$n$$$ is minimal.", "sample_inputs": ["432", "99", "237", "42"], "sample_outputs": ["435", "103", "237", "44"], "notes": null}, "src_uid": "bb6fb9516b2c55d1ee47a30d423562d7"} {"nl": {"description": "There was once young lass called Mary, Whose jokes were occasionally scary. On this April's Fool Fixed limerick rules Allowed her to trip the unwary.Can she fill all the linesTo work at all times?On juggling the wordsRight around two-thirdsShe nearly ran out of rhymes.", "input_spec": "The input contains a single integer $$$a$$$ ($$$4 \\le a \\le 998$$$). Not every integer in the range is a valid input for the problem; you are guaranteed that the input will be a valid integer.", "output_spec": "Output a single number.", "sample_inputs": ["35", "57", "391"], "sample_outputs": ["57", "319", "1723"], "notes": null}, "src_uid": "7220f2da5081547a12118595bbeda4f6"} {"nl": {"description": "Natasha is planning an expedition to Mars for $$$n$$$ people. One of the important tasks is to provide food for each participant.The warehouse has $$$m$$$ daily food packages. Each package has some food type $$$a_i$$$.Each participant must eat exactly one food package each day. Due to extreme loads, each participant must eat the same food type throughout the expedition. Different participants may eat different (or the same) types of food.Formally, for each participant $$$j$$$ Natasha should select his food type $$$b_j$$$ and each day $$$j$$$-th participant will eat one food package of type $$$b_j$$$. The values $$$b_j$$$ for different participants may be different.What is the maximum possible number of days the expedition can last, following the requirements above?", "input_spec": "The first line contains two integers $$$n$$$ and $$$m$$$ ($$$1 \\le n \\le 100$$$, $$$1 \\le m \\le 100$$$)\u00a0\u2014 the number of the expedition participants and the number of the daily food packages available. The second line contains sequence of integers $$$a_1, a_2, \\dots, a_m$$$ ($$$1 \\le a_i \\le 100$$$), where $$$a_i$$$ is the type of $$$i$$$-th food package.", "output_spec": "Print the single integer\u00a0\u2014 the number of days the expedition can last. If it is not possible to plan the expedition for even one day, print 0.", "sample_inputs": ["4 10\n1 5 2 1 1 1 2 5 7 2", "100 1\n1", "2 5\n5 4 3 2 1", "3 9\n42 42 42 42 42 42 42 42 42"], "sample_outputs": ["2", "0", "1", "3"], "notes": "NoteIn the first example, Natasha can assign type $$$1$$$ food to the first participant, the same type $$$1$$$ to the second, type $$$5$$$ to the third and type $$$2$$$ to the fourth. In this case, the expedition can last for $$$2$$$ days, since each participant can get two food packages of his food type (there will be used $$$4$$$ packages of type $$$1$$$, two packages of type $$$2$$$ and two packages of type $$$5$$$).In the second example, there are $$$100$$$ participants and only $$$1$$$ food package. In this case, the expedition can't last even $$$1$$$ day."}, "src_uid": "b7ef696a11ff96f2e9c31becc2ff50fe"} {"nl": {"description": "You have two positive integers w and h. Your task is to count the number of rhombi which have the following properties: Have positive area. With vertices at integer points. All vertices of the rhombi are located inside or on the border of the rectangle with vertices at points (0,\u20090), (w,\u20090), (w,\u2009h), (0,\u2009h). In other words, for all vertices (xi,\u2009yi) of the rhombus the following conditions should fulfill: 0\u2009\u2264\u2009xi\u2009\u2264\u2009w and 0\u2009\u2264\u2009yi\u2009\u2264\u2009h. Its diagonals are parallel to the axis. Count the number of such rhombi.Let us remind you that a rhombus is a quadrilateral whose four sides all have the same length.", "input_spec": "The first line contains two integers w and h (1\u2009\u2264\u2009w,\u2009h\u2009\u2264\u20094000) \u2014 the rectangle's sizes.", "output_spec": "Print a single number \u2014 the number of sought rhombi. Please do not use the %lld specifier to read or write 64-bit integers in \u0421++. It is preferred to use cin, cout streams or the %I64d specifier.", "sample_inputs": ["2 2", "1 2"], "sample_outputs": ["1", "0"], "notes": "NoteIn the first example there exists only one such rhombus. Its vertices are located at points (1,\u20090), (2,\u20091), (1,\u20092), (0,\u20091)."}, "src_uid": "42454dcf7d073bf12030367eb094eb8c"} {"nl": {"description": "Petya started to attend programming lessons. On the first lesson his task was to write a simple program. The program was supposed to do the following: in the given string, consisting if uppercase and lowercase Latin letters, it: deletes all the vowels, inserts a character \".\" before each consonant, replaces all uppercase consonants with corresponding lowercase ones. Vowels are letters \"A\", \"O\", \"Y\", \"E\", \"U\", \"I\", and the rest are consonants. The program's input is exactly one string, it should return the output as a single string, resulting after the program's processing the initial string.Help Petya cope with this easy task.", "input_spec": "The first line represents input string of Petya's program. This string only consists of uppercase and lowercase Latin letters and its length is from 1 to 100, inclusive.", "output_spec": "Print the resulting string. It is guaranteed that this string is not empty.", "sample_inputs": ["tour", "Codeforces", "aBAcAba"], "sample_outputs": [".t.r", ".c.d.f.r.c.s", ".b.c.b"], "notes": null}, "src_uid": "db9520e85b3e9186dd3a09ff8d1e8c1b"} {"nl": {"description": "Petya is a big fan of mathematics, especially its part related to fractions. Recently he learned that a fraction is called proper iff its numerator is smaller than its denominator (a\u2009<\u2009b) and that the fraction is called irreducible if its numerator and its denominator are coprime (they do not have positive common divisors except 1).During his free time, Petya thinks about proper irreducible fractions and converts them to decimals using the calculator. One day he mistakenly pressed addition button (\u2009+\u2009) instead of division button (\u00f7) and got sum of numerator and denominator that was equal to n instead of the expected decimal notation. Petya wanted to restore the original fraction, but soon he realized that it might not be done uniquely. That's why he decided to determine maximum possible proper irreducible fraction such that sum of its numerator and denominator equals n. Help Petya deal with this problem. ", "input_spec": "In the only line of input there is an integer n (3\u2009\u2264\u2009n\u2009\u2264\u20091000), the sum of numerator and denominator of the fraction.", "output_spec": "Output two space-separated positive integers a and b, numerator and denominator of the maximum possible proper irreducible fraction satisfying the given sum.", "sample_inputs": ["3", "4", "12"], "sample_outputs": ["1 2", "1 3", "5 7"], "notes": null}, "src_uid": "0af3515ed98d9d01ce00546333e98e77"} {"nl": {"description": "Finished her homework, Nastya decided to play computer games. Passing levels one by one, Nastya eventually faced a problem. Her mission is to leave a room, where a lot of monsters live, as quickly as possible.There are $$$n$$$ manholes in the room which are situated on one line, but, unfortunately, all the manholes are closed, and there is one stone on every manhole. There is exactly one coin under every manhole, and to win the game Nastya should pick all the coins. Initially Nastya stands near the $$$k$$$-th manhole from the left. She is thinking what to do.In one turn, Nastya can do one of the following: if there is at least one stone on the manhole Nastya stands near, throw exactly one stone from it onto any other manhole (yes, Nastya is strong). go to a neighboring manhole; if there are no stones on the manhole Nastya stays near, she can open it and pick the coin from it. After it she must close the manhole immediately (it doesn't require additional moves). The figure shows the intermediate state of the game. At the current position Nastya can throw the stone to any other manhole or move left or right to the neighboring manholes. If she were near the leftmost manhole, she could open it (since there are no stones on it). Nastya can leave the room when she picks all the coins. Monsters are everywhere, so you need to compute the minimum number of moves Nastya has to make to pick all the coins.Note one time more that Nastya can open a manhole only when there are no stones onto it.", "input_spec": "The first and only line contains two integers $$$n$$$ and $$$k$$$, separated by space ($$$2 \\leq n \\leq 5000$$$, $$$1 \\leq k \\leq n$$$)\u00a0\u2014 the number of manholes and the index of manhole from the left, near which Nastya stays initially. Initially there is exactly one stone near each of the $$$n$$$ manholes. ", "output_spec": "Print a single integer\u00a0\u2014 minimum number of moves which lead Nastya to pick all the coins.", "sample_inputs": ["2 2", "4 2", "5 1"], "sample_outputs": ["6", "13", "15"], "notes": "NoteLet's consider the example where $$$n = 2$$$, $$$k = 2$$$. Nastya should play as follows: At first she throws the stone from the second manhole to the first. Now there are two stones on the first manhole. Then she opens the second manhole and pick the coin from it. Then she goes to the first manhole, throws two stones by two moves to the second manhole and then opens the manhole and picks the coin from it. So, $$$6$$$ moves are required to win."}, "src_uid": "24b02afe8d86314ec5f75a00c72af514"} {"nl": {"description": "A word or a sentence in some language is called a pangram if all the characters of the alphabet of this language appear in it at least once. Pangrams are often used to demonstrate fonts in printing or test the output devices.You are given a string consisting of lowercase and uppercase Latin letters. Check whether this string is a pangram. We say that the string contains a letter of the Latin alphabet if this letter occurs in the string in uppercase or lowercase.", "input_spec": "The first line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of characters in the string. The second line contains the string. The string consists only of uppercase and lowercase Latin letters.", "output_spec": "Output \"YES\", if the string is a pangram and \"NO\" otherwise.", "sample_inputs": ["12\ntoosmallword", "35\nTheQuickBrownFoxJumpsOverTheLazyDog"], "sample_outputs": ["NO", "YES"], "notes": null}, "src_uid": "f13eba0a0fb86e20495d218fc4ad532d"} {"nl": {"description": "Little Petya likes numbers a lot. He found that number 123 in base 16 consists of two digits: the first is 7 and the second is 11. So the sum of digits of 123 in base 16 is equal to 18.Now he wonders what is an average value of sum of digits of the number A written in all bases from 2 to A\u2009-\u20091.Note that all computations should be done in base 10. You should find the result as an irreducible fraction, written in base 10.", "input_spec": "Input contains one integer number A (3\u2009\u2264\u2009A\u2009\u2264\u20091000).", "output_spec": "Output should contain required average value in format \u00abX/Y\u00bb, where X is the numerator and Y is the denominator.", "sample_inputs": ["5", "3"], "sample_outputs": ["7/3", "2/1"], "notes": "NoteIn the first sample number 5 written in all bases from 2 to 4 looks so: 101, 12, 11. Sums of digits are 2, 3 and 2, respectively."}, "src_uid": "1366732dddecba26db232d6ca8f35fdc"} {"nl": {"description": "One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular a mm \u2009\u00d7\u2009 b mm sheet of paper (a\u2009>\u2009b). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part. After making a paper ship from the square piece, Vasya looked on the remaining (a\u2009-\u2009b) mm \u2009\u00d7\u2009 b mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop.Can you determine how many ships Vasya will make during the lesson?", "input_spec": "The first line of the input contains two integers a, b (1\u2009\u2264\u2009b\u2009<\u2009a\u2009\u2264\u20091012) \u2014 the sizes of the original sheet of paper.", "output_spec": "Print a single integer \u2014 the number of ships that Vasya will make.", "sample_inputs": ["2 1", "10 7", "1000000000000 1"], "sample_outputs": ["2", "6", "1000000000000"], "notes": "NotePictures to the first and second sample test. "}, "src_uid": "ce698a0eb3f5b82de58feb177ce43b83"} {"nl": {"description": "Little Joty has got a task to do. She has a line of n tiles indexed from 1 to n. She has to paint them in a strange pattern.An unpainted tile should be painted Red if it's index is divisible by a and an unpainted tile should be painted Blue if it's index is divisible by b. So the tile with the number divisible by a and b can be either painted Red or Blue.After her painting is done, she will get p chocolates for each tile that is painted Red and q chocolates for each tile that is painted Blue.Note that she can paint tiles in any order she wants.Given the required information, find the maximum\u00a0number of chocolates Joty can get.", "input_spec": "The only line contains five integers n, a, b, p and q (1\u2009\u2264\u2009n,\u2009a,\u2009b,\u2009p,\u2009q\u2009\u2264\u2009109).", "output_spec": "Print the only integer s \u2014 the maximum number of chocolates Joty can get. Note that the answer can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.", "sample_inputs": ["5 2 3 12 15", "20 2 3 3 5"], "sample_outputs": ["39", "51"], "notes": null}, "src_uid": "35d8a9f0d5b5ab22929ec050b55ec769"} {"nl": {"description": "You are given a tetrahedron. Let's mark its vertices with letters A, B, C and D correspondingly. An ant is standing in the vertex D of the tetrahedron. The ant is quite active and he wouldn't stay idle. At each moment of time he makes a step from one vertex to another one along some edge of the tetrahedron. The ant just can't stand on one place.You do not have to do much to solve the problem: your task is to count the number of ways in which the ant can go from the initial vertex D to itself in exactly n steps. In other words, you are asked to find out the number of different cyclic paths with the length of n from vertex D to itself. As the number can be quite large, you should print it modulo 1000000007 (109\u2009+\u20097). ", "input_spec": "The first line contains the only integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009107) \u2014 the required length of the cyclic path.", "output_spec": "Print the only integer \u2014 the required number of ways modulo 1000000007 (109\u2009+\u20097).", "sample_inputs": ["2", "4"], "sample_outputs": ["3", "21"], "notes": "NoteThe required paths in the first sample are: D\u2009-\u2009A\u2009-\u2009D D\u2009-\u2009B\u2009-\u2009D D\u2009-\u2009C\u2009-\u2009D "}, "src_uid": "77627cc366a22e38da412c3231ac91a8"} {"nl": {"description": "As a tradition, every year before IOI all the members of Natalia Fan Club are invited to Malek Dance Club to have a fun night together. Malek Dance Club has 2n members and coincidentally Natalia Fan Club also has 2n members. Each member of MDC is assigned a unique id i from 0 to 2n\u2009-\u20091. The same holds for each member of NFC.One of the parts of this tradition is one by one dance, where each member of MDC dances with a member of NFC. A dance pair is a pair of numbers (a,\u2009b) such that member a from MDC dances with member b from NFC.The complexity of a pairs' assignment is the number of pairs of dancing pairs (a,\u2009b) and (c,\u2009d) such that a\u2009<\u2009c and b\u2009>\u2009d.You are given a binary number of length n named x. We know that member i from MDC dances with member from NFC. Your task is to