Datasets:

Languages:
English
ArXiv:
License:
File size: 5,026 Bytes
b8a7657
 
 
 
 
 
 
 
 
 
 
 
66fd647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dde56c8
66fd647
b8a7657
 
 
 
88cb9a1
 
dde56c8
e27d7d6
b8a7657
 
 
 
 
dde56c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a7657
 
 
ec680de
b8a7657
ec680de
b8a7657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27d7d6
 
 
 
 
 
 
 
 
 
 
 
b8a7657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27d7d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbccbdd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
annotations_creators:
- no-annotation
language_creators:
- found
languages:
- en
licenses:
- unknown
multilinguality:
- monolingual
size_categories:
  a:
  - 100K<n<1M
  all:
  - 1M<n<10M
  b:
  - 100K<n<1M
  c:
  - 100K<n<1M
  d:
  - 10K<n<100K
  e:
  - 10K<n<100K
  f:
  - 10K<n<100K
  g:
  - 100K<n<1M
  h:
  - 100K<n<1M
  y:
  - 100K<n<1M
source_datasets:
- original
task_categories:
- summarization
task_ids:
- summarization-other-patent-summarization
paperswithcode_id: bigpatent
pretty_name: Big Patent
---

# Dataset Card for Big Patent

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Big Patent](https://evasharma.github.io/bigpatent/)
- **Repository:**
- **Paper:** [BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization](https://arxiv.org/abs/1906.03741)
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Each US patent application is filed under a Cooperative Patent Classification (CPC) code. There are nine such classification categories:

- A (Human Necessities)
- B (Performing Operations; Transporting)
- C (Chemistry; Metallurgy)
- D (Textiles; Paper)
- E (Fixed Constructions)
- F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting)
- G (Physics)
- H (Electricity)
- Y (General tagging of new or cross-sectional technology)

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

English

## Dataset Structure

### Data Instances

Each instance contains a pair of `description` and `abstract`. `description` is extracted from the Description section of the Patent while `abstract` is extracted from the Abstract section.

### Data Fields

- `description`: detailed description of patent.
- `abstract`: Patent abastract.

### Data Splits

|     |             train |   validation |   test |
|:----|------------------:|-------------:|-------:|
| all | 1207222           |        67068 |  67072 |
| a   |  174134           |         9674 |   9675 |
| b   |  161520           |         8973 |   8974 |
| c   |  101042           |         5613 |   5614 |
| d   |   10164           |          565 |    565 |
| e   |   34443           |         1914 |   1914 |
| f   |   85568           |         4754 |   4754 |
| g   |  258935           |        14385 |  14386 |
| h   |  257019           |        14279 |  14279 |
| y   |  124397           |         6911 |   6911 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```bibtex
@article{DBLP:journals/corr/abs-1906-03741,
  author    = {Eva Sharma and
               Chen Li and
               Lu Wang},
  title     = {{BIGPATENT:} {A} Large-Scale Dataset for Abstractive and Coherent
               Summarization},
  journal   = {CoRR},
  volume    = {abs/1906.03741},
  year      = {2019},
  url       = {http://arxiv.org/abs/1906.03741},
  eprinttype = {arXiv},
  eprint    = {1906.03741},
  timestamp = {Wed, 26 Jun 2019 07:14:58 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1906-03741.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

### Contributions

Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset.