Commit
•
9414746
1
Parent(s):
238b975
Replace data URL in big_patent dataset and support streaming (#4236)
Browse files* Replace data URL in big_patent dataset
* Updata metadata JSON
* Update dummy data
* Set data URL within the same repo
* Update metadata JSON
Commit from https://github.com/huggingface/datasets/commit/a60321bf70b0f35209ec0964da90e505fc905500
- big_patent.py +18 -23
- dataset_infos.json +1 -1
- dummy/a/1.0.0/dummy_data.zip +2 -2
- dummy/all/1.0.0/dummy_data.zip +2 -2
- dummy/b/1.0.0/dummy_data.zip +2 -2
- dummy/c/1.0.0/dummy_data.zip +2 -2
- dummy/d/1.0.0/dummy_data.zip +2 -2
- dummy/e/1.0.0/dummy_data.zip +2 -2
- dummy/f/1.0.0/dummy_data.zip +2 -2
- dummy/g/1.0.0/dummy_data.zip +2 -2
- dummy/h/1.0.0/dummy_data.zip +2 -2
- dummy/y/1.0.0/dummy_data.zip +2 -2
big_patent.py
CHANGED
@@ -23,6 +23,8 @@ import os
|
|
23 |
import datasets
|
24 |
|
25 |
|
|
|
|
|
26 |
_CITATION = """
|
27 |
@misc{sharma2019bigpatent,
|
28 |
title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},
|
@@ -49,7 +51,12 @@ There are two features:
|
|
49 |
- abstract: Patent abastract.
|
50 |
"""
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
_DOCUMENT = "description"
|
55 |
_SUMMARY = "abstract"
|
@@ -101,7 +108,7 @@ class BigPatent(datasets.GeneratorBasedBuilder):
|
|
101 |
BigPatentConfig( # pylint:disable=g-complex-comprehension
|
102 |
cpc_codes=[k],
|
103 |
name=k,
|
104 |
-
description=
|
105 |
)
|
106 |
for k, v in sorted(_CPC_DESCRIPTION.items())
|
107 |
]
|
@@ -113,38 +120,26 @@ class BigPatent(datasets.GeneratorBasedBuilder):
|
|
113 |
description=_DESCRIPTION,
|
114 |
features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}),
|
115 |
supervised_keys=(_DOCUMENT, _SUMMARY),
|
116 |
-
homepage=
|
117 |
citation=_CITATION,
|
118 |
)
|
119 |
|
120 |
def _split_generators(self, dl_manager):
|
121 |
"""Returns SplitGenerators."""
|
122 |
-
|
123 |
-
|
124 |
-
extract_paths = dl_manager.extract(
|
125 |
-
{k: os.path.join(dl_path, "bigPatentData", k + ".tar.gz") for k in split_types}
|
126 |
-
)
|
127 |
-
extract_paths = {k: os.path.join(extract_paths[k], k) for k in split_types}
|
128 |
-
|
129 |
return [
|
130 |
datasets.SplitGenerator(
|
131 |
-
name=
|
132 |
-
gen_kwargs={"path":
|
133 |
-
)
|
134 |
-
|
135 |
-
name=datasets.Split.VALIDATION,
|
136 |
-
gen_kwargs={"path": extract_paths["val"]},
|
137 |
-
),
|
138 |
-
datasets.SplitGenerator(
|
139 |
-
name=datasets.Split.TEST,
|
140 |
-
gen_kwargs={"path": extract_paths["test"]},
|
141 |
-
),
|
142 |
]
|
143 |
|
144 |
-
def _generate_examples(self, path=None):
|
145 |
"""Yields examples."""
|
146 |
for cpc_code in self.config.cpc_codes:
|
147 |
-
filenames = glob.glob(os.path.join(path, cpc_code, "*"))
|
148 |
for filename in sorted(filenames):
|
149 |
with open(filename, "rb") as fin:
|
150 |
fin = gzip.GzipFile(fileobj=fin)
|
|
|
23 |
import datasets
|
24 |
|
25 |
|
26 |
+
_HOMEPAGE = "https://evasharma.github.io/bigpatent/"
|
27 |
+
|
28 |
_CITATION = """
|
29 |
@misc{sharma2019bigpatent,
|
30 |
title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},
|
|
|
51 |
- abstract: Patent abastract.