calculate the complexity of this assignment modulo 1000000007 (109\u2009+\u20097).Expression denotes applying \u00abXOR\u00bb to numbers x and y. This operation exists in all modern programming languages, for example, in C++ and Java it denotes as \u00ab^\u00bb, in Pascal \u2014 \u00abxor\u00bb.", "input_spec": "The first line of input contains a binary number x of lenght n, (1\u2009\u2264\u2009n\u2009\u2264\u2009100). This number may contain leading zeros.", "output_spec": "Print the complexity of the given dance assignent modulo 1000000007 (109\u2009+\u20097).", "sample_inputs": ["11", "01", "1"], "sample_outputs": ["6", "2", "1"], "notes": null}, "src_uid": "89b51a31e00424edd1385f2120028b9d"} {"nl": {"description": "Given the number n, find the smallest positive integer which has exactly n divisors. It is guaranteed that for the given n the answer will not exceed 1018.", "input_spec": "The first line of the input contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091000).", "output_spec": "Output the smallest positive integer with exactly n divisors.", "sample_inputs": ["4", "6"], "sample_outputs": ["6", "12"], "notes": null}, "src_uid": "62db589bad3b7023418107de05b7a8ee"} {"nl": {"description": "The start of the new academic year brought about the problem of accommodation students into dormitories. One of such dormitories has a a\u2009\u00d7\u2009b square meter wonder room. The caretaker wants to accommodate exactly n students there. But the law says that there must be at least 6 square meters per student in a room (that is, the room for n students must have the area of at least 6n square meters). The caretaker can enlarge any (possibly both) side of the room by an arbitrary positive integer of meters. Help him change the room so as all n students could live in it and the total area of the room was as small as possible.", "input_spec": "The first line contains three space-separated integers n, a and b (1\u2009\u2264\u2009n,\u2009a,\u2009b\u2009\u2264\u2009109) \u2014 the number of students and the sizes of the room.", "output_spec": "Print three integers s, a1 and b1 (a\u2009\u2264\u2009a1;\u00a0b\u2009\u2264\u2009b1) \u2014 the final area of the room and its sizes. If there are multiple optimal solutions, print any of them.", "sample_inputs": ["3 3 5", "2 4 4"], "sample_outputs": ["18\n3 6", "16\n4 4"], "notes": null}, "src_uid": "6a2a584d36008151d18e5080aea5029c"} {"nl": {"description": "You are given a sequence $$$a_1, a_2, \\dots, a_n$$$ consisting of $$$n$$$ integers.You can choose any non-negative integer $$$D$$$ (i.e. $$$D \\ge 0$$$), and for each $$$a_i$$$ you can: add $$$D$$$ (only once), i.\u2009e. perform $$$a_i := a_i + D$$$, or subtract $$$D$$$ (only once), i.\u2009e. perform $$$a_i := a_i - D$$$, or leave the value of $$$a_i$$$ unchanged. It is possible that after an operation the value $$$a_i$$$ becomes negative.Your goal is to choose such minimum non-negative integer $$$D$$$ and perform changes in such a way, that all $$$a_i$$$ are equal (i.e. $$$a_1=a_2=\\dots=a_n$$$).Print the required $$$D$$$ or, if it is impossible to choose such value $$$D$$$, print -1.For example, for array $$$[2, 8]$$$ the value $$$D=3$$$ is minimum possible because you can obtain the array $$$[5, 5]$$$ if you will add $$$D$$$ to $$$2$$$ and subtract $$$D$$$ from $$$8$$$. And for array $$$[1, 4, 7, 7]$$$ the value $$$D=3$$$ is also minimum possible. You can add it to $$$1$$$ and subtract it from $$$7$$$ and obtain the array $$$[4, 4, 4, 4]$$$.", "input_spec": "The first line of the input contains one integer $$$n$$$ ($$$1 \\le n \\le 100$$$) \u2014 the number of elements in $$$a$$$. The second line of the input contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 100$$$) \u2014 the sequence $$$a$$$.", "output_spec": "Print one integer \u2014 the minimum non-negative integer value $$$D$$$ such that if you add this value to some $$$a_i$$$, subtract this value from some $$$a_i$$$ and leave some $$$a_i$$$ without changes, all obtained values become equal. If it is impossible to choose such value $$$D$$$, print -1.", "sample_inputs": ["6\n1 4 4 7 4 1", "5\n2 2 5 2 5", "4\n1 3 3 7", "2\n2 8"], "sample_outputs": ["3", "3", "-1", "3"], "notes": null}, "src_uid": "d486a88939c132848a7efdf257b9b066"} {"nl": {"description": "Recently, a chaotic virus Hexadecimal advanced a new theorem which will shake the Universe. She thinks that each Fibonacci number can be represented as sum of three not necessary different Fibonacci numbers.Let's remember how Fibonacci numbers can be calculated. F0\u2009=\u20090, F1\u2009=\u20091, and all the next numbers are Fi\u2009=\u2009Fi\u2009-\u20092\u2009+\u2009Fi\u2009-\u20091.So, Fibonacci numbers make a sequence of numbers: 0, 1, 1, 2, 3, 5, 8, 13, ...If you haven't run away from the PC in fear, you have to help the virus. Your task is to divide given Fibonacci number n by three not necessary different Fibonacci numbers or say that it is impossible.", "input_spec": "The input contains of a single integer n (0\u2009\u2264\u2009n\u2009<\u2009109) \u2014 the number that should be represented by the rules described above. It is guaranteed that n is a Fibonacci number.", "output_spec": "Output three required numbers: a, b and c. If there is no answer for the test you have to print \"I'm too stupid to solve this problem\" without the quotes. If there are multiple answers, print any of them.", "sample_inputs": ["3", "13"], "sample_outputs": ["1 1 1", "2 3 8"], "notes": null}, "src_uid": "db46a6b0380df047aa34ea6a8f0f93c1"} {"nl": {"description": "Imagine you have an infinite 2D plane with Cartesian coordinate system. Some of the integral points are blocked, and others are not. Two integral points A and B on the plane are 4-connected if and only if: the Euclidean distance between A and B is one unit and neither A nor B is blocked; or there is some integral point C, such that A is 4-connected with C, and C is 4-connected with B. Let's assume that the plane doesn't contain blocked points. Consider all the integral points of the plane whose Euclidean distance from the origin is no more than n, we'll name these points special. Chubby Yang wants to get the following property: no special point is 4-connected to some non-special point. To get the property she can pick some integral points of the plane and make them blocked. What is the minimum number of points she needs to pick?", "input_spec": "The first line contains an integer n (0\u2009\u2264\u2009n\u2009\u2264\u20094\u00b7107).", "output_spec": "Print a single integer \u2014 the minimum number of points that should be blocked.", "sample_inputs": ["1", "2", "3"], "sample_outputs": ["4", "8", "16"], "notes": null}, "src_uid": "d87ce09acb8401e910ca6ef3529566f4"} {"nl": {"description": "Mike is trying rock climbing but he is awful at it. There are n holds on the wall, i-th hold is at height ai off the ground. Besides, let the sequence ai increase, that is, ai\u2009<\u2009ai\u2009+\u20091 for all i from 1 to n\u2009-\u20091; we will call such sequence a track. Mike thinks that the track a1, ..., an has difficulty . In other words, difficulty equals the maximum distance between two holds that are adjacent in height.Today Mike decided to cover the track with holds hanging on heights a1, ..., an. To make the problem harder, Mike decided to remove one hold, that is, remove one element of the sequence (for example, if we take the sequence (1,\u20092,\u20093,\u20094,\u20095) and remove the third element from it, we obtain the sequence (1,\u20092,\u20094,\u20095)). However, as Mike is awful at climbing, he wants the final difficulty (i.e. the maximum difference of heights between adjacent holds after removing the hold) to be as small as possible among all possible options of removing a hold. The first and last holds must stay at their positions.Help Mike determine the minimum difficulty of the track after removing one hold.", "input_spec": "The first line contains a single integer n (3\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of holds. The next line contains n space-separated integers ai (1\u2009\u2264\u2009ai\u2009\u2264\u20091000), where ai is the height where the hold number i hangs. The sequence ai is increasing (i.e. each element except for the first one is strictly larger than the previous one).", "output_spec": "Print a single number \u2014 the minimum difficulty of the track after removing a single hold.", "sample_inputs": ["3\n1 4 6", "5\n1 2 3 4 5", "5\n1 2 3 7 8"], "sample_outputs": ["5", "2", "4"], "notes": "NoteIn the first sample you can remove only the second hold, then the sequence looks like (1,\u20096), the maximum difference of the neighboring elements equals 5.In the second test after removing every hold the difficulty equals 2.In the third test you can obtain sequences (1,\u20093,\u20097,\u20098), (1,\u20092,\u20097,\u20098), (1,\u20092,\u20093,\u20098), for which the difficulty is 4, 5 and 5, respectively. Thus, after removing the second element we obtain the optimal answer \u2014 4."}, "src_uid": "8a8013f960814040ac4bf229a0bd5437"} {"nl": {"description": "Imp is in a magic forest, where xorangles grow (wut?) A xorangle of order n is such a non-degenerate triangle, that lengths of its sides are integers not exceeding n, and the xor-sum of the lengths is equal to zero. Imp has to count the number of distinct xorangles of order n to get out of the forest. Formally, for a given integer n you have to find the number of such triples (a,\u2009b,\u2009c), that: 1\u2009\u2264\u2009a\u2009\u2264\u2009b\u2009\u2264\u2009c\u2009\u2264\u2009n; , where denotes the bitwise xor of integers x and y. (a,\u2009b,\u2009c) form a non-degenerate (with strictly positive area) triangle. ", "input_spec": "The only line contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20092500).", "output_spec": "Print the number of xorangles of order n.", "sample_inputs": ["6", "10"], "sample_outputs": ["1", "2"], "notes": "NoteThe only xorangle in the first sample is (3,\u20095,\u20096)."}, "src_uid": "838f2e75fdff0f13f002c0dfff0b2e8d"} {"nl": {"description": "Vasya is an active Internet user. One day he came across an Internet resource he liked, so he wrote its address in the notebook. We know that the address of the written resource has format: <protocol>://<domain>.ru[/<context>] where: <protocol> can equal either \"http\" (without the quotes) or \"ftp\" (without the quotes), <domain> is a non-empty string, consisting of lowercase English letters, the /<context> part may not be present. If it is present, then <context> is a non-empty string, consisting of lowercase English letters. If string <context> isn't present in the address, then the additional character \"/\" isn't written. Thus, the address has either two characters \"/\" (the ones that go before the domain), or three (an extra one in front of the context).When the boy came home, he found out that the address he wrote in his notebook had no punctuation marks. Vasya must have been in a lot of hurry and didn't write characters \":\", \"/\", \".\".Help Vasya to restore the possible address of the recorded Internet resource.", "input_spec": "The first line contains a non-empty string that Vasya wrote out in his notebook. This line consists of lowercase English letters only. It is guaranteed that the given string contains at most 50 letters. It is guaranteed that the given string can be obtained from some correct Internet resource address, described above.", "output_spec": "Print a single line \u2014 the address of the Internet resource that Vasya liked. If there are several addresses that meet the problem limitations, you are allowed to print any of them.", "sample_inputs": ["httpsunrux", "ftphttprururu"], "sample_outputs": ["http://sun.ru/x", "ftp://http.ru/ruru"], "notes": "NoteIn the second sample there are two more possible answers: \"ftp://httpruru.ru\" and \"ftp://httpru.ru/ru\"."}, "src_uid": "4c999b7854a8a08960b6501a90b3bba3"} {"nl": {"description": "n children are standing in a circle and playing a game. Children's numbers in clockwise order form a permutation a1,\u2009a2,\u2009...,\u2009an of length n. It is an integer sequence such that each integer from 1 to n appears exactly once in it.The game consists of m steps. On each step the current leader with index i counts out ai people in clockwise order, starting from the next person. The last one to be pointed at by the leader becomes the new leader.You are given numbers l1,\u2009l2,\u2009...,\u2009lm \u2014 indices of leaders in the beginning of each step. Child with number l1 is the first leader in the game. Write a program which will restore a possible permutation a1,\u2009a2,\u2009...,\u2009an. If there are multiple solutions then print any of them. If there is no solution then print -1.", "input_spec": "The first line contains two integer numbers n, m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009100). The second line contains m integer numbers l1,\u2009l2,\u2009...,\u2009lm (1\u2009\u2264\u2009li\u2009\u2264\u2009n) \u2014 indices of leaders in the beginning of each step.", "output_spec": "Print such permutation of n numbers a1,\u2009a2,\u2009...,\u2009an that leaders in the game will be exactly l1,\u2009l2,\u2009...,\u2009lm if all the rules are followed. If there are multiple solutions print any of them. If there is no permutation which satisfies all described conditions print -1.", "sample_inputs": ["4 5\n2 3 1 4 4", "3 3\n3 1 2"], "sample_outputs": ["3 1 2 4", "-1"], "notes": "NoteLet's follow leadership in the first example: Child 2 starts. Leadership goes from 2 to 2\u2009+\u2009a2\u2009=\u20093. Leadership goes from 3 to 3\u2009+\u2009a3\u2009=\u20095. As it's greater than 4, it's going in a circle to 1. Leadership goes from 1 to 1\u2009+\u2009a1\u2009=\u20094. Leadership goes from 4 to 4\u2009+\u2009a4\u2009=\u20098. Thus in circle it still remains at 4. "}, "src_uid": "4a7c959ca279d0a9bd9bbf0ce88cf72b"} {"nl": {"description": "Unlucky year in Berland is such a year that its number n can be represented as n\u2009=\u2009xa\u2009+\u2009yb, where a and b are non-negative integer numbers. For example, if x\u2009=\u20092 and y\u2009=\u20093 then the years 4 and 17 are unlucky (4\u2009=\u200920\u2009+\u200931, 17\u2009=\u200923\u2009+\u200932\u2009=\u200924\u2009+\u200930) and year 18 isn't unlucky as there is no such representation for it.Such interval of years that there are no unlucky years in it is called The Golden Age.You should write a program which will find maximum length of The Golden Age which starts no earlier than the year l and ends no later than the year r. If all years in the interval [l,\u2009r] are unlucky then the answer is 0.", "input_spec": "The first line contains four integer numbers x, y, l and r (2\u2009\u2264\u2009x,\u2009y\u2009\u2264\u20091018, 1\u2009\u2264\u2009l\u2009\u2264\u2009r\u2009\u2264\u20091018).", "output_spec": "Print the maximum length of The Golden Age within the interval [l,\u2009r]. If all years in the interval [l,\u2009r] are unlucky then print 0.", "sample_inputs": ["2 3 1 10", "3 5 10 22", "2 3 3 5"], "sample_outputs": ["1", "8", "0"], "notes": "NoteIn the first example the unlucky years are 2, 3, 4, 5, 7, 9 and 10. So maximum length of The Golden Age is achived in the intervals [1,\u20091], [6,\u20096] and [8,\u20098].In the second example the longest Golden Age is the interval [15,\u200922]."