--- license: unknown dataset_info: - config_name: corpus features: - name: query_id dtype: string - name: snippets dtype: string - name: air_date dtype: string - name: category dtype: string - name: value dtype: string - name: round dtype: string - name: show_number dtype: int32 - name: doc_id dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 6252715344 num_examples: 14120776 download_size: 3271155810 dataset_size: 6252715344 - config_name: qa_data features: - name: query_id dtype: string - name: question dtype: string - name: answer dtype: string - name: search_results struct: - name: related_links sequence: string - name: snippets sequence: string - name: titles sequence: string - name: urls sequence: string - name: doc_id sequence: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 6503932619 num_examples: 173397 - name: test num_bytes: 1830028629 num_examples: 43350 download_size: 5008413626 dataset_size: 8333961248 configs: - config_name: corpus data_files: - split: train path: corpus/train-* - config_name: qa_data data_files: - split: train path: qa_data/train-* - split: test path: qa_data/test-* --- # preprocessed_SearchQA The SearchQA question-answer pairs originate from J! Archive2, which comprehensively archives all question-answer pairs from the renowned television show Jeopardy! The passages, sourced from Google search web page snippets. We offer passage metadata, encompassing details like 'air_date,' 'category,' 'value,' 'round,' and 'show_number,' enabling you to enhance retrieval performance at your discretion. Should you require further details about SearchQA, please refer to below links. [Github](https://github.com/nyu-dl/dl4ir-searchQA)
[Paper](https://arxiv.org/abs/1704.05179)
The dataset is derived from [searhQA](https://huggingface.co/datasets/search_qa).
This preprocessed dataset is for RAG. For more information about our task, visit our [repository](https://github.com/NomaDamas/RAGchain)!
Preprocess SearchQA dataset code for RAG benchmark.
More information, refer to this link! [huggingface](https://huggingface.co/datasets/NomaDamas/search_qa_split)