ID
int64
0
2.65k
Language
stringclasses
1 value
Repository Name
stringclasses
14 values
File Name
stringlengths
2
48
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
411
31.4k
Unit Test - (Ground Truth)
stringlengths
40
32.1k
500
cpp
google/libaddressinput
rule
cpp/src/rule.cc
cpp/test/rule_test.cc
#ifndef I18N_ADDRESSINPUT_RULE_H_ #define I18N_ADDRESSINPUT_RULE_H_ #include <libaddressinput/address_field.h> #include <memory> #include <string> #include <vector> namespace i18n { namespace addressinput { class FormatElement; class Json; struct RE2ptr; class Rule { public: Rule(const Rule&) = delete; Rule& operator=(const Rule&) = delete; Rule(); ~Rule(); static const Rule& GetDefault(); void CopyFrom(const Rule& rule); bool ParseSerializedRule(const std::string& serialized_rule); void ParseJsonRule(const Json& json); const std::string& GetId() const { return id_; } const std::vector<FormatElement>& GetFormat() const { return format_; } const std::vector<FormatElement>& GetLatinFormat() const { return latin_format_; } const std::vector<AddressField>& GetRequired() const { return required_; } const std::vector<std::string>& GetSubKeys() const { return sub_keys_; } const std::vector<std::string>& GetLanguages() const { return languages_; } const RE2ptr* GetPostalCodeMatcher() const { return postal_code_matcher_.get(); } const std::string& GetSolePostalCode() const { return sole_postal_code_; } int GetAdminAreaNameMessageId() const { return admin_area_name_message_id_; } int GetPostalCodeNameMessageId() const { return postal_code_name_message_id_; } int GetLocalityNameMessageId() const { return locality_name_message_id_; } int GetSublocalityNameMessageId() const { return sublocality_name_message_id_; } const std::string& GetName() const { return name_; } const std::string& GetLatinName() const { return latin_name_; } const std::string& GetPostalCodeExample() const { return postal_code_example_; } const std::string& GetPostServiceUrl() const { return post_service_url_; } private: std::string id_; std::vector<FormatElement> format_; std::vector<FormatElement> latin_format_; std::vector<AddressField> required_; std::vector<std::string> sub_keys_; std::vector<std::string> languages_; std::unique_ptr<const RE2ptr> postal_code_matcher_; std::string sole_postal_code_; int admin_area_name_message_id_; int postal_code_name_message_id_; int locality_name_message_id_; int sublocality_name_message_id_; std::string name_; std::string latin_name_; std::string postal_code_example_; std::string post_service_url_; }; } } #endif #include "rule.h" #include <algorithm> #include <cassert> #include <cstddef> #include <string> #include <utility> #include <re2/re2.h> #include "address_field_util.h" #include "format_element.h" #include "grit.h" #include "messages.h" #include "region_data_constants.h" #include "util/json.h" #include "util/re2ptr.h" #include "util/size.h" #include "util/string_split.h" namespace i18n { namespace addressinput { namespace { const char kSeparator = '~'; struct NameIdInfo { const char* name; int id; static bool less(const NameIdInfo& a, const NameIdInfo& b) { return strcmp(a.name, b.name) < 0; } }; struct NameIdMap { const NameIdInfo* infos; size_t size; int GetIdFromName(const std::string& name) const { NameIdInfo key{name.c_str()}; const NameIdInfo* begin = infos; const NameIdInfo* end = begin + size; const NameIdInfo* probe = std::lower_bound(begin, end, key, NameIdInfo::less); return probe != end && name == probe->name ? probe->id : INVALID_MESSAGE_ID; } bool IsSorted() const { for (size_t n = 1; n < size; ++n) { if (!NameIdInfo::less(infos[n - 1], infos[n])) { return false; } } return true; } }; const NameIdInfo kAdminAreaInfoArray[] = { {"area", IDS_LIBADDRESSINPUT_AREA}, {"county", IDS_LIBADDRESSINPUT_COUNTY}, {"department", IDS_LIBADDRESSINPUT_DEPARTMENT}, {"district", IDS_LIBADDRESSINPUT_DISTRICT}, {"do_si", IDS_LIBADDRESSINPUT_DO_SI}, {"emirate", IDS_LIBADDRESSINPUT_EMIRATE}, {"island", IDS_LIBADDRESSINPUT_ISLAND}, {"oblast", IDS_LIBADDRESSINPUT_OBLAST}, {"parish", IDS_LIBADDRESSINPUT_PARISH}, {"prefecture", IDS_LIBADDRESSINPUT_PREFECTURE}, {"province", IDS_LIBADDRESSINPUT_PROVINCE}, {"state", IDS_LIBADDRESSINPUT_STATE}, }; const NameIdMap kAdminAreaMessageIds{ kAdminAreaInfoArray, size(kAdminAreaInfoArray) }; const NameIdInfo kPostalCodeInfoArray[] = { {"eircode", IDS_LIBADDRESSINPUT_EIR_CODE_LABEL}, {"pin", IDS_LIBADDRESSINPUT_PIN_CODE_LABEL}, {"postal", IDS_LIBADDRESSINPUT_POSTAL_CODE_LABEL}, {"zip", IDS_LIBADDRESSINPUT_ZIP_CODE_LABEL}, }; const NameIdMap kPostalCodeMessageIds{ kPostalCodeInfoArray, size(kPostalCodeInfoArray) }; const NameIdInfo kLocalityInfoArray[] = { {"city", IDS_LIBADDRESSINPUT_LOCALITY_LABEL}, {"district", IDS_LIBADDRESSINPUT_DISTRICT}, {"post_town", IDS_LIBADDRESSINPUT_POST_TOWN}, {"suburb", IDS_LIBADDRESSINPUT_SUBURB}, }; const NameIdMap kLocalityMessageIds{ kLocalityInfoArray, size(kLocalityInfoArray) }; const NameIdInfo kSublocalityInfoArray[] = { {"district", IDS_LIBADDRESSINPUT_DISTRICT}, {"neighborhood", IDS_LIBADDRESSINPUT_NEIGHBORHOOD}, {"suburb", IDS_LIBADDRESSINPUT_SUBURB}, {"townland", IDS_LIBADDRESSINPUT_TOWNLAND}, {"village_township", IDS_LIBADDRESSINPUT_VILLAGE_TOWNSHIP}, }; const NameIdMap kSublocalityMessageIds{ kSublocalityInfoArray, size(kSublocalityInfoArray) }; #ifndef _NDEBUG struct StaticMapChecker { StaticMapChecker() { assert(kAdminAreaMessageIds.IsSorted()); assert(kPostalCodeMessageIds.IsSorted()); assert(kLocalityMessageIds.IsSorted()); assert(kSublocalityMessageIds.IsSorted()); } }; #endif bool ContainsRegExSpecialCharacters(const std::string& input) { return input.find_first_of(R"(([\{?)") != std::string::npos; } } Rule::Rule() : id_(), format_(), latin_format_(), required_(), sub_keys_(), languages_(), postal_code_matcher_(nullptr), sole_postal_code_(), admin_area_name_message_id_(INVALID_MESSAGE_ID), postal_code_name_message_id_(INVALID_MESSAGE_ID), locality_name_message_id_(INVALID_MESSAGE_ID), sublocality_name_message_id_(INVALID_MESSAGE_ID), name_(), latin_name_(), postal_code_example_(), post_service_url_() {} Rule::~Rule() = default; const Rule& Rule::GetDefault() { static Rule* default_rule = nullptr; if (default_rule == nullptr) { default_rule = new Rule; default_rule->ParseSerializedRule( RegionDataConstants::GetDefaultRegionData()); } return *default_rule; } void Rule::CopyFrom(const Rule& rule) { assert(this != &rule); id_ = rule.id_; format_ = rule.format_; latin_format_ = rule.latin_format_; required_ = rule.required_; sub_keys_ = rule.sub_keys_; languages_ = rule.languages_; postal_code_matcher_.reset( rule.postal_code_matcher_ == nullptr ? nullptr : new RE2ptr(new RE2(rule.postal_code_matcher_->ptr->pattern(), rule.postal_code_matcher_->ptr->options()))); sole_postal_code_ = rule.sole_postal_code_; admin_area_name_message_id_ = rule.admin_area_name_message_id_; postal_code_name_message_id_ = rule.postal_code_name_message_id_; locality_name_message_id_ = rule.locality_name_message_id_; sublocality_name_message_id_ = rule.sublocality_name_message_id_; name_ = rule.name_; latin_name_ = rule.latin_name_; postal_code_example_ = rule.postal_code_example_; post_service_url_ = rule.post_service_url_; } bool Rule::ParseSerializedRule(const std::string& serialized_rule) { Json json; if (!json.ParseObject(serialized_rule)) { return false; } ParseJsonRule(json); return true; } void Rule::ParseJsonRule(const Json& json) { #ifndef _NDEBUG static StaticMapChecker map_checker; #endif std::string value; if (json.GetStringValueForKey("id", &value)) { id_.swap(value); } if (json.GetStringValueForKey("fmt", &value)) { ParseFormatRule(value, &format_); } if (json.GetStringValueForKey("lfmt", &value)) { ParseFormatRule(value, &latin_format_); } if (json.GetStringValueForKey("require", &value)) { ParseAddressFieldsRequired(value, &required_); } if (json.GetStringValueForKey("sub_keys", &value)) { SplitString(value, kSeparator, &sub_keys_); } if (json.GetStringValueForKey("languages", &value)) { SplitString(value, kSeparator, &languages_); } sole_postal_code_.clear(); if (json.GetStringValueForKey("zip", &value)) { RE2::Options options; options.set_never_capture(true); RE2* matcher = new RE2("^(" + value + ")", options); if (matcher->ok()) { postal_code_matcher_.reset(new RE2ptr(matcher)); } else { postal_code_matcher_.reset(nullptr); delete matcher; } if (!ContainsRegExSpecialCharacters(value)) { sole_postal_code_.swap(value); } } if (json.GetStringValueForKey("state_name_type", &value)) { admin_area_name_message_id_ = kAdminAreaMessageIds.GetIdFromName(value); } if (json.GetStringValueForKey("zip_name_type", &value)) { postal_code_name_message_id_ = kPostalCodeMessageIds.GetIdFromName(value); } if (json.GetStringValueForKey("locality_name_type", &value)) { locality_name_message_id_ = kLocalityMessageIds.GetIdFromName(value); } if (json.GetStringValueForKey("sublocality_name_type", &value)) { sublocality_name_message_id_ = kSublocalityMessageIds.GetIdFromName(value); } if (json.GetStringValueForKey("name", &value)) { name_.swap(value); } if (json.GetStringValueForKey("lname", &value)) { latin_name_.swap(value); } if (json.GetStringValueForKey("zipex", &value)) { postal_code_example_.swap(value); } if (json.GetStringValueForKey("posturl", &value)) { post_service_url_.swap(value); } } } }
#include "rule.h" #include <libaddressinput/address_field.h> #include <libaddressinput/localization.h> #include <cstddef> #include <string> #include <utility> #include <vector> #include <gtest/gtest.h> #include "format_element.h" #include "grit.h" #include "messages.h" #include "region_data_constants.h" #include "util/json.h" namespace { using i18n::addressinput::AddressField; using i18n::addressinput::ADMIN_AREA; using i18n::addressinput::FormatElement; using i18n::addressinput::INVALID_MESSAGE_ID; using i18n::addressinput::Json; using i18n::addressinput::LOCALITY; using i18n::addressinput::Localization; using i18n::addressinput::RegionDataConstants; using i18n::addressinput::Rule; using i18n::addressinput::STREET_ADDRESS; TEST(RuleTest, CopyOverwritesRule) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule( R"({)" R"("fmt":"%S%Z",)" R"("lfmt":"%Z%S",)" R"("id":"data/XA",)" R"("name":"Le Test",)" R"("lname":"Testistan",)" R"("require":"AC",)" R"("sub_keys":"aa~bb~cc",)" R"("languages":"en~fr",)" R"("zip":"\\d{3}",)" R"("state_name_type":"area",)" R"("locality_name_type":"post_town",)" R"("sublocality_name_type":"neighborhood",)" R"("zip_name_type":"postal",)" R"("zipex":"1234",)" R"("posturl":"http: R"(})")); Rule copy; EXPECT_NE(rule.GetFormat(), copy.GetFormat()); EXPECT_NE(rule.GetLatinFormat(), copy.GetLatinFormat()); EXPECT_NE(rule.GetId(), copy.GetId()); EXPECT_NE(rule.GetRequired(), copy.GetRequired()); EXPECT_NE(rule.GetSubKeys(), copy.GetSubKeys()); EXPECT_NE(rule.GetLanguages(), copy.GetLanguages()); EXPECT_NE(rule.GetAdminAreaNameMessageId(), copy.GetAdminAreaNameMessageId()); EXPECT_NE(rule.GetPostalCodeNameMessageId(), copy.GetPostalCodeNameMessageId()); EXPECT_NE(rule.GetLocalityNameMessageId(), copy.GetLocalityNameMessageId()); EXPECT_NE(rule.GetSublocalityNameMessageId(), copy.GetSublocalityNameMessageId()); EXPECT_NE(rule.GetName(), copy.GetName()); EXPECT_NE(rule.GetLatinName(), copy.GetLatinName()); EXPECT_NE(rule.GetPostalCodeExample(), copy.GetPostalCodeExample()); EXPECT_NE(rule.GetPostServiceUrl(), copy.GetPostServiceUrl()); EXPECT_TRUE(rule.GetPostalCodeMatcher() != nullptr); EXPECT_TRUE(copy.GetPostalCodeMatcher() == nullptr); copy.CopyFrom(rule); EXPECT_EQ(rule.GetFormat(), copy.GetFormat()); EXPECT_EQ(rule.GetLatinFormat(), copy.GetLatinFormat()); EXPECT_EQ(rule.GetId(), copy.GetId()); EXPECT_EQ(rule.GetRequired(), copy.GetRequired()); EXPECT_EQ(rule.GetSubKeys(), copy.GetSubKeys()); EXPECT_EQ(rule.GetLanguages(), copy.GetLanguages()); EXPECT_EQ(rule.GetAdminAreaNameMessageId(), copy.GetAdminAreaNameMessageId()); EXPECT_EQ(rule.GetPostalCodeNameMessageId(), copy.GetPostalCodeNameMessageId()); EXPECT_EQ(rule.GetSublocalityNameMessageId(), copy.GetSublocalityNameMessageId()); EXPECT_EQ(rule.GetLocalityNameMessageId(), copy.GetLocalityNameMessageId()); EXPECT_EQ(rule.GetName(), copy.GetName()); EXPECT_EQ(rule.GetLatinName(), copy.GetLatinName()); EXPECT_EQ(rule.GetPostalCodeExample(), copy.GetPostalCodeExample()); EXPECT_EQ(rule.GetPostServiceUrl(), copy.GetPostServiceUrl()); EXPECT_TRUE(copy.GetPostalCodeMatcher() != nullptr); } TEST(RuleTest, ParseOverwritesRule) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{" "\"fmt\":\"%S%Z\"," "\"state_name_type\":\"area\"," "\"zip\":\"1234\"," "\"zip_name_type\":\"postal\"," "\"zipex\":\"1234\"," "\"posturl\":\"http: "}")); EXPECT_FALSE(rule.GetFormat().empty()); EXPECT_EQ(IDS_LIBADDRESSINPUT_AREA, rule.GetAdminAreaNameMessageId()); EXPECT_EQ(IDS_LIBADDRESSINPUT_POSTAL_CODE_LABEL, rule.GetPostalCodeNameMessageId()); EXPECT_EQ("1234", rule.GetSolePostalCode()); EXPECT_EQ("1234", rule.GetPostalCodeExample()); EXPECT_EQ("http: ASSERT_TRUE(rule.ParseSerializedRule("{" "\"fmt\":\"\"," "\"state_name_type\":\"do_si\"," "\"zip_name_type\":\"zip\"," "\"zipex\":\"5678\"," "\"posturl\":\"http: "}")); EXPECT_TRUE(rule.GetFormat().empty()); EXPECT_EQ(IDS_LIBADDRESSINPUT_DO_SI, rule.GetAdminAreaNameMessageId()); EXPECT_EQ(IDS_LIBADDRESSINPUT_ZIP_CODE_LABEL, rule.GetPostalCodeNameMessageId()); EXPECT_TRUE(rule.GetSolePostalCode().empty()); EXPECT_EQ("5678", rule.GetPostalCodeExample()); EXPECT_EQ("http: } TEST(RuleTest, ParsesFormatCorrectly) { const std::vector<FormatElement> expected{ FormatElement{ADMIN_AREA}, FormatElement{LOCALITY}, }; Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"fmt\":\"%S%C\"}")); EXPECT_EQ(expected, rule.GetFormat()); } TEST(RuleTest, ParsesNameCorrectly) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"name\":\"Le Test\"}")); EXPECT_EQ("Le Test", rule.GetName()); } TEST(RuleTest, ParsesLatinNameCorrectly) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"lname\":\"Testistan\"}")); EXPECT_EQ("Testistan", rule.GetLatinName()); } TEST(RuleTest, ParsesLatinFormatCorrectly) { const std::vector<FormatElement> expected{ FormatElement{LOCALITY}, FormatElement{ADMIN_AREA}, }; Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"lfmt\":\"%C%S\"}")); EXPECT_EQ(expected, rule.GetLatinFormat()); } TEST(RuleTest, ParsesRequiredCorrectly) { const std::vector<AddressField> expected{ STREET_ADDRESS, LOCALITY, }; Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"require\":\"AC\"}")); EXPECT_EQ(expected, rule.GetRequired()); } TEST(RuleTest, ParsesSubKeysCorrectly) { const std::vector<std::string> expected{ "aa", "bb", "cc", }; Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"sub_keys\":\"aa~bb~cc\"}")); EXPECT_EQ(expected, rule.GetSubKeys()); } TEST(RuleTest, ParsesLanguagesCorrectly) { const std::vector<std::string> expected{ "de", "fr", "it", }; Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"languages\":\"de~fr~it\"}")); EXPECT_EQ(expected, rule.GetLanguages()); } TEST(RuleTest, ParsesPostalCodeExampleCorrectly) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"zipex\":\"1234,12345-6789\"}")); EXPECT_EQ("1234,12345-6789", rule.GetPostalCodeExample()); } TEST(RuleTest, ParsesPostServiceUrlCorrectly) { Rule rule; ASSERT_TRUE( rule.ParseSerializedRule("{\"posturl\":\"http: EXPECT_EQ("http: } TEST(RuleTest, PostalCodeMatcher) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule(R"({"zip":"\\d{3}"})")); EXPECT_TRUE(rule.GetPostalCodeMatcher() != nullptr); } TEST(RuleTest, PostalCodeMatcherInvalidRegExp) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule(R"({"zip":"("})")); EXPECT_TRUE(rule.GetPostalCodeMatcher() == nullptr); } TEST(RuleTest, ParsesJsonRuleCorrectly) { Json json; ASSERT_TRUE(json.ParseObject(R"({"zip":"\\d{3}"})")); Rule rule; rule.ParseJsonRule(json); EXPECT_TRUE(rule.GetPostalCodeMatcher() != nullptr); } TEST(RuleTest, EmptyStringIsNotValid) { Rule rule; EXPECT_FALSE(rule.ParseSerializedRule(std::string())); } TEST(RuleTest, EmptyDictionaryIsValid) { Rule rule; EXPECT_TRUE(rule.ParseSerializedRule("{}")); } class PostalCodeNameParseTest : public testing::TestWithParam<std::pair<std::string, int> > { public: PostalCodeNameParseTest(const PostalCodeNameParseTest&) = delete; PostalCodeNameParseTest& operator=(const PostalCodeNameParseTest&) = delete; protected: PostalCodeNameParseTest() = default; Rule rule_; }; TEST_P(PostalCodeNameParseTest, ParsedCorrectly) { ASSERT_TRUE(rule_.ParseSerializedRule(GetParam().first)); EXPECT_EQ(GetParam().second, rule_.GetPostalCodeNameMessageId()); } INSTANTIATE_TEST_SUITE_P( AllPostalCodeNames, PostalCodeNameParseTest, testing::Values(std::make_pair("{\"zip_name_type\":\"pin\"}", IDS_LIBADDRESSINPUT_PIN_CODE_LABEL), std::make_pair("{\"zip_name_type\":\"postal\"}", IDS_LIBADDRESSINPUT_POSTAL_CODE_LABEL), std::make_pair("{\"zip_name_type\":\"zip\"}", IDS_LIBADDRESSINPUT_ZIP_CODE_LABEL))); class LocalityNameParseTest : public testing::TestWithParam<std::pair<std::string, int> > { public: LocalityNameParseTest(const LocalityNameParseTest&) = delete; LocalityNameParseTest& operator=(const LocalityNameParseTest&) = delete; protected: LocalityNameParseTest() = default; Rule rule_; }; TEST_P(LocalityNameParseTest, ParsedCorrectly) { ASSERT_TRUE(rule_.ParseSerializedRule(GetParam().first)); EXPECT_EQ(GetParam().second, rule_.GetLocalityNameMessageId()); } INSTANTIATE_TEST_SUITE_P( AllLocalityNames, LocalityNameParseTest, testing::Values(std::make_pair("{\"locality_name_type\":\"post_town\"}", IDS_LIBADDRESSINPUT_POST_TOWN), std::make_pair("{\"locality_name_type\":\"city\"}", IDS_LIBADDRESSINPUT_LOCALITY_LABEL), std::make_pair("{\"locality_name_type\":\"district\"}", IDS_LIBADDRESSINPUT_DISTRICT))); class SublocalityNameParseTest : public testing::TestWithParam<std::pair<std::string, int> > { public: SublocalityNameParseTest(const SublocalityNameParseTest&) = delete; SublocalityNameParseTest& operator=(const SublocalityNameParseTest&) = delete; protected: SublocalityNameParseTest() = default; Rule rule_; }; TEST_P(SublocalityNameParseTest, ParsedCorrectly) { ASSERT_TRUE(rule_.ParseSerializedRule(GetParam().first)); EXPECT_EQ(GetParam().second, rule_.GetSublocalityNameMessageId()); } INSTANTIATE_TEST_SUITE_P( AllSublocalityNames, SublocalityNameParseTest, testing::Values( std::make_pair("{\"sublocality_name_type\":\"village_township\"}", IDS_LIBADDRESSINPUT_VILLAGE_TOWNSHIP), std::make_pair("{\"sublocality_name_type\":\"neighborhood\"}", IDS_LIBADDRESSINPUT_NEIGHBORHOOD), std::make_pair("{\"sublocality_name_type\":\"suburb\"}", IDS_LIBADDRESSINPUT_SUBURB), std::make_pair("{\"sublocality_name_type\":\"district\"}", IDS_LIBADDRESSINPUT_DISTRICT))); class AdminAreaNameParseTest : public testing::TestWithParam<std::pair<std::string, int> > { public: AdminAreaNameParseTest(const AdminAreaNameParseTest&) = delete; AdminAreaNameParseTest& operator=(const AdminAreaNameParseTest&) = delete; protected: AdminAreaNameParseTest() = default; Rule rule_; }; TEST_P(AdminAreaNameParseTest, ParsedCorrectly) { ASSERT_TRUE(rule_.ParseSerializedRule(GetParam().first)); EXPECT_EQ(GetParam().second, rule_.GetAdminAreaNameMessageId()); } INSTANTIATE_TEST_SUITE_P( AllAdminAreaNames, AdminAreaNameParseTest, testing::Values(std::make_pair("{\"state_name_type\":\"area\"}", IDS_LIBADDRESSINPUT_AREA), std::make_pair("{\"state_name_type\":\"county\"}", IDS_LIBADDRESSINPUT_COUNTY), std::make_pair("{\"state_name_type\":\"department\"}", IDS_LIBADDRESSINPUT_DEPARTMENT), std::make_pair("{\"state_name_type\":\"district\"}", IDS_LIBADDRESSINPUT_DISTRICT), std::make_pair("{\"state_name_type\":\"do_si\"}", IDS_LIBADDRESSINPUT_DO_SI), std::make_pair("{\"state_name_type\":\"emirate\"}", IDS_LIBADDRESSINPUT_EMIRATE), std::make_pair("{\"state_name_type\":\"island\"}", IDS_LIBADDRESSINPUT_ISLAND), std::make_pair("{\"state_name_type\":\"parish\"}", IDS_LIBADDRESSINPUT_PARISH), std::make_pair("{\"state_name_type\":\"prefecture\"}", IDS_LIBADDRESSINPUT_PREFECTURE), std::make_pair("{\"state_name_type\":\"province\"}", IDS_LIBADDRESSINPUT_PROVINCE), std::make_pair("{\"state_name_type\":\"state\"}", IDS_LIBADDRESSINPUT_STATE))); class RuleParseTest : public testing::TestWithParam<std::string> { public: RuleParseTest(const RuleParseTest&) = delete; RuleParseTest& operator=(const RuleParseTest&) = delete; protected: RuleParseTest() = default; std::string GetRegionData() const { std::string data = RegionDataConstants::GetRegionData(GetParam()); return !data.empty() ? data : GetParam(); } Rule rule_; Localization localization_; }; TEST_P(RuleParseTest, RegionDataParsedSuccessfully) { EXPECT_TRUE(rule_.ParseSerializedRule(GetRegionData())); } TEST_P(RuleParseTest, AdminAreaNameTypeHasUiString) { const std::string& region_data = GetRegionData(); rule_.ParseSerializedRule(region_data); if (region_data.find("state_name_type") != std::string::npos) { EXPECT_NE(INVALID_MESSAGE_ID, rule_.GetAdminAreaNameMessageId()); EXPECT_FALSE( localization_.GetString(rule_.GetAdminAreaNameMessageId()).empty()); } } TEST_P(RuleParseTest, PostalCodeNameTypeHasUiString) { const std::string& region_data = GetRegionData(); rule_.ParseSerializedRule(region_data); if (region_data.find("zip_name_type") != std::string::npos) { EXPECT_NE(INVALID_MESSAGE_ID, rule_.GetPostalCodeNameMessageId()); EXPECT_FALSE( localization_.GetString(rule_.GetPostalCodeNameMessageId()).empty()); } } TEST_P(RuleParseTest, LocalityNameTypeHasUiString) { const std::string& region_data = GetRegionData(); rule_.ParseSerializedRule(region_data); if (region_data.find("\"locality_name_type") != std::string::npos) { EXPECT_NE(INVALID_MESSAGE_ID, rule_.GetLocalityNameMessageId()); EXPECT_FALSE( localization_.GetString(rule_.GetLocalityNameMessageId()).empty()); } } TEST_P(RuleParseTest, SublocalityNameTypeHasUiString) { const std::string& region_data = GetRegionData(); rule_.ParseSerializedRule(region_data); if (region_data.find("sublocality_name_type") != std::string::npos) { EXPECT_NE(INVALID_MESSAGE_ID, rule_.GetSublocalityNameMessageId()); EXPECT_FALSE( localization_.GetString(rule_.GetSublocalityNameMessageId()).empty()); } } TEST_P(RuleParseTest, SolePostalCode) { Rule rule; ASSERT_TRUE(rule.ParseSerializedRule("{\"zip\":\"1234\"}")); EXPECT_TRUE(rule.GetPostalCodeMatcher() != nullptr); EXPECT_EQ(rule.GetSolePostalCode(), "1234"); Rule copy; EXPECT_TRUE(copy.GetPostalCodeMatcher() == nullptr); EXPECT_TRUE(copy.GetSolePostalCode().empty()); copy.CopyFrom(rule); EXPECT_TRUE(copy.GetPostalCodeMatcher() != nullptr); EXPECT_EQ(rule.GetSolePostalCode(), copy.GetSolePostalCode()); } INSTANTIATE_TEST_SUITE_P( AllRulesTest, RuleParseTest, testing::ValuesIn(RegionDataConstants::GetRegionCodes())); INSTANTIATE_TEST_SUITE_P( DefaultRuleTest, RuleParseTest, testing::Values(RegionDataConstants::GetDefaultRegionData())); }
501
cpp
google/libaddressinput
language
cpp/src/language.cc
cpp/test/language_test.cc
#ifndef I18N_ADDRESSINPUT_LANGUAGE_H_ #define I18N_ADDRESSINPUT_LANGUAGE_H_ #include <string> namespace i18n { namespace addressinput { class Rule; struct Language { explicit Language(const std::string& language_tag); ~Language(); std::string tag; std::string base; bool has_latin_script; }; Language ChooseBestAddressLanguage(const Rule& address_region_rule, const Language& ui_language); } } #endif #include "language.h" #include <algorithm> #include <cctype> #include <string> #include <vector> #include "rule.h" #include "util/string_split.h" namespace i18n { namespace addressinput { Language::Language(const std::string& language_tag) : tag(language_tag), base(), has_latin_script(false) { static const char kSubtagsSeparator = '-'; static const char kAlternativeSubtagsSeparator = '_'; std::replace( tag.begin(), tag.end(), kAlternativeSubtagsSeparator, kSubtagsSeparator); std::string lowercase = tag; std::transform( lowercase.begin(), lowercase.end(), lowercase.begin(), tolower); base = lowercase.substr(0, lowercase.find(kSubtagsSeparator)); static const char kLowercaseLatinScript[] = "latn"; std::vector<std::string> subtags; SplitString(lowercase, kSubtagsSeparator, &subtags); has_latin_script = (subtags.size() > 1 && subtags[1] == kLowercaseLatinScript) || (subtags.size() > 2 && subtags[2] == kLowercaseLatinScript); } Language::~Language() = default; Language ChooseBestAddressLanguage(const Rule& address_region_rule, const Language& ui_language) { if (address_region_rule.GetLanguages().empty()) { return ui_language; } std::vector<Language> available_languages; for (const auto& language_tag : address_region_rule.GetLanguages()) { available_languages.emplace_back(language_tag); } if (ui_language.tag.empty()) { return available_languages.front(); } bool has_latin_format = !address_region_rule.GetLatinFormat().empty(); static const char kLatinScriptSuffix[] = "-Latn"; Language latin_script_language( available_languages.front().base + kLatinScriptSuffix); if (has_latin_format && ui_language.has_latin_script) { return latin_script_language; } for (const auto& language : available_languages) { if (ui_language.base == language.base) { return language; } } return has_latin_format ? latin_script_language : available_languages.front(); } } }
#include "language.h" #include <string> #include <gtest/gtest.h> namespace { using i18n::addressinput::Language; struct LanguageTestCase { LanguageTestCase(const std::string& input_language_tag, const std::string& expected_language_tag, const std::string& expected_base_language, bool expected_has_latin_script) : input_language_tag(input_language_tag), expected_language_tag(expected_language_tag), expected_base_language(expected_base_language), expected_has_latin_script(expected_has_latin_script) {} ~LanguageTestCase() = default; const std::string input_language_tag; const std::string expected_language_tag; const std::string expected_base_language; const bool expected_has_latin_script; }; class LanguageTest : public testing::TestWithParam<LanguageTestCase> { public: LanguageTest(const LanguageTest&) = delete; LanguageTest& operator=(const LanguageTest&) = delete; protected: LanguageTest() = default; }; TEST_P(LanguageTest, ExtractedDataIsCorrect) { Language language(GetParam().input_language_tag); EXPECT_EQ(GetParam().expected_language_tag, language.tag); EXPECT_EQ(GetParam().expected_base_language, language.base); EXPECT_EQ(GetParam().expected_has_latin_script, language.has_latin_script); } INSTANTIATE_TEST_SUITE_P( LanguageTestCases, LanguageTest, testing::Values(LanguageTestCase("", "", "", false), LanguageTestCase("en", "en", "en", false), LanguageTestCase("zh-Latn-CN", "zh-Latn-CN", "zh", true), LanguageTestCase("zh-cmn-Latn-CN", "zh-cmn-Latn-CN", "zh", true), LanguageTestCase("zh-Hans", "zh-Hans", "zh", false), LanguageTestCase("en_GB", "en-GB", "en", false))); }
502
cpp
google/libaddressinput
retriever
cpp/src/retriever.cc
cpp/test/retriever_test.cc
#ifndef I18N_ADDRESSINPUT_RETRIEVER_H_ #define I18N_ADDRESSINPUT_RETRIEVER_H_ #include <libaddressinput/callback.h> #include <memory> #include <string> namespace i18n { namespace addressinput { class Source; class Storage; class ValidatingStorage; class Retriever { public: using Callback = i18n::addressinput::Callback<const std::string&, const std::string&>; Retriever(const Retriever&) = delete; Retriever& operator=(const Retriever&) = delete; Retriever(const Source* source, Storage* storage); ~Retriever(); void Retrieve(const std::string& key, const Callback& retrieved) const; private: std::unique_ptr<const Source> source_; std::unique_ptr<ValidatingStorage> storage_; }; } } #endif #include "retriever.h" #include <libaddressinput/callback.h> #include <libaddressinput/source.h> #include <libaddressinput/storage.h> #include <cassert> #include <cstddef> #include <memory> #include <string> #include "validating_storage.h" namespace i18n { namespace addressinput { namespace { class Helper { public: Helper(const Helper&) = delete; Helper& operator=(const Helper&) = delete; Helper(const std::string& key, const Retriever::Callback& retrieved, const Source& source, ValidatingStorage* storage) : retrieved_(retrieved), source_(source), storage_(storage), fresh_data_ready_(BuildCallback(this, &Helper::OnFreshDataReady)), validated_data_ready_( BuildCallback(this, &Helper::OnValidatedDataReady)), stale_data_() { assert(storage_ != nullptr); storage_->Get(key, *validated_data_ready_); } private: ~Helper() = default; void OnValidatedDataReady(bool success, const std::string& key, std::string* data) { if (success) { assert(data != nullptr); retrieved_(success, key, *data); delete this; } else { if (data != nullptr && !data->empty()) { stale_data_ = *data; } source_.Get(key, *fresh_data_ready_); } delete data; } void OnFreshDataReady(bool success, const std::string& key, std::string* data) { if (success) { assert(data != nullptr); retrieved_(true, key, *data); storage_->Put(key, data); data = nullptr; } else if (!stale_data_.empty()) { retrieved_(true, key, stale_data_); } else { retrieved_(false, key, std::string()); } delete data; delete this; } const Retriever::Callback& retrieved_; const Source& source_; ValidatingStorage* storage_; const std::unique_ptr<const Source::Callback> fresh_data_ready_; const std::unique_ptr<const Storage::Callback> validated_data_ready_; std::string stale_data_; }; } Retriever::Retriever(const Source* source, Storage* storage) : source_(source), storage_(new ValidatingStorage(storage)) { assert(source_ != nullptr); assert(storage_ != nullptr); } Retriever::~Retriever() = default; void Retriever::Retrieve(const std::string& key, const Callback& retrieved) const { new Helper(key, retrieved, *source_, storage_.get()); } } }
#include "retriever.h" #include <libaddressinput/callback.h> #include <libaddressinput/null_storage.h> #include <libaddressinput/storage.h> #include <cstddef> #include <memory> #include <string> #include <gtest/gtest.h> #include "mock_source.h" #include "testdata_source.h" #define CHECKSUM "dd63dafcbd4d5b28badfcaf86fb6fcdb" #define DATA "{'foo': 'bar'}" #define OLD_TIMESTAMP "0" namespace { using i18n::addressinput::BuildCallback; using i18n::addressinput::MockSource; using i18n::addressinput::NullStorage; using i18n::addressinput::Retriever; using i18n::addressinput::Storage; using i18n::addressinput::TestdataSource; const char kKey[] = "data/CA/AB--fr"; const char kEmptyData[] = "{}"; const char kStaleData[] = DATA; const char kStaleWrappedData[] = "timestamp=" OLD_TIMESTAMP "\n" "checksum=" CHECKSUM "\n" DATA; class RetrieverTest : public testing::Test { public: RetrieverTest(const RetrieverTest&) = delete; RetrieverTest& operator=(const RetrieverTest&) = delete; protected: RetrieverTest() : retriever_(new TestdataSource(false), new NullStorage), success_(false), key_(), data_(), data_ready_(BuildCallback(this, &RetrieverTest::OnDataReady)) {} Retriever retriever_; bool success_; std::string key_; std::string data_; const std::unique_ptr<const Retriever::Callback> data_ready_; private: void OnDataReady(bool success, const std::string& key, const std::string& data) { success_ = success; key_ = key; data_ = data; } }; TEST_F(RetrieverTest, RetrieveData) { retriever_.Retrieve(kKey, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kKey, key_); EXPECT_FALSE(data_.empty()); EXPECT_NE(kEmptyData, data_); } TEST_F(RetrieverTest, ReadDataFromStorage) { retriever_.Retrieve(kKey, *data_ready_); retriever_.Retrieve(kKey, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kKey, key_); EXPECT_FALSE(data_.empty()); EXPECT_NE(kEmptyData, data_); } TEST_F(RetrieverTest, MissingKeyReturnsEmptyData) { static const char kMissingKey[] = "junk"; retriever_.Retrieve(kMissingKey, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kMissingKey, key_); EXPECT_EQ(kEmptyData, data_); } TEST_F(RetrieverTest, FaultySource) { Retriever bad_retriever(new MockSource, new NullStorage); bad_retriever.Retrieve(kKey, *data_ready_); EXPECT_FALSE(success_); EXPECT_EQ(kKey, key_); EXPECT_TRUE(data_.empty()); } class StaleStorage : public Storage { public: StaleStorage(const StaleStorage&) = delete; StaleStorage& operator=(const StaleStorage&) = delete; StaleStorage() : data_updated_(false) {} ~StaleStorage() override = default; void Get(const std::string& key, const Callback& data_ready) const override { data_ready(true, key, new std::string(kStaleWrappedData)); } void Put(const std::string& key, std::string* value) override { ASSERT_TRUE(value != nullptr); data_updated_ = true; delete value; } bool data_updated_; }; TEST_F(RetrieverTest, UseStaleDataWhenSourceFails) { auto* stale_storage = new StaleStorage; Retriever resilient_retriever(new MockSource, stale_storage); resilient_retriever.Retrieve(kKey, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kKey, key_); EXPECT_EQ(kStaleData, data_); EXPECT_FALSE(stale_storage->data_updated_); } TEST_F(RetrieverTest, DoNotUseStaleDataWhenSourceSucceeds) { auto* stale_storage = new StaleStorage; Retriever resilient_retriever(new TestdataSource(false), stale_storage); resilient_retriever.Retrieve(kKey, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kKey, key_); EXPECT_FALSE(data_.empty()); EXPECT_NE(kEmptyData, data_); EXPECT_NE(kStaleData, data_); EXPECT_TRUE(stale_storage->data_updated_); } }
503
cpp
google/libaddressinput
preload_supplier
cpp/src/preload_supplier.cc
cpp/test/preload_supplier_test.cc
#ifndef I18N_ADDRESSINPUT_PRELOAD_SUPPLIER_H_ #define I18N_ADDRESSINPUT_PRELOAD_SUPPLIER_H_ #include <libaddressinput/callback.h> #include <libaddressinput/supplier.h> #include <map> #include <memory> #include <set> #include <string> #include <vector> namespace i18n { namespace addressinput { class IndexMap; class LookupKey; class Retriever; class Rule; class Source; class Storage; class PreloadSupplier : public Supplier { public: using Callback = i18n::addressinput::Callback<const std::string&, int>; PreloadSupplier(const PreloadSupplier&) = delete; PreloadSupplier& operator=(const PreloadSupplier&) = delete; PreloadSupplier(const Source* source, Storage* storage); ~PreloadSupplier() override; void Supply(const LookupKey& lookup_key, const Supplier::Callback& supplied) override; void SupplyGlobally(const LookupKey& lookup_key, const Supplier::Callback& supplied) override; const Rule* GetRule(const LookupKey& lookup_key) const; void LoadRules(const std::string& region_code, const Callback& loaded); const std::map<std::string, const Rule*>& GetRulesForRegion( const std::string& region_code) const; bool IsLoaded(const std::string& region_code) const; bool IsPending(const std::string& region_code) const; size_t GetLoadedRuleDepth(const std::string& region_code) const override; private: bool GetRuleHierarchy(const LookupKey& lookup_key, RuleHierarchy* hierarchy, const bool search_globally) const; bool IsLoadedKey(const std::string& key) const; bool IsPendingKey(const std::string& key) const; const std::unique_ptr<const Retriever> retriever_; std::set<std::string> pending_; const std::unique_ptr<IndexMap> rule_index_; const std::unique_ptr<IndexMap> language_rule_index_; std::vector<const Rule*> rule_storage_; std::map<std::string, std::map<std::string, const Rule*> > region_rules_; }; } } #endif #include <libaddressinput/preload_supplier.h> #include <libaddressinput/address_data.h> #include <libaddressinput/address_field.h> #include <libaddressinput/callback.h> #include <libaddressinput/supplier.h> #include <algorithm> #include <cassert> #include <cstddef> #include <map> #include <memory> #include <set> #include <stack> #include <string> #include <vector> #include "lookup_key.h" #include "region_data_constants.h" #include "retriever.h" #include "rule.h" #include "util/json.h" #include "util/size.h" #include "util/string_compare.h" namespace i18n { namespace addressinput { namespace { class IndexLess { public: bool operator()(const std::string& a, const std::string& b) const { static const StringCompare kStringCompare; return kStringCompare.NaturalLess(a, b); } }; } class IndexMap : public std::map<std::string, const Rule*, IndexLess> {}; namespace { class Helper { public: Helper(const Helper&) = delete; Helper& operator=(const Helper&) = delete; Helper(const std::string& region_code, const std::string& key, const PreloadSupplier::Callback& loaded, const Retriever& retriever, std::set<std::string>* pending, IndexMap* rule_index, IndexMap* language_rule_index, std::vector<const Rule*>* rule_storage, std::map<std::string, const Rule*>* region_rules) : region_code_(region_code), loaded_(loaded), pending_(pending), rule_index_(rule_index), language_rule_index_(language_rule_index), rule_storage_(rule_storage), region_rules_(region_rules), retrieved_(BuildCallback(this, &Helper::OnRetrieved)) { assert(pending_ != nullptr); assert(rule_index_ != nullptr); assert(rule_storage_ != nullptr); assert(region_rules_ != nullptr); assert(retrieved_ != nullptr); pending_->insert(key); retriever.Retrieve(key, *retrieved_); } private: ~Helper() = default; void OnRetrieved(bool success, const std::string& key, const std::string& data) { int rule_count = 0; size_t status = pending_->erase(key); assert(status == 1); (void)status; Json json; std::string id; std::vector<const Rule*> sub_rules; auto last_index_it = rule_index_->end(); auto last_latin_it = rule_index_->end(); auto language_index_it = language_rule_index_->end(); auto last_region_it = region_rules_->end(); IndexMap::const_iterator hints[size(LookupKey::kHierarchy) - 1]; std::fill(hints, hints + size(hints), rule_index_->end()); if (!success) { goto callback; } if (!json.ParseObject(data)) { success = false; goto callback; } for (auto ptr : json.GetSubDictionaries()) { assert(ptr != nullptr); if (!ptr->GetStringValueForKey("id", &id)) { success = false; goto callback; } assert(!id.empty()); size_t depth = std::count(id.begin(), id.end(), '/') - 1; assert(depth < size(LookupKey::kHierarchy)); AddressField field = LookupKey::kHierarchy[depth]; auto* rule = new Rule; if (field == COUNTRY) { rule->CopyFrom(Rule::GetDefault()); } rule->ParseJsonRule(*ptr); assert(id == rule->GetId()); rule_storage_->push_back(rule); if (depth > 0) { sub_rules.push_back(rule); } last_index_it = rule_index_->emplace_hint(last_index_it, id, rule); last_region_it = region_rules_->emplace_hint(last_region_it, id, rule); ++rule_count; } for (auto ptr : sub_rules) { assert(ptr != nullptr); std::stack<const Rule*> hierarchy; hierarchy.push(ptr); for (std::string parent_id(ptr->GetId());;) { std::string::size_type pos = parent_id.rfind('/'); if (pos == sizeof "data/ZZ" - 1) { break; } parent_id.resize(pos); IndexMap::const_iterator* const hint = &hints[hierarchy.size() - 1]; if (*hint == rule_index_->end() || (*hint)->first != parent_id) { *hint = rule_index_->find(parent_id); } assert(*hint != rule_index_->end()); hierarchy.push((*hint)->second); } std::string human_id(ptr->GetId().substr(0, sizeof "data/ZZ" - 1)); std::string latin_id(human_id); for (; !hierarchy.empty(); hierarchy.pop()) { const Rule* rule = hierarchy.top(); human_id.push_back('/'); if (!rule->GetName().empty()) { human_id.append(rule->GetName()); } else { const std::string& id = rule->GetId(); std::string::size_type pos = id.rfind('/'); assert(pos != std::string::npos); human_id.append(id.substr(pos + 1)); } if (!rule->GetLatinName().empty()) { latin_id.push_back('/'); latin_id.append(rule->GetLatinName()); } } { const std::string& id = ptr->GetId(); std::string::size_type pos = id.rfind("--"); if (pos != std::string::npos) { language_index_it = language_rule_index_->emplace_hint( language_index_it, human_id, ptr); human_id.append(id, pos, id.size() - pos); } } last_index_it = rule_index_->emplace_hint(last_index_it, human_id, ptr); if (std::count(human_id.begin(), human_id.end(), '/') == std::count(latin_id.begin(), latin_id.end(), '/')) { last_latin_it = rule_index_->emplace_hint(last_latin_it, latin_id, ptr); } } callback: loaded_(success, region_code_, rule_count); delete this; } const std::string region_code_; const PreloadSupplier::Callback& loaded_; std::set<std::string>* const pending_; IndexMap* const rule_index_; IndexMap* const language_rule_index_; std::vector<const Rule*>* const rule_storage_; std::map<std::string, const Rule*>* const region_rules_; const std::unique_ptr<const Retriever::Callback> retrieved_; }; std::string KeyFromRegionCode(const std::string& region_code) { AddressData address; address.region_code = region_code; LookupKey lookup_key; lookup_key.FromAddress(address); return lookup_key.ToKeyString(0); } } PreloadSupplier::PreloadSupplier(const Source* source, Storage* storage) : retriever_(new Retriever(source, storage)), pending_(), rule_index_(new IndexMap), language_rule_index_(new IndexMap), rule_storage_(), region_rules_() {} PreloadSupplier::~PreloadSupplier() { for (auto ptr : rule_storage_) { delete ptr; } } void PreloadSupplier::Supply(const LookupKey& lookup_key, const Supplier::Callback& supplied) { Supplier::RuleHierarchy hierarchy; bool success = GetRuleHierarchy(lookup_key, &hierarchy, false); supplied(success, lookup_key, hierarchy); } void PreloadSupplier::SupplyGlobally(const LookupKey& lookup_key, const Supplier::Callback& supplied) { Supplier::RuleHierarchy hierarchy; bool success = GetRuleHierarchy(lookup_key, &hierarchy, true); supplied(success, lookup_key, hierarchy); } const Rule* PreloadSupplier::GetRule(const LookupKey& lookup_key) const { assert(IsLoaded(lookup_key.GetRegionCode())); Supplier::RuleHierarchy hierarchy; if (!GetRuleHierarchy(lookup_key, &hierarchy, false)) { return nullptr; } return hierarchy.rule[lookup_key.GetDepth()]; } void PreloadSupplier::LoadRules(const std::string& region_code, const Callback& loaded) { const std::string key = KeyFromRegionCode(region_code); if (IsLoadedKey(key)) { loaded(true, region_code, 0); return; } if (IsPendingKey(key)) { return; } new Helper(region_code, key, loaded, *retriever_, &pending_, rule_index_.get(), language_rule_index_.get(), &rule_storage_, &region_rules_[region_code]); } const std::map<std::string, const Rule*>& PreloadSupplier::GetRulesForRegion( const std::string& region_code) const { assert(IsLoaded(region_code)); return region_rules_.find(region_code)->second; } bool PreloadSupplier::IsLoaded(const std::string& region_code) const { return IsLoadedKey(KeyFromRegionCode(region_code)); } bool PreloadSupplier::IsPending(const std::string& region_code) const { return IsPendingKey(KeyFromRegionCode(region_code)); } bool PreloadSupplier::GetRuleHierarchy(const LookupKey& lookup_key, RuleHierarchy* hierarchy, const bool search_globally) const { assert(hierarchy != nullptr); if (RegionDataConstants::IsSupported(lookup_key.GetRegionCode())) { size_t max_depth = std::min( lookup_key.GetDepth(), RegionDataConstants::GetMaxLookupKeyDepth(lookup_key.GetRegionCode())); for (size_t depth = 0; depth <= max_depth; ++depth) { const std::string key = lookup_key.ToKeyString(depth); const Rule* rule = nullptr; auto it = rule_index_->find(key); if (it != rule_index_->end()) { rule = it->second; } else if (search_globally && depth > 0 && !hierarchy->rule[0]->GetLanguages().empty()) { it = language_rule_index_->find(key); if (it != language_rule_index_->end()) { rule = it->second; } } if (rule == nullptr) { return depth > 0; } hierarchy->rule[depth] = rule; } } return true; } size_t PreloadSupplier::GetLoadedRuleDepth( const std::string& region_code) const { const size_t code_size = 7; std::string full_code = region_code.substr(0, code_size); size_t depth = 0; auto it = rule_index_->find(full_code); while (it != rule_index_->end()) { const Rule* rule = it->second; depth++; if (rule->GetSubKeys().empty()) return depth; full_code += "/" + rule->GetSubKeys()[0]; it = rule_index_->find(full_code); } return depth; } bool PreloadSupplier::IsLoadedKey(const std::string& key) const { return rule_index_->find(key) != rule_index_->end(); } bool PreloadSupplier::IsPendingKey(const std::string& key) const { return pending_.find(key) != pending_.end(); } } }
#include <libaddressinput/preload_supplier.h> #include <libaddressinput/address_data.h> #include <libaddressinput/callback.h> #include <libaddressinput/null_storage.h> #include <libaddressinput/supplier.h> #include <cstddef> #include <memory> #include <string> #include <gtest/gtest.h> #include "lookup_key.h" #include "rule.h" #include "testdata_source.h" namespace { using i18n::addressinput::AddressData; using i18n::addressinput::BuildCallback; using i18n::addressinput::LookupKey; using i18n::addressinput::NullStorage; using i18n::addressinput::PreloadSupplier; using i18n::addressinput::Rule; using i18n::addressinput::Supplier; using i18n::addressinput::TestdataSource; class PreloadSupplierTest : public testing::Test { public: PreloadSupplierTest(const PreloadSupplierTest&) = delete; PreloadSupplierTest& operator=(const PreloadSupplierTest&) = delete; protected: PreloadSupplierTest() : supplier_(new TestdataSource(true), new NullStorage), loaded_callback_(BuildCallback(this, &PreloadSupplierTest::OnLoaded)), supplied_callback_( BuildCallback(this, &PreloadSupplierTest::OnSupplied)) {} PreloadSupplier supplier_; const std::unique_ptr<const PreloadSupplier::Callback> loaded_callback_; const std::unique_ptr<const Supplier::Callback> supplied_callback_; Supplier::RuleHierarchy hierarchy_; private: void OnLoaded(bool success, const std::string& region_code, int num_rules) { ASSERT_TRUE(success); ASSERT_FALSE(region_code.empty()); ASSERT_LT(0, num_rules); ASSERT_TRUE(supplier_.IsLoaded(region_code)); } void OnSupplied(bool success, const LookupKey& lookup_key, const Supplier::RuleHierarchy& hierarchy) { ASSERT_TRUE(success); hierarchy_ = hierarchy; } }; TEST_F(PreloadSupplierTest, GetUsRule) { supplier_.LoadRules("US", *loaded_callback_); LookupKey us_key; const AddressData us_address{.region_code = "US"}; us_key.FromAddress(us_address); const Rule* rule = supplier_.GetRule(us_key); ASSERT_TRUE(rule != nullptr); EXPECT_EQ("data/US", rule->GetId()); } TEST_F(PreloadSupplierTest, GetUsCaRule) { supplier_.LoadRules("US", *loaded_callback_); LookupKey ca_key; const AddressData ca_address{ .region_code = "US", .administrative_area = "CA", }; ca_key.FromAddress(ca_address); const Rule* rule = supplier_.GetRule(ca_key); ASSERT_TRUE(rule != nullptr); EXPECT_EQ("data/US/CA", rule->GetId()); } TEST_F(PreloadSupplierTest, GetUsCaliforniaRule) { supplier_.LoadRules("US", *loaded_callback_); LookupKey ca_key; const AddressData ca_address{ .region_code = "US", .administrative_area = "California", }; ca_key.FromAddress(ca_address); const Rule* rule = supplier_.GetRule(ca_key); ASSERT_TRUE(rule != nullptr); EXPECT_EQ("data/US/CA", rule->GetId()); } TEST_F(PreloadSupplierTest, GetZwRule) { supplier_.LoadRules("ZW", *loaded_callback_); LookupKey zw_key; const AddressData zw_address{.region_code = "ZW"}; zw_key.FromAddress(zw_address); const Rule* rule = supplier_.GetRule(zw_key); ASSERT_TRUE(rule != nullptr); EXPECT_EQ("data/ZW", rule->GetId()); } TEST_F(PreloadSupplierTest, GetUnknownRule) { supplier_.LoadRules("US", *loaded_callback_); LookupKey unknown_key; const AddressData unknown_address{ .region_code = "US", .administrative_area = "ZZ", }; unknown_key.FromAddress(unknown_address); const Rule* rule = supplier_.GetRule(unknown_key); EXPECT_TRUE(rule == nullptr); } TEST_F(PreloadSupplierTest, GetTooPreciseRule) { supplier_.LoadRules("US", *loaded_callback_); LookupKey precise_key; const AddressData precise_address{ .region_code = "US", .administrative_area = "CA", .locality = "Mountain View", }; precise_key.FromAddress(precise_address); const Rule* rule = supplier_.GetRule(precise_key); EXPECT_TRUE(rule == nullptr); } TEST_F(PreloadSupplierTest, GetRulesForRegion) { supplier_.LoadRules("CN", *loaded_callback_); const auto& rules = supplier_.GetRulesForRegion("CN"); EXPECT_TRUE(rules.find("data/CN") != rules.end()); EXPECT_LT(1U, rules.size()); } TEST_F(PreloadSupplierTest, SupplyRegionCode) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "NB", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyGloballyRegionCode) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "NB", }; key.FromAddress(address); supplier_.SupplyGlobally(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyRegionName) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "New Brunswick", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyGloballyRegionName) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "New Brunswick", }; key.FromAddress(address); supplier_.SupplyGlobally(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyRegionNameLanguage) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "Nouveau-Brunswick", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); EXPECT_TRUE(hierarchy_.rule[1] == nullptr); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyRegionNameLanguageSet) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "Nouveau-Brunswick", .language_code = "fr", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB--fr", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyGloballyRegionNameLanguage) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "Nouveau-Brunswick", }; key.FromAddress(address); supplier_.SupplyGlobally(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB--fr", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyRegionNameHK) { supplier_.LoadRules("HK", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "HK", .administrative_area = "新界", .locality = "大嶼山石壁", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/HK/新界", hierarchy_.rule[1]->GetId()); ASSERT_TRUE(hierarchy_.rule[2] != nullptr); EXPECT_EQ("data/HK/新界/大嶼山石壁", hierarchy_.rule[2]->GetId()); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyGloballyRegionNameHKEnglish) { supplier_.LoadRules("HK", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "HK", .administrative_area = "New Territories", .locality = "Tsing Yi", }; key.FromAddress(address); supplier_.SupplyGlobally(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/HK/New Territories--en", hierarchy_.rule[1]->GetId()); ASSERT_TRUE(hierarchy_.rule[2] != nullptr); EXPECT_EQ("data/HK/New Territories/Tsing Yi--en", hierarchy_.rule[2]->GetId()); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyRegionNameAllLevels) { supplier_.LoadRules("CN", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CN", .administrative_area = "云南省", .locality = "临沧市", .dependent_locality = "临翔区", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CN/云南省", hierarchy_.rule[1]->GetId()); ASSERT_TRUE(hierarchy_.rule[2] != nullptr); EXPECT_EQ("data/CN/云南省/临沧市", hierarchy_.rule[2]->GetId()); ASSERT_TRUE(hierarchy_.rule[3] != nullptr); EXPECT_EQ("data/CN/云南省/临沧市/临翔区", hierarchy_.rule[3]->GetId()); } TEST_F(PreloadSupplierTest, GetLoadedRuleDepth) { supplier_.LoadRules("CA", *loaded_callback_); EXPECT_EQ(2, supplier_.GetLoadedRuleDepth("data/CA")); EXPECT_EQ(0, supplier_.GetLoadedRuleDepth( "data/CN")); supplier_.LoadRules("CN", *loaded_callback_); EXPECT_EQ(4, supplier_.GetLoadedRuleDepth( "data/CN")); EXPECT_EQ( 0, supplier_.GetLoadedRuleDepth("data/PP")); } }
504
cpp
google/libaddressinput
address_problem
cpp/src/address_problem.cc
cpp/test/address_problem_test.cc
#ifndef I18N_ADDRESSINPUT_ADDRESS_PROBLEM_H_ #define I18N_ADDRESSINPUT_ADDRESS_PROBLEM_H_ #include <iosfwd> namespace i18n { namespace addressinput { enum AddressProblem { UNEXPECTED_FIELD, MISSING_REQUIRED_FIELD, UNKNOWN_VALUE, INVALID_FORMAT, MISMATCHING_VALUE, USES_P_O_BOX, UNSUPPORTED_FIELD }; } } std::ostream& operator<<(std::ostream& o, i18n::addressinput::AddressProblem problem); #endif #include <libaddressinput/address_problem.h> #include <cstddef> #include <ostream> #include "util/size.h" using i18n::addressinput::AddressProblem; using i18n::addressinput::size; using i18n::addressinput::UNEXPECTED_FIELD; using i18n::addressinput::UNSUPPORTED_FIELD; std::ostream& operator<<(std::ostream& o, AddressProblem problem) { static const char* const kProblemNames[] = { "UNEXPECTED_FIELD", "MISSING_REQUIRED_FIELD", "UNKNOWN_VALUE", "INVALID_FORMAT", "MISMATCHING_VALUE", "USES_P_O_BOX", "UNSUPPORTED_FIELD", }; static_assert(UNEXPECTED_FIELD == 0, "bad_base"); static_assert(UNSUPPORTED_FIELD == size(kProblemNames) - 1, "bad_length"); if (problem < 0 || static_cast<size_t>(problem) >= size(kProblemNames)) { o << "[INVALID ENUM VALUE " << static_cast<int>(problem) << "]"; } else { o << kProblemNames[problem]; } return o; }
#include <libaddressinput/address_problem.h> #include <sstream> #include <gtest/gtest.h> namespace { using i18n::addressinput::UNKNOWN_VALUE; TEST(AddressProblemTest, ValidEnumValue) { std::ostringstream oss; oss << UNKNOWN_VALUE; EXPECT_EQ("UNKNOWN_VALUE", oss.str()); } }
505
cpp
google/libaddressinput
validating_storage
cpp/src/validating_storage.cc
cpp/test/validating_storage_test.cc
#ifndef I18N_ADDRESSINPUT_VALIDATING_STORAGE_H_ #define I18N_ADDRESSINPUT_VALIDATING_STORAGE_H_ #include <libaddressinput/storage.h> #include <memory> #include <string> namespace i18n { namespace addressinput { class ValidatingStorage : public Storage { public: ValidatingStorage(const ValidatingStorage&) = delete; ValidatingStorage& operator=(const ValidatingStorage&) = delete; explicit ValidatingStorage(Storage* storage); ~ValidatingStorage() override; void Put(const std::string& key, std::string* data) override; void Get(const std::string& key, const Callback& data_ready) const override; private: std::unique_ptr<Storage> wrapped_storage_; }; } } #endif #include "validating_storage.h" #include <libaddressinput/callback.h> #include <libaddressinput/storage.h> #include <cassert> #include <cstddef> #include <ctime> #include <memory> #include <string> #include "validating_util.h" namespace i18n { namespace addressinput { namespace { class Helper { public: Helper(const Helper&) = delete; Helper& operator=(const Helper&) = delete; Helper(const std::string& key, const ValidatingStorage::Callback& data_ready, const Storage& wrapped_storage) : data_ready_(data_ready), wrapped_data_ready_(BuildCallback(this, &Helper::OnWrappedDataReady)) { wrapped_storage.Get(key, *wrapped_data_ready_); } private: ~Helper() = default; void OnWrappedDataReady(bool success, const std::string& key, std::string* data) { if (success) { assert(data != nullptr); bool is_stale = !ValidatingUtil::UnwrapTimestamp(data, std::time(nullptr)); bool is_corrupted = !ValidatingUtil::UnwrapChecksum(data); success = !is_corrupted && !is_stale; if (is_corrupted) { delete data; data = nullptr; } } else { delete data; data = nullptr; } data_ready_(success, key, data); delete this; } const Storage::Callback& data_ready_; const std::unique_ptr<const Storage::Callback> wrapped_data_ready_; }; } ValidatingStorage::ValidatingStorage(Storage* storage) : wrapped_storage_(storage) { assert(wrapped_storage_ != nullptr); } ValidatingStorage::~ValidatingStorage() = default; void ValidatingStorage::Put(const std::string& key, std::string* data) { assert(data != nullptr); ValidatingUtil::Wrap(std::time(nullptr), data); wrapped_storage_->Put(key, data); } void ValidatingStorage::Get(const std::string& key, const Callback& data_ready) const { new Helper(key, data_ready, *wrapped_storage_); } } }
#include "validating_storage.h" #include <libaddressinput/callback.h> #include <libaddressinput/storage.h> #include <cstddef> #include <memory> #include <string> #include <gtest/gtest.h> #include "fake_storage.h" #define CHECKSUM "dd63dafcbd4d5b28badfcaf86fb6fcdb" #define DATA "{'foo': 'bar'}" #define OLD_TIMESTAMP "0" namespace { using i18n::addressinput::BuildCallback; using i18n::addressinput::FakeStorage; using i18n::addressinput::Storage; using i18n::addressinput::ValidatingStorage; const char kKey[] = "key"; const char kValidatedData[] = DATA; const char kStaleWrappedData[] = "timestamp=" OLD_TIMESTAMP "\n" "checksum=" CHECKSUM "\n" DATA; const char kEmptyData[] = ""; class ValidatingStorageTest : public testing::Test { public: ValidatingStorageTest(const ValidatingStorageTest&) = delete; ValidatingStorageTest& operator=(const ValidatingStorageTest&) = delete; protected: ValidatingStorageTest() : wrapped_storage_(new FakeStorage), storage_(wrapped_storage_), success_(false), key_(), data_(), data_ready_(BuildCallback(this, &ValidatingStorageTest::OnDataReady)) {} Storage* const wrapped_storage_; ValidatingStorage storage_; bool success_; std::string key_; std::string data_; const std::unique_ptr<const ValidatingStorage::Callback> data_ready_; private: void OnDataReady(bool success, const std::string& key, std::string* data) { ASSERT_FALSE(success && data == nullptr); success_ = success; key_ = key; if (data != nullptr) { data_ = *data; delete data; } } }; TEST_F(ValidatingStorageTest, GoodData) { storage_.Put(kKey, new std::string(kValidatedData)); storage_.Get(kKey, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kKey, key_); EXPECT_EQ(kValidatedData, data_); } TEST_F(ValidatingStorageTest, EmptyData) { storage_.Put(kKey, new std::string(kEmptyData)); storage_.Get(kKey, *data_ready_); EXPECT_TRUE(success_); EXPECT_EQ(kKey, key_); EXPECT_EQ(kEmptyData, data_); } TEST_F(ValidatingStorageTest, MissingKey) { storage_.Get(kKey, *data_ready_); EXPECT_FALSE(success_); EXPECT_EQ(kKey, key_); EXPECT_TRUE(data_.empty()); } TEST_F(ValidatingStorageTest, GarbageData) { storage_.Put(kKey, new std::string(kValidatedData)); wrapped_storage_->Put(kKey, new std::string("garbage")); storage_.Get(kKey, *data_ready_); EXPECT_FALSE(success_); EXPECT_EQ(kKey, key_); EXPECT_TRUE(data_.empty()); } TEST_F(ValidatingStorageTest, StaleData) { storage_.Put(kKey, new std::string(kValidatedData)); wrapped_storage_->Put(kKey, new std::string(kStaleWrappedData)); storage_.Get(kKey, *data_ready_); EXPECT_FALSE(success_); EXPECT_EQ(kKey, key_); EXPECT_EQ(kValidatedData, data_); } }
506
cpp
google/libaddressinput
ondemand_supply_task
cpp/src/ondemand_supply_task.cc
cpp/test/ondemand_supply_task_test.cc
#ifndef I18N_ADDRESSINPUT_ONDEMAND_SUPPLY_TASK_H_ #define I18N_ADDRESSINPUT_ONDEMAND_SUPPLY_TASK_H_ #include <libaddressinput/supplier.h> #include <map> #include <memory> #include <set> #include <string> #include "retriever.h" namespace i18n { namespace addressinput { class LookupKey; class Rule; class OndemandSupplyTask { public: OndemandSupplyTask(const OndemandSupplyTask&) = delete; OndemandSupplyTask& operator=(const OndemandSupplyTask&) = delete; OndemandSupplyTask(const LookupKey& lookup_key, std::map<std::string, const Rule*>* rules, const Supplier::Callback& supplied); ~OndemandSupplyTask(); void Queue(const std::string& key); void Retrieve(const Retriever& retriever); Supplier::RuleHierarchy hierarchy_; private: void Load(bool success, const std::string& key, const std::string& data); void Loaded(); std::set<std::string> pending_; const LookupKey& lookup_key_; std::map<std::string, const Rule*>* const rule_cache_; const Supplier::Callback& supplied_; const std::unique_ptr<const Retriever::Callback> retrieved_; bool success_; }; } } #endif #include "ondemand_supply_task.h" #include <libaddressinput/address_field.h> #include <libaddressinput/callback.h> #include <libaddressinput/supplier.h> #include <algorithm> #include <cassert> #include <cstddef> #include <map> #include <string> #include "lookup_key.h" #include "retriever.h" #include "rule.h" #include "util/size.h" namespace i18n { namespace addressinput { OndemandSupplyTask::OndemandSupplyTask( const LookupKey& lookup_key, std::map<std::string, const Rule*>* rules, const Supplier::Callback& supplied) : hierarchy_(), pending_(), lookup_key_(lookup_key), rule_cache_(rules), supplied_(supplied), retrieved_(BuildCallback(this, &OndemandSupplyTask::Load)), success_(true) { assert(rule_cache_ != nullptr); assert(retrieved_ != nullptr); } OndemandSupplyTask::~OndemandSupplyTask() = default; void OndemandSupplyTask::Queue(const std::string& key) { assert(pending_.find(key) == pending_.end()); pending_.insert(key); } void OndemandSupplyTask::Retrieve(const Retriever& retriever) { if (pending_.empty()) { Loaded(); } else { bool done = false; for (auto it = pending_.begin(); !done;) { const std::string& key = *it++; done = it == pending_.end(); retriever.Retrieve(key, *retrieved_); } } } void OndemandSupplyTask::Load(bool success, const std::string& key, const std::string& data) { size_t depth = std::count(key.begin(), key.end(), '/') - 1; assert(depth < size(LookupKey::kHierarchy)); size_t status = pending_.erase(key); assert(status == 1); (void)status; if (success) { if (data != "{}") { auto* rule = new Rule; if (LookupKey::kHierarchy[depth] == COUNTRY) { rule->CopyFrom(Rule::GetDefault()); } if (rule->ParseSerializedRule(data)) { auto result = rule_cache_->emplace(rule->GetId(), rule); if (!result.second) { delete rule; } hierarchy_.rule[depth] = result.first->second; } else { delete rule; success_ = false; } } } else { success_ = false; } if (pending_.empty()) { Loaded(); } } void OndemandSupplyTask::Loaded() { supplied_(success_, lookup_key_, hierarchy_); delete this; } } }