}, "src_uid": "68ca8a8730db27ac2230f9fe9b120f5f"} {"nl": {"description": "Mr. Bender has a digital table of size n\u2009\u00d7\u2009n, each cell can be switched on or off. He wants the field to have at least c switched on squares. When this condition is fulfilled, Mr Bender will be happy.We'll consider the table rows numbered from top to bottom from 1 to n, and the columns \u2014 numbered from left to right from 1 to n. Initially there is exactly one switched on cell with coordinates (x,\u2009y) (x is the row number, y is the column number), and all other cells are switched off. Then each second we switch on the cells that are off but have the side-adjacent cells that are on.For a cell with coordinates (x,\u2009y) the side-adjacent cells are cells with coordinates (x\u2009-\u20091,\u2009y), (x\u2009+\u20091,\u2009y), (x,\u2009y\u2009-\u20091), (x,\u2009y\u2009+\u20091).In how many seconds will Mr. Bender get happy?", "input_spec": "The first line contains four space-separated integers n,\u2009x,\u2009y,\u2009c (1\u2009\u2264\u2009n,\u2009c\u2009\u2264\u2009109;\u00a01\u2009\u2264\u2009x,\u2009y\u2009\u2264\u2009n;\u00a0c\u2009\u2264\u2009n2).", "output_spec": "In a single line print a single integer \u2014 the answer to the problem.", "sample_inputs": ["6 4 3 1", "9 3 8 10"], "sample_outputs": ["0", "2"], "notes": "NoteInitially the first test has one painted cell, so the answer is 0. In the second test all events will go as is shown on the figure. ."}, "src_uid": "232c5206ee7c1903556c3625e0b0efc6"} {"nl": {"description": "Alexander is learning how to convert numbers from the decimal system to any other, however, he doesn't know English letters, so he writes any number only as a decimal number, it means that instead of the letter A he will write the number 10. Thus, by converting the number 475 from decimal to hexadecimal system, he gets 11311 (475\u2009=\u20091\u00b7162\u2009+\u200913\u00b7161\u2009+\u200911\u00b7160). Alexander lived calmly until he tried to convert the number back to the decimal number system.Alexander remembers that he worked with little numbers so he asks to find the minimum decimal number so that by converting it to the system with the base n he will get the number k.", "input_spec": "The first line contains the integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009109). The second line contains the integer k (0\u2009\u2264\u2009k\u2009<\u20091060), it is guaranteed that the number k contains no more than 60 symbols. All digits in the second line are strictly less than n. Alexander guarantees that the answer exists and does not exceed 1018. The number k doesn't contain leading zeros.", "output_spec": "Print the number x (0\u2009\u2264\u2009x\u2009\u2264\u20091018)\u00a0\u2014 the answer to the problem.", "sample_inputs": ["13\n12", "16\n11311", "20\n999", "17\n2016"], "sample_outputs": ["12", "475", "3789", "594"], "notes": "NoteIn the first example 12 could be obtained by converting two numbers to the system with base 13: 12\u2009=\u200912\u00b7130 or 15\u2009=\u20091\u00b7131\u2009+\u20092\u00b7130."}, "src_uid": "be66399c558c96566a6bb0a63d2503e5"} {"nl": {"description": "Vasya studies music. He has learned lots of interesting stuff. For example, he knows that there are 12 notes: C, C#, D, D#, E, F, F#, G, G#, A, B, H. He also knows that the notes are repeated cyclically: after H goes C again, and before C stands H. We will consider the C note in the row's beginning and the C note after the H similar and we will identify them with each other. The distance between the notes along the musical scale is measured in tones: between two consecutive notes there's exactly one semitone, that is, 0.5 tone. The distance is taken from the lowest tone to the uppest one, that is, the distance between C and E is 4 semitones and between E and C is 8 semitonesVasya also knows what a chord is. A chord is an unordered set of no less than three notes. However, for now Vasya only works with triads, that is with the chords that consist of exactly three notes. He can already distinguish between two types of triads \u2014 major and minor.Let's define a major triad. Let the triad consist of notes X, Y and Z. If we can order the notes so as the distance along the musical scale between X and Y equals 4 semitones and the distance between Y and Z is 3 semitones, then the triad is major. The distance between X and Z, accordingly, equals 7 semitones.A minor triad is different in that the distance between X and Y should be 3 semitones and between Y and Z \u2014 4 semitones.For example, the triad \"C E G\" is major: between C and E are 4 semitones, and between E and G are 3 semitones. And the triplet \"C# B F\" is minor, because if we order the notes as \"B C# F\", than between B and C# will be 3 semitones, and between C# and F \u2014 4 semitones.Help Vasya classify the triad the teacher has given to him.", "input_spec": "The only line contains 3 space-separated notes in the above-given notation.", "output_spec": "Print \"major\" if the chord is major, \"minor\" if it is minor, and \"strange\" if the teacher gave Vasya some weird chord which is neither major nor minor. Vasya promises you that the answer will always be unambiguous. That is, there are no chords that are both major and minor simultaneously.", "sample_inputs": ["C E G", "C# B F", "A B H"], "sample_outputs": ["major", "minor", "strange"], "notes": null}, "src_uid": "6aa83c2f6e095848bc63aba7d013aa58"} {"nl": {"description": "We all know that GukiZ often plays with arrays. Now he is thinking about this problem: how many arrays a, of length n, with non-negative elements strictly less then 2l meet the following condition: ? Here operation means bitwise AND (in Pascal it is equivalent to and, in C/C++/Java/Python it is equivalent to &), operation means bitwise OR (in Pascal it is equivalent to , in C/C++/Java/Python it is equivalent to |). Because the answer can be quite large, calculate it modulo m. This time GukiZ hasn't come up with solution, and needs you to help him!", "input_spec": "First and the only line of input contains four integers n, k, l, m (2\u2009\u2264\u2009n\u2009\u2264\u20091018, 0\u2009\u2264\u2009k\u2009\u2264\u20091018, 0\u2009\u2264\u2009l\u2009\u2264\u200964, 1\u2009\u2264\u2009m\u2009\u2264\u2009109\u2009+\u20097).", "output_spec": "In the single line print the number of arrays satisfying the condition above modulo m.", "sample_inputs": ["2 1 2 10", "2 1 1 3", "3 3 2 10"], "sample_outputs": ["3", "1", "9"], "notes": "NoteIn the first sample, satisfying arrays are {1,\u20091},\u2009{3,\u20091},\u2009{1,\u20093}.In the second sample, only satisfying array is {1,\u20091}.In the third sample, satisfying arrays are {0,\u20093,\u20093},\u2009{1,\u20093,\u20092},\u2009{1,\u20093,\u20093},\u2009{2,\u20093,\u20091},\u2009{2,\u20093,\u20093},\u2009{3,\u20093,\u20090},\u2009{3,\u20093,\u20091},\u2009{3,\u20093,\u20092},\u2009{3,\u20093,\u20093}."}, "src_uid": "2163eec2ea1eed5da8231d1882cb0f8e"} {"nl": {"description": "Apart from Nian, there is a daemon named Sui, which terrifies children and causes them to become sick. Parents give their children money wrapped in red packets and put them under the pillow, so that when Sui tries to approach them, it will be driven away by the fairies inside.Big Banban is hesitating over the amount of money to give out. He considers loops to be lucky since it symbolizes unity and harmony.He would like to find a positive integer n not greater than 1018, such that there are exactly k loops in the decimal representation of n, or determine that such n does not exist.A loop is a planar area enclosed by lines in the digits' decimal representation written in Arabic numerals. For example, there is one loop in digit 4, two loops in 8 and no loops in 5. Refer to the figure below for all exact forms. ", "input_spec": "The first and only line contains an integer k (1\u2009\u2264\u2009k\u2009\u2264\u2009106)\u00a0\u2014 the desired number of loops.", "output_spec": "Output an integer\u00a0\u2014 if no such n exists, output -1; otherwise output any such n. In the latter case, your output should be a positive decimal integer not exceeding 1018.", "sample_inputs": ["2", "6"], "sample_outputs": ["462", "8080"], "notes": null}, "src_uid": "0c9973792c1976c5710f88e3520cda4e"} {"nl": {"description": "The tram in Berland goes along a straight line from the point 0 to the point s and back, passing 1 meter per t1 seconds in both directions. It means that the tram is always in the state of uniform rectilinear motion, instantly turning around at points x\u2009=\u20090 and x\u2009=\u2009s.Igor is at the point x1. He should reach the point x2. Igor passes 1 meter per t2 seconds. Your task is to determine the minimum time Igor needs to get from the point x1 to the point x2, if it is known where the tram is and in what direction it goes at the moment Igor comes to the point x1.Igor can enter the tram unlimited number of times at any moment when his and the tram's positions coincide. It is not obligatory that points in which Igor enter and exit the tram are integers. Assume that any boarding and unboarding happens instantly. Igor can move arbitrary along the line (but not faster than 1 meter per t2 seconds). He can also stand at some point for some time.", "input_spec": "The first line contains three integers s, x1 and x2 (2\u2009\u2264\u2009s\u2009\u2264\u20091000, 0\u2009\u2264\u2009x1,\u2009x2\u2009\u2264\u2009s, x1\u2009\u2260\u2009x2)\u00a0\u2014 the maximum coordinate of the point to which the tram goes, the point Igor is at, and the point he should come to. The second line contains two integers t1 and t2 (1\u2009\u2264\u2009t1,\u2009t2\u2009\u2264\u20091000)\u00a0\u2014 the time in seconds in which the tram passes 1 meter and the time in seconds in which Igor passes 1 meter. The third line contains two integers p and d (1\u2009\u2264\u2009p\u2009\u2264\u2009s\u2009-\u20091, d is either 1 or )\u00a0\u2014 the position of the tram in the moment Igor came to the point x1 and the direction of the tram at this moment. If , the tram goes in the direction from the point s to the point 0. If d\u2009=\u20091, the tram goes in the direction from the point 0 to the point s.", "output_spec": "Print the minimum time in seconds which Igor needs to get from the point x1 to the point x2.", "sample_inputs": ["4 2 4\n3 4\n1 1", "5 4 0\n1 2\n3 1"], "sample_outputs": ["8", "7"], "notes": "NoteIn the first example it is profitable for Igor to go by foot and not to wait the tram. Thus, he has to pass 2 meters and it takes 8 seconds in total, because he passes 1 meter per 4 seconds. In the second example Igor can, for example, go towards the point x2 and get to the point 1 in 6 seconds (because he has to pass 3 meters, but he passes 1 meters per 2 seconds). At that moment the tram will be at the point 1, so Igor can enter the tram and pass 1 meter in 1 second. Thus, Igor will reach the point x2 in 7 seconds in total."}, "src_uid": "fb3aca6eba3a952e9d5736c5d8566821"} {"nl": {"description": "This version of the problem differs from the next one only in the constraint on $$$n$$$.Note that the memory limit in this problem is lower than in others.You have a vertical strip with $$$n$$$ cells, numbered consecutively from $$$1$$$ to $$$n$$$ from top to bottom.You also have a token that is initially placed in cell $$$n$$$. You will move the token up until it arrives at cell $$$1$$$.Let the token be in cell $$$x > 1$$$ at some moment. One shift of the token can have either of the following kinds: Subtraction: you choose an integer $$$y$$$ between $$$1$$$ and $$$x-1$$$, inclusive, and move the token from cell $$$x$$$ to cell $$$x - y$$$. Floored division: you choose an integer $$$z$$$ between $$$2$$$ and $$$x$$$, inclusive, and move the token from cell $$$x$$$ to cell $$$\\lfloor \\frac{x}{z} \\rfloor$$$ ($$$x$$$ divided by $$$z$$$ rounded down). Find the number of ways to move the token from cell $$$n$$$ to cell $$$1$$$ using one or more shifts, and print it modulo $$$m$$$. Note that if there are several ways to move the token from one cell to another in one shift, all these ways are considered distinct (check example explanation for a better understanding).", "input_spec": "The only line contains two integers $$$n$$$ and $$$m$$$ ($$$2 \\le n \\le 2 \\cdot 10^5$$$; $$$10^8 < m < 10^9$$$; $$$m$$$ is a prime number)\u00a0\u2014 the length of the strip and the modulo.", "output_spec": "Print the number of ways to move the token from cell $$$n$$$ to cell $$$1$$$, modulo $$$m$$$.", "sample_inputs": ["3 998244353", "5 998244353", "42 998244353"], "sample_outputs": ["5", "25", "793019428"], "notes": "NoteIn the first test, there are three ways to move the token from cell $$$3$$$ to cell $$$1$$$ in one shift: using subtraction of $$$y = 2$$$, or using division by $$$z = 2$$$ or $$$z = 3$$$.There are also two ways to move the token from cell $$$3$$$ to cell $$$1$$$ via cell $$$2$$$: first subtract $$$y = 1$$$, and then either subtract $$$y = 1$$$ again or divide by $$$z = 2$$$.Therefore, there are five ways in total."}, "src_uid": "a524aa54e83fd0223489a19531bf0e79"} {"nl": {"description": "An expedition group flew from planet ACM-1 to Earth in order to study the bipedal species (its representatives don't even have antennas on their heads!).The flying saucer, on which the brave pioneers set off, consists of three sections. These sections are connected by a chain: the 1-st section is adjacent only to the 2-nd one, the 2-nd one \u2014 to the 1-st and the 3-rd ones, the 3-rd one \u2014 only to the 2-nd one. The transitions are possible only between the adjacent sections.The spacecraft team consists of n aliens. Each of them is given a rank \u2014 an integer from 1 to n. The ranks of all astronauts are distinct. The rules established on the Saucer, state that an alien may move from section a to section b only if it is senior in rank to all aliens who are in the segments a and b (besides, the segments a and b are of course required to be adjacent). Any alien requires exactly 1 minute to make a move. Besides, safety regulations require that no more than one alien moved at the same minute along the ship.Alien A is senior in rank to alien B, if the number indicating rank A, is more than the corresponding number for B.At the moment the whole saucer team is in the 3-rd segment. They all need to move to the 1-st segment. One member of the crew, the alien with the identification number CFR-140, decided to calculate the minimum time (in minutes) they will need to perform this task.Help CFR-140, figure out the minimum time (in minutes) that all the astronauts will need to move from the 3-rd segment to the 1-st one. Since this number can be rather large, count it modulo m.", "input_spec": "The first line contains two space-separated integers: n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u2009109) \u2014 the number of aliens on the saucer and the number, modulo which you should print the answer, correspondingly.", "output_spec": "Print a single number \u2014 the answer to the problem modulo m.", "sample_inputs": ["1 10", "3 8"], "sample_outputs": ["2", "2"], "notes": "NoteIn the first sample the only crew member moves from segment 3 to segment 2, and then from segment 2 to segment 1 without any problems. Thus, the whole moving will take two minutes.To briefly describe the movements in the second sample we will use value , which would correspond to an alien with rank i moving from the segment in which it is at the moment, to the segment number j. Using these values, we will describe the movements between the segments in the second sample: , , , , , , , , , , , , , , , , , , , , , , , , , ; In total: the aliens need 26 moves. The remainder after dividing 26 by 8 equals 2, so the answer to this test is 2."