Datasets:

Languages:
English
ArXiv:
License:
albertvillanova HF staff commited on
Commit
9414746
1 Parent(s): 238b975

Replace data URL in big_patent dataset and support streaming (#4236)

Browse files

* Replace data URL in big_patent dataset

* Updata metadata JSON

* Update dummy data

* Set data URL within the same repo

* Update metadata JSON

Commit from https://github.com/huggingface/datasets/commit/a60321bf70b0f35209ec0964da90e505fc905500

big_patent.py CHANGED
@@ -23,6 +23,8 @@ import os
23
  import datasets
24
 
25
 
 
 
26
  _CITATION = """
27
  @misc{sharma2019bigpatent,
28
  title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},
@@ -49,7 +51,12 @@ There are two features:
49
  - abstract: Patent abastract.
50
  """
51
 
52
- _URL = "https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa"
 
 
 
 
 
53
 
54
  _DOCUMENT = "description"
55
  _SUMMARY = "abstract"
@@ -101,7 +108,7 @@ class BigPatent(datasets.GeneratorBasedBuilder):
101
  BigPatentConfig( # pylint:disable=g-complex-comprehension
102
  cpc_codes=[k],
103
  name=k,
104
- description=("Patents under Cooperative Patent Classification (CPC)" f"{k}: {v}"),
105
  )
106
  for k, v in sorted(_CPC_DESCRIPTION.items())
107
  ]
@@ -113,38 +120,26 @@ class BigPatent(datasets.GeneratorBasedBuilder):
113
  description=_DESCRIPTION,
114
  features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}),
115
  supervised_keys=(_DOCUMENT, _SUMMARY),
116
- homepage="https://evasharma.github.io/bigpatent/",
117
  citation=_CITATION,
118
  )
119
 
120
  def _split_generators(self, dl_manager):
121
  """Returns SplitGenerators."""
122
- dl_path = dl_manager.download_and_extract(_URL)
123
- split_types = ["train", "val", "test"]
124
- extract_paths = dl_manager.extract(
125
- {k: os.path.join(dl_path, "bigPatentData", k + ".tar.gz") for k in split_types}
126
- )
127
- extract_paths = {k: os.path.join(extract_paths[k], k) for k in split_types}
128
-
129
  return [
130
  datasets.SplitGenerator(
131
- name=datasets.Split.TRAIN,
132
- gen_kwargs={"path": extract_paths["train"]},
133
- ),
134
- datasets.SplitGenerator(
135
- name=datasets.Split.VALIDATION,
136
- gen_kwargs={"path": extract_paths["val"]},
137
- ),
138
- datasets.SplitGenerator(
139
- name=datasets.Split.TEST,
140
- gen_kwargs={"path": extract_paths["test"]},
141
- ),
142
  ]
143
 
144
- def _generate_examples(self, path=None):
145
  """Yields examples."""
146
  for cpc_code in self.config.cpc_codes:
147
- filenames = glob.glob(os.path.join(path, cpc_code, "*"))
148
  for filename in sorted(filenames):
149
  with open(filename, "rb") as fin:
150
  fin = gzip.GzipFile(fileobj=fin)
 
23
  import datasets
24
 
25
 
26
+ _HOMEPAGE = "https://evasharma.github.io/bigpatent/"
27
+
28
  _CITATION = """
29
  @misc{sharma2019bigpatent,
30
  title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},
 
51
  - abstract: Patent abastract.
52
  """
53
 
54
+ _REPO = "https://huggingface.co/datasets/big_patent/resolve/main/data"
55
+ _URLS = {
56
+ "train": f"{_REPO}/train.zip",
57
+ "validation": f"{_REPO}/val.zip",
58
+ "test": f"{_REPO}/test.zip",
59
+ }
60
 
61
  _DOCUMENT = "description"
62
  _SUMMARY = "abstract"
 
108
  BigPatentConfig( # pylint:disable=g-complex-comprehension
109
  cpc_codes=[k],
110
  name=k,
111
+ description=f"Patents under Cooperative Patent Classification (CPC) {k}: {v}",
112
  )
113
  for k, v in sorted(_CPC_DESCRIPTION.items())
114
  ]
 