#include "ondemand_supply_task.h" #include <libaddressinput/callback.h> #include <libaddressinput/null_storage.h> #include <libaddressinput/supplier.h> #include <cstddef> #include <cstring> #include <map> #include <memory> #include <string> #include <gtest/gtest.h> #include "lookup_key.h" #include "mock_source.h" #include "retriever.h" #include "rule.h" #include "util/size.h" namespace { using i18n::addressinput::BuildCallback; using i18n::addressinput::LookupKey; using i18n::addressinput::MockSource; using i18n::addressinput::NullStorage; using i18n::addressinput::OndemandSupplyTask; using i18n::addressinput::Retriever; using i18n::addressinput::Rule; using i18n::addressinput::Supplier; class OndemandSupplyTaskTest : public testing::Test { public: OndemandSupplyTaskTest(const OndemandSupplyTaskTest&) = delete; OndemandSupplyTaskTest& operator=(const OndemandSupplyTaskTest&) = delete; protected: OndemandSupplyTaskTest() : success_(true), lookup_key_(), rule_(), called_(false), source_(new MockSource), rule_cache_(), retriever_(new Retriever(source_, new NullStorage)), supplied_(BuildCallback(this, &OndemandSupplyTaskTest::Supplied)), task_(new OndemandSupplyTask(lookup_key_, &rule_cache_, *supplied_)) {} ~OndemandSupplyTaskTest() override { for (const auto& pair : rule_cache_) { delete pair.second; } } void Queue(const std::string& key) { task_->Queue(key); } void Retrieve() { task_->Retrieve(*retriever_); } bool success_; LookupKey lookup_key_; const Rule* rule_[size(LookupKey::kHierarchy)]; bool called_; MockSource* const source_; private: void Supplied(bool success, const LookupKey& lookup_key, const Supplier::RuleHierarchy& hierarchy) { ASSERT_EQ(success_, success); ASSERT_EQ(&lookup_key_, &lookup_key); ASSERT_EQ(&task_->hierarchy_, &hierarchy); std::memcpy(rule_, hierarchy.rule, sizeof rule_); called_ = true; } std::map<std::string, const Rule*> rule_cache_; const std::unique_ptr<Retriever> retriever_; const std::unique_ptr<const Supplier::Callback> supplied_; OndemandSupplyTask* const task_; }; TEST_F(OndemandSupplyTaskTest, Empty) { ASSERT_NO_FATAL_FAILURE(Retrieve()); ASSERT_TRUE(called_); EXPECT_TRUE(rule_[0] == nullptr); EXPECT_TRUE(rule_[1] == nullptr); EXPECT_TRUE(rule_[2] == nullptr); EXPECT_TRUE(rule_[3] == nullptr); } TEST_F(OndemandSupplyTaskTest, Invalid) { Queue("data/XA"); success_ = false; ASSERT_NO_FATAL_FAILURE(Retrieve()); ASSERT_TRUE(called_); } TEST_F(OndemandSupplyTaskTest, Valid) { source_->data_ = {{"data/XA", R"({"id":"data/XA"})"}}; Queue("data/XA"); ASSERT_NO_FATAL_FAILURE(Retrieve()); ASSERT_TRUE(called_); EXPECT_TRUE(rule_[0] != nullptr); EXPECT_TRUE(rule_[1] == nullptr); EXPECT_TRUE(rule_[2] == nullptr); EXPECT_TRUE(rule_[3] == nullptr); EXPECT_EQ("data/XA", rule_[0]->GetId()); EXPECT_FALSE(rule_[0]->GetFormat().empty()); EXPECT_FALSE(rule_[0]->GetRequired().empty()); EXPECT_TRUE(rule_[0]->GetPostalCodeMatcher() == nullptr); } TEST_F(OndemandSupplyTaskTest, ValidHierarchy) { source_->data_ = { {"data/XA", R"({"id":"data/XA"})"}, {"data/XA/aa", R"({"id":"data/XA/aa"})"}, {"data/XA/aa/bb", R"({"id":"data/XA/aa/bb"})"}, {"data/XA/aa/bb/cc", R"({"id":"data/XA/aa/bb/cc"})"}, }; Queue("data/XA"); Queue("data/XA/aa"); Queue("data/XA/aa/bb"); Queue("data/XA/aa/bb/cc"); ASSERT_NO_FATAL_FAILURE(Retrieve()); ASSERT_TRUE(called_); EXPECT_TRUE(rule_[0] != nullptr); EXPECT_TRUE(rule_[1] != nullptr); EXPECT_TRUE(rule_[2] != nullptr); EXPECT_TRUE(rule_[3] != nullptr); EXPECT_EQ("data/XA", rule_[0]->GetId()); EXPECT_EQ("data/XA/aa", rule_[1]->GetId()); EXPECT_EQ("data/XA/aa/bb", rule_[2]->GetId()); EXPECT_EQ("data/XA/aa/bb/cc", rule_[3]->GetId()); EXPECT_FALSE(rule_[0]->GetFormat().empty()); EXPECT_FALSE(rule_[0]->GetRequired().empty()); EXPECT_TRUE(rule_[1]->GetFormat().empty()); EXPECT_TRUE(rule_[1]->GetRequired().empty()); EXPECT_TRUE(rule_[2]->GetFormat().empty()); EXPECT_TRUE(rule_[2]->GetRequired().empty()); EXPECT_TRUE(rule_[3]->GetFormat().empty()); EXPECT_TRUE(rule_[3]->GetRequired().empty()); } TEST_F(OndemandSupplyTaskTest, InvalidJson1) { source_->data_ = {{"data/XA", ":"}}; success_ = false; Queue("data/XA"); ASSERT_NO_FATAL_FAILURE(Retrieve()); ASSERT_TRUE(called_); } TEST_F(OndemandSupplyTaskTest, InvalidJson2) { source_->data_ = { {"data/XA", R"({"id":"data/XA"})"}, {"data/XA/aa", ":"}, }; success_ = false; Queue("data/XA"); Queue("data/XA/aa"); ASSERT_NO_FATAL_FAILURE(Retrieve()); ASSERT_TRUE(called_); } TEST_F(OndemandSupplyTaskTest, EmptyJsonJustMeansServerKnowsNothingAboutKey) { source_->data_ = { {"data/XA", R"({"id":"data/XA"})"}, {"data/XA/aa", "{}"}, }; Queue("data/XA"); Queue("data/XA/aa"); ASSERT_NO_FATAL_FAILURE(Retrieve()); ASSERT_TRUE(called_); EXPECT_TRUE(rule_[0] != nullptr); EXPECT_TRUE(rule_[1] == nullptr); EXPECT_TRUE(rule_[2] == nullptr); EXPECT_TRUE(rule_[3] == nullptr); EXPECT_EQ("data/XA", rule_[0]->GetId()); } TEST_F(OndemandSupplyTaskTest, IfCountryFailsAllFails) { source_->data_ = {{"data/XA/aa", R"({"id":"data/XA/aa"})"}}; success_ = false; Queue("data/XA"); Queue("data/XA/aa"); ASSERT_NO_FATAL_FAILURE(Retrieve()); ASSERT_TRUE(called_); } }
507
cpp
google/libaddressinput
string_compare
cpp/src/util/string_compare.cc
cpp/test/util/string_compare_test.cc
#ifndef I18N_ADDRESSINPUT_UTIL_STRING_COMPARE_H_ #define I18N_ADDRESSINPUT_UTIL_STRING_COMPARE_H_ #include <memory> #include <string> namespace i18n { namespace addressinput { class StringCompare { public: StringCompare(const StringCompare&) = delete; StringCompare& operator=(const StringCompare&) = delete; StringCompare(); ~StringCompare(); bool NaturalEquals(const std::string& a, const std::string& b) const; bool NaturalLess(const std::string& a, const std::string& b) const; private: class Impl; std::unique_ptr<Impl> impl_; }; } } #endif #include "string_compare.h" #include <cassert> #include <string> #include <re2/re2.h> #include "lru_cache_using_std.h" namespace { std::string ComputeMinPossibleMatch(const std::string& str) { std::string min, max; RE2::Options options; options.set_literal(true); options.set_case_sensitive(false); RE2 matcher(str, options); bool success = matcher.PossibleMatchRange(&min, &max, str.size()); assert(success); (void)success; return min; } } namespace i18n { namespace addressinput { class StringCompare::Impl { enum { MAX_CACHE_SIZE = 1 << 15 }; public: Impl(const Impl&) = delete; Impl& operator=(const Impl&) = delete; Impl() : min_possible_match_(&ComputeMinPossibleMatch, MAX_CACHE_SIZE) { options_.set_literal(true); options_.set_case_sensitive(false); } ~Impl() = default; bool NaturalEquals(const std::string& a, const std::string& b) const { RE2 matcher(b, options_); return RE2::FullMatch(a, matcher); } bool NaturalLess(const std::string& a, const std::string& b) const { const std::string& min_a(min_possible_match_(a)); const std::string& min_b(min_possible_match_(b)); return min_a < min_b; } private: RE2::Options options_; mutable lru_cache_using_std<std::string, std::string> min_possible_match_; }; StringCompare::StringCompare() : impl_(new Impl) {} StringCompare::~StringCompare() = default; bool StringCompare::NaturalEquals(const std::string& a, const std::string& b) const { return impl_->NaturalEquals(a, b); } bool StringCompare::NaturalLess(const std::string& a, const std::string& b) const { return impl_->NaturalLess(a, b); } } }
#include "util/string_compare.h" #include <string> #include <gtest/gtest.h> namespace { using i18n::addressinput::StringCompare; struct TestCase { TestCase(const std::string& left, const std::string& right, bool should_be_equal, bool should_be_less) : left(left), right(right), should_be_equal(should_be_equal), should_be_less(should_be_less) {} ~TestCase() = default; std::string left; std::string right; bool should_be_equal; bool should_be_less; }; class StringCompareTest : public testing::TestWithParam<TestCase> { public: StringCompareTest(const StringCompareTest&) = delete; StringCompareTest& operator=(const StringCompareTest&) = delete; protected: StringCompareTest() = default; StringCompare compare_; }; TEST_P(StringCompareTest, CorrectComparison) { if (GetParam().should_be_equal) { EXPECT_TRUE(compare_.NaturalEquals(GetParam().left, GetParam().right)); } else { EXPECT_FALSE(compare_.NaturalEquals(GetParam().left, GetParam().right)); } } TEST_P(StringCompareTest, CorrectLess) { if (GetParam().should_be_less) { EXPECT_TRUE(compare_.NaturalLess(GetParam().left, GetParam().right)); } else { EXPECT_FALSE(compare_.NaturalLess(GetParam().left, GetParam().right)); } } INSTANTIATE_TEST_SUITE_P( Comparisons, StringCompareTest, testing::Values(TestCase("foo", "foo", true, false), TestCase("foo", "FOO", true, false), TestCase("bar", "foo", false, true), TestCase("강원도", "강원도", true, false), TestCase("강원도", "대구광역시", false, true), TestCase("ZÜRICH", "zürich", true, false), TestCase("абв", "где", false, true), TestCase("абв", "ГДЕ", false, true), TestCase("где", "абв", false, false), TestCase("где", "АБВ", false, false))); }
508
cpp
google/libaddressinput
json
cpp/src/util/json.cc
cpp/test/util/json_test.cc
#ifndef I18N_ADDRESSINPUT_UTIL_JSON_H_ #define I18N_ADDRESSINPUT_UTIL_JSON_H_ #include <memory> #include <string> #include <vector> namespace i18n { namespace addressinput { class Json { public: Json(const Json&) = delete; Json& operator=(const Json&) = delete; Json(); ~Json(); bool ParseObject(const std::string& json); const std::vector<const Json*>& GetSubDictionaries() const; bool GetStringValueForKey(const std::string& key, std::string* value) const; private: class JsonImpl; friend class JsonImpl; explicit Json(JsonImpl* impl); std::unique_ptr<JsonImpl> impl_; }; } } #endif #include "json.h" #include <cassert> #include <cstddef> #include <memory> #include <string> #include <vector> #include <rapidjson/document.h> #include <rapidjson/reader.h> namespace i18n { namespace addressinput { using rapidjson::Document; using rapidjson::kParseValidateEncodingFlag; using rapidjson::Value; class Json::JsonImpl { public: JsonImpl(const JsonImpl&) = delete; JsonImpl& operator=(const JsonImpl&) = delete; explicit JsonImpl(const std::string& json) : document_(new Document), value_(document_.get()), dictionaries_(), valid_(false) { document_->Parse<kParseValidateEncodingFlag>(json.c_str()); valid_ = !document_->HasParseError() && document_->IsObject(); } ~JsonImpl() { for (auto ptr : dictionaries_) { delete ptr; } } bool valid() const { return valid_; } const std::vector<const Json*>& GetSubDictionaries() { if (dictionaries_.empty()) { for (Value::ConstMemberIterator member = value_->MemberBegin(); member != value_->MemberEnd(); ++member) { if (member->value.IsObject()) { dictionaries_.push_back(new Json(new JsonImpl(&member->value))); } } } return dictionaries_; } bool GetStringValueForKey(const std::string& key, std::string* value) const { assert(value != nullptr); Value::ConstMemberIterator member = value_->FindMember(key.c_str()); if (member == value_->MemberEnd() || !member->value.IsString()) { return false; } value->assign(member->value.GetString(), member->value.GetStringLength()); return true; } private: explicit JsonImpl(const Value* value) : document_(), value_(value), dictionaries_(), valid_(true) { assert(value_ != nullptr); assert(value_->IsObject()); } const std::unique_ptr<Document> document_; const Value* const value_; std::vector<const Json*> dictionaries_; bool valid_; }; Json::Json() : impl_() {} Json::~Json() = default; bool Json::ParseObject(const std::string& json) { assert(impl_ == nullptr); impl_.reset(new JsonImpl(json)); if (!impl_->valid()) { impl_.reset(); } return impl_ != nullptr; } const std::vector<const Json*>& Json::GetSubDictionaries() const { assert(impl_ != nullptr); return impl_->GetSubDictionaries(); } bool Json::GetStringValueForKey(const std::string& key, std::string* value) const { assert(impl_ != nullptr); return impl_->GetStringValueForKey(key, value); } Json::Json(JsonImpl* impl) : impl_(impl) {} } }
#include "util/json.h" #include <string> #include <gtest/gtest.h> namespace { using i18n::addressinput::Json; TEST(JsonTest, EmptyStringIsNotValid) { Json json; EXPECT_FALSE(json.ParseObject(std::string())); } TEST(JsonTest, EmptyDictionaryContainsNoKeys) { Json json; ASSERT_TRUE(json.ParseObject("{}")); std::string not_checked; EXPECT_FALSE(json.GetStringValueForKey("key", &not_checked)); EXPECT_FALSE(json.GetStringValueForKey(std::string(), &not_checked)); } TEST(JsonTest, InvalidJsonIsNotValid) { Json json; EXPECT_FALSE(json.ParseObject("{")); } TEST(JsonTest, OneKeyIsValid) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key": "value"})")); std::string value; EXPECT_TRUE(json.GetStringValueForKey("key", &value)); EXPECT_EQ("value", value); } TEST(JsonTest, EmptyStringKeyIsNotInObject) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key": "value"})")); std::string not_checked; EXPECT_FALSE(json.GetStringValueForKey(std::string(), &not_checked)); } TEST(JsonTest, EmptyKeyIsValid) { Json json; ASSERT_TRUE(json.ParseObject(R"({"": "value"})")); std::string value; EXPECT_TRUE(json.GetStringValueForKey(std::string(), &value)); EXPECT_EQ("value", value); } TEST(JsonTest, EmptyValueIsValid) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key": ""})")); std::string value; EXPECT_TRUE(json.GetStringValueForKey("key", &value)); EXPECT_TRUE(value.empty()); } TEST(JsonTest, Utf8EncodingIsValid) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key": "Ü"})")); std::string value; EXPECT_TRUE(json.GetStringValueForKey("key", &value)); EXPECT_EQ("Ü", value); } TEST(JsonTest, InvalidUtf8IsNotValid) { Json json; EXPECT_FALSE(json.ParseObject("{\"key\": \"\xC3\x28\"}")); } TEST(JsonTest, NullInMiddleIsNotValid) { Json json; static const char kJson[] = "{\"key\": \"val\0ue\"}"; EXPECT_FALSE(json.ParseObject(std::string(kJson, sizeof kJson - 1))); } TEST(JsonTest, TwoKeysAreValid) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key1": "value1", "key2": "value2"})")); std::string value; EXPECT_TRUE(json.GetStringValueForKey("key1", &value)); EXPECT_EQ("value1", value); EXPECT_TRUE(json.GetStringValueForKey("key2", &value)); EXPECT_EQ("value2", value); } TEST(JsonTest, ListIsNotValid) { Json json; EXPECT_FALSE(json.ParseObject("[]")); } TEST(JsonTest, StringIsNotValid) { Json json; EXPECT_FALSE(json.ParseObject(R"("value")")); } TEST(JsonTest, NumberIsNotValid) { Json json; EXPECT_FALSE(json.ParseObject("3")); } TEST(JsonTest, NoDictionaryFound) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key":"value"})")); EXPECT_TRUE(json.GetSubDictionaries().empty()); } TEST(JsonTest, DictionaryFound) { Json json; ASSERT_TRUE(json.ParseObject(R"({"key":{"inner_key":"value"}})")); const auto& sub_dicts = json.GetSubDictionaries(); ASSERT_EQ(1U, sub_dicts.size()); std::string value; EXPECT_TRUE(sub_dicts.front()->GetStringValueForKey("inner_key", &value)); EXPECT_EQ("value", value); } TEST(JsonTest, DictionariesHaveSubDictionaries) { Json json; ASSERT_TRUE(json.ParseObject( R"({"key":{"inner_key":{"inner_inner_key":"value"}}})")); const auto& sub_dicts = json.GetSubDictionaries(); ASSERT_EQ(1U, sub_dicts.size()); const auto& sub_sub_dicts = sub_dicts.front()->GetSubDictionaries(); ASSERT_EQ(1U, sub_sub_dicts.size()); std::string value; EXPECT_TRUE( sub_sub_dicts.front()->GetStringValueForKey("inner_inner_key", &value)); EXPECT_EQ("value", value); } }
509
cpp
google/libaddressinput
md5
cpp/src/util/md5.cc
cpp/test/util/md5_unittest.cc
#ifndef I18N_ADDRESSINPUT_UTIL_MD5_H_ #define I18N_ADDRESSINPUT_UTIL_MD5_H_ #include <cstddef> #include <cstdint> #include <string> namespace i18n { namespace addressinput { struct MD5Digest { uint8_t a[16]; }; typedef char MD5Context[88]; void MD5Init(MD5Context* context); void MD5Update(MD5Context* context, const std::string& data); void MD5Final(MD5Digest* digest, MD5Context* context); void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context); std::string MD5DigestToBase16(const MD5Digest& digest); void MD5Sum(const void* data, size_t length, MD5Digest* digest); std::string MD5String(const std::string& str); } } #endif #include "md5.h" #include <cstddef> #include <string> #include <string.h> namespace { struct Context { uint32_t buf[4]; uint32_t bits[2]; uint8_t in[64]; }; void byteReverse(uint8_t* buf, unsigned longs) { do { uint32_t temp = static_cast<uint32_t>( static_cast<unsigned>(buf[3]) << 8 | buf[2]) << 16 | (static_cast<unsigned>(buf[1]) << 8 | buf[0]); *reinterpret_cast<uint32_t*>(buf) = temp; buf += 4; } while (--longs); } #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) #define MD5STEP(f, w, x, y, z, data, s) \ (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) void MD5Transform(uint32_t buf[4], const uint32_t in[16]) { uint32_t a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } } namespace i18n { namespace addressinput { void MD5Init(MD5Context* context) { struct Context* ctx = reinterpret_cast<struct Context*>(context); ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } void MD5Update(MD5Context* context, const std::string& data) { struct Context* ctx = reinterpret_cast<struct Context*>(context); const uint8_t* buf = reinterpret_cast<const uint8_t*>(data.data()); size_t len = data.size(); uint32_t t = ctx->bits[0]; if ((ctx->bits[0] = t + (static_cast<uint32_t>(len) << 3)) < t) ctx->bits[1]++; ctx->bits[1] += static_cast<uint32_t>(len >> 29); t = (t >> 3) & 0x3f; if (t) { uint8_t* p = static_cast<uint8_t*>(ctx->in + t); t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); buf += t; len -= t; } while (len >= 64) { memcpy(ctx->in, buf, 64); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); buf += 64; len -= 64; } memcpy(ctx->in, buf, len); } void MD5Final(MD5Digest* digest, MD5Context* context) { struct Context* ctx = reinterpret_cast<struct Context*>(context); unsigned count; uint8_t* p; count = (ctx->bits[0] >> 3) & 0x3F; p = ctx->in + count; *p++ = 0x80; count = 64 - 1 - count; if (count < 8) { memset(p, 0, count); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); memset(ctx->in, 0, 56); } else { memset(p, 0, count - 8); } byteReverse(ctx->in, 14); memcpy(&ctx->in[14 * sizeof(ctx->bits[0])], &ctx->bits[0], sizeof(ctx->bits[0])); memcpy(&ctx->in[15 * sizeof(ctx->bits[1])], &ctx->bits[1], sizeof(ctx->bits[1])); MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in)); byteReverse(reinterpret_cast<uint8_t*>(ctx->buf), 4); memcpy(digest->a, ctx->buf, 16); memset(ctx, 0, sizeof(*ctx)); } void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) { MD5Context context_copy; memcpy(&context_copy, context, sizeof(context_copy)); MD5Final(digest, &context_copy); } std::string MD5DigestToBase16(const MD5Digest& digest) { static char const zEncode[] = "0123456789abcdef"; std::string ret; ret.resize(32); for (int i = 0, j = 0; i < 16; i++, j += 2) { uint8_t a = digest.a[i]; ret[j] = zEncode[(a >> 4) & 0xf]; ret[j + 1] = zEncode[a & 0xf]; } return ret; } void MD5Sum(const void* data, size_t length, MD5Digest* digest) { MD5Context ctx; MD5Init(&ctx); MD5Update(&ctx, std::string(reinterpret_cast<const char*>(data), length)); MD5Final(digest, &ctx); } std::string MD5String(const std::string& str) { MD5Digest digest; MD5Sum(str.data(), str.length(), &digest); return MD5DigestToBase16(digest); } } }
#include "util/md5.h" #include <cstring> #include <memory> #include <string> #include <gtest/gtest.h> namespace { using i18n::addressinput::MD5Context; using i18n::addressinput::MD5Digest; using i18n::addressinput::MD5Init; using i18n::addressinput::MD5String; using i18n::addressinput::MD5Update; TEST(MD5, DigestToBase16) { MD5Digest digest; int data[] = { 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e }; for (int i = 0; i < 16; ++i) digest.a[i] = data[i] & 0xff; std::string actual = MD5DigestToBase16(digest); std::string expected = "d41d8cd98f00b204e9800998ecf8427e"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5SumEmtpyData) { MD5Digest digest; const char data[] = ""; MD5Sum(data, strlen(data), &digest); int expected[] = { 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e }; for (int i = 0; i < 16; ++i) EXPECT_EQ(expected[i], digest.a[i] & 0xFF); } TEST(MD5, MD5SumOneByteData) { MD5Digest digest; const char data[] = "a"; MD5Sum(data, strlen(data), &digest); int expected[] = { 0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8, 0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61 }; for (int i = 0; i < 16; ++i) EXPECT_EQ(expected[i], digest.a[i] & 0xFF); } TEST(MD5, MD5SumLongData) { const int length = 10 * 1024 * 1024 + 1; std::unique_ptr<char[]> data(new char[length]); for (int i = 0; i < length; ++i) data[i] = i & 0xFF; MD5Digest digest; MD5Sum(data.get(), length, &digest); int expected[] = { 0x90, 0xbd, 0x6a, 0xd9, 0x0a, 0xce, 0xf5, 0xad, 0xaa, 0x92, 0x20, 0x3e, 0x21, 0xc7, 0xa1, 0x3e }; for (int i = 0; i < 16; ++i) EXPECT_EQ(expected[i], digest.a[i] & 0xFF); } TEST(MD5, ContextWithEmptyData) { MD5Context ctx; MD5Init(&ctx); MD5Digest digest; MD5Final(&digest, &ctx); int expected[] = { 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e }; for (int i = 0; i < 16; ++i) EXPECT_EQ(expected[i], digest.a[i] & 0xFF); } TEST(MD5, ContextWithLongData) { MD5Context ctx; MD5Init(&ctx); const int length = 10 * 1024 * 1024 + 1; std::unique_ptr<char[]> data(new char[length]); for (int i = 0; i < length; ++i) data[i] = i & 0xFF; int total = 0; while (total < length) { int len = 4097; if (len > length - total) len = length - total; MD5Update(&ctx, std::string(reinterpret_cast<char*>(data.get() + total), len)); total += len; } EXPECT_EQ(length, total); MD5Digest digest; MD5Final(&digest, &ctx); int expected[] = { 0x90, 0xbd, 0x6a, 0xd9, 0x0a, 0xce, 0xf5, 0xad, 0xaa, 0x92, 0x20, 0x3e, 0x21, 0xc7, 0xa1, 0x3e }; for (int i = 0; i < 16; ++i) EXPECT_EQ(expected[i], digest.a[i] & 0xFF); } TEST(MD5, MD5StringTestSuite1) { std::string actual = MD5String(""); std::string expected = "d41d8cd98f00b204e9800998ecf8427e"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite2) { std::string actual = MD5String("a"); std::string expected = "0cc175b9c0f1b6a831c399e269772661"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite3) { std::string actual = MD5String("abc"); std::string expected = "900150983cd24fb0d6963f7d28e17f72"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite4) { std::string actual = MD5String("message digest"); std::string expected = "f96b697d7cb7938d525a2f31aaf161d0"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite5) { std::string actual = MD5String("abcdefghijklmnopqrstuvwxyz"); std::string expected = "c3fcd3d76192e4007dfb496cca67e13b"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite6) { std::string actual = MD5String("ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789"); std::string expected = "d174ab98d277d9f5a5611c2c9f419d9f"; EXPECT_EQ(expected, actual); } TEST(MD5, MD5StringTestSuite7) { std::string actual = MD5String("12345678901234567890" "12345678901234567890" "12345678901234567890" "12345678901234567890"); std::string expected = "57edf4a22be3c955ac49da2e2107b67a"; EXPECT_EQ(expected, actual); } TEST(MD5, ContextWithStringData) { MD5Context ctx; MD5Init(&ctx); MD5Update(&ctx, "abc"); MD5Digest digest; MD5Final(&digest, &ctx); std::string actual = MD5DigestToBase16(digest); std::string expected = "900150983cd24fb0d6963f7d28e17f72"; EXPECT_EQ(expected, actual); } TEST(MD5, IntermediateFinal) { MD5Context check_header_context; MD5Init(&check_header_context); MD5Context check_full_context; MD5Init(&check_full_context); MD5Context context; MD5Init(&context); static const char kHeader[] = "header data"; static const char kBody[] = "payload data"; MD5Update(&context, kHeader); MD5Update(&check_header_context, kHeader); MD5Update(&check_full_context, kHeader); MD5Digest check_header_digest; MD5Final(&check_header_digest, &check_header_context); MD5Digest header_digest; MD5IntermediateFinal(&header_digest, &context); MD5Update(&context, kBody); MD5Update(&check_full_context, kBody); MD5Digest check_full_digest; MD5Final(&check_full_digest, &check_full_context); MD5Digest digest; MD5Final(&digest, &context); EXPECT_TRUE(!memcmp(&header_digest, &check_header_digest, sizeof(header_digest))); EXPECT_TRUE(!memcmp(&digest, &check_full_digest, sizeof(digest))); EXPECT_TRUE(memcmp(&digest, &header_digest, sizeof(digest))); } }
510
cpp
google/libaddressinput
string_split
cpp/src/util/string_split.cc
cpp/test/util/string_split_unittest.cc
#ifndef I18N_ADDRESSINPUT_UTIL_STRING_SPLIT_H_ #define I18N_ADDRESSINPUT_UTIL_STRING_SPLIT_H_ #include <string> #include <vector> namespace i18n { namespace addressinput { void SplitString(const std::string& str, char s, std::vector<std::string>* r); } } #endif #include "string_split.h" #include <cassert> #include <cstddef> #include <string> #include <vector> namespace i18n { namespace addressinput { void SplitString(const std::string& str, char s, std::vector<std::string>* r) { assert(r != nullptr); r->clear(); size_t last = 0; size_t c = str.size(); for (size_t i = 0; i <= c; ++i) { if (i == c || str[i] == s) { std::string tmp(str, last, i - last); if (i != c || !r->empty() || !tmp.empty()) { r->push_back(tmp); } last = i + 1; } } } } }
#include "util/string_split.h" #include <string> #include <vector> #include <gtest/gtest.h> namespace { using i18n::addressinput::SplitString; TEST(StringSplitTest, SplitString) { std::vector<std::string> r; SplitString(std::string(), ',', &r); EXPECT_EQ(0U, r.size()); SplitString("a,b,c", ',', &r); ASSERT_EQ(3U, r.size()); EXPECT_EQ(r[0], "a"); EXPECT_EQ(r[1], "b"); EXPECT_EQ(r[2], "c"); SplitString("a, b, c", ',', &r); ASSERT_EQ(3U, r.size()); EXPECT_EQ(r[0], "a"); EXPECT_EQ(r[1], " b"); EXPECT_EQ(r[2], " c"); SplitString("a,,c", ',', &r); ASSERT_EQ(3U, r.size()); EXPECT_EQ(r[0], "a"); EXPECT_EQ(r[1], ""); EXPECT_EQ(r[2], "c"); SplitString(" ", '*', &r); EXPECT_EQ(1U, r.size()); SplitString("foo", '*', &r); ASSERT_EQ(1U, r.size()); EXPECT_EQ(r[0], "foo"); SplitString("foo ,", ',', &r); ASSERT_EQ(2U, r.size()); EXPECT_EQ(r[0], "foo "); EXPECT_EQ(r[1], ""); SplitString(",", ',', &r); ASSERT_EQ(2U, r.size()); EXPECT_EQ(r[0], ""); EXPECT_EQ(r[1], ""); SplitString("\t\ta\t", '\t', &r); ASSERT_EQ(4U, r.size()); EXPECT_EQ(r[0], ""); EXPECT_EQ(r[1], ""); EXPECT_EQ(r[2], "a"); EXPECT_EQ(r[3], ""); SplitString("\ta\t\nb\tcc", '\n', &r); ASSERT_EQ(2U, r.size()); EXPECT_EQ(r[0], "\ta\t"); EXPECT_EQ(r[1], "b\tcc"); SplitString(" ", '*', &r); ASSERT_EQ(1U, r.size()); EXPECT_EQ(r[0], " "); SplitString("\t \ta\t ", '\t', &r); ASSERT_EQ(4U, r.size()); EXPECT_EQ(r[0], ""); EXPECT_EQ(r[1], " "); EXPECT_EQ(r[2], "a"); EXPECT_EQ(r[3], " "); SplitString("\ta\t\nb\tcc", '\n', &r); ASSERT_EQ(2U, r.size()); EXPECT_EQ(r[0], "\ta\t"); EXPECT_EQ(r[1], "b\tcc"); } }
511
cpp
google/libaddressinput
string_util
cpp/src/util/string_util.cc
cpp/test/util/string_util_test.cc
#ifndef I18N_ADDRESSINPUT_UTIL_STRING_UTIL_H_ #define I18N_ADDRESSINPUT_UTIL_STRING_UTIL_H_ #include <string> #include <vector> namespace i18n { namespace addressinput { std::string DoReplaceStringPlaceholders(const std::string& format_string, const std::vector<std::string>& subst); } } #endif #include "string_util.h" #include <cassert> #include <cstddef> #include <stdint.h> #include <string> #include <vector> namespace i18n { namespace addressinput { std::string DoReplaceStringPlaceholders(const std::string& format_string, const std::vector<std::string>& subst) { size_t substitutions = subst.size(); size_t sub_length = 0; for (std::vector<std::string>::const_iterator iter = subst.begin(); iter != subst.end(); ++iter) { sub_length += iter->length(); } std::string formatted; formatted.reserve(format_string.length() + sub_length); for (std::string::const_iterator i = format_string.begin(); i != format_string.end(); ++i) { if ('$' == *i) { if (i + 1 != format_string.end()) { ++i; assert('$' == *i || '1' <= *i); if ('$' == *i) { while (i != format_string.end() && '$' == *i) { formatted.push_back('$'); ++i; } --i; } else { uintptr_t index = 0; while (i != format_string.end() && '0' <= *i && *i <= '9') { index *= 10; index += *i - '0'; ++i; } --i; index -= 1; if (index < substitutions) formatted.append(subst.at(index)); } } } else { formatted.push_back(*i); } } return formatted; } } }
#include "util/string_util.h" #include <string> #include <vector> #include <gtest/gtest.h> namespace { using i18n::addressinput::DoReplaceStringPlaceholders; TEST(StringUtilTest, Ok) { const std::vector<std::string> subst{ "A", "B", "C", }; EXPECT_EQ("aA,bB,cC", DoReplaceStringPlaceholders("a$1,b$2,c$3", subst)); } TEST(StringUtilTest, FewParameters) { const std::vector<std::string> subst{ "A", "B", "C", }; EXPECT_EQ("aA,bB,cC,d,aA", DoReplaceStringPlaceholders("a$1,b$2,c$3,d$4,a$1", subst)); } TEST(StringUtilTest, MoreThan9Parameters) { const std::vector<std::string> subst{ "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", }; EXPECT_EQ("aA,bB,cC,dD,eE,fF,gG,hH,iI,jJ,kK,aA", DoReplaceStringPlaceholders("a$1,b$2,c$3,d$4,e$5,f$6,g$7,h$8,i$9," "j$10,k$11,a$1", subst)); } TEST(StringUtilTest, ConsecutiveDollarSigns) { const std::vector<std::string> subst{ "A", "B", "C", }; EXPECT_EQ("$1 $$2 $$$3", DoReplaceStringPlaceholders("$$1 $$$2 $$$$3", subst)); } }
512
cpp
google/tensorstore
unit
tensorstore/util/unit.cc
tensorstore/util/unit_test.cc
#ifndef TENSORSTORE_UTIL_UNIT_H_ #define TENSORSTORE_UTIL_UNIT_H_ #include <iosfwd> #include <string> #include <string_view> #include <utility> namespace tensorstore { struct Unit { Unit() = default; Unit(std::string_view unit); Unit(const char* unit) : Unit(std::string_view(unit)) {} Unit(const std::string& unit) : Unit(std::string_view(unit)) {} Unit(double multiplier, std::string base_unit) : multiplier(multiplier), base_unit(std::move(base_unit)) {} double multiplier = 1; std::string base_unit; friend std::ostream& operator<<(std::ostream& os, const Unit& unit); std::string to_string() const; template <typename Sink> friend void AbslStringify(Sink& sink, const Unit& self) { sink.Append(self.to_string()); } friend bool operator==(const Unit& a, const Unit& b); friend bool operator!=(const Unit& a, const Unit& b) { return !(a == b); } friend Unit operator*(Unit u, double x) { u.multiplier *= x; return u; } friend Unit operator*(double x, Unit u) { u.multiplier *= x; return u; } friend Unit& operator*=(Unit& u, double x) { u.multiplier *= x; return u; } friend Unit operator/(Unit u, double x) { u.multiplier /= x; return u; } friend Unit& operator/=(Unit& u, double x) { u.multiplier /= x; return u; } static constexpr auto ApplyMembers = [](auto&& x, auto f) { return f(x.multiplier, x.base_unit); }; }; } #endif #include "tensorstore/util/unit.h" #include <ostream> #include <string> #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "re2/re2.h" namespace tensorstore { std::ostream& operator<<(std::ostream& os, const Unit& unit) { if (unit.base_unit.empty()) { return os << unit.multiplier; } else { if (unit.multiplier != 1) { os << unit.multiplier << ' '; } return os << unit.base_unit; } } bool operator==(const Unit& a, const Unit& b) { return a.multiplier == b.multiplier && a.base_unit == b.base_unit; } Unit::Unit(std::string_view unit) { static LazyRE2 kNumberPattern = { "([-+]?(?:\\.[0-9]+|[0-9]+(?:\\.[0-9]*)?)(?:[eE][-+]?\\d+)?)\\s*"}; while (!unit.empty() && absl::ascii_isspace(unit.front())) { unit.remove_prefix(1); } while (!unit.empty() && absl::ascii_isspace(unit.back())) { unit.remove_suffix(1); } RE2::Consume(&unit, *kNumberPattern, &multiplier); base_unit = unit; } std::string Unit::to_string() const { if (base_unit.empty()) { return absl::StrCat(multiplier); } if (multiplier != 1) { return absl::StrCat(multiplier, " ", base_unit); } return base_unit; } }
#include "tensorstore/util/unit.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_binding/unit.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::TestJsonBinderRoundTrip; using ::tensorstore::TestJsonBinderRoundTripJsonOnlyInexact; using ::tensorstore::Unit; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(UnitTest, DefaultConstruct) { Unit u; EXPECT_EQ(1, u.multiplier); EXPECT_EQ("", u.base_unit); } TEST(UnitTest, Compare) { Unit a(5, "nm"); Unit b(5.5, "nm"); Unit c(5, "um"); Unit d; EXPECT_EQ(a, a); EXPECT_EQ(b, b); EXPECT_EQ(c, c); EXPECT_EQ(d, d); EXPECT_NE(a, b); EXPECT_NE(a, c); EXPECT_NE(a, d); EXPECT_NE(b, c); EXPECT_NE(b, d); EXPECT_NE(c, d); } TEST(UnitTest, Ostream) { EXPECT_EQ("5.5 nm", tensorstore::StrCat(Unit(5.5, "nm"))); EXPECT_EQ("nm", tensorstore::StrCat(Unit(1, "nm"))); EXPECT_EQ("5", tensorstore::StrCat(Unit(5, ""))); EXPECT_EQ("1", tensorstore::StrCat(Unit(1, ""))); } TEST(UnitTest, ConvertToString) { EXPECT_EQ("5.5 nm", Unit(5.5, "nm").to_string()); EXPECT_EQ("nm", Unit(1, "nm").to_string()); EXPECT_EQ("5", Unit(5, "").to_string()); EXPECT_EQ("1", Unit(1, "").to_string()); EXPECT_EQ("1", absl::StrCat(Unit(1, ""))); } TEST(UnitTest, MultiplierBaseUnit) { Unit u = {5, "nm"}; EXPECT_EQ(5, u.multiplier); EXPECT_EQ("nm", u.base_unit); } TEST(UnitTest, Unit) { EXPECT_EQ(Unit(4, "nm"), Unit("4nm")); EXPECT_EQ(Unit(4, "nm"), Unit("4.nm")); EXPECT_EQ(Unit(4e-3, "nm"), Unit("4e-3nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(".4nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(".4 nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(" .4 nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(" .4 nm ")); EXPECT_EQ(Unit(4e-3, "nm"), Unit("+4e-3nm")); EXPECT_EQ(Unit(-4e-3, "nm"), Unit("-4e-3nm")); EXPECT_EQ(Unit(4.5, "nm"), Unit("4.5nm")); EXPECT_EQ(Unit(1, "nm"), Unit("nm")); EXPECT_EQ(Unit(4, ""), Unit("4")); EXPECT_EQ(Unit(1, ""), Unit("")); EXPECT_EQ(Unit(3, "nm @ 50"), Unit("3 nm @ 50")); } TEST(UnitTest, JsonRoundTrip) { TestJsonBinderRoundTrip<Unit>({ {Unit(4, "nm"), {4, "nm"}}, {Unit(4.5, "nm"), {4.5, "nm"}}, {Unit(4.5, ""), {4.5, ""}}, }); } TEST(UnitTest, JsonRoundTripInexact) { TestJsonBinderRoundTripJsonOnlyInexact<Unit>({ {"4nm", {4, "nm"}}, {4, {4, ""}}, {"nm", {1, "nm"}}, }); } TEST(SerializationTest, Basic) { TestSerializationRoundTrip(Unit("4nm")); TestSerializationRoundTrip(Unit("4")); TestSerializationRoundTrip(Unit("nm")); TestSerializationRoundTrip(Unit("")); } }
513
cpp
google/tensorstore
data_type
tensorstore/internal/json_binding/data_type.cc
tensorstore/internal/json_binding/data_type_test.cc
#ifndef TENSORSTORE_INTERNAL_JSON_BINDING_DATA_TYPE_H_ #define TENSORSTORE_INTERNAL_JSON_BINDING_DATA_TYPE_H_ #include "absl/status/status.h" #include "tensorstore/data_type.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/json_serialization_options.h" namespace tensorstore { namespace internal_json_binding { TENSORSTORE_DECLARE_JSON_BINDER(DataTypeJsonBinder, DataType) TENSORSTORE_DECLARE_JSON_BINDER(OptionalDataTypeJsonBinder, DataType) TENSORSTORE_DECLARE_JSON_BINDER(ConstrainedDataTypeJsonBinder, DataType, JsonSerializationOptions, JsonSerializationOptions) template <> inline constexpr auto DefaultBinder<DataType> = OptionalDataTypeJsonBinder; } } #endif #include "tensorstore/internal/json_binding/data_type.h" #include <string> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/data_type.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_json_binding { TENSORSTORE_DEFINE_JSON_BINDER(DataTypeJsonBinder, [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) { if constexpr (is_loading) { return internal_json_binding::Compose<std::string>( [](auto is_loading, const auto& options, DataType* obj, auto* id) { *obj = tensorstore::GetDataType(*id); if (!obj->valid()) { return absl::Status( absl::StatusCode::kInvalidArgument, tensorstore::StrCat("Unsupported data type: ", tensorstore::QuoteString(*id))); } return absl::OkStatus(); })(is_loading, options, obj, j); } else { if (!obj->valid()) { *j = ::nlohmann::json(::nlohmann::json::value_t::discarded); } else if (obj->id() == DataTypeId::custom) { return absl::Status(absl::StatusCode::kInvalidArgument, "Data type has no canonical identifier"); } else { *j = obj->name(); } return absl::OkStatus(); } }) TENSORSTORE_DEFINE_JSON_BINDER(OptionalDataTypeJsonBinder, [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) { if constexpr (is_loading) { if (j->is_discarded()) { *obj = DataType{}; return absl::OkStatus(); } } return DataTypeJsonBinder(is_loading, options, obj, j); }) TENSORSTORE_DEFINE_JSON_BINDER( ConstrainedDataTypeJsonBinder, [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) { return Validate( [](const auto& options, DataType* d) { if (options.dtype().valid() && d->valid() && options.dtype() != *d) { return absl::InvalidArgumentError( tensorstore::StrCat("Expected data type of ", options.dtype(), " but received: ", *d)); } return absl::OkStatus(); }, DefaultValue([dtype = options.dtype()](DataType* d) { *d = dtype; }))( is_loading, options, obj, j); }) } }
#include "tensorstore/internal/json_binding/data_type.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/data_type.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" using ::tensorstore::DataType; using ::tensorstore::dtype_v; using ::tensorstore::MatchesStatus; namespace jb = tensorstore::internal_json_binding; namespace { struct X {}; TEST(DataTypeJsonBinderTest, ToJson) { EXPECT_THAT(jb::ToJson(DataType(dtype_v<std::int32_t>)), ::testing::Optional(::nlohmann::json("int32"))); EXPECT_THAT(jb::ToJson(DataType(dtype_v<bool>)), ::testing::Optional(::nlohmann::json("bool"))); EXPECT_THAT(jb::ToJson(DataType(dtype_v<X>)), MatchesStatus(absl::StatusCode::kInvalidArgument, "Data type has no canonical identifier")); EXPECT_THAT(jb::ToJson(DataType{}), ::testing::Optional(tensorstore::MatchesJson( ::nlohmann::json(::nlohmann::json::value_t::discarded)))); } TEST(DataTypeJsonBinderTest, FromJson) { EXPECT_THAT(jb::FromJson<DataType>(::nlohmann::json("int32")), ::testing::Optional(dtype_v<std::int32_t>)); EXPECT_THAT(jb::FromJson<DataType>(::nlohmann::json("bool")), ::testing::Optional(dtype_v<bool>)); EXPECT_THAT(jb::FromJson<DataType>(::nlohmann::json("invalid")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Unsupported data type: \"invalid\"")); EXPECT_THAT(jb::FromJson<DataType>( ::nlohmann::json(::nlohmann::json::value_t::discarded)), ::testing::Optional(DataType{})); EXPECT_THAT(jb::FromJson<DataType>( ::nlohmann::json(::nlohmann::json::value_t::discarded), tensorstore::internal_json_binding::DataTypeJsonBinder), MatchesStatus(absl::StatusCode::kInvalidArgument)); } }
514
cpp
google/tensorstore
chunk_layout
tensorstore/chunk_layout.cc
tensorstore/chunk_layout_test.cc
#ifndef TENSORSTORE_CHUNK_LAYOUT_H_ #define TENSORSTORE_CHUNK_LAYOUT_H_ #include <stddef.h> #include <stdint.h> #include <iosfwd> #include <memory> #include <string_view> #include <type_traits> #include <utility> #include "absl/status/status.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/integer_range.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/rank.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/maybe_hard_constraint.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { class ChunkLayout { public: enum Usage : unsigned char { kWrite = 0, kRead = 1, kCodec = 2, }; constexpr static Usage kUnspecifiedUsage = static_cast<Usage>(3); constexpr static internal::IntegerRange<Usage> kUsages = internal::IntegerRange<Usage>::Inclusive(kWrite, kCodec); constexpr static size_t kNumUsages = 3; constexpr static double kDefaultAspectRatioValue = 0; constexpr static Index kDefaultShapeValue = 0; friend std::ostream& operator<<(std::ostream& os, Usage usage); static Result<Usage> ParseUsage(std::string_view s); using ToJsonOptions = JsonSerializationOptions; using FromJsonOptions = JsonSerializationOptions; struct ChunkElementsBase : public MaybeHardConstraintIndex { using MaybeHardConstraintIndex::MaybeHardConstraintIndex; explicit ChunkElementsBase(MaybeHardConstraintIndex base) : MaybeHardConstraintIndex(base) {} }; template <Usage U> struct ChunkElementsFor : public ChunkElementsBase { using ChunkElementsBase::ChunkElementsBase; using ChunkElementsBase::value; using ChunkElementsBase::hard_constraint; }; using ChunkElements = ChunkElementsFor<kUnspecifiedUsage>; using WriteChunkElements = ChunkElementsFor<Usage::kWrite>; using ReadChunkElements = ChunkElementsFor<Usage::kRead>; using CodecChunkElements = ChunkElementsFor<Usage::kCodec>; struct ChunkShapeBase : public MaybeHardConstraintSpan<Index> { using MaybeHardConstraintSpan<Index>::MaybeHardConstraintSpan; explicit ChunkShapeBase(MaybeHardConstraintSpan<Index> base) : MaybeHardConstraintSpan<Index>(base) {} }; template <Usage U> struct ChunkShapeFor : public ChunkShapeBase { using ChunkShapeBase::ChunkShapeBase; using ChunkShapeBase::hard_constraint; }; using ChunkShape = ChunkShapeFor<kUnspecifiedUsage>; using WriteChunkShape = ChunkShapeFor<Usage::kWrite>; using ReadChunkShape = ChunkShapeFor<Usage::kRead>; using CodecChunkShape = ChunkShapeFor<Usage::kCodec>; struct ChunkAspectRatioBase : public MaybeHardConstraintSpan<double> { using MaybeHardConstraintSpan<double>::MaybeHardConstraintSpan; explicit ChunkAspectRatioBase(MaybeHardConstraintSpan<double> base) : MaybeHardConstraintSpan<double>(base) {} }; template <Usage U> struct ChunkAspectRatioFor : public ChunkAspectRatioBase { using ChunkAspectRatioBase::ChunkAspectRatioBase; }; class GridView; class Grid { public: Grid() = default; Grid(const Grid&); Grid(Grid&&) = default; ~Grid(); Grid& operator=(const Grid& other); Grid& operator=(Grid&& other) = default; using Shape = ChunkShapeBase; using AspectRatio = ChunkAspectRatioBase; using Elements = ChunkElementsBase; DimensionIndex rank() const { return rank_; } absl::Status Set(RankConstraint value); Shape shape() const { return shape_ ? Shape(span<const Index>(shape_.get(), rank_), shape_hard_constraint_) : Shape(); } explicit operator Shape() const { return shape(); } absl::Status Set(Shape value); AspectRatio aspect_ratio() const { return aspect_ratio_ ? AspectRatio(span<const double>(aspect_ratio_.get(), rank_), aspect_ratio_hard_constraint_) : AspectRatio(); } explicit operator AspectRatio() const { return aspect_ratio(); } absl::Status Set(AspectRatio value); Elements elements() const { return Elements(elements_, elements_hard_constraint_); } explicit operator Elements() const { return elements(); } absl::Status Set(Elements value); absl::Status Set(const GridView& value); friend bool operator==(const Grid& a, const Grid& b); friend bool operator!=(const Grid& a, const Grid& b) { return !(a == b); } TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(Grid, FromJsonOptions, ToJsonOptions) private: friend class ChunkLayout; int8_t rank_ = dynamic_rank; bool elements_hard_constraint_ = false; std::unique_ptr<Index[]> shape_; std::unique_ptr<double[]> aspect_ratio_; DimensionSet shape_hard_constraint_; DimensionSet aspect_ratio_hard_constraint_; Index elements_ = kImplicit; }; class GridView { public: explicit GridView() = default; explicit GridView(const GridView& other, bool hard_constraint) : GridView(other) { if (!hard_constraint) { elements_hard_constraint_ = false; shape_hard_constraint_ = false; aspect_ratio_hard_constraint_ = false; } } explicit GridView(const Grid& grid, bool hard_constraint = true) : GridView(GridView(grid.shape(), grid.aspect_ratio(), grid.elements()), hard_constraint) {} explicit GridView(ChunkShapeBase shape, ChunkAspectRatioBase aspect_ratio, ChunkElementsBase elements) : shape_rank_(shape.size()), aspect_ratio_rank_(aspect_ratio.size()), elements_hard_constraint_(elements.hard_constraint), shape_hard_constraint_(shape.hard_constraint), aspect_ratio_hard_constraint_(aspect_ratio.hard_constraint), elements_(elements), shape_(shape.data()), aspect_ratio_(aspect_ratio.data()) {} explicit GridView(ChunkShapeBase shape) : GridView(shape, ChunkAspectRatioBase(), ChunkElementsBase()) {} explicit GridView(ChunkAspectRatioBase aspect_ratio) : GridView(ChunkShapeBase(), aspect_ratio, ChunkElementsBase()) {} explicit GridView(ChunkElementsBase elements) : GridView(ChunkShapeBase(), ChunkAspectRatioBase(), elements) {} ChunkShapeBase shape() const { return ChunkShapeBase(span<const Index>(shape_, shape_rank_), shape_hard_constraint_); } ChunkAspectRatioBase aspect_ratio() const { return ChunkAspectRatioBase( span<const double>(aspect_ratio_, aspect_ratio_rank_), aspect_ratio_hard_constraint_); } ChunkElementsBase elements() const { return ChunkElementsBase(elements_, elements_hard_constraint_); } private: friend class ChunkLayout; int8_t shape_rank_ = 0; int8_t aspect_ratio_rank_ = 0; bool elements_hard_constraint_ = false; DimensionSet shape_hard_constraint_; DimensionSet aspect_ratio_hard_constraint_; Index elements_ = kImplicit; const Index* shape_ = nullptr; const double* aspect_ratio_ = nullptr; }; template <Usage U> class GridViewFor : public GridView { public: using Shape = ChunkShapeFor<U>; using AspectRatio = ChunkAspectRatioFor<U>; using Elements = ChunkElementsFor<U>; using GridView::GridView; explicit GridViewFor(GridView other) : GridView(other) {} Shape shape() const { return Shape(GridView::shape()); } AspectRatio aspect_ratio() const { return AspectRatio(GridView::aspect_ratio()); } Elements elements() const { return Elements(GridView::elements()); } }; using Chunk = GridViewFor<kUnspecifiedUsage>; using WriteChunk = GridViewFor<Usage::kWrite>; using ReadChunk = GridViewFor<Usage::kRead>; using CodecChunk = GridViewFor<Usage::kCodec>; struct InnerOrder : public span<const DimensionIndex> { explicit InnerOrder() = default; explicit InnerOrder(span<const DimensionIndex> s, bool hard_constraint = true) : span<const DimensionIndex>(s), hard_constraint(hard_constraint) {} template <size_t N> explicit InnerOrder(const DimensionIndex (&s)[N], bool hard_constraint = true) : span<const DimensionIndex>(s), hard_constraint(hard_constraint) {} bool valid() const { return !this->empty(); } friend bool operator==(const InnerOrder& a, const InnerOrder& b) { return internal::RangesEqual(a, b) && a.hard_constraint == b.hard_constraint; } friend bool operator!=(const InnerOrder& a, const InnerOrder& b) { return !(a == b); } bool hard_constraint{false}; }; struct GridOrigin : public MaybeHardConstraintSpan<Index> { using MaybeHardConstraintSpan<Index>::MaybeHardConstraintSpan; using MaybeHardConstraintSpan<Index>::hard_constraint; }; using ChunkAspectRatio = ChunkAspectRatioFor<kUnspecifiedUsage>; using WriteChunkAspectRatio = ChunkAspectRatioFor<Usage::kWrite>; using ReadChunkAspectRatio = ChunkAspectRatioFor<Usage::kRead>; using CodecChunkAspectRatio = ChunkAspectRatioFor<Usage::kCodec>; ChunkLayout() = default; explicit ChunkLayout(ChunkLayout layout, bool hard_constraint); DimensionIndex rank() const; bool HasHardConstraints() const; absl::Status GetChunkTemplate(Usage usage, MutableBoxView<> box) const; absl::Status GetWriteChunkTemplate(MutableBoxView<> box) const { return GetChunkTemplate(kWrite, box); } absl::Status GetReadChunkTemplate(MutableBoxView<> box) const { return GetChunkTemplate(kRead, box); } InnerOrder inner_order() const; explicit operator InnerOrder() const { return inner_order(); } absl::Status Set(InnerOrder value); GridOrigin grid_origin() const; explicit operator GridOrigin() const { return grid_origin(); } absl::Status Set(GridOrigin value); WriteChunk write_chunk() const; explicit operator WriteChunk() const { return write_chunk(); } ReadChunk read_chunk() const; explicit operator ReadChunk() const { return read_chunk(); } CodecChunk codec_chunk() const; explicit operator CodecChunk() const { return codec_chunk(); } GridView operator[](Usage usage) const; template <Usage U> absl::Status Set(const GridViewFor<U>& value); WriteChunkShape write_chunk_shape() const; explicit operator WriteChunkShape() const { return write_chunk_shape(); }
#include "tensorstore/chunk_layout.h" #include <stddef.h> #include <algorithm> #include <array> #include <cstdlib> #include <random> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/random/bit_gen_ref.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/rank.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/division.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::ChunkLayout; using ::tensorstore::DimensionIndex; using ::tensorstore::DimensionSet; using ::tensorstore::Dims; using ::tensorstore::dynamic_rank; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::kImplicit; using ::tensorstore::kInfIndex; using ::tensorstore::kMaxRank; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal::ChooseChunkGrid; using ::tensorstore::internal::ChooseChunkShape; using ::tensorstore::internal::ChooseReadWriteChunkShapes; using ::tensorstore::internal::MakeRandomDimensionOrder; using ::testing::Optional; using Usage = ChunkLayout::Usage; TEST(ChunkLayoutTest, SingleLevelRank0) { ChunkLayout layout; TENSORSTORE_ASSERT_OK(layout.Set(tensorstore::RankConstraint(0))); TENSORSTORE_ASSERT_OK(layout.Finalize()); ASSERT_EQ(0, layout.rank()); EXPECT_THAT(layout.inner_order(), ::testing::ElementsAre()); EXPECT_THAT(layout | tensorstore::IdentityTransform(0), Optional(layout)); EXPECT_THAT(layout.read_chunk().shape(), ::testing::ElementsAre()); } TEST(ChunkLayoutTest, SingleLevelRank1) { ChunkLayout layout; TENSORSTORE_ASSERT_OK(layout.Set(ChunkLayout::GridOrigin({0}))); TENSORSTORE_ASSERT_OK(layout.Set(ChunkLayout::WriteChunkShape({5}))); TENSORSTORE_ASSERT_OK(layout.Finalize()); ASSERT_EQ(1, layout.rank()); EXPECT_THAT(layout.inner_order(), ::testing::ElementsAre()); EXPECT_THAT(layout.grid_origin(), ::testing::ElementsAre(0)); EXPECT_THAT(layout.read_chunk_shape(), ::testing::ElementsAre(5)); EXPECT_THAT(layout.write_chunk_shape(), ::testing::ElementsAre(5)); EXPECT_THAT(layout | tensorstore::IdentityTransform(1), Optional(layout)); } using HierarchicalGridCell = std::array<std::vector<Index>, 3>; HierarchicalGridCell GetHierarchicalGridCell(const ChunkLayout& layout, span<const Index> position) { const DimensionIndex rank = layout.rank(); auto origin = layout.grid_origin(); HierarchicalGridCell hier_grid_cell; for (Usage usage : ChunkLayout::kUsages) { auto& grid_cell = hier_grid_cell[static_cast<int>(usage)]; grid_cell.resize(rank); auto grid = layout[usage]; for (DimensionIndex i = 0; i < rank; ++i) { const Index size = grid.shape()[i]; if (size == 0) { grid_cell[i] = 0; continue; } const Index x = position[i] - origin[i]; grid_cell[i] = tensorstore::FloorOfRatio(x, size); } } return hier_grid_cell; } void TestGridCorrespondence(absl::BitGenRef gen, const ChunkLayout& output_layout, const ChunkLayout& input_layout, IndexTransformView<> transform) { const DimensionIndex output_rank = transform.output_rank(); const DimensionIndex input_rank = transform.input_rank(); ASSERT_EQ(output_layout.rank(), output_rank); ASSERT_EQ(input_layout.rank(), input_rank); HierarchicalGridCell output_chunk_divisors; for (Usage usage : ChunkLayout::kUsages) { auto& divisors = output_chunk_divisors[static_cast<size_t>(usage)]; divisors.resize(output_rank, 1); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto map = transform.output_index_maps()[output_dim]; if (map.method() != tensorstore::OutputIndexMethod::single_input_dimension) { continue; } auto size = output_layout[usage].shape()[output_dim]; if (size == 0) continue; divisors[output_dim] = std::abs(map.stride()) / tensorstore::GreatestCommonDivisor(map.stride(), size); } } SCOPED_TRACE(tensorstore::StrCat("output_layout=", output_layout)); SCOPED_TRACE(tensorstore::StrCat("input_layout=", input_layout)); SCOPED_TRACE( tensorstore::StrCat("output_chunk_divisors=", ::testing::PrintToString(output_chunk_divisors))); absl::flat_hash_map<HierarchicalGridCell, HierarchicalGridCell> output_to_input_cell_map; absl::flat_hash_map<HierarchicalGridCell, HierarchicalGridCell> input_to_output_cell_map; std::vector<Index> input_pos(input_rank); std::vector<Index> output_pos(output_rank); const auto test_point = [&] { TENSORSTORE_ASSERT_OK(transform.TransformIndices(input_pos, output_pos)); auto input_cell = GetHierarchicalGridCell(input_layout, input_pos); auto output_cell = GetHierarchicalGridCell(output_layout, output_pos); SCOPED_TRACE(tensorstore::StrCat("orig_output_cell=", ::testing::PrintToString(output_cell))); for (Usage usage : ChunkLayout::kUsages) { const size_t usage_index = static_cast<size_t>(usage); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& out_cell = output_cell[usage_index][output_dim]; out_cell = tensorstore::FloorOfRatio( out_cell, output_chunk_divisors[usage_index][output_dim]); } } SCOPED_TRACE(tensorstore::StrCat("input_pos=", span(input_pos))); SCOPED_TRACE(tensorstore::StrCat("output_pos=", span(output_pos))); SCOPED_TRACE(tensorstore::StrCat("input_cell=", ::testing::PrintToString(input_cell))); SCOPED_TRACE(tensorstore::StrCat("output_cell=", ::testing::PrintToString(output_cell))); auto input_it = output_to_input_cell_map.emplace(output_cell, input_cell).first; auto output_it = input_to_output_cell_map.emplace(input_cell, output_cell).first; EXPECT_EQ(input_it->second, input_cell); EXPECT_EQ(output_it->second, output_cell); }; constexpr size_t kNumSamplePoints = 10; for (size_t sample_i = 0; sample_i < kNumSamplePoints; ++sample_i) { for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { input_pos[input_dim] = absl::Uniform<Index>(absl::IntervalClosedClosed, gen, -40, 40); } for (DimensionIndex dir_input_dim = 0; dir_input_dim < input_rank; ++dir_input_dim) { const Index initial_pos = input_pos[dir_input_dim]; for (Index i = -20; i <= 20; ++i) { input_pos[dir_input_dim] = initial_pos + i; test_point(); } input_pos[dir_input_dim] = initial_pos; } } } template <typename Expr> void TestApplyIndexTransform(::nlohmann::json a, const Expr& expr, ::nlohmann::json b) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto a_layout, ChunkLayout::FromJson(a)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto b_layout, ChunkLayout::FromJson(b)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IdentityTransform(a_layout.rank()) | expr); EXPECT_THAT(a_layout | transform, ::testing::Optional(b_layout)); } struct MakeRandomChunkLayoutParameters { DimensionIndex min_rank = 1; DimensionIndex max_rank = 3; }; ChunkLayout MakeRandomChunkLayout( absl::BitGenRef gen, const MakeRandomChunkLayoutParameters& p = {}) { const DimensionIndex rank = absl::Uniform<DimensionIndex>( absl::IntervalClosedClosed, gen, p.min_rank, p.max_rank); ChunkLayout layout; TENSORSTORE_CHECK_OK(layout.Set(tensorstore::RankConstraint(rank))); if (absl::Bernoulli(gen, 0.5)) { DimensionIndex inner_order[kMaxRank]; MakeRandomDimensionOrder(gen, span(inner_order, rank)); TENSORSTORE_CHECK_OK( layout.Set(ChunkLayout::InnerOrder(span(inner_order, rank)))); } else { } Index grid_origin[kMaxRank]; for (DimensionIndex dim = 0; dim < rank; ++dim) { grid_origin[dim] = absl::Uniform<Index>(absl::IntervalClosedClosed, gen, -5, 5); } TENSORSTORE_CHECK_OK( layout.Set(ChunkLayout::GridOrigin(span(grid_origin, rank)))); const auto set_grid = [&](Usage usage) { if (absl::Bernoulli(gen, 0.3)) { return; } Index shape[kMaxRank]; std::fill_n(shape, rank, 0); for (DimensionIndex dim = 0; dim < rank; ++dim) { if (absl::Bernoulli(gen, 0.3)) { continue; } Index size; if (usage == Usage::kWrite && layout.read_chunk_shape()[dim] != 0) { const Index read_size = layout.read_chunk_shape()[dim]; size = absl::Uniform<Index>(absl::IntervalClosedClosed, gen, 1, 5) * read_size; } else { size = absl::Uniform<Index>(absl::IntervalClosedClosed, gen, 1, usage == Usage::kCodec ? 5 : 10); } shape[dim] = size; } TENSORSTORE_CHECK_OK(layout.Set(ChunkLayout::Chunk( ChunkLayout::ChunkShapeBase(span<const Index>(shape, rank)), usage))); }; set_grid(Usage::kCodec); set_grid(Usage::kRead); set_grid(Usage::kWrite); TENSORSTORE_CHECK_OK(layout.Finalize()); return layout; } TEST(ChunkLayoutTest, Json) { tensorstore::TestJsonBinderRoundTripJsonOnly<ChunkLayout>( { { {"rank", 0}, }, { {"rank", 2}, }, { {"grid_origin", {1, 2}}, {"write_chunk", { {"shape", {10, 11}}, }}, {"inner_order", {1, 0}}, }, }, tensorstore::internal_json_binding::DefaultBinder<>, tensorstore::IncludeDefaults{false}); } TEST(ChunkLayoutTest, JsonExcludeDefaults) { tensorstore::TestJsonBinderRoundTripJsonOnly<ChunkLayout>( {{ {"grid_origin", {1, 2}}, {"write_chunk", { {"shape", {10, 11}}, }}, {"inner_order", {1, 0}}, }}, tensorstore::internal_json_binding::DefaultBinder<>, tensorstore::IncludeDefaults{false}); } TEST(ChunkLayoutTest, Rank2Translate) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {1, 0}}, }, Dims(0, 1).TranslateBy(5), { {"grid_origin", {5, 6}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {1, 0}}, }); } TEST(ChunkLayoutTest, Rank2Transpose) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {1, 0}}, }, Dims(1, 0).Transpose(), { {"grid_origin", {1, 0}}, {"write_chunk", { {"shape", {20, 10}}, }}, {"inner_order", {0, 1}}, }); } TEST(ChunkLayoutTest, Rank2TransposeWithGridOrder) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {1, 0}}, }, Dims(1, 0).Transpose(), { {"grid_origin", {1, 0}}, {"write_chunk", { {"shape", {20, 10}}, }}, {"inner_order", {0, 1}}, }); } TEST(ChunkLayoutTest, Rank2Stride) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {0, 1}}, }, Dims(0, 1).Stride(2), { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {5, 10}}, }}, {"inner_order", {0, 1}}, }); } TEST(ChunkLayoutTest, Rank2StrideNotEvenlyDisibile) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {0, 1}}, }, Dims(0, 1).Stride(6), { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {5, 10}}, }}, {"inner_order", {0, 1}}, }); } TEST(ChunkLayoutTest, Rank2StrideNegative) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"inner_order", {0, 1}}, }, Dims(0, 1).Stride(-2), { {"grid_origin", {1, 0}}, {"write_chunk", { {"shape", {5, 10}}, }}, {"inner_order", {0, 1}}, }); } TEST(ChunkLayoutTest, Rank2TwoLevelStrideNegative) { TestApplyIndexTransform( { {"grid_origin", {0, 1}}, {"write_chunk", { {"shape", {10, 20}}, }}, {"read_chunk", { {"shape", {5, 5}}, }}, {"inner_order", {0, 1}}, }, Dims(0, 1).TranslateBy({2, 3}).Stride(-2), { {"grid_origin", {0, -1}}, {"write_chunk", { {"shape", {5, 10}}, }}, {"read_chunk", { {"shape", {5, 5}}, }}, {"inner_order", {0, 1}}, }); } TEST(ApplyIndexTransformTest, RandomInvertible) { constexpr size_t kNumIterations = 10; for (size_t iteration = 0; iteration < kNumIterations; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_LAYOUT_TEST_SEED")}; MakeRandomChunkLayoutParameters layout_p; auto output_layout = MakeRandomChunkLayout(gen, layout_p); tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters transform_p; transform_p.new_dims_are_singleton = false; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, tensorstore::IdentityTransform(output_layout.rank()).domain(), transform_p); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto input_layout, output_layout | transform); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto new_output_layout, ApplyInverseIndexTransform(transform, input_layout)); SCOPED_TRACE(tensorstore::StrCat("transform=", transform)); EXPECT_EQ(output_layout, new_output_layout) << "input_layout=" << input_layout; TestGridCorrespondence(gen, output_layout, input_layout, transform); } } TEST(ApplyIndexTransformTest, RandomNonInvertibleUnaligned) { constexpr size_t kNumIterations = 10; for (size_t iteration = 0; iteration < kNumIterations; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_LAYOUT_TEST_SEED")}; MakeRandomChunkLayoutParameters layout_p; auto output_layout = MakeRandomChunkLayout(gen, layout_p); tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters transform_p; transform_p.new_dims_are_singleton = false; transform_p.max_stride = 3; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, tensorstore::IdentityTransform(output_layout.rank()).domain(), transform_p); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto input_layout, output_layout | transform); SCOPED_TRACE(tensorstore::StrCat("transform=", transform)); TestGridCorrespondence(gen, output_layout, input_layout, transform); } } TEST(ApplyIndexTransformTest, RandomNonInvertibleAligned) { constexpr size_t kNumIterations = 10; for (size_t iteration = 0; iteration < kNumIterations; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_LAYOUT_TEST_SEED")}; MakeRandomChunkLayoutParameters layout_p; auto input_layout = MakeRandomChunkLayout(gen, layout_p); tensorstore::internal::MakeStridedIndexTransformForInputSpaceParameters transform_p; transform_p.max_stride = 3; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForInputSpace( gen, tensorstore::IdentityTransform(input_layout.rank()).domain(), transform_p); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto output_layout, ApplyInverseIndexTransform(transform, input_layout)); SCOPED_TRACE(tensorstore::StrCat("transform=", transform)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto new_input_layout, ApplyIndexTransform(transform, output_layout)); EXPECT_EQ(input_layout, new_input_layout) << "output_layout=" << output_layout; TestGridCorrespondence(gen, output_layout, input_layout, transform); } } TEST(ChunkLayoutTest, DefaultConstruct) { ChunkLayout x; EXPECT_EQ(dynamic_rank, x.rank()); EXPECT_FALSE(x.inner_order().valid()); EXPECT_FALSE(x.grid_origin().valid()); EXPECT_FALSE(x.read_chunk().aspect_ratio().valid()); } TEST(ChunkLayoutTest, ConstraintsJson) { tensorstore::TestJsonBinderRoundTripJsonOnly<ChunkLayout>({ { {"write_chunk", { {"elements_soft_constraint", 5}, }}, }, { {"grid_origin", {1, 2}}, {"write_chunk", { {"shape", {10, 11}}, }}, {"inner_order", {1, 0}}, }, { {"grid_origin", {1, 2}}, {"write_chunk", { {"shape", {10, 11}}, }}, {"inner_order_soft_constraint", {1, 0}}, }, { {"grid_origin", {nullptr, nullptr, 3}}, {"grid_origin_soft_constraint", {4, nullptr, nullptr}}, {"write_chunk", {{"elements_soft_constraint", 1000}, {"shape", {5, nullptr, 6}}}}, {"read_chunk", {{"elements", 100}, {"shape_soft_constraint", {nullptr, 10, nullptr}}, {"aspect_ratio", {nullptr, 1, 2}}}}, {"codec_chunk", {{"aspect_ratio_soft_constraint", {nullptr, 2, 1}}}}, {"inner_order", {2, 1, 0}}, }, }); } TEST(ChunkLayoutTest, JsonRoundTripInexact) { tensorstore::TestJsonBinderRoundTripJsonOnlyInexact<ChunkLayout>({ {{ {"chunk", {{"elements", 50}}}, }, { {"read_chunk", {{"elements", 50}}}, {"write_chunk", {{"elements", 50}}}, }}, {{ {"chunk", {{"elements_soft_constraint", 50}}}, }, { {"read_chunk", {{"elements_soft_constraint", 50}}}, {"write_chunk", {{"elements_soft_constraint", 50}}}, }}, {{ {"read_chunk", {{"shape", {-1, 2, 3}}}}, }, { {"read_chunk", {{"shape", {nullptr, 2, 3}}, {"shape_soft_constraint", {-1, nullptr, nullptr}}}}, }}, {{ {"chunk", {{"elements_soft_constraint", 50}}}, {"read_chunk", {{"elements_soft_constraint", 60}}}, }, { {"read_chunk", {{"elements_soft_constraint", 50}}}, {"write_chunk", {{"elements_soft_constraint", 50}}}, }}, {{ {"chunk", {{"elements_soft_constraint", 50}}}, {"read_chunk", {{"elements", 60}}}, }, { {"read_chunk", {{"elements", 60}}}, {"write_chunk", {{"elements_soft_constraint", 50}}}, }}, {{ {"chunk", {{"aspect_ratio", {2, 3}}}}, }, { {"codec_chunk", {{"aspect_ratio", {2, 3}}}}, {"read_chunk", {{"aspect_ratio", {2, 3}}}}, {"write_chunk", {{"aspect_ratio", {2, 3}}}}, }}, {{ {"chunk", {{"aspect_ratio_soft_constraint", {2, 3}}}}, }, { {"codec_chunk", {{"aspect_ratio_soft_constraint", {2, 3}}}}, {"read_chunk", {{"aspect_ratio_soft_constraint", {2, 3}}}}, {"write_chunk", {{"aspect_ratio_soft_constraint", {2, 3}}}}, }}, {{ {"chunk", {{"shape", {2, 3}}}}, }, { {"read_chunk", {{"shape", {2, 3}}}}, {"write_chunk", {{"shape", {2, 3}}}}, }}, {{ {"chunk", {{"shape_soft_constraint", {2, 3}}}}, }, { {"read_chunk", {{"shape_soft_constraint", {2, 3}}}}, {"write_chunk", {{"shape_soft_constraint", {2, 3}}}}, }}, {{ {"chunk", {{"shape_soft_constraint", {2, 3}}}}, {"read_chunk", {{"shape", {4, nullptr}}}}, }, { {"read_chunk", { {"shape_soft_constraint", {nullptr, 3}}, {"shape", {4, nullptr}}, }}, {"write_chunk", {{"shape_soft_constraint", {2, 3}}}}, }}, }); } TEST(ChunkLayoutTest, CompareAllUnset) { ChunkLayout a; ChunkLayout b; EXPECT_FALSE(b.Set(ChunkLayout::InnerOrder({2, 3, 4})).ok()); EXPECT_EQ(a, b); EXPECT_EQ(b, a); } TEST(ChunkLayoutTest, CompareInnerOrder) { tensorstore::TestCompareDistinctFromJson<ChunkLayout>({ ::nlohmann::json::object_t(), {{"inner_order", {0, 1}}}, {{"inner_order", {0, 1, 2}}}, {{"inner_order", {0, 2, 1}}}, {{"inner_order_soft_constraint", {0, 2, 1}}}, }); } TEST(ChunkLayoutTest, CompareChunkElements) { for (std::string prefix : {"codec", "read", "write"}) { tensorstore::TestCompareDistinctFromJson<ChunkLayout>({ ::nlohmann::json::object_t(), {{prefix + "_chunk", {{"elements", 42}}}}, {{prefix + "_chunk", {{"elements", 43}}}}, {{prefix + "_chunk", {{"elements_soft_constraint", 42}}}}, }); } } TEST(ChunkLayoutTest, CompareChunkAspectRatio) { for (std::string prefix : {"codec", "read", "write"}) { tensorstore::TestCompareDistinctFromJson<ChunkLayout>({ ::nlohmann::json::object_t(), {{prefix + "_chunk", {{"aspect_ratio", {1, 2, nullptr}}}}}, {{prefix + "_chunk", {{"aspect_ratio", {1, 1, nullptr}}}}}, {{prefix + "_chunk", { {"aspect_ratio", {1, 1, nullptr}}, {"aspect_ratio_soft_constraint", {nullptr, nullptr, 4}}, }}}, {{prefix + "_chunk", {{"aspect_ratio_soft_constraint", {1, 2, nullptr}}}}}, }); } } TEST(ChunkLayoutTest, CompareGridOrigin) { tensorstore::TestCompareDistinctFromJson<ChunkLayout>({ ::nlohmann::json::object_t(), {{"grid_origin", {1, 2, nullptr}}}, {{"grid_origin", {1, 1, nullptr}}}, { {"grid_origin", {1, 1, nullptr}}, {"grid_origin_soft_constraint", {nullptr, nullptr, 4}}, }, {{"grid_origin_soft_constraint", {1, 2, nullptr}}}, }); } TEST(ChunkLayoutTest, CompareChunkShape) { for (std::string prefix : {"codec", "read", "write"}) { tensorstore::TestCompareDistinctFromJson<ChunkLayout>({ ::nlohmann::json::object_t(), {{prefix + "_chunk", {{"shape", {1, 2, nullptr}}}}}, {{prefix + "_chunk", {{"shape", {1, 1, nullptr}}}}}, {{prefix + "_chunk", { {"shape", {1, 1, nullptr}}, {"shape_soft_constraint", {nullptr, nullptr, 4}}, }}}, {{prefix + "_chunk", {{"shape_soft_constraint", {1, 2, nullptr}}}}}, }); } } TEST(ChunkLayoutTest, SetUnspecifiedUsage) { ChunkLayout constraints; TENSORSTORE_ASSERT_OK(constraints.Set( ChunkLayout::Chunk(ChunkLayout::ChunkShape({5, 6, 0}), ChunkLayout::ChunkAspectRatio({2, 1, 0}), ChunkLayout::ChunkElements(42)))); EXPECT_THAT(constraints.ToJson(), ::testing::Optional(MatchesJson({ {"write_chunk", {{"shape", {5, 6, nullptr}}, {"aspect_ratio", {2, 1, nullptr}}, {"elements", 42}}}, {"read_chunk", {{"shape", {5, 6, nullptr}}, {"aspect_ratio", {2, 1, nullptr}}, {"elements", 42}}}, {"codec_chunk", {{"aspect_ratio", {2, 1, nullptr}}}}, }))); } TEST(ChunkLayoutConstraintsTest, ApplyIndexTransformRandomInvertible) { constexpr size_t kNumIterations = 10; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto output_constraints, ChunkLayout::FromJson({ {"codec_chunk", {{"elements_soft_constraint", 20}, {"aspect_ratio", {1, 2, 3}}, {"shape", {nullptr, 4, 5}}}}, {"read_chunk", {{"elements", 30}, {"aspect_ratio", {4, 5, 6}}, {"shape_soft_constraint", {6, nullptr, 7}}}}, {"write_chunk", {{"elements", 40}, {"aspect_ratio_soft_constraint", {7, 8, 9}}, {"shape", {8, 9, nullptr}}}}, {"grid_origin", {nullptr, nullptr, 11}}, {"inner_order_soft_constraint", {2, 0, 1}}, })); for (size_t iteration = 0; iteration < kNumIterations; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_LAYOUT_CONSTRAINTS_TEST_SEED")}; tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters transform_p; transform_p.new_dims_are_singleton = true; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder(output_constraints.rank()).Finalize()); auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain, transform_p); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inverse_transform, InverseTransform(transform)); SCOPED_TRACE(tensorstore::StrCat("transform=", transform)); SCOPED_TRACE(tensorstore::StrCat("inverse_transform=", inverse_transform)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto input_constraints, output_constraints | transform); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto input_constraints2, ApplyInverseIndexTransform(inverse_transform, output_constraints)); EXPECT_EQ(input_constraints, input_constraints2) << "output_constraints=" << output_constraints; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto output_constraints2, ApplyInverseIndexTransform(transform, input_constraints)); EXPECT_EQ(output_constraints, output_constraints2) << "input_constraints=" << input_constraints; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto new_output_constraints, input_constraints | inverse_transform); EXPECT_EQ(output_constraints, new_output_constraints) << "input_constraints=" << input_constraints; } } TEST(ChunkLayoutTest, ApplyIndexTransformNoRank) { ChunkLayout constraints; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto new_constraints, constraints | tensorstore::Dims(0, 1).TranslateBy(5)); EXPECT_EQ(constraints, new_constraints); } TEST(ChunkLayoutTest, ApplyIndexTransform) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto constraints, ChunkLayout::FromJson({ {"inner_order", {0, 1, 2}}, {"grid_origin", {1, 2, 3}}, {"read_chunk", {{"shape", {4, 5, 6}}}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_new_constraints, ChunkLayout::FromJson({ {"inner_order", {2, 1, 0}}, {"grid_origin", {8, 7, 6}}, {"read_chunk", {{"shape", {6, 5, 4}}}}, })); EXPECT_THAT( constraints | tensorstore::Dims(2, 1, 0).TranslateBy(5).Transpose(), ::testing::Optional(expected_new_constraints)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_new_inverse_constraints, ChunkLayout::FromJson({ {"inner_order", {2, 1, 0}}, {"grid_origin", {-2, -3, -4}}, {"read_chunk", {{"shape", {6, 5, 4}}}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IdentityTransform(3) | tensorstore::Dims(2, 1, 0).TranslateBy(5).Transpose()); EXPECT_THAT(ApplyInverseIndexTransform(transform, constraints), ::testing::Optional(expected_new_inverse_constraints)); } TEST(ChunkLayoutTest, ApplyIndexTransformOverflow) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto constraints, ChunkLayout::FromJson({ {"grid_origin", {0, 0, 0}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IdentityTransform(3) | tensorstore::Dims(0).TranslateBy(kInfIndex)); EXPECT_THAT(constraints | transform, MatchesStatus( absl::StatusCode::kOutOfRange, "Error transforming grid_origin: " "Error transforming output dimension 0 -> input dimension 0: " "Integer overflow transforming output origin 0 by offset .* " "and stride 1")); EXPECT_THAT(ApplyInverseIndexTransform(transform, constraints),