}, "src_uid": "c62ad7c7d1ea7aec058d99223c57d33c"} {"nl": {"description": "Chloe, the same as Vladik, is a competitive programmer. She didn't have any problems to get to the olympiad like Vladik, but she was confused by the task proposed on the olympiad.Let's consider the following algorithm of generating a sequence of integers. Initially we have a sequence consisting of a single element equal to 1. Then we perform (n\u2009-\u20091) steps. On each step we take the sequence we've got on the previous step, append it to the end of itself and insert in the middle the minimum positive integer we haven't used before. For example, we get the sequence [1,\u20092,\u20091] after the first step, the sequence [1,\u20092,\u20091,\u20093,\u20091,\u20092,\u20091] after the second step.The task is to find the value of the element with index k (the elements are numbered from 1) in the obtained sequence, i.\u00a0e. after (n\u2009-\u20091) steps.Please help Chloe to solve the problem!", "input_spec": "The only line contains two integers n and k (1\u2009\u2264\u2009n\u2009\u2264\u200950, 1\u2009\u2264\u2009k\u2009\u2264\u20092n\u2009-\u20091).", "output_spec": "Print single integer\u00a0\u2014 the integer at the k-th position in the obtained sequence.", "sample_inputs": ["3 2", "4 8"], "sample_outputs": ["2", "4"], "notes": "NoteIn the first sample the obtained sequence is [1,\u20092,\u20091,\u20093,\u20091,\u20092,\u20091]. The number on the second position is 2.In the second sample the obtained sequence is [1,\u20092,\u20091,\u20093,\u20091,\u20092,\u20091,\u20094,\u20091,\u20092,\u20091,\u20093,\u20091,\u20092,\u20091]. The number on the eighth position is 4."}, "src_uid": "0af400ea8e25b1a36adec4cc08912b71"} {"nl": {"description": "Polycarp is going to participate in the contest. It starts at $$$h_1:m_1$$$ and ends at $$$h_2:m_2$$$. It is guaranteed that the contest lasts an even number of minutes (i.e. $$$m_1 \\% 2 = m_2 \\% 2$$$, where $$$x \\% y$$$ is $$$x$$$ modulo $$$y$$$). It is also guaranteed that the entire contest is held during a single day. And finally it is guaranteed that the contest lasts at least two minutes.Polycarp wants to know the time of the midpoint of the contest. For example, if the contest lasts from $$$10:00$$$ to $$$11:00$$$ then the answer is $$$10:30$$$, if the contest lasts from $$$11:10$$$ to $$$11:12$$$ then the answer is $$$11:11$$$.", "input_spec": "The first line of the input contains two integers $$$h_1$$$ and $$$m_1$$$ in the format hh:mm. The second line of the input contains two integers $$$h_2$$$ and $$$m_2$$$ in the same format (hh:mm). It is guaranteed that $$$0 \\le h_1, h_2 \\le 23$$$ and $$$0 \\le m_1, m_2 \\le 59$$$. It is guaranteed that the contest lasts an even number of minutes (i.e. $$$m_1 \\% 2 = m_2 \\% 2$$$, where $$$x \\% y$$$ is $$$x$$$ modulo $$$y$$$). It is also guaranteed that the entire contest is held during a single day. And finally it is guaranteed that the contest lasts at least two minutes.", "output_spec": "Print two integers $$$h_3$$$ and $$$m_3$$$ ($$$0 \\le h_3 \\le 23, 0 \\le m_3 \\le 59$$$) corresponding to the midpoint of the contest in the format hh:mm. Print each number as exactly two digits (prepend a number with leading zero if needed), separate them with ':'.", "sample_inputs": ["10:00\n11:00", "11:10\n11:12", "01:02\n03:02"], "sample_outputs": ["10:30", "11:11", "02:02"], "notes": null}, "src_uid": "f7a32a8325ce97c4c50ce3a5c282ec50"} {"nl": {"description": "After making bad dives into swimming pools, Wilbur wants to build a swimming pool in the shape of a rectangle in his backyard. He has set up coordinate axes, and he wants the sides of the rectangle to be parallel to them. Of course, the area of the rectangle must be positive. Wilbur had all four vertices of the planned pool written on a paper, until his friend came along and erased some of the vertices.Now Wilbur is wondering, if the remaining n vertices of the initial rectangle give enough information to restore the area of the planned swimming pool.", "input_spec": "The first line of the input contains a single integer n (1\u2009\u2264\u2009n\u2009\u2264\u20094)\u00a0\u2014 the number of vertices that were not erased by Wilbur's friend. Each of the following n lines contains two integers xi and yi (\u2009-\u20091000\u2009\u2264\u2009xi,\u2009yi\u2009\u2264\u20091000)\u00a0\u2014the coordinates of the i-th vertex that remains. Vertices are given in an arbitrary order. It's guaranteed that these points are distinct vertices of some rectangle, that has positive area and which sides are parallel to the coordinate axes.", "output_spec": "Print the area of the initial rectangle if it could be uniquely determined by the points remaining. Otherwise, print \u2009-\u20091. ", "sample_inputs": ["2\n0 0\n1 1", "1\n1 1"], "sample_outputs": ["1", "-1"], "notes": "NoteIn the first sample, two opposite corners of the initial rectangle are given, and that gives enough information to say that the rectangle is actually a unit square.In the second sample there is only one vertex left and this is definitely not enough to uniquely define the area."}, "src_uid": "ba49b6c001bb472635f14ec62233210e"} {"nl": {"description": "User ainta has a stack of n red and blue balls. He can apply a certain operation which changes the colors of the balls inside the stack. While the top ball inside the stack is red, pop the ball from the top of the stack. Then replace the blue ball on the top with a red ball. And finally push some blue balls to the stack until the stack has total of n balls inside. \u00a0If there are no blue balls inside the stack, ainta can't apply this operation. Given the initial state of the stack, ainta wants to know the maximum number of operations he can repeatedly apply.", "input_spec": "The first line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u200950) \u2014 the number of balls inside the stack. The second line contains a string s (|s|\u2009=\u2009n) describing the initial state of the stack. The i-th character of the string s denotes the color of the i-th ball (we'll number the balls from top to bottom of the stack). If the character is \"R\", the color is red. If the character is \"B\", the color is blue.", "output_spec": "Print the maximum number of operations ainta can repeatedly apply. Please, do not write the %lld specifier to read or write 64-bit integers in \u0421++. It is preferred to use the cin, cout streams or the %I64d specifier.", "sample_inputs": ["3\nRBR", "4\nRBBR", "5\nRBBRR"], "sample_outputs": ["2", "6", "6"], "notes": "NoteThe first example is depicted below.The explanation how user ainta applies the first operation. He pops out one red ball, changes the color of the ball in the middle from blue to red, and pushes one blue ball. The explanation how user ainta applies the second operation. He will not pop out red balls, he simply changes the color of the ball on the top from blue to red. From now on, ainta can't apply any operation because there are no blue balls inside the stack. ainta applied two operations, so the answer is 2.The second example is depicted below. The blue arrow denotes a single operation. "}, "src_uid": "d86a1b5bf9fe9a985f7b030fedd29d58"} {"nl": {"description": "You are given a rectangular cake, represented as an r\u2009\u00d7\u2009c grid. Each cell either has an evil strawberry, or is empty. For example, a 3\u2009\u00d7\u20094 cake may look as follows: The cakeminator is going to eat the cake! Each time he eats, he chooses a row or a column that does not contain any evil strawberries and contains at least one cake cell that has not been eaten before, and eats all the cake cells there. He may decide to eat any number of times.Please output the maximum number of cake cells that the cakeminator can eat.", "input_spec": "The first line contains two integers r and c (2\u2009\u2264\u2009r,\u2009c\u2009\u2264\u200910), denoting the number of rows and the number of columns of the cake. The next r lines each contains c characters \u2014 the j-th character of the i-th line denotes the content of the cell at row i and column j, and is either one of these: '.' character denotes a cake cell with no evil strawberry; 'S' character denotes a cake cell with an evil strawberry. ", "output_spec": "Output the maximum number of cake cells that the cakeminator can eat.", "sample_inputs": ["3 4\nS...\n....\n..S."], "sample_outputs": ["8"], "notes": "NoteFor the first example, one possible way to eat the maximum number of cake cells is as follows (perform 3 eats). "}, "src_uid": "ebaf7d89c623d006a6f1ffd025892102"} {"nl": {"description": "\u2014 This is not playing but duty as allies of justice, Nii-chan!\u2014 Not allies but justice itself, Onii-chan!With hands joined, go everywhere at a speed faster than our thoughts! This time, the Fire Sisters\u00a0\u2014 Karen and Tsukihi\u00a0\u2014 is heading for somewhere they've never reached\u00a0\u2014 water-surrounded islands!There are three clusters of islands, conveniently coloured red, blue and purple. The clusters consist of a, b and c distinct islands respectively.Bridges have been built between some (possibly all or none) of the islands. A bridge bidirectionally connects two different islands and has length 1. For any two islands of the same colour, either they shouldn't be reached from each other through bridges, or the shortest distance between them is at least 3, apparently in order to prevent oddities from spreading quickly inside a cluster.The Fire Sisters are ready for the unknown, but they'd also like to test your courage. And you're here to figure out the number of different ways to build all bridges under the constraints, and give the answer modulo 998\u2009244\u2009353. Two ways are considered different if a pair of islands exist, such that there's a bridge between them in one of them, but not in the other.", "input_spec": "The first and only line of input contains three space-separated integers a, b and c (1\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u20095\u2009000)\u00a0\u2014 the number of islands in the red, blue and purple clusters, respectively.", "output_spec": "Output one line containing an integer\u00a0\u2014 the number of different ways to build bridges, modulo 998\u2009244\u2009353.", "sample_inputs": ["1 1 1", "1 2 2", "1 3 5", "6 2 9"], "sample_outputs": ["8", "63", "3264", "813023575"], "notes": "NoteIn the first example, there are 3 bridges that can possibly be built, and no setup of bridges violates the restrictions. Thus the answer is 23\u2009=\u20098.In the second example, the upper two structures in the figure below are instances of valid ones, while the lower two are invalid due to the blue and purple clusters, respectively. "}, "src_uid": "b6dc5533fbf285d5ef4cf60ef6300383"} {"nl": {"description": "This morning, Roman woke up and opened the browser with $$$n$$$ opened tabs numbered from $$$1$$$ to $$$n$$$. There are two kinds of tabs: those with the information required for the test and those with social network sites. Roman decided that there are too many tabs open so he wants to close some of them.He decided to accomplish this by closing every $$$k$$$-th ($$$2 \\leq k \\leq n - 1$$$) tab. Only then he will decide whether he wants to study for the test or to chat on the social networks. Formally, Roman will choose one tab (let its number be $$$b$$$) and then close all tabs with numbers $$$c = b + i \\cdot k$$$ that satisfy the following condition: $$$1 \\leq c \\leq n$$$ and $$$i$$$ is an integer (it may be positive, negative or zero).For example, if $$$k = 3$$$, $$$n = 14$$$ and Roman chooses $$$b = 8$$$, then he will close tabs with numbers $$$2$$$, $$$5$$$, $$$8$$$, $$$11$$$ and $$$14$$$.After closing the tabs Roman will calculate the amount of remaining tabs with the information for the test (let's denote it $$$e$$$) and the amount of remaining social network tabs ($$$s$$$). Help Roman to calculate the maximal absolute value of the difference of those values $$$|e - s|$$$ so that it would be easy to decide what to do next.", "input_spec": "The first line contains two integers $$$n$$$ and $$$k$$$ ($$$2 \\leq k < n \\leq 100$$$) \u2014 the amount of tabs opened currently and the distance between the tabs closed. The second line consists of $$$n$$$ integers, each of them equal either to $$$1$$$ or to $$$-1$$$. The $$$i$$$-th integer denotes the type of the $$$i$$$-th tab: if it is equal to $$$1$$$, this tab contains information for the test, and if it is equal to $$$-1$$$, it's a social network tab.", "output_spec": "Output a single integer \u2014 the maximum absolute difference between the amounts of remaining tabs of different types $$$|e - s|$$$.", "sample_inputs": ["4 2\n1 1 -1 1", "14 3\n-1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1"], "sample_outputs": ["2", "9"], "notes": "NoteIn the first example we can choose $$$b = 1$$$ or $$$b = 3$$$. We will delete then one tab of each type and the remaining tabs are then all contain test information. Thus, $$$e = 2$$$ and $$$s = 0$$$ and $$$|e - s| = 2$$$.In the second example, on the contrary, we can leave opened only tabs that have social networks opened in them."}, "src_uid": "6119258322e06fa6146e592c63313df3"} {"nl": {"description": "There are three points marked on the coordinate plane. The goal is to make a simple polyline, without self-intersections and self-touches, such that it passes through all these points. Also, the polyline must consist of only segments parallel to the coordinate axes. You are to find the minimum number of segments this polyline may consist of.", "input_spec": "Each of the three lines of the input contains two integers. The i-th line contains integers xi and yi (\u2009-\u2009109\u2009\u2264\u2009xi,\u2009yi\u2009\u2264\u2009109)\u00a0\u2014 the coordinates of the i-th point. It is guaranteed that all points are distinct.", "output_spec": "Print a single number\u00a0\u2014 the minimum possible number of segments of the polyline.", "sample_inputs": ["1 -1\n1 1\n1 2", "-1 -1\n-1 3\n4 3", "1 1\n2 3\n3 2"], "sample_outputs": ["1", "2", "3"], "notes": "NoteThe variant of the polyline in the first sample: The variant of the polyline in the second sample: The variant of the polyline in the third sample: "}, "src_uid": "36fe960550e59b046202b5811343590d"} {"nl": {"description": "The only difference between easy and hard versions is the length of the string.You are given a string $$$s$$$ and a string $$$t$$$, both consisting only of lowercase Latin letters. It is guaranteed that $$$t$$$ can be obtained from $$$s$$$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $$$s$$$ without changing order of remaining characters (in other words, it is guaranteed that $$$t$$$ is a subsequence of $$$s$$$).For example, the strings \"test\", \"tst\", \"tt\", \"et\" and \"\" are subsequences of the string \"test\". But the strings \"tset\", \"se\", \"contest\" are not subsequences of the string \"test\".You want to remove some substring (contiguous subsequence) from $$$s$$$ of maximum possible length such that after removing this substring $$$t$$$ will remain a subsequence of $$$s$$$.If you want to remove the substring $$$s[l;r]$$$ then the string $$$s$$$ will be transformed to $$$s_1 s_2 \\dots s_{l-1} s_{r+1} s_{r+2} \\dots s_{|s|-1} s_{|s|}$$$ (where $$$|s|$$$ is the length of $$$s$$$).Your task is to find the maximum possible length of the substring you can remove so that $$$t$$$ is still a subsequence of $$$s$$$.", "input_spec": "The first line of the input contains one string $$$s$$$ consisting of at least $$$1$$$ and at most $$$200$$$ lowercase Latin letters. The second line of the input contains one string $$$t$$$ consisting of at least $$$1$$$ and at most $$$200$$$ lowercase Latin letters. It is guaranteed that $$$t$$$ is a subsequence of $$$s$$$.", "output_spec": "Print one integer \u2014 the maximum possible length of the substring you can remove so that $$$t$$$ is still a subsequence of $$$s$$$.", "sample_inputs": ["bbaba\nbb", "baaba\nab", "abcde\nabcde", "asdfasdf\nfasd"], "sample_outputs": ["3", "2", "0", "3"], "notes": null}, "src_uid": "0fd33e1bdfd6c91feb3bf00a2461603f"} {"nl": {"description": "Kolya is very absent-minded. Today his math teacher asked him to solve a simple problem with the equation $$$a + 1 = b$$$ with positive integers $$$a$$$ and $$$b$$$, but Kolya forgot the numbers $$$a$$$ and $$$b$$$. He does, however, remember that the first (leftmost) digit of $$$a$$$ was $$$d_a$$$, and the first (leftmost) digit of $$$b$$$ was $$$d_b$$$.Can you reconstruct any equation $$$a + 1 = b$$$ that satisfies this property? It may be possible that Kolya misremembers the digits, and there is no suitable equation, in which case report so.", "input_spec": "The only line contains two space-separated digits $$$d_a$$$ and $$$d_b$$$ ($$$1 \\leq d_a, d_b \\leq 9$$$).", "output_spec": "If there is no equation $$$a + 1 = b$$$ with positive integers $$$a$$$ and $$$b$$$ such that the first digit of $$$a$$$ is $$$d_a$$$, and the first digit of $$$b$$$ is $$$d_b$$$, print a single number $$$-1$$$. Otherwise, print any suitable $$$a$$$ and $$$b$$$ that both are positive and do not exceed $$$10^9$$$. It is guaranteed that if a solution exists, there also exists a solution with both numbers not exceeding $$$10^9$$$.", "sample_inputs": ["1 2", "4 4", "5 7", "6 2"], "sample_outputs": ["199 200", "412 413", "-1", "-1"], "notes": null}, "src_uid": "3eff6f044c028146bea5f0dfd2870d23"} {"nl": {"description": "The only difference between easy and hard versions is constraints.A session has begun at Beland State University. Many students are taking exams.Polygraph Poligrafovich is going to examine a group of $$$n$$$ students. Students will take the exam one-by-one in order from $$$1$$$-th to $$$n$$$-th. Rules of the exam are following: The $$$i$$$-th student randomly chooses a ticket. if this ticket is too hard to the student, he doesn't answer and goes home immediately (this process is so fast that it's considered no time elapses). This student fails the exam. if the student finds the ticket easy, he spends exactly $$$t_i$$$ minutes to pass the exam. After it, he immediately gets a mark and goes home. Students take the exam in the fixed order, one-by-one, without any interruption. At any moment of time, Polygraph Poligrafovich takes the answer from one student.The duration of the whole exam for all students is $$$M$$$ minutes ($$$\\max t_i \\le M$$$), so students at the end of the list have a greater possibility to run out of time to pass the exam.For each student $$$i$$$, you should count the minimum possible number of students who need to fail the exam so the $$$i$$$-th student has enough time to pass the exam.For each student $$$i$$$, find the answer independently. That is, if when finding the answer for the student $$$i_1$$$ some student $$$j$$$ should leave, then while finding the answer for $$$i_2$$$ ($$$i_2>i_1$$$) the student $$$j$$$ student does not have to go home.", "input_spec": "The first line of the input contains two integers $$$n$$$ and $$$M$$$ ($$$1 \\le n \\le 100$$$, $$$1 \\le M \\le 100$$$)\u00a0\u2014 the number of students and the total duration of the exam in minutes, respectively. The second line of the input contains $$$n$$$ integers $$$t_i$$$ ($$$1 \\le t_i \\le 100$$$)\u00a0\u2014 time in minutes that $$$i$$$-th student spends to answer to a ticket. It's guaranteed that all values of $$$t_i$$$ are not greater than $$$M$$$.", "output_spec": "Print $$$n$$$ numbers: the $$$i$$$-th number must be equal to the minimum number of students who have to leave the exam in order to $$$i$$$-th student has enough time to pass the exam.", "sample_inputs": ["7 15\n1 2 3 4 5 6 7", "5 100\n80 40 40 40 60"], "sample_outputs": ["0 0 0 0 0 2 3", "0 1 1 2 3"], "notes": "NoteThe explanation for the example 1.Please note that the sum of the first five exam times does not exceed $$$M=15$$$ (the sum is $$$1+2+3+4+5=15$$$). Thus, the first five students can pass the exam even if all the students before them also pass the exam. In other words, the first five numbers in the answer are $$$0$$$.In order for the $$$6$$$-th student to pass the exam, it is necessary that at least $$$2$$$ students must fail it before (for example, the $$$3$$$-rd and $$$4$$$-th, then the $$$6$$$-th will finish its exam in $$$1+2+5+6=14$$$ minutes, which does not exceed $$$M$$$).In order for the $$$7$$$-th student to pass the exam, it is necessary that at least $$$3$$$ students must fail it before (for example, the $$$2$$$-nd, $$$5$$$-th and $$$6$$$-th, then the $$$7$$$-th will finish its exam in $$$1+3+4+7=15$$$ minutes, which does not exceed $$$M$$$)."}, "src_uid": "d3c1dc3ed7af2b51b4c49c9b5052c346"} {"nl": {"description": "There are three doors in front of you, numbered from $$$1$$$ to $$$3$$$ from left to right. Each door has a lock on it, which can only be opened with a key with the same number on it as the number on the door.There are three keys\u00a0\u2014 one for each door. Two of them are hidden behind the doors, so that there is no more than one key behind each door. So two doors have one key behind them, one door doesn't have a key behind it. To obtain a key hidden behind a door, you should first unlock that door. The remaining key is in your hands.Can you open all the doors?", "input_spec": "The first line contains a single integer $$$t$$$ ($$$1 \\le t \\le 18$$$)\u00a0\u2014 the number of testcases. The first line of each testcase contains a single integer $$$x$$$ ($$$1 \\le x \\le 3$$$)\u00a0\u2014 the number on the key in your hands. The second line contains three integers $$$a, b$$$ and $$$c$$$ ($$$0 \\le a, b, c \\le 3$$$)\u00a0\u2014 the number on the key behind each of the doors. If there is no key behind the door, the number is equal to $$$0$$$. Values $$$1, 2$$$ and $$$3$$$ appear exactly once among $$$x, a, b$$$ and $$$c$$$.", "output_spec": "For each testcase, print \"YES\" if you can open all the doors. Otherwise, print \"NO\".", "sample_inputs": ["4\n\n3\n\n0 1 2\n\n1\n\n0 3 2\n\n2\n\n3 1 0\n\n2\n\n1 3 0"], "sample_outputs": ["YES\nNO\nYES\nNO"], "notes": null}, "src_uid": "5cd113a30bbbb93d8620a483d4da0349"} {"nl": {"description": "Polycarp has $$$n$$$ coins, the value of the $$$i$$$-th coin is $$$a_i$$$. Polycarp wants to distribute all the coins between his pockets, but he cannot put two coins with the same value into the same pocket.For example, if Polycarp has got six coins represented as an array $$$a = [1, 2, 4, 3, 3, 2]$$$, he can distribute the coins into two pockets as follows: $$$[1, 2, 3], [2, 3, 4]$$$.Polycarp wants to distribute all the coins with the minimum number of used pockets. Help him to do that.", "input_spec": "The first line of the input contains one integer $$$n$$$ ($$$1 \\le n \\le 100$$$) \u2014 the number of coins. The second line of the input contains $$$n$$$ integers $$$a_1, a_2, \\dots, a_n$$$ ($$$1 \\le a_i \\le 100$$$) \u2014 values of coins.", "output_spec": "Print only one integer \u2014 the minimum number of pockets Polycarp needs to distribute all the coins so no two coins with the same value are put into the same pocket.", "sample_inputs": ["6\n1 2 4 3 3 2", "1\n100"], "sample_outputs": ["2", "1"], "notes": null}, "src_uid": "f30329023e84b4c50b1b118dc98ae73c"} {"nl": {"description": "An elephant decided to visit his friend. It turned out that the elephant's house is located at point 0 and his friend's house is located at point x(x\u2009>\u20090) of the coordinate line. In one step the elephant can move 1, 2, 3, 4 or 5 positions forward. Determine, what is the minimum number of steps he need to make in order to get to his friend's house.", "input_spec": "The first line of the input contains an integer x (1\u2009\u2264\u2009x\u2009\u2264\u20091\u2009000\u2009000)\u00a0\u2014 The coordinate of the friend's house.", "output_spec": "Print the minimum number of steps that elephant needs to make to get from point 0 to point x.", "sample_inputs": ["5", "12"], "sample_outputs": ["1", "3"], "notes": "NoteIn the first sample the elephant needs to make one step of length 5 to reach the point x.In the second sample the elephant can get to point x if he moves by 3, 5 and 4. There are other ways to get the optimal answer but the elephant cannot reach x in less than three moves."}, "src_uid": "4b3d65b1b593829e92c852be213922b6"} {"nl": {"description": "You have a fraction . You need to find the first occurrence of digit c into decimal notation of the fraction after decimal point.", "input_spec": "The first contains three single positive integers a, b, c (1\u2009\u2264\u2009a\u2009<\u2009b\u2009\u2264\u2009105, 0\u2009\u2264\u2009c\u2009\u2264\u20099).", "output_spec": "Print position of the first occurrence of digit c into the fraction. Positions are numbered from 1 after decimal point. It there is no such position, print -1.", "sample_inputs": ["1 2 0", "2 3 7"], "sample_outputs": ["2", "-1"], "notes": "NoteThe fraction in the first example has the following decimal notation: . The first zero stands on second position.The fraction in the second example has the following decimal notation: . There is no digit 7 in decimal notation of the fraction. "}, "src_uid": "0bc7bf67b96e2898cfd8d129ad486910"} {"nl": {"description": "Awruk is taking part in elections in his school. It is the final round. He has only one opponent\u00a0\u2014 Elodreip. The are $$$n$$$ students in the school. Each student has exactly $$$k$$$ votes and is obligated to use all of them. So Awruk knows that if a person gives $$$a_i$$$ votes for Elodreip, than he will get exactly $$$k - a_i$$$ votes from this person. Of course $$$0 \\le k - a_i$$$ holds.Awruk knows that if he loses his life is over. He has been speaking a lot with his friends and now he knows $$$a_1, a_2, \\dots, a_n$$$ \u2014 how many votes for Elodreip each student wants to give. Now he wants to change the number $$$k$$$ to win the elections. Of course he knows that bigger $$$k$$$ means bigger chance that somebody may notice that he has changed something and then he will be disqualified.So, Awruk knows $$$a_1, a_2, \\dots, a_n$$$ \u2014 how many votes each student will give to his opponent. Help him select the smallest winning number $$$k$$$. In order to win, Awruk needs to get strictly more votes than Elodreip.", "input_spec": "The first line contains integer $$$n$$$ ($$$1 \\le n \\le 100$$$)\u00a0\u2014 the number of students in the school. The second line contains $$$n$$$ integers $$$a_1, a_2, \\ldots, a_n$$$ ($$$1 \\leq a_i \\leq 100$$$)\u00a0\u2014 the number of votes each student gives to Elodreip.", "output_spec": "Output the smallest integer $$$k$$$ ($$$k \\ge \\max a_i$$$) which gives Awruk the victory. In order to win, Awruk needs to get strictly more votes than Elodreip.", "sample_inputs": ["5\n1 1 1 5 1", "5\n2 2 3 2 2"], "sample_outputs": ["5", "5"], "notes": "NoteIn the first example, Elodreip gets $$$1 + 1 + 1 + 5 + 1 = 9$$$ votes. The smallest possible $$$k$$$ is $$$5$$$ (it surely can't be less due to the fourth person), and it leads to $$$4 + 4 + 4 + 0 + 4 = 16$$$ votes for Awruk, which is enough to win.In the second example, Elodreip gets $$$11$$$ votes. If $$$k = 4$$$, Awruk gets $$$9$$$ votes and loses to Elodreip."}, "src_uid": "d215b3541d6d728ad01b166aae64faa2"} {"nl": {"description": "Petya loves lucky numbers. Everybody knows that lucky numbers are positive integers whose decimal representation contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.One day Petya was delivered a string s, containing only digits. He needs to find a string that represents a lucky number without leading zeroes, is not empty, is contained in s as a substring the maximum number of times.Among all the strings for which the three conditions given above are fulfilled, Petya only needs the lexicographically minimum one. Find this string for Petya.", "input_spec": "The single line contains a non-empty string s whose length can range from 1 to 50, inclusive. The string only contains digits. The string can contain leading zeroes.", "output_spec": "In the only line print the answer to Petya's problem. If the sought string does not exist, print \"-1\" (without quotes).", "sample_inputs": ["047", "16", "472747"], "sample_outputs": ["4", "-1", "7"], "notes": "NoteThe lexicographical comparison of strings is performed by the < operator in the modern programming languages. String x is lexicographically less than string y either if x is a prefix of y, or exists such i (1\u2009\u2264\u2009i\u2009\u2264\u2009min(|x|,\u2009|y|)), that xi\u2009<\u2009yi and for any j (1\u2009\u2264\u2009j\u2009<\u2009i) xj\u2009=\u2009yj. Here |a| denotes the length of string a.In the first sample three conditions are fulfilled for strings \"4\", \"7\" and \"47\". The lexicographically minimum one is \"4\".In the second sample s has no substrings which are lucky numbers.In the third sample the three conditions are only fulfilled for string \"7\"."}, "src_uid": "639b8b8d0dc42df46b139f0aeb3a7a0a"} {"nl": {"description": "Just in case somebody missed it: this winter is totally cold in Nvodsk! It is so cold that one gets funny thoughts. For example, let's say there are strings with the length exactly n, based on the alphabet of size m. Any its substring with length equal to k is a palindrome. How many such strings exist? Your task is to find their quantity modulo 1000000007 (109\u2009+\u20097). Be careful and don't miss a string or two!Let us remind you that a string is a palindrome if it can be read the same way in either direction, from the left to the right and from the right to the left.", "input_spec": "The first and only line contains three integers: n, m and k (1\u2009\u2264\u2009n,\u2009m,\u2009k\u2009\u2264\u20092000).", "output_spec": "Print a single integer \u2014 the number of strings of the described type modulo 1000000007 (109\u2009+\u20097).", "sample_inputs": ["1 1 1", "5 2 4"], "sample_outputs": ["1", "2"], "notes": "NoteIn the first sample only one string is valid: \"a\" (let's denote the only letter of our alphabet as \"a\").In the second sample (if we denote the alphabet letters as \"a\" and \"b\") the following strings are valid: \"aaaaa\" and \"bbbbb\"."}, "src_uid": "1f9107e8d1d8aebb1f4a1707a6cdeb6d"} {"nl": {"description": "The 9-th grade student Gabriel noticed a caterpillar on a tree when walking around in a forest after the classes. The caterpillar was on the height h1 cm from the ground. On the height h2 cm (h2\u2009>\u2009h1) on the same tree hung an apple and the caterpillar was crawling to the apple.Gabriel is interested when the caterpillar gets the apple. He noted that the caterpillar goes up by a cm per hour by day and slips down by b cm per hour by night.In how many days Gabriel should return to the forest to see the caterpillar get the apple. You can consider that the day starts at 10 am and finishes at 10 pm. Gabriel's classes finish at 2 pm. You can consider that Gabriel noticed the caterpillar just after the classes at 2 pm.Note that the forest is magic so the caterpillar can slip down under the ground and then lift to the apple.", "input_spec": "The first line contains two integers h1,\u2009h2 (1\u2009\u2264\u2009h1\u2009<\u2009h2\u2009\u2264\u2009105) \u2014 the heights of the position of the caterpillar and the apple in centimeters. The second line contains two integers a,\u2009b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009105) \u2014 the distance the caterpillar goes up by day and slips down by night, in centimeters per hour.", "output_spec": "Print the only integer k \u2014 the number of days Gabriel should wait to return to the forest and see the caterpillar getting the apple. If the caterpillar can't get the apple print the only integer \u2009-\u20091.", "sample_inputs": ["10 30\n2 1", "10 13\n1 1", "10 19\n1 2", "1 50\n5 4"], "sample_outputs": ["1", "0", "-1", "1"], "notes": "NoteIn the first example at 10 pm of the first day the caterpillar gets the height 26. At 10 am of the next day it slips down to the height 14. And finally at 6 pm of the same day the caterpillar gets the apple.Note that in the last example the caterpillar was slipping down under the ground and getting the apple on the next day."