120
  description=_DESCRIPTION,
121
  features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}),
122
  supervised_keys=(_DOCUMENT, _SUMMARY),
123
+ homepage=_HOMEPAGE,
124
  citation=_CITATION,
125
  )
126
 
127
  def _split_generators(self, dl_manager):
128
  """Returns SplitGenerators."""
129
+ dl_paths = dl_manager.download_and_extract(_URLS)
130
+ split_dirs = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "val", datasets.Split.TEST: "test"}
 
 
 
 
 
131
  return [
132
  datasets.SplitGenerator(
133
+ name=split,
134
+ gen_kwargs={"path": dl_paths[split], "split_dir": split_dirs[split]},
135
+ )
136
+ for split in split_dirs
 
 
 
 
 
 
 
137
  ]
138
 
139
+ def _generate_examples(self, path=None, split_dir=None):
140
  """Yields examples."""
141
  for cpc_code in self.config.cpc_codes:
142
+ filenames = glob.glob(os.path.join(path, split_dir, cpc_code, "*"))
143
  for filename in sorted(filenames):
144
  with open(filename, "rb") as fin:
145
  fin = gzip.GzipFile(fileobj=fin)
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"all": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "all", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23363518650, "num_examples": 1207222, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 1290154487, "num_examples": 67068, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 1296234391, "num_examples": 67072, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 25949907528, "size_in_bytes": 32397953399}, "a": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "a", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3329778447, "num_examples": 174134, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 184116486, "num_examples": 9674, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 185987552, "num_examples": 9675, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 3699882485, "size_in_bytes": 10147928356}, "b": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "b", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2574594655, "num_examples": 161520, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 143029380, "num_examples": 8973, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 140741033, "num_examples": 8974, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2858365068, "size_in_bytes": 9306410939}, "c": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "c", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2641973267, "num_examples": 101042, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 145441704, "num_examples": 5613, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 149052258, "num_examples": 5614, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2936467229, "size_in_bytes": 9384513100}, "d": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "d", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 160467163, "num_examples": 10164, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 8667961, "num_examples": 565, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 8713720, "num_examples": 565, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 177848844, "size_in_bytes": 6625894715}, "e": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "e", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 535567259, "num_examples": 34443, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 28549964, "num_examples": 1914, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 29843613, "num_examples": 1914, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 593960836, "size_in_bytes": 7042006707}, "f": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "f", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1297707404, "num_examples": 85568, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 72367466, "num_examples": 4754, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 71676041, "num_examples": 4754, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 1441750911, "size_in_bytes": 7889796782}, "g": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "g", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5571186559, "num_examples": 258935, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 309182447, "num_examples": 14385, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 310624265, "num_examples": 14386, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 6190993271, "size_in_bytes": 12639039142}, "h": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "h", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4988365946, "num_examples": 257019, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 275293153, "num_examples": 14279, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 274505113, "num_examples": 14279, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 5538164212, "size_in_bytes": 11986210083}, "y": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "y", "version": "1.0.0", "splits": {"train": {"name": "train", "num_bytes": 2263877990, "num_examples": 124397, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 123505958, "num_examples": 6911, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 125090828, "num_examples": 6911, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2512474776, "size_in_bytes": 8960520647}}
 