515
cpp
google/tensorstore
virtual_chunked
tensorstore/driver/virtual_chunked/virtual_chunked.cc
tensorstore/driver/virtual_chunked/virtual_chunked_test.cc
#ifndef TENSORSTORE_VIRTUAL_CHUNKED_H_ #define TENSORSTORE_VIRTUAL_CHUNKED_H_ #include <functional> #include <type_traits> #include "absl/base/attributes.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/context.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/serialization/function.h" #include "tensorstore/staleness_bound.h" #include "tensorstore/tensorstore.h" #include "tensorstore/transaction.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/option.h" namespace tensorstore { namespace virtual_chunked { class ReadParameters { public: ReadParameters() = default; const Executor& executor() const { return executor_; } const StorageGeneration& if_not_equal() const { return if_not_equal_; } absl::Time staleness_bound() const { return staleness_bound_; } Executor executor_; StorageGeneration if_not_equal_; absl::Time staleness_bound_; }; using ReadFunction = serialization::SerializableFunction<Future<TimestampedStorageGeneration>( Array<void, dynamic_rank, offset_origin> output, ReadParameters read_params)>; template <typename Func, typename Element, DimensionIndex Rank> constexpr inline bool IsReadFunction = serialization::IsSerializableFunctionLike< Future<TimestampedStorageGeneration>, Func, Array<Element, Rank, offset_origin>, ReadParameters>; class WriteParameters { public: WriteParameters() = default; const Executor& executor() const { return executor_; } const StorageGeneration& if_equal() const { return if_equal_; } Executor executor_; StorageGeneration if_equal_; }; using WriteFunction = serialization::SerializableFunction<Future<TimestampedStorageGeneration>( Array<const void, dynamic_rank, offset_origin> input, WriteParameters write_params)>; template <typename Func, typename Element, DimensionIndex Rank> constexpr inline bool IsWriteFunction = serialization::IsSerializableFunctionLike< Future<TimestampedStorageGeneration>, Func, Array<const Element, Rank, offset_origin>, WriteParameters>; struct OpenOptions : public Schema { Context context; Transaction transaction{no_transaction}; RecheckCachedData recheck_cached_data; template <typename T> static inline constexpr bool IsOption = Schema::IsOption<T>; using Schema::Set; absl::Status Set(Context value) { context = std::move(value); return absl::OkStatus(); } absl::Status Set(Transaction value) { transaction = std::move(value); return absl::OkStatus(); } absl::Status Set(RecheckCachedData value) { if (value.specified()) { recheck_cached_data = value; } return absl::OkStatus(); } }; template <> constexpr inline bool OpenOptions::IsOption<Context> = true; template <> constexpr inline bool OpenOptions::IsOption<Transaction> = true; template <> constexpr inline bool OpenOptions::IsOption<RecheckCachedData> = true; namespace internal_virtual_chunked { Result<internal::Driver::Handle> MakeDriver( virtual_chunked::ReadFunction read_function, virtual_chunked::WriteFunction write_function, OpenOptions&& options); template <typename ErasedElement, typename Element, DimensionIndex Rank, typename Parameters, typename Func> struct FunctionAdapter { Future<TimestampedStorageGeneration> operator()( Array<ErasedElement, dynamic_rank, offset_origin> array, Parameters params) const { return func_(StaticCast<Array<Element, Rank, offset_origin>, unchecked>( std::move(array)), std::move(params)); } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS Func func_; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.func_); }; }; } template <typename Element = void, DimensionIndex Rank = dynamic_rank, typename ReadFunc> std::enable_if_t<IsReadFunction<ReadFunc, Element, Rank>, Result<TensorStore<Element, Rank, ReadWriteMode::read>>> VirtualChunked(ReadFunc read_function, OpenOptions&& options) { static_assert(std::is_same_v<Element, internal::remove_cvref_t<Element>>, "Element type must be unqualified"); static_assert(Rank >= dynamic_rank, "Rank must equal dynamic_rank (-1) or be non-negative."); if constexpr (Rank != dynamic_rank) { TENSORSTORE_RETURN_IF_ERROR(options.Set(RankConstraint{Rank})); } if constexpr (!std::is_void_v<Element>) { TENSORSTORE_RETURN_IF_ERROR(options.Set(dtype_v<Element>)); } ReadFunction serializable_read_function; if constexpr (std::is_void_v<Element> && Rank == dynamic_rank) { serializable_read_function = std::move(read_function); } else { serializable_read_function = internal_virtual_chunked::FunctionAdapter<void, Element, Rank, ReadParameters, ReadFunc>{ std::move(read_function)}; if (!serializable_read_function) { return absl::InvalidArgumentError("Invalid read_function specified"); } } TENSORSTORE_ASSIGN_OR_RETURN( auto handle, internal_virtual_chunked::MakeDriver( std::move(serializable_read_function), {}, std::move(options))); return internal::TensorStoreAccess::Construct< TensorStore<Element, Rank, ReadWriteMode::read>>(std::move(handle)); } template <typename Element = void, DimensionIndex Rank = dynamic_rank, typename ReadFunc, typename WriteFunc> std::enable_if_t<(IsReadFunction<ReadFunc, Element, Rank> && IsWriteFunction<WriteFunc, Element, Rank>), Result<TensorStore<Element, Rank, ReadWriteMode::read_write>>> VirtualChunked(ReadFunc read_function, WriteFunc write_function, OpenOptions&& options) { static_assert(std::is_same_v<Element, internal::remove_cvref_t<Element>>, "Element type must be unqualified"); static_assert(Rank >= dynamic_rank, "Rank must equal dynamic_rank (-1) or be non-negative."); if constexpr (Rank != dynamic_rank) { TENSORSTORE_RETURN_IF_ERROR(options.Set(RankConstraint{Rank})); } if constexpr (!std::is_void_v<Element>) { TENSORSTORE_RETURN_IF_ERROR(options.Set(dtype_v<Element>)); } ReadFunction serializable_read_function; WriteFunction serializable_write_function; if constexpr (std::is_void_v<Element> && Rank == dynamic_rank) { serializable_read_function = std::move(read_function); serializable_write_function = std::move(write_function); } else { serializable_read_function = internal_virtual_chunked::FunctionAdapter<void, Element, Rank, ReadParameters, ReadFunc>{ std::move(read_function)}; if (!serializable_read_function) { return absl::InvalidArgumentError("Invalid read_function specified"); } serializable_write_function = internal_virtual_chunked::FunctionAdapter<const void, Element, Rank, WriteParameters, WriteFunc>{ std::move(write_function)}; if (!serializable_write_function) { return absl::InvalidArgumentError("Invalid write_function specified"); } } TENSORSTORE_ASSIGN_OR_RETURN( auto handle, internal_virtual_chunked::MakeDriver( std::move(serializable_read_function), std::move(serializable_write_function), std::move(options))); return internal::TensorStoreAccess::Construct< TensorStore<Element, Rank, ReadWriteMode::read_write>>(std::move(handle)); } template <typename Element = void, DimensionIndex Rank = dynamic_rank, typename WriteFunc> Result<TensorStore<Element, Rank, ReadWriteMode::write>> VirtualChunkedWriteOnly(WriteFunc write_function, OpenOptions&& options) { static_assert(std::is_same_v<Element, internal::remove_cvref_t<Element>>, "Element type must be unqualified"); static_assert(Rank >= dynamic_rank, "Rank must equal dynamic_rank (-1) or be non-negative."); static_assert(IsWriteFunction<WriteFunc, Element, Rank>); if constexpr (Rank != dynamic_rank) { TENSORSTORE_RETURN_IF_ERROR(options.Set(RankConstraint{Rank})); } if constexpr (!std::is_void_v<Element>) { TENSORSTORE_RETURN_IF_ERROR(options.Set(dtype_v<Element>)); } WriteFunction serializable_write_function; if constexpr (std::is_void_v<Element> && Rank == dynamic_rank) { serializable_write_function = std::move(write_function); if (!serializable_write_function) { return absl::InvalidArgumentError("Invalid write_function specified"); } } else { serializable_write_function = internal_virtual_chunked::FunctionAdapter<const void, Element, Rank, WriteParameters, WriteFunc>{ std::move(write_function)}; } TENSORSTORE_ASSIGN_OR_RETURN( auto handle, internal_virtual_chunked::MakeDriver( {}, std::move(serializable_write_function), std::move(options))); return internal::TensorStoreAccess::Construct< TensorStore<Element, Rank, ReadWriteMode::write>>(std::move(handle)); } template <typename Element = void, DimensionIndex Rank = dynamic_rank, typename ReadFunc, typename... Option> std::enable_if_t<(IsReadFunction<ReadFunc, Element, Rank> && IsCompatibleOptionSequence<OpenOptions, Option...>), Result<TensorStore<Element, Rank, ReadWriteMode::read>>> VirtualChunked(ReadFunc read_function, Option&&... option) { TENSORSTORE_INTERNAL_ASSIGN_OPTIONS_OR_RETURN(OpenOptions, options, option); return VirtualChunked<Element, Rank>(std::move(read_function), std::move(options)); } template <typename Element = void, DimensionIndex Rank = dynamic_rank, typename ReadFunc, typename WriteFunc, typename... Option> std::enable_if_t<(IsReadFunction<ReadFunc, Element, Rank> && IsWriteFunction<WriteFunc, Element, Rank> && IsCompatibleOptionSequence<OpenOptions, Option...>), Result<TensorStore<Element, Rank, ReadWriteMode::read_write>>> VirtualChunked(ReadFunc read_function, WriteFunc write_function, Option&&... option) { TENSORSTORE_INTERNAL_ASSIGN_OPTIONS_OR_RETURN(OpenOptions, options, option); return VirtualChunked<Element, Rank>( std::move(read_function), std::move(write_function), std::move(options)); } template <typename Element = void, DimensionIndex Rank = dynamic_rank, typename WriteFunc, typename... Option> std::enable_if_t<IsCompatibleOptionSequence<OpenOptions, Option...>, Result<TensorStore<Element, Rank, ReadWriteMode::write>>> VirtualChunkedWriteOnly(WriteFunc write_function, Option&&... option) { static_assert(IsWriteFunction<WriteFunc, Element, Rank>); TENSORSTORE_INTERNAL_ASSIGN_OPTIONS_OR_RETURN(OpenOptions, options, option); return VirtualChunkedWriteOnly<Element, Rank>(std::move(write_function), std::move(options)); } } using virtual_chunked::VirtualChunked; using virtual_chunked::VirtualChunkedWriteOnly; } #endif #include "tensorstore/virtual_chunked.h" #include <stddef.h> #include <algorithm> #include <atomic> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/chunk_layout.h" #include "tensorstore/codec_spec.h" #include "tensorstore/context.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/chunk_cache_driver.h" #include "tensorstore/driver/driver.h" #include "tensorstore/driver/driver_handle.h" #include "tensorstore/driver/driver_spec.h" #include "tensorstore/driver/registry.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/dimension_units.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/internal/async_write_array.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/cache/chunk_cache.h" #include "tensorstore/int
#include "tensorstore/virtual_chunked.h" #include <memory> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/array.h" #include "tensorstore/chunk_layout.h" #include "tensorstore/context.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/internal/queue_testutil.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/open_mode.h" #include "tensorstore/rank.h" #include "tensorstore/schema.h" #include "tensorstore/serialization/function.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/staleness_bound.h" #include "tensorstore/strided_layout.h" #include "tensorstore/tensorstore.h" #include "tensorstore/transaction.h" #include "tensorstore/util/future.h" #include "tensorstore/util/iterate_over_index_range.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::dynamic_rank; using ::tensorstore::Future; using ::tensorstore::Index; using ::tensorstore::MatchesStatus; using ::tensorstore::Promise; using ::tensorstore::Result; using ::tensorstore::span; using ::tensorstore::StorageGeneration; using ::tensorstore::TimestampedStorageGeneration; using ::tensorstore::internal::ConcurrentQueue; using ::tensorstore::internal::UniqueNow; using ::tensorstore::serialization::SerializationRoundTrip; template <typename... Option> Result<tensorstore::TensorStore<Index, dynamic_rank, tensorstore::ReadWriteMode::read>> CoordinatesView(DimensionIndex dim, Option&&... option) { return tensorstore::VirtualChunked<Index>( tensorstore::NonSerializable{[dim](auto output, auto read_params) -> Future<TimestampedStorageGeneration> { tensorstore::IterateOverIndexRange( output.domain(), [&](span<const Index> indices) { output(indices) = indices[dim]; }); return TimestampedStorageGeneration{StorageGeneration::FromString(""), absl::Now()}; }}, std::forward<Option>(option)...); } template <typename... Option> Result<tensorstore::TensorStore<Index, dynamic_rank, tensorstore::ReadWriteMode::read>> SerializableCoordinatesView(DimensionIndex dim, Option&&... option) { return tensorstore::VirtualChunked<Index>( tensorstore::serialization::BindFront( [](DimensionIndex dim, auto output, auto read_params) -> Future<TimestampedStorageGeneration> { tensorstore::IterateOverIndexRange(output.domain(), [&](span<const Index> indices) { output(indices) = indices[dim]; }); return TimestampedStorageGeneration{ StorageGeneration::FromString(""), absl::Now()}; }, dim), std::forward<Option>(option)...); } using RequestLayout = ::tensorstore::StridedLayout<dynamic_rank, ::tensorstore::offset_origin>; template <typename... Option> Result<tensorstore::TensorStore<void, dynamic_rank, tensorstore::ReadWriteMode::read>> LoggingView(std::vector<RequestLayout>& requests, Option&&... option) { auto mutex = std::make_shared<absl::Mutex>(); return tensorstore::VirtualChunked( tensorstore::NonSerializable{ [mutex, &requests](auto output, auto read_params) -> Future<TimestampedStorageGeneration> { tensorstore::InitializeArray(output); absl::MutexLock lock(mutex.get()); requests.emplace_back(output.layout()); return TimestampedStorageGeneration{ StorageGeneration::FromString(""), absl::Now()}; }}, std::forward<Option>(option)...); } template <typename Element, DimensionIndex Rank, typename Parameters> struct Request { tensorstore::Array<Element, Rank, tensorstore::offset_origin> array; Parameters params; Promise<TimestampedStorageGeneration> promise; }; template <typename Element, DimensionIndex Rank, typename Parameters> auto EnqueueRequestHandler( ConcurrentQueue<Request<Element, Rank, Parameters>>& queue) { return tensorstore::NonSerializable{ [&queue]( tensorstore::Array<Element, Rank, tensorstore::offset_origin> array, Parameters params) -> Future<TimestampedStorageGeneration> { auto [promise, future] = tensorstore::PromiseFuturePair< TimestampedStorageGeneration>::Make(); queue.push({std::move(array), std::move(params), std::move(promise)}); return future; }}; } template <typename Element, DimensionIndex Rank> using ReadRequest = Request<Element, Rank, tensorstore::virtual_chunked::ReadParameters>; template <typename Element, DimensionIndex Rank> using WriteRequest = Request<const Element, Rank, tensorstore::virtual_chunked::WriteParameters>; template <typename Element, DimensionIndex Rank, typename... Option> Result< tensorstore::TensorStore<Element, Rank, tensorstore::ReadWriteMode::read>> MockView(ConcurrentQueue<ReadRequest<Element, Rank>>& queue, Option&&... option) { return tensorstore::VirtualChunked<Element, Rank>( EnqueueRequestHandler(queue), std::forward<Option>(option)...); } template <typename Element, DimensionIndex Rank, typename... Option> Result<tensorstore::TensorStore<Element, Rank, tensorstore::ReadWriteMode::read_write>> MockView(ConcurrentQueue<ReadRequest<Element, Rank>>& read_queue, ConcurrentQueue<WriteRequest<Element, Rank>>& write_queue, Option&&... option) { return tensorstore::VirtualChunked<Element, Rank>( EnqueueRequestHandler(read_queue), EnqueueRequestHandler(write_queue), std::forward<Option>(option)...); } template <typename Element, DimensionIndex Rank, typename... Option> Result< tensorstore::TensorStore<Element, Rank, tensorstore::ReadWriteMode::write>> MockView(ConcurrentQueue<WriteRequest<Element, Rank>>& write_queue, Option&&... option) { return tensorstore::VirtualChunkedWriteOnly<Element, Rank>( EnqueueRequestHandler(write_queue), std::forward<Option>(option)...); } TEST(VirtualChunkedTest, Coordinates) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords0, CoordinatesView(0, tensorstore::Schema::Shape({2, 3}))); EXPECT_THAT(tensorstore::Read(coords0).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 0, 0}, {1, 1, 1}}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords1, CoordinatesView(1, tensorstore::Schema::Shape({2, 3}))); EXPECT_THAT(tensorstore::Read(coords1).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 1, 2}, {0, 1, 2}}))); } TEST(VirtualChunkedTest, CoordinatesUnbounded) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords0, CoordinatesView(0, tensorstore::RankConstraint{2})); EXPECT_THAT( tensorstore::Read<tensorstore::zero_origin>( coords0 | tensorstore::Dims(0, 1).SizedInterval({1000, 2}, {2, 3})) .result(), ::testing::Optional(tensorstore::MakeArray<Index>( {{1000, 1000, 1000}, {1001, 1001, 1001}}))); } TEST(VirtualChunkedTest, CoordinatesInnerOrder) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords0, CoordinatesView(0, tensorstore::Schema::Shape({2, 3}), tensorstore::ChunkLayout::InnerOrder({1, 0}))); EXPECT_THAT(tensorstore::Read(coords0).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 0, 0}, {1, 1, 1}}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords1, CoordinatesView(1, tensorstore::Schema::Shape({2, 3}), tensorstore::ChunkLayout::InnerOrder({1, 0}))); EXPECT_THAT(tensorstore::Read(coords1).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 1, 2}, {0, 1, 2}}))); } TEST(VirtualChunkedTest, SerializableCoordinatesInnerOrder) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords0_orig, SerializableCoordinatesView( 0, tensorstore::Schema::Shape({2, 3}), tensorstore::ChunkLayout::InnerOrder({1, 0}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto coords0, SerializationRoundTrip(coords0_orig)); EXPECT_THAT(tensorstore::Read(coords0).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 0, 0}, {1, 1, 1}}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto coords1_orig, SerializableCoordinatesView( 1, tensorstore::Schema::Shape({2, 3}), tensorstore::ChunkLayout::InnerOrder({1, 0}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto coords1, SerializationRoundTrip(coords1_orig)); EXPECT_THAT(tensorstore::Read(coords1).result(), ::testing::Optional( tensorstore::MakeArray<Index>({{0, 1, 2}, {0, 1, 2}}))); } TEST(VirtualChunkedTest, ReadChunkShape) { std::vector<RequestLayout> requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto view, LoggingView(requests, tensorstore::dtype_v<bool>, tensorstore::Schema::Shape({2, 3}), tensorstore::ChunkLayout::ReadChunkShape({2, 1}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto chunk_layout, view.chunk_layout()); EXPECT_THAT(chunk_layout.read_chunk_shape(), ::testing::ElementsAre(2, 1)); TENSORSTORE_ASSERT_OK(tensorstore::Read(view)); EXPECT_THAT(requests, ::testing::UnorderedElementsAre( RequestLayout({0, 0}, {2, 1}, {1, 1}), RequestLayout({0, 1}, {2, 1}, {1, 1}), RequestLayout({0, 2}, {2, 1}, {1, 1}))); } TEST(VirtualChunkedTest, InnerOrder) { std::vector<RequestLayout> requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto view, LoggingView(requests, tensorstore::dtype_v<bool>, tensorstore::Schema::Shape({3, 4, 5}), tensorstore::ChunkLayout::InnerOrder({2, 0, 1}), tensorstore::ChunkLayout::ReadChunkShape({2, 3, 4}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto chunk_layout, view.chunk_layout()); EXPECT_THAT(chunk_layout.read_chunk_shape(), ::testing::ElementsAre(2, 3, 4)); EXPECT_THAT(chunk_layout.inner_order(), ::testing::ElementsAre(2, 0, 1)); TENSORSTORE_ASSERT_OK(tensorstore::Read(view)); EXPECT_THAT(requests, ::testing::UnorderedElementsAreArray({ RequestLayout({0, 0, 0}, {2, 3, 4}, {3, 1, 6}), RequestLayout({2, 0, 0}, {1, 3, 4}, {3, 1, 6}), RequestLayout({0, 3, 0}, {2, 1, 4}, {3, 1, 6}), RequestLayout({2, 3, 0}, {1, 1, 4}, {3, 1, 6}), RequestLayout({0, 0, 4}, {2, 3, 1}, {3, 1, 6}), RequestLayout({2, 0, 4}, {1, 3, 1}, {3, 1, 6}), RequestLayout({0, 3, 4}, {2, 1, 1}, {3, 1, 6}), RequestLayout({2, 3, 4}, {1, 1, 1}, {3, 1, 6}), })); } TEST(VirtualChunkedTest, NoRecheckCache) { ConcurrentQueue<ReadRequest<int, 0>> requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, tensorstore::Context::FromJson( {{"cache_pool", {{"total_bytes_limit", 10000000}}}})); auto mock_view = MockView<int, 0>( requests, tensorstore::RecheckCachedData{false}, context); auto read_future = tensorstore::Read(mock_view); { auto request = requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_not_equal()); request.array() = 42; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString("abc"), absl::Now())); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); read_future = tensorstore::Read(mock_view); EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); } TEST(VirtualChunkedTest, RecheckCache) { ConcurrentQueue<ReadRequest<int, 0>> requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, tensorstore::Context::FromJson( {{"cache_pool", {{"total_bytes_limit", 10000000}}}})); auto mock_view = MockView<int, 0>(requests, context); auto read_future = tensorstore::Read(mock_view); { auto request = requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_not_equal()); request.array() = 42; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString("abc"), absl::Now())); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); UniqueNow(); read_future = tensorstore::Read(mock_view); { auto request = requests.pop(); EXPECT_EQ(StorageGeneration::FromString("abc"), request.params.if_not_equal()); request.array() = 43; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::Unknown(), absl::Now())); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); } TEST(VirtualChunkedTest, RecheckCacheImmutable) { ConcurrentQueue<ReadRequest<int, 0>> requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, tensorstore::Context::FromJson( {{"cache_pool", {{"total_bytes_limit", 10000000}}}})); auto mock_view = MockView<int, 0>(requests, tensorstore::RecheckCachedData{true}, context); auto read_future = tensorstore::Read(mock_view); { auto request = requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_not_equal()); request.array() = 42; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::InfiniteFuture())); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); UniqueNow(); read_future = tensorstore::Read(mock_view); EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeScalarArray<int>(42))); } TEST(VirtualChunkedTest, ReadWrite) { ConcurrentQueue<ReadRequest<int, 1>> read_requests; ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(read_requests, write_requests, tensorstore::Schema::Shape({2})); auto write_future = tensorstore::Write(tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).IndexSlice(0)); write_future.Force(); { auto request = read_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_not_equal()); request.array(0) = 1; request.array(1) = 2; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString("gen1"), absl::Now())); } { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::FromString("gen1"), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeArray<int>({42, 2}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString("gen2"), absl::Now())); } TENSORSTORE_ASSERT_OK(write_future); } TEST(VirtualChunkedTest, ReadWriteWrite) { ConcurrentQueue<ReadRequest<int, 1>> read_requests; ConcurrentQueue<WriteRequest<int, 1>> write_requests; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, tensorstore::Context::FromJson( {{"cache_pool", {{"total_bytes_limit", 1000000}}}})); auto mock_view = MockView<int, 1>(read_requests, write_requests, context, tensorstore::Schema::Shape({2})); { auto write_future = tensorstore::Write(tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).IndexSlice(0)); write_future.Force(); { auto request = read_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_not_equal()); request.array(0) = 1; request.array(1) = 2; request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::InfiniteFuture())); } { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::FromString(""), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeArray<int>({42, 2}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::InfiniteFuture())); } TENSORSTORE_ASSERT_OK(write_future); } { auto write_future = tensorstore::Write(tensorstore::MakeScalarArray<int>(50), mock_view | tensorstore::Dims(0).IndexSlice(1)); write_future.Force(); { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::FromString(""), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeArray<int>({42, 50}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::InfiniteFuture())); } TENSORSTORE_ASSERT_OK(write_future); } } TEST(VirtualChunkedTest, Write) { ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(write_requests, tensorstore::Schema::Shape({6}), tensorstore::ChunkLayout::ChunkShape({4})); { auto write_future = tensorstore::Write( tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).SizedInterval(0, 4)); write_future.Force(); { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeArray<int>({42, 42, 42, 42}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::Now())); } TENSORSTORE_ASSERT_OK(write_future); } { auto write_future = tensorstore::Write( tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).SizedInterval(4, 2)); write_future.Force(); { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeOffsetArray<int>({4}, {42, 42}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::Now())); } TENSORSTORE_ASSERT_OK(write_future); } } TEST(VirtualChunkedTest, WriteFillValue) { ConcurrentQueue<WriteRequest<int, 0>> write_requests; auto mock_view = MockView<int, 0>(write_requests); auto write_future = tensorstore::Write(tensorstore::MakeScalarArray<int>(0), mock_view); write_future.Force(); { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeScalarArray<int>(0), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::Now())); } TENSORSTORE_ASSERT_OK(write_future); } TEST(VirtualChunkedTest, WriteOnlyError) { ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(write_requests, tensorstore::Schema::Shape({2})); EXPECT_THAT( tensorstore::Write(tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).IndexSlice(0)) .result(), MatchesStatus( absl::StatusCode::kInvalidArgument, "Write-only virtual chunked view requires chunk-aligned writes")); } TEST(VirtualChunkedTest, AtomicSingleChunk) { tensorstore::Transaction transaction(tensorstore::atomic_isolated); ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(write_requests, tensorstore::Schema::Shape({6}), tensorstore::ChunkLayout::ChunkShape({4}), transaction); TENSORSTORE_ASSERT_OK(tensorstore::Write( tensorstore::MakeScalarArray<int>(42), mock_view | tensorstore::Dims(0).HalfOpenInterval(0, 4))); auto future = transaction.CommitAsync(); { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_equal()); EXPECT_EQ(tensorstore::MakeArray<int>({42, 42, 42, 42}), request.array); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::Now())); } TENSORSTORE_ASSERT_OK(future); } TEST(VirtualChunkedTest, AtomicMultipleChunks) { tensorstore::Transaction transaction(tensorstore::atomic_isolated); ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(write_requests, tensorstore::Schema::Shape({6}), tensorstore::ChunkLayout::ChunkShape({4}), transaction); EXPECT_THAT( tensorstore::Write(tensorstore::MakeScalarArray<int>(42), mock_view) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot write to virtual chunk .* and write to virtual " "chunk .* as single atomic transaction")); } TEST(VirtualChunkedTest, NonAtomicSingleChunk) { tensorstore::Transaction transaction(tensorstore::isolated); ConcurrentQueue<WriteRequest<int, 1>> write_requests; auto mock_view = MockView<int, 1>(write_requests, tensorstore::Schema::Shape({6}), tensorstore::ChunkLayout::ChunkShape({4}), transaction); TENSORSTORE_ASSERT_OK( tensorstore::Write(tensorstore::MakeScalarArray<int>(42), mock_view)); auto future = transaction.CommitAsync(); for (int i = 0; i < 2; ++i) { auto request = write_requests.pop(); EXPECT_EQ(StorageGeneration::Unknown(), request.params.if_equal()); request.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString(""), absl::Now())); } TENSORSTORE_ASSERT_OK(future); } }
516
cpp
google/tensorstore
serialization
tensorstore/serialization/serialization.cc
tensorstore/serialization/serialization_test.cc
#ifndef TENSORSTORE_SERIALIZATION_SERIALIZATION_H_ #define TENSORSTORE_SERIALIZATION_SERIALIZATION_H_ #include <stddef.h> #include <stdint.h> #include <cassert> #include <memory> #include <string> #include <string_view> #include <type_traits> #include <typeinfo> #include <utility> #include "absl/base/attributes.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/memory.h" #include "tensorstore/internal/poly/poly.h" #include "tensorstore/internal/riegeli/delimited.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/util/apply_members/apply_members.h" namespace tensorstore { namespace serialization { namespace internal_serialization { void FailNonNull(DecodeSource& source); void FailEof(DecodeSource& source); } class EncodeSink { public: riegeli::Writer& writer() { return writer_; } void Fail(absl::Status status); absl::Status status() const { return writer_.status(); } virtual bool Close() { return writer_.Close(); } template <typename T, typename DirectSerializer = Serializer<std::shared_ptr<T>>> [[nodiscard]] bool Indirect(std::shared_ptr<T> object, DirectSerializer serializer = {}) { return DoIndirect( typeid(std::shared_ptr<T>), [serializer = std::move(serializer)]( EncodeSink& sink, const std::shared_ptr<void>& value) { return serializer.Encode(sink, std::static_pointer_cast<T>(value)); }, internal::StaticConstPointerCast<void>(std::move(object))); } template < typename T, typename Traits, typename DirectSerializer = Serializer<internal::IntrusivePtr<T, Traits>>> [[nodiscard]] bool Indirect(internal::IntrusivePtr<T, Traits> object, DirectSerializer serializer = {}) { return DoIndirect( typeid(internal::IntrusivePtr<T, Traits>), [serializer = std::move(serializer)]( EncodeSink& sink, const std::shared_ptr<void>& value) { return serializer.Encode(sink, internal::IntrusivePtr<T, Traits>( static_cast<T*>(value.get()))); }, internal::StaticConstPointerCast<void>( internal::IntrusiveToShared(std::move(object)))); } using ErasedEncodeWrapperFunction = poly::Poly<0, true, bool(EncodeSink& sink, const std::shared_ptr<void>& erased_value) const>; [[nodiscard]] virtual bool DoIndirect(const std::type_info& type, ErasedEncodeWrapperFunction encode, std::shared_ptr<void> object) = 0; protected: explicit EncodeSink(riegeli::Writer& writer) : writer_(writer) {} ~EncodeSink() = default; private: riegeli::Writer& writer_; }; absl::Status DecodeError(); absl::Status DecodeError(std::string_view message); class DecodeSource { public: riegeli::Reader& reader() { return reader_; } void Fail(absl::Status status); absl::Status status() const { return reader_.status(); } virtual absl::Status Done() { if (reader_.VerifyEndAndClose()) return absl::OkStatus(); return status(); } template <typename T, typename DirectSerializer = Serializer<std::shared_ptr<T>>> [[nodiscard]] bool Indirect(std::shared_ptr<T>& object, DirectSerializer serializer = {}) { std::shared_ptr<void> void_ptr; if (!DoIndirect( typeid(std::shared_ptr<T>), [serializer = std::move(serializer)](DecodeSource& source, std::shared_ptr<void>& value) { std::shared_ptr<T> typed_value; if (!serializer.Decode(source, typed_value)) return false; value = std::move(typed_value); return true; }, void_ptr)) { return false; } object = internal::static_pointer_cast<T>(std::move(void_ptr)); return true; } template < typename T, typename Traits, typename DirectSerializer = Serializer<internal::IntrusivePtr<T, Traits>>> [[nodiscard]] bool Indirect(internal::IntrusivePtr<T, Traits>& object, DirectSerializer serializer = {}) { std::shared_ptr<void> void_ptr; if (!DoIndirect( typeid(internal::IntrusivePtr<T, Traits>), [&serializer](DecodeSource& source, std::shared_ptr<void>& value) { internal::IntrusivePtr<T, Traits> typed_value; if (!serializer.Decode(source, typed_value)) return false; value = internal::StaticConstPointerCast<void>( internal::IntrusiveToShared(std::move(typed_value))); return true; }, void_ptr)) { return false; } object.reset(static_cast<T*>(void_ptr.get())); return true; } using ErasedDecodeWrapperFunction = absl::FunctionRef<bool( DecodeSource& source, std::shared_ptr<void>& value)>; [[nodiscard]] virtual bool DoIndirect(const std::type_info& type, ErasedDecodeWrapperFunction decode, std::shared_ptr<void>& value) = 0; protected: DecodeSource(riegeli::Reader& reader) : reader_(reader) {} ~DecodeSource() = default; private: riegeli::Reader& reader_; }; template <typename T> struct NonSerializable : public T { static constexpr auto ApplyMembers = [](auto&& x, auto f) { return f(internal::BaseCast<T>(x)); }; }; template <typename T> NonSerializable(const T& x) -> NonSerializable<T>; template <typename T> constexpr inline bool IsNonSerializable = false; template <typename T> constexpr inline bool IsNonSerializable<NonSerializable<T>> = true; namespace internal_serialization { absl::Status NonSerializableError(); } template <typename T> struct Serializer<NonSerializable<T>> { [[nodiscard]] static bool Encode(EncodeSink& sink, const NonSerializable<T>& value) { sink.Fail(internal_serialization::NonSerializableError()); return false; } [[nodiscard]] static bool Decode(DecodeSource& source, NonSerializable<T>& value) { source.Fail(internal_serialization::NonSerializableError()); return false; } constexpr static bool non_serializable() { return true; } }; template <typename Serializer, typename SFINAE = void> constexpr inline bool IsNonSerializer = false; template <typename Serializer> constexpr inline bool IsNonSerializer< Serializer, std::void_t<decltype(&Serializer::non_serializable)>> = Serializer::non_serializable(); template <typename T> constexpr inline bool IsNonSerializableLike = IsNonSerializer<Serializer<T>>; template <typename T> struct MemcpySerializer { [[nodiscard]] static bool Encode(EncodeSink& sink, const T& value) { return sink.writer().Write( std::string_view(reinterpret_cast<const char*>(&value), sizeof(T))); } [[nodiscard]] static bool Decode(DecodeSource& source, T& value) { return source.reader().Read(sizeof(T), reinterpret_cast<char*>(&value)); } }; template <typename T> struct Serializer<T, std::enable_if_t<SerializeUsingMemcpy<T>>> : public MemcpySerializer<T> {}; template <> struct Serializer<bool> { [[nodiscard]] static bool Encode(EncodeSink& sink, bool value) { return sink.writer().WriteByte(value); } [[nodiscard]] static bool Decode(DecodeSource& source, bool& value) { uint8_t v; if (!source.reader().ReadByte(v)) return false; value = static_cast<bool>(v); return true; } }; template <typename T, typename ElementSerializer = Serializer<T>> [[nodiscard]] bool Encode(EncodeSink& sink, const T& value, const ElementSerializer& serialize = {}) { return serialize.Encode(sink, value); } template <typename T, typename ElementSerializer = Serializer<internal::remove_cvref_t<T>>> [[nodiscard]] bool Decode(DecodeSource& source, T&& value, const ElementSerializer& serialize = {}) { return serialize.Decode(source, value); } template <typename String> struct StringSerializer { [[nodiscard]] static bool Encode(EncodeSink& sink, const String& value) { return serialization::WriteDelimited(sink.writer(), value); } [[nodiscard]] static bool Decode(DecodeSource& source, String& value) { return serialization::ReadDelimited(source.reader(), value); } }; template <> struct Serializer<std::string> : public StringSerializer<std::string> {}; template <> struct Serializer<absl::Cord> : public StringSerializer<absl::Cord> {}; template <> struct Serializer<std::string_view> : public StringSerializer<std::string_view> {}; template <typename... T> [[nodiscard]] ABSL_ATTRIBUTE_ALWAYS_INLINE inline bool EncodeTuple( EncodeSink& sink, const T&... value) { return (serialization::Encode(sink, value) && ...); } template <typename... T> [[nodiscard]] ABSL_ATTRIBUTE_ALWAYS_INLINE inline bool DecodeTuple( DecodeSource& source, T&&... value) { return (serialization::Decode(source, value) && ...); } struct IsAnyNonSerializable { template <typename... T> constexpr auto operator()(const T&... arg) const { return std::integral_constant<bool, (IsNonSerializableLike<T> || ...)>{}; } }; template <typename T> struct ApplyMembersSerializer { [[nodiscard]] static bool Encode(EncodeSink& sink, const T& value) { return ApplyMembers<T>::Apply(value, [&sink](const auto&... member) { return (serialization::Encode(sink, member) && ...); }); } [[nodiscard]] static bool Decode(DecodeSource& source, T& value) { return ApplyMembers<T>::Apply(value, [&source](auto&&... member) { return (serialization::Decode(source, member) && ...); }); } constexpr static bool non_serializable() { return decltype(ApplyMembers<T>::Apply(std::declval<const T&>(), IsAnyNonSerializable{}))::value; } }; template <typename T> struct Serializer< T, std::enable_if_t<(SupportsApplyMembers<T> && !IsNonSerializable<T> && !SerializeUsingMemcpy<T>)>> : public ApplyMembersSerializer<T> {}; template <typename T, typename ValueType = typename T::value_type, typename ElementSerializer = Serializer<ValueType>> struct ContainerSerializer { [[nodiscard]] bool Encode(EncodeSink& sink, const T& value) const { if (!serialization::WriteSize(sink.writer(), value.size())) return false; for (const auto& element : value) { if (!serialization::Encode(sink, element, element_serializer)) { return false; } } return true; } [[nodiscard]] bool Decode(DecodeSource& source, T& value) const { value.clear(); size_t size; if (!serialization::ReadSize(source.reader(), size)) return false; for (size_t i = 0; i < size; ++i) { ValueType element; if (!serialization::Decode(source, element, element_serializer)) { return false; } value.insert(value.end(), std::move(element)); } return true; } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS ElementSerializer element_serializer = {}; constexpr static bool non_serializable() { return IsNonSerializer<ElementSerializer>; } }; template <typename T, typename ElementSerializer = Serializer<typename T::value_type>> struct OptionalSerializer { [[nodiscard]] bool Encode(EncodeSink& sink, const T& value) const { return serialization::Encode(sink, static_cast<bool>(value)) && (!value || element_serializer.Encode(sink, *value)); } [[nodiscard]] bool Decode(DecodeSource& source, T& value) const { bool has_value; return serialization::Decode(source, has_value) && (!has_value || element_serializer.Decode(source, value.emplace())); } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS ElementSerializer element_serializer; constexpr static bool non_serializable() { return IsNonSerializer<ElementSerializer>; } }; template <typename T, typename SFINAE = void> inline constexpr bool IsSerializable = false; template <typename T> inline constexpr bool IsSerializable< T, std::void_t<decltype(Serializer<T>::Encode(std::declval<EncodeSink&>(), std::declval<const T&>()))>> = std::is_default_constructible_v<T>; struct IsNonNull { template <typename T> constexpr bool operator()(const T& x) const { return static_cast<bool>(x); } }; struct IsValid { template <typename T> constexpr bool operator()(const T& x) const { return x.valid(); } }; template <typename T, typename NonNullSerializer, typename IsNullPredicate = IsNonNull> struct MaybeNullSerializer { [[nodiscard]] bool Encode(EncodeSink& sink, const T& value) const { const bool valid = IsNullPredicate{}(value); if (!serialization::Encode(sink, valid)) return false; if (!valid) return true; return non_null_serializer.Encode(sink, value); } [[nodiscard]] bool Decode(DecodeSource& source, T& value) const { bool valid; if (!serialization::Decode(source, valid)) return false; if (!valid) return true; if (!non_null_serializer.Decode(source, value)) return false; assert(IsNullPredicate{}(value)); return true; } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS NonNullSerializer non_null_serializer = {}; constexpr static bool non_serializable() { return IsNonSerializer<NonNullSerializer>; } }; template <typename T, typename BaseSerializer = Serializer<T>, typename Predicate = IsNonNull> struct NonNullSerializer { [[nodiscard]] bool Encode(EncodeSink& sink, const T& value) const { assert(Predicate{}(value)); return base_serializer.Encode(sink, value); } [[nodiscard]] bool Decode(DecodeSource& source, T& value) const { if (!base_serializer.Decode(source, value)) return false; if (!Predicate{}(value)) { internal_serialization::FailNonNull(source); return false; } return true; } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS BaseSerializer base_serializer = {}; constexpr static bool non_serializable() { return IsNonSerializer<BaseSerializer>; } }; template <typename Pointer, typename ElementSerializer = Serializer<std::remove_cv_t<typename Pointer::element_type>>> struct NonNullPointerSerializer { using element_type = std::remove_cv_t<typename Pointer::element_type>; [[nodiscard]] bool Encode(EncodeSink& sink, const Pointer& value) const { assert(value); return element_serializer.Encode(sink, *value); } [[nodiscard]] bool Decode(DecodeSource& source, Pointer& value) const { value.reset(new element_type); return element_serializer.Decode(source, *value); } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS ElementSerializer element_serializer = {}; constexpr static bool non_serializable() { return IsNonSerializer<ElementSerializer>; } }; template <typename Pointer, typename NonNullSerializer = NonNullPointerSerializer<Pointer>> using PointerSerializer = MaybeNullSerializer<Pointer, NonNullSerializer>; template <typename Pointer, typename NonNullSerializer = NonNullPointerSerializer<Pointer>> struct NonNullIndirectPointerSerializer { [[nodiscard]] bool Encode(EncodeSink& sink, const Pointer& value) const { assert(value); return sink.Indirect(value, non_null_serializer); } [[nodiscard]] bool Decode(DecodeSource& source, Pointer& value) const { return
#include "tensorstore/serialization/serialization.h" #include <cstdint> #include <map> #include <set> #include <string> #include <tuple> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/serialization/std_map.h" #include "tensorstore/serialization/std_optional.h" #include "tensorstore/serialization/std_set.h" #include "tensorstore/serialization/std_tuple.h" #include "tensorstore/serialization/std_variant.h" #include "tensorstore/serialization/std_vector.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::serialization::IsNonSerializableLike; using ::tensorstore::serialization::NonSerializable; using ::tensorstore::serialization::SerializationRoundTrip; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(SerializationTest, Bool) { TestSerializationRoundTrip(true); TestSerializationRoundTrip(false); } TEST(SerializationTest, Float) { TestSerializationRoundTrip(3.14f); TestSerializationRoundTrip(0.0f); } TEST(SerializationTest, String) { TestSerializationRoundTrip(std::string("abcdefg")); TestSerializationRoundTrip(std::string("")); } TEST(CordTest, SerializationRoundTrip) { TestSerializationRoundTrip(absl::Cord("")); TestSerializationRoundTrip(absl::Cord("abc")); } TEST(SerializationTest, Int32) { TestSerializationRoundTrip(static_cast<int32_t>(0)); TestSerializationRoundTrip(static_cast<int32_t>(3)); TestSerializationRoundTrip(static_cast<int32_t>(2147483647)); TestSerializationRoundTrip(static_cast<int32_t>(-2147483648)); } TEST(SerializationTest, VectorInt) { TestSerializationRoundTrip(std::vector<int>{}); TestSerializationRoundTrip(std::vector<int>{1, 2, 3}); } TEST(SerializationTest, VectorString) { TestSerializationRoundTrip(std::vector<std::string>{}); TestSerializationRoundTrip(std::vector<std::string>{"a", "b", "def"}); } TEST(SerializationTest, VectorVectorString) { TestSerializationRoundTrip( std::vector<std::vector<std::string>>{{"a", "b", "def"}, {"e", "f"}}); } TEST(SerializationTest, Map) { TestSerializationRoundTrip(std::map<int, std::string>{{1, "a"}, {2, "b"}}); } TEST(SerializationTest, Set) { TestSerializationRoundTrip(std::set<int>{1, 2, 3}); } TEST(SerializationTest, Tuple) { TestSerializationRoundTrip( std::tuple(std::string("abc"), 3, std::string("def"))); } TEST(SerializationTest, UniquePtrNull) { std::unique_ptr<int> ptr; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ptr2, SerializationRoundTrip(ptr)); EXPECT_FALSE(ptr2); } TEST(SerializationTest, UniquePtrNonNull) { auto ptr = std::make_unique<int>(5); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ptr2, SerializationRoundTrip(ptr)); EXPECT_THAT(ptr2, ::testing::Pointee(5)); } TEST(SerializationTest, SharedPtrNull) { std::shared_ptr<int> ptr; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ptr2, SerializationRoundTrip(ptr)); EXPECT_FALSE(ptr2); } TEST(SerializationTest, SharedPtrNonNull) { auto ptr = std::make_shared<int>(5); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ptr2, SerializationRoundTrip(ptr)); EXPECT_THAT(ptr2, ::testing::Pointee(5)); } TEST(SerializationTest, SharedPtrDuplicate) { auto ptr = std::make_shared<int>(5); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto tuple2, SerializationRoundTrip(std::make_tuple(ptr, ptr))); EXPECT_THAT(std::get<0>(tuple2), ::testing::Pointee(5)); EXPECT_EQ(std::get<0>(tuple2), std::get<1>(tuple2)); } struct Foo { std::string a; std::string b; constexpr static auto ApplyMembers = [](auto& x, auto f) { return f(x.a, x.b); }; bool operator==(const Foo& other) const { return a == other.a && b == other.b; } }; TEST(SerializationTest, ApplyMembers) { TestSerializationRoundTrip(Foo{"xyz", "abcd"}); TestSerializationRoundTrip(Foo{"", "abcd"}); } TEST(SerialiationTest, Optional) { TestSerializationRoundTrip(std::optional<int>()); TestSerializationRoundTrip(std::optional<int>(42)); } TEST(SerialiationTest, Variant) { TestSerializationRoundTrip(std::variant<int, std::string>(42)); TestSerializationRoundTrip(std::variant<int, std::string>("abc")); TestSerializationRoundTrip(std::variant<int, int>(std::in_place_index<1>, 1)); TestSerializationRoundTrip(std::variant<int, int>(std::in_place_index<0>, 0)); } static_assert(!IsNonSerializableLike<Foo>); static_assert(!IsNonSerializableLike<std::pair<Foo, Foo>>); static_assert(IsNonSerializableLike<NonSerializable<Foo>>); static_assert(IsNonSerializableLike<std::pair<Foo, NonSerializable<Foo>>>); }
517
cpp
google/tensorstore
dim_expression
python/tensorstore/dim_expression.cc
tensorstore/index_space/dim_expression_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_DIM_EXPRESSION_H_ #define TENSORSTORE_INDEX_SPACE_DIM_EXPRESSION_H_ #include <type_traits> #include <utility> #include "tensorstore/array.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/add_new_dims_op.h" #include "tensorstore/index_space/internal/diagonal_op.h" #include "tensorstore/index_space/internal/dim_expression_helper.h" #include "tensorstore/index_space/internal/dimension_selection.h" #include "tensorstore/index_space/internal/index_array_slice_op.h" #include "tensorstore/index_space/internal/interval_slice_op.h" #include "tensorstore/index_space/internal/label_op.h" #include "tensorstore/index_space/internal/mark_explicit_op.h" #include "tensorstore/index_space/internal/single_index_slice_op.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/internal/translate_op.h" #include "tensorstore/index_space/internal/transpose_op.h" namespace tensorstore { template <typename T> constexpr inline bool IsIndexArray = IsArray<T> && std::is_convertible_v<T, SharedArrayView<const Index>>; template <typename... Op> class DimExpression { static_assert(sizeof...(Op) > 0); using DimExpressionHelper = internal_index_space::DimExpressionHelper; using Access = internal_index_space::TransformAccess; using Parent = typename internal_index_space::DimExpressionTraits<Op...>::Parent; using LastOp = typename internal_index_space::DimExpressionTraits<Op...>::LastOp; using static_selection_rank = std::integral_constant<DimensionIndex, DimExpressionHelper::GetStaticSelectionRank<Op...>( dynamic_rank)>; template <typename NextOp> using NewExpr = DimExpression<NextOp, Op...>; template <template <typename...> class OpTemplate, typename... IndexVector> using IndexVectorOpExpr = NewExpr<DimExpressionHelper::IndexVectorOp< OpTemplate, static_selection_rank::value, IndexVector...>>; template <typename IndexVector> using TranslateByOpExpr = IndexVectorOpExpr<internal_index_space::TranslateByOp, IndexVector>; template <typename IndexVector> using TranslateBackwardByOpExpr = IndexVectorOpExpr<internal_index_space::TranslateBackwardByOp, IndexVector>; template <typename IndexVector> using TranslateToOpExpr = IndexVectorOpExpr<internal_index_space::TranslateToOp, IndexVector>; template <typename IndexVector> using StrideOpExpr = IndexVectorOpExpr<internal_index_space::StrideOp, IndexVector>; template <typename IndexVector> using SingleIndexSliceOpExpr = IndexVectorOpExpr<internal_index_space::SingleIndexSliceOp, IndexVector>; template <typename... IndexVector> using IntervalSliceOpExpr = IndexVectorOpExpr<internal_index_space::IntervalSliceOp, IndexVector...>; template <typename BoxType> using BoxSliceOpExpr = NewExpr<std::enable_if_t< (IsBoxLike<BoxType> && RankConstraint::EqualOrUnspecified(static_selection_rank::value, BoxType::static_rank)), internal_index_space::BoxSliceOp<BoxType::static_rank>>>; template <typename... IndexArray> using IndexArraySliceOpExpr = std::enable_if_t< (sizeof...(IndexArray) >= 1) && RankConstraint::EqualOrUnspecified(sizeof...(IndexArray), static_selection_rank::value) && (IsIndexArray<IndexArray> && ...) && RankConstraint::EqualOrUnspecified({IndexArray::static_rank...}), NewExpr<internal_index_space::IndexArraySliceOp< false, RankConstraint::And({IndexArray::static_rank...}), std::array<SharedArrayView<const Index>, sizeof...(IndexArray)>>>>; using DynamicIndexArraySliceOpExpr = NewExpr<internal_index_space::IndexArraySliceOp< false, dynamic_rank, span<const SharedArrayView<const Index>>>>; template <typename... IndexArray> using IndexArrayOuterSliceOpExpr = std::enable_if_t< RankConstraint::EqualOrUnspecified(sizeof...(IndexArray), static_selection_rank::value) && (IsIndexArray<IndexArray> && ...), NewExpr<internal_index_space::IndexArraySliceOp< true, RankConstraint::Add({IndexArray::static_rank...}), std::array<SharedArrayView<const Index>, sizeof...(IndexArray)>>>>; using DynamicIndexArrayOuterSliceOpExpr = NewExpr<internal_index_space::IndexArraySliceOp< true, dynamic_rank, span<const SharedArrayView<const Index>>>>; template <typename Labels, DimensionIndex Rank> using LabelOpExpr = std::enable_if_t<RankConstraint::EqualOrUnspecified( Rank, static_selection_rank::value), NewExpr<internal_index_space::LabelOp<Labels>>>; template <typename Labels, typename LabelsSpan = internal::ConstSpanType<Labels>> using LabelSpanOpExpr = std::enable_if_t<internal::IsStringLike<typename LabelsSpan::value_type>, LabelOpExpr<LabelsSpan, LabelsSpan::extent>>; template <typename... Label> using LabelPackOpExpr = std::enable_if_t< internal::IsPackConvertibleWithoutNarrowing<std::string_view, Label...>, LabelOpExpr<std::array<std::string_view, sizeof...(Label)>, sizeof...(Label)>>; using MoveToOpExpr = NewExpr<internal_index_space::MoveToOp>; using DiagonalOpExpr = NewExpr<internal_index_space::DiagonalOp>; using AddNewOpExpr = NewExpr<internal_index_space::AddNewDimsOp>; using TransposeOpExpr = NewExpr<internal_index_space::TransposeOp>; template <typename TargetDims, typename TargetDimsSpan = internal::ConstSpanType<TargetDims>> using TransposeToOpExpr = std::enable_if_t< (RankConstraint::EqualOrUnspecified(TargetDimsSpan::extent, static_selection_rank::value) && std::is_same_v<typename TargetDimsSpan::value_type, DimensionIndex>), NewExpr<internal_index_space::TransposeToOp<TargetDimsSpan>>>; using ChangeImplicitStateOpExpr = NewExpr<internal_index_space::ChangeImplicitStateOp>; template <typename IndexVectorArray> using IndexVectorArraySliceOpExpr = std::enable_if_t<IsIndexArray<IndexVectorArray> && RankConstraint::GreaterOrUnspecified( IndexVectorArray::static_rank, 0), NewExpr<internal_index_space::IndexVectorArraySliceOp< IndexVectorArray::static_rank>>>; public: template <typename Offsets> TranslateByOpExpr<Offsets> TranslateBy(const Offsets& offsets) const { return {{offsets}, *this}; } template <DimensionIndex Rank> TranslateByOpExpr<const Index (&)[Rank]> TranslateBy( const Index (&offsets)[Rank]) const { return {{span(offsets)}, *this}; } template <typename Offsets> TranslateBackwardByOpExpr<Offsets> TranslateBackwardBy( const Offsets& offsets) const { return {{offsets}, *this}; } template <DimensionIndex Rank> TranslateBackwardByOpExpr<const Index (&)[Rank]> TranslateBackwardBy( const Index (&offsets)[Rank]) const { return {{span(offsets)}, *this}; } template <typename Origins> TranslateToOpExpr<Origins> TranslateTo(const Origins& origins) const { return {{origins}, *this}; } template <DimensionIndex Rank> TranslateToOpExpr<const Index (&)[Rank]> TranslateTo( const Index (&origins)[Rank]) const { return {{span(origins)}, *this}; } template <typename Indices> SingleIndexSliceOpExpr<Indices> IndexSlice(const Indices& indices) const { return {{indices}, *this}; } template <DimensionIndex Rank> SingleIndexSliceOpExpr<const Index (&)[Rank]> IndexSlice( const Index (&indices)[Rank]) const { return {{span(indices)}, *this}; } template <typename BoxType> BoxSliceOpExpr<BoxType> BoxSlice(const BoxType& box) const { return {{box, false}, *this}; } template <typename BoxType> BoxSliceOpExpr<BoxType> TranslateBoxSlice(const BoxType& box) const { return {{box, true}, *this}; } template <typename Start, typename Stop, typename Strides = Index> IntervalSliceOpExpr<Start, Stop, Strides> ClosedInterval( const Start& start, const Stop& stop, const Strides& strides = 1) const { return {{IntervalForm::closed, false, start, stop, strides}, *this}; } template <typename Stop, typename Strides = Index, DimensionIndex Rank> IntervalSliceOpExpr<const Index (&)[Rank], Stop, Strides> ClosedInterval( const Index (&start)[Rank], const Stop& stop, const Strides& strides = 1) const { return {{IntervalForm::closed, false, start, stop, strides}, *this}; } template <typename Start, typename Strides = Index, DimensionIndex Rank> IntervalSliceOpExpr<Start, const Index (&)[Rank], Strides> ClosedInterval( const Start& start, const Index (&stop)[Rank], const Strides& strides = 1) const { return {{IntervalForm::closed, false, start, stop, strides}, *this}; } template <typename Strides = Index, DimensionIndex Rank> IntervalSliceOpExpr<const Index (&)[Rank], const Index (&)[Rank], Strides> ClosedInterval(const Index (&st