}, "src_uid": "2c39638f07c3d789ba4c323a205487d7"} {"nl": {"description": "Vasya has recently learned to type and log on to the Internet. He immediately entered a chat room and decided to say hello to everybody. Vasya typed the word s. It is considered that Vasya managed to say hello if several letters can be deleted from the typed word so that it resulted in the word \"hello\". For example, if Vasya types the word \"ahhellllloou\", it will be considered that he said hello, and if he types \"hlelo\", it will be considered that Vasya got misunderstood and he didn't manage to say hello. Determine whether Vasya managed to say hello by the given word s.", "input_spec": "The first and only line contains the word s, which Vasya typed. This word consisits of small Latin letters, its length is no less that 1 and no more than 100 letters.", "output_spec": "If Vasya managed to say hello, print \"YES\", otherwise print \"NO\".", "sample_inputs": ["ahhellllloou", "hlelo"], "sample_outputs": ["YES", "NO"], "notes": null}, "src_uid": "c5d19dc8f2478ee8d9cba8cc2e4cd838"} {"nl": {"description": "User ainta is making a web site. This time he is going to make a navigation of the pages. In his site, there are n pages numbered by integers from 1 to n. Assume that somebody is on the p-th page now. The navigation will look like this: << p\u2009-\u2009k p\u2009-\u2009k\u2009+\u20091 ... p\u2009-\u20091 (p) p\u2009+\u20091 ... p\u2009+\u2009k\u2009-\u20091 p\u2009+\u2009k >> When someone clicks the button \"<<\" he is redirected to page 1, and when someone clicks the button \">>\" he is redirected to page n. Of course if someone clicks on a number, he is redirected to the corresponding page.There are some conditions in the navigation: If page 1 is in the navigation, the button \"<<\" must not be printed. If page n is in the navigation, the button \">>\" must not be printed. If the page number is smaller than 1 or greater than n, it must not be printed. \u00a0You can see some examples of the navigations. Make a program that prints the navigation.", "input_spec": "The first and the only line contains three integers n, p, k (3\u2009\u2264\u2009n\u2009\u2264\u2009100; 1\u2009\u2264\u2009p\u2009\u2264\u2009n; 1\u2009\u2264\u2009k\u2009\u2264\u2009n)", "output_spec": "Print the proper navigation. Follow the format of the output from the test samples.", "sample_inputs": ["17 5 2", "6 5 2", "6 1 2", "6 2 2", "9 6 3", "10 6 3", "8 5 4"], "sample_outputs": ["<< 3 4 (5) 6 7 >>", "<< 3 4 (5) 6", "(1) 2 3 >>", "1 (2) 3 4 >>", "<< 3 4 5 (6) 7 8 9", "<< 3 4 5 (6) 7 8 9 >>", "1 2 3 4 (5) 6 7 8"], "notes": null}, "src_uid": "526e2cce272e42a3220e33149b1c9c84"} {"nl": {"description": "InputThe input contains a single integer $$$a$$$ ($$$0 \\le a \\le 63$$$).OutputOutput a single number.ExamplesInput\n2\nOutput\n2\nInput\n5\nOutput\n24\nInput\n35\nOutput\n50\n", "input_spec": "The input contains a single integer $$$a$$$ ($$$0 \\le a \\le 63$$$).", "output_spec": "Output a single number.", "sample_inputs": ["2", "5", "35"], "sample_outputs": ["2", "24", "50"], "notes": null}, "src_uid": "db5e54f466e1f3d69a51ea0b346e667c"} {"nl": {"description": "Little Sofia is in fourth grade. Today in the geometry lesson she learned about segments and squares. On the way home, she decided to draw $$$n$$$ squares in the snow with a side length of $$$1$$$. For simplicity, we assume that Sofia lives on a plane and can draw only segments of length $$$1$$$, parallel to the coordinate axes, with vertices at integer points.In order to draw a segment, Sofia proceeds as follows. If she wants to draw a vertical segment with the coordinates of the ends $$$(x, y)$$$ and $$$(x, y+1)$$$. Then Sofia looks if there is already a drawn segment with the coordinates of the ends $$$(x', y)$$$ and $$$(x', y+1)$$$ for some $$$x'$$$. If such a segment exists, then Sofia quickly draws a new segment, using the old one as a guideline. If there is no such segment, then Sofia has to take a ruler and measure a new segment for a long time. Same thing happens when Sofia wants to draw a horizontal segment, but only now she checks for the existence of a segment with the same coordinates $$$x$$$, $$$x+1$$$ and the differing coordinate $$$y$$$.For example, if Sofia needs to draw one square, she will have to draw two segments using a ruler: After that, she can draw the remaining two segments, using the first two as a guide: If Sofia needs to draw two squares, she will have to draw three segments using a ruler: After that, she can draw the remaining four segments, using the first three as a guide: Sofia is in a hurry, so she wants to minimize the number of segments that she will have to draw with a ruler without a guide. Help her find this minimum number.", "input_spec": "The only line of input contains a single integer $$$n$$$ ($$$1 \\le n \\le 10^{9}$$$), the number of squares that Sofia wants to draw.", "output_spec": "Print single integer, the minimum number of segments that Sofia will have to draw with a ruler without a guide in order to draw $$$n$$$ squares in the manner described above.", "sample_inputs": ["1", "2", "4"], "sample_outputs": ["2", "3", "4"], "notes": null}, "src_uid": "eb8212aec951f8f69b084446da73eaf7"} {"nl": {"description": "Yet another Armageddon is coming! This time the culprit is the Julya tribe calendar. The beavers in this tribe knew math very well. Smart Beaver, an archaeologist, got a sacred plate with a magic integer on it. The translation from Old Beaverish is as follows: \"May the Great Beaver bless you! May your chacres open and may your third eye never turn blind from beholding the Truth! Take the magic number, subtract a digit from it (the digit must occur in the number) and get a new magic number. Repeat this operation until a magic number equals zero. The Earth will stand on Three Beavers for the time, equal to the number of subtractions you perform!\"Distinct subtraction sequences can obviously get you different number of operations. But the Smart Beaver is ready to face the worst and is asking you to count the minimum number of operations he needs to reduce the magic number to zero.", "input_spec": "The single line contains the magic integer n, 0\u2009\u2264\u2009n. to get 20 points, you need to solve the problem with constraints: n\u2009\u2264\u2009106 (subproblem C1); to get 40 points, you need to solve the problem with constraints: n\u2009\u2264\u20091012 (subproblems C1+C2); to get 100 points, you need to solve the problem with constraints: n\u2009\u2264\u20091018 (subproblems C1+C2+C3). ", "output_spec": "Print a single integer \u2014 the minimum number of subtractions that turns the magic number to a zero.", "sample_inputs": ["24"], "sample_outputs": ["5"], "notes": "NoteIn the first test sample the minimum number of operations can be reached by the following sequence of subtractions: 24\u2009\u2192\u200920\u2009\u2192\u200918\u2009\u2192\u200910\u2009\u2192\u20099\u2009\u2192\u20090 "}, "src_uid": "fc5765b9bd18dc7555fa76e91530c036"} {"nl": {"description": "Igor K. always used to trust his favorite Kashpirovsky Antivirus. That is why he didn't hesitate to download the link one of his groupmates sent him via QIP Infinium. The link was said to contain \"some real funny stuff about swine influenza\". The antivirus had no objections and Igor K. run the flash application he had downloaded. Immediately his QIP Infinium said: \"invalid login/password\".Igor K. entered the ISQ from his additional account and looked at the info of his main one. His name and surname changed to \"H1N1\" and \"Infected\" correspondingly, and the \"Additional Information\" field contained a strange-looking binary code 80 characters in length, consisting of zeroes and ones. \"I've been hacked\" \u2014 thought Igor K. and run the Internet Exploiter browser to quickly type his favourite search engine's address.Soon he learned that it really was a virus that changed ISQ users' passwords. Fortunately, he soon found out that the binary code was actually the encrypted password where each group of 10 characters stood for one decimal digit. Accordingly, the original password consisted of 8 decimal digits.Help Igor K. restore his ISQ account by the encrypted password and encryption specification.", "input_spec": "The input data contains 11 lines. The first line represents the binary code 80 characters in length. That is the code written in Igor K.'s ISQ account's info. Next 10 lines contain pairwise distinct binary codes 10 characters in length, corresponding to numbers 0, 1, ..., 9.", "output_spec": "Print one line containing 8 characters \u2014 The password to Igor K.'s ISQ account. It is guaranteed that the solution exists.", "sample_inputs": ["01001100100101100000010110001001011001000101100110010110100001011010100101101100\n0100110000\n0100110010\n0101100000\n0101100010\n0101100100\n0101100110\n0101101000\n0101101010\n0101101100\n0101101110", "10101101111001000010100100011010101101110010110111011000100011011110010110001000\n1001000010\n1101111001\n1001000110\n1010110111\n0010110111\n1101001101\n1011000001\n1110010101\n1011011000\n0110001000"], "sample_outputs": ["12345678", "30234919"], "notes": null}, "src_uid": "0f4f7ca388dd1b2192436c67f9ac74d9"} {"nl": {"description": "Tattah's youngest brother, Tuftuf, is new to programming.Since his older brother is such a good programmer, his biggest dream is to outshine him. Tuftuf is a student at the German University in Cairo (GUC) where he learns to write programs in Gava.Today, Tuftuf was introduced to Gava's unsigned integer datatypes. Gava has n unsigned integer datatypes of sizes (in bits) a1,\u2009a2,\u2009... an. The i-th datatype have size ai bits, so it can represent every integer between 0 and 2ai\u2009-\u20091 inclusive. Tuftuf is thinking of learning a better programming language. If there exists an integer x, such that x fits in some type i (in ai bits) and x\u00b7x does not fit in some other type j (in aj bits) where ai\u2009<\u2009aj, then Tuftuf will stop using Gava.Your task is to determine Tuftuf's destiny.", "input_spec": "The first line contains integer n (2\u2009\u2264\u2009n\u2009\u2264\u2009105) \u2014 the number of Gava's unsigned integer datatypes' sizes. The second line contains a single-space-separated list of n integers (1\u2009\u2264\u2009ai\u2009\u2264\u2009109) \u2014 sizes of datatypes in bits. Some datatypes may have equal sizes.", "output_spec": "Print \"YES\" if Tuftuf will stop using Gava, and \"NO\" otherwise.", "sample_inputs": ["3\n64 16 32", "4\n4 2 1 3"], "sample_outputs": ["NO", "YES"], "notes": "NoteIn the second example, x\u2009=\u20097 (1112) fits in 3 bits, but x2\u2009=\u200949 (1100012) does not fit in 4 bits."}, "src_uid": "ab003ab094931fc105384df9d144131e"} {"nl": {"description": "Certainly, everyone is familiar with tic-tac-toe game. The rules are very simple indeed. Two players take turns marking the cells in a 3\u2009\u00d7\u20093 grid (one player always draws crosses, the other \u2014 noughts). The player who succeeds first in placing three of his marks in a horizontal, vertical or diagonal line wins, and the game is finished. The player who draws crosses goes first. If the grid is filled, but neither Xs, nor 0s form the required line, a draw is announced.You are given a 3\u2009\u00d7\u20093 grid, each grid cell is empty, or occupied by a cross or a nought. You have to find the player (first or second), whose turn is next, or print one of the verdicts below: illegal \u2014 if the given board layout can't appear during a valid game; the first player won \u2014 if in the given board layout the first player has just won; the second player won \u2014 if in the given board layout the second player has just won; draw \u2014 if the given board layout has just let to a draw. ", "input_spec": "The input consists of three lines, each of the lines contains characters \".\", \"X\" or \"0\" (a period, a capital letter X, or a digit zero).", "output_spec": "Print one of the six verdicts: first, second, illegal, the first player won, the second player won or draw.", "sample_inputs": ["X0X\n.0.\n.X."], "sample_outputs": ["second"], "notes": null}, "src_uid": "892680e26369325fb00d15543a96192c"} {"nl": {"description": "One day Vasya the Hipster decided to count how many socks he had. It turned out that he had a red socks and b blue socks.According to the latest fashion, hipsters should wear the socks of different colors: a red one on the left foot, a blue one on the right foot.Every day Vasya puts on new socks in the morning and throws them away before going to bed as he doesn't want to wash them.Vasya wonders, what is the maximum number of days when he can dress fashionable and wear different socks, and after that, for how many days he can then wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got.Can you help him?", "input_spec": "The single line of the input contains two positive integers a and b (1\u2009\u2264\u2009a,\u2009b\u2009\u2264\u2009100) \u2014 the number of red and blue socks that Vasya's got.", "output_spec": "Print two space-separated integers \u2014 the maximum number of days when Vasya can wear different socks and the number of days when he can wear the same socks until he either runs out of socks or cannot make a single pair from the socks he's got. Keep in mind that at the end of the day Vasya throws away the socks that he's been wearing on that day.", "sample_inputs": ["3 1", "2 3", "7 3"], "sample_outputs": ["1 1", "2 0", "3 2"], "notes": "NoteIn the first sample Vasya can first put on one pair of different socks, after that he has two red socks left to wear on the second day."