1
+ {"all": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "all", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23363518650, "num_examples": 1207222, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 1290154487, "num_examples": 67068, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 1296234391, "num_examples": 67072, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 25949907528, "size_in_bytes": 32397129082}, "a": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "a", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3329778447, "num_examples": 174134, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 184116486, "num_examples": 9674, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 185987552, "num_examples": 9675, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 3699882485, "size_in_bytes": 10147104039}, "b": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "b", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2574594655, "num_examples": 161520, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 143029380, "num_examples": 8973, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 140741033, "num_examples": 8974, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2858365068, "size_in_bytes": 9305586622}, "c": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "c", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2641973267, "num_examples": 101042, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 145441704, "num_examples": 5613, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 149052258, "num_examples": 5614, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2936467229, "size_in_bytes": 9383688783}, "d": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "d", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 160467163, "num_examples": 10164, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 8667961, "num_examples": 565, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 8713720, "num_examples": 565, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 177848844, "size_in_bytes": 6625070398}, "e": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "e", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 535567259, "num_examples": 34443, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 28549964, "num_examples": 1914, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 29843613, "num_examples": 1914, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 593960836, "size_in_bytes": 7041182390}, "f": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "f", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1297707404, "num_examples": 85568, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 72367466, "num_examples": 4754, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 71676041, "num_examples": 4754, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 1441750911, "size_in_bytes": 7888972465}, "g": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "g", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5571186559, "num_examples": 258935, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 309182447, "num_examples": 14385, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 310624265, "num_examples": 14386, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 6190993271, "size_in_bytes": 12638214825}, "h": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "h", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4988365946, "num_examples": 257019, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 275293153, "num_examples": 14279, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 274505113, "num_examples": 14279, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 5538164212, "size_in_bytes": 11985385766}, "y": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "y", "version": "1.0.0", "splits": {"train": {"name": "train", "num_bytes": 2263877990, "num_examples": 124397, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 123505958, "num_examples": 6911, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 125090828, "num_examples": 6911, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2512474776, "size_in_bytes": 8959696330}}
dummy/a/1.0.0/dummy_data.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fd6c8512c947e7c35944b208ec378deaf87b32258e12384a8c9e125966944260
3
- size 2700
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7d0ef338ebd3f73e6b66eaba22133c05cee9155dcb56ed006c8e9b56340af2c
3
+ size 2166
dummy/all/1.0.0/dummy_data.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d7634f71d71a3bfc3e4a63511be7094accade78aefd55672d564b3d730308483
3
- size 18035
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d5f16f910e0b2e6d3eae6d430dd93e07010d4d92f5fc99b08c1c2209d1f2b84
3
+ size 12645
dummy/b/1.0.0/dummy_data.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6f7c7124b880dc7173f5bde459a429d7964255ab0e316ed5f21574122a77f6c9
3
- size 2682
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8af3dee10a4e2414ab8b0a5ebf48d5d7b2aa408a323f1b931f504584bd0c299
3
+ size 2824
dummy/c/1.0.0/dummy_data.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2f431ba209c6efd631424ebcbe76e83d45c4e75eb15bfc32194e446fe8005d8e
3
- size 2703
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:284f3a6d57cc9222dd393fc5548fdaee4cf31744a1be715dc47add8e09742d56
3
+ size 2169
dummy/d/1.0.0/dummy_data.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:89222bd4cef2cf1e740972f38cf7cac9bf4c4d2e3e3a53aae50e5e495fbae514
3
- size 2691
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7061338ea8d68649d85e03fac6b6360723ad80cb8d349a092c18a949e473cab
3
+ size 2157
dummy/e/1.0.0/dummy_data.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:351e4d18ac79f72e524d89d3d76b703144039a5c36265642c141e9d1317c6bd4
3
- size 2682
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08bef271acf599a56ae911d3764cedf6dea9c4b932b5ce79da2e221147ced1ba
3
+ size 2148
dummy/f/1.0.0/dummy_data.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7fdfb6780f61e1457792716def4cd75d40b0040bd72c2d526d834fc199dbfc6a
3
- size 2685
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8c16c0f830d46296a52897ccf344a2e2080e947d181fe75201c87fe9e05d9f7
3
+ size 2151
dummy/g/1.0.0/dummy_data.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3b82e91071358cb408d53039508510c9188a249e1a2979a19a116e7e6babb781
3
- size 2691
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6e1e238baf28ddc3082c12f64420d7adba1c91e20409cee3c0ea9f65d10b2e9
3
+ size 2157
dummy/h/1.0.0/dummy_data.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:799ab5b01f91ea5e17851d707dd30c1aa95dd564d495a4420f5a917066a64a89
3
- size 2682
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9820aae57a4789b08cc5686291aa1486ec12c79e90271b228ee66cb6af2f8fef
3
+ size 2148
dummy/y/1.0.0/dummy_data.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fdf24b3e64c11ed04610f1b27f4b70e6c8fc458276324f7d63e72bfe2a2e7050
3
- size 2703
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc7cc4ded1302a5b1e5c360a3feda5725142d603449fda73d5531ecf4229319c
3
+ size 2169