#include "tensorstore/index_space/dim_expression.h" #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::AllDims; using ::tensorstore::BoxView; using ::tensorstore::DimRange; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::MakeArray; using ::tensorstore::MakeOffsetArrayView; using ::tensorstore::Materialize; static const Index default_origin[3] = {0, 0, 0}; auto TestArray(tensorstore::span<const Index, 3> origin = default_origin) { static const int test_array[4][4][8] = { { {111, 112, 113, 114, 115, 116, 117, 118}, {121, 122, 123, 124, 125, 126, 127, 128}, {131, 132, 133, 134, 135, 136, 137, 138}, {141, 142, 143, 144, 145, 146, 147, 148}, }, { {211, 212, 213, 214, 215, 216, 217, 218}, {221, 222, 223, 224, 225, 226, 227, 228}, {231, 232, 233, 234, 235, 236, 237, 238}, {241, 242, 243, 244, 245, 246, 247, 248}, }, { {311, 312, 313, 314, 315, 316, 317, 318}, {321, 322, 323, 324, 325, 326, 327, 328}, {331, 332, 333, 334, 335, 336, 337, 338}, {341, 342, 343, 344, 345, 346, 347, 348}, }, { {411, 412, 413, 414, 415, 416, 417, 418}, {421, 422, 423, 424, 425, 426, 427, 428}, {431, 432, 433, 434, 435, 436, 437, 438}, {441, 442, 443, 444, 445, 446, 447, 448}, }}; return MakeOffsetArrayView(origin, test_array); } TEST(DimExpressionTest, TranslateBy) { auto view = TestArray() | Dims(0, 2).TranslateBy({10, 20}) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(344, ((*view)({12, 3, 23}))); } TEST(DimExpressionTest, TranslateBySingle) { auto view = TestArray() | Dims(0, 2).TranslateBy(10); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, TranslateTo) { const Index origin[3] = {1, 2, 3}; auto view = TestArray(origin) | Dims(0, 2).TranslateTo({10, 20}) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(344 - 123, ((*view)({11, 3, 20}))); } TEST(DimExpressionTest, TranslateToSingle) { auto view = TestArray() | AllDims().TranslateTo(0); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, IndexSlice) { auto view = TestArray() | Dims(0, 2).IndexSlice({2, 4}) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(345, ((*view)({3}))); } TEST(DimExpressionTest, IndexSliceSingle) { auto view = TestArray() | Dims(0, 2).IndexSlice(1); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, BoxSlice) { auto view = TestArray() | Dims(0, 2).BoxSlice(BoxView({1, 4}, {3, 4})) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(245, ((*view)({1, 3, 4}))); } TEST(DimExpressionTest, TranslateBoxSlice) { const Index origin[3] = {0, 2, 0}; auto view = TestArray(origin) | Dims(0, 2).TranslateBoxSlice(BoxView({1, 4}, {3, 4})) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(245 - 20, ((*view)({0, 3, 0}))); } TEST(DimExpressionTest, ClosedInterval) { auto view = TestArray() | Dims(0, 2).ClosedInterval({1, 6}, {3, 0}, {1, -2}) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(347, ((*view)({2, 3, -3}))); } TEST(DimExpressionTest, ClosedInterval1) { auto view = TestArray() | Dims(0, 2).ClosedInterval(1, 1); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, HalfOpenInterval) { auto view = TestArray() | Dims(0, 2).HalfOpenInterval({1, 6}, {3, 0}, {1, -2}) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(347, ((*view)({2, 3, -3}))); } TEST(DimExpressionTest, HalfOpenInterval1) { auto view = TestArray() | Dims(0, 2).HalfOpenInterval(1, 2); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, SizedInterval) { auto view = TestArray() | Dims(0, 2).SizedInterval({1, 6}, {3, 2}, {1, -2}) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(347, ((*view)({2, 3, -3}))); } TEST(DimExpressionTest, SizedInterval1) { auto view = TestArray() | Dims(0, 2).SizedInterval(1, 2); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, TranslateClosedInterval) { auto view = TestArray() | Dims(0, 2).TranslateClosedInterval({0, 1}, {1, 1}); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, TranslateClosedInterval1) { auto view = TestArray() | Dims(0, 2).TranslateClosedInterval(1, 1); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, TranslateHalfOpenInterval) { auto view = TestArray() | Dims(0, 2).TranslateHalfOpenInterval({0, 1}, {1, 1}); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, TranslateHalfOpenInterval1) { auto view = TestArray() | Dims(0, 2).TranslateHalfOpenInterval(1, 2); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, TranslateSizedInterval) { auto view = TestArray() | Dims(0, 2).TranslateSizedInterval({0, 1}, {1, 1}); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, TranslateSizedInterval1) { auto view = TestArray() | Dims(0, 2).TranslateSizedInterval(1, 2); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, IndexArraySlice) { auto view = TestArray() | Dims(0, 2).IndexArraySlice( MakeArray<Index>({{1, 2, 3}, {3, 2, 1}}), MakeArray<Index>({{7, 6, 5}, {1, 2, 4}})) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(248, ((*view)({0, 0, 3}))); } TEST(DimExpressionTest, IndexVectorArraySlice) { auto view = TestArray() | Dims(0, 2).IndexVectorArraySlice( MakeArray<Index>( {{{1, 7}, {2, 6}, {3, 5}}, {{3, 1}, {2, 2}, {1, 4}}}), -1) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(248, ((*view)({0, 0, 3}))); } TEST(DimExpressionTest, OuterIndexArraySlice) { auto view = TestArray() | Dims(2, 0).OuterIndexArraySlice( MakeArray<Index>({{4, 5}, {6, 7}}), MakeArray<Index>({3, 2})) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(438, ((*view)({0, 2, 1, 1}))); } TEST(DimExpressionTest, Label) { auto view = TestArray() | Dims(0, 2).Label({"a", "b"}); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, LabelB) { auto view = TestArray() | Dims(0, 2).Label("a", "b"); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, MoveTo) { auto view = TestArray() | Dims(2, 0).MoveTo(1) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(345, ((*view)({3, 4, 2}))); } TEST(DimExpressionTest, MoveToFront) { auto view = TestArray() | Dims(0, 2).MoveToFront(); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, MoveToBack) { auto view = TestArray() | Dims(0, 2).MoveToFront(); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, Diagonal) { auto view = TestArray() | Dims(0, 2).Diagonal() | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(343, ((*view)({2, 3}))); } TEST(DimExpressionTest, AddNew) { auto view = TestArray() | Dims(0, -1).AddNew() | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(333, ((*view)({0, 2, 2, 2, 0}))); } TEST(DimExpressionTest, Transpose) { auto view = TestArray() | Dims(2, 0, 1).Transpose() | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(234, ((*view)({3, 1, 2}))); } TEST(DimExpressionTest, TransposeB) { auto view = TestArray() | Dims(2, 0).Transpose({1, 2}) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(345, ((*view)({3, 4, 2}))); } TEST(DimExpressionTest, MarkBoundsExplicit) { auto view = TestArray() | Dims(2, 0).MarkBoundsExplicit(); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, UnsafeMarkBoundsImplicit) { auto view = TestArray() | Dims(2, 0).UnsafeMarkBoundsImplicit(); TENSORSTORE_EXPECT_OK(view); } TEST(DimExpressionTest, Stride) { auto view = TestArray() | Dims(0, 2).Stride({-2, 3}) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(344, ((*view)({-1, 3, 1}))); } TEST(DimExpressionTest, AllDims) { auto view = TestArray() | AllDims().IndexSlice(1) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(222, ((*view)())); } TEST(DimExpressionTest, DimRange) { auto view = TestArray() | tensorstore::DimRange(1).IndexSlice(1) | Materialize(); TENSORSTORE_EXPECT_OK(view); EXPECT_EQ(322, ((*view)(2))); } }
518
cpp
google/tensorstore
batch
tensorstore/serialization/batch.cc
tensorstore/batch_test.cc
#ifndef TENSORSTORE_SERIALIZATION_BATCH_H_ #define TENSORSTORE_SERIALIZATION_BATCH_H_ #include <cstddef> #include <memory> #include <string> #include <string_view> #include <typeinfo> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "riegeli/bytes/string_reader.h" #include "riegeli/bytes/string_writer.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace serialization { class BatchEncodeSink final : public EncodeSink { public: explicit BatchEncodeSink(riegeli::Writer& writer); ~BatchEncodeSink(); [[nodiscard]] bool DoIndirect(const std::type_info& type, ErasedEncodeWrapperFunction encode, std::shared_ptr<void> object) override; private: absl::flat_hash_map<std::shared_ptr<void>, size_t> indirect_map_; }; class BatchDecodeSource final : public DecodeSource { public: BatchDecodeSource(riegeli::Reader& reader); ~BatchDecodeSource(); [[nodiscard]] bool DoIndirect(const std::type_info& type, ErasedDecodeWrapperFunction decode, std::shared_ptr<void>& value) override; private: struct IndirectEntry { std::shared_ptr<void> value; const std::type_info* type; }; std::vector<IndirectEntry> indirect_objects_; }; template <typename T, typename ElementSerializer = Serializer<T>> Result<std::string> EncodeBatch(const T& value, const ElementSerializer& serializer = {}) { std::string buffer; riegeli::StringWriter writer(&buffer); BatchEncodeSink sink(writer); if (!serializer.Encode(sink, value) || !sink.Close()) { return sink.status(); } return buffer; } template <typename T, typename ElementSerializer = Serializer<internal::remove_cvref_t<T>>> absl::Status DecodeBatch(std::string_view encoded, T& value, const ElementSerializer& serializer = {}) { riegeli::StringReader reader(encoded); BatchDecodeSource source(reader); if (!serializer.Decode(source, value)) { internal_serialization::FailEof(source); } return source.Done(); } template <typename T, typename ElementSerializer = Serializer<internal::remove_cvref_t<T>>> absl::Status DecodeBatch(std::string_view encoded, T&& value, const ElementSerializer& serializer = {}) { riegeli::StringReader reader(encoded); BatchDecodeSource source(reader); if (!serializer.Decode(source, value)) { internal_serialization::FailEof(source); } return source.Done(); } template <typename T> class MaybeDecode { public: absl::Status Decode(const std::string& arg) { return serialization::DecodeBatch(arg, value_); } const T& value() const { return value_; } T value_; }; template <> class MaybeDecode<std::string> { public: absl::Status Decode(const std::string& arg) { value_ = &arg; return absl::OkStatus(); } const std::string& value() { return *value_; } const std::string* value_ = nullptr; }; } } #endif #include "tensorstore/serialization/batch.h" #include "absl/status/status.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace serialization { BatchEncodeSink::BatchEncodeSink(riegeli::Writer& writer) : EncodeSink(writer) {} BatchEncodeSink::~BatchEncodeSink() = default; bool BatchEncodeSink::DoIndirect(const std::type_info& type, ErasedEncodeWrapperFunction encode, std::shared_ptr<void> object) { auto [it, inserted] = indirect_map_.emplace(object, indirect_map_.size()); return serialization::WriteSize(writer(), it->second) && (!inserted || encode(*this, object)); } BatchDecodeSource::BatchDecodeSource(riegeli::Reader& reader) : DecodeSource(reader) {} BatchDecodeSource::~BatchDecodeSource() = default; bool BatchDecodeSource::DoIndirect(const std::type_info& type, ErasedDecodeWrapperFunction decode, std::shared_ptr<void>& value) { size_t id; if (!serialization::ReadSize(reader(), id)) return false; if (id > indirect_objects_.size()) { Fail(DecodeError(tensorstore::StrCat("Indirect object index ", id, " out of range [0, ", indirect_objects_.size(), ")"))); return false; } if (id < indirect_objects_.size()) { auto& entry = indirect_objects_[id]; if (*entry.type != type) { Fail(absl::InvalidArgumentError(tensorstore::StrCat( "Type mismatch for indirect object, received ", entry.type->name(), " but expected ", type.name()))); return false; } value = entry.value; return true; } indirect_objects_.emplace_back(); if (!decode(*this, value)) return false; auto& entry = indirect_objects_[id]; entry.type = &type; entry.value = value; return true; } } }
#include "tensorstore/batch.h" #include <stddef.h> #include <functional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "tensorstore/batch_impl.h" namespace { using ::tensorstore::Batch; using ::testing::ElementsAre; using Log = std::vector<std::string>; template <typename T> struct Entry : public Batch::Impl::Entry { using KeyParam = T; Entry(Log& log, size_t nesting_depth, T key) : Batch::Impl::Entry(nesting_depth), key_(key), log(log) {} T key_; T key() const { return key_; } virtual void Submit(Batch::View batch) { log.push_back(absl::StrCat("begin_submit ", key())); for (auto& submit_func : submit_funcs) { submit_func(batch); } log.push_back(absl::StrCat("end_submit ", key())); delete this; } std::vector<std::function<void(Batch::View batch)>> submit_funcs; Log& log; }; template <typename T> void AddFunc(Log& log, Batch::View batch, size_t nesting_depth, T key, std::function<void(Batch::View)> func) { auto& entry = Batch::Impl::From(batch)->GetEntry<Entry<T>>( key, [&] { return std::make_unique<Entry<T>>(log, nesting_depth, key); }); entry.submit_funcs.emplace_back(std::move(func)); } TEST(BatchTest, SingleNestingDepth) { Log log; auto batch = Batch::New(); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 2; ++j) { AddFunc<int>(log, batch, 0, i, [&log, i, j](Batch::View batch) { log.emplace_back(absl::StrFormat("i=%d, j=%d", i, j)); }); } } EXPECT_THAT(log, ElementsAre()); batch.Release(); EXPECT_THAT(log, ::testing::UnorderedElementsAre( "begin_submit 0", "i=0, j=0", "i=0, j=1", "end_submit 0", "begin_submit 1", "i=1, j=0", "i=1, j=1", "end_submit 1", "begin_submit 2", "i=2, j=0", "i=2, j=1", "end_submit 2")); } TEST(BatchTest, MultipleNestingDepths) { Log log; auto batch = Batch::New(); for (int nesting_depth : {2, 3, 0}) { AddFunc<int>(log, batch, nesting_depth, nesting_depth, [](Batch::View batch) {}); } EXPECT_THAT(log, ElementsAre()); batch.Release(); EXPECT_THAT(log, ::testing::ElementsAre("begin_submit 3", "end_submit 3", "begin_submit 2", "end_submit 2", "begin_submit 0", "end_submit 0")); } TEST(BatchTest, MultipleTypes) { Log log; auto batch = Batch::New(); AddFunc<int>(log, batch, 0, 42, [](Batch::View batch) {}); AddFunc<float>(log, batch, 0, 1.5, [](Batch::View batch) {}); EXPECT_THAT(log, ElementsAre()); batch.Release(); EXPECT_THAT(log, ::testing::ElementsAre("begin_submit 42", "end_submit 42", "begin_submit 1.5", "end_submit 1.5")); } TEST(BatchTest, Async) { Log log; auto batch = Batch::New(); Batch saved_batch{Batch::no_batch}; AddFunc<int>(log, batch, 2, 2, [&](Batch::View batch) { saved_batch = batch; }); AddFunc<int>(log, batch, 1, 3, [](Batch::View batch) {}); batch.Release(); EXPECT_THAT(log, ElementsAre("begin_submit 2", "end_submit 2")); log.clear(); AddFunc<int>(log, saved_batch, 1, 1, [](Batch::View batch) {}); saved_batch.Release(); EXPECT_THAT( log, ::testing::UnorderedElementsAre("begin_submit 1", "end_submit 1", "begin_submit 3", "end_submit 3")); } }
519
cpp
google/tensorstore
transaction
tensorstore/kvstore/transaction.cc
tensorstore/kvstore/transaction_test.cc
#ifndef TENSORSTORE_KVSTORE_TRANSACTION_H_ #define TENSORSTORE_KVSTORE_TRANSACTION_H_ #include <stddef.h> #include <stdint.h> #include <atomic> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "tensorstore/internal/container/intrusive_red_black_tree.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/internal/tagged_ptr.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_modify_write.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/transaction.h" #include "tensorstore/util/future.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_kvstore { using kvstore::Driver; using kvstore::Key; using kvstore::ReadModifyWriteSource; using kvstore::ReadModifyWriteTarget; using kvstore::ReadOptions; using kvstore::ReadResult; using kvstore::Value; using kvstore::WriteOptions; class ReadModifyWriteEntry; class DeleteRangeEntry; class MutationEntry; class MultiPhaseMutation; class SinglePhaseMutation; enum MutationEntryType { kReadModifyWrite = 0, kDeleteRange = 1, kDeleteRangePlaceholder = 2, }; using MutationEntryTree = internal::intrusive_red_black_tree::Tree<MutationEntry>; using ReadModifyWriteEntryTree = internal::intrusive_red_black_tree::Tree<ReadModifyWriteEntry>; class MutationEntry : public MutationEntryTree::NodeBase { public: std::string key_; internal::TaggedPtr<SinglePhaseMutation, 2> single_phase_mutation_; SinglePhaseMutation& single_phase_mutation() const { return *single_phase_mutation_; } MutationEntryType entry_type() const { return static_cast<MutationEntryType>(single_phase_mutation_.tag()); } MultiPhaseMutation& multi_phase() const; absl::Mutex& mutex() const; using DeleteRangeEntry = internal_kvstore::DeleteRangeEntry; using ReadModifyWriteEntry = internal_kvstore::ReadModifyWriteEntry; constexpr static MutationEntryType kReadModifyWrite = MutationEntryType::kReadModifyWrite; constexpr static MutationEntryType kDeleteRange = MutationEntryType::kDeleteRange; protected: ~MutationEntry() = default; }; class EntryCounter { public: void SetError() { value_.fetch_or(1, std::memory_order_relaxed); } bool HasError() const { return value_.load(std::memory_order_relaxed) & 1; } void IncrementCount(size_t amount = 1) { value_.fetch_add(2 * amount, std::memory_order_relaxed); } bool DecrementCount(size_t amount = 1) { return value_.fetch_sub(2 * amount, std::memory_order_acq_rel) - 2 * amount <= 1; } bool IsDone() const { return value_ <= 1; } private: std::atomic<size_t> value_{0}; }; class DeleteRangeEntry final : public MutationEntry { public: std::string exclusive_max_; ReadModifyWriteEntryTree superseded_; EntryCounter remaining_entries_; }; class ReadModifyWriteEntry : public MutationEntry, public ReadModifyWriteTarget { public: ReadModifyWriteSource* source_; ReadModifyWriteEntry* prev_ = nullptr; MutationEntry* next_ = nullptr; ReadModifyWriteEntry* next_read_modify_write() const { if (!next_ || (flags_ & kDeleted)) return nullptr; return static_cast<ReadModifyWriteEntry*>(next_); } using Flags = uint8_t; Flags flags_ = 0; constexpr static Flags kWritebackProvided = 1; constexpr static Flags kTransitivelyUnconditional = 2; constexpr static Flags kDirty = 4; constexpr static Flags kPrevDeleted = 8; constexpr static Flags kError = 16; constexpr static Flags kDeleted = 32; constexpr static Flags kTransitivelyDirty = 64; void KvsRead(TransactionalReadOptions options, ReadReceiver receiver) override; bool KvsReadsCommitted() override; virtual ~ReadModifyWriteEntry() = default; }; class SinglePhaseMutation { public: SinglePhaseMutation() = default; SinglePhaseMutation(const SinglePhaseMutation&) = delete; MultiPhaseMutation* multi_phase_; size_t phase_number_; MutationEntryTree entries_; SinglePhaseMutation* next_; SinglePhaseMutation* prev_; EntryCounter remaining_entries_; }; void DestroyPhaseEntries(SinglePhaseMutation& single_phase_mutation); void WritebackError(MutationEntry& entry); void WritebackError(ReadModifyWriteEntry& entry); void WritebackError(DeleteRangeEntry& entry); void WritebackError(SinglePhaseMutation& single_phase_mutation); void WritebackSuccess(DeleteRangeEntry& entry); void WritebackSuccess(ReadModifyWriteEntry& entry, TimestampedStorageGeneration new_stamp); void InvalidateReadState(SinglePhaseMutation& single_phase_mutation); class MultiPhaseMutation { public: MultiPhaseMutation(); SinglePhaseMutation phases_; virtual internal::TransactionState::Node& GetTransactionNode() = 0; virtual std::string DescribeKey(std::string_view key) = 0; SinglePhaseMutation& GetCommittingPhase(); virtual ReadModifyWriteEntry* AllocateReadModifyWriteEntry(); virtual void FreeReadModifyWriteEntry(ReadModifyWriteEntry* entry); virtual void Read(ReadModifyWriteEntry& entry, ReadModifyWriteTarget::TransactionalReadOptions&& options, ReadModifyWriteTarget::ReadReceiver&& receiver) = 0; virtual void Writeback(ReadModifyWriteEntry& entry, ReadModifyWriteEntry& source_entry, ReadResult&& read_result) = 0; virtual void WritebackDelete(DeleteRangeEntry& entry) = 0; virtual bool MultiPhaseReadsCommitted() { return true; } virtual void PhaseCommitDone(size_t next_phase) = 0; virtual void AllEntriesDone(SinglePhaseMutation& single_phase_mutation); virtual void RecordEntryWritebackError(ReadModifyWriteEntry& entry, absl::Status error); void AbortRemainingPhases(); void CommitNextPhase(); enum class ReadModifyWriteStatus { kExisting, kAddedFirst, kAddedSubsequent, }; ReadModifyWriteStatus ReadModifyWrite(size_t& phase, Key key, ReadModifyWriteSource& source); void DeleteRange(KeyRange range); std::string DescribeFirstEntry(); virtual absl::Mutex& mutex() = 0; protected: ~MultiPhaseMutation() = default; }; inline MultiPhaseMutation& MutationEntry::multi_phase() const { return *single_phase_mutation().multi_phase_; } inline absl::Mutex& MutationEntry::mutex() const { return multi_phase().mutex(); } class AtomicMultiPhaseMutationBase : public MultiPhaseMutation { public: static void AtomicWritebackReady(ReadModifyWriteEntry& entry); struct ReadModifyWriteEntryWithStamp : public internal_kvstore::ReadModifyWriteEntry { bool IsOutOfDate(absl::Time staleness_bound) { return stamp_.time == absl::InfinitePast() || stamp_.time < staleness_bound; } TimestampedStorageGeneration& stamp() { return stamp_; } TimestampedStorageGeneration stamp_; }; void RetryAtomicWriteback(absl::Time staleness_bound); void WritebackDelete(DeleteRangeEntry& entry) override; void AtomicCommitWritebackSuccess(); void RevokeAllEntries(); protected: ~AtomicMultiPhaseMutationBase() = default; }; class AtomicMultiPhaseMutation : public AtomicMultiPhaseMutationBase { public: class BufferedReadModifyWriteEntry : public AtomicMultiPhaseMutationBase::ReadModifyWriteEntryWithStamp { public: ReadResult::State value_state_; absl::Cord value_; }; ReadModifyWriteEntry* AllocateReadModifyWriteEntry() override; void FreeReadModifyWriteEntry(ReadModifyWriteEntry* entry) override; void Writeback(ReadModifyWriteEntry& entry, ReadModifyWriteEntry& source_entry, ReadResult&& read_result) override; protected: ~AtomicMultiPhaseMutation() = default; }; void ReadDirectly(Driver* driver, ReadModifyWriteEntry& entry, ReadModifyWriteTarget::TransactionalReadOptions&& options, ReadModifyWriteTarget::ReadReceiver&& receiver); void WritebackDirectly(Driver* driver, ReadModifyWriteEntry& entry, ReadResult&& read_result); void WritebackDirectly(Driver* driver, DeleteRangeEntry& entry); template <typename DerivedMultiPhaseMutation = MultiPhaseMutation> class TransactionNodeBase : public internal::TransactionState::Node, public DerivedMultiPhaseMutation { public: TransactionNodeBase(Driver* driver) : internal::TransactionState::Node(driver) { intrusive_ptr_increment(driver); } ~TransactionNodeBase() { intrusive_ptr_decrement(this->driver()); } Driver* driver() { return static_cast<Driver*>(this->associated_data()); } internal::TransactionState::Node& GetTransactionNode() override { return *this; } std::string DescribeKey(std::string_view key) override { return this->driver()->DescribeKey(key); } void Read(ReadModifyWriteEntry& entry, ReadModifyWriteTarget::TransactionalReadOptions&& options, ReadModifyWriteTarget::ReadReceiver&& receiver) override { internal_kvstore::ReadDirectly(driver(), entry, std::move(options), std::move(receiver)); } void PhaseCommitDone(size_t next_phase) override { this->CommitDone(next_phase); } void PrepareForCommit() override { this->PrepareDone(); this->ReadyForCommit(); } void Commit() override { this->CommitNextPhase(); } absl::Mutex& mutex() override { return mutex_; } void Abort() override { this->AbortRemainingPhases(); this->AbortDone(); } std::string Describe() override { absl::MutexLock lock(&mutex_); return this->DescribeFirstEntry(); } absl::Mutex mutex_; }; class NonAtomicTransactionNode : public TransactionNodeBase<MultiPhaseMutation> { public: using TransactionNodeBase<MultiPhaseMutation>::TransactionNodeBase; void Writeback(ReadModifyWriteEntry& entry, ReadModifyWriteEntry& source_entry, ReadResult&& read_result) override { internal_kvstore::WritebackDirectly(this->driver(), entry, std::move(read_result)); } void WritebackDelete(DeleteRangeEntry& entry) override { internal_kvstore::WritebackDirectly(driver(), entry); } }; using AtomicTransactionNode = TransactionNodeBase<AtomicMultiPhaseMutation>; template <typename TransactionNode, typename... Arg> Result<internal::OpenTransactionNodePtr<TransactionNode>> GetTransactionNode( Driver* driver, internal::OpenTransactionPtr& transaction, Arg&&... arg) { TENSORSTORE_ASSIGN_OR_RETURN(auto node, internal::GetOrCreateOpenTransaction(transaction) .GetOrCreateMultiPhaseNode(driver, [&] { return new TransactionNode( driver, std::forward<Arg>(arg)...); })); return internal::static_pointer_cast<TransactionNode>(std::move(node)); } template <typename TransactionNode, typename... Arg> absl::Status AddReadModifyWrite(Driver* driver, internal::OpenTransactionPtr& transaction, size_t& phase, Key key, ReadModifyWriteSource& source, Arg&&... arg) { TENSORSTORE_ASSIGN_OR_RETURN( auto node, internal_kvstore::GetTransactionNode<TransactionNode>( driver, transaction, std::forward<Arg>(arg)...)); absl::MutexLock lock(&node->mutex_); node->ReadModifyWrite(phase, std::move(key), source); return absl::OkStatus(); } template <typename TransactionNode, typename... Arg> absl::Status AddDeleteRange(Driver* driver, const internal::OpenTransactionPtr& transaction, KeyRange&& range, Arg&&... arg) { auto transaction_copy = transaction; TENSORSTORE_ASSIGN_OR_RETURN( auto node, internal_kvstore::GetTransactionNode<TransactionNode>( driver, transaction_copy, std::forward<Arg>(arg)...)); absl::MutexLock lock(&node->mutex_); node->DeleteRange(std::move(range)); return absl::OkStatus(); } Future<ReadResult> ReadViaExistingTransaction( Driver* driver, internal::OpenTransactionPtr& transaction, size_t& phase, Key key, kvstore::TransactionalReadOptions options); Future<TimestampedStorageGeneration> WriteViaExistingTransaction( Driver* driver, internal::OpenTransactionPtr& transaction, size_t& phase, Key key, std::optional<Value> value, WriteOptions options); Future<TimestampedStorageGeneration> WriteViaTransaction( Driver* driver, Key key, std::optional<Value> value, WriteOptions options); #ifdef TENSORSTORE_INTERNAL_KVSTORE_TRANSACTION_DEBUG #define TENSORSTORE_KVSTORE_DEBUG_LOG(...) \ do { \ tensorstore::internal_kvstore::KvstoreDebugLog( \ tensorstore::SourceLocation::current(), __VA_ARGS__); \ } while (false) template <typename... T> void KvstoreDebugLog(tensorstore::SourceLocation loc, MutationEntry& entry, const T&... arg) { std::string message; tensorstore::StrAppend( &message, "[", typeid(entry.multi_phase()).name(), ": multi_phase=", &entry.multi_phase(), ", entry=", &entry, ", phase=", entry.single_phase_mutation().phase_number_, ", key=", tensorstore::QuoteString(entry.key_)); if (entry.entry_type() == kDeleteRange) { tensorstore::StrAppend( &message, ", exclusive_max=", tensorstore::QuoteString( static_cast<DeleteRangeEntry&>(entry).exclusive_max_)); } else { size_t seq = 0; for (auto* e = static_cast<ReadModifyWriteEntry*>(&entry)->prev_; e; e = e->prev_) { ++seq; } tensorstore::StrAppend(&message, ", seq=", seq); } tensorstore::StrAppend(&message, "] ", arg...); ABSL_LOG(INFO).AtLocation(loc.file_name(), loc.line()) << message; } #else #define TENSORSTORE_KVSTORE_DEBUG_LOG(...) while (false) #endif } } #endif #include "tensorstore/kvstore/transaction.h" #include <stddef.h> #include <stdint.h> #include <cassert> #include <iterator> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/base/optimization.h" #include "absl/container/btree_map.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/compare.h" #include "tensorstore/internal/compare.h" #include "tensorstore/internal/intrus
#include "tensorstore/transaction.h" #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/mock_kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/status_testutil.h" namespace { namespace kvstore = tensorstore::kvstore; using ::tensorstore::MatchesStatus; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::StorageGeneration; using ::tensorstore::TimestampedStorageGeneration; using ::tensorstore::Transaction; using ::tensorstore::internal::MatchesKvsReadResult; using ::tensorstore::internal::MockKeyValueStore; using ::tensorstore::kvstore::KvStore; using ::tensorstore::kvstore::ReadResult; TEST(KvStoreTest, WriteThenRead) { auto mock_driver = MockKeyValueStore::Make(); Transaction txn(tensorstore::isolated); KvStore store(mock_driver, "", txn); TENSORSTORE_ASSERT_OK(kvstore::Write(store, "a", absl::Cord("value"))); EXPECT_THAT(kvstore::Read(store, "a").result(), ::testing::Optional(MatchesKvsReadResult(absl::Cord("value")))); auto future = txn.CommitAsync(); { auto req = mock_driver->write_requests.pop(); EXPECT_THAT(req.key, "a"); EXPECT_THAT(req.value, ::testing::Optional(absl::Cord("value"))); EXPECT_THAT(req.options.generation_conditions.if_equal, StorageGeneration::Unknown()); req.promise.SetResult(TimestampedStorageGeneration( StorageGeneration::FromString("abc"), absl::Now())); } TENSORSTORE_ASSERT_OK(future); } TEST(KvStoreTest, ReadWithoutRepeatableReadIsolation) { auto mock_driver = MockKeyValueStore::Make(); Transaction txn(tensorstore::isolated); KvStore store(mock_driver, "", txn); { auto read_future = kvstore::Read(store, "a"); { auto req = mock_driver->read_requests.pop(); EXPECT_THAT(req.key, "a"); req.promise.SetResult(ReadResult::Value( absl::Cord("value"), TimestampedStorageGeneration(StorageGeneration::FromString("abc"), absl::Now()))); } EXPECT_THAT(read_future.result(), ::testing::Optional(MatchesKvsReadResult(absl::Cord("value")))); } TENSORSTORE_ASSERT_OK(txn.CommitAsync().result()); } TEST(KvStoreTest, ReadWithRepeatableReadIsolation) { auto mock_driver = MockKeyValueStore::Make(); Transaction txn(tensorstore::isolated | tensorstore::repeatable_read); KvStore store(mock_driver, "", txn); { auto read_future = kvstore::Read(store, "a"); { auto req = mock_driver->read_requests.pop(); EXPECT_THAT(req.key, "a"); req.promise.SetResult(ReadResult::Value( absl::Cord("value"), TimestampedStorageGeneration(StorageGeneration::FromString("abc"), absl::Now()))); } EXPECT_THAT(read_future.result(), ::testing::Optional(MatchesKvsReadResult(absl::Cord("value")))); } auto future = txn.CommitAsync(); { auto req = mock_driver->read_requests.pop(); EXPECT_THAT(req.key, "a"); EXPECT_THAT(req.options.byte_range, OptionalByteRangeRequest(0, 0)); EXPECT_THAT(req.options.generation_conditions.if_not_equal, StorageGeneration::FromString("abc")); req.promise.SetResult(ReadResult::Unspecified(TimestampedStorageGeneration( StorageGeneration::FromString("abc"), absl::Now()))); } TENSORSTORE_ASSERT_OK(future); } TEST(KvStoreTest, ReadInvalidOptionIfEqual) { auto mock_driver = MockKeyValueStore::Make(); Transaction txn(tensorstore::isolated); KvStore store(mock_driver, "", txn); kvstore::ReadOptions options; options.generation_conditions.if_equal = StorageGeneration::FromString("abc"); EXPECT_THAT(kvstore::Read(store, "a", std::move(options)).result(), MatchesStatus(absl::StatusCode::kUnimplemented)); } TEST(KvStoreTest, ReadInvalidOptionByteRange) { auto mock_driver = MockKeyValueStore::Make(); Transaction txn(tensorstore::isolated); KvStore store(mock_driver, "", txn); kvstore::ReadOptions options; options.byte_range = OptionalByteRangeRequest{5, 10}; EXPECT_THAT(kvstore::Read(store, "a", std::move(options)).result(), MatchesStatus(absl::StatusCode::kUnimplemented)); } TEST(KvStoreTest, ReadMismatch) { auto mock_driver = MockKeyValueStore::Make(); Transaction txn(tensorstore::isolated | tensorstore::repeatable_read); KvStore store(mock_driver, "", txn); { auto read_future = kvstore::Read(store, "a"); { auto req = mock_driver->read_requests.pop(); EXPECT_THAT(req.key, "a"); req.promise.SetResult(ReadResult::Value( absl::Cord("value"), TimestampedStorageGeneration(StorageGeneration::FromString("abc"), absl::Now()))); } EXPECT_THAT(read_future.result(), ::testing::Optional(MatchesKvsReadResult(absl::Cord("value")))); } auto future = txn.CommitAsync(); { auto req = mock_driver->read_requests.pop(); EXPECT_THAT(req.key, "a"); EXPECT_THAT(req.options.byte_range, OptionalByteRangeRequest(0, 0)); EXPECT_THAT(req.options.generation_conditions.if_not_equal, StorageGeneration::FromString("abc")); req.promise.SetResult(ReadResult::Missing(TimestampedStorageGeneration( StorageGeneration::FromString("def"), absl::Now()))); } { auto req = mock_driver->read_requests.pop(); EXPECT_THAT(req.key, "a"); req.promise.SetResult(ReadResult::Missing(TimestampedStorageGeneration( StorageGeneration::FromString("def"), absl::Now()))); } EXPECT_THAT(future.result(), MatchesStatus(absl::StatusCode::kAborted, "Error writing \"a\": Generation mismatch")); } TEST(KvStoreTest, ListInvalid) { auto mock_driver = MockKeyValueStore::Make(); Transaction txn(tensorstore::isolated); KvStore store(mock_driver, "", txn); EXPECT_THAT(kvstore::ListFuture(store).result(), MatchesStatus(absl::StatusCode::kUnimplemented)); } }
520
cpp
google/tensorstore
spec
tensorstore/kvstore/spec.cc
tensorstore/driver/zarr/spec_test.cc
#ifndef TENSORSTORE_KVSTORE_SPEC_H_ #define TENSORSTORE_KVSTORE_SPEC_H_ #include <string> #include <string_view> #include "absl/status/status.h" #include "tensorstore/context.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/path.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/open_mode.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/option.h" namespace tensorstore { namespace kvstore { struct DriverSpecOptions { bool minimal_spec = false; template <typename T> constexpr static bool IsOption = false; void Set(MinimalSpec value) { minimal_spec = value.minimal_spec(); } }; template <> constexpr inline bool DriverSpecOptions::IsOption<MinimalSpec> = true; struct SpecConvertOptions : public DriverSpecOptions { ContextBindingMode context_binding_mode = ContextBindingMode::unspecified; Context context; template <typename T> constexpr static bool IsOption = DriverSpecOptions::IsOption<T>; using DriverSpecOptions::Set; void Set(Context value) { context = std::move(value); } void Set(ContextBindingMode value) { if (value > context_binding_mode) context_binding_mode = value; } }; template <> constexpr inline bool SpecConvertOptions::IsOption<Context> = true; template <> constexpr inline bool SpecConvertOptions::IsOption<ContextBindingMode> = true; class DriverSpec; void intrusive_ptr_increment(const DriverSpec* p); void intrusive_ptr_decrement(const DriverSpec* p); class DriverSpecPtr : public internal::IntrusivePtr<const DriverSpec> { using Base = internal::IntrusivePtr<const DriverSpec>; public: using Base::Base; absl::Status BindContext(const Context& context); void UnbindContext() { return UnbindContext({}); } void UnbindContext(const internal::ContextSpecBuilder& context_builder); void StripContext(); ContextBindingState context_binding_state() const; template <typename... Option> std::enable_if_t<IsCompatibleOptionSequence<SpecConvertOptions, Option...>, absl::Status> Set(Option&&... option) { SpecConvertOptions options; (options.Set(option), ...); return Set(std::move(options)); } absl::Status Set(DriverSpecOptions&& options); absl::Status Set(SpecConvertOptions&& options); friend void EncodeCacheKeyAdl(std::string* out, const DriverSpecPtr& ptr); }; class Driver; void intrusive_ptr_increment(Driver* p); void intrusive_ptr_decrement(Driver* p); using DriverPtr = internal::IntrusivePtr<Driver>; void EncodeCacheKeyAdl(std::string* out, const DriverPtr& ptr); } namespace internal_kvstore { template <typename Derived, typename DerivedSpec, typename Parent> class RegisteredDriver; template <typename Derived, typename SpecDataT, typename Parent> class RegisteredDriverSpec; } namespace kvstore { class Spec { public: Spec() = default; Spec(DriverSpecPtr driver) : driver(std::move(driver)) {} explicit Spec(DriverSpecPtr driver, std::string path) : driver(std::move(driver)), path(std::move(path)) {} void AppendSuffix(std::string_view suffix) { path += suffix; } void AppendPathComponent(std::string_view component) { internal::AppendPathComponent(path, component); } bool valid() const { return static_cast<bool>(driver); } DriverSpecPtr driver; std::string path; static constexpr auto ApplyMembers = [](auto& x, auto f) { return f(x.driver, x.path); }; absl::Status BindContext(const Context& context); void UnbindContext() { UnbindContext({}); } void UnbindContext(const internal::ContextSpecBuilder& context_builder); void StripContext(); ContextBindingState context_binding_state() const { return driver.context_binding_state(); } template <typename... Option> std::enable_if_t<IsCompatibleOptionSequence<SpecConvertOptions, Option...>, absl::Status> Set(Option&&... option) { SpecConvertOptions options; (options.Set(option), ...); return Set(std::move(options)); } absl::Status Set(SpecConvertOptions&& options); TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(Spec, JsonSerializationOptions, JsonSerializationOptions) static Result<Spec> FromUrl(std::string_view url); Result<std::string> ToUrl() const; Result<Spec> base() const; friend bool operator==(const Spec& a, const Spec& b); friend bool operator!=(const Spec& a, const Spec& b) { return !(a == b); } }; } namespace internal { template <typename, typename> struct ContextBindingTraits; template <> struct ContextBindingTraits<kvstore::DriverSpecPtr, void> { using Spec = kvstore::DriverSpecPtr; static absl::Status Bind(Spec& spec, const Context& context) { if (!spec) return absl::OkStatus(); return spec.BindContext(context); } static void Unbind(Spec& spec, const ContextSpecBuilder& builder) { spec.UnbindContext(builder); } static void Strip(Spec& spec) { spec.StripContext(); } }; } namespace internal_json_binding { TENSORSTORE_DECLARE_JSON_BINDER(KvStoreSpecAndPathJsonBinder, kvstore::Spec, JsonSerializationOptions, JsonSerializationOptions, ::nlohmann::json::object_t) } } TENSORSTORE_DECLARE_SERIALIZER_SPECIALIZATION(tensorstore::kvstore::Spec) TENSORSTORE_DECLARE_GARBAGE_COLLECTION_SPECIALIZATION( tensorstore::kvstore::Spec) #endif #include "tensorstore/kvstore/spec.h" #include <string> #include <string_view> #include <utility> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" using ::tensorstore::internal::IntrusivePtr; namespace tensorstore { namespace kvstore { void intrusive_ptr_increment(const DriverSpec* p) { intrusive_ptr_increment( static_cast<const internal::AtomicReferenceCount<DriverSpec>*>(p)); } void intrusive_ptr_decrement(const DriverSpec* p) { intrusive_ptr_decrement( static_cast<const internal::AtomicReferenceCount<DriverSpec>*>(p)); } DriverSpec::~DriverSpec() = default; absl::Status DriverSpec::NormalizeSpec(std::string& path) { return absl::OkStatus(); } Result<std::string> DriverSpec::ToUrl(std::string_view path) const { return absl::UnimplementedError("URL representation not supported"); } absl::Status DriverSpec::ApplyOptions(DriverSpecOptions&& options) { return absl::OkStatus(); } Result<Spec> DriverSpec::GetBase(std::string_view path) const { return {std::in_place}; } Result<Spec> Spec::base() const { return driver->GetBase(path); } ContextBindingState DriverSpecPtr::context_binding_state() const { return get()->context_binding_state_; } void EncodeCacheKeyAdl(std::string* out, const DriverSpecPtr& ptr) { return ptr->EncodeCacheKey(out); } TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(Spec, [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { if (auto* s = j->template get_ptr<const std::string*>()) { TENSORSTORE_ASSIGN_OR_RETURN(*obj, Spec::FromUrl(*s)); return absl::OkStatus(); } } else { if (!obj->valid()) { *j = ::nlohmann::json::value_t::discarded; return absl::OkStatus(); } } namespace jb = tensorstore::internal_json_binding; auto& registry = internal_kvstore::GetDriverRegistry(); return jb::NestedContextJsonBinder(jb::Object( jb::Member("driver", jb::Projection<&Spec::driver>(registry.KeyBinder())), jb::Initialize([](Spec* p) { const_cast<DriverSpec&>(*p->driver).context_binding_state_ = ContextBindingState::unbound; }), jb::Member("context", jb::Projection( [](const Spec& p) -> Context::Spec& { return const_cast<Context::Spec&>( p.driver->context_spec_); }, internal::ContextSpecDefaultableJsonBinder)), jb::Member("path", jb::Projection( [](auto& p) -> decltype(auto) { return (p.path); }, jb::DefaultInitializedValue())), [&](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { TENSORSTORE_RETURN_IF_ERROR(registry.RegisteredObjectBinder()( is_loading, {options, obj->path}, &obj->driver, j)); return const_cast<DriverSpec&>(*obj->driver).NormalizeSpec(obj->path); } else { return registry.RegisteredObjectBinder()(is_loading, options, &obj->driver, j); } }))(is_loading, options, obj, j); }) absl::Status DriverSpecPtr::Set(DriverSpecOptions&& options) { if (options.minimal_spec) { if ((*this)->use_count() != 1) *this = (*this)->Clone(); TENSORSTORE_RETURN_IF_ERROR( const_cast<DriverSpec*>(get())->ApplyOptions(std::move(options))); } return absl::OkStatus(); } absl::Status DriverSpecPtr::Set(SpecConvertOptions&& options) { internal::ApplyContextBindingMode( *this, options.context_binding_mode, ContextBindingMode::retain); if (options.context) { TENSORSTORE_RETURN_IF_ERROR(BindContext(options.context)); } return Set(static_cast<DriverSpecOptions&&>(options)); } absl::Status DriverSpecPtr::BindContext(const Context& context) { return internal::BindContextCopyOnWriteWithNestedContext(*this, context); } absl::Status Spec::Set(SpecConvertOptions&& options) { return driver.Set(std::move(options)); } void DriverSpecPtr::UnbindContext( const internal::ContextSpecBuilder& context_builder) { internal::UnbindContextCopyOnWriteWithNestedContext(*this, context_builder); } void DriverSpecPtr::StripContext() { internal::StripContextCopyOnWriteWithNestedContext(*this); } absl::Status Spec::BindContext(const Context& context) { return driver.BindContext(context); } void Spec::UnbindContext(const internal::ContextSpecBuilder& context_builder) { driver.UnbindContext(context_builder); } void Spec::StripContext() { driver.StripContext(); } Result<std::string> Spec::ToUrl() const { if (!driver) { return absl::InvalidArgumentError("Invalid kvstore spec"); } return driver->ToUrl(path); } bool operator==(const Spec& a, const Spec& b) { if (!a.valid() || !b.valid()) { return a.valid() == b.valid(); } return internal::ContextBindableSpecsSameViaJson(a, b); } } namespace serialization { namespace { using DriverSpecPtrNonNullDirectSerializer = RegistrySerializer<internal::IntrusivePtr<const kvstore::DriverSpec>>; using DriverSpecPtrSerializer = IndirectPointerSerializer<internal::IntrusivePtr<const kvstore::DriverSpec>, DriverSpecPtrNonNullDirectSerializer>; using DriverSpecPtrNonNullSerializer = NonNullIndirectPointerSerializer< internal::IntrusivePtr<const kvstore::DriverSpec>, DriverSpecPtrNonNullDirectSerializer>; } } namespace internal_json_binding { TENSORSTORE_DEFINE_JSON_BINDER( KvStoreSpecAndPathJsonBinder, Sequence(Member("kvstore", DefaultInitializedPredicate([](auto* obj) { return !obj->valid(); })), LoadSave(OptionalMember( "path", Compose<std::string>([](auto is_loading, const auto& options, auto* obj, std::string* j) { if (!obj->valid()) { return absl::InvalidArgumentError( "\"path\" must be specified in conjunction with " "\"kvstore\""); } obj->AppendPathComponent(*j); return absl::OkStatus(); }))))) } } TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::kvstore::DriverSpecPtr, tensorstore::serialization::DriverSpecPtrSerializer()) TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::kvstore::Spec, tensorstore::serialization::ApplyMembersSerializer< tensorstore::kvstore::Spec>()) TENSORSTORE_DEFINE_GARBAGE_COLLECTION_SPECIALIZATION( tensorstore::kvstore::DriverSpec, tensorstore::garbage_collection::PolymorphicGarbageCollection< tensorstore::kvstore::DriverSpec>) TENSORSTORE_DEFINE_GARBAGE_COLLECTION_SPECIALIZATION( tensorstore::kvstore::Spec, tensorstore::garbage_collection::ApplyMembersGarbageCollection< tensorstore::kvstore::Spec>) TENSORSTORE_DEFINE_GARBAGE_COLLECTION_SPECIALIZATION( tensorstore::kvstore::DriverSpecPtr, tensorstore::garbage_collection::IndirectPointerGarbageCollection< tensorstore::kvstore::DriverSpecPtr>)
#include "tensorstore/driver/zarr/spec.h" #include <stdint.h> #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json.hpp> #include "tensorstore/codec_spec.h" #include "tensorstore/driver/zarr/metadata.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::ChunkLayout; using ::tensorstore::CodecSpec; using ::tensorstore::dtype_v; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::Schema; using ::tensorstore::internal_zarr::GetFieldIndex; using ::tensorstore::internal_zarr::ParseDType; using ::tensorstore::internal_zarr::ParseSelectedField; using ::tensorstore::internal_zarr::SelectedField; using ::tensorstore::internal_zarr::ZarrMetadata; using ::tensorstore::internal_zarr::ZarrPartialMetadata; TEST(ParsePartialMetadataTest, InvalidZarrFormat) { tensorstore::TestJsonBinderFromJson<ZarrPartialMetadata>({ {{{"zarr_format", "2"}}, MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"zarr_format\": .*")}, }); } TEST(ParsePartialMetadataTest, InvalidChunks) { tensorstore::TestJsonBinderFromJson<ZarrPartialMetadata>({ {{{"chunks", "2"}}, MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"chunks\": .*")}, }); } TEST(ParsePartialMetadataTest, InvalidShape) { tensorstore::TestJsonBinderFromJson<ZarrPartialMetadata>({ {{{"shape", "2"}}, MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"shape\": .*")}, }); } TEST(ParsePartialMetadataTest, InvalidCompressor) { tensorstore::TestJsonBinderFromJson<ZarrPartialMetadata>({ {{{"compressor", "2"}}, MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"compressor\": .*")}, }); } TEST(ParsePartialMetadataTest, InvalidOrder) { tensorstore::TestJsonBinderFromJson<ZarrPartialMetadata>({ {{{"order", "2"}}, MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"order\": .*")}, }); } TEST(ParsePartialMetadataTest, InvalidDType) { tensorstore::TestJsonBinderFromJson<ZarrPartialMetadata>({ {{{"dtype", "2"}}, MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"dtype\": .*")}, }); } TEST(ParsePartialMetadataTest, InvalidFilters) { tensorstore::TestJsonBinderFromJson<ZarrPartialMetadata>({ {{{"filters", "x"}}, MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"filters\": .*")}, }); } TEST(ParsePartialMetadataTest, Empty) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto result, ZarrPartialMetadata::FromJson(::nlohmann::json::object_t{})); EXPECT_EQ(std::nullopt, result.zarr_format); EXPECT_EQ(std::nullopt, result.order); EXPECT_EQ(std::nullopt, result.compressor); EXPECT_EQ(std::nullopt, result.filters); EXPECT_EQ(std::nullopt, result.dtype); EXPECT_EQ(std::nullopt, result.fill_value); EXPECT_EQ(std::nullopt, result.shape); EXPECT_EQ(std::nullopt, result.chunks); } ::nlohmann::json GetMetadataSpec() { return {{"zarr_format", 2}, {"chunks", {3, 2}}, {"shape", {100, 100}}, {"order", "C"}, {"filters", nullptr}, {"fill_value", nullptr}, {"dtype", "<i2"}, {"compressor", {{"id", "blosc"}, {"blocksize", 0}, {"clevel", 5}, {"cname", "lz4"}, {"shuffle", -1}}}}; } TEST(ParsePartialMetadataTest, Complete) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto result, ZarrPartialMetadata::FromJson(GetMetadataSpec())); EXPECT_EQ(2, result.zarr_format); EXPECT_EQ(tensorstore::c_order, result.order); ASSERT_TRUE(result.compressor); EXPECT_EQ((::nlohmann::json{{"id", "blosc"}, {"blocksize", 0}, {"clevel", 5}, {"cname", "lz4"}, {"shuffle", -1}}), ::nlohmann::json(*result.compressor)); ASSERT_TRUE(result.dtype); EXPECT_EQ("<i2", ::nlohmann::json(*result.dtype)); ASSERT_TRUE(result.fill_value); ASSERT_EQ(1, result.fill_value->size()); EXPECT_FALSE((*result.fill_value)[0].valid()); ASSERT_TRUE(result.shape); EXPECT_THAT(*result.shape, ::testing::ElementsAre(100, 100)); ASSERT_TRUE(result.chunks); EXPECT_THAT(*result.chunks, ::testing::ElementsAre(3, 2)); } TEST(ParseSelectedFieldTest, Null) { EXPECT_EQ(SelectedField(), ParseSelectedField(nullptr)); } TEST(ParseSelectedFieldTest, InvalidString) { EXPECT_THAT( ParseSelectedField(""), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected null or non-empty string, but received: \"\"")); } TEST(ParseSelectedFieldTest, String) { EXPECT_EQ(SelectedField("label"), ParseSelectedField("label")); } TEST(ParseSelectedFieldTest, InvalidType) { EXPECT_THAT( ParseSelectedField(true), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected null or non-empty string, but received: true")); } TEST(GetFieldIndexTest, Null) { EXPECT_EQ(0u, GetFieldIndex(ParseDType("<i4").value(), SelectedField())); EXPECT_THAT( GetFieldIndex( ParseDType(::nlohmann::json::array_t{{"x", "<i4"}, {"y", "<u2"}}) .value(), SelectedField()), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Must specify a \"field\" that is one of: \\[\"x\",\"y\"\\]")); } TEST(GetFieldIndexTest, String) { EXPECT_THAT( GetFieldIndex(ParseDType("<i4").value(), "x"), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Requested field \"x\" but dtype does not have named fields")); EXPECT_EQ(0u, GetFieldIndex(ParseDType(::nlohmann::json::array_t{ {"x", "<i4"}, {"y", "<u2"}}) .value(), "x")); EXPECT_EQ(1u, GetFieldIndex(ParseDType(::nlohmann::json::array_t{ {"x", "<i4"}, {"y", "<u2"}}) .value(), "y")); EXPECT_THAT( GetFieldIndex( ParseDType(::nlohmann::json::array_t{{"x", "<i4"}, {"y", "<u2"}}) .value(), "z"), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Requested field \"z\" is not one of: \\[\"x\",\"y\"\\]")); } TEST(EncodeSelectedFieldTest, NonEmpty) { auto dtype = ParseDType(::nlohmann::json::array_t{{"x", "<i4"}, {"y", "<u2"}}).value(); EXPECT_EQ("x", EncodeSelectedField(0, dtype)); EXPECT_EQ("y", EncodeSelectedField(1, dtype)); } TEST(EncodeSelectedFieldTest, Empty) { auto dtype = ParseDType("<i4").value(); EXPECT_EQ("", EncodeSelectedField(0, dtype)); } template <typename... Option> tensorstore::Result<::nlohmann::json> GetNewMetadataFromOptions( ::nlohmann::json partial_metadata_json, std::string selected_field, Option&&... option) { Schema schema; if (absl::Status status; !((status = schema.Set(std::forward<Option>(option))).ok() && ...)) { return status; } TENSORSTORE_ASSIGN_OR_RETURN( auto partial_metadata, ZarrPartialMetadata::FromJson(partial_metadata_json)); TENSORSTORE_ASSIGN_OR_RETURN( auto new_metadata, GetNewMetadata(partial_metadata, selected_field, schema)); return new_metadata->ToJson(); } TEST(GetNewMetadataTest, FullMetadata) { EXPECT_THAT(GetNewMetadataFromOptions({{"chunks", {8, 10}}, {"dtype", "<i4"}, {"compressor", nullptr}, {"shape", {5, 6}}}, {}), ::testing::Optional(MatchesJson({ {"chunks", {8, 10}}, {"compressor", nullptr}, {"dtype", "<i4"}, {"fill_value", nullptr}, {"filters", nullptr}, {"order", "C"}, {"shape", {5, 6}}, {"zarr_format", 2}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, NoShape) { EXPECT_THAT( GetNewMetadataFromOptions( {{"chunks", {2, 3}}, {"dtype", "<i4"}, {"compressor", nullptr}}, {}), MatchesStatus(absl::StatusCode::kInvalidArgument, "domain must be specified")); } TEST(GetNewMetadataTest, AutomaticChunks) { EXPECT_THAT( GetNewMetadataFromOptions( {{"shape", {2, 3}}, {"dtype", "<i4"}, {"compressor", nullptr}}, {}), ::testing::Optional(MatchesJson({ {"chunks", {2, 3}}, {"compressor", nullptr}, {"dtype", "<i4"}, {"fill_value", nullptr}, {"filters", nullptr}, {"order", "C"}, {"shape", {2, 3}}, {"zarr_format", 2}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, NoDtype) { EXPECT_THAT( GetNewMetadataFromOptions( {{"shape", {2, 3}}, {"chunks", {2, 3}}, {"compressor", nullptr}}, {}), MatchesStatus(absl::StatusCode::kInvalidArgument, "\"dtype\" must be specified")); } TEST(GetNewMetadataTest, NoCompressor) { EXPECT_THAT(GetNewMetadataFromOptions( {{"shape", {2, 3}}, {"chunks", {2, 3}}, {"dtype", "<i4"}}, {}), ::testing::Optional(MatchesJson({ {"fill_value", nullptr}, {"filters", nullptr}, {"zarr_format", 2}, {"order", "C"}, {"shape", {2, 3}}, {"chunks", {2, 3}}, {"dtype", "<i4"}, {"compressor", { {"id", "blosc"}, {"cname", "lz4"}, {"clevel", 5}, {"blocksize", 0}, {"shuffle", -1}, }}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, IntegerOverflow) { EXPECT_THAT( GetNewMetadataFromOptions( {{"shape", {4611686018427387903, 4611686018427387903}}, {"chunks", {4611686018427387903, 4611686018427387903}}, {"dtype", "<i4"}, {"compressor", nullptr}}, {}), MatchesStatus( absl::StatusCode::kInvalidArgument, "Product of chunk dimensions " "\\{4611686018427387903, 4611686018427387903\\} is too large")); } TEST(GetNewMetadataTest, SchemaDomainDtype) { EXPECT_THAT(GetNewMetadataFromOptions(::nlohmann::json::object_t(), {}, tensorstore::IndexDomainBuilder(3) .shape({1000, 2000, 3000}) .Finalize() .value(), dtype_v<int32_t>), ::testing::Optional(MatchesJson({ {"fill_value", nullptr}, {"filters", nullptr}, {"zarr_format", 2}, {"order", "C"}, {"shape", {1000, 2000, 3000}}, {"chunks", {101, 101, 101}}, {"dtype", "<i4"}, {"compressor", { {"id", "blosc"}, {"cname", "lz4"}, {"clevel", 5}, {"blocksize", 0}, {"shuffle", -1}, }}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, SchemaDomainDtypeFillValue) { EXPECT_THAT(GetNewMetadataFromOptions( ::nlohmann::json::object_t(), {}, tensorstore::IndexDomainBuilder(3) .shape({1000, 2000, 3000}) .Finalize() .value(), dtype_v<int32_t>, Schema::FillValue{tensorstore::MakeScalarArray<int32_t>(5)}), ::testing::Optional(MatchesJson({ {"fill_value", 5}, {"filters", nullptr}, {"zarr_format", 2}, {"order", "C"}, {"shape", {1000, 2000, 3000}}, {"chunks", {101, 101, 101}}, {"dtype", "<i4"}, {"compressor", { {"id", "blosc"}, {"cname", "lz4"}, {"clevel", 5}, {"blocksize", 0}, {"shuffle", -1}, }}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, SchemaObjectWithDomainDtypeFillValue) { Schema schema; TENSORSTORE_ASSERT_OK(schema.Set(tensorstore::IndexDomainBuilder(3) .shape({1000, 2000, 3000}) .Finalize() .value())); TENSORSTORE_ASSERT_OK(schema.Set(dtype_v<int32_t>)); TENSORSTORE_ASSERT_OK( schema.Set(Schema::FillValue{tensorstore::MakeScalarArray<int32_t>(5)})); EXPECT_THAT(GetNewMetadataFromOptions(::nlohmann::json::object_t(), {}, schema), ::testing::Optional(MatchesJson({ {"fill_value", 5}, {"filters", nullptr}, {"zarr_format", 2}, {"order", "C"}, {"shape", {1000, 2000, 3000}}, {"chunks", {101, 101, 101}}, {"dtype", "<i4"}, {"compressor", { {"id", "blosc"}, {"cname", "lz4"}, {"clevel", 5}, {"blocksize", 0}, {"shuffle", -1}, }}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, SchemaDtypeShapeCodec) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto codec, CodecSpec::FromJson({{"driver", "zarr"}, {"compressor", nullptr}})); EXPECT_THAT(GetNewMetadataFromOptions(::nlohmann::json::object_t(), {}, Schema::Shape({100, 200}), dtype_v<int32_t>, codec), ::testing::Optional(MatchesJson({ {"fill_value", nullptr}, {"filters", nullptr}, {"zarr_format", 2}, {"order", "C"}, {"shape", {100, 200}}, {"chunks", {100, 200}}, {"dtype", "<i4"}, {"compressor", nullptr}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, SchemaDtypeInnerOrderC) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto codec, CodecSpec::FromJson({{"driver", "zarr"}, {"compressor", nullptr}})); EXPECT_THAT(GetNewMetadataFromOptions( ::nlohmann::json::object_t(), {}, Schema::Shape({100, 200}), ChunkLayout::InnerOrder({0, 1}), dtype_v<int32_t>, codec), ::testing::Optional(MatchesJson({ {"fill_value", nullptr}, {"filters", nullptr}, {"zarr_format", 2}, {"order", "C"}, {"shape", {100, 200}}, {"chunks", {100, 200}}, {"dtype", "<i4"}, {"compressor", nullptr}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, SchemaDtypeInnerOrderFortran) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto codec, CodecSpec::FromJson({{"driver", "zarr"}, {"compressor", nullptr}})); EXPECT_THAT(GetNewMetadataFromOptions( ::nlohmann::json::object_t(), {}, Schema::Shape({100, 200}), ChunkLayout::InnerOrder({1, 0}), dtype_v<int32_t>, codec), ::testing::Optional(MatchesJson({ {"fill_value", nullptr}, {"filters", nullptr}, {"zarr_format", 2}, {"order", "F"}, {"shape", {100, 200}}, {"chunks", {100, 200}}, {"dtype", "<i4"}, {"compressor", nullptr}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, SchemaDtypeInnerOrderFortranFieldShape) { EXPECT_THAT(GetNewMetadataFromOptions( { {"compressor", nullptr}, {"dtype", {{"x", "<u4", {2, 3}}}}, }, "x", Schema::Shape({100, 200, 2, 3}), ChunkLayout::InnerOrder({1, 0, 2, 3})), ::testing::Optional(MatchesJson({ {"fill_value", nullptr}, {"filters", nullptr}, {"zarr_format", 2}, {"order", "F"}, {"shape", {100, 200}}, {"chunks", {100, 200}}, {"dtype", {{"x", "<u4", {2, 3}}}}, {"compressor", nullptr}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, SchemaDtypeInnerOrderInvalid) { EXPECT_THAT( GetNewMetadataFromOptions( ::nlohmann::json::object_t(), {}, Schema::Shape({100, 200, 300}), ChunkLayout::InnerOrder({2, 0, 1}), dtype_v<int32_t>), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid \"inner_order\" constraint: \\{2, 0, 1\\}")); } TEST(GetNewMetadataTest, SchemaDtypeInnerOrderInvalidSoft) { EXPECT_THAT(GetNewMetadataFromOptions( {{"compressor", nullptr}}, {}, Schema::Shape({100, 200, 300}), ChunkLayout::InnerOrder({2, 0, 1}, false), dtype_v<int32_t>), ::testing::Optional(MatchesJson({ {"fill_value", nullptr}, {"filters", nullptr}, {"zarr_format", 2}, {"order", "C"}, {"shape", {100, 200, 300}}, {"chunks", {100, 102, 102}}, {"dtype", "<i4"}, {"compressor", nullptr}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, SchemaStructuredDtypeInvalidFillValue) { EXPECT_THAT( GetNewMetadataFromOptions( {{"dtype", ::nlohmann::json::array_t{{"x", "<u4"}, {"y", "<i4"}}}}, "x", Schema::Shape({100, 200}), Schema::FillValue(tensorstore::MakeScalarArray<uint32_t>(42))), MatchesStatus( absl::StatusCode::kInvalidArgument, "Invalid fill_value: Cannot specify fill_value through schema for " "structured zarr data type \\[.*")); } TEST(GetNewMetadataTest, SchemaFillValueMismatch) { EXPECT_THAT( GetNewMetadataFromOptions( {{"dtype", "<u4"}, {"fill_value", 42}}, {}, Schema::Shape({100, 200}), Schema::FillValue(tensorstore::MakeScalarArray<uint32_t>(43))), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid fill_value: .*")); } TEST(GetNewMetadataTest, SchemaFillValueMismatchNull) { EXPECT_THAT( GetNewMetadataFromOptions( {{"dtype", "<u4"}, {"fill_value", nullptr}}, {}, Schema::Shape({100, 200}), Schema::FillValue(tensorstore::MakeScalarArray<uint32_t>(42))), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid fill_value: .*")); } TEST(GetNewMetadataTest, SchemaFillValueRedundant) { EXPECT_THAT( GetNewMetadataFromOptions( { {"dtype", "<u4"}, {"fill_value", 42}, {"compressor", nullptr}, }, {}, Schema::Shape({100, 200}), Schema::FillValue(tensorstore::MakeScalarArray<uint32_t>(42))), ::testing::Optional(MatchesJson({ {"fill_value", 42}, {"filters", nullptr}, {"zarr_format", 2}, {"order", "C"}, {"shape", {100, 200}}, {"chunks", {100, 200}}, {"dtype", "<u4"}, {"compressor", nullptr}, {"dimension_separator", "."}, }))); } TEST(GetNewMetadataTest, SchemaCodecChunkShape) { EXPECT_THAT(GetNewMetadataFromOptions( ::nlohmann::json::object_t{}, {}, Schema::Shape({100, 200}), dtype_v<uint32_t>, ChunkLayout::CodecChunkShape({5, 6})), MatchesStatus(absl::StatusCode::kInvalidArgument, "codec_chunk_shape not supported")); } TEST(GetNewMetadataTest, CodecMismatch) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto codec, CodecSpec::FromJson({{"driver", "zarr"}, {"compressor", nullptr}})); EXPECT_THAT( GetNewMetadataFromOptions({{"compressor", {{"id", "blosc"}}}}, {}, Schema::Shape({100, 200}), dtype_v<int32_t>, codec), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot merge codec spec .* with .*: \"compressor\" does not match")); } TEST(GetNewMetadataTest, SelectedFieldDtypeNotSpecified) { EXPECT_THAT( GetNewMetadataFromOptions(::nlohmann::json::object_t(), "x", Schema::Shape({100, 200}), dtype_v<int32_t>), MatchesStatus(absl::StatusCode::kInvalidArgument, "\"dtype\" must be specified in \"metadata\" if " "\"field\" is specified")); } TEST(GetNewMetadataTest, SelectedFieldInvalid) { EXPECT_THAT( GetNewMetadataFromOptions({{"dtype", {{"x", "<u4", {2}}, {"y", "<i4"}}}}, "z", Schema::Shape({100, 200})), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Requested field \"z\" is not one of: \\[\"x\",\"y\"\\]")); } TEST(GetNewMetadataTest, InvalidDtype) { EXPECT_THAT(GetNewMetadataFromOptions(::nlohmann::json::object_t(), {}, dtype_v<tensorstore::dtypes::json_t>, Schema::Shape({100, 200})), MatchesStatus(absl::StatusCode::kInvalidArgument, "Data type not supported: json")); } TEST(GetNewMetadataTest, InvalidDomain) { EXPECT_THAT( GetNewMetadataFromOptions(::nlohmann::json::object_t(), {}, dtype_v<int32_t>, tensorstore::IndexDomainBuilder(2) .origin({1, 2}) .shape({100, 200}) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid domain: .*")); } TEST(GetNewMetadataTest, DomainIncompatibleWithFieldShape) { EXPECT_THAT( GetNewMetadataFromOptions({{"dtype", {{"x", "<u4", {2, 3}}}}}, "x", Schema::Shape({100, 200, 2, 4})), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid domain: .*")); } TEST(GetNewMetadataTest, DomainIncompatibleWithMetadataRank) { EXPECT_THAT( GetNewMetadataFromOptions({{"chunks", {100, 100}}}, {}, dtype_v<int32_t>, Schema::Shape({100, 200, 300})), MatchesStatus( absl::StatusCode::kInvalidArgument, "Rank specified by schema \\(3\\) is not compatible with metadata")); } TEST(ValidateMetadataTest, Success) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson(GetMetadataSpec())); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto partial_metadata, ZarrPartialMetadata::FromJson(GetMetadataSpec())); TENSORSTORE_EXPECT_OK(ValidateMetadata(metadata, partial_metadata)); } TEST(ValidateMetadataTest, Unconstrained) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson(GetMetadataSpec())); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto partial_metadata, ZarrPartialMetadata::FromJson(::nlohmann::json::object_t{})); TENSORSTORE_EXPECT_OK(ValidateMetadata(metadata, partial_metadata)); } TEST(ValidateMetadataTest, ShapeMismatch) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson(GetMetadataSpec())); ::nlohmann::json spec = GetMetadataSpec(); spec["shape"] = {7, 8}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto partial_metadata, ZarrPartialMetadata::FromJson(spec)); EXPECT_THAT( ValidateMetadata(metadata, partial_metadata), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Expected \"shape\" of \\[7,8\\] but received: \\[100,100\\]")); } TEST(ValidateMetadataTest, ChunksMismatch) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson(GetMetadataSpec())); ::nlohmann::json spec = GetMetadataSpec(); spec["chunks"] = {1, 1}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto partial_metadata, ZarrPartialMetadata::FromJson(spec)); EXPECT_THAT(ValidateMetadata(metadata, partial_metadata), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Expected \"chunks\" of \\[1,1\\] but received: \\[3,2\\]")); } TEST(ValidateMetadataTest, OrderMismatch) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson(GetMetadataSpec())); ::nlohmann::json spec = GetMetadataSpec(); spec["order"] = "F"; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto partial_metadata, ZarrPartialMetadata::FromJson(spec)); EXPECT_THAT(ValidateMetadata(metadata, partial_metadata), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Expected \"order\" of \"F\" but received: \"C\"")); } TEST(ValidateMetadataTest, CompressorMismatch) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson(GetMetadataSpec())); ::nlohmann::json spec = GetMetadataSpec(); spec["compressor"] = nullptr; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto partial_metadata, ZarrPartialMetadata::FromJson(spec)); EXPECT_THAT(ValidateMetadata(metadata, partial_metadata), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Expected \"compressor\" of null but received: " "\\{\"blocksize\":0,\"clevel\":5,\"cname\":\"lz4\"," "\"id\":\"blosc\",\"shuffle\":-1\\}")); } TEST(ValidateMetadataTest, DTypeMismatch) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson(GetMetadataSpec())); ::nlohmann::json spec = GetMetadataSpec(); spec["dtype"] = ">i4"; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto partial_metadata, ZarrPartialMetadata::FromJson(spec)); EXPECT_THAT( ValidateMetadata(metadata, partial_metadata), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Expected \"dtype\" of \">i4\" but received: \"<i2\"")); } TEST(ValidateMetadataTest, FillValueMismatch) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, ZarrMetadata::FromJson(GetMetadataSpec())); ::nlohmann::json spec = GetMetadataSpec(); spec["fill_value"] = 1; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto partial_metadata, ZarrPartialMetadata::FromJson(spec)); EXPECT_THAT(ValidateMetadata(metadata, partial_metadata), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Expected \"fill_value\" of 1 but received: null")); } TEST(ZarrCodecSpecTest, Merge) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto codec1, CodecSpec::FromJson({{"driver", "zarr"}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto codec2, CodecSpec::FromJson({{"driver", "zarr"}, {"filters", nullptr}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto codec3, CodecSpec::FromJson({{"driver", "zarr"}, {"compressor", nullptr}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto codec4, CodecSpec::FromJson({{"driver", "zarr"}, {"compressor", {{"id", "blosc"}}}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto codec5, CodecSpec::FromJson( {{"driver", "zarr"}, {"compressor", nullptr}, {"filters", nullptr}})); EXPECT_THAT(CodecSpec::Merge(codec1, codec1), ::testing::Optional(codec1)); EXPECT_THAT(CodecSpec::Merge(codec3, codec3), ::testing::Optional(codec3)); EXPECT_THAT(CodecSpec::Merge(codec1, CodecSpec()), ::testing::Optional(codec1)); EXPECT_THAT(CodecSpec::Merge(CodecSpec(), codec1), ::testing::Optional(codec1)); EXPECT_THAT(CodecSpec::Merge(CodecSpec(), CodecSpec()), ::testing::Optional(CodecSpec())); EXPECT_THAT(CodecSpec::Merge(codec1, codec2), ::testing::Optional(codec2)); EXPECT_THAT(CodecSpec::Merge(codec1, codec3), ::testing::Optional(codec3)); EXPECT_THAT(CodecSpec::Merge(codec2, codec3), ::testing::Optional(codec5)); EXPECT_THAT( CodecSpec::Merge(codec3, codec4), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot merge codec spec .* with .*: \"compressor\" does not match")); } TEST(ZarrCodecSpecTest, RoundTrip) { tensorstore::TestJsonBinderRoundTripJsonOnly<tensorstore::CodecSpec>({ ::nlohmann::json::value_t::discarded, { {"driver", "zarr"}, {"compressor", nullptr}, {"filters", nullptr}, }, { {"driver", "zarr"}, {"compressor", {{"id", "blosc"}, {"cname", "lz4"}, {"clevel", 5}, {"blocksize", 0}, {"shuffle", -1}}}, {"filters", nullptr}, }, }); } }