}, "src_uid": "775766790e91e539c1cfaa5030e5b955"} {"nl": {"description": "Let's write all the positive integer numbers one after another from $$$1$$$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...Your task is to print the $$$k$$$-th digit of this sequence.", "input_spec": "The first and only line contains integer $$$k$$$ ($$$1 \\le k \\le 10000$$$) \u2014 the position to process ($$$1$$$-based index).", "output_spec": "Print the $$$k$$$-th digit of the resulting infinite sequence.", "sample_inputs": ["7", "21"], "sample_outputs": ["7", "5"], "notes": null}, "src_uid": "1503d761dd4e129fb7c423da390544ff"} {"nl": {"description": "Friends are going to play console. They have two joysticks and only one charger for them. Initially first joystick is charged at a1 percent and second one is charged at a2 percent. You can connect charger to a joystick only at the beginning of each minute. In one minute joystick either discharges by 2 percent (if not connected to a charger) or charges by 1 percent (if connected to a charger).Game continues while both joysticks have a positive charge. Hence, if at the beginning of minute some joystick is charged by 1 percent, it has to be connected to a charger, otherwise the game stops. If some joystick completely discharges (its charge turns to 0), the game also stops.Determine the maximum number of minutes that game can last. It is prohibited to pause the game, i. e. at each moment both joysticks should be enabled. It is allowed for joystick to be charged by more than 100 percent.", "input_spec": "The first line of the input contains two positive integers a1 and a2 (1\u2009\u2264\u2009a1,\u2009a2\u2009\u2264\u2009100), the initial charge level of first and second joystick respectively.", "output_spec": "Output the only integer, the maximum number of minutes that the game can last. Game continues until some joystick is discharged.", "sample_inputs": ["3 5", "4 4"], "sample_outputs": ["6", "5"], "notes": "NoteIn the first sample game lasts for 6 minute by using the following algorithm: at the beginning of the first minute connect first joystick to the charger, by the end of this minute first joystick is at 4%, second is at 3%; continue the game without changing charger, by the end of the second minute the first joystick is at 5%, second is at 1%; at the beginning of the third minute connect second joystick to the charger, after this minute the first joystick is at 3%, the second one is at 2%; continue the game without changing charger, by the end of the fourth minute first joystick is at 1%, second one is at 3%; at the beginning of the fifth minute connect first joystick to the charger, after this minute the first joystick is at 2%, the second one is at 1%; at the beginning of the sixth minute connect second joystick to the charger, after this minute the first joystick is at 0%, the second one is at 2%. After that the first joystick is completely discharged and the game is stopped."}, "src_uid": "ba0f9f5f0ad4786b9274c829be587961"} {"nl": {"description": "A tennis tournament with n participants is running. The participants are playing by an olympic system, so the winners move on and the losers drop out.The tournament takes place in the following way (below, m is the number of the participants of the current round): let k be the maximal power of the number 2 such that k\u2009\u2264\u2009m, k participants compete in the current round and a half of them passes to the next round, the other m\u2009-\u2009k participants pass to the next round directly, when only one participant remains, the tournament finishes. Each match requires b bottles of water for each participant and one bottle for the judge. Besides p towels are given to each participant for the whole tournament.Find the number of bottles and towels needed for the tournament.Note that it's a tennis tournament so in each match two participants compete (one of them will win and the other will lose).", "input_spec": "The only line contains three integers n,\u2009b,\u2009p (1\u2009\u2264\u2009n,\u2009b,\u2009p\u2009\u2264\u2009500) \u2014 the number of participants and the parameters described in the problem statement.", "output_spec": "Print two integers x and y \u2014 the number of bottles and towels need for the tournament.", "sample_inputs": ["5 2 3", "8 2 4"], "sample_outputs": ["20 15", "35 32"], "notes": "NoteIn the first example will be three rounds: in the first round will be two matches and for each match 5 bottles of water are needed (two for each of the participants and one for the judge), in the second round will be only one match, so we need another 5 bottles of water, in the third round will also be only one match, so we need another 5 bottles of water. So in total we need 20 bottles of water.In the second example no participant will move on to some round directly."}, "src_uid": "eb815f35e9f29793a120d120968cfe34"} {"nl": {"description": "You are given a complete undirected graph. For each pair of vertices you are given the length of the edge that connects them. Find the shortest paths between each pair of vertices in the graph and return the length of the longest of them.", "input_spec": "The first line of the input contains a single integer N (3\u2009\u2264\u2009N\u2009\u2264\u200910). The following N lines each contain N space-separated integers. jth integer in ith line aij is the length of the edge that connects vertices i and j. aij\u2009=\u2009aji, aii\u2009=\u20090, 1\u2009\u2264\u2009aij\u2009\u2264\u2009100 for i\u2009\u2260\u2009j.", "output_spec": "Output the maximum length of the shortest path between any pair of vertices in the graph.", "sample_inputs": ["3\n0 1 1\n1 0 4\n1 4 0", "4\n0 1 2 3\n1 0 4 5\n2 4 0 6\n3 5 6 0"], "sample_outputs": ["2", "5"], "notes": "NoteYou're running short of keywords, so you can't use some of them:definedoforforeachwhilerepeatuntilifthenelseelifelsifelseifcaseswitch"}, "src_uid": "bbd210065f8b32de048a2d9b1b033ed5"} {"nl": {"description": "Our good friend Mole is trying to code a big message. He is typing on an unusual keyboard with characters arranged in following way:qwertyuiopasdfghjkl;zxcvbnm,./Unfortunately Mole is blind, so sometimes it is problem for him to put his hands accurately. He accidentally moved both his hands with one position to the left or to the right. That means that now he presses not a button he wants, but one neighboring button (left or right, as specified in input).We have a sequence of characters he has typed and we want to find the original message.", "input_spec": "First line of the input contains one letter describing direction of shifting ('L' or 'R' respectively for left or right). Second line contains a sequence of characters written by Mole. The size of this sequence will be no more than 100. Sequence contains only symbols that appear on Mole's keyboard. It doesn't contain spaces as there is no space on Mole's keyboard. It is guaranteed that even though Mole hands are moved, he is still pressing buttons on keyboard and not hitting outside it.", "output_spec": "Print a line that contains the original message.", "sample_inputs": ["R\ns;;upimrrfod;pbr"], "sample_outputs": ["allyouneedislove"], "notes": null}, "src_uid": "df49c0c257903516767fdb8ac9c2bfd6"} {"nl": {"description": "You all know the Dirichlet principle, the point of which is that if n boxes have no less than n\u2009+\u20091 items, that leads to the existence of a box in which there are at least two items.Having heard of that principle, but having not mastered the technique of logical thinking, 8 year olds Stas and Masha invented a game. There are a different boxes and b different items, and each turn a player can either add a new box or a new item. The player, after whose turn the number of ways of putting b items into a boxes becomes no less then a certain given number n, loses. All the boxes and items are considered to be different. Boxes may remain empty.Who loses if both players play optimally and Stas's turn is first?", "input_spec": "The only input line has three integers a,\u2009b,\u2009n (1\u2009\u2264\u2009a\u2009\u2264\u200910000, 1\u2009\u2264\u2009b\u2009\u2264\u200930, 2\u2009\u2264\u2009n\u2009\u2264\u2009109) \u2014 the initial number of the boxes, the number of the items and the number which constrains the number of ways, respectively. Guaranteed that the initial number of ways is strictly less than n.", "output_spec": "Output \"Stas\" if Masha wins. Output \"Masha\" if Stas wins. In case of a draw, output \"Missing\".", "sample_inputs": ["2 2 10", "5 5 16808", "3 1 4", "1 4 10"], "sample_outputs": ["Masha", "Masha", "Stas", "Missing"], "notes": "NoteIn the second example the initial number of ways is equal to 3125. If Stas increases the number of boxes, he will lose, as Masha may increase the number of boxes once more during her turn. After that any Stas's move will lead to defeat. But if Stas increases the number of items, then any Masha's move will be losing. "}, "src_uid": "cffd5c0b7b659649f3bf9f2dbd20ad6b"} {"nl": {"description": "Vasya is studying number theory. He has denoted a function f(a,\u2009b) such that: f(a,\u20090)\u2009=\u20090; f(a,\u2009b)\u2009=\u20091\u2009+\u2009f(a,\u2009b\u2009-\u2009gcd(a,\u2009b)), where gcd(a,\u2009b) is the greatest common divisor of a and b. Vasya has two numbers x and y, and he wants to calculate f(x,\u2009y). He tried to do it by himself, but found out that calculating this function the way he wants to do that might take very long time. So he decided to ask you to implement a program that will calculate this function swiftly.", "input_spec": "The first line contains two integer numbers x and y (1\u2009\u2264\u2009x,\u2009y\u2009\u2264\u20091012).", "output_spec": "Print f(x,\u2009y).", "sample_inputs": ["3 5", "6 3"], "sample_outputs": ["3", "1"], "notes": null}, "src_uid": "ea92cd905e9725e7fcb87b9ed4f64c2e"} {"nl": {"description": "Okabe needs bananas for one of his experiments for some strange reason. So he decides to go to the forest and cut banana trees.Consider the point (x,\u2009y) in the 2D plane such that x and y are integers and 0\u2009\u2264\u2009x,\u2009y. There is a tree in such a point, and it has x\u2009+\u2009y bananas. There are no trees nor bananas in other points. Now, Okabe draws a line with equation . Okabe can select a single rectangle with axis aligned sides with all points on or under the line and cut all the trees in all points that are inside or on the border of this rectangle and take their bananas. Okabe's rectangle can be degenerate; that is, it can be a line segment or even a point.Help Okabe and find the maximum number of bananas he can get if he chooses the rectangle wisely.Okabe is sure that the answer does not exceed 1018. You can trust him.", "input_spec": "The first line of input contains two space-separated integers m and b (1\u2009\u2264\u2009m\u2009\u2264\u20091000, 1\u2009\u2264\u2009b\u2009\u2264\u200910000).", "output_spec": "Print the maximum number of bananas Okabe can get from the trees he cuts.", "sample_inputs": ["1 5", "2 3"], "sample_outputs": ["30", "25"], "notes": "Note The graph above corresponds to sample test 1. The optimal rectangle is shown in red and has 30 bananas."}, "src_uid": "9300f1c07dd36e0cf7e6cb7911df4cf2"} {"nl": {"description": "\"This problem is rubbish! There is not statement, and there are only 5 test cases. The problemsetter took liberties with this problem!\" \u2014 people complained in the comments to one round on Codeforces. And even more... No, wait, the checker for the problem was alright, that's a mercy.", "input_spec": "The only line of the input contains an integer between 1 and 5, inclusive. All tests for this problem are different. The contents of the test case doesn't need to be equal to its index.", "output_spec": "The only line of the output contains an integer between 1 and 3, inclusive.", "sample_inputs": [], "sample_outputs": [], "notes": "NoteThis problem has no samples, since there so few test cases."}, "src_uid": "c702e07fed684b7741d8337aafa005fb"} {"nl": {"description": "Having stayed home alone, Petya decided to watch forbidden films on the Net in secret. \"What ungentlemanly behavior!\" \u2014 you can say that, of course, but don't be too harsh on the kid. In his country films about the Martians and other extraterrestrial civilizations are forbidden. It was very unfair to Petya as he adored adventure stories that featured lasers and robots. Today Petya is watching a shocking blockbuster about the Martians called \"R2:D2\". What can \"R2:D2\" possibly mean? It might be the Martian time represented in the Martian numeral system. Petya knows that time on Mars is counted just like on the Earth (that is, there are 24 hours and each hour has 60 minutes). The time is written as \"a:b\", where the string a stands for the number of hours (from 0 to 23 inclusive), and string b stands for the number of minutes (from 0 to 59 inclusive). The only thing Petya doesn't know is in what numeral system the Martian time is written.Your task is to print the radixes of all numeral system which can contain the time \"a:b\".", "input_spec": "The first line contains a single string as \"a:b\" (without the quotes). There a is a non-empty string, consisting of numbers and uppercase Latin letters. String a shows the number of hours. String b is a non-empty string that consists of numbers and uppercase Latin letters. String b shows the number of minutes. The lengths of strings a and b are from 1 to 5 characters, inclusive. Please note that strings a and b can have leading zeroes that do not influence the result in any way (for example, string \"008:1\" in decimal notation denotes correctly written time). We consider characters 0, 1, ..., 9 as denoting the corresponding digits of the number's representation in some numeral system, and characters A, B, ..., Z correspond to numbers 10, 11, ..., 35.", "output_spec": "Print the radixes of the numeral systems that can represent the time \"a:b\" in the increasing order. Separate the numbers with spaces or line breaks. If there is no numeral system that can represent time \"a:b\", print the single integer 0. If there are infinitely many numeral systems that can represent the time \"a:b\", print the single integer -1. Note that on Mars any positional numeral systems with positive radix strictly larger than one are possible.", "sample_inputs": ["11:20", "2A:13", "000B:00001"], "sample_outputs": ["3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22", "0", "-1"], "notes": "NoteLet's consider the first sample. String \"11:20\" can be perceived, for example, as time 4:6, represented in the ternary numeral system or as time 17:32 in hexadecimal system. Let's consider the second sample test. String \"2A:13\" can't be perceived as correct time in any notation. For example, let's take the base-11 numeral notation. There the given string represents time 32:14 that isn't a correct time.Let's consider the third sample. String \"000B:00001\" can be perceived as a correct time in the infinite number of numeral systems. If you need an example, you can take any numeral system with radix no less than 12."}, "src_uid": "c02dfe5b8d9da2818a99c3afbe7a5293"} {"nl": {"description": "IT City company developing computer games invented a new way to reward its employees. After a new game release users start buying it actively, and the company tracks the number of sales with precision to each transaction. Every time when the next number of sales is divisible by all numbers from 2 to 10 every developer of this game gets a small bonus.A game designer Petya knows that the company is just about to release a new game that was partly developed by him. On the basis of his experience he predicts that n people will buy the game during the first month. Now Petya wants to determine how many times he will get the bonus. Help him to know it.", "input_spec": "The only line of the input contains one integer n (1\u2009\u2264\u2009n\u2009\u2264\u20091018) \u2014 the prediction on the number of people who will buy the game.", "output_spec": "Output one integer showing how many numbers from 1 to n are divisible by all numbers from 2 to 10.", "sample_inputs": ["3000"], "sample_outputs": ["1"], "notes": null}, "src_uid": "8551308e5ff435e0fc507b89a912408a"} {"nl": {"description": "The new operating system BerOS has a nice feature. It is possible to use any number of characters '/' as a delimiter in path instead of one traditional '/'. For example, strings //usr///local//nginx/sbin// and /usr/local/nginx///sbin are equivalent. The character '/' (or some sequence of such characters) at the end of the path is required only in case of the path to the root directory, which can be represented as single character '/'.A path called normalized if it contains the smallest possible number of characters '/'.Your task is to transform a given path to the normalized form.", "input_spec": "The first line of the input contains only lowercase Latin letters and character '/'\u00a0\u2014 the path to some directory. All paths start with at least one character '/'. The length of the given line is no more than 100 characters, it is not empty.", "output_spec": "The path in normalized form.", "sample_inputs": ["//usr///local//nginx/sbin"], "sample_outputs": ["/usr/local/nginx/sbin"], "notes": null}, "src_uid": "6c2e658ac3c3d6b0569dd373806fa031"} {"nl": {"description": "You are given an integer number $$$n$$$. The following algorithm is applied to it: if $$$n = 0$$$, then end algorithm; find the smallest prime divisor $$$d$$$ of $$$n$$$; subtract $$$d$$$ from $$$n$$$ and go to step $$$1$$$. Determine the number of subtrations the algorithm will make.", "input_spec": "The only line contains a single integer $$$n$$$ ($$$2 \\le n \\le 10^{10}$$$).", "output_spec": "Print a single integer \u2014 the number of subtractions the algorithm will make.", "sample_inputs": ["5", "4"], "sample_outputs": ["1", "2"], "notes": "NoteIn the first example $$$5$$$ is the smallest prime divisor, thus it gets subtracted right away to make a $$$0$$$.In the second example $$$2$$$ is the smallest prime divisor at both steps."