|
52 |
"""
|
53 |
|
54 |
+
_REPO = "https://huggingface.co/datasets/big_patent/resolve/main/data"
|
55 |
+
_URLS = {
|
56 |
+
"train": f"{_REPO}/train.zip",
|
57 |
+
"validation": f"{_REPO}/val.zip",
|
58 |
+
"test": f"{_REPO}/test.zip",
|
59 |
+
}
|
60 |
|
61 |
_DOCUMENT = "description"
|
62 |
_SUMMARY = "abstract"
|
|
|
108 |
BigPatentConfig( # pylint:disable=g-complex-comprehension
|
109 |
cpc_codes=[k],
|
110 |
name=k,
|
111 |
+
description=f"Patents under Cooperative Patent Classification (CPC) {k}: {v}",
|
112 |
)
|
113 |
for k, v in sorted(_CPC_DESCRIPTION.items())
|
114 |
]
|
|
|
120 |
description=_DESCRIPTION,
|
121 |
features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}),
|
122 |
supervised_keys=(_DOCUMENT, _SUMMARY),
|
123 |
+
homepage=_HOMEPAGE,
|
124 |
citation=_CITATION,
|
125 |
)
|
126 |
|
127 |
def _split_generators(self, dl_manager):
|
128 |
"""Returns SplitGenerators."""
|
129 |
+
dl_paths = dl_manager.download_and_extract(_URLS)
|
130 |
+
split_dirs = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "val", datasets.Split.TEST: "test"}
|
|
|
|
|
|
|
|
|
|
|
131 |
return [
|
132 |
datasets.SplitGenerator(
|
133 |
+
name=split,
|
134 |
+
gen_kwargs={"path": dl_paths[split], "split_dir": split_dirs[split]},
|
135 |
+
)
|
136 |
+
for split in split_dirs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
]
|
138 |
|
139 |
+
def _generate_examples(self, path=None, split_dir=None):
|
140 |
"""Yields examples."""
|
141 |
for cpc_code in self.config.cpc_codes:
|
142 |
+
filenames = glob.glob(os.path.join(path, split_dir, cpc_code, "*"))
|
143 |
for filename in sorted(filenames):
|
144 |
with open(filename, "rb") as fin:
|
145 |
fin = gzip.GzipFile(fileobj=fin)
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"all": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "all", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23363518650, "num_examples": 1207222, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 1290154487, "num_examples": 67068, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 1296234391, "num_examples": 67072, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 25949907528, "size_in_bytes": 32397953399}, "a": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "a", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3329778447, "num_examples": 174134, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 184116486, "num_examples": 9674, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 185987552, "num_examples": 9675, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 3699882485, "size_in_bytes": 10147928356}, "b": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "b", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2574594655, "num_examples": 161520, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 143029380, "num_examples": 8973, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 140741033, "num_examples": 8974, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2858365068, "size_in_bytes": 9306410939}, "c": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "c", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2641973267, "num_examples": 101042, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 145441704, "num_examples": 5613, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 149052258, "num_examples": 5614, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2936467229, "size_in_bytes": 9384513100}, "d": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "d", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 160467163, "num_examples": 10164, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 8667961, "num_examples": 565, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 8713720, "num_examples": 565, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 177848844, "size_in_bytes": 6625894715}, "e": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "e", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 535567259, "num_examples": 34443, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 28549964, "num_examples": 1914, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 29843613, "num_examples": 1914, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 593960836, "size_in_bytes": 7042006707}, "f": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "f", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1297707404, "num_examples": 85568, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 72367466, "num_examples": 4754, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 71676041, "num_examples": 4754, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 1441750911, "size_in_bytes": 7889796782}, "g": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "g", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5571186559, "num_examples": 258935, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 309182447, "num_examples": 14385, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 310624265, "num_examples": 14386, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 6190993271, "size_in_bytes": 12639039142}, "h": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "h", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4988365946, "num_examples": 257019, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 275293153, "num_examples": 14279, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 274505113, "num_examples": 14279, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 5538164212, "size_in_bytes": 11986210083}, "y": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - summary: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "builder_name": "big_patent", "config_name": "y", "version": "1.0.0", "splits": {"train": {"name": "train", "num_bytes": 2263877990, "num_examples": 124397, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 123505958, "num_examples": 6911, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 125090828, "num_examples": 6911, "dataset_name": "big_patent"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa": {"num_bytes": 6448045871, "checksum": "7e1093c7e0d09677c79bd872a07b6a6dd2b3235633207e9918b75056205f04dc"}}, "download_size": 6448045871, "post_processing_size": null, "dataset_size": 2512474776, "size_in_bytes": 8960520647}}
|
|
|
1 |
+
{"all": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "all", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23363518650, "num_examples": 1207222, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 1290154487, "num_examples": 67068, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 1296234391, "num_examples": 67072, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 25949907528, "size_in_bytes": 32397129082}, "a": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "a", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3329778447, "num_examples": 174134, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 184116486, "num_examples": 9674, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 185987552, "num_examples": 9675, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 3699882485, "size_in_bytes": 10147104039}, "b": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "b", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2574594655, "num_examples": 161520, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 143029380, "num_examples": 8973, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 140741033, "num_examples": 8974, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2858365068, "size_in_bytes": 9305586622}, "c": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "c", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2641973267, "num_examples": 101042, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 145441704, "num_examples": 5613, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 149052258, "num_examples": 5614, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2936467229, "size_in_bytes": 9383688783}, "d": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "d", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 160467163, "num_examples": 10164, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 8667961, "num_examples": 565, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 8713720, "num_examples": 565, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 177848844, "size_in_bytes": 6625070398}, "e": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "e", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 535567259, "num_examples": 34443, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 28549964, "num_examples": 1914, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 29843613, "num_examples": 1914, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 593960836, "size_in_bytes": 7041182390}, "f": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "f", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1297707404, "num_examples": 85568, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 72367466, "num_examples": 4754, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 71676041, "num_examples": 4754, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 1441750911, "size_in_bytes": 7888972465}, "g": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "g", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5571186559, "num_examples": 258935, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 309182447, "num_examples": 14385, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 310624265, "num_examples": 14386, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 6190993271, "size_in_bytes": 12638214825}, "h": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "h", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4988365946, "num_examples": 257019, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 275293153, "num_examples": 14279, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 274505113, "num_examples": 14279, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 5538164212, "size_in_bytes": 11985385766}, "y": {"description": "\nBIGPATENT, consisting of 1.3 million records of U.S. patent documents\nalong with human written abstractive summaries.\nEach US patent application is filed under a Cooperative Patent Classification\n(CPC) code. There are nine such classification categories:\nA (Human Necessities), B (Performing Operations; Transporting),\nC (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions),\nF (Mechanical Engineering; Lightning; Heating; Weapons; Blasting),\nG (Physics), H (Electricity), and\nY (General tagging of new or cross-sectional technology)\nThere are two features:\n - description: detailed description of patent.\n - abstract: Patent abastract.\n", "citation": "\n@misc{sharma2019bigpatent,\n title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization},\n author={Eva Sharma and Chen Li and Lu Wang},\n year={2019},\n eprint={1906.03741},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://evasharma.github.io/bigpatent/", "license": "", "features": {"description": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "description", "output": "abstract"}, "task_templates": null, "builder_name": "big_patent", "config_name": "y", "version": "1.0.0", "splits": {"train": {"name": "train", "num_bytes": 2263877990, "num_examples": 124397, "dataset_name": "big_patent"}, "validation": {"name": "validation", "num_bytes": 123505958, "num_examples": 6911, "dataset_name": "big_patent"}, "test": {"name": "test", "num_bytes": 125090828, "num_examples": 6911, "dataset_name": "big_patent"}}, "download_checksums": {"https://huggingface.co/datasets/big_patent/resolve/main/data/train.zip": {"num_bytes": 5802341237, "checksum": "89831e047474822ff7be521707e9a58bd9acd4d359a194cc564e74012a44185d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/val.zip": {"num_bytes": 321731760, "checksum": "c8a3c745cac4216bd32a54149dbc044ea397e405a08b230041a554e3eb75080d"}, "https://huggingface.co/datasets/big_patent/resolve/main/data/test.zip": {"num_bytes": 323148557, "checksum": "ce605cafb69b1757276326c51d18a1c09275b1911252dd95e8e0dcbf386d1b77"}}, "download_size": 6447221554, "post_processing_size": null, "dataset_size": 2512474776, "size_in_bytes": 8959696330}}
|
dummy/a/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7d0ef338ebd3f73e6b66eaba22133c05cee9155dcb56ed006c8e9b56340af2c
|
3 |
+
size 2166
|
dummy/all/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d5f16f910e0b2e6d3eae6d430dd93e07010d4d92f5fc99b08c1c2209d1f2b84
|
3 |
+
size 12645
|
dummy/b/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8af3dee10a4e2414ab8b0a5ebf48d5d7b2aa408a323f1b931f504584bd0c299
|
3 |
+
size 2824
|
dummy/c/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:284f3a6d57cc9222dd393fc5548fdaee4cf31744a1be715dc47add8e09742d56
|
3 |
+
size 2169
|
dummy/d/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7061338ea8d68649d85e03fac6b6360723ad80cb8d349a092c18a949e473cab
|
3 |
+
size 2157
|
dummy/e/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08bef271acf599a56ae911d3764cedf6dea9c4b932b5ce79da2e221147ced1ba
|
3 |
+
size 2148
|
dummy/f/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8c16c0f830d46296a52897ccf344a2e2080e947d181fe75201c87fe9e05d9f7
|
3 |
+
size 2151
|
dummy/g/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6e1e238baf28ddc3082c12f64420d7adba1c91e20409cee3c0ea9f65d10b2e9
|
3 |
+
size 2157
|
dummy/h/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9820aae57a4789b08cc5686291aa1486ec12c79e90271b228ee66cb6af2f8fef
|
3 |
+
size 2148
|
dummy/y/1.0.0/dummy_data.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc7cc4ded1302a5b1e5c360a3feda5725142d603449fda73d5531ecf4229319c
|
3 |
+
size 2169
|