521
cpp
google/tensorstore
downsample
tensorstore/driver/downsample/downsample.cc
tensorstore/driver/downsample/downsample_test.cc
#ifndef TENSORSTORE_DRIVER_DOWNSAMPLE_DOWNSAMPLE_H_ #define TENSORSTORE_DRIVER_DOWNSAMPLE_DOWNSAMPLE_H_ #include "tensorstore/downsample_method.h" #include "tensorstore/driver/driver.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal { Result<Driver::Handle> MakeDownsampleDriver( Driver::Handle base, span<const Index> downsample_factors, DownsampleMethod downsample_method); } } #endif #include "tensorstore/driver/downsample/downsample.h" #include <stddef.h> #include <algorithm> #include <cassert> #include <mutex> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "tensorstore/array.h" #include "tensorstore/array_storage_statistics.h" #include "tensorstore/box.h" #include "tensorstore/chunk_layout.h" #include "tensorstore/codec_spec.h" #include "tensorstore/context.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/downsample_method.h" #include "tensorstore/driver/chunk.h" #include "tensorstore/driver/downsample/downsample_array.h" #include "tensorstore/driver/downsample/downsample_method_json_binder.h" #include "tensorstore/driver/downsample/downsample_nditerable.h" #include "tensorstore/driver/downsample/downsample_util.h" #include "tensorstore/driver/downsample/grid_occupancy_map.h" #include "tensorstore/driver/driver.h" #include "tensorstore/driver/driver_handle.h" #include "tensorstore/driver/driver_spec.h" #include "tensorstore/driver/read.h" #include "tensorstore/driver/registry.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/dimension_units.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/lock_collection.h" #include "tensorstore/internal/nditerable_transformed_array.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/open_mode.h" #include "tensorstore/open_options.h" #include "tensorstore/rank.h" #include "tensorstore/resize_options.h" #include "tensorstore/schema.h" #include "tensorstore/serialization/std_vector.h" #include "tensorstore/spec.h" #include "tensorstore/transaction.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_util.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/std_vector.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_downsample { namespace { using ::tensorstore::internal::DriverPtr; using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::internal::LockCollection; using ::tensorstore::internal::NDIterable; using ::tensorstore::internal::OpenTransactionPtr; using ::tensorstore::internal::ReadChunk; using ::tensorstore::internal::TransformedDriverSpec; namespace jb = tensorstore::internal_json_binding; Result<IndexDomain<>> GetBaseDomainConstraintFromDownsampledDomain( IndexDomain<> downsampled_domain, span<const Index> downsample_factors) { assert(downsampled_domain.valid()); const DimensionIndex rank = downsampled_domain.rank(); assert(rank == downsample_factors.size()); IndexDomainBuilder builder(rank); builder.labels(downsampled_domain.labels()); auto& implicit_lower_bounds = builder.implicit_lower_bounds(); auto& implicit_upper_bounds = builder.implicit_upper_bounds(); auto origin = builder.origin(); auto shape = builder.shape(); for (DimensionIndex i = 0; i < rank; ++i) { if (downsample_factors[i] != 1) { implicit_lower_bounds[i] = true; implicit_upper_bounds[i] = true; origin[i] = -kInfIndex; shape[i] = kInfSize; } else { implicit_lower_bounds[i] = downsampled_domain.implicit_lower_bounds()[i]; implicit_upper_bounds[i] = downsampled_domain.implicit_upper_bounds()[i]; origin[i] = downsampled_domain.origin()[i]; shape[i] = downsampled_domain.shape()[i]; } } return builder.Finalize(); } Result<IndexTransform<>> GetBaseTransformForDownsampledTransform( IndexTransformView<> base_transform, IndexTransformView<> downsampled_transform, span<const Index> downsample_factors, DownsampleMethod downsample_method) { if (downsample_method == DownsampleMethod::kStride) { return base_transform | tensorstore::AllDims().Stride(downsample_factors) | downsampled_transform; } PropagatedIndexTransformDownsampling propagated; TENSORSTORE_RETURN_IF_ERROR( internal_downsample::PropagateAndComposeIndexTransformDownsampling( downsampled_transform, base_transform, downsample_factors, propagated)); return std::move(propagated.transform); } class DownsampleDriverSpec : public internal::RegisteredDriverSpec<DownsampleDriverSpec, internal::DriverSpec> { public: constexpr static char id[] = "downsample"; TransformedDriverSpec base; std::vector<Index> downsample_factors; DownsampleMethod downsample_method; constexpr static auto ApplyMembers = [](auto& x, auto f) { return f(internal::BaseCast<internal::DriverSpec>(x), x.base, x.downsample_factors, x.downsample_method); }; absl::Status InitializeFromBase() { TENSORSTORE_RETURN_IF_ERROR( this->schema.Set(RankConstraint{internal::GetRank(this->base)})); TENSORSTORE_RETURN_IF_ERROR( this->schema.Set(this->base.driver_spec->schema.dtype())); return absl::OkStatus(); } absl::Status ValidateDownsampleFactors() { TENSORSTORE_RETURN_IF_ERROR( this->schema.Set(RankConstraint(this->downsample_factors.size()))); return absl::OkStatus(); } absl::Status ValidateDownsampleMethod() { auto dtype = this->schema.dtype(); if (!dtype.valid()) return absl::OkStatus(); return internal_downsample::ValidateDownsampleMethod( dtype, this->downsample_method); } OpenMode open_mode() const override { return base.driver_spec->open_mode(); } absl::Status ApplyOptions(SpecOptions&& options) override { TENSORSTORE_RETURN_IF_ERROR(schema.Set(options.dtype())); TENSORSTORE_RETURN_IF_ERROR(schema.Set(options.rank())); auto transform = base.transform; if (!transform.valid()) { transform = tensorstore::IdentityTransform(downsample_factors.size()); } if (options.domain().valid()) { TENSORSTORE_RETURN_IF_ERROR(schema.Set(options.domain())); TENSORSTORE_ASSIGN_OR_RETURN(auto base_domain, GetBaseDomainConstraintFromDownsampledDomain( options.domain(), downsample_factors)); TENSORSTORE_RETURN_IF_ERROR(options.Override(std::move(base_domain))); } TENSORSTORE_ASSIGN_OR_RETURN( transform, transform | AllDims().Stride(downsample_factors)); TENSORSTORE_RETURN_IF_ERROR(options.TransformInputSpaceSchema(transform)); return internal::TransformAndApplyOptions(base, std::move(options)); } constexpr static auto default_json_binder = jb::Object( jb::Member("base", [](auto is_loading, const auto& options, auto* obj, auto* j) { return jb::Projection<&DownsampleDriverSpec::base>()( is_loading, JsonSerializationOptions(options, obj->schema.dtype(), obj->schema.rank()), obj, j); }), jb::Initialize([](auto* obj) { return obj->InitializeFromBase(); }), jb::Member("downsample_factors", jb::Validate( [](const auto& options, auto* obj) { return obj->ValidateDownsampleFactors(); }, jb::Projection<&DownsampleDriverSpec::downsample_factors>( jb::Array(jb::Integer<Index>(1))))), jb::Member( "downsample_method", jb::Validate( [](const auto& options, auto* obj) { return obj->ValidateDownsampleMethod(); }, jb::Projection<&DownsampleDriverSpec::downsample_method>())), jb::Initialize([](auto* obj) { SpecOptions base_options; static_cast<Schema&>(base_options) = std::exchange(obj->schema, {}); return obj->ApplyOptions(std::move(base_options)); })); Result<IndexDomain<>> GetDomain() const override { TENSORSTORE_ASSIGN_OR_RETURN(auto domain, internal::GetEffectiveDomain(base)); if (!domain.valid()) { return schema.domain(); } if (domain.rank() != downsample_factors.size()) { return absl::InternalError(tensorstore::StrCat( "Domain of base TensorStore has rank (", domain.rank(), ") but expected ", downsample_factors.size())); } auto downsampled_domain = internal_downsample::DownsampleDomain( domain, downsample_factors, downsample_method); return MergeIndexDomains(std::move(downsampled_domain), schema.domain()); } Result<ChunkLayout> GetChunkLayout() const override { return internal::GetEffectiveChunkLayout(base) | AllDims().Stride(downsample_factors); } Result<CodecSpec> GetCodec() const override { return internal::GetEffectiveCodec(base); } Result<SharedArray<const void>> GetFillValue( IndexTransformView<> transform) const override { return {std::in_place}; } Result<DimensionUnitsVector> GetDimensionUnits() const override { TENSORSTORE_ASSIGN_OR_RETURN(auto dimension_units, internal::GetEffectiveDimensionUnits(base)); if (!dimension_units.empty()) { span<const Index> downsample_factors = this->downsample_factors; TENSORSTORE_ASSIGN_OR_RETURN( auto transform, tensorstore::IdentityTransform(downsample_factors.size()) | tensorstore::AllDims().Stride(downsample_factors)); dimension_units = TransformOutputDimensionUnits(transform, std::move(dimension_units)); } return dimension_units; } kvstore::Spec GetKvstore() const override { return base.driver_spec->GetKvstore(); } Result<TransformedDriverSpec> GetBase( IndexTransformView<> transform) const override { TransformedDriverSpec new_base; new_base.driver_spec = base.driver_spec; if (transform.valid()) { TENSORSTORE_ASSIGN_OR_RETURN( new_base.transform, GetBaseTransformForDownsampledTransform( base.transform.valid() ? base.transform : tensorstore::IdentityTransform(downsample_factors.size()), transform, downsample_factors, downsample_method)); } return new_base; } Future<internal::Driver::Handle> Open( internal::DriverOpenRequest request) const override { if (!!(request.read_write_mode & ReadWriteMode::write)) { return absl::InvalidArgumentError("only reading is supported"); } request.read_write_mode = ReadWriteMode::read; return MapFutureValue( InlineExecutor{}, [spec = internal::DriverSpec::PtrT<const DownsampleDriverSpec>(this)]( internal::Driver::Handle handle) -> Result<internal::Driver::Handle> { TENSORSTORE_ASSIGN_OR_RETURN( auto downsampled_handle, MakeDownsampleDriver(std::move(handle), spec->downsample_factors, spec->downsample_method)); if (auto domain = spec->schema.domain(); domain.valid()) { TENSORSTORE_RETURN_IF_ERROR( MergeIndexDomains(domain, downsampled_handle.transform.domain()), tensorstore::MaybeAnnotateStatus( _, "downsampled domain does not match domain in schema")); } return downsampled_handle; }, internal::OpenDriver(base, std::move(request))); } }; class DownsampleDriver : public internal::RegisteredDriver<DownsampleDriver, internal::Driver> { public: Result<TransformedDriverSpec> GetBoundSpec( internal::OpenTransactionPtr transaction, IndexTransformView<> transform) override { auto driver_spec = internal::DriverSpec::Make<DownsampleDriverSpec>(); driver_spec->context_binding_state_ = ContextBindingState::bound; TENSORSTORE_ASSIGN_OR_RETURN( driver_spec->base, base_driver_->GetBoundSpec(std::move(transaction), base_transform_)); driver_spec->downsample_factors = downsample_factors_; driver_spec->downsample_method = downsample_method_; TENSORSTORE_RETURN_IF_ERROR(driver_spec->InitializeFromBase()); TransformedDriverSpec spec; spec.transform = transform; spec.driver_spec = std::move(driver_spec); return spec; } Result<ChunkLayout> GetChunkLayout(IndexTransformView<> transform) override { TENSORSTORE_ASSIGN_OR_RETURN(auto strided_base_transform, GetStridedBaseTransform()); return base_driver_->GetChunkLayout(strided_base_transform) | transform; } Result<CodecSpec> GetCodec() override { return base_driver_->GetCodec(); } Result<SharedArray<const void>> GetFillValue( IndexTransformView<> transform) override { if (downsample_method_ == DownsampleMethod::kStride) { TENSORSTORE_ASSIGN_OR_RETURN(auto strided_transform, GetStridedBaseTransform() | transform); return base_driver_->GetFillValue(strided_transform); } PropagatedIndexTransformDownsampling propagated; TENSORSTORE_RETURN_IF_ERROR( internal_downsample::PropagateAndComposeIndexTransformDownsampling( transform, base_transform_, downsample_factors_, propagated)); TENSORSTORE_ASSIGN_OR_RETURN( auto fill_value, base_driver_->GetFillValue(propagated.transform)); if (!fill_value.valid()) return {std::in_place}; TENSORSTORE_ASSIGN_OR_RETURN( auto broadcast_fill_value, BroadcastArray(std::move(fill_value), propagated.transform.domain().box())); TENSORSTORE_ASSIGN_OR_RETURN( auto downsampled_fill_value, internal_downsample::DownsampleArray( broadcast_fill_value, propagated.input_downsample_factors, downsample_method_)); return UnbroadcastArray(downsampled_fill_value); } Result<DimensionUnitsVector> GetDimensionUnits() override { TENSORSTORE_ASSIGN_OR_RETURN(auto dimension_units, base_driver_->GetDimensionUnits()); TENSORSTORE_ASSIGN_OR_RETURN(auto strided_base_transform, GetStridedBaseTransform()); return TransformOutputDimensionUnits(strided_base_transform, std::move(dimension_units)); } KvStore GetKvstore(const Transaction& transaction) override { return base_driver_->GetKvstore(transaction); } Result<internal::DriverHandle> GetBase( ReadWriteMode read_write_mode, IndexTransformView<> transform, const Transaction& transaction) override { internal::DriverHandle base_handle; base_handle.driver = base_driver_; base_handle.driver.set_read_write_mode(read_write_mode); base_handle.transaction = transaction; TENSORSTORE_ASSIGN_OR_RETURN(base_handle.transform, GetBaseTransformForDownsampledTransform( base_transform_, transform, downsample_factors_, downsample_method_)); return base_handle; } Future<ArrayStorageStatistics> GetStorageStatistics( GetStorageStatisticsRequest request) override; explicit DownsampleDriver(DriverPtr base, IndexTransform<> base_transform, span<const Index> downsample_factors, DownsampleMethod downsample_method) : base_driver_(std::move(base)), base_transform_(std::move(base_transform)), downsample_factors_(downsample_factors.begin(), downsample_factors.end()), downsample_method_(downsample_method) {} DataType dtype() override { return base_driver_->dtype(); } DimensionIndex rank() override { return base_transform_.input_rank(); } Executor data_copy_executor() override { return base_driver_->data_copy_executor(); } void Read(ReadRequest request, AnyFlowReceiver<absl::Status, ReadChunk, IndexTransform<>> receiver) override; Result<IndexTransform<>> GetStridedBaseTransform() { return base_transform_ | tensorstore::AllDims().Stride(downsample_factors_); } Future<IndexTransform<>> ResolveBounds(ResolveBoundsRequest request) override; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.base_driver_, x.base_transform_, x.downsample_factors_, x.downsample_method_); }; DriverPtr base_driver_; IndexTransform<> base_transform_; std::vector<Index> downsample_factors_; DownsampleMethod downsample_method_; }; Future<IndexTransform<>> DownsampleDriver::ResolveBounds( ResolveBoundsRequest request) { return MapFutureValue( InlineExecutor{}, [self = IntrusivePtr<DownsampleDriver>(this), transform = std::move(request.transform)]( IndexTransform<> base_transform) -> Result<IndexTransform<>> { Box<dynamic_rank(internal::kNumInlinedDims)> downsampled_bounds( base_transform.input_rank()); internal_downsample::DownsampleBounds( base_transform.domain().box(), downsampled_bounds, self->downsample_factors_, self->downsample_method_); return tensorstore::PropagateBoundsToTransform( downsampled_bounds, base_transform.implicit_lower_bounds(), base_transform.implicit_upper_bounds(), std::move(transform)); }, base_driver_->ResolveBounds({std::move(request.transaction), base_transform_, std::move(request.options)})); } struct ReadState : public internal::AtomicReferenceCount<ReadState> { IntrusivePtr<DownsampleDriver> self_; AnyFlowReceiver<absl::Status, ReadChunk, IndexTransform<>> receiver_; absl::Mutex mutex_; SharedOffsetArray<void> data_buffer_; Index remaining_elements_; internal_downsample::GridOccupancyTracker independently_emitted_chunks_; absl::InlinedVector<Index, internal::kNumInlinedDims> downsample_factors_; DimensionIndex original_input_rank_; IndexDomain<> base_transform_domain_; AnyCancelReceiver on_cancel_; absl::Status error_; bool done_signal_received_ = false; bool done_sent_ = false; bool canceled_ = false; size_t chunks_in_progress_ = 0; void Cancel() { std::lock_guard<ReadState> guard(*this); canceled_ = true; } void lock() ABSL_NO_THREAD_SAFETY_ANALYSIS { mutex_.Lock(); } void unlock() ABSL_NO_THREAD_SAFETY_ANALYSIS { bool has_error = !error_.ok(); bool send_done = !done_sent_ && chunks_in_progress_ == 0 && (done_signal_received_ || has_error); if (send_done) done_sent_ = true; AnyCancelReceiver on_cancel; if (canceled_ && on_cancel_) { on_cancel = std::move(on_cancel_); } mutex_.Unlock(); if (on_cancel) on_cancel(); if (!send_done) return; if (has_error) { execution::set_error(receiver_, error_); } else { execution::set_done(receiver_); } execution::set_stopping(receiver_); } void SetError(absl::Status error, size_t decrement_chunks_in_progress = 0) { std::lock_guard<ReadState> guard(*this); chunks_in_progress_ -= decrement_chunks_in_progress; if (!error_.ok()) return; error_ = std::move(error); canceled_ = true; } void EmitBufferedChunkForBox(BoxView<> base_domain); void EmitBufferedChunks(); }; struct BufferedReadChunkImpl { internal::IntrusivePtr<ReadState> state_; absl::Status operator()(LockCollection& lock_collection) const { return absl::OkStatus(); } Result<NDIterable::Ptr> operator()(internal::ReadChunk::BeginRead, IndexTransform<> chunk_transform, internal::Arena* arena) const { TENSORSTORE_ASSIGN_OR_RETURN( auto propagated, internal_downsample::PropagateIndexTransformDownsampling( chunk_transform, state_->data_buffer_.domain(), state_->downsample_factors_)); TENSORSTORE_ASSIGN_OR_RETURN( auto transformed_array, MakeTransformedArray(state_->data_buffer_, std::move(propagated.transform))); TENSORSTORE_ASSIGN_OR_RETURN( auto base_nditerable, GetTransformedArrayNDIterable(transformed_array, arena)); return internal_downsample::DownsampleNDIterable( std::move(base_nditerable), transformed_array.domain().box(), propagated.input_downsample_factors, state_->self_->downsample_method_, chunk_transform.input_rank(), arena); } }; IndexTransform<> GetDownsampledRequestIdentityTransform( BoxView<> base_domain, span<const Index> downsample_factors, DownsampleMethod downsample_method, DimensionIndex request_rank) { assert(base_domain.rank() == downsample_factors.size()); assert(request_rank <= base_domain.rank()); IndexTransformBuilder builder(base_domain.rank(), request_rank); internal_downsample::DownsampleBounds(base_domain, builder.input_bounds(), downsample_factors, downsample_method); builder.output_identity_transform(); return builder.Finalize().value(); } void ReadState::EmitBufferedChunkForBox(BoxView<> base_domain) { auto request_transform = GetDownsampledRequestIdentityTransform( base_domain, downsample_factors_, self_->downsample_method_, original_input_rank_); ReadChunk downsampled_chunk; downsampled_chunk.transform = IdentityTransform(request_transform.domain().box()); downsampled_chunk.impl = BufferedReadChunkImpl{IntrusivePtr<ReadState>(this)}; execution::set_value(receiver_, std::move(downsampled_chunk), std::move(request_transform)); } void ReadState::EmitBufferedChunks() { if (independently_emitted_chunks_.occupied_chunks.empty()) { EmitBufferedChunkForBox(base_transform_domain_.box()); } else {
#include "tensorstore/downsample.h" #include <stdint.h> #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/array.h" #include "tensorstore/chunk_layout.h" #include "tensorstore/context.h" #include "tensorstore/data_type.h" #include "tensorstore/downsample_method.h" #include "tensorstore/driver/array/array.h" #include "tensorstore/driver/driver_testutil.h" #include "tensorstore/driver/read.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/open.h" #include "tensorstore/open_mode.h" #include "tensorstore/schema.h" #include "tensorstore/spec.h" #include "tensorstore/static_cast.h" #include "tensorstore/tensorstore.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_util.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" #include "tensorstore/util/unit.h" namespace { using ::tensorstore::BoxView; using ::tensorstore::ChunkLayout; using ::tensorstore::Context; using ::tensorstore::DimensionIndex; using ::tensorstore::DownsampleMethod; using ::tensorstore::Index; using ::tensorstore::MakeArray; using ::tensorstore::MakeOffsetArray; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::ReadWriteMode; using ::tensorstore::Spec; using ::tensorstore::TensorStore; using ::tensorstore::internal::CollectReadChunks; using ::tensorstore::internal::MakeArrayBackedReadChunk; using ::tensorstore::internal::MockDriver; using ::tensorstore::internal::ReadAsIndividualChunks; using ::tensorstore::internal::TestSpecSchema; using ::tensorstore::internal::TestTensorStoreCreateCheckSchema; using ::testing::Optional; using ::testing::Pair; TEST(DownsampleTest, Rank1Mean) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::FromArray(MakeArray<float>({1, 2, 5, 7}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Downsample(store, {2}, DownsampleMethod::kMean)); EXPECT_THAT(tensorstore::Read(downsampled_store).result(), Optional(MakeArray<float>({1.5, 6}))); } TEST(DownsampleTest, Rank1Median) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::FromArray(MakeArray<float>({1, 2, 5, 7}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Downsample(store, {2}, DownsampleMethod::kMin)); EXPECT_THAT(tensorstore::Read(downsampled_store).result(), Optional(MakeArray<float>({1, 5}))); } TEST(DownsampleTest, Rank1Empty) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::FromArray(tensorstore::AllocateArray<float>({2, 0, 3}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Downsample(store, {2, 3, 2}, DownsampleMethod::kMean)); EXPECT_THAT(tensorstore::Read(downsampled_store).result(), Optional(tensorstore::AllocateArray<float>({1, 0, 2}))); } TEST(DownsampleTest, Rank1MeanTranslated) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::FromArray(MakeOffsetArray<float>({1}, {1, 2, 5, 7}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Downsample(store, {2}, DownsampleMethod::kMean)); EXPECT_THAT(tensorstore::Read(downsampled_store).result(), Optional(MakeArray<float>({1, 3.5, 7}))); } TEST(DownsampleTest, Rank1Stride) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::FromArray(MakeArray<float>({1, 2, 5, 7}))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Downsample(store, {2}, DownsampleMethod::kStride)); EXPECT_THAT(tensorstore::Read(downsampled_store).result(), Optional(MakeArray<float>({1, 5}))); } TEST(DownsampleTest, Rank1MeanChunked) { ::nlohmann::json base_spec{{"driver", "n5"}, {"kvstore", {{"driver", "memory"}}}, {"metadata", {{"dataType", "uint8"}, {"dimensions", {11}}, {"blockSize", {3}}, {"compression", {{"type", "raw"}}}}}}; auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto base_store, tensorstore::Open(base_spec, context, tensorstore::OpenMode::create) .result()); TENSORSTORE_ASSERT_OK(tensorstore::Write( MakeArray<uint8_t>({0, 2, 3, 9, 1, 5, 7, 3, 4, 0, 5}), base_store)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Open({{"driver", "downsample"}, {"base", base_spec}, {"downsample_factors", {2}}, {"downsample_method", "mean"}}, context) .result()); EXPECT_THAT(tensorstore::Read(downsampled_store).result(), Optional(MakeArray<uint8_t>({1, 6, 3, 5, 2, 5}))); } TEST(DownsampleTest, Rank1MeanChunkedTranslated) { ::nlohmann::json base_spec{{"driver", "n5"}, {"kvstore", {{"driver", "memory"}}}, {"metadata", {{"dataType", "uint8"}, {"dimensions", {11}}, {"blockSize", {3}}, {"compression", {{"type", "raw"}}}}}, {"transform", { {"input_inclusive_min", {1}}, {"input_exclusive_max", {12}}, {"output", { {{"input_dimension", 0}, {"offset", -1}}, }}, }}}; auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto base_store, tensorstore::Open(base_spec, context, tensorstore::OpenMode::create) .result()); TENSORSTORE_ASSERT_OK(tensorstore::Write( MakeArray<uint8_t>({0, 2, 3, 9, 1, 5, 7, 3, 4, 0, 5}), base_store)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Open({{"driver", "downsample"}, {"base", base_spec}, {"downsample_factors", {2}}, {"downsample_method", "mean"}}, context) .result()); EXPECT_THAT(ReadAsIndividualChunks(downsampled_store).result(), Optional(::testing::UnorderedElementsAre( Pair(MakeOffsetArray<uint8_t>({0}, {0, 2}), IdentityTransform(BoxView({0}, {2}))), Pair(MakeOffsetArray<uint8_t>({5}, {2}), IdentityTransform(BoxView({5}, {1}))), Pair(MakeOffsetArray<uint8_t>({2}, {5, 6, 4}), IdentityTransform(BoxView({2}, {3})))))); EXPECT_THAT(tensorstore::Read(downsampled_store).result(), Optional(MakeArray<uint8_t>({0, 2, 5, 6, 4, 2}))); } TEST(DownsampleTest, Rank1MeanChunkedIndexArray) { ::nlohmann::json base_spec{{"driver", "n5"}, {"kvstore", {{"driver", "memory"}}}, {"metadata", {{"dataType", "uint8"}, {"dimensions", {11}}, {"blockSize", {3}}, {"compression", {{"type", "raw"}}}}}}; auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto base_store, tensorstore::Open(base_spec, context, tensorstore::OpenMode::create) .result()); TENSORSTORE_ASSERT_OK(tensorstore::Write( MakeArray<uint8_t>({0, 2, 3, 9, 1, 5, 7, 3, 4, 0, 5}), base_store)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Open({{"driver", "downsample"}, {"base", base_spec}, {"downsample_factors", {2}}, {"downsample_method", "mean"}}, context) .result()); EXPECT_THAT(tensorstore::Read(downsampled_store | tensorstore::Dims(0).IndexArraySlice( MakeArray<Index>({0, 3, 2}))) .result(), Optional(MakeArray<uint8_t>({1, 5, 3}))); } TEST(DownsampleTest, JsonSpecArray) { ::nlohmann::json base_spec{ {"driver", "array"}, {"dtype", "float32"}, {"array", {1, 2, 3, 4}}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::Open({{"driver", "downsample"}, {"base", base_spec}, {"downsample_factors", {2}}, {"downsample_method", "mean"}}) .result()); EXPECT_THAT(tensorstore::Read(store).result(), Optional(MakeArray<float>({1.5, 3.5}))); } TEST(DownsampleTest, JsonSpecArrayRank0) { ::nlohmann::json base_spec{ {"driver", "array"}, {"dtype", "float32"}, {"array", 42}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::Open({{"driver", "downsample"}, {"base", base_spec}, {"downsample_factors", ::nlohmann::json::array_t{}}, {"downsample_method", "mean"}}) .result()); EXPECT_THAT(tensorstore::Read(store).result(), Optional(tensorstore::MakeScalarArray<float>(42))); } TEST(DownsampleTest, JsonSpecErrorMissingBase) { EXPECT_THAT( tensorstore::Open({ {"driver", "downsample"}, {"downsample_factors", {2}}, {"downsample_method", "mean"}, }) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"base\".*")); } TEST(DownsampleTest, JsonSpecErrorMissingDownsampleFactors) { ::nlohmann::json base_spec{ {"driver", "array"}, {"dtype", "float32"}, {"array", {1, 2, 3, 4}}, }; EXPECT_THAT(tensorstore::Open({ {"driver", "downsample"}, {"base", base_spec}, {"downsample_method", "mean"}, }) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"downsample_factors\".*")); } TEST(DownsampleTest, JsonSpecErrorDownsampleFactorsInvalidRank) { ::nlohmann::json base_spec{ {"driver", "array"}, {"dtype", "float32"}, {"array", {1, 2, 3, 4}}, }; EXPECT_THAT(tensorstore::Open({ {"driver", "downsample"}, {"base", base_spec}, {"downsample_method", "mean"}, {"downsample_factors", {2, 3}}, }) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"downsample_factors\": .*rank.*")); } TEST(DownsampleTest, JsonSpecErrorDownsampleFactorsZero) { ::nlohmann::json base_spec{ {"driver", "array"}, {"dtype", "float32"}, {"array", {1, 2, 3, 4}}, }; EXPECT_THAT( tensorstore::Open({ {"driver", "downsample"}, {"base", base_spec}, {"downsample_method", "mean"}, {"downsample_factors", {0}}, }) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"downsample_factors\":.*Expected .*, but received: 0")); } TEST(DownsampleTest, JsonSpecErrorDownsampleFactorsNegative) { ::nlohmann::json base_spec{ {"driver", "array"}, {"dtype", "float32"}, {"array", {1, 2, 3, 4}}, }; EXPECT_THAT(tensorstore::Open({ {"driver", "downsample"}, {"base", base_spec}, {"downsample_method", "mean"}, {"downsample_factors", {-2}}, }) .result(), MatchesStatus( absl::StatusCode::kInvalidArgument, ".*\"downsample_factors\":.*Expected .*, but received: -2")); } TEST(DownsampleTest, JsonSpecErrorMissingDownsampleMethod) { ::nlohmann::json base_spec{ {"driver", "array"}, {"dtype", "float32"}, {"array", {1, 2, 3, 4}}, }; EXPECT_THAT(tensorstore::Open({ {"driver", "downsample"}, {"base", base_spec}, {"downsample_factors", {2}}, }) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"downsample_method\".*")); } TEST(DownsampleTest, JsonSpecErrorInvalidDownsampleMethod) { ::nlohmann::json base_spec{ {"driver", "array"}, {"dtype", "float32"}, {"array", {1, 2, 3, 4}}, }; EXPECT_THAT(tensorstore::Open({ {"driver", "downsample"}, {"base", base_spec}, {"downsample_factors", {2}}, {"downsample_method", 42}, }) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*\"downsample_method\".*42.*")); } TEST(DownsampleTest, ErrorOpenWriteOnly) { ::nlohmann::json base_spec{ {"driver", "array"}, {"dtype", "float32"}, {"array", {1, 2, 3, 4}}, }; for (auto mode : {ReadWriteMode::write, ReadWriteMode::read_write}) { SCOPED_TRACE(tensorstore::StrCat("mode=", mode)); EXPECT_THAT(tensorstore::Open( { {"driver", "downsample"}, {"base", base_spec}, {"downsample_factors", {2}}, {"downsample_method", "mean"}, }, mode) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: only reading is supported")); } } TEST(DownsampleTest, AdapterErrorNegativeDownsampleFactor) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::FromArray(MakeArray<float>({1, 2, 5, 7}))); EXPECT_THAT( tensorstore::Downsample(store, {-2}, DownsampleMethod::kMean), MatchesStatus(absl::StatusCode::kInvalidArgument, "Downsample factors \\{-2\\} are not all positive")); } TEST(DownsampleTest, AdapterErrorZeroDownsampleFactor) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::FromArray(MakeArray<float>({1, 2, 5, 7}))); EXPECT_THAT(tensorstore::Downsample(store, {0}, DownsampleMethod::kMean), MatchesStatus(absl::StatusCode::kInvalidArgument, "Downsample factors \\{0\\} are not all positive")); } TEST(DownsampleTest, AdapterErrorDownsampleFactorsRankMismatch) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( TensorStore<float> store, tensorstore::FromArray(MakeArray<float>({1, 2, 5, 7}))); EXPECT_THAT( tensorstore::Downsample(store, {2, 2}, DownsampleMethod::kMean), MatchesStatus(absl::StatusCode::kInvalidArgument, "Number of downsample factors \\(2\\) does not match " "TensorStore rank \\(1\\)")); } TEST(DownsampleTest, AdapterErrorDataType) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::FromArray(MakeArray<std::string>({"a", "b", "c"}))); TENSORSTORE_EXPECT_OK( tensorstore::Downsample(store, {2}, DownsampleMethod::kStride)); EXPECT_THAT(tensorstore::Downsample(store, {2}, DownsampleMethod::kMean), MatchesStatus(absl::StatusCode::kInvalidArgument, "Downsample method \"mean\" does not support " "data type \"string\"")); } TEST(DownsampleTest, AdapterErrorWriteOnly) { tensorstore::TensorStore<float, 1> store; TENSORSTORE_ASSERT_OK_AND_ASSIGN( store, tensorstore::FromArray(MakeArray<float>({1, 2, 3}))); store = tensorstore::ModeCast<ReadWriteMode::write, tensorstore::unchecked>( std::move(store)); EXPECT_THAT(tensorstore::Downsample(store, {2}, DownsampleMethod::kMean), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot downsample write-only TensorStore")); } TEST(DownsampleTest, ReadError) { auto mock_driver = MockDriver::Make(tensorstore::ReadWriteMode::dynamic, tensorstore::dtype_v<float>, 1); auto mock_store = mock_driver->Wrap(tensorstore::IdentityTransform<1>({10})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Downsample(mock_store, {2}, DownsampleMethod::kMean)); auto read_future = tensorstore::Read(downsampled_store); { auto read_req = mock_driver->read_requests.pop(); EXPECT_EQ(tensorstore::IdentityTransform<1>({10}), read_req.transform); tensorstore::execution::set_error( tensorstore::FlowSingleReceiver{std::move(read_req.receiver)}, absl::UnknownError("read error")); } EXPECT_THAT(read_future.result(), MatchesStatus(absl::StatusCode::kUnknown, "read error")); } TEST(DownsampleTest, CancelRead) { auto mock_driver = MockDriver::Make(tensorstore::ReadWriteMode::dynamic, tensorstore::dtype_v<float>, 1); auto mock_store = mock_driver->Wrap(tensorstore::IdentityTransform<1>({10})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Downsample(mock_store, {2}, DownsampleMethod::kMean)); auto read_future = tensorstore::Read(downsampled_store); auto canceled = std::make_shared<bool>(false); { auto read_req = mock_driver->read_requests.pop(); tensorstore::execution::set_starting(read_req.receiver, [canceled] { *canceled = true; }); read_future = {}; EXPECT_EQ(true, *canceled); tensorstore::execution::set_done(read_req.receiver); tensorstore::execution::set_stopping(read_req.receiver); } } TEST(DownsampleTest, IndependentChunkCompletesBufferedChunk) { auto mock_driver = MockDriver::Make(tensorstore::ReadWriteMode::dynamic, tensorstore::dtype_v<float>, 1); auto mock_store = mock_driver->Wrap(tensorstore::IdentityTransform<1>({4})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Downsample(mock_store, {2}, DownsampleMethod::kMean)); auto read_future = tensorstore::Read(downsampled_store); { auto read_req = mock_driver->read_requests.pop(); tensorstore::execution::set_starting(read_req.receiver, [] {}); tensorstore::execution::set_value( read_req.receiver, MakeArrayBackedReadChunk(MakeArray<float>({0, 1})), (tensorstore::IdentityTransform(1) | tensorstore::Dims(0).IndexArraySlice(MakeArray<Index>({0, 1}))) .value()); tensorstore::execution::set_value( read_req.receiver, MakeArrayBackedReadChunk(MakeOffsetArray<float>({2}, {2, 3})), tensorstore::IdentityTransform(BoxView<1>({2}, {2}))); tensorstore::execution::set_done(read_req.receiver); tensorstore::execution::set_stopping(read_req.receiver); } ASSERT_TRUE(read_future.ready()); EXPECT_THAT(read_future.result(), Optional(MakeArray<float>({0.5, 2.5}))); } TEST(DownsampleTest, EmptyChunk) { auto mock_driver = MockDriver::Make(tensorstore::ReadWriteMode::dynamic, tensorstore::dtype_v<float>, 1); auto mock_store = mock_driver->Wrap(tensorstore::IdentityTransform<1>({10})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Downsample(mock_store, {2}, DownsampleMethod::kMean)); auto read_future = tensorstore::Read(downsampled_store); { auto read_req = mock_driver->read_requests.pop(); EXPECT_EQ(tensorstore::IdentityTransform<1>({10}), read_req.transform); tensorstore::execution::set_error( tensorstore::FlowSingleReceiver{std::move(read_req.receiver)}, absl::UnknownError("read error")); } EXPECT_THAT(read_future.result(), MatchesStatus(absl::StatusCode::kUnknown, "read error")); } TEST(DownsampleTest, ReadChunkWithIndexTransform) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto store, tensorstore::FromArray(MakeArray<float>({ {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}, }))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Downsample(store, {2, 3}, DownsampleMethod::kMean)); EXPECT_THAT(tensorstore::Read(downsampled_store).result(), Optional(MakeArray<float>({ {4.5, 7}, {12, 14.5}, }))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto chunks, CollectReadChunks(downsampled_store).result()); ASSERT_THAT(chunks, ::testing::ElementsAre(Pair( ::testing::_, tensorstore::IdentityTransform<2>({2, 2})))); auto& entry = chunks[0]; { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, entry.second | tensorstore::Dims(0).IndexArraySlice( MakeArray<Index>({0, 1, 1, 0}))); auto target_array = tensorstore::AllocateArray<float>({4, 2}); TENSORSTORE_ASSERT_OK(tensorstore::internal::CopyReadChunk( entry.first.impl, transform, tensorstore::TransformedArray(target_array))); EXPECT_EQ(MakeArray<float>({ {4.5, 7}, {12, 14.5}, {12, 14.5}, {4.5, 7}, }), target_array); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, entry.second | tensorstore::Dims(0, 1).IndexArraySlice( MakeArray<Index>({0, 1, 1}), MakeArray<Index>({0, 0, 1}))); auto target_array = tensorstore::AllocateArray<float>({3}); TENSORSTORE_ASSERT_OK(tensorstore::internal::CopyReadChunk( entry.first.impl, transform, tensorstore::TransformedArray(target_array))); EXPECT_EQ(MakeArray<float>({4.5, 12, 14.666666666666666}), target_array); } } TEST(DownsampleTest, ConvertError) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Open({ {"driver", "downsample"}, {"base", { {"driver", "cast"}, {"base", { {"driver", "array"}, {"dtype", "json"}, {"array", {1, "abc", 2}}, }}, {"dtype", "uint8"}, }}, {"downsample_method", "mean"}, {"downsample_factors", {2}}, }) .result()); auto dest = tensorstore::MakeArray<uint8_t>({0, 0}); EXPECT_THAT( tensorstore::Read(downsampled_store, dest).result(), MatchesStatus( absl::StatusCode::kInvalidArgument, "Expected integer in the range \\[0, 255\\], but received: \"abc\"")); EXPECT_EQ(dest, MakeArray<uint8_t>({0, 0})); } TENSORSTORE_GLOBAL_INITIALIZER { tensorstore::internal::TestTensorStoreDriverSpecRoundtripOptions options; options.test_name = "downsample"; options.create_spec = { {"driver", "downsample"}, {"base", { {"driver", "array"}, {"dtype", "float32"}, {"array", {{1, 2, 3}, {4, 5, 6}}}, }}, {"downsample_method", "mean"}, {"downsample_factors", {1, 2}}, }; options.full_spec = { {"driver", "downsample"}, {"base", { {"driver", "array"}, {"array", {{1, 2, 3}, {4, 5, 6}}}, {"transform", {{"input_inclusive_min", {0, 0}}, {"input_exclusive_max", {2, 3}}}}, }}, {"dtype", "float32"}, {"downsample_method", "mean"}, {"downsample_factors", {1, 2}}, {"transform", {{"input_inclusive_min", {0, 0}}, {"input_exclusive_max", {2, 2}}}}, }; options.full_base_spec = { {"driver", "array"}, {"array", {{1, 2, 3}, {4, 5, 6}}}, {"dtype", "float32"}, {"transform", {{"input_inclusive_min", {0, 0}}, {"input_exclusive_max", {2, 3}}}}, }; options.minimal_spec = options.full_spec; options.check_not_found_before_create = false; options.check_not_found_before_commit = false; options.supported_transaction_modes = {}; tensorstore::internal::RegisterTensorStoreDriverSpecRoundtripTest( std::move(options)); } TEST(DownsampleTest, Spec) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, Spec::FromJson({ {"driver", "array"}, {"dtype", "float32"}, {"array", {1, 2, 3, 4}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_spec, tensorstore::Downsample(spec, {2}, DownsampleMethod::kMean)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_store, tensorstore::Open(downsampled_spec).result()); EXPECT_THAT(tensorstore::Read(downsampled_store).result(), Optional(MakeArray<float>({1.5, 3.5}))); EXPECT_THAT( downsampled_spec.ToJson(), Optional(MatchesJson(::nlohmann::json({ {"driver", "downsample"}, {"dtype", "float32"}, {"base", { {"driver", "array"}, {"array", {1, 2, 3, 4}}, {"transform", {{"input_inclusive_min", {0}}, {"input_exclusive_max", {4}}}}, }}, {"downsample_factors", {2}}, {"downsample_method", "mean"}, {"transform", {{"input_inclusive_min", {0}}, {"input_exclusive_max", {2}}}}, })))); } TEST(DownsampleTest, ChunkLayout) { ::nlohmann::json base_spec{ {"driver", "n5"}, {"kvstore", {{"driver", "memory"}}}, {"metadata", {{"dataType", "uint8"}, {"dimensions", {100, 200}}, {"blockSize", {10, 21}}, {"compression", {{"type", "raw"}}}}}, }; auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto base_store, tensorstore::Open(base_spec, context, tensorstore::OpenMode::create) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::Open({{"driver", "downsample"}, {"base", base_spec}, {"downsample_factors", {2, 3}}, {"downsample_method", "mean"}}, context) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_layout, ChunkLayout::FromJson({ {"write_chunk", {{"shape", {5, 7}}}}, {"read_chunk", {{"shape", {5, 7}}}}, {"grid_origin", {0, 0}}, {"inner_order", {1, 0}}, })); EXPECT_THAT(store.chunk_layout(), ::testing::Optional(expected_layout)); } TEST(SpecSchemaTest, Basic) { TestSpecSchema( { {"driver", "downsample"}, {"downsample_method", "mean"}, {"downsample_factors", {1, 2}}, {"base", { {"driver", "array"}, {"array", {{1, 2, 3, 4}, {5, 6, 7, 8}}}, {"dtype", "float32"}, }}, {"schema", {{"dimension_units", {"4nm", "5nm"}}}}, }, { {"rank", 2}, {"dtype", "float32"}, {"domain", {{"shape", {2, 2}}}}, {"chunk_layout", {{"grid_origin", {0, 0}}, {"inner_order", {0, 1}}}}, {"dimension_units", {"4nm", "5nm"}}, }); } TEST(TensorStoreCreateCheckSchemaTest, Basic) { TestTensorStoreCreateCheckSchema( { {"driver", "downsample"}, {"downsample_method", "mean"}, {"downsample_factors", {1, 2}}, {"base", { {"driver", "array"}, {"array", {{1, 2, 3, 4}, {5, 6, 7, 8}}}, {"dtype", "float32"}, }}, {"schema", {{"dimension_units", {"4nm", "5nm"}}}}, }, { {"rank", 2}, {"dtype", "float32"}, {"domain", {{"shape", {2, 2}}}}, {"chunk_layout", {{"grid_origin", {0, 0}}, {"inner_order", {0, 1}}}}, {"dimension_units", {"4nm", "5nm"}}, }); } TEST(DownsampleTest, DomainSpecified) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_spec, tensorstore::Spec::FromJson({ {"driver", "zarr"}, {"kvstore", {{"driver", "memory"}}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_spec, tensorstore::Downsample(base_spec, {2, 1}, DownsampleMethod::kMean)); TENSORSTORE_ASSERT_OK( downsampled_spec.Set(tensorstore::Schema::Shape({10, 10}))); EXPECT_THAT(downsampled_spec.ToJson(), ::testing::Optional(MatchesJson({ {"driver", "downsample"}, {"base",
522
cpp
google/tensorstore
cast
tensorstore/driver/cast/cast.cc
tensorstore/driver/cast/cast_test.cc
#ifndef TENSORSTORE_DRIVER_CAST_CAST_H_ #define TENSORSTORE_DRIVER_CAST_CAST_H_ #include <cassert> #include "tensorstore/data_type.h" #include "tensorstore/data_type_conversion.h" #include "tensorstore/driver/driver.h" #include "tensorstore/open_mode.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal { Result<Driver::Handle> MakeCastDriver( Driver::Handle base, DataType target_dtype, ReadWriteMode read_write_mode = ReadWriteMode::dynamic); Result<TransformedDriverSpec> MakeCastDriverSpec(TransformedDriverSpec base, DataType target_dtype); template <typename SourceElement, typename TargetElement> constexpr ReadWriteMode GetCastMode(ReadWriteMode existing_mode) { if constexpr (std::is_void_v<SourceElement> || std::is_void_v<TargetElement>) { return (existing_mode == ReadWriteMode::read_write) ? ReadWriteMode::dynamic : existing_mode; } else if (std::is_same_v<SourceElement, TargetElement>) { return existing_mode; } else { constexpr auto input_flags = DataTypeConversionTraits<SourceElement, TargetElement>::flags; constexpr auto output_flags = DataTypeConversionTraits<TargetElement, SourceElement>::flags; ReadWriteMode mode = ReadWriteMode{}; if ((input_flags & DataTypeConversionFlags::kSupported) == DataTypeConversionFlags::kSupported) { mode = mode | ReadWriteMode::read; } if ((output_flags & DataTypeConversionFlags::kSupported) == DataTypeConversionFlags::kSupported) { mode = mode | ReadWriteMode::write; } assert(mode != ReadWriteMode() && "Cannot convert data types"); assert((existing_mode == ReadWriteMode::dynamic) || (((existing_mode & mode) != ReadWriteMode()) && "Supported conversions incompatible with existing mode")); return (mode == ReadWriteMode::read_write) ? existing_mode : mode; } } struct CastDataTypeConversions { DataTypeConversionLookupResult input; DataTypeConversionLookupResult output; ReadWriteMode mode; }; Result<CastDataTypeConversions> GetCastDataTypeConversions( DataType source_dtype, DataType target_dtype, ReadWriteMode existing_mode, ReadWriteMode required_mode); } } #endif #include "tensorstore/driver/cast/cast.h" #include <cassert> #include <utility> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/array_storage_statistics.h" #include "tensorstore/chunk_layout.h" #include "tensorstore/codec_spec.h" #include "tensorstore/context.h" #include "tensorstore/data_type.h" #include "tensorstore/data_type_conversion.h" #include "tensorstore/driver/chunk.h" #include "tensorstore/driver/driver.h" #include "tensorstore/driver/driver_handle.h" #include "tensorstore/driver/driver_spec.h" #include "tensorstore/driver/registry.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_units.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/lock_collection.h" #include "tensorstore/internal/nditerable_data_type_conversion.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/open_mode.h" #include "tensorstore/open_options.h" #include "tensorstore/rank.h" #include "tensorstore/resize_options.h" #include "tensorstore/schema.h" #include "tensorstore/spec.h" #include "tensorstore/transaction.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_cast_driver { namespace { using ::tensorstore::internal::Arena; using ::tensorstore::internal::DataTypeConversionLookupResult; using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::internal::NDIterable; using ::tensorstore::internal::OpenTransactionPtr; using ::tensorstore::internal::ReadChunk; using ::tensorstore::internal::TransformedDriverSpec; using ::tensorstore::internal::WriteChunk; namespace jb = tensorstore::internal_json_binding; class CastDriverSpec : public internal::RegisteredDriverSpec<CastDriverSpec, internal::DriverSpec> { public: constexpr static const char id[] = "cast"; TransformedDriverSpec base; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(internal::BaseCast<internal::DriverSpec>(x), x.base); }; OpenMode open_mode() const override { return base.driver_spec->open_mode(); } absl::Status ApplyOptions(SpecOptions&& options) override { TENSORSTORE_RETURN_IF_ERROR(schema.Set(options.dtype())); options.Override(DataType()).IgnoreError(); return internal::TransformAndApplyOptions(base, std::move(options)); } constexpr static auto default_json_binder = jb::Object( jb::Member("base", [](auto is_loading, const auto& options, auto* obj, auto* j) { return jb::Projection<&CastDriverSpec::base>()( is_loading, JsonSerializationOptions(options, DataType(), obj->schema.rank()), obj, j); }), jb::Initialize([](auto* obj) -> absl::Status { if (obj->base.transform.valid()) { TENSORSTORE_RETURN_IF_ERROR(obj->schema.Set( RankConstraint{obj->base.transform.input_rank()})); } DataType dtype = obj->schema.dtype(); DimensionIndex rank = obj->schema.rank(); SpecOptions base_options; static_cast<Schema&>(base_options) = std::exchange(obj->schema, {}); obj->schema.Set(dtype).IgnoreError(); obj->schema.Set(RankConstraint{rank}).IgnoreError(); return obj->ApplyOptions(std::move(base_options)); })); Result<IndexDomain<>> GetDomain() const override { return internal::GetEffectiveDomain(base); } Result<ChunkLayout> GetChunkLayout() const override { return internal::GetEffectiveChunkLayout(base); } Result<CodecSpec> GetCodec() const override { return internal::GetEffectiveCodec(base); } Result<SharedArray<const void>> GetFillValue( IndexTransformView<> transform) const override { TENSORSTORE_ASSIGN_OR_RETURN( auto adjusted_transform, tensorstore::ComposeOptionalTransforms(base.transform, transform)); TENSORSTORE_ASSIGN_OR_RETURN( auto fill_value, base.driver_spec->GetFillValue(adjusted_transform)); if (!fill_value.valid()) return {std::in_place}; auto dtype = schema.dtype(); if (dtype == fill_value.dtype()) return fill_value; auto converter = internal::GetDataTypeConverter(fill_value.dtype(), dtype); if (!(converter.flags & DataTypeConversionFlags::kSupported)) { return {std::in_place}; } return MakeCopy(fill_value, skip_repeated_elements, dtype); } Result<DimensionUnitsVector> GetDimensionUnits() const override { return internal::GetEffectiveDimensionUnits(base); } kvstore::Spec GetKvstore() const override { return base.driver_spec->GetKvstore(); } Result<TransformedDriverSpec> GetBase( IndexTransformView<> transform) const override { TransformedDriverSpec new_base; TENSORSTORE_ASSIGN_OR_RETURN( new_base.transform, ComposeOptionalTransforms(base.transform, transform)); new_base.driver_spec = base.driver_spec; return new_base; } Future<internal::Driver::Handle> Open( internal::DriverOpenRequest request) const override { DataType target_dtype = schema.dtype(); if (!target_dtype.valid()) { return absl::InvalidArgumentError("dtype must be specified"); } auto read_write_mode = request.read_write_mode; return MapFutureValue( InlineExecutor{}, [target_dtype, read_write_mode](internal::Driver::Handle handle) -> Result<internal::Driver::Handle> { return MakeCastDriver(std::move(handle), target_dtype, read_write_mode); }, internal::OpenDriver(base, std::move(request))); } }; class CastDriver : public internal::RegisteredDriver<CastDriver, internal::Driver> { public: Result<TransformedDriverSpec> GetBoundSpec( internal::OpenTransactionPtr transaction, IndexTransformView<> transform) override { auto driver_spec = internal::DriverSpec::Make<CastDriverSpec>(); driver_spec->context_binding_state_ = ContextBindingState::bound; TENSORSTORE_ASSIGN_OR_RETURN( driver_spec->base, base_driver_->GetBoundSpec(std::move(transaction), transform)); driver_spec->schema.Set(target_dtype_).IgnoreError(); const DimensionIndex base_rank = base_driver_->rank(); driver_spec->schema.Set(RankConstraint{base_rank}).IgnoreError(); TransformedDriverSpec spec; spec.transform = std::exchange(driver_spec->base.transform, {}); spec.driver_spec = std::move(driver_spec); return spec; } Result<ChunkLayout> GetChunkLayout(IndexTransformView<> transform) override { return base_driver_->GetChunkLayout(transform); } Result<CodecSpec> GetCodec() override { return base_driver_->GetCodec(); } Result<SharedArray<const void>> GetFillValue( IndexTransformView<> transform) override { if (!(input_conversion_.flags & DataTypeConversionFlags::kSupported)) { return {std::in_place}; } TENSORSTORE_ASSIGN_OR_RETURN(auto base_fill_value, base_driver_->GetFillValue(transform)); if (!base_fill_value.valid()) return {std::in_place}; if (base_fill_value.dtype() == target_dtype_) { return base_fill_value; } return tensorstore::MakeCopy(base_fill_value, skip_repeated_elements, target_dtype_); } Result<DimensionUnitsVector> GetDimensionUnits() override { return base_driver_->GetDimensionUnits(); } KvStore GetKvstore(const Transaction& transaction) override { return base_driver_->GetKvstore(transaction); } Result<internal::DriverHandle> GetBase( ReadWriteMode read_write_mode, IndexTransformView<> transform, const Transaction& transaction) override { internal::DriverHandle base_handle; base_handle.driver = base_driver_; base_handle.driver.set_read_write_mode(read_write_mode); base_handle.transform = transform; base_handle.transaction = transaction; return base_handle; } Future<ArrayStorageStatistics> GetStorageStatistics( GetStorageStatisticsRequest request) override { return base_driver_->GetStorageStatistics(std::move(request)); } explicit CastDriver(internal::DriverPtr base, DataType target_dtype, DataTypeConversionLookupResult input_conversion, DataTypeConversionLookupResult output_conversion) : base_driver_(std::move(base)), target_dtype_(target_dtype), input_conversion_(input_conversion), output_conversion_(output_conversion) {} DataType dtype() override { return target_dtype_; } DimensionIndex rank() override { return base_driver_->rank(); } Executor data_copy_executor() override { return base_driver_->data_copy_executor(); } void Read(ReadRequest request, AnyFlowReceiver<absl::Status, ReadChunk, IndexTransform<>> receiver) override; void Write(WriteRequest request, AnyFlowReceiver<absl::Status, WriteChunk, IndexTransform<>> receiver) override; Future<IndexTransform<>> ResolveBounds( ResolveBoundsRequest request) override { return base_driver_->ResolveBounds(std::move(request)); } Future<IndexTransform<>> Resize(ResizeRequest request) override { return base_driver_->Resize(std::move(request)); } constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.base_driver_, x.target_dtype_, x.input_conversion_, x.output_conversion_); }; internal::DriverPtr base_driver_; DataType target_dtype_; DataTypeConversionLookupResult input_conversion_; DataTypeConversionLookupResult output_conversion_; }; struct ReadChunkImpl { IntrusivePtr<CastDriver> self; ReadChunk::Impl base; absl::Status operator()(internal::LockCollection& lock_collection) { return base(lock_collection); } Result<NDIterable::Ptr> operator()(ReadChunk::BeginRead, IndexTransform<> chunk_transform, Arena* arena) { TENSORSTORE_ASSIGN_OR_RETURN( auto iterable, base(ReadChunk::BeginRead{}, std::move(chunk_transform), arena)); return GetConvertedInputNDIterable(std::move(iterable), self->target_dtype_, self->input_conversion_); } }; struct WriteChunkImpl { IntrusivePtr<CastDriver> self; WriteChunk::Impl base; absl::Status operator()(internal::LockCollection& lock_collection) { return base(lock_collection); } Result<NDIterable::Ptr> operator()(WriteChunk::BeginWrite, IndexTransform<> chunk_transform, Arena* arena) { TENSORSTORE_ASSIGN_OR_RETURN( auto iterable, base(WriteChunk::BeginWrite{}, std::move(chunk_transform), arena)); return GetConvertedOutputNDIterable( std::move(iterable), self->target_dtype_, self->output_conversion_); } WriteChunk::EndWriteResult operator()(WriteChunk::EndWrite, IndexTransformView<> chunk_transform, bool success, Arena* arena) { return base(WriteChunk::EndWrite{}, chunk_transform, success, arena); } bool operator()(WriteChunk::WriteArray, IndexTransformView<> chunk_transform, WriteChunk::GetWriteSourceArrayFunction get_source_array, Arena* arena, WriteChunk::EndWriteResult& end_write_result) { if (!(self->output_conversion_.flags & DataTypeConversionFlags::kCanReinterpretCast)) { return false; } return base(WriteChunk::WriteArray{}, chunk_transform, get_source_array, arena, end_write_result); } }; template <typename Chunk, typename ChunkImpl> struct ChunkReceiverAdapter { IntrusivePtr<CastDriver> self; AnyFlowReceiver<absl::Status, Chunk, IndexTransform<>> base; template <typename CancelReceiver> void set_starting(CancelReceiver receiver) { tensorstore::execution::set_starting(base, std::move(receiver)); } void set_value(Chunk chunk, IndexTransform<> transform) { tensorstore::execution::set_value( base, Chunk{ChunkImpl{self, std::move(chunk.impl)}, std::move(chunk.transform)}, std::move(transform)); } void set_done() { tensorstore::execution::set_done(base); } void set_error(absl::Status status) { tensorstore::execution::set_error(base, std::move(status)); } void set_stopping() { tensorstore::execution::set_stopping(base); } }; void CastDriver::Read( ReadRequest request, AnyFlowReceiver<absl::Status, ReadChunk, IndexTransform<>> receiver) { base_driver_->Read(std::move(request), ChunkReceiverAdapter<ReadChunk, ReadChunkImpl>{ IntrusivePtr<CastDriver>(this), std::move(receiver)}); } void CastDriver::Write( WriteRequest request, AnyFlowReceiver<absl::Status, WriteChunk, IndexTransform<>> receiver) { base_driver_->Write(std::move(request), ChunkReceiverAdapter<WriteChunk, WriteChunkImpl>{ IntrusivePtr<CastDriver>(this), std::move(receiver)}); } const internal::DriverRegistration<CastDriverSpec> driver_registration; } } namespace internal { Result<CastDataTypeConversions> GetCastDataTypeConversions( DataType source_dtype, DataType target_dtype, ReadWriteMode existing_mode, ReadWriteMode required_mode) { assert((existing_mode & required_mode) == required_mode); CastDataTypeConversions result = {}; if (required_mode == ReadWriteMode::dynamic && existing_mode != ReadWriteMode::read_write) { required_mode = existing_mode; } const ReadWriteMode requested_mode = required_mode == ReadWriteMode::dynamic ? existing_mode : required_mode; result.mode = requested_mode; if ((requested_mode & ReadWriteMode::read) == ReadWriteMode::read) { result.input = GetDataTypeConverter(source_dtype, target_dtype); if (!(result.input.flags & DataTypeConversionFlags::kSupported)) { if ((required_mode & ReadWriteMode::read) == ReadWriteMode::read) { return absl::InvalidArgumentError(tensorstore::StrCat( "Read access requires unsupported ", source_dtype, " -> ", target_dtype, " conversion")); } result.mode &= ~ReadWriteMode::read; } } if ((requested_mode & ReadWriteMode::write) == ReadWriteMode::write) { result.output = GetDataTypeConverter(target_dtype, source_dtype); if (!(result.output.flags & DataTypeConversionFlags::kSupported)) { if ((required_mode & ReadWriteMode::write) == ReadWriteMode::write) { return absl::InvalidArgumentError(tensorstore::StrCat( "Write access requires unsupported ", target_dtype, " -> ", source_dtype, " conversion")); } result.mode &= ~ReadWriteMode::write; } } if (result.mode == ReadWriteMode{}) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot convert ", source_dtype, " <-> ", target_dtype)); } return result; } Result<Driver::Handle> MakeCastDriver(Driver::Handle base, DataType target_dtype, ReadWriteMode read_write_mode) { TENSORSTORE_ASSIGN_OR_RETURN( auto conversions, GetCastDataTypeConversions( base.driver->dtype(), target_dtype, base.driver.read_write_mode(), read_write_mode)); base.driver = internal::MakeReadWritePtr<internal_cast_driver::CastDriver>( conversions.mode, std::move(base.driver), target_dtype, conversions.input, conversions.output); return base; } Result<TransformedDriverSpec> MakeCastDriverSpec(TransformedDriverSpec base, DataType target_dtype) { if (!base.driver_spec) return {std::in_place}; DataType source_dtype = base.driver_spec->schema.dtype(); if (source_dtype.valid()) { TENSORSTORE_RETURN_IF_ERROR(GetCastDataTypeConversions( source_dtype, target_dtype, ReadWriteMode::read_write, ReadWriteMode::dynamic)); } auto driver_spec = internal::DriverSpec::Make<internal_cast_driver::CastDriverSpec>(); driver_spec->schema .Set(base.transform.valid() ? RankConstraint{base.transform.output_rank()} : base.driver_spec->schema.rank()) .IgnoreError(); driver_spec->schema.Set(target_dtype).IgnoreError(); driver_spec->context_binding_state_ = base.context_binding_state(); driver_spec->base.driver_spec = std::move(base.driver_spec); base.driver_spec = std::move(driver_spec); return base; } } Result<Spec> Cast(const Spec& base_spec, DataType target_dtype) { Spec spec; auto& base_impl = internal_spec::SpecAccess::impl(base_spec); auto& impl = internal_spec::SpecAccess::impl(spec); TENSORSTORE_ASSIGN_OR_RETURN( impl, internal::MakeCastDriverSpec(base_impl, target_dtype)); return spec; } }