}, "src_uid": "a1e80ddd97026835a84f91bac8eb21e6"} {"nl": {"description": "One industrial factory is reforming working plan. The director suggested to set a mythical detail production norm. If at the beginning of the day there were x details in the factory storage, then by the end of the day the factory has to produce (remainder after dividing x by m) more details. Unfortunately, no customer has ever bought any mythical detail, so all the details produced stay on the factory. The board of directors are worried that the production by the given plan may eventually stop (that means that there will be \u0430 moment when the current number of details on the factory is divisible by m). Given the number of details a on the first day and number m check if the production stops at some moment.", "input_spec": "The first line contains two integers a and m (1\u2009\u2264\u2009a,\u2009m\u2009\u2264\u2009105).", "output_spec": "Print \"Yes\" (without quotes) if the production will eventually stop, otherwise print \"No\".", "sample_inputs": ["1 5", "3 6"], "sample_outputs": ["No", "Yes"], "notes": null}, "src_uid": "f726133018e2149ec57e113860ec498a"} {"nl": {"description": "The preferred way to generate user login in Polygon is to concatenate a prefix of the user's first name and a prefix of their last name, in that order. Each prefix must be non-empty, and any of the prefixes can be the full name. Typically there are multiple possible logins for each person.You are given the first and the last name of a user. Return the alphabetically earliest login they can get (regardless of other potential Polygon users).As a reminder, a prefix of a string s is its substring which occurs at the beginning of s: \"a\", \"ab\", \"abc\" etc. are prefixes of string \"{abcdef}\" but \"b\" and 'bc\" are not. A string a is alphabetically earlier than a string b, if a is a prefix of b, or a and b coincide up to some position, and then a has a letter that is alphabetically earlier than the corresponding letter in b: \"a\" and \"ab\" are alphabetically earlier than \"ac\" but \"b\" and \"ba\" are alphabetically later than \"ac\".", "input_spec": "The input consists of a single line containing two space-separated strings: the first and the last names. Each character of each string is a lowercase English letter. The length of each string is between 1 and 10, inclusive. ", "output_spec": "Output a single string\u00a0\u2014 alphabetically earliest possible login formed from these names. The output should be given in lowercase as well.", "sample_inputs": ["harry potter", "tom riddle"], "sample_outputs": ["hap", "tomr"], "notes": null}, "src_uid": "aed892f2bda10b6aee10dcb834a63709"} {"nl": {"description": "Kostya likes Codeforces contests very much. However, he is very disappointed that his solutions are frequently hacked. That's why he decided to obfuscate (intentionally make less readable) his code before upcoming contest.To obfuscate the code, Kostya first looks at the first variable name used in his program and replaces all its occurrences with a single symbol a, then he looks at the second variable name that has not been replaced yet, and replaces all its occurrences with b, and so on. Kostya is well-mannered, so he doesn't use any one-letter names before obfuscation. Moreover, there are at most 26 unique identifiers in his programs.You are given a list of identifiers of some program with removed spaces and line breaks. Check if this program can be a result of Kostya's obfuscation.", "input_spec": "In the only line of input there is a string S of lowercase English letters (1\u2009\u2264\u2009|S|\u2009\u2264\u2009500)\u00a0\u2014 the identifiers of a program with removed whitespace characters.", "output_spec": "If this program can be a result of Kostya's obfuscation, print \"YES\" (without quotes), otherwise print \"NO\".", "sample_inputs": ["abacaba", "jinotega"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample case, one possible list of identifiers would be \"number string number character number string number\". Here how Kostya would obfuscate the program: replace all occurences of number with a, the result would be \"a string a character a string a\", replace all occurences of string with b, the result would be \"a b a character a b a\", replace all occurences of character with c, the result would be \"a b a c a b a\", all identifiers have been replaced, thus the obfuscation is finished."}, "src_uid": "c4551f66a781b174f95865fa254ca972"} {"nl": {"description": "Vasya likes everything infinite. Now he is studying the properties of a sequence s, such that its first element is equal to a (s1\u2009=\u2009a), and the difference between any two neighbouring elements is equal to c (si\u2009-\u2009si\u2009-\u20091\u2009=\u2009c). In particular, Vasya wonders if his favourite integer b appears in this sequence, that is, there exists a positive integer i, such that si\u2009=\u2009b. Of course, you are the person he asks for a help.", "input_spec": "The first line of the input contain three integers a, b and c (\u2009-\u2009109\u2009\u2264\u2009a,\u2009b,\u2009c\u2009\u2264\u2009109)\u00a0\u2014 the first element of the sequence, Vasya's favorite number and the difference between any two neighbouring elements of the sequence, respectively.", "output_spec": "If b appears in the sequence s print \"YES\" (without quotes), otherwise print \"NO\" (without quotes).", "sample_inputs": ["1 7 3", "10 10 0", "1 -4 5", "0 60 50"], "sample_outputs": ["YES", "YES", "NO", "NO"], "notes": "NoteIn the first sample, the sequence starts from integers 1, 4, 7, so 7 is its element.In the second sample, the favorite integer of Vasya is equal to the first element of the sequence.In the third sample all elements of the sequence are greater than Vasya's favorite integer.In the fourth sample, the sequence starts from 0, 50, 100, and all the following elements are greater than Vasya's favorite integer."}, "src_uid": "9edf42c20ddf22a251b84553d7305a7d"} {"nl": {"description": "Polycarp has a cat and his cat is a real gourmet! Dependent on a day of the week he eats certain type of food: on Mondays, Thursdays and Sundays he eats fish food; on Tuesdays and Saturdays he eats rabbit stew; on other days of week he eats chicken stake. Polycarp plans to go on a trip and already packed his backpack. His backpack contains: $$$a$$$ daily rations of fish food; $$$b$$$ daily rations of rabbit stew; $$$c$$$ daily rations of chicken stakes. Polycarp has to choose such day of the week to start his trip that his cat can eat without additional food purchases as long as possible. Print the maximum number of days the cat can eat in a trip without additional food purchases, if Polycarp chooses the day of the week to start his trip optimally.", "input_spec": "The first line of the input contains three positive integers $$$a$$$, $$$b$$$ and $$$c$$$ ($$$1 \\le a, b, c \\le 7\\cdot10^8$$$) \u2014 the number of daily rations of fish food, rabbit stew and chicken stakes in Polycarps backpack correspondingly.", "output_spec": "Print the maximum number of days the cat can eat in a trip without additional food purchases, if Polycarp chooses the day of the week to start his trip optimally.", "sample_inputs": ["2 1 1", "3 2 2", "1 100 1", "30 20 10"], "sample_outputs": ["4", "7", "3", "39"], "notes": "NoteIn the first example the best day for start of the trip is Sunday. In this case, during Sunday and Monday the cat will eat fish food, during Tuesday \u2014 rabbit stew and during Wednesday \u2014 chicken stake. So, after four days of the trip all food will be eaten.In the second example Polycarp can start his trip in any day of the week. In any case there are food supplies only for one week in Polycarps backpack.In the third example Polycarp can start his trip in any day, excluding Wednesday, Saturday and Sunday. In this case, the cat will eat three different dishes in three days. Nevertheless that after three days of a trip there will be $$$99$$$ portions of rabbit stew in a backpack, can cannot eat anything in fourth day of a trip."}, "src_uid": "e17df52cc0615585e4f8f2d31d2daafb"} {"nl": {"description": "As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where k is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers.A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number n, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!", "input_spec": "The first input line contains an integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009109).", "output_spec": "Print \"YES\" (without the quotes), if n can be represented as a sum of two triangular numbers, otherwise print \"NO\" (without the quotes).", "sample_inputs": ["256", "512"], "sample_outputs": ["YES", "NO"], "notes": "NoteIn the first sample number .In the second sample number 512 can not be represented as a sum of two triangular numbers."}, "src_uid": "245ec0831cd817714a4e5c531bffd099"} {"nl": {"description": "Imp is watching a documentary about cave painting. Some numbers, carved in chaotic order, immediately attracted his attention. Imp rapidly proposed a guess that they are the remainders of division of a number n by all integers i from 1 to k. Unfortunately, there are too many integers to analyze for Imp.Imp wants you to check whether all these remainders are distinct. Formally, he wants to check, if all , 1\u2009\u2264\u2009i\u2009\u2264\u2009k, are distinct, i.\u00a0e. there is no such pair (i,\u2009j) that: 1\u2009\u2264\u2009i\u2009<\u2009j\u2009\u2264\u2009k, , where is the remainder of division x by y. ", "input_spec": "The only line contains two integers n, k (1\u2009\u2264\u2009n,\u2009k\u2009\u2264\u20091018).", "output_spec": "Print \"Yes\", if all the remainders are distinct, and \"No\" otherwise. You can print each letter in arbitrary case (lower or upper).", "sample_inputs": ["4 4", "5 3"], "sample_outputs": ["No", "Yes"], "notes": "NoteIn the first sample remainders modulo 1 and 4 coincide."}, "src_uid": "5271c707c9c72ef021a0baf762bf3eb2"} {"nl": {"description": "Shapur was an extremely gifted student. He was great at everything including Combinatorics, Algebra, Number Theory, Geometry, Calculus, etc. He was not only smart but extraordinarily fast! He could manage to sum 1018 numbers in a single second.One day in 230 AD Shapur was trying to find out if any one can possibly do calculations faster than him. As a result he made a very great contest and asked every one to come and take part.In his contest he gave the contestants many different pairs of numbers. Each number is made from digits 0 or 1. The contestants should write a new number corresponding to the given pair of numbers. The rule is simple: The i-th digit of the answer is 1 if and only if the i-th digit of the two given numbers differ. In the other case the i-th digit of the answer is 0.Shapur made many numbers and first tried his own speed. He saw that he can perform these operations on numbers of length \u221e (length of a number is number of digits in it) in a glance! He always gives correct answers so he expects the contestants to give correct answers, too. He is a good fellow so he won't give anyone very big numbers and he always gives one person numbers of same length.Now you are going to take part in Shapur's contest. See if you are faster and more accurate.", "input_spec": "There are two lines in each input. Each of them contains a single number. It is guaranteed that the numbers are made from 0 and 1 only and that their length is same. The numbers may start with 0. The length of each number doesn't exceed 100.", "output_spec": "Write one line \u2014 the corresponding answer. Do not omit the leading 0s.", "sample_inputs": ["1010100\n0100101", "000\n111", "1110\n1010", "01110\n01100"], "sample_outputs": ["1110001", "111", "0100", "00010"], "notes": null}, "src_uid": "3714b7596a6b48ca5b7a346f60d90549"} {"nl": {"description": "A chessboard n\u2009\u00d7\u2009m in size is given. During the zero minute we repaint all the black squares to the 0 color. During the i-th minute we repaint to the i color the initially black squares that have exactly four corner-adjacent squares painted i\u2009-\u20091 (all such squares are repainted simultaneously). This process continues ad infinitum. You have to figure out how many squares we repainted exactly x times.The upper left square of the board has to be assumed to be always black. Two squares are called corner-adjacent, if they have exactly one common point.", "input_spec": "The first line contains integers n and m (1\u2009\u2264\u2009n,\u2009m\u2009\u2264\u20095000). The second line contains integer x (1\u2009\u2264\u2009x\u2009\u2264\u2009109).", "output_spec": "Print how many squares will be painted exactly x times.", "sample_inputs": ["3 3\n1", "3 3\n2", "1 1\n1"], "sample_outputs": ["4", "1", "1"], "notes": null}, "src_uid": "fa1ef5f9bceeb7266cc597ba8f2161cb"} {"nl": {"description": "Bob loves everything sweet. His favorite chocolate bar consists of pieces, each piece may contain a nut. Bob wants to break the bar of chocolate into multiple pieces so that each part would contain exactly one nut and any break line goes between two adjacent pieces.You are asked to calculate the number of ways he can do it. Two ways to break chocolate are considered distinct if one of them contains a break between some two adjacent pieces and the other one doesn't. Please note, that if Bob doesn't make any breaks, all the bar will form one piece and it still has to have exactly one nut.", "input_spec": "The first line of the input contains integer n (1\u2009\u2264\u2009n\u2009\u2264\u2009100)\u00a0\u2014 the number of pieces in the chocolate bar. The second line contains n integers ai (0\u2009\u2264\u2009ai\u2009\u2264\u20091), where 0 represents a piece without the nut and 1 stands for a piece with the nut.", "output_spec": "Print the number of ways to break the chocolate into multiple parts so that each part would contain exactly one nut.", "sample_inputs": ["3\n0 1 0", "5\n1 0 1 0 1"], "sample_outputs": ["1", "4"], "notes": "NoteIn the first sample there is exactly one nut, so the number of ways equals 1\u00a0\u2014 Bob shouldn't make any breaks.In the second sample you can break the bar in four ways:10|10|11|010|110|1|011|01|01"}, "src_uid": "58242665476f1c4fa723848ff0ecda98"}