File size: 7,217 Bytes
00348a9 9334833 00348a9 09bf29c 00348a9 09bf29c 00348a9 32276a3 00348a9 32276a3 00348a9 32276a3 00348a9 f4f24d6 00348a9 f4f24d6 32276a3 f4f24d6 00348a9 f4f24d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
YAML tags:
- annotations_creators:
- found
language_creators:
- found
- expert-generated
languages:
- hu
licenses:
- bsd-2-clause
multilinguality:
- monolingual
pretty_name: HuCoPA
size_categories:
- unknown
source_datasets:
- extended|other
task_categories:
- other
task_ids:
- other-other-commonsense-reasoning
---
# Dataset Card for HuCoPA
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This is the dataset card for the Hungarian Choice of Plausible Alternatives Corpus (HuCoPA), which is also part of the Hungarian Language Understanding Evaluation Benchmark Kit [HuLU](hulu.nlp.nytud.hu). The corpus was created by translating and re-annotating the original English CoPA corpus (Roemmele et al., 2011).
### Supported Tasks and Leaderboards
'commonsense reasoning'
'question answering'
### Languages
The BCP-47 code for Hungarian, the only represented language in this dataset, is hu-HU.
## Dataset Structure
### Data Instances
For each instance, there is an id, a premise, a question ('cause' or 'effect'), two alternatives and a label (1 or 2).
An example:
```
{"idx": "1",
"question": "cause",
"label": "1",
"premise": "A testem árnyékot vetett a fűre.",
"choice1": "Felkelt a nap.",
"choice2": "A füvet lenyírták."}
```
### Data Fields
- id: unique id of the instances, an integer between 1 and 1000;
- question: "cause" or "effect". It suggests what kind of causal relation are we looking for: in the case of "cause" we search for the more plausible alternative that may be a cause of the premise. In the case of "effect" we are looking for a plausible result of the premise;
- premise: the premise, a sentence;
- choice1: the first alternative, a sentence;
- choice2: the second alternative, a sentence;
- label: the number of the more plausible alternative (1 or 2).
### Data Splits
HuCoPA has 3 splits: *train*, *validation* and *test*.
| Dataset split | Number of instances in the split |
|---------------|----------------------------------|
| train | 400 |
| validation | 100 |
| test | 500 |
## Dataset Creation
### Source Data
#### Initial Data Collection and Normalization
The data is a translation of the content of the CoPA corpus. Each sentence was translated by a human translator. Each translation was manually checked and further refined by another annotator.
### Annotations
#### Annotation process
The instances initially inherited their original labels from the CoPA dataset. Each instance was annotated by a human annotator. If the original label and the human annotator's label did not match, we manually curated the instance and assigned a final label to that. This step was necessary to ensure that the causal realationship had not been changed or lost during the translation process.
#### Who are the annotators?
The translators were native Hungarian speakers with English proficiency. The annotators were university students with some linguistic background.
## Additional Information
### Licensing Information
HuCoPA is released under the BSD 2-Clause License.
Copyright (c) 2010, University of Southern California
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
### Citation Information
If you use this resource or any part of its documentation, please refer to:
Ligeti-Nagy, N., Ferenczi, G., Héja, E., Jelencsik-Mátyus, K., Laki, L. J., Vadász, N., Yang, Z. Gy. and Vadász, T. (2022) HuLU: magyar nyelvű benchmark adatbázis
kiépítése a neurális nyelvmodellek kiértékelése céljából [HuLU: Hungarian benchmark dataset to evaluate neural language models]. XVIII. Magyar Számítógépes Nyelvészeti Konferencia. (in press)
```
@inproceedings{ligetinagy2022hulu,
title={uLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából},
author={Ligeti-Nagy, N. and Ferenczi, G. and Héja, E. and Jelencsik-Mátyus, K. and Laki, L. J. and Vadász, N. and Yang, Z. Gy. and Vadász, T.},
booktitle={XVIII. Magyar Számítógépes Nyelvészeti Konferencia},
year={2022}
}
```
and to:
Roemmele, M., Bejan, C., and Gordon, A. (2011) Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning. AAAI Spring Symposium on Logical Formalizations of Commonsense Reasoning, Stanford University, March 21-23, 2011.
```
@inproceedings{roemmele2011choice,
title={Choice of plausible alternatives: An evaluation of commonsense causal reasoning},
author={Roemmele, Melissa and Bejan, Cosmin Adrian and Gordon, Andrew S},
booktitle={2011 AAAI Spring Symposium Series},
year={2011},
url={https://people.ict.usc.edu/~gordon/publications/AAAI-SPRING11A.PDF},
}
```
### Contributions
Thanks to [lnnoemi](https://github.com/lnnoemi) for adding this dataset.
|