#include "tensorstore/cast.h" #include <cstddef> #include <cstdint> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/chunk_layout.h" #include "tensorstore/codec_spec.h" #include "tensorstore/context.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/cast/cast.h" #include "tensorstore/driver/driver_testutil.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/json.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/open.h" #include "tensorstore/open_mode.h" #include "tensorstore/schema.h" #include "tensorstore/spec.h" #include "tensorstore/strided_layout.h" #include "tensorstore/tensorstore.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Cast; using ::tensorstore::ChunkLayout; using ::tensorstore::DataTypeConversionFlags; using ::tensorstore::DimensionIndex; using ::tensorstore::dtype_v; using ::tensorstore::Index; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::ReadWriteMode; using ::tensorstore::Result; using ::tensorstore::zero_origin; using ::tensorstore::dtypes::string_t; using ::tensorstore::internal::CastDataTypeConversions; using ::tensorstore::internal::GetCastDataTypeConversions; using ::tensorstore::internal::GetCastMode; using ::tensorstore::internal::TestSpecSchema; using ::tensorstore::internal::TestTensorStoreCreateCheckSchema; #ifndef _MSC_VER template <class T> constexpr void test_helper(T&& t) {} #define TENSORSTORE_IS_CONSTEXPR(...) noexcept(test_helper(__VA_ARGS__)) static_assert(!TENSORSTORE_IS_CONSTEXPR( GetCastMode<std::byte, std::string>(ReadWriteMode::dynamic))); static_assert(!TENSORSTORE_IS_CONSTEXPR( GetCastMode<std::byte, std::string>(ReadWriteMode::read))); static_assert(!TENSORSTORE_IS_CONSTEXPR( GetCastMode<std::byte, std::string>(ReadWriteMode::write))); static_assert(!TENSORSTORE_IS_CONSTEXPR( GetCastMode<std::byte, std::string>(ReadWriteMode::read_write))); #endif static_assert(GetCastMode<std::int32_t, float>(ReadWriteMode::dynamic) == ReadWriteMode::dynamic); static_assert(GetCastMode<std::int32_t, float>(ReadWriteMode::read) == ReadWriteMode::read); static_assert(GetCastMode<std::int32_t, float>(ReadWriteMode::write) == ReadWriteMode::write); static_assert(GetCastMode<std::int32_t, float>(ReadWriteMode::read_write) == ReadWriteMode::read_write); static_assert(GetCastMode<std::int32_t, std::string>(ReadWriteMode::dynamic) == ReadWriteMode::read); static_assert(GetCastMode<std::int32_t, std::string>(ReadWriteMode::read) == ReadWriteMode::read); #ifndef _MSC_VER static_assert(!TENSORSTORE_IS_CONSTEXPR( GetCastMode<std::int32_t, std::string>(ReadWriteMode::write))); #endif static_assert(GetCastMode<std::int32_t, std::string>( ReadWriteMode::read_write) == ReadWriteMode::read); static_assert(GetCastMode<std::string, std::int32_t>(ReadWriteMode::dynamic) == ReadWriteMode::write); static_assert(GetCastMode<std::string, std::int32_t>(ReadWriteMode::write) == ReadWriteMode::write); #ifndef _MSC_VER static_assert(!TENSORSTORE_IS_CONSTEXPR( GetCastMode<std::string, std::int32_t>(ReadWriteMode::read))); #endif static_assert(GetCastMode<std::string, std::int32_t>( ReadWriteMode::read_write) == ReadWriteMode::write); static_assert(GetCastMode<std::int32_t, std::int32_t>( ReadWriteMode::read_write) == ReadWriteMode::read_write); static_assert(GetCastMode<std::int32_t, std::int32_t>(ReadWriteMode::dynamic) == ReadWriteMode::dynamic); static_assert(GetCastMode<std::int32_t, std::int32_t>(ReadWriteMode::read) == ReadWriteMode::read); static_assert(GetCastMode<std::int32_t, std::int32_t>(ReadWriteMode::write) == ReadWriteMode::write); static_assert(GetCastMode<std::int32_t, void>(ReadWriteMode::write) == ReadWriteMode::write); static_assert(GetCastMode<std::int32_t, void>(ReadWriteMode::read) == ReadWriteMode::read); static_assert(GetCastMode<std::int32_t, void>(ReadWriteMode::dynamic) == ReadWriteMode::dynamic); static_assert(GetCastMode<std::int32_t, void>(ReadWriteMode::read_write) == ReadWriteMode::dynamic); static_assert(GetCastMode<void, std::int32_t>(ReadWriteMode::write) == ReadWriteMode::write); static_assert(GetCastMode<void, std::int32_t>(ReadWriteMode::read) == ReadWriteMode::read); static_assert(GetCastMode<void, std::int32_t>(ReadWriteMode::dynamic) == ReadWriteMode::dynamic); static_assert(GetCastMode<void, std::int32_t>(ReadWriteMode::read_write) == ReadWriteMode::dynamic); static_assert(GetCastMode<void, void>(ReadWriteMode::write) == ReadWriteMode::write); static_assert(GetCastMode<void, void>(ReadWriteMode::read) == ReadWriteMode::read); static_assert(GetCastMode<void, void>(ReadWriteMode::dynamic) == ReadWriteMode::dynamic); static_assert(GetCastMode<void, void>(ReadWriteMode::read_write) == ReadWriteMode::dynamic); ::testing::Matcher<Result<CastDataTypeConversions>> MatchesCastDataTypeConversions(DataTypeConversionFlags input_flags, DataTypeConversionFlags output_flags, ReadWriteMode mode) { return ::testing::Optional(::testing::AllOf( ::testing::ResultOf([](const auto& x) { return x.input.flags; }, input_flags), ::testing::ResultOf([](const auto& x) { return x.output.flags; }, output_flags), ::testing::Field(&CastDataTypeConversions::mode, mode))); } TEST(GetCastDataTypeConversions, Basic) { constexpr static DataTypeConversionFlags kSupported = DataTypeConversionFlags::kSupported; constexpr static DataTypeConversionFlags kIdentity = DataTypeConversionFlags::kIdentity; constexpr static DataTypeConversionFlags kSafeAndImplicit = DataTypeConversionFlags::kSafeAndImplicit; constexpr static DataTypeConversionFlags kCanReinterpretCast = DataTypeConversionFlags::kCanReinterpretCast; constexpr static DataTypeConversionFlags kNone = {}; constexpr static DataTypeConversionFlags kAll = kSupported | kIdentity | kCanReinterpretCast | kSafeAndImplicit; constexpr static ReadWriteMode read = ReadWriteMode::read; constexpr static ReadWriteMode write = ReadWriteMode::write; constexpr static ReadWriteMode read_write = ReadWriteMode::read_write; constexpr static ReadWriteMode dynamic = ReadWriteMode::dynamic; constexpr auto IfMode = [](ReadWriteMode mode, ReadWriteMode condition, DataTypeConversionFlags true_value) { return ((mode & condition) == condition) ? true_value : kNone; }; for (const auto existing_mode : {read, write, read_write}) { for (const auto required_mode : {existing_mode, dynamic}) { EXPECT_THAT(GetCastDataTypeConversions(dtype_v<std::int32_t>, dtype_v<std::int32_t>, existing_mode, required_mode), MatchesCastDataTypeConversions( IfMode(existing_mode, read, kAll), IfMode(existing_mode, write, kAll), existing_mode)); } } for (const auto existing_mode : {read, write, read_write}) { for (const auto required_mode : {existing_mode, dynamic}) { EXPECT_THAT( GetCastDataTypeConversions(dtype_v<std::int32_t>, dtype_v<float>, existing_mode, required_mode), MatchesCastDataTypeConversions( IfMode(existing_mode, read, kSupported), IfMode(existing_mode, write, kSupported), existing_mode)); } } for (const auto existing_mode : {read, write, read_write}) { for (const auto required_mode : {existing_mode, dynamic}) { EXPECT_THAT( GetCastDataTypeConversions(dtype_v<std::int16_t>, dtype_v<float>, existing_mode, required_mode), MatchesCastDataTypeConversions( IfMode(existing_mode, read, kSupported | kSafeAndImplicit), IfMode(existing_mode, write, kSupported), existing_mode)); } } for (const auto existing_mode : {read, read_write}) { for (const auto required_mode : {read, dynamic}) { EXPECT_THAT(GetCastDataTypeConversions(dtype_v<std::int32_t>, dtype_v<std::string>, existing_mode, required_mode), MatchesCastDataTypeConversions( kSupported, kNone, read)); } } for (const auto required_mode : {write, read_write}) { EXPECT_THAT( GetCastDataTypeConversions(dtype_v<std::int32_t>, dtype_v<std::string>, read_write, required_mode), MatchesStatus(absl::StatusCode::kInvalidArgument)); } for (const auto required_mode : {write, dynamic}) { EXPECT_THAT( GetCastDataTypeConversions(dtype_v<std::int32_t>, dtype_v<std::string>, write, required_mode), MatchesStatus(absl::StatusCode::kInvalidArgument)); } for (const auto existing_mode : {write, read_write}) { for (const auto required_mode : {write, dynamic}) { EXPECT_THAT(GetCastDataTypeConversions(dtype_v<std::string>, dtype_v<std::int32_t>, existing_mode, required_mode), MatchesCastDataTypeConversions( kNone, kSupported, write)); } } for (const auto required_mode : {read, dynamic}) { EXPECT_THAT( GetCastDataTypeConversions(dtype_v<std::string>, dtype_v<std::int32_t>, read, required_mode), MatchesStatus(absl::StatusCode::kInvalidArgument)); } for (const auto required_mode : {read, read_write}) { EXPECT_THAT( GetCastDataTypeConversions(dtype_v<std::string>, dtype_v<std::int32_t>, read_write, required_mode), MatchesStatus(absl::StatusCode::kInvalidArgument)); } for (const auto existing_mode : {read, write, read_write}) { for (const auto required_mode : {read, write, read_write, dynamic}) { if ((existing_mode & required_mode) != required_mode) continue; EXPECT_THAT(GetCastDataTypeConversions( dtype_v<std::byte>, dtype_v<std::string>, existing_mode, required_mode & existing_mode), MatchesStatus(absl::StatusCode::kInvalidArgument)); } } } TEST(CastTest, Int32ToStringDynamic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::Open( {{"driver", "array"}, {"array", {1, 2, 3}}, {"dtype", "int32"}}) .result()); EXPECT_EQ(store.read_write_mode(), ReadWriteMode::read_write); ASSERT_EQ(tensorstore::Box<1>({3}), store.domain().box()); auto cast_store = Cast(store, dtype_v<std::string>).value(); EXPECT_EQ(cast_store.read_write_mode(), ReadWriteMode::read); EXPECT_EQ(tensorstore::Read<zero_origin>(cast_store).result(), MakeArray<std::string>({"1", "2", "3"})); EXPECT_THAT( cast_store.spec().value().ToJson({tensorstore::IncludeDefaults{false}}), ::testing::Optional(tensorstore::MatchesJson( {{"driver", "cast"}, {"dtype", "string"}, {"transform", ::nlohmann::json(tensorstore::IdentityTransform<1>({3}))}, {"base", { {"driver", "array"}, {"array", {1, 2, 3}}, {"dtype", "int32"}, }}}))); } TEST(CastTest, StringToInt32Dynamic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::Open({{"driver", "array"}, {"array", {"a", "b", "c"}}, {"dtype", "string"}}) .result()); EXPECT_EQ(store.read_write_mode(), ReadWriteMode::read_write); auto cast_store = Cast(store, dtype_v<std::int32_t>).value(); EXPECT_EQ(cast_store.read_write_mode(), ReadWriteMode::write); TENSORSTORE_EXPECT_OK( tensorstore::Write(MakeArray<std::int32_t>({1, 2, 3}), cast_store)); EXPECT_EQ(tensorstore::Read<zero_origin>(store).result(), MakeArray<std::string>({"1", "2", "3"})); } TEST(CastTest, OpenInt32ToInt64) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::Open( {{"driver", "cast"}, {"dtype", "int64"}, {"base", {{"driver", "array"}, {"array", {1, 2, 3}}, {"dtype", "int32"}}}}) .result()); EXPECT_EQ(store.read_write_mode(), ReadWriteMode::read_write); EXPECT_EQ(tensorstore::Read<zero_origin>(store).result(), MakeArray<std::int64_t>({1, 2, 3})); TENSORSTORE_EXPECT_OK(tensorstore::Write( tensorstore::MakeScalarArray<std::int64_t>(10), store)); EXPECT_EQ(tensorstore::Read<zero_origin>(store).result(), MakeArray<std::int64_t>({10, 10, 10})); } TEST(CastTest, OpenInputConversionError) { EXPECT_THAT( tensorstore::Open( {{"driver", "cast"}, {"dtype", "byte"}, {"base", {{"driver", "array"}, {"array", {1, 2, 3}}, {"dtype", "int32"}}}}, tensorstore::ReadWriteMode::read) .result(), MatchesStatus( absl::StatusCode::kInvalidArgument, "Error opening \"cast\" driver: " "Read access requires unsupported int32 -> byte conversion")); } TEST(CastTest, OpenOutputConversionError) { EXPECT_THAT( tensorstore::Open( {{"driver", "cast"}, {"dtype", "byte"}, {"base", {{"driver", "array"}, {"array", {1, 2, 3}}, {"dtype", "int32"}}}}, tensorstore::ReadWriteMode::write) .result(), MatchesStatus( absl::StatusCode::kInvalidArgument, "Error opening \"cast\" driver: " "Write access requires unsupported byte -> int32 conversion")); } TEST(CastTest, OpenAnyConversionError) { EXPECT_THAT( tensorstore::Open( {{"driver", "cast"}, {"dtype", "byte"}, {"base", {{"driver", "array"}, {"array", {1, 2, 3}}, {"dtype", "int32"}}}}) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error opening \"cast\" driver: " "Cannot convert int32 <-> byte")); } TEST(CastTest, OpenMissingDataType) { EXPECT_THAT( tensorstore::Open( {{"driver", "cast"}, {"base", {{"driver", "array"}, {"array", {1, 2, 3}}, {"dtype", "int32"}}}}) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: dtype must be specified")); } TEST(CastTest, ComposeTransforms) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::Open( {{"driver", "cast"}, {"transform", {{"input_inclusive_min", {10}}, {"input_shape", {3}}, {"output", {{{"input_dimension", 0}, {"offset", -8}}}}}}, {"dtype", "int64"}, {"base", {{"driver", "array"}, {"array", {1, 2, 3}}, {"transform", {{"input_inclusive_min", {2}}, {"input_shape", {3}}, {"output", {{{"input_dimension", 0}, {"offset", -2}}}}}}, {"dtype", "int32"}}}}) .result()); EXPECT_THAT( store.spec().value().ToJson({tensorstore::IncludeDefaults{false}}), ::testing::Optional(tensorstore::MatchesJson( {{"driver", "cast"}, {"base", { {"driver", "array"}, {"array", {1, 2, 3}}, {"dtype", "int32"}, }}, {"dtype", "int64"}, {"transform", ::nlohmann::json(tensorstore::IndexTransformBuilder<>(1, 1) .input_origin({10}) .input_shape({3}) .output_single_input_dimension(0, -10, 1, 0) .Finalize() .value())}}))); } TEST(CastTest, ComposeTransformsError) { EXPECT_THAT(tensorstore::Open({{"driver", "cast"}, {"rank", 2}, {"dtype", "int64"}, {"base", {{"driver", "array"}, {"array", {1, 2, 3}}, {"rank", 1}, {"dtype", "int32"}}}}) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"base\": " "Error parsing object member \"rank\": " "Expected 2, but received: 1")); } TEST(CastTest, SpecRankPropagation) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, tensorstore::Spec::FromJson({ {"driver", "cast"}, {"base", { {"driver", "array"}, {"array", {1, 2, 3}}, {"dtype", "int32"}, }}, {"dtype", "int64"}, })); EXPECT_EQ(1, spec.rank()); } TEST(CastTest, ChunkLayout) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::Open({ {"driver", "cast"}, {"dtype", "int32"}, {"base", {{"driver", "array"}, {"dtype", "int64"}, {"array", {{1, 2, 3}, {4, 5, 6}}}}}, }) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_layout, ChunkLayout::FromJson({ {"grid_origin", {0, 0}}, {"inner_order", {0, 1}}, })); EXPECT_THAT(store.chunk_layout(), ::testing::Optional(expected_layout)); } TEST(SpecSchemaTest, CastArray) { TestSpecSchema( { {"driver", "cast"}, {"base", { {"driver", "array"}, {"array", {{1, 2, 3}, {4, 5, 6}}}, {"dtype", "float32"}, {"schema", {{"dimension_units", {"4nm", "5nm"}}}}, }}, {"dtype", "int32"}, }, { {"rank", 2}, {"dtype", "int32"}, {"domain", {{"shape", {2, 3}}}}, {"chunk_layout", {{"grid_origin", {0, 0}}, {"inner_order", {0, 1}}}}, {"dimension_units", {"4nm", "5nm"}}, }); } TEST(DriverCreateCheckSchemaTest, CastArray) { TestTensorStoreCreateCheckSchema( { {"driver", "cast"}, {"base", { {"driver", "array"}, {"array", {{1, 2, 3}, {4, 5, 6}}}, {"dtype", "float32"}, {"schema", {{"dimension_units", {"4nm", "5nm"}}}}, }}, {"dtype", "int32"}, }, { {"rank", 2}, {"dtype", "int32"}, {"domain", {{"shape", {2, 3}}}}, {"chunk_layout", {{"grid_origin", {0, 0}}, {"inner_order", {0, 1}}}}, {"dimension_units", {"4nm", "5nm"}}, }); } TEST(CastTest, FillValueNotSpecified) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto base_store, tensorstore::Open( { {"driver", "zarr"}, {"kvstore", {{"driver", "memory"}}}, }, tensorstore::OpenMode::create, tensorstore::dtype_v<uint16_t>, tensorstore::Schema::Shape({100, 4, 3})) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::Cast(base_store, tensorstore::dtype_v<int32_t>)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto fill_value, store.fill_value()); EXPECT_FALSE(fill_value.valid()); } TEST(CastTest, FillValueSpecified) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto base_store, tensorstore::Open( { {"driver", "zarr"}, {"kvstore", {{"driver", "memory"}}}, }, tensorstore::OpenMode::create, tensorstore::dtype_v<uint16_t>, tensorstore::Schema::Shape({100, 4, 3}), tensorstore::Schema::FillValue( tensorstore::MakeScalarArray<uint16_t>(42))) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::Cast(base_store, tensorstore::dtype_v<int32_t>)); EXPECT_THAT(store.fill_value(), ::testing::Optional(tensorstore::MakeScalarArray<int32_t>(42))); } TEST(CastTest, Codec) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto base_store, tensorstore::Open( { {"driver", "zarr"}, {"kvstore", {{"driver", "memory"}}}, {"metadata", {{"compressor", nullptr}}}, }, tensorstore::OpenMode::create, tensorstore::dtype_v<uint16_t>, tensorstore::Schema::Shape({100, 4, 3})) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, tensorstore::Cast(base_store, tensorstore::dtype_v<int32_t>)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_codec, tensorstore::CodecSpec::FromJson({ {"driver", "zarr"}, {"compressor", nullptr}, {"filters", nullptr}, })); EXPECT_THAT(store.codec(), ::testing::Optional(expected_codec)); } TEST(SpecSchemaTest, ChunkLayout) { TestSpecSchema( { {"driver", "cast"}, {"dtype", "uint32"}, {"base", { {"driver", "zarr"}, {"kvstore", {{"driver", "memory"}}}, {"metadata", {{"dtype", "<u2"}, {"chunks", {3, 4, 5}}}}, }}, }, { {"dtype", "uint32"}, {"chunk_layout", { {"grid_origin", {0, 0, 0}}, {"chunk", {{"shape", {3, 4, 5}}}}, }}, {"codec", {{"driver", "zarr"}}}, }); } TEST(SpecSchemaTest, Codec) { TestSpecSchema( { {"driver", "cast"}, {"dtype", "uint32"}, {"base", { {"driver", "zarr"}, {"kvstore", {{"driver", "memory"}}}, {"metadata", {{"dtype", "<u2"}, {"compressor", nullptr}}}, }}, }, { {"dtype", "uint32"}, {"codec", {{"driver", "zarr"}, {"compressor", nullptr}}}, }); } TEST(SpecSchemaTest, FillValue) { TestSpecSchema( { {"driver", "cast"}, {"dtype", "uint32"}, {"base", { {"driver", "zarr"}, {"kvstore", {{"driver", "memory"}}}, {"metadata", {{"dtype", "<f4"}, {"fill_value", 3.5}}}, }}, }, { {"dtype", "uint32"}, {"fill_value", 3}, {"codec", {{"driver", "zarr"}}}, }); } TEST(SpecSchemaTest, FillValueSameDtype) { TestSpecSchema( { {"driver", "cast"}, {"dtype", "uint32"}, {"base", { {"driver", "zarr"}, {"kvstore", {{"driver", "memory"}}}, {"metadata", {{"dtype", "<u4"}, {"fill_value", 3}}}, }}, }, { {"dtype", "uint32"}, {"fill_value", 3}, {"codec", {{"driver", "zarr"}}}, }); } TENSORSTORE_GLOBAL_INITIALIZER { tensorstore::internal::TestTensorStoreDriverSpecRoundtripOptions options; options.test_name = "cast"; options.create_spec = { {"driver", "cast"}, {"base", { {"driver", "array"}, {"dtype", "float32"}, {"array", {{1, 2, 3}, {4, 5, 6}}}, }}, {"dtype", "uint32"}, }; options.full_spec = { {"driver", "cast"}, {"base", { {"driver", "array"}, {"array", {{1, 2, 3}, {4, 5, 6}}}, {"dtype", "float32"}, }}, {"dtype", "uint32"}, {"transform", {{"input_inclusive_min", {0, 0}}, {"input_exclusive_max", {2, 3}}}}, }; options.full_base_spec = { {"driver", "array"}, {"array", {{1, 2, 3}, {4, 5, 6}}}, {"dtype", "float32"}, {"transform", {{"input_inclusive_min", {0, 0}}, {"input_exclusive_max", {2, 3}}}}, }; options.minimal_spec = options.full_spec; options.check_not_found_before_create = false; options.check_not_found_before_commit = false; options.supported_transaction_modes = {}; tensorstore::internal::RegisterTensorStoreDriverSpecRoundtripTest( std::move(options)); } }
523
cpp
google/tensorstore
index
python/tensorstore/index.cc
python/tensorstore/index_test.cc
#ifndef TENSORSTORE_INDEX_H_ #define TENSORSTORE_INDEX_H_ #include <stddef.h> #include <stdint.h> namespace tensorstore { using Index = int64_t; using DimensionIndex = ptrdiff_t; constexpr Index kMinFiniteIndex = -0x3ffffffffffffffe; constexpr Index kInfIndex = 0x3fffffffffffffff; constexpr Index kMaxFiniteIndex = 0x3ffffffffffffffe; constexpr Index kInfSize = 0x7fffffffffffffff; constexpr Index kMaxFiniteSize = 0x7ffffffffffffffd; static_assert(-kInfIndex + kInfSize - 1 == kInfIndex, ""); static_assert(kMinFiniteIndex + kMaxFiniteSize - 1 == kMaxFiniteIndex, ""); constexpr Index kImplicit = -0x8000000000000000; } #endif #include <pybind11/pybind11.h> #include "python/tensorstore/index.h" #include <string> #include <variant> #include <vector> #include "python/tensorstore/sequence_parameter.h" #include "tensorstore/index.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_python { IndexVectorOrScalarContainer ToIndexVectorOrScalarContainer( const OptionallyImplicitIndexVectorOrScalarContainer& x, Index implicit_value) { if (auto* index = std::get_if<OptionallyImplicitIndex>(&x)) { return index->value_or(implicit_value); } const auto& v = std::get<SequenceParameter<OptionallyImplicitIndex>>(x); std::vector<Index> out_v; out_v.reserve(v.size()); for (size_t i = 0; i < v.size(); ++i) { out_v.push_back(v[i].value_or(implicit_value)); } return out_v; } internal_index_space::IndexVectorOrScalarView ToIndexVectorOrScalar( const IndexVectorOrScalarContainer& x) { constexpr static Index temp = 0; if (auto* index = std::get_if<Index>(&x)) { return *index; } else { const auto& v = std::get<std::vector<Index>>(x); if (v.empty()) { return span(&temp, 0); } return span(v); } } std::string IndexVectorRepr(const IndexVectorOrScalarContainer& x, bool implicit, bool subscript) { return internal::IndexVectorRepr(ToIndexVectorOrScalar(x), implicit, subscript); } } } namespace pybind11 { namespace detail { handle type_caster<tensorstore::internal_python::PythonDimensionIndex>::cast( tensorstore::internal_python::PythonDimensionIndex x, return_value_policy , handle ) { return int_(x.value).release(); } bool type_caster<tensorstore::internal_python::PythonDimensionIndex>::load( handle src, bool convert) { value.value = PyNumber_AsSsize_t(src.ptr(), PyExc_IndexError); if (value.value == -1 && PyErr_Occurred()) { PyErr_Clear(); return false; } return true; } handle type_caster<tensorstore::internal_python::OptionallyImplicitIndex>::cast( tensorstore::internal_python::OptionallyImplicitIndex x, return_value_policy , handle ) { if (x.value == tensorstore::kImplicit) return none().release(); return int_(x.value).release(); } bool type_caster<tensorstore::internal_python::OptionallyImplicitIndex>::load( handle src, bool convert) { if (src.is_none()) { value.value = tensorstore::kImplicit; return true; } value.value = PyNumber_AsSsize_t(src.ptr(), PyExc_IndexError); if (value.value == -1 && PyErr_Occurred()) { PyErr_Clear(); return false; } return true; } } }
#include "python/tensorstore/index.h" #include <vector> #include <gtest/gtest.h> #include "tensorstore/index.h" namespace { TEST(OptionallyImplicitIndexReprTest, Basic) { using tensorstore::kImplicit; using tensorstore::internal_python::OptionallyImplicitIndexRepr; EXPECT_EQ("None", OptionallyImplicitIndexRepr(kImplicit)); EXPECT_EQ("3", OptionallyImplicitIndexRepr(3)); EXPECT_EQ("-3", OptionallyImplicitIndexRepr(-3)); } TEST(IndexVectorReprTest, Basic) { using tensorstore::Index; using tensorstore::kImplicit; using tensorstore::internal_python::IndexVectorRepr; for (bool subscript : {false, true}) { EXPECT_EQ("None", IndexVectorRepr(kImplicit, true, subscript)); for (bool implicit : {false, true}) { EXPECT_EQ("1", IndexVectorRepr(1, implicit, subscript)); EXPECT_EQ("-1", IndexVectorRepr(-1, implicit, subscript)); } } for (bool implicit : {false, true}) { EXPECT_EQ("[1,2,3]", IndexVectorRepr(std::vector<Index>{1, 2, 3}, implicit, false)); EXPECT_EQ("1,2,3", IndexVectorRepr(std::vector<Index>{1, 2, 3}, implicit, true)); EXPECT_EQ("[]", IndexVectorRepr(std::vector<Index>{}, implicit, false)); EXPECT_EQ("()", IndexVectorRepr(std::vector<Index>{}, implicit, true)); } EXPECT_EQ("[1,2,None]", IndexVectorRepr(std::vector<Index>{1, 2, kImplicit}, true, false)); EXPECT_EQ("1,2,None", IndexVectorRepr(std::vector<Index>{1, 2, kImplicit}, true, true)); } TEST(ToIndexVectorOrScalarContainerTest, Basic) { using tensorstore::Index; using tensorstore::kImplicit; using tensorstore::internal_python::IndexVectorOrScalarContainer; using tensorstore::internal_python::OptionallyImplicitIndex; using tensorstore::internal_python::ToIndexVectorOrScalarContainer; EXPECT_EQ( IndexVectorOrScalarContainer{Index{3}}, ToIndexVectorOrScalarContainer(OptionallyImplicitIndex{3}, kImplicit)); EXPECT_EQ(IndexVectorOrScalarContainer{3}, ToIndexVectorOrScalarContainer(OptionallyImplicitIndex{3}, 4)); EXPECT_EQ( IndexVectorOrScalarContainer{Index{3}}, ToIndexVectorOrScalarContainer(OptionallyImplicitIndex{kImplicit}, 3)); EXPECT_EQ(IndexVectorOrScalarContainer{kImplicit}, ToIndexVectorOrScalarContainer(OptionallyImplicitIndex{kImplicit}, kImplicit)); EXPECT_EQ(IndexVectorOrScalarContainer{std::vector<Index>({1, 2, 3})}, ToIndexVectorOrScalarContainer( std::vector<OptionallyImplicitIndex>{ OptionallyImplicitIndex{1}, OptionallyImplicitIndex{2}, OptionallyImplicitIndex{3}, }, kImplicit)); EXPECT_EQ(IndexVectorOrScalarContainer{std::vector<Index>({1, 2, kImplicit})}, ToIndexVectorOrScalarContainer( std::vector<OptionallyImplicitIndex>{ OptionallyImplicitIndex{1}, OptionallyImplicitIndex{2}, OptionallyImplicitIndex{kImplicit}, }, kImplicit)); EXPECT_EQ(IndexVectorOrScalarContainer{std::vector<Index>({1, 2, 3})}, ToIndexVectorOrScalarContainer( std::vector<OptionallyImplicitIndex>{ OptionallyImplicitIndex{1}, OptionallyImplicitIndex{2}, OptionallyImplicitIndex{kImplicit}, }, 3)); } }
524
cpp
google/tensorstore
kvstore
tensorstore/kvstore/kvstore.cc
tensorstore/kvstore/kvstore_test.cc
#ifndef TENSORSTORE_KVSTORE_KVSTORE_H_ #define TENSORSTORE_KVSTORE_KVSTORE_H_ #include <string> #include <string_view> #include <type_traits> #include <utility> #include <nlohmann/json_fwd.hpp> #include "tensorstore/context.h" #include "tensorstore/internal/path.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/transaction.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/option.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace kvstore { struct SpecRequestOptions : public DriverSpecOptions { ContextBindingMode context_binding_mode = ContextBindingMode::unspecified; template <typename T> constexpr static bool IsOption = DriverSpecOptions::IsOption<T>; using DriverSpecOptions::Set; void Set(ContextBindingMode value) { if (value > context_binding_mode) context_binding_mode = value; } }; template <> constexpr inline bool SpecRequestOptions::IsOption<ContextBindingMode> = true; class KvStore { public: KvStore() = default; KvStore(DriverPtr driver) : driver(std::move(driver)) {} explicit KvStore(DriverPtr driver, Transaction transaction) : driver(std::move(driver)), transaction(std::move(transaction)) {} explicit KvStore(DriverPtr driver, std::string path, Transaction transaction = no_transaction) : driver(std::move(driver)), path(std::move(path)), transaction(std::move(transaction)) {} void AppendSuffix(std::string_view suffix) { path += suffix; } void AppendPathComponent(std::string_view component) { internal::AppendPathComponent(path, component); } KvStore WithPathSuffix(std::string_view suffix) && { AppendSuffix(suffix); return std::move(*this); } KvStore WithPathSuffix(std::string_view suffix) const& { return KvStore(*this).WithPathSuffix(suffix); } bool valid() const { return static_cast<bool>(driver); } DriverPtr driver; std::string path; template <typename... Option> std::enable_if_t<IsCompatibleOptionSequence<SpecRequestOptions, Option...>, Result<Spec>> spec(Option&&... option) const { SpecRequestOptions options; (options.Set(std::move(option)), ...); return spec(std::move(options)); } Result<Spec> spec(SpecRequestOptions&& options) const; Result<std::string> ToUrl() const; friend bool operator==(const KvStore& a, const KvStore& b); friend bool operator!=(const KvStore& a, const KvStore& b) { return !(a == b); } KvStore non_transactional() const& { return KvStore(driver, path); } KvStore non_transactional() && { return KvStore(std::move(driver), std::move(path)); } Result<KvStore> base() const; friend Result<KvStore> ApplyTensorStoreTransaction(KvStore store, Transaction transaction) { TENSORSTORE_RETURN_IF_ERROR( internal::ChangeTransaction(store.transaction, std::move(transaction))); return store; } template <typename Func> PipelineResultType<const KvStore&, Func> operator|(Func&& func) const& { return std::forward<Func>(func)(*this); } template <typename Func> PipelineResultType<KvStore&&, Func> operator|(Func&& func) && { return std::forward<Func>(func)(std::move(*this)); } Transaction transaction = no_transaction; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.driver, x.path, x.transaction); }; }; struct DriverOpenOptions { Context context; template <typename T> constexpr static bool IsOption = false; void Set(Context value) { context = std::move(value); } }; struct OpenOptions : public DriverOpenOptions { Transaction transaction = no_transaction; template <typename T> constexpr static bool IsOption = DriverOpenOptions::IsOption<T>; using DriverOpenOptions::Set; void Set(Transaction transaction) { this->transaction = std::move(transaction); } }; template <> constexpr inline bool DriverOpenOptions::IsOption<Context> = true; template <> constexpr inline bool OpenOptions::IsOption<Transaction> = true; Future<KvStore> Open(Spec spec, OpenOptions&& options); Future<KvStore> Open(::nlohmann::json json_spec, OpenOptions&& options); template <typename... Option> static std::enable_if_t<IsCompatibleOptionSequence<OpenOptions, Option...>, Future<KvStore>> Open(Spec spec, Option&&... option) { OpenOptions options; (options.Set(option), ...); return kvstore::Open(std::move(spec), std::move(options)); } template <typename... Option> static std::enable_if_t<IsCompatibleOptionSequence<OpenOptions, Option...>, Future<KvStore>> Open(::nlohmann::json j, Option&&... option) { OpenOptions options; (options.Set(option), ...); return kvstore::Open(std::move(j), std::move(options)); } } using KvStore = kvstore::KvStore; } TENSORSTORE_DECLARE_SERIALIZER_SPECIALIZATION(tensorstore::kvstore::KvStore) TENSORSTORE_DECLARE_GARBAGE_COLLECTION_SPECIALIZATION( tensorstore::kvstore::KvStore) #endif #include "tensorstore/kvstore/kvstore.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <atomic> #include <cassert> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/base/attributes.h" #include "absl/base/no_destructor.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/serialization/registry.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/transaction.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/future_sender.h" #include "tensorstore/util/execution/sender.h" #include "tensorstore/util/execution/sender_util.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" using ::tensorstore::internal::IntrusivePtr; namespace tensorstore { namespace kvstore { namespace { ABSL_CONST_INIT internal_log::VerboseFlag kvstore_cache_logging( "kvstore_cache"); } void intrusive_ptr_increment(Driver* p) { p->reference_count_.fetch_add(1, std::memory_order_relaxed); } void intrusive_ptr_decrement(Driver* p) { if (!internal::DecrementReferenceCountIfGreaterThanOne(p->reference_count_)) { p->DestroyLastReference(); } } void EncodeCacheKeyAdl(std::string* out, const DriverPtr& ptr) { return ptr->EncodeCacheKey(out); } Result<Spec> KvStore::spec(SpecRequestOptions&& options) const { TENSORSTORE_ASSIGN_OR_RETURN(auto driver_spec, driver->spec(std::move(options))); return Spec(std::move(driver_spec), path); } Result<std::string> KvStore::ToUrl() const { TENSORSTORE_ASSIGN_OR_RETURN(auto spec, this->spec()); return spec.ToUrl(); } Result<KvStore> KvStore::base() const { return driver->GetBase(path, transaction); } Result<DriverSpecPtr> Driver::spec(SpecRequestOptions&& options) const { TENSORSTORE_ASSIGN_OR_RETURN(auto spec, GetBoundSpec()); internal::ApplyContextBindingMode(spec, options.context_binding_mode, ContextBindingMode::strip); TENSORSTORE_RETURN_IF_ERROR(spec.Set(std::move(options))); return spec; } Result<DriverSpecPtr> Driver::GetBoundSpec() const { return absl::UnimplementedError( "KeyValueStore does not support JSON representation"); } SupportedFeatures Driver::GetSupportedFeatures( const KeyRange& key_range) const { return SupportedFeatures::kNone; } void Driver::EncodeCacheKey(std::string* out) const { internal::EncodeCacheKey(out, reinterpret_cast<uintptr_t>(this)); } Result<KvStore> Driver::GetBase(std::string_view path, const Transaction& transaction) const { return {std::in_place}; } } namespace internal_kvstore { DriverRegistry& GetDriverRegistry() { static absl::NoDestructor<DriverRegistry> registry; return *registry; } } template serialization::Registry& serialization::GetRegistry<internal::IntrusivePtr<const kvstore::DriverSpec>>(); namespace kvstore { Driver::~Driver() = default; Future<KvStore> Open(Spec spec, OpenOptions&& options) { if (!spec.valid()) { return absl::InvalidArgumentError("Cannot open null kvstore spec"); } return MapFutureValue( InlineExecutor{}, [path = std::move(spec.path), transaction = std::move(options.transaction)](DriverPtr& driver) mutable { return KvStore(std::move(driver), std::move(path), std::move(transaction)); }, kvstore::Open(std::move(spec.driver), static_cast<DriverOpenOptions&&>(options))); } Future<KvStore> Open(::nlohmann::json json_spec, OpenOptions&& options) { TENSORSTORE_ASSIGN_OR_RETURN(auto spec, Spec::FromJson(std::move(json_spec))); return Open(std::move(spec), std::move(options)); } namespace { struct OpenDriverCache { absl::Mutex mutex; absl::flat_hash_map<std::string, Driver*> map ABSL_GUARDED_BY(mutex); }; OpenDriverCache& GetOpenDriverCache() { static absl::NoDestructor<OpenDriverCache> cache_; return *cache_; } } Future<DriverPtr> Open(DriverSpecPtr spec, DriverOpenOptions&& options) { TENSORSTORE_RETURN_IF_ERROR(spec.BindContext(options.context)); std::string cache_identifier; spec->EncodeCacheKey(&cache_identifier); { auto& open_cache = GetOpenDriverCache(); absl::MutexLock lock(&open_cache.mutex); auto it = open_cache.map.find(cache_identifier); if (it != open_cache.map.end()) { ABSL_LOG_IF(INFO, kvstore_cache_logging) << "Reusing cached kvstore: " << QuoteString(cache_identifier); return DriverPtr(it->second); } } return MapFutureValue( InlineExecutor{}, [cache_identifier = std::move(cache_identifier)](DriverPtr driver) mutable { auto& open_cache = GetOpenDriverCache(); absl::MutexLock lock(&open_cache.mutex); auto p = open_cache.map.emplace(cache_identifier, driver.get()); if (p.second) { driver->cache_identifier_ = std::move(cache_identifier); ABSL_LOG_IF(INFO, kvstore_cache_logging) << "Inserted kvstore into cache: " << QuoteString(driver->cache_identifier_); } else { ABSL_LOG_IF(INFO, kvstore_cache_logging) << "Reusing cached kvstore: " << QuoteString(cache_identifier); } return DriverPtr(p.first->second); }, spec->DoOpen()); } void Driver::DestroyLastReference() { auto& open_cache = GetOpenDriverCache(); if (!cache_identifier_.empty()) { absl::MutexLock lock(&open_cache.mutex); if (reference_count_.fetch_sub(1, std::memory_order_acq_rel) != 1) { return; } auto it = open_cache.map.find(cache_identifier_); if (it != open_cache.map.end()) { assert(it->second == this); open_cache.map.erase(it); ABSL_LOG_IF(INFO, kvstore_cache_logging) << "Removed kvstore from open cache: " << QuoteString(cache_identifier_); } } else { if (reference_count_.fetch_sub(1, std::memory_order_acq_rel) != 1) { return; } } delete this; } Future<ReadResult> Driver::Read(Key key, ReadOptions options) { return absl::UnimplementedError("KeyValueStore does not support reading"); } Future<TimestampedStorageGeneration> Driver::Write(Key key, std::optional<Value> value, WriteOptions options) { return absl::UnimplementedError("KeyValueStore does not support writing"); } #if 0 namespace { struct CopyRangeListReceiver : public internal::AtomicReferenceCount<CopyRangeListReceiver> { using Ptr = internal::IntrusivePtr<CopyRangeListReceiver>; internal::OpenTransactionPtr target_transaction; DriverPtr source_driver; absl::Time source_staleness_bound; DriverPtr target_driver; size_t source_prefix_length; std::string target_prefix; Promise<void> promise; FutureCallbackRegistration cancel_registration; template <typename Cancel> friend void set_starting(const Ptr& self, Cancel&& cancel) { self->cancel_registration = self->promise.ExecuteWhenNotNeeded(std::forward<Cancel>(cancel)); } friend void set_stopping(const Ptr& self) { self->cancel_registration.Unregister(); } friend void set_error(const Ptr& self, absl::Status&& error) { SetDeferredResult(self->promise, std::move(error)); } friend void set_done(const Ptr& self) {} friend void set_value(const Ptr& self, ListEntry&& entry) { ReadOptions options; options.staleness_bound = self->source_staleness_bound; std::string target_key = absl::StrCat(self->target_prefix, std::string_view(entry.key).substr(std::min( self->source_prefix_length, entry.key.size()))); auto read_future = self->source_driver->Read(std::move(entry.key), std::move(options)); Link( [self, target_key = std::move(target_key)]( Promise<void> promise, ReadyFuture<ReadResult> future) { TENSORSTORE_ASSIGN_OR_RETURN(auto read_result, std::move(future.result()), SetDeferredResult(self->promise, _)); if (!read_result.has_value()) return; Link( [](Promise<void> promise, ReadyFuture<TimestampedStorageGeneration> future) { TENSORSTORE_RETURN_IF_ERROR(future.result(), SetDeferredResult(promise, _)); }, std::move(promise), kvstore::Write(KvStore(self->target_driver, std::move(target_key), internal::TransactionState::ToTransaction( self->target_transaction)), "", read_result.value)); }, self->promise, std::move(read_future)); } }; } #endif Future<const void> Driver::ExperimentalCopyRangeFrom( const internal::OpenTransactionPtr& transaction, const KvStore& source, Key target_prefix, CopyRangeOptions options) { return absl::UnimplementedError("CopyRange not supported"); #if 0 auto receiver = internal::MakeIntrusivePtr<CopyRangeListReceiver>(); if (source.transaction != no_transaction) { return absl::UnimplementedError( "CopyRange does not support a source KvStore with a transaction"); } receiver->target_transaction = transaction; receiver->target_driver.reset(this); receiver->source_driver = source.driver; receiver->source_staleness_bound = options.source_staleness_bound; receiver->source_prefix_length = source.path.size(); receiver->target_prefix = std::move(target_prefix); auto [promise, future] = PromiseFuturePair<void>::Make(std::in_place); receiver->promise = std::move(promise); ListOptions list_options; list_options.staleness_bound = options.source_staleness_bound; list_options.range = KeyRange::AddPrefix(source.path, options.source_range); source.driver->ListImpl(std::move(list_options), std::move(receiver)); return std::move(future); #endif } Future<const void> Driver::DeleteRange(KeyRange range) { return absl::UnimplementedError( "KeyValueStore does not support deleting by range"); } void Driver::ListImpl(ListOptions options, ListReceiver receiver) { execution::submit(FlowSingleSender{ErrorSender{absl::UnimplementedError( "KeyValueStore does not support listing")}}, std::move(receiver)); } ListSender Driver::List(ListOptions options) { struct ListSender { IntrusivePtr<Driver> self; ListOptions options; void submit(ListReceiver receiver) { self->ListImpl(options, std::move(receiver)); } }; return ListSender{IntrusivePtr<Driver>(this), std::move(options)}; } std::string Driver::DescribeKey(std::string_view key) { return tensorstore::QuoteString(key); } absl::Status Driver::AnnotateError(std::string_view key, std::string_view action, const absl::Status& error, SourceLocation loc) { return AnnotateErrorWithKeyDescription(DescribeKey(key), action, error, loc); } absl::Status Driver::AnnotateErrorWithKeyDescription( std::string_view key_description, std::string_view action, const absl::Status& error, SourceLocation loc) { if (absl::StrContains(error.message(), key_description)) { return error; } return tensorstore::MaybeAnnotateStatus( error, absl::StrCat("Error ", action, " ", key_description), loc); } bool operator==(const KvStore& a, const KvStore& b) { return a.driver == b.driver && a.path == b.path && a.transaction == b.transaction; } } namespace serialization { namespace { using DriverSpecPtrNonNullDirectSerializer = RegistrySerializer<internal::IntrusivePtr<const kvstore::DriverSpec>>; using DriverSpecPtrNonNullSerializer = NonNullIndirectPointerSerializer< internal::IntrusivePtr<const kvstore::DriverSpec>, DriverSpecPtrNonNullDirectSerializer>; struct DriverPtrNonNullDirectSerializer { [[nodiscard]] static bool Encode(EncodeSink& sink, const kvstore::DriverPtr& value) { TENSORSTORE_ASSIGN_OR_RETURN(auto driver_spec, value->spec(retain_context), (sink.Fail(_), false)); return DriverSpecPtrNonNullSerializer().Encode(sink, driver_spec); } [[nodiscard]] static bool Decode(DecodeSource& source, kvstore::DriverPtr& value) { kvstore::DriverSpecPtr driver_spec; if (!DriverSpecPtrNonNullSerializer().Decode(source, driver_spec)) { return false; } TENSORSTORE_ASSIGN_OR_RETURN(value, kvstore::Open(std::move(driver_spec)).result(), (source.Fail(_), false)); return true; } }; using DriverPtrSerializer = IndirectPointerSerializer<kvstore::DriverPtr, DriverPtrNonNullDirectSerializer>; } } } TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::kvstore::DriverPtr, tensorstore::serialization::DriverPtrSerializer()) TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::kvstore::KvStore, tensorstore::serialization::ApplyMembersSerializer< tensorstore::kvstore::KvStore>()) TENSORSTORE_DEFINE_GARBAGE_COLLECTION_SPECIALIZATION( tensorstore::kvstore::Driver, tensorstore::garbage_collection::PolymorphicGarbageCollection< tensorstore::kvstore::Driver>) TENSORSTORE_DEFINE_GARBAGE_COLLECTION_SPECIALIZATION( tensorstore::kvstore::KvStore, tensorstore::garbage_collection::ApplyMembersGarbageCollection< tensorstore::kvstore::KvStore>)
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/context.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { namespace kvstore = tensorstore::kvstore; using ::tensorstore::MatchesStatus; TEST(KeyValueStoreTest, OpenInvalid) { auto context = tensorstore::Context::Default(); EXPECT_THAT(kvstore::Open({{"driver", "invalid"}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"driver\": " "\"invalid\" is not registered")); } }
525
cpp
google/tensorstore
future
tensorstore/util/future.cc
tensorstore/util/future_test.cc
#ifndef TENSORSTORE_UTIL_FUTURE_H_ #define TENSORSTORE_UTIL_FUTURE_H_ #include <stddef.h> #include <atomic> #include <cassert> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/status/status.h" #include "absl/time/time.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future_impl.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { class [[nodiscard]] AnyFuture; template <typename T> class [[nodiscard]] Future; template <typename T> class [[nodiscard]] Promise; template <typename T> class [[nodiscard]] PromiseFuturePair; template <typename T> class [[nodiscard]] ReadyFuture; template <typename T> constexpr inline bool IsFuture = false; template <typename T> constexpr inline bool IsFuture<Future<T>> = true; template <typename T> constexpr inline bool IsFuture<ReadyFuture<T>> = true; template <typename SourceT, typename DestT> constexpr inline bool IsFutureConvertible = internal::IsConstConvertible<SourceT, DestT>; template <typename T> using UnwrapFutureType = typename internal_future::UnwrapFutureHelper<T>::type; class FutureCallbackRegistration { public: FutureCallbackRegistration() = default; void Unregister() noexcept { if (!rep_) { return; } rep_->Unregister(true); rep_.reset(); } void UnregisterNonBlocking() noexcept { if (!rep_) { return; } rep_->Unregister(false); rep_.reset(); } void operator()() noexcept { this->Unregister(); } private: friend class internal_future::FutureAccess; explicit FutureCallbackRegistration(internal_future::CallbackPointer pointer) : rep_(std::move(pointer)) {} internal_future::CallbackPointer rep_; }; template <typename T> class Promise { static_assert(!std::is_reference_v<T>, "T must not be a reference type."); static_assert(!IsFuture<T>, "T may not be a Future type."); static_assert(!IsResult<T>, "T may not be a Result type."); using SharedState = internal_future::FutureStateType<T>; public: using result_type = internal_future::ResultType<T>; using value_type = T; Promise() = default; template <typename U, std::enable_if_t<IsFutureConvertible<U, T>>* = nullptr> Promise(Promise<U> x) noexcept : rep_(std::move(internal_future::FutureAccess::rep_pointer(x))) {} template <typename U, std::enable_if_t<IsFutureConvertible<U, T>>* = nullptr> Promise& operator=(Promise<U> x) noexcept { rep_ = std::move(internal_future::FutureAccess::rep_pointer(x)); return *this; } void reset() noexcept { rep_.reset(); } bool null() const noexcept { return rep_ == nullptr; } bool ready() const noexcept { return rep().ready(); } bool result_needed() const noexcept { return rep().result_needed(); } std::add_lvalue_reference_t<result_type> raw_result() const { return rep().result; } template <typename... U, bool SfinaeNotConst = !std::is_const_v<T>> std::enable_if_t< (SfinaeNotConst && std::is_constructible_v<result_type, U...>), bool> SetResult(U&&... u) const noexcept { return rep().SetResult(std::forward<U>(u)...); } template <typename U = T> std::enable_if_t<!std::is_const_v<U>, bool> SetReady() const noexcept { return rep().SetReady(); } template <typename Callback> FutureCallbackRegistration ExecuteWhenForced(Callback&& callback) const { auto& rep = this->rep(); if (rep.has_future()) { const auto value = rep.state_.load(std::memory_order_acquire); if ((value & (internal_future::FutureStateBase::kReady | internal_future::FutureStateBase::kForcing)) == 0) { using Impl = internal_future::ForceCallback<T, internal::remove_cvref_t<Callback>>; return internal_future::FutureAccess::Construct< FutureCallbackRegistration>( internal_future::PromiseStatePointer(rep_) .release() ->RegisterForceCallback( new Impl(&rep, std::forward<Callback>(callback)))); } if ((value & (internal_future::FutureStateBase::kReady | internal_future::FutureStateBase::kForcing)) == internal_future::FutureStateBase::kForcing) { std::forward<Callback>(callback)(*this); } } return {}; } template <typename Callback> FutureCallbackRegistration ExecuteWhenNotNeeded(Callback&& callback) const { auto& rep = this->rep(); if (rep.result_needed()) { using Impl = internal_future::ResultNotNeededCallback< internal::remove_cvref_t<Callback>>; return internal_future::FutureAccess::Construct< FutureCallbackRegistration>(rep.RegisterNotNeededCallback( new Impl(&rep, std::forward<Callback>(callback)))); } std::forward<Callback>(callback)(); return {}; } Future<T> future() const { auto& rep = this->rep(); if (!rep.AcquireFutureReference()) return {}; return internal_future::FutureAccess::Construct<Future<T>>( internal_future::FutureStatePointer(&rep, internal::adopt_object_ref)); } private: explicit Promise(internal_future::PromiseStatePointer rep) : rep_(std::move(rep)) {} friend class internal_future::FutureAccess; constexpr SharedState& rep() const { return static_cast<SharedState&>(*rep_); } internal_future::PromiseStatePointer rep_; }; template <typename T, typename... U> std::enable_if_t<std::is_constructible_v<Result<T>, U...>, ReadyFuture<T>> MakeReadyFuture(U&&... u) { auto pair = PromiseFuturePair<T>::Make(std::forward<U>(u)...); pair.promise.reset(); return ReadyFuture<T>(pair.future); } ReadyFuture<const void> MakeReadyFuture(); class AnyFuture { using SharedState = internal_future::FutureStateBase; public: explicit AnyFuture() = default; AnyFuture(const AnyFuture&) = default; AnyFuture(AnyFuture&&) = default; AnyFuture& operator=(const AnyFuture&) = default; AnyFuture& operator=(AnyFuture&&) = default; inline void IgnoreFuture() const {} void reset() noexcept { rep_.reset(); } bool null() const noexcept { return rep_ == nullptr; } bool ready() const noexcept { return rep().ready(); } void Wait() const noexcept { rep().Wait(); } bool WaitFor(absl::Duration duration) const noexcept { return rep().WaitFor(duration); } bool WaitUntil(absl::Time deadline) const noexcept { return rep().WaitUntil(deadline); } void Force() const noexcept { return rep().Force(); } const absl::Status& status() const& noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { Wait(); return rep().status(); } template <class Callback> FutureCallbackRegistration UntypedExecuteWhenReady(Callback&& callback) { static_assert(std::is_invocable_v<Callback, AnyFuture>); if (!rep_->ready()) { using Impl = internal_future::ReadyCallback<AnyFuture, internal::remove_cvref_t<Callback>>; return internal_future::FutureAccess::Construct< FutureCallbackRegistration>(rep_->RegisterReadyCallback( new Impl(rep_.release(), std::forward<Callback>(callback)))); } std::forward<Callback>(callback)(std::move(*this)); return FutureCallbackRegistration(); } protected: friend class internal_future::FutureAccess; explicit AnyFuture(internal_future::FutureStatePointer rep) : rep_(std::move(rep)) {} constexpr internal_future::FutureStateBase& rep() const { return *rep_; } internal_future::FutureStatePointer rep_; }; template <typename T> class Future : public AnyFuture { static_assert(!std::is_reference_v<T>, "T must not be a reference type."); static_assert(!IsFuture<T>, "T may not be a Future type."); static_assert(!IsResult<T>, "T may not be a Result type."); using SharedState = internal_future::FutureStateType<T>; public: using result_type = internal_future::ResultType<T>; using value_type = T; Future() = default; Future(const Future&) = default; Future(Future&&) = default; Future& operator=(const Future& src) = default; Future& operator=(Future&& src) = default; template <typename U, std::enable_if_t<(!std::is_same_v<U, T> && IsFutureConvertible<U, T>)>* = nullptr> Future(Future<U> x) noexcept : AnyFuture(std::move(x)) {} template <typename U, std::enable_if_t<!std::is_same_v<U, T> && IsFutureConvertible<U, T>>* = nullptr> Future& operator=(Future<U> x) noexcept { rep_ = std::move(internal_future::FutureAccess::rep_pointer(x)); return *this; } template <typename U, std::enable_if_t<IsFutureConvertible<U, T>>* = nullptr> Future(const Result<Future<U>>& result) { if (result) { *this = *result; } else { *this = MakeReadyFuture<std::remove_const_t<T>>(result.status()); } } Future(const absl::Status& status) : Future(MakeReadyFuture<std::remove_const_t<T>>(status)) {} Future(absl::Status&& status) : Future(MakeReadyFuture<std::remove_const_t<T>>(std::move(status))) {} template <typename U, std::enable_if_t<IsFutureConvertible<U, T>>* = nullptr> Future(const Result<U>& result) : Future(MakeReadyFuture<std::remove_const_t<T>>(result)) {} template <typename U, std::enable_if_t<IsFutureConvertible<U, T>>* = nullptr> Future(Result<U>&& result) : Future(MakeReadyFuture<std::remove_const_t<T>>(std::move(result))) {} template <typename V, std::enable_if_t<(internal_future::value_conversion<T, V> && std::is_convertible_v<V&&, result_type> )>* = nullptr> Future(V&& value) : Future( MakeReadyFuture<std::remove_const_t<T>>(std::forward<V>(value))) {} inline void IgnoreFuture() const {} using AnyFuture::reset; using AnyFuture::null; using AnyFuture::ready; using AnyFuture::Wait; using AnyFuture::WaitFor; using AnyFuture::WaitUntil; using AnyFuture::Force; template <class Callback> FutureCallbackRegistration ExecuteWhenReady(Callback&& callback) && { static_assert(std::is_invocable_v<Callback, ReadyFuture<T>>); if (!rep_->ready()) { using Impl = internal_future::ReadyCallback<ReadyFuture<T>, internal::remove_cvref_t<Callback>>; return internal_future::FutureAccess::Construct< FutureCallbackRegistration>(rep_->RegisterReadyCallback( new Impl(rep_.release(), std::forward<Callback>(callback)))); } std::forward<Callback>(callback)(ReadyFuture<T>(std::move(*this))); return FutureCallbackRegistration(); } template <class Callback> FutureCallbackRegistration ExecuteWhenReady(Callback&& callback) const& { return Future<T>(*this).ExecuteWhenReady(std::forward<Callback>(callback)); } std::add_lvalue_reference_t<result_type> result() const ABSL_ATTRIBUTE_LIFETIME_BOUND { this->Wait(); return rep().result; } std::add_lvalue_reference_t<T> value() const ABSL_ATTRIBUTE_LIFETIME_BOUND { return result().value(); } using AnyFuture::status; private: explicit Future(internal_future::FutureStatePointer rep) : AnyFuture(std::move(rep)) {} friend class internal_future::FutureAccess; constexpr SharedState& rep() const { return static_cast<SharedState&>(*rep_); } }; template <typename T> Future(Result<T>&& result) -> Future<T>; template <typename T> Future(const Result<T>& result) -> Future<T>; inline bool HaveSameSharedState(const AnyFuture& a, const AnyFuture& b) { return internal_future::FutureAccess::rep_pointer(a).get() == internal_future::FutureAccess::rep_pointer(b).get(); } template <typename T> inline bool HaveSameSharedState(const Promise<T>& a, const AnyFuture& b) { return internal_future::FutureAccess::rep_pointer(a).get() == internal_future::FutureAccess::rep_pointer(b).get(); } template <typename T> inline bool HaveSameSharedState(const AnyFuture& a, const Promise<T>& b) { return internal_future::FutureAccess::rep_pointer(a).get() == internal_future::FutureAccess::rep_pointer(b).get(); } template <typename T, typename U> inline bool HaveSameSharedState(const Promise<T>& a, const Promise<U>& b) { return internal_future::FutureAccess::rep_pointer(a).get() == internal_future::FutureAccess::rep_pointer(b).get(); } template <typename
#include "tensorstore/util/future.h" #include <stddef.h> #include <atomic> #include <chrono> #include <functional> #include <memory> #include <thread> #include <type_traits> #include <utility> #include <benchmark/benchmark.h> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/internal/metrics/registry.h" #include "tensorstore/internal/testing/concurrent.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future_impl.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::AnyFuture; using ::tensorstore::Future; using ::tensorstore::FutureCallbackRegistration; using ::tensorstore::InlineExecutor; using ::tensorstore::IsFutureConvertible; using ::tensorstore::MakeReadyFuture; using ::tensorstore::MakeResult; using ::tensorstore::MatchesStatus; using ::tensorstore::Promise; using ::tensorstore::PromiseFuturePair; using ::tensorstore::ReadyFuture; using ::tensorstore::Result; using ::tensorstore::internal_future::FutureAccess; using ::tensorstore::internal_testing::TestConcurrent; static_assert(IsFutureConvertible<int, const int>); static_assert(!IsFutureConvertible<const int, int>); static_assert( std::is_same_v< decltype(FutureAccess::rep_pointer(std::declval<Future<void>&>())), tensorstore::internal_future::FutureStatePointer&>); static_assert( std::is_same_v<decltype(FutureAccess::rep_pointer( std::declval<const Future<void>&>())), const tensorstore::internal_future::FutureStatePointer&>); static_assert( std::is_same_v< decltype(FutureAccess::rep_pointer(std::declval<Future<void>&&>())), tensorstore::internal_future::FutureStatePointer&&>); static_assert( std::is_same_v< decltype(FutureAccess::rep_pointer(std::declval<Promise<void>&>())), tensorstore::internal_future::PromiseStatePointer&>); static_assert( std::is_same_v<decltype(FutureAccess::rep_pointer( std::declval<const Promise<void>&>())), const tensorstore::internal_future::PromiseStatePointer&>); static_assert( std::is_same_v< decltype(FutureAccess::rep_pointer(std::declval<Promise<void>&&>())), tensorstore::internal_future::PromiseStatePointer&&>); static_assert(!std::is_constructible_v<Result<int>, Result<Future<int>>>); static_assert(!std::is_convertible_v<Result<int>, Result<Future<int>>>); static_assert(!std::is_assignable_v<Result<int>, Result<Future<int>>>); static_assert(std::is_same_v< Result<Future<void>>, tensorstore::FlatResult<std::invoke_result_t<Future<void>()>>>); TEST(FutureTest, Valid) { EXPECT_TRUE(Future<int>().null()); EXPECT_TRUE(Promise<int>().null()); auto pair = PromiseFuturePair<int>::Make(); EXPECT_FALSE(pair.future.null()); EXPECT_FALSE(pair.promise.null()); auto future2 = pair.promise.future(); EXPECT_FALSE(future2.null()); } TEST(FutureTest, MakeReadyFuture) { Future<int> future = MakeReadyFuture<int>(3); EXPECT_EQ(true, future.ready()); EXPECT_EQ(3, future.result().value()); Result<int> result{tensorstore::in_place}; bool got_result = false; future.ExecuteWhenReady([&](ReadyFuture<int> r) { got_result = true; result = r.result(); }); EXPECT_TRUE(got_result); EXPECT_EQ(result, future.result()); } TEST(FutureTest, MakeInPlace) { auto pair = PromiseFuturePair<int>::Make(tensorstore::in_place, 4); pair.promise.reset(); EXPECT_EQ(4, pair.future.value()); } TEST(FutureTest, ConstructFromValue) { Future<int> x = 3; EXPECT_EQ(3, x.value()); } TEST(FutureTest, ConstructFromValueConst) { Future<const int> x = 3; EXPECT_EQ(3, x.value()); } TEST(FutureTest, FlattenResultError) { Future<int> x = MakeResult<Future<int>>(absl::UnknownError("Error")); EXPECT_THAT(x.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error")); } TEST(FutureTest, FlattenResultErrorConst) { Future<const int> x = MakeResult<Future<int>>(absl::UnknownError("Error")); EXPECT_THAT(x.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error")); } TEST(FutureTest, FlattenResultSuccess) { auto pair = PromiseFuturePair<int>::Make(); Future<int> x = MakeResult(pair.future); EXPECT_TRUE(HaveSameSharedState(pair.future, x)); } TEST(FutureTest, FlattenResultSuccessConstConvert) { auto pair = PromiseFuturePair<int>::Make(); Future<const int> x = MakeResult(pair.future); EXPECT_TRUE(HaveSameSharedState(pair.future, x)); } TEST(FutureTest, FlattenResultLvalue) { Result<Future<int>> f1 = absl::UnknownError(""); Future<int> f2 = f1; EXPECT_EQ(absl::UnknownError(""), GetStatus(f2.result())); } TEST(FutureTest, SetResult) { { auto pair = PromiseFuturePair<int>::Make(); EXPECT_FALSE(pair.promise.ready()); EXPECT_TRUE(pair.promise.result_needed()); EXPECT_FALSE(pair.future.ready()); Result<int> result{tensorstore::in_place}; bool got_result = false; pair.future.ExecuteWhenReady([&](ReadyFuture<int> r) { got_result = true; result = r.result(); }); EXPECT_FALSE(got_result); EXPECT_TRUE(pair.promise.SetResult(5)); EXPECT_FALSE(pair.promise.result_needed()); EXPECT_TRUE(pair.future.ready()); EXPECT_TRUE(pair.promise.ready()); EXPECT_EQ(result, 5); } { auto pair = PromiseFuturePair<int>::Make(); pair.promise.SetResult(std::in_place, 6); EXPECT_TRUE(pair.future.ready()); EXPECT_TRUE(pair.promise.ready()); EXPECT_TRUE(pair.future.result().ok()); } { auto pair = PromiseFuturePair<int>::Make(); pair.promise.SetResult(MakeResult(7)); EXPECT_TRUE(pair.future.ready()); EXPECT_TRUE(pair.promise.ready()); EXPECT_TRUE(pair.future.result().ok()); } { auto pair = PromiseFuturePair<int>::Make(); pair.promise.SetResult(absl::InternalError("error")); EXPECT_TRUE(pair.future.ready()); EXPECT_TRUE(pair.promise.ready()); EXPECT_FALSE(pair.future.result().ok()); } { auto pair = PromiseFuturePair<int>::Make(); pair.promise.SetResult(MakeResult<int>(absl::InternalError("error"))); EXPECT_TRUE(pair.future.ready()); EXPECT_TRUE(pair.promise.ready()); EXPECT_FALSE(pair.future.result().ok()); } } TEST(FutureTest, SetResultVoid) { { auto pair = PromiseFuturePair<void>::Make(); EXPECT_FALSE(pair.promise.ready()); EXPECT_TRUE(pair.promise.result_needed()); EXPECT_FALSE(pair.future.ready()); EXPECT_TRUE(pair.promise.SetResult(absl::OkStatus())); EXPECT_FALSE(pair.promise.result_needed()); EXPECT_TRUE(pair.future.ready()); EXPECT_TRUE(pair.promise.ready()); EXPECT_TRUE(pair.future.result().ok()); } { auto pair = PromiseFuturePair<void>::Make(); pair.promise.SetResult(std::in_place); EXPECT_TRUE(pair.future.ready()); EXPECT_TRUE(pair.promise.ready()); EXPECT_TRUE(pair.future.result().ok()); } { auto pair = PromiseFuturePair<void>::Make(); pair.promise.SetResult(MakeResult<void>(absl::OkStatus())); EXPECT_TRUE(pair.future.ready()); EXPECT_TRUE(pair.promise.ready()); EXPECT_TRUE(pair.future.result().ok()); } { auto pair = PromiseFuturePair<void>::Make(); pair.promise.SetResult(absl::InternalError("error")); EXPECT_TRUE(pair.future.ready()); EXPECT_TRUE(pair.promise.ready()); EXPECT_FALSE(pair.future.result().ok()); } { auto pair = PromiseFuturePair<void>::Make(); pair.promise.SetResult(MakeResult<void>(absl::InternalError("error"))); EXPECT_TRUE(pair.future.ready()); EXPECT_TRUE(pair.promise.ready()); EXPECT_FALSE(pair.future.result().ok()); } } TEST(FutureTest, Wait) { auto pair = PromiseFuturePair<int>::Make(); std::thread thread( [](Promise<int> promise) { absl::SleepFor(absl::Milliseconds(20)); EXPECT_TRUE(promise.SetResult(5)); }, std::move(pair.promise)); pair.future.Wait(); EXPECT_EQ(5, pair.future.result()); thread.join(); } TEST(FutureTest, WaitForFailure) { for (size_t i = 0; i < 100; ++i) { auto pair = PromiseFuturePair<int>::Make(); EXPECT_FALSE(pair.future.WaitFor(absl::Milliseconds(10))); std::thread thread( [](Promise<int> promise) { absl::SleepFor(absl::Milliseconds(20)); EXPECT_TRUE(promise.SetResult(5)); }, pair.promise); const bool ready = pair.future.WaitFor(absl::Milliseconds(5)); thread.join(); if (!ready) { return; } } FAIL(); } TEST(FutureTest, WaitForSuccess) { for (size_t i = 0; i < 100; ++i) { auto pair = PromiseFuturePair<int>::Make(); std::thread thread( [](Promise<int> promise) { absl::SleepFor(absl::Milliseconds(5)); EXPECT_TRUE(promise.SetResult(5)); }, pair.promise); const bool ready1 = pair.future.WaitFor(absl::Milliseconds(20)); const bool ready2 = pair.future.WaitFor(absl::Milliseconds(10)); thread.join(); if (ready1 && ready2) { return; } } FAIL(); } TEST(FutureTest, WaitUntilFailure) { for (size_t i = 0; i < 100; ++i) { auto pair = PromiseFuturePair<int>::Make(); EXPECT_FALSE(pair.future.WaitUntil(absl::Now() - absl::Milliseconds(10))); EXPECT_FALSE(pair.future.WaitUntil(absl::Now() + absl::Milliseconds(10))); std::thread thread( [](Promise<int> promise) { absl::SleepFor(absl::Milliseconds(20)); EXPECT_TRUE(promise.SetResult(5)); }, pair.promise); const bool ready = pair.future.WaitUntil(absl::Now() + absl::Milliseconds(5)); thread.join(); if (!ready) { return; } } FAIL(); } TEST(FutureTest, WaitUntilSuccess) { for (size_t i = 0; i < 100; ++i) { auto pair = PromiseFuturePair<int>::Make(); std::thread thread( [](Promise<int> promise) { absl::SleepFor(absl::Milliseconds(5)); EXPECT_TRUE(promise.SetResult(5)); }, pair.promise); const bool ready1 = pair.future.WaitUntil(absl::Now() + absl::Milliseconds(20)); const bool ready2 = pair.future.WaitUntil(absl::Now() + absl::Milliseconds(10)); thread.join(); if (ready1 && ready2) { return; } } FAIL(); } TEST(FutureTest, SetResultTwice) { auto pair = PromiseFuturePair<int>::Make(); EXPECT_TRUE(pair.promise.SetResult(3)); EXPECT_EQ(3, pair.future.result()); EXPECT_EQ(false, pair.promise.SetResult(5)); EXPECT_EQ(3, pair.future.result()); } TEST(FutureTest, ExecuteWhenNotNeeded) { auto pair = PromiseFuturePair<int>::Make(); bool no_future = false; pair.promise.ExecuteWhenNotNeeded([&] { no_future = true; }); EXPECT_FALSE(no_future); pair.future.reset(); EXPECT_FALSE(pair.promise.result_needed()); EXPECT_TRUE(no_future); } TEST(FutureTest, ExecuteWhenNotNeededBeforeForced) { auto pair = PromiseFuturePair<int>::Make(); bool no_future = false; pair.promise.ExecuteWhenNotNeeded([&] { no_future = true; }); EXPECT_FALSE(no_future); pair.future.reset(); EXPECT_FALSE(pair.promise.result_needed()); EXPECT_TRUE(no_future); } TEST(FutureTest, ExecuteWhenNotNeededUnregister) { auto pair = PromiseFuturePair<int>::Make(); bool no_future = false; auto registration = pair.promise.ExecuteWhenNotNeeded([&] { no_future = true; }); EXPECT_FALSE(no_future); registration.Unregister(); pair.future.reset(); EXPECT_FALSE(no_future); } TEST(FutureTest, ExecuteWhenNotNeededImmediate) { auto pair = PromiseFuturePair<int>::Make(); bool no_future = false; pair.future.reset(); auto registration = pair.promise.ExecuteWhenNotNeeded([&] { no_future = true; }); EXPECT_TRUE(no_future); registration.Unregister(); } TEST(FutureTest, ExecuteWhenReadyUnregisterTwice) { auto pair = PromiseFuturePair<int>::Make(); bool invoked = false; auto registration = pair.future.ExecuteWhenReady([&](ReadyFuture<int>) { invoked = true; }); EXPECT_FALSE(invoked); auto registration2 = registration; registration.Unregister(); registration2.Unregister(); pair.promise.SetResult(3); EXPECT_FALSE(invoked); } TEST(FutureTest, ExecuteWhenNotNeededThenForce) { auto pair = PromiseFuturePair<int>::Make(); bool no_future = false; auto registration = pair.promise.ExecuteWhenNotNeeded([&] { no_future = true; }); pair.future.Force(); pair.future.reset(); EXPECT_TRUE(no_future); registration.Unregister(); } TEST(FutureTest, ExecuteWhenReadyUnregisterSelf) { auto pair = PromiseFuturePair<int>::Make(); bool invoked = false; FutureCallbackRegistration registration; registration = pair.future.ExecuteWhenReady([&](ReadyFuture<int>) { invoked = true; registration(); }); pair.promise.SetResult(3); EXPECT_TRUE(invoked); } TEST(FutureTest, ExecuteWhenReadyUnregisterSelfTwice) { auto pair = PromiseFuturePair<int>::Make(); bool invoked = false; FutureCallbackRegistration registration; registration = pair.future.ExecuteWhenReady([&](ReadyFuture<int>) { invoked = true; auto registration_copy = registration; registration(); registration_copy(); }); pair.promise.SetResult(3); EXPECT_TRUE(invoked); } TEST(FutureTest, Destructor) { auto pair = PromiseFuturePair<int>::Make(); static_cast<void>(pair); } TEST(FutureTest, DestructorExecuteWhenReady) { auto pair = PromiseFuturePair<int>::Make(); pair.future.ExecuteWhenReady([&](ReadyFuture<int>) {}); } TEST(FutureTest, ExecuteWhenReadyUnregisterOther) { auto pair = PromiseFuturePair<int>::Make(); bool invoked = false; FutureCallbackRegistration registration; pair.future.ExecuteWhenReady([&](ReadyFuture<int>) { registration(); }); registration = pair.future.ExecuteWhenReady([&](ReadyFuture<int>) { invoked = true; }); pair.promise.SetResult(3); EXPECT_FALSE(invoked); } TEST(FutureTest, ExecuteWhenReadyUnregisterConcurrent) { PromiseFuturePair<int> pair; std::atomic<bool> unregistered; FutureCallbackRegistration registration; TestConcurrent( 1000, [&] { unregistered = false; pair = PromiseFuturePair<int>::Make(); registration = pair.future.ExecuteWhenReady([&](ReadyFuture<int>) { for (int i = 0; i < 100; ++i) { EXPECT_FALSE(unregistered.load()); } }); }, [&] { EXPECT_TRUE(unregistered.load()); }, [&] { pair.promise.SetResult(3); }, [&] { registration.Unregister(); unregistered = true; }); } TEST(FutureTest, ExecuteWhenReadyUnregisterNonBlockingConcurrent) { PromiseFuturePair<int> pair; std::atomic<bool> callback_started, unregister_returned, callback_finished; FutureCallbackRegistration registration; TestConcurrent( 1, [&] { callback_started = false; callback_finished = false; unregister_returned = false; pair = PromiseFuturePair<int>::Make(); registration = pair.future.ExecuteWhenReady([&](ReadyFuture<int>) { callback_started = true; while (unregister_returned == false) { } callback_finished = true; }); }, [&] { EXPECT_TRUE(callback_started); EXPECT_TRUE(unregister_returned); EXPECT_TRUE(callback_finished); }, [&] { pair.promise.SetResult(3); }, [&] { while (!callback_started) { } EXPECT_FALSE(callback_finished); registration.UnregisterNonBlocking(); unregister_returned = true; }); } TEST(FutureTest, ExecuteWhenNotNeededUnregisterConcurrent) { PromiseFuturePair<int> pair; std::atomic<bool> unregistered; FutureCallbackRegistration registration; TestConcurrent( 1000, [&] { unregistered = false; pair = PromiseFuturePair<int>::Make(); registration = pair.promise.ExecuteWhenNotNeeded([&] { for (int i = 0; i < 100; ++i) { EXPECT_FALSE(unregistered.load()); } }); }, [&] { EXPECT_TRUE(unregistered.load()); }, [&] { pair.promise.SetResult(3); }, [&] { registration.Unregister(); unregistered = true; }); } TEST(FutureTest, ExecuteWhenForcedUnregisterConcurrent) { PromiseFuturePair<int> pair; std::atomic<bool> unregistered; FutureCallbackRegistration registration; TestConcurrent( 1000, [&] { unregistered = false; pair = PromiseFuturePair<int>::Make(); registration = pair.promise.ExecuteWhenForced([&](Promise<int>) { for (int i = 0; i < 100; ++i) { EXPECT_FALSE(unregistered.load()); } }); }, [&] { EXPECT_TRUE(unregistered.load()); }, [&] { pair.future.Force(); }, [&] { registration.Unregister(); unregistered = true; }); } TEST(FutureTest, SetResultInForceCallback) { auto pair = PromiseFuturePair<int>::Make(); pair.promise.ExecuteWhenForced([](Promise<int> p) { p.SetResult(5); }); EXPECT_FALSE(pair.future.ready()); pair.future.Force(); EXPECT_EQ(true, pair.future.ready()); EXPECT_EQ(5, pair.future.result()); } TEST(FutureTest, ForceCallbackAddedAfterForced) { auto pair = PromiseFuturePair<int>::Make(); auto sentinel = std::make_shared<int>(); pair.future.Force(); bool callback_ran = false; pair.promise.ExecuteWhenForced( [sentinel, &callback_ran](Promise<int> p) { callback_ran = true; }); EXPECT_TRUE(callback_ran); EXPECT_EQ(1, sentinel.use_count()); EXPECT_FALSE(pair.future.ready()); } TEST(FutureTest, ForceCallbackAddedAfterForcedWithNoFuturesRemaining) { auto pair = PromiseFuturePair<int>::Make(); auto sentinel = std::make_shared<int>(); pair.future.Force(); pair.future.reset(); bool callback_ran = false; pair.promise.ExecuteWhenForced( [sentinel, &callback_ran](Promise<int> p) { callback_ran = true; }); EXPECT_FALSE(callback_ran); EXPECT_EQ(1, sentinel.use_count()); EXPECT_FALSE(pair.promise.result_needed()); } TEST(FutureTest, ForceCallbackDestroyedAfterForce) { auto pair = PromiseFuturePair<int>::Make(); auto sentinel = std::make_shared<int>(); pair.promise.ExecuteWhenForced( [sentinel](Promise<int> p) { p.SetResult(5); }); EXPECT_EQ(2, sentinel.use_count()); EXPECT_FALSE(pair.future.ready()); pair.future.Force(); EXPECT_EQ(1, sentinel.use_count()); EXPECT_EQ(true, pair.future.ready()); EXPECT_EQ(5, pair.future.result()); } TEST(FutureTest, ForceAfterReady) { auto pair = PromiseFuturePair<int>::Make(); bool forced = false; auto sentinel = std::make_shared<int>(); pair.promise.ExecuteWhenForced( [&forced, sentinel](Promise<int> p) { forced = true; }); EXPECT_EQ(2, sentinel.use_count()); pair.promise.SetResult(3); EXPECT_FALSE(forced); EXPECT_EQ(1, sentinel.use_count()); pair.future.Force(); EXPECT_FALSE(forced); } TEST(FutureTest, ForceCallbacksDestroyedWhenNoFuturesRemain) { auto pair = PromiseFuturePair<int>::Make(); bool forced = false; auto sentinel = std::make_shared<int>(); pair.promise.ExecuteWhenForced( [&forced, sentinel](Promise<int> p) { forced = true; }); EXPECT_EQ(2, sentinel.use_count()); pair.future.reset(); EXPECT_EQ(1, sentinel.use_count()); EXPECT_FALSE(forced); } struct CallOnCopy { CallOnCopy(const CallOnCopy& x) : call_when_copied(x.call_when_copied), call_when_invoked(x.call_when_invoked) { call_when_copied(); } CallOnCopy(std::function<void()> call_when_copied, std::function<void()> call_when_invoked) : call_when_copied(call_when_copied), call_when_invoked(call_when_invoked) {} template <typename... Arg> void operator()(Arg&&...) { call_when_invoked(); } std::function<void()> call_when_copied, call_when_invoked; }; TEST(FutureTest, SetReadyCalledConcurrentlyWithExecuteWhenReady) { bool was_called = false; auto pair = PromiseFuturePair<int>::Make(); pair.future.ExecuteWhenReady(CallOnCopy{[&] { pair.promise.SetResult(5); }, [&] { was_called = true; }}); EXPECT_TRUE(was_called); EXPECT_EQ(5, pair.future.result().value()); } TEST(FutureTest, ForceCalledConcurrentlyWithExecuteWhenForced) { bool was_called = false; auto sentinel = std::make_shared<int>(); auto pair = PromiseFuturePair<int>::Make(); pair.promise.ExecuteWhenForced(CallOnCopy{ [&] { pair.future.Force(); }, [&, sentinel] { was_called = true; }}); EXPECT_TRUE(was_called); EXPECT_EQ(1, sentinel.use_count()); } TEST(FutureTest, ForceAndThenSetResultCalledConcurrentlyWithExecuteWhenForced) { bool was_called = false; auto sentinel = std::make_shared<int>(); auto pair = PromiseFuturePair<int>::Make(); pair.promise.ExecuteWhenForced(CallOnCopy{[&] { pair.future.Force(); }, [&, sentinel] { was_called = true; pair.promise.SetResult(5); }}); EXPECT_TRUE(was_called); EXPECT_EQ(1, sentinel.use_count()); EXPECT_EQ(5, pair.future.result().value()); } TEST(FutureTest, LastFutureReleasedConcurrentlyWithExecuteWhenNotNeeded) { bool was_called = false; auto sentinel = std::make_shared<int>(); auto pair = PromiseFuturePair<int>::Make(); pair.promise.ExecuteWhenNotNeeded(CallOnCopy{ [&] { pair.future.reset(); }, [&, sentinel] { was_called = true; }}); EXPECT_TRUE(was_called); EXPECT_EQ(1, sentinel.use_count()); } TEST(FutureTest, LastFutureReleasedConcurrentlyWithExecuteWhenForced) { bool was_called = false; auto sentinel = std::make_shared<int>(); auto pair = PromiseFuturePair<int>::Make(); pair.promise.ExecuteWhenForced(CallOnCopy{ [&] { pair.future.reset(); }, [&, sentinel] { was_called = true; }}); EXPECT_FALSE(was_called); EXPECT_EQ(1, sentinel.use_count()); } TEST(FutureTest, SetResultCalledConcurrentlyWithExecuteWhenForced) { bool was_called = false; auto sentinel = std::make_shared<int>(); auto pair = PromiseFuturePair<int>::Make(); pair.promise.ExecuteWhenForced( CallOnCopy{[&] { pair.promise.SetResult(5); }, [&, sentinel] { was_called = true; }}); EXPECT_FALSE(was_called); EXPECT_EQ(1, sentinel.use_count()); EXPECT_EQ(5, pair.future.result().value()); } TEST(FutureTest, PromiseBroken) { auto pair = PromiseFuturePair<int>::Make(); pair.promise = {}; EXPECT_TRUE(pair.future.ready()); EXPECT_FALSE(pair.future.result().has_value()); EXPECT_EQ(absl::UnknownError(""), pair.future.result().status()); } TEST(FutureTest, ConvertInt) { auto pair = PromiseFuturePair<int>::Make(); Future<const int> f = pair.future; Promise<const int> p = pair.promise; } TEST(FutureTest, ConvertVoid) { auto pair = PromiseFuturePair<void>::Make(); Future<const void> f = pair.future; Promise<const void> p = pair.promise; pair.promise.SetResult(tensorstore::MakeResult()); f.value(); } TEST(FutureTest, ConvertVoid2) { Future<const void> f; Promise<const void> p; auto pair = PromiseFuturePair<void>::Make(); f = pair.future; p = pair.promise; pair.promise.SetResult(std::in_place); f.value(); } struct NonMovable { NonMovable(int value) : value(value) {} NonMovable(NonMovable const&) = delete; NonMovable(NonMovable&&) = delete; int value; }; TEST(FutureTest, NonMovableTypeInitialize) { auto pair = PromiseFuturePair<NonMovable>::Make(3); pair.promise.SetReady(); EXPECT_EQ(3, pair.future.value().value); } TEST(FutureTest, NonMovableTypeSetReady) { auto pair = PromiseFuturePair<NonMovable>::Make(); pair.promise.raw_result().emplace(5); pair.promise.SetReady(); EXPECT_EQ(5, pair.future.value().value); } TEST(HaveSameSharedStateTest, Invalid) { Future<int> fa, fb; Future<const int> cf; Promise<int> pa, pb; Promise<int> cp; EXPECT_TRUE(HaveSameSharedState(fa, fb)); EXPECT_TRUE(HaveSameSharedState(fa, cf)); EXPECT_TRUE(HaveSameSharedState(pa, pb)); EXPECT_TRUE(HaveSameSharedState(pa, fa)); EXPECT_TRUE(HaveSameSharedState(fa, pb)); EXPECT_TRUE(HaveSameSharedState(pa, cf)); } TEST(HaveSameSharedStateTest, Valid) { auto pair1 = PromiseFuturePair<void>::Make(); auto pair2 = PromiseFuturePair<void>::Make(); EXPECT_TRUE(HaveSameSharedState(pair1.future, pair1.future)); EXPECT_TRUE(HaveSameSharedState(pair1.future, pair1.promise)); EXPECT_TRUE(HaveSameSharedState(pair1.promise, pair1.future)); EXPECT_TRUE(HaveSameSharedState(pair1.promise, pair1.promise)); EXPECT_FALSE(HaveSameSharedState(pair1.promise, pair2.promise)); EXPECT_FALSE(HaveSameSharedState(pair1.promise, pair2.future)); EXPECT_FALSE(HaveSameSharedState(pair1.future, pair2.future)); EXPECT_FALSE(HaveSameSharedState(pair1.future, pair2.promise)); } TEST(AcquireFutureReferenceTest, ExistingFutureNotReady) { auto pair = PromiseFuturePair<void>::Make(); auto future2 = pair.promise.future(); EXPECT_TRUE(HaveSameSharedState(future2, pair.future)); } TEST(AcquireFutureReferenceTest, ExistingFutureReady) { auto pair = PromiseFuturePair<void>::Make(); pair.promise.SetReady(); auto future2 = pair.promise.future(); EXPECT_TRUE(HaveSameSharedState(future2, pair.future)); } TEST(AcquireFutureReferenceTest, NoExistingFutureNotReady) { auto pair = PromiseFuturePair<void>::Make(); pair.future.reset(); auto future2 = pair.promise.future(); EXPECT_FALSE(!future2.null()); } TEST(AcquireFutureReferenceTest, NoExistingFutureReady) { auto pair = PromiseFuturePair<void>::Make(); pair.future.reset(); pair.promise.SetReady(); auto future2 = pair.promise.future(); EXPECT_TRUE(HaveSameSharedState(future2, pair.promise)); } TEST(LinkTest, MultipleSimple) { auto a_pair = PromiseFuturePair<int>::Make(); auto b_pair = PromiseFuturePair<int
526
cpp
google/tensorstore
context
tensorstore/context.cc
tensorstore/context_test.cc
#ifndef TENSORSTORE_CONTEXT_H_ #define TENSORSTORE_CONTEXT_H_ #include <stddef.h> #include <stdint.h> #include <cassert> #include <string> #include <utility> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/context_impl_base.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json/same.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace tensorstore { class Context { public: using ToJsonOptions = JsonSerializationOptions; using FromJsonOptions = JsonSerializationOptions; class Spec { public: Spec() = default; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(Spec, FromJsonOptions, ToJsonOptions) private: friend class internal_context::Access; friend class Context; friend class internal::ContextSpecBuilder; internal_context::ContextSpecImplPtr impl_; }; template <typename Provider> class Resource { using ResourceImpl = internal_context::ResourceImpl<Provider>; public: using ToJsonOptions = JsonSerializationOptions; using FromJsonOptions = JsonSerializationOptions; Resource() = default; static Resource<Provider> DefaultSpec() { Resource<Provider> r; r.impl_ = internal_context::DefaultResourceSpec(Provider::id); return r; } auto* get() const noexcept { return has_resource() ? &(static_cast<ResourceImpl*>(impl_.get().get())->value_) : nullptr; } auto* operator->() const noexcept { return get(); } auto& operator*() const noexcept { assert(has_resource()); return *get(); } bool has_resource() const { return impl_.get() && impl_.get().tag() == 0; } bool valid() const { return !!impl_; } friend bool operator==(const Resource& a, const Resource& b) { return a.impl_ == b.impl_; } friend bool operator!=(const Resource& a, const Resource& b) { return !(a == b); } Result<::nlohmann::json> ToJson( const ToJsonOptions& options = ToJsonOptions{}) const { return internal_json_binding::ToJson( static_cast<const Resource&>(*this), internal_json_binding::DefaultBinder<>, options); } static Result<Resource<Provider>> FromJson( ::nlohmann::json j, const FromJsonOptions& options = FromJsonOptions{}) { return internal_json_binding::FromJson<Resource<Provider>>( std::move(j), internal_json_binding::DefaultBinder<>, options); } static constexpr internal_context::ResourceJsonBinderImpl<Provider, Resource> default_json_binder = {}; absl::Status BindContext(const Context& context) { TENSORSTORE_ASSIGN_OR_RETURN(*this, context.GetResource(*this)); return absl::OkStatus(); } absl::Status BindContext(internal::ContextResourceCreationContext context); void UnbindContext( const internal::ContextSpecBuilder& context_spec_builder); void StripContext() { internal_context::StripContext(impl_); } private: friend class Context; friend class internal::ContextSpecBuilder; friend class internal_context::Access; friend struct internal_context::ResourceJsonBinderImpl<Provider, Resource>; internal_context::ResourceOrSpecPtr impl_; }; Context() = default; static Context Default(); explicit Context(const Spec& spec, Context parent = {}); static Result<Context> FromJson(::nlohmann::json json_spec, Context parent = {}, FromJsonOptions options = {}); template <typename Provider> Result<Resource<Provider>> GetResource( const Resource<Provider>& resource_spec) const { Resource<Provider> resource; TENSORSTORE_RETURN_IF_ERROR(internal_context::GetOrCreateResource( impl_.get(), resource_spec.impl_.get(), nullptr, resource.impl_)); return resource; } template <typename Provider> Result<Resource<Provider>> GetResource( const ::nlohmann::json& json_spec) const { TENSORSTORE_ASSIGN_OR_RETURN(auto spec, Resource<Provider>::FromJson(json_spec)); return GetResource(spec); } template <typename Provider> Result<Resource<Provider>> GetResource() const { return GetResource<Provider>(Provider::id); } explicit operator bool() const { return static_cast<bool>(impl_); } friend bool operator==(const Context& a, const Context& b) { return a.impl_ == b.impl_; } friend bool operator!=(const Context& a, const Context& b) { return !(a == b); } Context::Spec spec() const; Context parent() const; private: friend class internal_context::Access; internal_context::ContextImplPtr impl_; }; enum class ContextBindingMode : unsigned char { unspecified, retain, unbind, strip, }; enum class ContextBindingState : unsigned char { unbound, unknown, bound }; constexpr ContextBindingMode retain_context = ContextBindingMode::retain; constexpr ContextBindingMode unbind_context = ContextBindingMode::unbind; constexpr ContextBindingMode strip_context = ContextBindingMode::strip; namespace internal { class ContextSpecBuilder { public: ContextSpecBuilder() = default; explicit operator bool() const { return static_cast<bool>(impl_); } static ContextSpecBuilder Make(ContextSpecBuilder parent = {}, Context::Spec existing_spec = {}); template <typename Provider> Context::Resource<Provider> AddResource( const Context::Resource<Provider>& resource) const { Context::Resource<Provider> resource_spec; resource_spec.impl_ = internal_context::AddResourceOrSpec(*this, resource.impl_.get()); return resource_spec; } Context::Spec spec() const; private: friend class internal_context::Access; internal_context::BuilderImplPtr impl_; internal_context::ContextSpecImplPtr spec_impl_; }; TENSORSTORE_DECLARE_JSON_BINDER(ContextSpecDefaultableJsonBinder, Context::Spec, JsonSerializationOptions, JsonSerializationOptions) bool IsPartialBindingContext(const Context& context); inline bool GetRecordBindingState(const internal::ContextSpecBuilder& builder) { return internal_context::Access::impl(builder).get().tag() != 0; } void SetRecordBindingState(internal::ContextSpecBuilder& builder, bool record_binding_state); template <typename Ptr> absl::Status BindContextCopyOnWriteWithNestedContext(Ptr& ptr, const Context& context) { if (!ptr) return absl::OkStatus(); using internal_context::Access; { auto& orig_obj = *ptr; if (Access::context_binding_state(orig_obj) == ContextBindingState::bound) { return absl::OkStatus(); } if (orig_obj.use_count() != 1) ptr = orig_obj.Clone(); } using T = internal::remove_cvref_t<decltype(*ptr)>; auto& obj = const_cast<T&>(*ptr); Access::context_binding_state(obj) = ContextBindingState::unknown; if (context && IsPartialBindingContext(context)) { TENSORSTORE_RETURN_IF_ERROR(obj.BindContext(context)); } else { Context child_context(Access::context_spec(obj), context ? context : Context::Default()); TENSORSTORE_RETURN_IF_ERROR(obj.BindContext(child_context)); Access::context_spec(obj) = {}; Access::context_binding_state(obj) = ContextBindingState::bound; } return absl::OkStatus(); } template <typename Ptr> void UnbindContextCopyOnWriteWithNestedContext( Ptr& ptr, const ContextSpecBuilder& context_builder) { if (!ptr) return; using internal_context::Access; { auto& orig_obj = *ptr; if (Access::context_binding_state(orig_obj) == ContextBindingState::unbound) { return; } if (orig_obj.use_count() != 1) ptr = orig_obj.Clone(); } using T = internal::remove_cvref_t<decltype(*ptr)>; auto& obj = const_cast<T&>(*ptr); auto child_builder = internal::ContextSpecBuilder::Make( context_builder, std::move(Access::context_spec(obj))); Access::context_spec(obj) = child_builder.spec(); obj.UnbindContext( const_cast<const internal::ContextSpecBuilder&>(child_builder)); Access::context_binding_state(obj) = ContextBindingState::unbound; } template <typename Ptr> void StripContextCopyOnWriteWithNestedContext(Ptr& ptr) { if (!ptr) return; using internal_context::Access; { auto& orig_obj = *ptr; if (orig_obj.use_count() != 1) ptr = orig_obj.Clone(); } using T = internal::remove_cvref_t<decltype(*ptr)>; auto& obj = const_cast<T&>(*ptr); Access::context_spec(obj) = {}; obj.StripContext(); Access::context_binding_state(obj) = ContextBindingState::unbound; } template <typename Ptr> void ApplyContextBindingMode(Ptr& ptr, ContextBindingMode mode, ContextBindingMode default_mode) { if (mode == ContextBindingMode::unspecified) mode = default_mode; switch (mode) { case ContextBindingMode::unbind: ptr.UnbindContext(); break; case ContextBindingMode::strip: ptr.StripContext(); break; case ContextBindingMode::retain: case ContextBindingMode::unspecified: break; } } template <typename SpecType> bool ContextBindableSpecsSameViaJson(const SpecType& a, const SpecType& b) { SpecType a_unbound, b_unbound; { auto spec_builder = internal::ContextSpecBuilder::Make(); internal::SetRecordBindingState(spec_builder, true); a_unbound = a; a_unbound.UnbindContext(spec_builder); b_unbound = b; b_unbound.UnbindContext(spec_builder); } JsonSerializationOptions json_serialization_options; json_serialization_options.preserve_bound_context_resources_ = true; auto a_json = a_unbound.ToJson(json_serialization_options); auto b_json = b_unbound.ToJson(json_serialization_options); if (!a_json.ok() || !b_json.ok()) return false; return internal_json::JsonSame(*a_json, *b_json); } class ContextResourceCreationContext { public: internal_context::ContextImpl* context_ = nullptr; internal_context::ResourceContainer* trigger_ = nullptr; }; } namespace internal_json_binding { template <typename Binder> auto NestedContextJsonBinder(Binder binder) { return [binder = std::move(binder)](auto is_loading, const JsonSerializationOptions& options, auto* obj, auto* j) { if constexpr (!is_loading) { if (obj->context_binding_state() != ContextBindingState::unbound) { auto copy = *obj; internal::ContextSpecBuilder spec_builder; if (options.preserve_bound_context_resources_) { internal::SetRecordBindingState(spec_builder, true); } copy.UnbindContext(spec_builder); return binder(is_loading, options, &copy, j); } } return binder(is_loading, options, obj, j); }; } } template <typename Provider> absl::Status Context::Resource<Provider>::BindContext( internal::ContextResourceCreationContext context) { return internal_context::GetOrCreateResource(context.context_, impl_.get(), context.trigger_, impl_); } template <typename Provider> void Context::Resource<Provider>::UnbindContext( const internal::ContextSpecBuilder& context_spec_builder) { *this = context_spec_builder.AddResource(*this); } namespace serialization { template <typename Provider> struct Serializer<Context::Resource<Provider>> { [[nodiscard]] static bool Encode(EncodeSink& sink, const Context::Resource<Provider>& value) { return internal_context::EncodeContextResourceOrSpec( sink, internal_context::Access::impl(value)); } [[nodiscard]] static bool Decode(DecodeSource& source, Context::Resource<Provider>& value) { return internal_context::DecodeContextResourceOrSpec( source, Provider::id, internal_context::Access::impl(value)); } }; } namespace garbage_collection { template <typename Provider> struct GarbageCollection<Context::Resource<Provider>> { constexpr static bool required() { return false; } }; } namespace internal { template <typename Provider> struct CacheKeyEncoder<Context::Resource<Provider>> { static void Encode(std::string* out, const Context::Resource<Provider>& value) { auto& ptr = internal_context::Access::impl(value); if (!ptr) { internal::EncodeCacheKey(out, internal_context::ResourceOrSpecBase::kNull); } else { ptr->EncodeCacheKey(out); } } }; } } TENSORSTORE_DECLARE_SERIALIZER_SPECIALIZATION(tensorstore::Context::Spec) TENSORSTORE_DECLARE_SERIALIZER_SPECIALIZATION(tensorstore::Context) TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED(tensorstore::Context::Spec) TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED(tensorstore::Context) namespace std { template <typename Provider> struct pointer_traits<tensorstore::Context::Resource<Provider>> { using pointer = tensorstore::Context::Resource<Provider>; using element_type = typename Provider::Resource; using difference_type = ptrdiff_t; }; } #endif #include "tensorstore/context.h" #include <stddef.h> #include <algorithm> #include <cassert> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/no_destructor.h" #include "absl/base/thread_annotations.h" #include "absl/log/absl_check.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/context_impl.h" #include "tensorstore/context_resource_provider.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/container/heterogeneous_container.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json/value_as.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/internal/riegeli/delimited.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/serialization/json.h" #include "tensorstore/serialization/json_bindable.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_context { ResourceProviderImplBase::~ResourceProviderImplBase() = default; ResourceOrSpecBase::~ResourceOrSpecBase() = default; ResourceImplBase::~ResourceImplBase() = default; ResourceSpecImplBase::~ResourceSpecImplBase() = default; ContextImplPtr GetCreator(ResourceImplBase& resource) { absl::MutexLock lock(&resource.mutex_); auto* creator_ptr = resource.weak_creator_; if (!creator_ptr || !internal::IncrementReferenceCountIfNonZero(*creator_ptr)) { return {}; } return ContextImplPtr(creator_ptr, internal::adopt_object_ref); } void ResourceOrSpecPtrTraits::increment(ResourceOrSpecBase* p) { intrusive_ptr_increment(p); } void ResourceOrSpecPtrTraits::decrement(ResourceOrSpecBase* p) { intrusive_ptr_decrement(p); } void ResourceImplWeakPtrTraits::increment(ResourceOrSpecBase* p) { intrusive_ptr_increment(p); } void ResourceImplWeakPtrTraits::decrement(ResourceOrSpecBase* p) { intrusive_ptr_decrement(p); } void ResourceImplStrongPtrTraits::increment(ResourceImplBase* p) { intrusive_ptr_increment(p); p->spec_->provider_->AcquireContextReference(*p); } void ResourceImplStrongPtrTraits::decrement(ResourceImplBase* p) { p->spec_->provider_->ReleaseContextReference(*p); intrusive_ptr_decrement(p); } void intrusive_ptr_increment(ContextSpecImpl* p) { intrusive_ptr_increment( static_cast<internal::AtomicReferenceCount<ContextSpecImpl>*>(p)); } void intrusive_ptr_decrement(ContextSpecImpl* p) { intrusive_ptr_decrement( static_cast<internal::AtomicReferenceCount<ContextSpecImpl>*>(p)); } void intrusive_ptr_increment(ContextImpl* p) { intrusive_ptr_increment( static_cast<internal::AtomicReferenceCount<ContextImpl>*>(p)); } void intrusive_ptr_decrement(ContextImpl* p) { intrusive_ptr_decrement( static_cast<internal::AtomicReferenceCount<ContextImpl>*>(p)); } ContextImpl::ContextImpl() = default; ContextImpl::~ContextImpl() { for (const auto& resource_container : resources_) { auto& result = resource_container->result_; if (!result.ok()) continue; auto& resource = **result; absl::MutexLock lock(&resource.mutex_);
#include "tensorstore/context.h" #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <tuple> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/context_impl.h" #include "tensorstore/context_resource_provider.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/cache_key/std_optional.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_optional.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/internal/testing/concurrent.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/std_tuple.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace tensorstore { template <typename Provider> auto* GetRawPointer(const Context::Resource<Provider>& resource) { return resource.get(); } } namespace { namespace jb = tensorstore::internal_json_binding; using ::tensorstore::Context; using ::tensorstore::IncludeDefaults; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::internal::ContextResourceCreationContext; using ::tensorstore::internal::ContextResourceRegistration; using ::tensorstore::internal::ContextResourceTraits; using ::tensorstore::internal::ContextSpecBuilder; using ::tensorstore::internal_testing::TestConcurrent; using ::tensorstore::serialization::SerializationRoundTrip; struct IntResource : public ContextResourceTraits<IntResource> { struct Spec { std::int64_t value; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.value); }; }; using Resource = std::int64_t; static constexpr char id[] = "int_resource"; static Spec Default() { return {42}; } static constexpr auto JsonBinder() { return jb::Object(jb::Member( "value", jb::Projection(&Spec::value, jb::DefaultValue([](auto* v) { *v = 42; })))); } static Result<Resource> Create(Spec v, ContextResourceCreationContext context) { return v.value; } static Spec GetSpec(Resource v, const ContextSpecBuilder& builder) { return {v}; } }; struct IntConfigResource : public ContextResourceTraits<IntConfigResource> { constexpr static bool config_only = true; struct Spec { std::int64_t value; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.value); }; }; using Resource = std::int64_t; static constexpr char id[] = "int_config_resource"; static Spec Default() { return {42}; } static constexpr auto JsonBinder() { return jb::Projection(&Spec::value); } static Result<Resource> Create(Spec v, ContextResourceCreationContext context) { return v.value; } static Spec GetSpec(Resource v, const ContextSpecBuilder& builder) { return {v}; } }; struct StrongRefResource : public ContextResourceTraits<StrongRefResource> { struct Spec { std::int64_t value; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.value); }; }; struct Resource { size_t num_strong_references = 0; }; static constexpr char id[] = "strongref"; static Spec Default() { return Spec{42}; } static constexpr auto JsonBinder() { namespace jb = tensorstore::internal_json_binding; return jb::Object(jb::Member( "value", jb::Projection(&Spec::value, jb::DefaultValue([](auto* obj) { *obj = 7; })))); } static Result<Resource> Create(Spec v, ContextResourceCreationContext context) { return Resource{}; } static Spec GetSpec(const Resource& v, const ContextSpecBuilder& builder) { return {42}; } static void AcquireContextReference(Resource& v) { ++v.num_strong_references; } static void ReleaseContextReference(Resource& v) { --v.num_strong_references; } }; struct OptionalResource : public ContextResourceTraits<OptionalResource> { using Spec = std::optional<size_t>; using Resource = Spec; static constexpr char id[] = "optional_resource"; static Spec Default() { return {}; } static constexpr auto JsonBinder() { namespace jb = tensorstore::internal_json_binding; return jb::Object(jb::Member( "limit", jb::DefaultInitializedValue(jb::Optional( jb::Integer<size_t>(1), [] { return "shared"; })))); } static Result<Resource> Create(Spec v, ContextResourceCreationContext context) { return v; } static Spec GetSpec(Resource v, const ContextSpecBuilder& builder) { return v; } }; const ContextResourceRegistration<IntResource> int_resource_registration; const ContextResourceRegistration<IntConfigResource> int_config_resource_registration; const ContextResourceRegistration<StrongRefResource> strong_ref_resource_registration; const ContextResourceRegistration<OptionalResource> optional_resource_registration; TEST(IntResourceTest, InvalidDirectSpec) { EXPECT_THAT(Context::Resource<IntResource>::FromJson(nullptr), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected non-null value, but received: null")); EXPECT_THAT(Context::Resource<IntResource>::FromJson(3), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected object, but received: 3")); EXPECT_THAT( Context::Resource<IntResource>::FromJson("foo"), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid reference to \"int_resource\" resource: \"foo\"")); } TEST(IntResourceTest, Default) { auto context = Context::Default(); EXPECT_EQ(context, context); EXPECT_FALSE(context.parent()); auto context2 = Context::Default(); EXPECT_NE(context, context2); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource")); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource2, context.GetResource(resource_spec)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource3, context2.GetResource(resource_spec)); EXPECT_EQ(resource, resource); EXPECT_EQ(resource, resource2); EXPECT_NE(resource, resource3); EXPECT_THAT(context.GetResource<IntResource>(), ::testing::Optional(resource)); EXPECT_THAT(context.GetResource<IntResource>("int_resource"), ::testing::Optional(resource)); EXPECT_THAT(resource, ::testing::Pointee(42)); EXPECT_THAT(context.GetResource<IntResource>({{"value", 50}}), ::testing::Optional(::testing::Pointee(50))); } TEST(IntResourceTest, ValidDirectSpec) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson({{"value", 7}})); EXPECT_THAT(context.GetResource(resource_spec), ::testing::Optional(::testing::Pointee(7))); } TEST(IntResourceTest, ValidIndirectSpecDefaultId) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, Context::Spec::FromJson({{"int_resource", {{"value", 7}}}})); auto context = Context(spec); auto resource_spec = Context::Resource<IntResource>::DefaultSpec(); EXPECT_THAT(context.GetResource(resource_spec), ::testing::Optional(::testing::Pointee(7))); } TEST(IntResourceTest, ContextFromJson) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, Context::FromJson({{"int_resource", {{"value", 7}}}})); EXPECT_THAT(context.GetResource<IntResource>(), ::testing::Optional(::testing::Pointee(7))); } TEST(IntResourceTest, ValidIndirectSpecDefault) { auto context = Context::Default(); auto resource_spec = Context::Resource<IntResource>::DefaultSpec(); EXPECT_THAT(context.GetResource(resource_spec), ::testing::Optional(::testing::Pointee(42))); } TEST(IntResourceTest, ValidIndirectSpecIdentifier) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, Context::Spec::FromJson({{"int_resource#x", {{"value", 7}}}})); auto context = Context(spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource#x")); EXPECT_THAT(context.GetResource(resource_spec), ::testing::Optional(::testing::Pointee(7))); } TEST(IntResourceTest, UndefinedIndirectReference) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource#x")); EXPECT_THAT(context.GetResource(resource_spec), MatchesStatus(absl::StatusCode::kInvalidArgument, "Resource not defined: \"int_resource#x\"")); } TEST(IntResourceTest, SimpleReference) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, Context::Spec::FromJson({ {"int_resource#x", {{"value", 7}}}, {"int_resource#y", "int_resource#x"}, })); auto context = Context(spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource#y")); EXPECT_THAT(context.GetResource(resource_spec), ::testing::Optional(::testing::Pointee(7))); } TEST(IntResourceTest, ReferenceCycle1) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, Context::Spec::FromJson({{"int_resource", "int_resource"}})); auto context = Context(spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource")); EXPECT_THAT(context.GetResource(resource_spec), MatchesStatus(absl::StatusCode::kInvalidArgument, "Context resource reference cycle: " "\"int_resource\":\"int_resource\"")); } TEST(IntResourceTest, ReferenceCycle2) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, Context::Spec::FromJson({ {"int_resource#a", "int_resource#b"}, {"int_resource#b", "int_resource#a"}, })); auto context = Context(spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson("int_resource#a")); EXPECT_THAT(context.GetResource(resource_spec), MatchesStatus(absl::StatusCode::kInvalidArgument, "Context resource reference cycle: " "\"int_resource#b\":\"int_resource#a\" -> " "\"int_resource#a\":\"int_resource#b\"")); } TEST(IntResourceTest, Inherit) { const ::nlohmann::json json_spec1{ {"int_resource", {{"value", 7}}}, {"int_resource#a", {{"value", 9}}}, {"int_resource#d", {{"value", 42}}}, {"int_resource#c", nullptr}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec1, Context::Spec::FromJson(json_spec1)); EXPECT_THAT(spec1.ToJson(IncludeDefaults{false}), ::testing::Optional(MatchesJson({ {"int_resource", {{"value", 7}}}, {"int_resource#a", {{"value", 9}}}, {"int_resource#d", ::nlohmann::json::object_t{}}, {"int_resource#c", nullptr}, }))); EXPECT_THAT(spec1.ToJson(IncludeDefaults{true}), ::testing::Optional(MatchesJson({ {"int_resource", {{"value", 7}}}, {"int_resource#a", {{"value", 9}}}, {"int_resource#d", {{"value", 42}}}, {"int_resource#c", nullptr}, }))); ::nlohmann::json json_spec2{ {"int_resource", {{"value", 8}}}, {"int_resource#b", nullptr}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec2, Context::Spec::FromJson(json_spec2)); auto context1 = Context(spec1); auto context2 = Context(spec2, context1); EXPECT_EQ(context1, context2.parent()); EXPECT_THAT(context1.spec().ToJson(IncludeDefaults{true}), ::testing::Optional(MatchesJson(json_spec1))); EXPECT_THAT(context2.spec().ToJson(), ::testing::Optional(MatchesJson(json_spec2))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource1, context2.GetResource( Context::Resource<IntResource>::FromJson("int_resource").value())); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource2, context2.GetResource( Context::Resource<IntResource>::FromJson("int_resource#a").value())); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource3, context2.GetResource( Context::Resource<IntResource>::FromJson("int_resource#b").value())); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource4, context2.GetResource( Context::Resource<IntResource>::FromJson("int_resource#c").value())); EXPECT_EQ(8, *resource1); EXPECT_EQ(9, *resource2); EXPECT_EQ(7, *resource3); EXPECT_EQ(42, *resource4); } TEST(IntResourceTest, Unknown) { EXPECT_THAT(Context::Spec::FromJson({ {"foo", {{"value", 7}}}, }), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid context resource identifier: \"foo\"")); } TEST(IntConfigResourceTest, ContextSpec) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, Context::FromJson({{"int_config_resource", 111}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource1, context.GetResource<IntConfigResource>()); EXPECT_THAT(resource1, ::testing::Pointee(111)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource2, context.GetResource<IntConfigResource>(222)); EXPECT_THAT(resource2, ::testing::Pointee(222)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource3, context.GetResource<IntConfigResource>(222)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource4, context.GetResource<IntConfigResource>(111)); std::string cache_key1, cache_key2, cache_key3, cache_key4; tensorstore::internal::EncodeCacheKey(&cache_key1, resource1); tensorstore::internal::EncodeCacheKey(&cache_key2, resource2); tensorstore::internal::EncodeCacheKey(&cache_key3, resource3); tensorstore::internal::EncodeCacheKey(&cache_key4, resource4); EXPECT_EQ(cache_key1, cache_key4); EXPECT_EQ(cache_key2, cache_key3); } TEST(StrongRefResourceTest, DirectSpec) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<StrongRefResource>::FromJson( ::nlohmann::json::object_t{})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_EQ(0, resource->num_strong_references); } TEST(StrongRefResourceTest, IndirectSpec) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, Context::Spec::FromJson({{"strongref", ::nlohmann::json::object_t{}}})); auto context = Context(spec); auto resource_spec = Context::Resource<StrongRefResource>::DefaultSpec(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); EXPECT_EQ(1, resource->num_strong_references); context = Context(); EXPECT_EQ(0, resource->num_strong_references); } TEST(ContextSpecBuilderTest, Simple) { auto spec = Context::Spec::FromJson({{"int_resource", {{"value", 5}}}}).value(); auto context = Context(spec); auto resource_spec = Context::Resource<IntResource>::DefaultSpec(); auto resource = context.GetResource(resource_spec).value(); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec = builder.AddResource(resource); } EXPECT_THAT( new_spec.ToJson(), ::testing::Optional(MatchesJson({{"int_resource", {{"value", 5}}}}))); EXPECT_THAT(new_resource_spec.ToJson(IncludeDefaults{true}), ::testing::Optional(MatchesJson("int_resource"))); auto new_context = Context(new_spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto new_resource, new_context.GetResource(new_resource_spec)); EXPECT_EQ(5, *new_resource); } TEST(ContextSpecBuilderTest, Default) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource, Context::Default().GetResource<IntResource>()); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec = builder.AddResource(resource); } EXPECT_THAT( jb::ToJson(new_spec, tensorstore::internal::ContextSpecDefaultableJsonBinder, IncludeDefaults{false}), ::testing::Optional( MatchesJson({{"int_resource", ::nlohmann::json::object_t()}}))); EXPECT_THAT( new_spec.ToJson(IncludeDefaults{true}), ::testing::Optional(MatchesJson({{"int_resource", {{"value", 42}}}}))); EXPECT_THAT(new_resource_spec.ToJson(IncludeDefaults{true}), ::testing::Optional(MatchesJson("int_resource"))); auto new_context = Context(new_spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto new_resource, new_context.GetResource(new_resource_spec)); EXPECT_THAT(new_resource, ::testing::Pointee(42)); } TEST(ContextSpecBuilderTest, MultipleContexts) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec1, Context::Spec::FromJson({{"int_resource", {{"value", 5}}}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec2, Context::Spec::FromJson({{"int_resource", {{"value", 6}}}})); auto context1 = Context(spec1); auto context2 = Context(spec2); auto resource_spec = Context::Resource<IntResource>::DefaultSpec(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource1, context1.GetResource(resource_spec)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource2, context2.GetResource(resource_spec)); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec1; Context::Resource<IntResource> new_resource_spec2; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec1 = builder.AddResource(resource1); new_resource_spec2 = builder.AddResource(resource2); } EXPECT_THAT(new_spec.ToJson(), ::testing::Optional(MatchesJson({ {"int_resource#0", {{"value", 5}}}, {"int_resource#1", {{"value", 6}}}, }))); EXPECT_EQ("int_resource#0", new_resource_spec1.ToJson()); EXPECT_EQ("int_resource#1", new_resource_spec2.ToJson()); } TEST(ContextSpecBuilderTest, Inline) { auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<IntResource>::FromJson({{"value", 5}})); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec = builder.AddResource(resource); } EXPECT_THAT(new_spec.ToJson(), ::testing::Optional(MatchesJson(::nlohmann::json::object_t()))); EXPECT_THAT(new_resource_spec.ToJson(), ::testing::Optional(MatchesJson({{"value", 5}}))); } TEST(ContextSpecBuilderTest, InlineEqualToDefault) { auto context = Context::Default(); auto resource_spec = Context::Resource<IntResource>::FromJson({{"value", 42}}).value(); auto resource = context.GetResource(resource_spec).value(); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec = builder.AddResource(resource); } EXPECT_EQ(::nlohmann::json({}), new_spec.ToJson()); EXPECT_EQ(::nlohmann::json::object_t{}, new_resource_spec.ToJson(IncludeDefaults{false})); } TEST(ContextSpecBuilderTest, InlineShared) { auto context = Context::Default(); auto resource_spec = Context::Resource<IntResource>::FromJson({{"value", 5}}).value(); auto resource = context.GetResource(resource_spec).value(); Context::Spec new_spec; Context::Resource<IntResource> new_resource_spec1; Context::Resource<IntResource> new_resource_spec2; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec1 = builder.AddResource(resource); new_resource_spec2 = builder.AddResource(resource); } EXPECT_EQ(::nlohmann::json({{"int_resource#0", {{"value", 5}}}}), new_spec.ToJson()); EXPECT_EQ("int_resource#0", new_resource_spec1.ToJson()); EXPECT_EQ("int_resource#0", new_resource_spec2.ToJson()); } TEST(ContextSpecBuilderTest, ExcludeDefaultsJson) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, Context::FromJson({ {"optional_resource", {{"limit", "shared"}}}, {"optional_resource#a", {{"limit", 5}}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource1, context.GetResource<OptionalResource>()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource2, context.GetResource<OptionalResource>("optional_resource#a")); Context::Spec new_spec; Context::Resource<OptionalResource> new_resource_spec1; Context::Resource<OptionalResource> new_resource_spec2; { auto builder = ContextSpecBuilder::Make(); new_spec = builder.spec(); new_resource_spec1 = builder.AddResource(resource1); new_resource_spec2 = builder.AddResource(resource2); } EXPECT_THAT(new_spec.ToJson(tensorstore::IncludeDefaults{false}), ::testing::Optional(MatchesJson({ {"optional_resource#a", {{"limit", 5}}}, {"optional_resource", ::nlohmann::json::object_t()}, }))); EXPECT_THAT(new_spec.ToJson(tensorstore::IncludeDefaults{true}), ::testing::Optional(MatchesJson({ {"optional_resource#a", {{"limit", 5}}}, {"optional_resource", {{"limit", "shared"}}}, }))); } TEST(ContextTest, WeakCreator) { using ::tensorstore::internal_context::Access; using ::tensorstore::internal_context::GetCreator; using ::tensorstore::internal_context::ResourceImplBase; const ::nlohmann::json json_spec1{ {"int_resource", {{"value", 7}}}, {"int_resource#a", {{"value", 9}}}, {"int_resource#d", {{"value", 42}}}, {"int_resource#c", nullptr}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec1, Context::Spec::FromJson(json_spec1)); ::nlohmann::json json_spec2{ {"int_resource", {{"value", 8}}}, {"int_resource#b", nullptr}, }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec2, Context::Spec::FromJson(json_spec2)); auto context1 = Context(spec1); auto context2 = Context(spec2, context1); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource1, context1.GetResource<IntResource>()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource2, context2.GetResource<IntResource>()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource2_a, context2.GetResource<IntResource>("int_resource#a")); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource2_b, context2.GetResource<IntResource>("int_resource#b")); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource2_c, context2.GetResource<IntResource>("int_resource#c")); EXPECT_EQ( Access::impl(context1), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource1)))); EXPECT_EQ( Access::impl(context1), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource2_a)))); EXPECT_EQ( Access::impl(context1), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource2_b)))); EXPECT_EQ( Access::impl(context1), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource2_c)))); EXPECT_EQ( Access::impl(context2), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource2)))); context2 = Context(); EXPECT_EQ( Access::impl(context1), GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource1)))); EXPECT_FALSE( GetCreator(static_cast<ResourceImplBase&>(*Access::impl(resource2)))); } struct NestedResource : public ContextResourceTraits<NestedResource> { struct Spec { int value; Context::Resource<NestedResource> parent; int GetTotal() const { int total = value; if (parent.has_resource()) total += parent->GetTotal(); return total; } constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.value, x.parent); }; }; using Resource = Spec; static constexpr char id[] = "nested_resource"; static Spec Default() { return {42}; } static constexpr auto JsonBinder() { return jb::Object( jb::Member("value", jb::Projection(&Spec::value, jb::DefaultValue([](auto* v) { *v = 42; }))), jb::Member( "parent", jb::Projection( &Spec::parent, jb::DefaultInitializedPredicate<jb::kNeverIncludeDefaults>( [](auto* obj) { return !obj->valid(); })))); } static Result<Resource> Create(const Spec& spec, ContextResourceCreationContext context) { Resource resource = spec; TENSORSTORE_RETURN_IF_ERROR(resource.parent.BindContext(context)); return resource; } static Spec GetSpec(const Resource& resource, const ContextSpecBuilder& builder) { Spec spec = resource; UnbindContext(spec, builder); return spec; } static void UnbindContext(Spec& spec, const ContextSpecBuilder& builder) { spec.parent.UnbindContext(builder); } }; const ContextResourceRegistration<NestedResource> nested_resource_registration; TEST(NestedResourceTest, Basic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context, Context::FromJson({ {"nested_resource#a", {{"value", 1}}}, {"nested_resource#b", {{"value", 3}, {"parent", "nested_resource#a"}}}, {"nested_resource#c", {{"value", 5}, {"parent", "nested_resource#b"}}}, {"nested_resource#d", {{"value", 10}, {"parent", "nested_resource#e"}}}, {"nested_resource#e", {{"value", 15}, {"parent", "nested_resource#d"}}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto a, context.GetResource<NestedResource>("nested_resource#a")); EXPECT_FALSE(a->parent.valid()); EXPECT_EQ(1, a->GetTotal()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto b, context.GetResource<NestedResource>("nested_resource#b")); EXPECT_EQ(a, b->parent); EXPECT_EQ(4, b->GetTotal()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto c, context.GetResource<NestedResource>("nested_resource#c")); EXPECT_EQ(b, c->parent); EXPECT_EQ(9, c->GetTotal()); EXPECT_THAT( context.GetResource<NestedResource>("nested_resource#d"), MatchesStatus(absl::StatusCode::kInvalidArgument, "Context resource reference cycle: " "\"nested_resource#d\" -> " "\"nested_resource#d\":" "\\{\"parent\":\"nested_resource#e\",\"value\":10\\} -> " "\"nested_resource#e\" -> " "\"nested_resource#e\":" "\\{\"parent\":\"nested_resource#d\",\"value\":15\\}")); EXPECT_THAT(context.GetResource<NestedResource>("nested_resource#e"), MatchesStatus(absl::StatusCode::kInvalidArgument, "Context resource reference cycle: .*")); } TEST(ContextSpecBuilderTest, PartiallyBound) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto context_spec, Context::Spec::FromJson({ {"nested_resource#a", {{"value", 2}}}, {"nested_resource#b", {{"value", 3}, {"parent", "nested_resource#a"}}}, })); auto context = Context(context_spec); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto resource_spec, Context::Resource<NestedResource>::FromJson("nested_resource#b")); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto resource, context.GetResource(resource_spec)); Context::Spec new_spec; Context::Resource<NestedResource> new_resource_spec1; Context::Resource<NestedResource> new_resource_spec2; { auto builder = ContextSpecBuilder::Make({}, context_spec); new_spec = builder.spec(); new_resource_spec1 = builder.AddResource(resource_spec); new_resource_spec2 = builder.AddResource(resource); } EXPECT_THAT(new_spec.ToJson(), ::testing::Optional(MatchesJson({ {"nested_resource#a", {{"value", 2}}}, {"nested_resource#b", {{"value", 3}, {"parent", "nested_resource#a"}}}, {"nested_resource#1", {{"value", 2}}}, {"nested_resource#0", {{"value", 3}, {"parent", "nested_resource#1"}}}, }))); EXPECT_THAT(new_resource_spec1.ToJson(), ::testing::Optional(MatchesJson("nested_resource#b"))); EXPECT_THAT(new_resource_spec2.ToJson(),
527
cpp
google/tensorstore
status
tensorstore/util/status.cc
tensorstore/util/status_test.cc
#ifndef TENSORSTORE_STATUS_H_ #define TENSORSTORE_STATUS_H_ #include <optional> #include <string> #include <string_view> #include <type_traits> #include <utility> #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "tensorstore/internal/preprocessor/expand.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/internal/type_traits.h" namespace tensorstore { namespace internal { void MaybeAddSourceLocationImpl(absl::Status& status, SourceLocation loc); absl::Status MaybeAnnotateStatusImpl(absl::Status source, std::string_view prefix_message, std::optional<absl::StatusCode> new_code, std::optional<SourceLocation> loc); [[noreturn]] void FatalStatus(const char* message, const absl::Status& status, SourceLocation loc); inline absl::Status MaybeConvertStatusTo( absl::Status status, absl::StatusCode code, SourceLocation loc = tensorstore::SourceLocation::current()) { if (status.code() == code) { if (!status.message().empty()) MaybeAddSourceLocationImpl(status, loc); return status; } return MaybeAnnotateStatusImpl(std::move(status), {}, code, loc); } inline absl::Status ConvertInvalidArgumentToFailedPrecondition( absl::Status status, SourceLocation loc = tensorstore::SourceLocation::current()) { if (status.code() == absl::StatusCode::kInvalidArgument || status.code() == absl::StatusCode::kOutOfRange) { return MaybeAnnotateStatusImpl(std::move(status), {}, absl::StatusCode::kFailedPrecondition, loc); } return status; } template <typename F, typename... Args> inline absl::Status InvokeForStatus(F&& f, Args&&... args) { using R = std::invoke_result_t<F&&, Args&&...>; static_assert(std::is_void_v<R> || std::is_same_v<internal::remove_cvref_t<R>, absl::Status>); if constexpr (std::is_void_v<R>) { std::invoke(static_cast<F&&>(f), static_cast<Args&&>(args)...); return absl::OkStatus(); } else { return std::invoke(static_cast<F&&>(f), static_cast<Args&&>(args)...); } } } inline void MaybeAddSourceLocation( absl::Status& status, SourceLocation loc = tensorstore::SourceLocation::current()) { if (status.message().empty()) return; internal::MaybeAddSourceLocationImpl(status, loc); } std::optional<std::string> AddStatusPayload(absl::Status& status, std::string_view prefix, absl::Cord value); inline absl::Status MaybeAnnotateStatus( absl::Status source, std::string_view message, SourceLocation loc = tensorstore::SourceLocation::current()) { return internal::MaybeAnnotateStatusImpl(std::move(source), message, std::nullopt, loc); } inline absl::Status MaybeAnnotateStatus( absl::Status source, std::string_view message, absl::StatusCode new_code, SourceLocation loc = tensorstore::SourceLocation::current()) { return internal::MaybeAnnotateStatusImpl(std::move(source), message, new_code, loc); } inline const absl::Status& GetStatus(const absl::Status& status) { return status; } inline absl::Status GetStatus(absl::Status&& status) { return std::move(status); } } #define TENSORSTORE_RETURN_IF_ERROR(...) \ TENSORSTORE_PP_EXPAND( \ TENSORSTORE_INTERNAL_RETURN_IF_ERROR_IMPL(__VA_ARGS__, _)) #define TENSORSTORE_INTERNAL_RETURN_IF_ERROR_IMPL(expr, error_expr, ...) \ for (absl::Status _ = ::tensorstore::GetStatus(expr); \ ABSL_PREDICT_FALSE(!_.ok());) \ return ::tensorstore::MaybeAddSourceLocation(_), error_expr #define TENSORSTORE_CHECK_OK(...) \ do { \ [](const ::absl::Status& tensorstore_check_ok_condition) { \ if (ABSL_PREDICT_FALSE(!tensorstore_check_ok_condition.ok())) { \ ::tensorstore::internal::FatalStatus( \ "Status not ok: " #__VA_ARGS__, tensorstore_check_ok_condition, \ tensorstore::SourceLocation::current()); \ } \ }(::tensorstore::GetStatus((__VA_ARGS__))); \ } while (false) #endif #if !defined(TENSORSTORE_INTERNAL_STATUS_TEST_HACK) #include "tensorstore/util/status.h" #endif #include <array> #include <cstdio> #include <exception> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "tensorstore/internal/source_location.h" namespace tensorstore { namespace internal { void MaybeAddSourceLocationImpl(absl::Status& status, SourceLocation loc) { constexpr const char kSourceLocationKey[] = "source locations"; #if TENSORSTORE_HAVE_SOURCE_LOCATION_CURRENT if (loc.line() <= 1) return; std::string_view filename(loc.file_name()); if (auto idx = filename.find("tensorstore"); idx != std::string::npos) { filename.remove_prefix(idx); } auto payload = status.GetPayload(kSourceLocationKey); if (!payload.has_value()) { status.SetPayload(kSourceLocationKey, absl::Cord(absl::StrFormat( "%s:%d", filename, loc.line()))); } else { payload->Append(absl::StrFormat("\n%s:%d", filename, loc.line())); status.SetPayload(kSourceLocationKey, std::move(*payload)); } #endif } absl::Status MaybeAnnotateStatusImpl(absl::Status source, std::string_view prefix_message, std::optional<absl::StatusCode> new_code, std::optional<SourceLocation> loc) { if (source.ok()) return source; if (!new_code) new_code = source.code(); size_t index = 0; std::array<std::string_view, 3> to_join = {}; if (!prefix_message.empty()) { to_join[index++] = prefix_message; } if (!source.message().empty()) { to_join[index++] = source.message(); } absl::Status dest(*new_code, (index > 1) ? std::string_view(absl::StrJoin( to_join.begin(), to_join.begin() + index, ": ")) : to_join[0]); source.ForEachPayload([&](auto name, const absl::Cord& value) { dest.SetPayload(name, value); }); if (loc) { MaybeAddSourceLocation(dest, *loc); } return dest; } [[noreturn]] void FatalStatus(const char* message, const absl::Status& status, SourceLocation loc) { std::fprintf(stderr, "%s:%d: %s: %s\n", loc.file_name(), loc.line(), message, status.ToString().c_str()); std::terminate(); } } std::optional<std::string> AddStatusPayload(absl::Status& status, std::string_view prefix, absl::Cord value) { std::string payload_id(prefix); int i = 1; while (true) { auto p = status.GetPayload(payload_id); if (!p.has_value()) { break; } if (p.value() == value) return std::nullopt; payload_id = absl::StrFormat("%s[%d]", prefix, i++); } status.SetPayload(payload_id, std::move(value)); return payload_id; } }
#include "tensorstore/util/status.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::MaybeAnnotateStatus; using ::tensorstore::internal::InvokeForStatus; using ::tensorstore::internal::MaybeAnnotateStatusImpl; using ::tensorstore::internal::MaybeConvertStatusTo; TEST(StatusTest, StrCat) { const absl::Status s = absl::UnknownError("Message"); EXPECT_THAT(s.ToString(), testing::HasSubstr("UNKNOWN: Message")); EXPECT_THAT(tensorstore::StrCat(s), testing::HasSubstr("UNKNOWN: Message")); } TEST(StatusTest, MaybeAnnotateStatusImpl) { EXPECT_THAT(MaybeAnnotateStatusImpl(absl::UnknownError("Boo"), {}, absl::StatusCode::kInternal, tensorstore::SourceLocation::current()), MatchesStatus(absl::StatusCode::kInternal, "Boo")); EXPECT_THAT( MaybeAnnotateStatusImpl(absl::UnknownError("Boo"), "Annotated", {}, tensorstore::SourceLocation::current()), MatchesStatus(absl::StatusCode::kUnknown, "Annotated: Boo")); EXPECT_THAT(MaybeAnnotateStatusImpl(absl::UnknownError("Boo"), "Annotated", absl::StatusCode::kInternal, tensorstore::SourceLocation::current()), MatchesStatus(absl::StatusCode::kInternal, "Annotated: Boo")); } TEST(StatusTest, MaybeAnnotateStatus) { EXPECT_THAT(MaybeAnnotateStatus(absl::OkStatus(), "Annotated"), tensorstore::IsOk()); EXPECT_THAT(MaybeAnnotateStatus(absl::OkStatus(), "Annotated", tensorstore::SourceLocation::current()), ::tensorstore::IsOk()); auto bar_status = absl::UnknownError("Bar"); bar_status.SetPayload("a", absl::Cord("b")); auto status = MaybeAnnotateStatus(bar_status, "Annotated"); EXPECT_TRUE(status.GetPayload("a").has_value()); EXPECT_THAT(status, MatchesStatus(absl::StatusCode::kUnknown, "Annotated: Bar")); EXPECT_THAT(tensorstore::StrCat(status), testing::HasSubstr("a='b'")); } TEST(StatusTest, MaybeConvertStatusTo) { EXPECT_EQ(absl::OkStatus(), MaybeConvertStatusTo(absl::OkStatus(), absl::StatusCode::kDeadlineExceeded)); EXPECT_THAT(MaybeConvertStatusTo(absl::UnknownError("Boo"), absl::StatusCode::kInternal), MatchesStatus(absl::StatusCode::kInternal, "Boo")); } TEST(StatusTest, InvokeForStatus) { int count = 0; auto a = [&](int i) { count += i; }; EXPECT_THAT(InvokeForStatus(a, 1), ::tensorstore::IsOk()); EXPECT_EQ(1, count); auto b = [&](int i, absl::Status s) { count += i; return s; }; EXPECT_THAT(InvokeForStatus(b, 2, absl::OkStatus()), ::tensorstore::IsOk()); EXPECT_EQ(3, count); EXPECT_THAT(InvokeForStatus(b, 4, absl::UnknownError("A")), MatchesStatus(absl::StatusCode::kUnknown, "A")); EXPECT_EQ(7, count); auto c = [](int& i, int j) { i += j; }; EXPECT_THAT(InvokeForStatus(std::move(c), std::ref(count), 8), ::tensorstore::IsOk()); EXPECT_EQ(15, count); } TEST(StatusTest, ReturnIfError) { const auto Helper = [](absl::Status s) { TENSORSTORE_RETURN_IF_ERROR(s); return absl::UnknownError("No error"); }; EXPECT_THAT(Helper(absl::Status()), MatchesStatus(absl::StatusCode::kUnknown, "No error")); EXPECT_THAT(Helper(absl::UnknownError("Got error")), MatchesStatus(absl::StatusCode::kUnknown, "Got error")); } TEST(StatusTest, ReturnIfErrorAnnotate) { const auto Helper = [](absl::Status s) { TENSORSTORE_RETURN_IF_ERROR(s, MaybeAnnotateStatus(_, "Annotated")); return absl::UnknownError("No error"); }; EXPECT_THAT(Helper(absl::Status()), MatchesStatus(absl::StatusCode::kUnknown, "No error")); EXPECT_THAT( Helper(absl::UnknownError("Got error")), MatchesStatus(absl::StatusCode::kUnknown, "Annotated: Got error")); } }
528
cpp
google/tensorstore
codec_spec
tensorstore/driver/zarr3/codec/codec_spec.cc
tensorstore/codec_spec_test.cc
#ifndef TENSORSTORE_DRIVER_ZARR3_CODEC_CODEC_SPEC_H_ #define TENSORSTORE_DRIVER_ZARR3_CODEC_CODEC_SPEC_H_ #include <stddef.h> #include <stdint.h> #include <array> #include <optional> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/index.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_zarr3 { enum class ZarrCodecKind { kArrayToArray, kArrayToBytes, kBytesToBytes, }; class ZarrCodecSpec : public internal::AtomicReferenceCount<ZarrCodecSpec> { public: using Ptr = internal::IntrusivePtr<const ZarrCodecSpec>; virtual ~ZarrCodecSpec(); virtual ZarrCodecKind kind() const = 0; virtual absl::Status MergeFrom(const ZarrCodecSpec& other, bool strict) = 0; virtual Ptr Clone() const = 0; struct FromJsonOptions { bool constraints = false; }; struct ToJsonOptions : public IncludeDefaults { constexpr ToJsonOptions() = default; constexpr ToJsonOptions(IncludeDefaults include_defaults) : IncludeDefaults(include_defaults) {} bool constraints = false; }; }; struct ArrayDataTypeAndShapeInfo { DataType dtype; DimensionIndex rank = dynamic_rank; std::optional<std::array<Index, kMaxRank>> shape; }; struct ArrayCodecChunkLayoutInfo { std::optional<std::array<DimensionIndex, kMaxRank>> inner_order; std::optional<std::array<Index, kMaxRank>> read_chunk_shape; std::optional<std::array<Index, kMaxRank>> codec_chunk_shape; }; struct ArrayCodecResolveParameters { DataType dtype; DimensionIndex rank; SharedArray<const void> fill_value; std::optional<std::array<Index, kMaxRank>> read_chunk_shape; std::optional<std::array<Index, kMaxRank>> codec_chunk_shape; std::optional<std::array<DimensionIndex, kMaxRank>> inner_order; }; class ZarrArrayToArrayCodecSpec : public ZarrCodecSpec { public: using Ptr = internal::IntrusivePtr<const ZarrArrayToArrayCodecSpec>; ZarrCodecKind kind() const final; virtual absl::Status PropagateDataTypeAndShape( const ArrayDataTypeAndShapeInfo& decoded, ArrayDataTypeAndShapeInfo& encoded) const = 0; virtual absl::Status GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& encoded_info, const ArrayCodecChunkLayoutInfo& encoded, const ArrayDataTypeAndShapeInfo& decoded_info, ArrayCodecChunkLayoutInfo& decoded) const = 0; virtual Result<internal::IntrusivePtr<const ZarrArrayToArrayCodec>> Resolve( ArrayCodecResolveParameters&& decoded, ArrayCodecResolveParameters& encoded, ZarrArrayToArrayCodecSpec::Ptr* resolved_spec) const = 0; }; struct BytesCodecResolveParameters { int64_t item_bits = -1; }; class ZarrArrayToBytesCodecSpec : public ZarrCodecSpec { public: using Ptr = internal::IntrusivePtr<const ZarrArrayToBytesCodecSpec>; ZarrCodecKind kind() const final; virtual absl::Status GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& array_info, ArrayCodecChunkLayoutInfo& decoded) const = 0; virtual bool SupportsInnerOrder( const ArrayCodecResolveParameters& decoded, span<DimensionIndex> preferred_inner_order) const = 0; virtual Result<internal::IntrusivePtr<const ZarrArrayToBytesCodec>> Resolve( ArrayCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrArrayToBytesCodecSpec::Ptr* resolved_spec) const = 0; virtual size_t sharding_height() const; }; class ZarrBytesToBytesCodecSpec : public ZarrCodecSpec { public: using Ptr = internal::IntrusivePtr<const ZarrBytesToBytesCodecSpec>; ZarrCodecKind kind() const final; virtual Result<internal::IntrusivePtr<const ZarrBytesToBytesCodec>> Resolve( BytesCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrBytesToBytesCodecSpec::Ptr* resolved_spec) const = 0; }; } } #endif #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include <stddef.h> #include "absl/base/no_destructor.h" #include "tensorstore/driver/zarr3/codec/registry.h" namespace tensorstore { namespace internal_zarr3 { ZarrCodecSpec::~ZarrCodecSpec() = default; ZarrCodecKind ZarrArrayToArrayCodecSpec::kind() const { return ZarrCodecKind::kArrayToArray; } ZarrCodecKind ZarrArrayToBytesCodecSpec::kind() const { return ZarrCodecKind::kArrayToBytes; } size_t ZarrArrayToBytesCodecSpec::sharding_height() const { return 0; } ZarrCodecKind ZarrBytesToBytesCodecSpec::kind() const { return ZarrCodecKind::kBytesToBytes; } CodecRegistry& GetCodecRegistry() { static absl::NoDestructor<CodecRegistry> registry; return *registry; } } }
#include "tensorstore/codec_spec.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" namespace { using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(CodecSpecSerializationTest, SerializationRoundTrip) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto codec, tensorstore::CodecSpec::FromJson({ {"driver", "zarr"}, {"compressor", nullptr}, {"filters", nullptr}, })); TestSerializationRoundTrip(codec); } }
529
cpp
google/tensorstore
box
tensorstore/box.cc
tensorstore/box_test.cc
#ifndef TENSORSTORE_BOX_H_ #define TENSORSTORE_BOX_H_ #include <stddef.h> #include <cassert> #include <iosfwd> #include <string> #include <type_traits> #include "absl/base/attributes.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/internal/gdb_scripting.h" #include "tensorstore/internal/multi_vector.h" #include "tensorstore/internal/multi_vector_view.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/rank.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/static_cast.h" #include "tensorstore/util/constant_vector.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/span.h" TENSORSTORE_GDB_AUTO_SCRIPT("multi_vector_gdb.py") namespace tensorstore { template <DimensionIndex Rank, bool Mutable> class BoxView; template <DimensionIndex Rank> class Box; namespace internal_box { template <typename T> constexpr inline int IsBoxLikeHelper = 0; template <DimensionIndex Rank> constexpr inline int IsBoxLikeHelper<const Box<Rank>> = 1; template <DimensionIndex Rank> constexpr inline int IsBoxLikeHelper<Box<Rank>> = 2; template <DimensionIndex Rank, bool Mutable> constexpr inline int IsBoxLikeHelper<BoxView<Rank, Mutable>> = Mutable ? 2 : 1; template <DimensionIndex Rank, bool Mutable> constexpr inline int IsBoxLikeHelper<const BoxView<Rank, Mutable>> = Mutable ? 2 : 1; std::string DescribeForCast(DimensionIndex rank); } template <typename T> constexpr inline bool IsBoxLike = internal_box::IsBoxLikeHelper<internal::remove_cvref_t<T>> != 0; template <typename T> constexpr inline bool IsMutableBoxLike = internal_box::IsBoxLikeHelper<std::remove_reference_t<T>> == 2; template <typename T, DimensionIndex Rank, typename = void> constexpr inline bool IsBoxLikeImplicitlyConvertibleToRank = false; template <typename T, DimensionIndex Rank> constexpr inline bool IsBoxLikeImplicitlyConvertibleToRank< T, Rank, std::enable_if_t<IsBoxLike<T>>> = RankConstraint::Implies(internal::remove_cvref_t<T>::static_rank, Rank); template <typename T, DimensionIndex Rank, typename = void> constexpr inline bool IsBoxLikeExplicitlyConvertibleToRank = false; template <typename T, DimensionIndex Rank> constexpr inline bool IsBoxLikeExplicitlyConvertibleToRank< T, Rank, std::enable_if_t<IsBoxLike<T>>> = RankConstraint::EqualOrUnspecified(internal::remove_cvref_t<T>::static_rank, Rank); namespace internal_box { std::ostream& PrintToOstream(std::ostream& os, const BoxView<dynamic_rank, false>& view); bool AreEqual(const BoxView<dynamic_rank, false>& box_a, const BoxView<dynamic_rank, false>& box_b); template <DimensionIndex Rank> bool IsEmpty(span<const Index, Rank> shape) { for (const Index size : shape) { if (size == 0) return true; } return false; } template <bool Const> using MaybeConstIndex = std::conditional_t<Const, const Index, Index>; template <DimensionIndex Rank, bool Mutable> using BoxViewStorage = internal::MultiVectorViewStorage<Rank, MaybeConstIndex<!Mutable>, MaybeConstIndex<!Mutable>>; template <DimensionIndex Rank> using BoxStorage = internal::MultiVectorStorage<Rank, Index, Index>; } template <DimensionIndex Rank = dynamic_rank> class Box : public internal_box::BoxStorage<Rank> { using Storage = internal_box::BoxStorage<Rank>; using Access = internal::MultiVectorAccess<Storage>; static_assert(IsValidInlineRank(Rank)); public: constexpr static DimensionIndex static_rank = (Rank < 0) ? dynamic_rank : Rank; using RankType = StaticOrDynamicRank<Rank>; Box() : Box(RankType{}) {} explicit Box(RankType rank) { set_rank(rank); } template <typename OriginVec, typename ShapeVec, typename = std::enable_if_t<( IsImplicitlyCompatibleFullIndexVector<static_rank, OriginVec> && IsImplicitlyCompatibleFullIndexVector<static_rank, ShapeVec>)>> explicit Box(OriginVec origin, ShapeVec shape) { Access::Assign(this, span(origin), span(shape)); } template <size_t N, typename = std::enable_if_t< RankConstraint::Implies(N, static_rank)>> explicit Box(const Index (&origin)[N], const Index (&shape)[N]) { Access::Assign(this, StaticRank<N>{}, origin, shape); } template <typename OriginT, typename ShapeT, typename = std::enable_if_t<internal::IsIndexPack<OriginT, ShapeT>>> explicit Box(RankType rank, OriginT* origin, ShapeT* shape) { Access::Assign(this, rank, origin, shape); } template <typename ShapeVec, typename = std::enable_if_t< IsImplicitlyCompatibleFullIndexVector<static_rank, ShapeVec>>> explicit Box(const ShapeVec& shape) : Box(GetStaticOrDynamicExtent(span(shape)), GetConstantVector<Index, 0>(GetStaticOrDynamicExtent(span(shape))) .data(), shape.data()) {} template <size_t N, typename = std::enable_if_t< RankConstraint::Implies(N, static_rank)>> explicit Box(const Index (&shape)[N]) { Access::Assign(this, StaticRank<N>{}, GetConstantVector<Index, 0, N>().data(), shape); } template <typename BoxType, std::enable_if_t<IsBoxLikeImplicitlyConvertibleToRank< BoxType, static_rank>>* = nullptr> explicit Box(const BoxType& other) : Box(other.rank(), other.origin().data(), other.shape().data()) {} template <typename BoxType, typename = std::enable_if_t< IsBoxLikeExplicitlyConvertibleToRank<BoxType, static_rank>>> explicit Box(unchecked_t, const BoxType& other) : Box(StaticRankCast<static_rank, unchecked>(other.rank()), other.origin().data(), other.shape().data()) {} explicit Box(unchecked_t, Box&& other) : Box(std::move(other)) {} template <typename BoxType> std::enable_if_t<IsBoxLikeImplicitlyConvertibleToRank<BoxType, static_rank>, Box&> operator=(const BoxType& other) { Access::Assign(this, other.rank(), other.origin().data(), other.shape().data()); return *this; } RankType rank() const { return Access::GetExtent(*this); } IndexInterval operator[](DimensionIndex i) const { return IndexInterval::UncheckedSized(origin()[i], shape()[i]); } IndexIntervalRef operator[](DimensionIndex i) { return IndexIntervalRef::UncheckedSized(origin()[i], shape()[i]); } span<const Index, static_rank> origin() const { return Access::template get<0>(this); } span<Index, static_rank> origin() { return Access::template get<0>(this); } span<const Index, static_rank> shape() const { return Access::template get<1>(this); } span<Index, static_rank> shape() { return Access::template get<1>(this); } Index num_elements() const { return ProductOfExtents(shape()); } bool is_empty() const { return internal_box::IsEmpty(shape()); } void set_rank(RankType rank) { Access::Resize(this, rank); Fill(); } void Fill(IndexInterval interval = {}) { std::fill_n(origin().begin(), rank(), interval.inclusive_min()); std::fill_n(shape().begin(), rank(), interval.size()); } friend std::ostream& operator<<(std::ostream& os, const Box& box) { return internal_box::PrintToOstream(os, box); } template <typename Transformable> decltype(ApplyIndexTransform( std::declval<BoxView<RankConstraint::FromInlineRank(Rank), false>>(), std::declval<Transformable>())) operator()(Transformable&& transformable) const { return ApplyIndexTransform( BoxView<RankConstraint::FromInlineRank(Rank), false>(*this), std::forward<Transformable>(transformable)); } }; Box(DimensionIndex rank) -> Box<>; template <DimensionIndex Rank> Box(std::integral_constant<DimensionIndex, Rank> rank) -> Box<Rank>; template <typename Shape, std::enable_if_t<IsIndexConvertibleVector<Shape>>* = nullptr> Box(const Shape& shape) -> Box<SpanStaticExtent<Shape>::value>; template <DimensionIndex Rank> Box(const Index (&shape)[Rank]) -> Box<Rank>; template <typename Origin, typename Shape, std::enable_if_t<(IsIndexConvertibleVector<Origin> && IsIndexConvertibleVector<Shape>)>* = nullptr> Box(const Origin& origin, const Shape& shape) -> Box<SpanStaticExtent<Origin, Shape>::value>; template <DimensionIndex Rank> Box(const Index (&origin)[Rank], const Index (&shape)[Rank]) -> Box<Rank>; template <DimensionIndex Rank> Box(const Box<Rank>& box) -> Box<Rank>; template <DimensionIndex Rank, bool Mutable> Box(BoxView<Rank, Mutable> box) -> Box<Rank>; template <DimensionIndex Rank = dynamic_rank, bool Mutable = false> class BoxView : public internal_box::BoxViewStorage<Rank, Mutable> { using Storage = internal_box::BoxViewStorage<Rank, Mutable>; using Access = internal::MultiVectorAccess<Storage>; static_assert(RankConstraint(Rank).valid()); public: constexpr static DimensionIndex static_rank = Rank; using RankType = StaticOrDynamicRank<Rank>; using IndexType = internal_box::MaybeConstIndex<!Mutable>; using IndexIntervalType = std::conditional_t<Mutable, IndexIntervalRef, IndexInterval>; template <bool SfinaeM = Mutable, typename = std::enable_if_t<SfinaeM == false>> BoxView() : BoxView(RankType()) {} template <bool SfinaeM = Mutable, typename = std::enable_if_t<SfinaeM == false>> explicit BoxView(RankType rank) { Access::Assign(this, GetConstantVector<Index, -kInfIndex>(rank), GetConstantVector<Index, kInfSize>(rank)); } template <bool SfinaeM = Mutable, typename = std::enable_if_t<SfinaeM == false>> explicit BoxView( span<const Index, Rank> shape ABSL_ATTRIBUTE_LIFETIME_BOUND) { const auto rank = GetStaticOrDynamicExtent(shape); Access::Assign(this, rank, GetConstantVector<Index, 0>(rank).data(), shape.data()); } template <size_t N, bool SfinaeM = Mutable, typename = std::enable_if_t< (RankConstraint::Implies(N, static_rank) && SfinaeM == false)>> explicit BoxView(IndexType (&shape ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) { const auto rank = std::integral_constant<ptrdiff_t, N>{}; Access::Assign(this, rank, GetConstantVector<Index, 0>(rank).data(), shape); } explicit BoxView(span<IndexType, Rank> origin, span<IndexType, Rank> shape) { Access::Assign(this, origin, shape); } template <size_t N, typename = std::enable_if_t< RankConstraint::Implies(N, static_rank)>> explicit BoxView(IndexType (&origin ABSL_ATTRIBUTE_LIFETIME_BOUND)[N], IndexType (&shape ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) { const auto rank = std::integral_constant<ptrdiff_t, N>{}; Access::Assign(this, rank, origin, shape); } explicit BoxView(RankType rank, IndexType* origin, IndexType* shape) { Access::Assign(this, rank, origin, shape); } template < typename BoxType, typename = std::enable_if_t< (IsBoxLike<BoxType> && (!Mutable || IsMutableBoxLike<BoxType>)&&RankConstraint::Implies( internal::remove_cvref_t<BoxType>::static_rank, Rank))>> BoxView(BoxType&& other) : BoxView(other.rank(), other.origin().data(), other.shape().data()) {} template <typename BoxType, typename = std::enable_if_t< (IsBoxLikeExplicitlyConvertibleToRank<BoxType, Rank> && (!Mutable || IsMutableBoxLike<BoxType>))>> explicit BoxView(unchecked_t, BoxType&& other) : BoxView(StaticRankCast<Rank, unchecked>(other.rank()), other.origin().data(), other.shape().data()) {} template < typename BoxType, std::enable_if_t< (IsBoxLike<internal::remove_cvref_t<BoxType>> && (!Mutable || IsMutableBoxLike<std::remove_reference_t<BoxType>>)&& RankConstraint::Implies( internal::remove_cvref_t<BoxType>::static_rank, Rank))>* = nullptr> BoxView& operator=(BoxType&& other) { *this = BoxView(other); return *this; } RankType rank() const { return Access::GetExtent(*this); } IndexIntervalType operator[](DimensionIndex i) const { return IndexIntervalType::UncheckedSized(origin()[i], shape()[i]); } span<IndexType, Rank> origin() const { return Access::template get<0>(this); } span<IndexType, Rank> shape() const { return Access::template get<1>(this); } Index num_elements() const { return ProductOfExtents(shape()); } bool is_empty() const { return internal_box::IsEmpty(span<const Index, Rank>(shape())); } template <typename BoxType, bool SfinaeMutable = Mutable> std::enable_if_t<(SfinaeMutable && IsBoxLikeImplicitlyConvertibleToRank<BoxType, Rank>)> DeepAssign(const BoxType& other) const { assert(other.rank() == rank()); std::copy_n(other.origin().begin(), rank(), origin().begin()); std::copy_n(other.shape().begin(), rank(), shape().begin()); } template <int&... ExplicitArgumentBarrier, bool SfinaeM = Mutable> std::enable_if_t<SfinaeM == true> Fill(IndexInterval interval = {}) const { std::fill_n(origin().begin(), rank(), interval.inclusive_min()); std::fill_n(shape().begin(), rank(), interval.size()); } friend std::ostream& operator<<(std::ostream& os, const BoxView& view) { return internal_box::PrintToOstream(os, view); } template <typename Transformable> decltype(ApplyIndexTransform(std::declval<BoxView>(), std::declval<Transformable>())) operator()(Transformable&& transformable) const { return ApplyIndexTransform(*this, std::forward<Transformable>(transformable)); } }; BoxView(DimensionIndex rank) -> BoxView<>; template <DimensionIndex Rank> BoxView(std::integral_constant<DimensionIndex, Rank> rank) -> BoxView<Rank>; template <DimensionIndex Rank = dynamic_rank> using MutableBoxView = BoxView<Rank, true>; template <DimensionIndex Rank> BoxView(Box<Rank>& box) -> BoxView<RankConstraint::FromInlineRank(Rank), true>; template <DimensionIndex Rank> BoxView(const Box<Rank>& box) -> BoxView<RankConstraint::FromInlineRank(Rank)>; template <typename Shape, std::enable_if_t<IsIndexVector<Shape>>* = nullptr> BoxView(Shape&& shape) -> BoxView<SpanStaticExtent<Shape>::value, IsMutableIndexVector<Shape>>; template <DimensionIndex Rank> BoxView(const Index (&shape)[Rank]) -> BoxView<Rank>; template <DimensionIndex Rank> BoxView(Index (&shape)[Rank]) -> BoxView<Rank, true>; template <typename Origin, typename Shape, std::enable_if_t<(IsIndexVector<Origin> && IsIndexVector<Shape>)>* = nullptr> BoxView(Origin&& origin, Shape&& shape) -> BoxView<SpanStaticExtent<Origin, Shape>::value, (IsMutableIndexVector<Origin> && IsMutableIndexVector<Shape>)>; template <DimensionIndex Rank> BoxView(const Index (&origin)[Rank], const Index (&shape)[Rank]) -> BoxView<Rank>; template <DimensionIndex Rank, bool Mutable> struct StaticCastTraits<BoxView<Rank, Mutable>> : public DefaultStaticCastTraits<BoxView<Rank, Mutable>> { template <typename BoxType> constexpr static bool IsCompatible(const BoxType& box) { return RankConstraint::Implies(box.rank(), Rank); } static std::string Describe() { return internal_box::DescribeForCast(Rank); } static std::string Describe(const BoxView<Rank, Mutable>& box) { return internal_box::DescribeForCast(box.rank()); } template <DimensionIndex TargetRank> using RebindRank = BoxView<TargetRank, Mutable>; }; template <DimensionIndex Rank> struct StaticCastTraits<Box<Rank>> : public DefaultStaticCastTraits<Box<Rank>> { template <typename BoxType> constexpr static bool IsCompatible(const BoxType& box) { return RankConstraint::Implies(box.rank(), RankConstraint::FromInlineRank(Rank)); } static std::string Describe() { return internal_box::DescribeForCast(RankConstraint::FromInlineRank(Rank)); } static std::string Describe(const Box<Rank>& box) { return internal_box::DescribeForCast(box.rank()); } template <DimensionIndex TargetRank> using RebindRank = Box<TargetRank>; }; template <typename BoxA, typename BoxB> std::enable_if_t<(IsBoxLike<BoxA> && IsBoxLike<BoxB> && RankConstraint::EqualOrUnspecified(BoxA::static_rank, BoxB::static_rank)), bool> operator==(const BoxA& box_a, const BoxB& box_b) { return internal_box::AreEqual(box_a, box_b); } template <typename BoxA, typename BoxB> std::enable_if_t<(IsBoxLike<BoxA> && IsBoxLike<BoxB> && RankConstraint::EqualOrUnspecified(BoxA::static_rank, BoxB::static_rank)), bool> operator!=(const BoxA& box_a, const BoxB& box_b) { return !internal_box::AreEqual(box_a, box_b); } template <typename T> constexpr inline bool HasBoxDomain = false; template <DimensionIndex Rank> constexpr inline bool HasBoxDomain<Box<Rank>> = true; template <DimensionIndex Rank, bool Mutable> constexpr inline bool HasBoxDomain<BoxView<Rank, Mutable>> = true; template <DimensionIndex Rank> inline BoxView<RankConstraint::FromInlineRank(Rank)> GetBoxDomainOf( const Box<Rank>& box) { return box; } template <DimensionIndex Rank, bool Mutable> inline BoxView<Rank> GetBoxDomainOf(const BoxView<Rank, Mutable>& box) { return box; } namespace internal_box { bool IsFinite(BoxView<> box); template <DimensionIndex BoxRank, DimensionIndex VectorRank, typename IndexType> bool Contains(const BoxView<BoxRank>& box, span<const IndexType, VectorRank> indices) { if (indices.size() != box.rank()) return false; for (DimensionIndex i = 0; i < box.rank(); ++i) { if (!Contains(box[i], indices[i])) return false; } return true; } template <DimensionIndex OuterRank, DimensionIndex InnerRank> bool Contains(const BoxView<OuterRank>& outer, const BoxView<InnerRank>& inner) { if (inner.rank() != outer.rank()) return false; for (DimensionIndex i = 0; i < outer.rank(); ++i) { if (!Contains(outer[i], inner[i])) return false; } return true; } template <DimensionIndex BoxRank, DimensionIndex VectorRank, typename IndexType> bool ContainsPartial(const BoxView<BoxRank>& box, span<const IndexType, VectorRank> indices) { if (indices.size() > box.rank()) return false; for (DimensionIndex i = 0; i < indices.size(); ++i) { if (!Contains(box[i], indices[i])) return false; } return true; } } template <typename BoxType> std::enable_if_t<HasBoxDomain<BoxType>, bool> IsFinite(const BoxType& box) { return internal_box::IsFinite(GetBoxDomainOf(box)); } template <typename BoxType, typename Indices> std::enable_if_t<(HasBoxDomain<BoxType> && IsIndexConvertibleVector<Indices>), bool> Contains(const BoxType& box, const Indices& indices) { return internal_box::Contains( BoxView<BoxType::static_rank>(GetBoxDomainOf(box)), span(indices)); } template <typename BoxType, DimensionIndex IndicesRank> std::enable_if_t<HasBoxDomain<BoxType>, bool> Contains( const BoxType& box, const Index (&indices)[IndicesRank]) { return internal_box::Contains( BoxView<BoxType::static_rank>(GetBoxDomainOf(box)), span(indices)); } template <typename OuterBox, typename InnerBox> std::enable_if_t<(HasBoxDomain<OuterBox> && IsBoxLike<InnerBox>), bool> Contains(const OuterBox& outer, const InnerBox& inner) { return internal_box::Contains( BoxView<OuterBox::static_rank>(GetBoxDomainOf(outer)), BoxView<InnerBox::static_rank>(inner)); }
#include "tensorstore/box.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/rank.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::dynamic_rank; using ::tensorstore::HasBoxDomain; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IsStaticCastConstructible; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MatchesStatus; using ::tensorstore::MutableBoxView; using ::tensorstore::span; using ::tensorstore::StaticRankCast; using ::tensorstore::SubBoxView; using ::tensorstore::unchecked; using ::tensorstore::serialization::TestSerializationRoundTrip; using ::testing::ElementsAre; using ::testing::ElementsAreArray; static_assert(std::is_convertible_v<BoxView<3>, BoxView<>>); static_assert(!std::is_constructible_v<BoxView<3>, BoxView<>>); static_assert(!std::is_assignable_v<BoxView<3>, BoxView<>>); static_assert(!std::is_assignable_v<Box<3>, Box<>>); static_assert(!std::is_constructible_v<Box<3>, Box<>>); static_assert(!std::is_constructible_v<BoxView<3>, Box<>>); static_assert(!std::is_constructible_v<MutableBoxView<3>, MutableBoxView<>>); static_assert(!std::is_constructible_v<MutableBoxView<3>, Box<>>); static_assert(std::is_constructible_v<MutableBoxView<3>, Box<3>&>); static_assert(IsStaticCastConstructible<BoxView<3>, BoxView<>>); static_assert(IsStaticCastConstructible<Box<3>, BoxView<>>); static_assert(IsStaticCastConstructible<Box<3>, Box<>>); static_assert(IsStaticCastConstructible<BoxView<>, BoxView<3>>); static_assert(IsStaticCastConstructible<MutableBoxView<3>, Box<3>&>); static_assert(!IsStaticCastConstructible<MutableBoxView<>, const Box<3>&>); static_assert(!IsStaticCastConstructible<BoxView<2>, BoxView<3>>); static_assert(!IsStaticCastConstructible<BoxView<2>, Box<3>>); static_assert(!IsStaticCastConstructible<Box<3>, Box<2>>); TEST(BoxTest, DefaultConstructDynamic) { Box<> box; EXPECT_EQ(0, box.rank()); } TEST(BoxTest, DefaultConstructStatic) { Box<3> box; EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(BoxTest, RankPointersConstruct) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; Box<> box(3, origin, shape); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(4, 5, 6)); } TEST(BoxTest, SizeConstruct) { Box<> box(3); EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(BoxTest, ShapeArrayConstruct) { std::array<Index, 3> shape{{1, 2, 3}}; Box<> box(shape); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(1, 2, 3)); } TEST(BoxTest, DynamicRankSpanConstruct) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; Box<> box{span(origin), span(shape)}; EXPECT_EQ(3, box.rank()); EXPECT_THAT(origin, ElementsAreArray(origin)); EXPECT_THAT(shape, ElementsAreArray(shape)); } TEST(BoxTest, ConstructFromArrays) { Box<> box({1, 2, 3}, {4, 5, 6}); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(4, 5, 6)); } TEST(BoxTest, ConstructFromBoxView) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; BoxView<> view(origin, shape); Box<> box(view); EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); } TEST(BoxTest, DeduceFromShapeArray) { const Index shape[] = {3, 4, 5}; auto box = Box(shape); static_assert(std::is_same_v<decltype(box), Box<3>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromShapeSpanStatic) { const Index shape[] = {3, 4, 5}; auto box = Box(span(shape)); static_assert(std::is_same_v<decltype(box), Box<3>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromShapeSpanDynamic) { const Index shape[] = {3, 4, 5}; auto box = Box(span<const Index>(shape)); static_assert(std::is_same_v<decltype(box), Box<>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromOriginAndShapeArrays) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = Box(origin, shape); static_assert(std::is_same_v<decltype(box), Box<3>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromOriginAndShapeSpansStatic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = Box(span(origin), span(shape)); static_assert(std::is_same_v<decltype(box), Box<3>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromOriginAndShapeDynamic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = Box(span<const Index>(origin), span<const Index>(shape)); static_assert(std::is_same_v<decltype(box), Box<>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxTest, DeduceFromBoxView) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<3> box(origin, shape); auto box2 = Box(box); static_assert(std::is_same_v<decltype(box2), Box<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxTest, DeduceFromBox) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; Box<3> box(origin, shape); auto box2 = Box(box); static_assert(std::is_same_v<decltype(box2), Box<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxTest, AssignFromBoxView) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; BoxView<> view(origin, shape); Box<> box; box = view; EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); } TEST(BoxTest, AssignFromBox) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; Box<> other(origin, shape); Box<> box; box = other; EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); } TEST(BoxTest, AssignDynamicBoxFromStaticBox) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; Box<3> other(origin, shape); Box<> box; box = other; EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); box.Fill(); box = BoxView<3>(other); EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); } TEST(BoxTest, AssignStaticBoxFromDynamic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {4, 5, 6}; Box<> other(origin, shape); Box<3> box; box = StaticRankCast<3, unchecked>(other); EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.shape(), ElementsAreArray(shape)); EXPECT_THAT(box.origin(), ElementsAreArray(origin)); } TEST(BoxTest, SetRank) { Box<> box; box.set_rank(3); EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(BoxTest, Accessors) { Box<> box({1, 2, 3}, {4, 5, 6}); EXPECT_EQ(4 * 5 * 6, box.num_elements()); EXPECT_EQ(IndexInterval::UncheckedSized(1, 4), box[0]); EXPECT_EQ(IndexInterval::UncheckedSized(2, 5), box[1]); EXPECT_EQ(IndexInterval::UncheckedSized(3, 6), box[2]); } TEST(BoxTest, ConstAccessors) { const Box<> box({1, 2, 3}, {4, 5, 6}); EXPECT_EQ(4 * 5 * 6, box.num_elements()); EXPECT_EQ(IndexInterval::UncheckedSized(1, 4), box[0]); EXPECT_EQ(IndexInterval::UncheckedSized(2, 5), box[1]); EXPECT_EQ(IndexInterval::UncheckedSized(3, 6), box[2]); } TEST(BoxTest, SubscriptAssignment) { Box<> box(2); box[1] = IndexInterval::UncheckedSized(1, 5); EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, 1)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, 5)); } TEST(BoxTest, Fill) { Box<> box(2); box.Fill(IndexInterval::UncheckedSized(1, 5)); EXPECT_THAT(box.origin(), ElementsAre(1, 1)); EXPECT_THAT(box.shape(), ElementsAre(5, 5)); } TEST(BoxTest, IsEmpty) { Box<> box(3); EXPECT_FALSE(box.is_empty()); box.Fill(IndexInterval::UncheckedSized(0, 0)); EXPECT_TRUE(box.is_empty()); } TEST(BoxViewTest, StaticRankDefaultConstruct) { BoxView<3> box; EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(BoxViewTest, DynamicRankDefaultConstruct) { BoxView<> box; EXPECT_EQ(0, box.rank()); } TEST(BoxViewTest, DynamicRankSizeConstruct) { BoxView<> box(3); EXPECT_EQ(3, box.rank()); EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(BoxViewTest, DynamicRankSpanConstruct) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<> box{span(origin), span(shape)}; EXPECT_EQ(3, box.rank()); EXPECT_EQ(&origin[0], box.origin().data()); EXPECT_EQ(&shape[0], box.shape().data()); } TEST(BoxViewTest, DeduceFromShapeArray) { const Index shape[] = {3, 4, 5}; auto box = BoxView(shape); static_assert(std::is_same_v<decltype(box), BoxView<3>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromShapeSpanStatic) { const Index shape[] = {3, 4, 5}; auto box = BoxView(span(shape)); static_assert(std::is_same_v<decltype(box), BoxView<3>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromShapeSpanDynamic) { const Index shape[] = {3, 4, 5}; auto box = BoxView(span<const Index>(shape)); static_assert(std::is_same_v<decltype(box), BoxView<>>); EXPECT_THAT(box.origin(), ElementsAre(0, 0, 0)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromOriginAndShapeArrays) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = BoxView(origin, shape); static_assert(std::is_same_v<decltype(box), BoxView<3>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromOriginAndShapeSpansStatic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = BoxView(span(origin), span(shape)); static_assert(std::is_same_v<decltype(box), BoxView<3>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromOriginAndShapeDynamic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; auto box = BoxView(span<const Index>(origin), span<const Index>(shape)); static_assert(std::is_same_v<decltype(box), BoxView<>>); EXPECT_THAT(box.origin(), ElementsAre(1, 2, 3)); EXPECT_THAT(box.shape(), ElementsAre(3, 4, 5)); } TEST(BoxViewTest, DeduceFromBoxView) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<3> box(origin, shape); auto box2 = BoxView(box); static_assert(std::is_same_v<decltype(box2), BoxView<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, DeduceFromBox) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; const Box<3> box(origin, shape); auto box2 = BoxView(box); static_assert(std::is_same_v<decltype(box2), BoxView<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, Subscript) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<> box(origin, shape); EXPECT_EQ(IndexInterval::UncheckedSized(1, 3), box[0]); EXPECT_EQ(IndexInterval::UncheckedSized(2, 4), box[1]); EXPECT_EQ(IndexInterval::UncheckedSized(3, 5), box[2]); } TEST(BoxViewTest, NumElements) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<> box(origin, shape); EXPECT_EQ(3 * 4 * 5, box.num_elements()); } TEST(BoxViewTest, StaticToDynamicConversion) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<3> box(origin, shape); BoxView<> dynamic_box = box; EXPECT_EQ(3, dynamic_box.rank()); EXPECT_THAT(dynamic_box.shape(), ElementsAreArray(shape)); EXPECT_THAT(dynamic_box.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, DefaultAssignment) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<3> box(origin, shape); BoxView<3> box2; box2 = box; EXPECT_EQ(3, box2.rank()); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, DefaultAssignmentStaticToDynamic) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<3> box(origin, shape); BoxView<> box2; box2 = box; EXPECT_EQ(3, box2.rank()); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, StaticRankCast) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; BoxView<> box(origin, shape); auto box2 = StaticRankCast<3, unchecked>(box); EXPECT_THAT( StaticRankCast<2>(box), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot cast box with rank of 3 to box with rank of 2")); static_assert(std::is_same_v<decltype(box2), BoxView<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxViewTest, ConstructFromDynamicBox) { Box<> box({1, 2}, {3, 4}); BoxView<> box_view = box; EXPECT_EQ(2, box_view.rank()); EXPECT_EQ(box.shape().data(), box_view.shape().data()); EXPECT_EQ(box.origin().data(), box_view.origin().data()); } TEST(BoxViewTest, ConstructFromStaticBox) { Box<2> box({1, 2}, {3, 4}); BoxView<> box_view = box; EXPECT_EQ(2, box_view.rank()); EXPECT_EQ(box.shape().data(), box_view.shape().data()); EXPECT_EQ(box.origin().data(), box_view.origin().data()); } TEST(MutableBoxViewTest, RankPointersConstruct) { Index origin[] = {1, 2, 3}; Index shape[] = {4, 5, 6}; MutableBoxView<> box(3, origin, shape); EXPECT_EQ(3, box.rank()); EXPECT_EQ(box.origin().data(), origin); EXPECT_EQ(box.shape().data(), shape); } TEST(MutableBoxViewTest, DynamicRankSpanConstruct) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; MutableBoxView<> box{span(origin), span(shape)}; EXPECT_EQ(3, box.rank()); EXPECT_EQ(box.origin().data(), origin); EXPECT_EQ(box.shape().data(), shape); } TEST(MutableBoxViewTest, DeduceFromOriginAndShapeArrays) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; auto box = BoxView(origin, shape); static_assert(std::is_same_v<decltype(box), MutableBoxView<3>>); EXPECT_EQ(3, box.rank()); EXPECT_EQ(box.origin().data(), origin); EXPECT_EQ(box.shape().data(), shape); } TEST(MutableBoxViewTest, DeduceFromOriginAndShapeSpansStatic) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; auto box = BoxView(span(origin), span(shape)); static_assert(std::is_same_v<decltype(box), MutableBoxView<3>>); EXPECT_EQ(3, box.rank()); EXPECT_EQ(box.origin().data(), origin); EXPECT_EQ(box.shape().data(), shape); } TEST(MutableBoxViewTest, DeduceFromOriginAndShapeDynamic) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; auto box = BoxView(span<Index>(origin), span<Index>(shape)); static_assert(std::is_same_v<decltype(box), MutableBoxView<>>); EXPECT_EQ(3, box.rank()); EXPECT_EQ(box.origin().data(), origin); EXPECT_EQ(box.shape().data(), shape); } TEST(MutableBoxViewTest, DeduceFromBox) { const Index origin[] = {1, 2, 3}; const Index shape[] = {3, 4, 5}; Box<3> box(origin, shape); auto box2 = BoxView(box); static_assert(std::is_same_v<decltype(box2), MutableBoxView<3>>); EXPECT_EQ(box2.shape().data(), box.shape().data()); EXPECT_EQ(box2.origin().data(), box.origin().data()); } TEST(MutableBoxViewTest, DeduceFromMutableBoxView) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; MutableBoxView<3> box(origin, shape); auto box2 = BoxView(box); static_assert(std::is_same_v<decltype(box2), MutableBoxView<3>>); EXPECT_EQ(box2.shape().data(), box.shape().data()); EXPECT_EQ(box2.origin().data(), box.origin().data()); } TEST(MutableBoxViewTest, AssignFromBoxView) { Index origin1[] = {1, 2, 3}; Index shape1[] = {4, 5, 6}; const Index origin2[] = {10, 20, 30}; const Index shape2[] = {40, 50, 60}; MutableBoxView<> box(origin1, shape1); box.DeepAssign(BoxView(origin2, shape2)); EXPECT_EQ(3, box.rank()); EXPECT_THAT(origin1, ElementsAreArray(origin2)); EXPECT_THAT(shape1, ElementsAreArray(shape2)); } TEST(MutableBoxViewTest, AssignFromBox) { Index origin1[] = {1, 2, 3}; Index shape1[] = {4, 5, 6}; const Index origin2[] = {10, 20, 30}; const Index shape2[] = {40, 50, 60}; MutableBoxView<> box(origin1, shape1); box.DeepAssign(Box(origin2, shape2)); EXPECT_EQ(3, box.rank()); EXPECT_THAT(origin1, ElementsAreArray(origin2)); EXPECT_THAT(shape1, ElementsAreArray(shape2)); } TEST(MutableBoxViewTest, CopyAssign) { Index origin1[] = {1, 2, 3}; Index shape1[] = {4, 5, 6}; Index origin2[] = {10, 20, 30}; Index shape2[] = {40, 50, 60}; MutableBoxView<> box(origin1, shape1); box.DeepAssign(MutableBoxView<>(origin2, shape2)); EXPECT_EQ(3, box.rank()); EXPECT_THAT(origin1, ElementsAreArray(origin2)); EXPECT_THAT(shape1, ElementsAreArray(shape2)); } TEST(MutableBoxViewTest, SubscriptAssignment) { Index origin[] = {1, 2, 3}; Index shape[] = {4, 5, 6}; MutableBoxView<> box(origin, shape); box[1] = IndexInterval::UncheckedSized(1, 7); EXPECT_THAT(origin, ElementsAre(1, 1, 3)); EXPECT_THAT(shape, ElementsAre(4, 7, 6)); } TEST(MutableBoxViewTest, Fill) { Index origin[] = {1, 2, 3}; Index shape[] = {4, 5, 6}; MutableBoxView<> box(origin, shape); box.Fill(IndexInterval::UncheckedSized(1, 5)); EXPECT_THAT(box.origin(), ElementsAre(1, 1, 1)); EXPECT_THAT(box.shape(), ElementsAre(5, 5, 5)); box.Fill(); EXPECT_THAT(box.origin(), ElementsAre(-kInfIndex, -kInfIndex, -kInfIndex)); EXPECT_THAT(box.shape(), ElementsAre(kInfSize, kInfSize, kInfSize)); } TEST(MutableBoxViewTest, StaticRankCast) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; MutableBoxView<> box(origin, shape); auto box2 = StaticRankCast<3, unchecked>(box); static_assert(std::is_same_v<decltype(box2), MutableBoxView<3>>); EXPECT_THAT(box2.shape(), ElementsAreArray(shape)); EXPECT_THAT(box2.origin(), ElementsAreArray(origin)); } TEST(BoxTest, Comparison) { const Index origin1[] = {1, 2, 3}; const Index shape1[] = {4, 5, 6}; const Index origin2[] = {1, 2, 3}; const Index shape2[] = {4, 5, 6}; const Index origin3[] = {1, 2, 4}; const Index shape3[] = {4, 5, 7}; const Index origin4[] = {1, 2}; const Index shape4[] = {4, 5}; BoxView<> view1(origin1, shape1); Box<> box1(view1); BoxView<> view2(origin2, shape2); Box<> box2(view2); BoxView<> view3(origin3, shape3); Box<> box3(view3); BoxView<> view4(origin4, shape4); Box<> box4(view4); EXPECT_EQ(box1, view1); EXPECT_EQ(box2, view2); EXPECT_EQ(box3, view3); EXPECT_EQ(box4, view4); EXPECT_EQ(view1, view2); EXPECT_EQ(view1, box2); EXPECT_EQ(box1, view2); EXPECT_EQ(box1, box2); EXPECT_NE(view1, view3); EXPECT_NE(view1, box3); EXPECT_NE(box1, view3); EXPECT_NE(box1, box3); EXPECT_NE(view1, view4); EXPECT_NE(view1, box4); EXPECT_NE(box1, view4); EXPECT_NE(box1, box4); } TEST(BoxTest, Print) { Index origin[] = {1, 2, 3}; Index shape[] = {3, 4, 5}; EXPECT_EQ("{origin={1, 2, 3}, shape={3, 4, 5}}", tensorstore::StrCat(BoxView<>(origin, shape))); EXPECT_EQ("{origin={1, 2, 3}, shape={3, 4, 5}}", tensorstore::StrCat(Box<>(origin, shape))); EXPECT_EQ("{origin={1, 2, 3}, shape={3, 4, 5}}", tensorstore::StrCat(MutableBoxView<>(origin, shape))); } TEST(BoxTest, Contains) { const Index origin1[] = {1, 2}; const Index shape1[] = {4, 5}; const Index origin2[] = {2, 2}; const Index shape2[] = {3, 5}; const Index origin3[] = {1, 2}; const Index shape3[] = {4, 6}; const Index origin4[] = {1}; const Index shape4[] = {4}; const Index indices1[] = {2, 3}; const Index indices2[] = {0, 3}; const Index indices3[] = {0}; Index indices4[] = {2}; auto span1 = span(indices1); auto span2 = span(indices2); auto span3 = span(indices3); auto span4 = span(indices4); BoxView<> view1(origin1, shape1); BoxView<> view2(origin2, shape2); BoxView<> view3(origin3, shape3); BoxView<> view4(origin4, shape4); Box<> box1(origin1, shape1); Box<> box2(origin2, shape2); Box<> box3(origin3, shape3); Box<> box4(origin4, shape4); EXPECT_TRUE(Contains(view1, indices1)); EXPECT_TRUE(ContainsPartial(view1, indices1)); EXPECT_TRUE(ContainsPartial(view1, indices4)); EXPECT_FALSE(Contains(view1, indices2)); EXPECT_FALSE(Contains(view1, indices3)); EXPECT_FALSE(ContainsPartial(view1, indices2)); EXPECT_FALSE(ContainsPartial(view1, indices3)); EXPECT_TRUE(Contains(view1, span1)); EXPECT_TRUE(ContainsPartial(view1, span1)); EXPECT_FALSE(Contains(view1, span2)); EXPECT_FALSE(ContainsPartial(view1, span2)); EXPECT_FALSE(Contains(view1, span3)); EXPECT_FALSE(ContainsPartial(view1, span3)); EXPECT_TRUE(ContainsPartial(view1, span4)); EXPECT_TRUE(Contains(box1, indices1)); EXPECT_TRUE(ContainsPartial(box1, indices1)); EXPECT_FALSE(Contains(box1, indices2)); EXPECT_FALSE(Contains(box1, indices3)); EXPECT_TRUE(Contains(box1, span1)); EXPECT_FALSE(Contains(box1, span2)); EXPECT_FALSE(Contains(box1, span3)); EXPECT_TRUE(Contains(view1, view2)); EXPECT_FALSE(Contains(view1, view3)); EXPECT_FALSE(Contains(view1, view4)); EXPECT_TRUE(Contains(view1, box2)); EXPECT_FALSE(Contains(view1, box3)); EXPECT_FALSE(Contains(view1, box4)); EXPECT_TRUE(Contains(box1, view2)); EXPECT_FALSE(Contains(box1, view3)); EXPECT_FALSE(Contains(box1, view4)); EXPECT_TRUE(Contains(box1, box2)); EXPECT_FALSE(Contains(box1, box3)); EXPECT_FALSE(Contains(box1, box4)); } TEST(BoxTest, GetBoxDomainOf) { static_assert(!HasBoxDomain<int>); static_assert(HasBoxDomain<BoxView<>>); static_assert(HasBoxDomain<Box<>>); static_assert(HasBoxDomain<MutableBoxView<>>); Box<> box({1, 2}, {3, 4}); BoxView<> view = box; EXPECT_EQ(box, GetBoxDomainOf(box)); EXPECT_EQ(box, GetBoxDomainOf(view)); } TEST(BoxTest, InlineSize) { Box<dynamic_rank(2)> box({1, 2}, {3, 4}); BoxView<dynamic_rank> v = box; EXPECT_EQ(v, box); MutableBoxView<dynamic_rank> v2 = box; EXPECT_EQ(v2, box); } TEST(BoxTest, DeductionGuides) { auto box = Box({1, 2}, {3, 4}); static_assert(std::is_same_v<decltype(box), Box<2>>); static_assert(std::is_same_v<decltype(BoxView({1, 2}, {3, 4})), BoxView<2>>); static_assert(decltype(box)::static_rank == 2); auto box_view = BoxView(box); static_assert(std::is_same_v<decltype(box_view), MutableBoxView<2>>); } TEST(BoxTest, IsFinite) { EXPECT_TRUE(IsFinite(Box<>())); EXPECT_TRUE(IsFinite(BoxView<>())); EXPECT_FALSE(IsFinite(Box<>(1))); EXPECT_FALSE(IsFinite(Box<1>())); EXPECT_FALSE(IsFinite(BoxView<>(1))); EXPECT_FALSE(IsFinite(BoxView<>(2))); EXPECT_FALSE(IsFinite(BoxView<2>())); EXPECT_TRUE(IsFinite(Box<3>({1, 2, 3}, {4, 5, 6}))); EXPECT_TRUE(IsFinite(BoxView<3>({1, 2, 3}, {4, 5, 6}))); EXPECT_TRUE(IsFinite(Box<>({1, 2, 3}, {4, 5, 6}))); EXPECT_TRUE(IsFinite(BoxView<>({1, 2, 3}, {4, 5, 6}))); EXPECT_TRUE(IsFinite(Box<1>({1}, {4}))); EXPECT_FALSE(IsFinite(Box<3>({1, -kInfIndex, 3}, {4, 5, 6}))); EXPECT_FALSE(IsFinite(Box<3>({1, kInfIndex - 5, 3}, {4, 6, 6}))); } TEST(BoxSerializationTest, StaticRank) { TestSerializationRoundTrip(Box<0>()); TestSerializationRoundTrip(Box<3>({1, 2, 3}, {4, 5, 6})); } TEST(BoxSerializationTest, DynamicRank) { TestSerializationRoundTrip(Box<>()); TestSerializationRoundTrip(Box({1, 2, 3}, {4, 5, 6})); } TEST(BoxTest, SubBoxView) { Box<> b({1, 2, 3}, {4, 5, 6}); const Box<>& b_const = b; BoxView<> b_view = b; MutableBoxView<> b_mut_view = b; EXPECT_EQ(Box<>({2, 3}, {5, 6}), SubBoxView(b, 1)); EXPECT_EQ(Box<>({2}, {5}), SubBoxView(b, 1, 2)); static_assert(std::is_same_v<decltype(SubBoxView(b, 1)), MutableBoxView<>>); static_assert(std::is_same_v<decltype(SubBoxView(b_const, 1)), BoxView<>>); static_assert(std::is_same_v<decltype(SubBoxView(b_view, 1)), BoxView<>>); static_assert( std::is_same_v<decltype(SubBoxView(b_mut_view, 1)), MutableBoxView<>>); } }
530
cpp
google/tensorstore
index_interval
tensorstore/index_interval.cc
tensorstore/index_interval_test.cc
#ifndef TENSORSTORE_INDEX_INTERVAL_H_ #define TENSORSTORE_INDEX_INTERVAL_H_ #include <cassert> #include <iosfwd> #include <string_view> #include <type_traits> #include <utility> #include "absl/status/status.h" #include "tensorstore/container_kind.h" #include "tensorstore/index.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/util/division.h" #include "tensorstore/util/result.h" namespace tensorstore { inline constexpr bool IsFiniteIndex(Index index) { return index >= kMinFiniteIndex && index <= kMaxFiniteIndex; } inline constexpr bool IsValidIndex(Index index) { return index >= -kInfIndex && index <= +kInfIndex; } class IndexInterval { public: constexpr IndexInterval() noexcept : inclusive_min_(-kInfIndex), size_(kInfSize) {} constexpr static IndexInterval Infinite() noexcept { return {}; } constexpr static bool ValidClosed(Index inclusive_min, Index inclusive_max) { return inclusive_min >= -kInfIndex && inclusive_min < kInfIndex && inclusive_max > -kInfIndex && inclusive_max >= inclusive_min - 1 && inclusive_max <= kInfIndex; } static constexpr IndexInterval UncheckedClosed(Index inclusive_min, Index inclusive_max) noexcept { assert(ValidClosed(inclusive_min, inclusive_max)); return IndexInterval(inclusive_min, inclusive_max - inclusive_min + 1); } static Result<IndexInterval> Closed(Index inclusive_min, Index inclusive_max); constexpr static bool ValidHalfOpen(Index inclusive_min, Index exclusive_max) { return inclusive_min >= -kInfIndex && inclusive_min < kInfIndex && exclusive_max > -kInfIndex + 1 && exclusive_max >= inclusive_min && exclusive_max <= kInfIndex + 1; } static constexpr IndexInterval UncheckedHalfOpen( Index inclusive_min, Index exclusive_max) noexcept { assert(ValidHalfOpen(inclusive_min, exclusive_max)); return IndexInterval(inclusive_min, exclusive_max - inclusive_min); } static Result<IndexInterval> HalfOpen(Index inclusive_min, Index exclusive_max); constexpr static bool ValidSized(Index inclusive_min, Index size) { return inclusive_min >= -kInfIndex && size >= 0 && size <= kInfSize && inclusive_min < kInfIndex && inclusive_min <= kInfIndex + 1 - size && inclusive_min + size > -kInfIndex + 1; } static constexpr IndexInterval UncheckedSized(Index inclusive_min, Index size) { assert(ValidSized(inclusive_min, size)); return IndexInterval(inclusive_min, size); } static Result<IndexInterval> Sized(Index inclusive_min, Index size); constexpr Index inclusive_min() const { return inclusive_min_; } constexpr Index exclusive_min() const { return inclusive_min_ - 1; } constexpr Index exclusive_max() const { return inclusive_min_ + size_; } constexpr Index inclusive_max() const { return inclusive_min_ + size_ - 1; } constexpr Index size() const { return size_; } constexpr bool empty() const { return size_ == 0; } friend std::ostream& operator<<(std::ostream& os, IndexInterval x); friend constexpr bool operator==(IndexInterval a, IndexInterval b) { return a.inclusive_min() == b.inclusive_min() && a.size() == b.size(); } friend constexpr bool operator!=(IndexInterval a, IndexInterval b) { return !(a == b); } constexpr IndexInterval operator-() const { if (size_ == 0) return IndexInterval(-inclusive_min_, 0); return IndexInterval(-inclusive_max(), size()); } template <typename H> friend H AbslHashValue(H h, IndexInterval x) { return H::combine(std::move(h), x.inclusive_min(), x.size()); } static constexpr IndexInterval FiniteRange() { return UncheckedClosed(kMinFiniteIndex, kMaxFiniteIndex); } private: explicit constexpr IndexInterval(Index inclusive_min, Index size) noexcept : inclusive_min_(inclusive_min), size_(size) {} friend class IndexIntervalRef; Index inclusive_min_; Index size_; }; constexpr inline bool Contains(IndexInterval interval, Index index) { return index >= kMinFiniteIndex && index <= kMaxFiniteIndex && index >= interval.inclusive_min() && index <= interval.inclusive_max(); } constexpr inline bool Contains(IndexInterval outer, IndexInterval inner) { return inner.size() == 0 || (inner.inclusive_min() >= outer.inclusive_min() && inner.inclusive_max() <= outer.inclusive_max()); } constexpr inline bool IsFinite(IndexInterval interval) { return interval.inclusive_min() != -kInfIndex && interval.inclusive_max() != kInfIndex; } class IndexIntervalRef { public: constexpr explicit IndexIntervalRef(IndexInterval& other) : IndexIntervalRef(other.inclusive_min_, other.size_) {} constexpr operator IndexInterval() const { return IndexInterval::UncheckedSized(inclusive_min(), size()); } constexpr IndexIntervalRef& operator=(IndexInterval interval) noexcept { inclusive_min_ = interval.inclusive_min(); size_ = interval.size(); return *this; } constexpr IndexIntervalRef& operator=(IndexIntervalRef interval) noexcept { inclusive_min_ = interval.inclusive_min(); size_ = interval.size(); return *this; } constexpr Index inclusive_min() const { return inclusive_min_; } constexpr Index size() const { return size_; } constexpr bool empty() const { return size_ == 0; } constexpr Index exclusive_min() const { return inclusive_min_ - 1; } constexpr Index exclusive_max() const { return inclusive_min_ + size_; } constexpr Index inclusive_max() const { return inclusive_min_ + size_ - 1; } static constexpr IndexIntervalRef UncheckedSized( Index& inclusive_min, Index& size) { return IndexIntervalRef(inclusive_min, size); } friend std::ostream& operator<<(std::ostream& os, IndexIntervalRef x) { return os << static_cast<IndexInterval>(x); } private: explicit constexpr IndexIntervalRef(Index& inclusive_min, Index& size) : inclusive_min_(inclusive_min), size_(size) {} Index& inclusive_min_; Index& size_; }; IndexInterval Hull(IndexInterval a, IndexInterval b); IndexInterval Intersect(IndexInterval a, IndexInterval b); inline IndexInterval FiniteSubset(IndexInterval interval) { return Intersect(interval, IndexInterval::FiniteRange()); } bool AreCompatibleOrUnbounded(IndexInterval a, IndexInterval b); bool ContainsOrUnbounded(IndexInterval outer, IndexInterval inner); Result<IndexInterval> ShiftInterval(IndexInterval interval, Index min_offset, Index max_offset); Result<IndexInterval> ShiftInterval(IndexInterval interval, Index offset); Result<IndexInterval> ShiftIntervalBackward(IndexInterval interval, Index min_offset, Index max_offset); Result<IndexInterval> ShiftIntervalBackward(IndexInterval interval, Index offset); Result<IndexInterval> ShiftIntervalTo(IndexInterval interval, Index origin); absl::Status CheckContains(IndexInterval interval, Index index); enum class IntervalForm { sized, closed, half_open, }; class OptionallyImplicitIndexInterval : public IndexInterval { public: constexpr OptionallyImplicitIndexInterval() noexcept = default; constexpr OptionallyImplicitIndexInterval(IndexInterval interval, bool implicit_lower, bool implicit_upper) noexcept : IndexInterval(interval), implicit_lower_(implicit_lower), implicit_upper_(implicit_upper) {} const IndexInterval& interval() const { return *this; } IndexInterval& interval() { return *this; } bool implicit_lower() const { return implicit_lower_; } bool& implicit_lower() { return implicit_lower_; } bool implicit_upper() const { return implicit_upper_; } bool& implicit_upper() { return implicit_upper_; } IndexInterval effective_interval() const { return IndexInterval::UncheckedClosed( implicit_lower() ? -kInfIndex : inclusive_min(), implicit_upper() ? +kInfIndex : inclusive_max()); } friend std::ostream& operator<<(std::ostream& os, const OptionallyImplicitIndexInterval& x); friend bool operator==(const OptionallyImplicitIndexInterval& a, const OptionallyImplicitIndexInterval& b) { return a.interval() == b.interval() && a.implicit_lower() == b.implicit_lower() && a.implicit_upper() == b.implicit_upper(); } friend bool operator!=(const OptionallyImplicitIndexInterval& a, const OptionallyImplicitIndexInterval& b) { return !(a == b); } template <typename H> friend H AbslHashValue(H h, const OptionallyImplicitIndexInterval& x) { return H::combine(std::move(h), x.interval(), x.implicit_lower(), x.implicit_upper()); } constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.interval(), x.implicit_lower(), x.implicit_upper()); }; private: bool implicit_lower_ = true; bool implicit_upper_ = true; }; OptionallyImplicitIndexInterval Hull(OptionallyImplicitIndexInterval a, OptionallyImplicitIndexInterval b); OptionallyImplicitIndexInterval Intersect(OptionallyImplicitIndexInterval a, OptionallyImplicitIndexInterval b); OptionallyImplicitIndexInterval IntersectPreferringExplicit( OptionallyImplicitIndexInterval a, OptionallyImplicitIndexInterval b); template <ContainerKind LabelCKind = container> class IndexDomainDimension : public OptionallyImplicitIndexInterval { public: using Label = std::conditional_t<LabelCKind == container, std::string, std::string_view>; IndexDomainDimension() = default; IndexDomainDimension(const OptionallyImplicitIndexInterval& interval) : OptionallyImplicitIndexInterval(interval) {} IndexDomainDimension(const OptionallyImplicitIndexInterval& interval, Label label) : OptionallyImplicitIndexInterval(interval), label_(std::move(label)) {} template <ContainerKind OtherCKind> IndexDomainDimension(const IndexDomainDimension<OtherCKind>& other) : IndexDomainDimension(other.optionally_implicit_interval(), Label(other.label())) {} template <ContainerKind OtherCKind> IndexDomainDimension& operator=( const IndexDomainDimension<OtherCKind>& other) { optionally_implicit_interval() = other.optionally_implicit_interval(); label_ = Label(other.label()); return *this; } const OptionallyImplicitIndexInterval& optionally_implicit_interval() const { return *this; } OptionallyImplicitIndexInterval& optionally_implicit_interval() { return *this; } std::string_view label() const { return label_; } Label& label() { return label_; } constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.optionally_implicit_interval(), x.label_); }; #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wnon-template-friend" #endif friend std::ostream& operator<<(std::ostream& os, const IndexDomainDimension& x); #if defined(__GNUC__) && !defined(__clang__) #pragma GCC diagnostic pop #endif friend bool operator==(const IndexDomainDimension<container>& a, const IndexDomainDimension<container>& b); friend bool operator==(const IndexDomainDimension<view>& a, const IndexDomainDimension<view>& b); friend bool operator==(const IndexDomainDimension<view>& a, const IndexDomainDimension<container>& b); friend bool operator==(const IndexDomainDimension<container>& a, const IndexDomainDimension<view>& b); template <ContainerKind OtherCKind> friend bool operator!=(const IndexDomainDimension<LabelCKind>& a, const IndexDomainDimension<OtherCKind>& b) { return !(a == b); } template <typename H> friend H AbslHashValue(H h, const IndexDomainDimension& x) { return H::combine(std::move(h), x.optionally_implicit_interval(), x.label()); } private: Label label_; }; template <ContainerKind LabelCKind> bool operator==(const IndexDomainDimension<LabelCKind>& a, const OptionallyImplicitIndexInterval& b) = delete; template <ContainerKind LabelCKind> bool operator!=(const IndexDomainDimension<LabelCKind>& a, const OptionallyImplicitIndexInterval& b) = delete; template <ContainerKind LabelCKind> bool operator==(const OptionallyImplicitIndexInterval& a, const IndexDomainDimension<LabelCKind>& b) = delete; template <ContainerKind LabelCKind> bool operator!=(const OptionallyImplicitIndexInterval& a, const IndexDomainDimension<LabelCKind>& b) = delete; template <ContainerKind LabelCKind> bool operator==(const IndexDomainDimension<LabelCKind>& a, const IndexInterval& b) = delete; template <ContainerKind LabelCKind> bool operator!=(const IndexDomainDimension<LabelCKind>& a, const IndexInterval& b) = delete; template <ContainerKind LabelCKind> bool operator==(const IndexInterval& a, const IndexDomainDimension<LabelCKind>& b) = delete; template <ContainerKind LabelCKind> bool operator!=(const IndexInterval& a, const IndexDomainDimension<LabelCKind>& b) = delete; Result<std::string_view> MergeDimensionLabels(std::string_view a, std::string_view b); Result<OptionallyImplicitIndexInterval> MergeOptionallyImplicitIndexIntervals( OptionallyImplicitIndexInterval a, OptionallyImplicitIndexInterval b);
#include "tensorstore/index_interval.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/hash/hash_testing.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::AreCompatibleOrUnbounded; using ::tensorstore::ComputeStridedSliceMap; using ::tensorstore::container; using ::tensorstore::DividePositiveRoundOut; using ::tensorstore::ExplicitIndexOr; using ::tensorstore::ExtractClosedStridedSlice; using ::tensorstore::ExtractHalfOpenStridedSlice; using ::tensorstore::ExtractSizedStridedSlice; using ::tensorstore::GetAffineTransformInverseDomain; using ::tensorstore::ImplicitOrEqual; using ::tensorstore::Index; using ::tensorstore::IndexDomainDimension; using ::tensorstore::IndexInterval; using ::tensorstore::IndexIntervalRef; using ::tensorstore::Intersect; using ::tensorstore::IntervalForm; using ::tensorstore::kImplicit; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::kMaxFiniteIndex; using ::tensorstore::kMinFiniteIndex; using ::tensorstore::MatchesStatus; using ::tensorstore::MergeDimensionLabels; using ::tensorstore::MergeOptionallyImplicitIndexIntervals; using ::tensorstore::OptionallyImplicitIndexInterval; using ::tensorstore::ShiftInterval; using ::tensorstore::ShiftIntervalBackward; using ::tensorstore::ShiftIntervalTo; using ::tensorstore::StrCat; using ::tensorstore::view; using ::tensorstore::serialization::TestSerializationRoundTrip; using ::testing::Optional; using ::testing::Pair; TEST(IndexIntervalTest, DefaultConstruct) { IndexInterval x; EXPECT_EQ(-kInfIndex, x.inclusive_min()); EXPECT_EQ(-kInfIndex - 1, x.exclusive_min()); EXPECT_EQ(kInfIndex, x.inclusive_max()); EXPECT_EQ(kInfIndex + 1, x.exclusive_max()); EXPECT_EQ(kInfSize, x.size()); EXPECT_FALSE(x.empty()); } TEST(IndexIntervalTest, Empty) { EXPECT_TRUE(IndexInterval::UncheckedSized(1, 0).empty()); } TEST(IndexIntervalTest, ValidSized) { EXPECT_TRUE(IndexInterval::ValidSized(0, 0)); EXPECT_TRUE(IndexInterval::ValidSized(-kInfIndex, kInfSize)); EXPECT_TRUE(IndexInterval::ValidSized(-kInfIndex, 100)); EXPECT_TRUE(IndexInterval::ValidSized(kInfIndex - 5, 6)); EXPECT_TRUE(IndexInterval::ValidSized(-kInfIndex, 2)); EXPECT_FALSE(IndexInterval::ValidSized(-kInfIndex - 1, 0)); EXPECT_FALSE(IndexInterval::ValidSized(5, -1)); EXPECT_FALSE(IndexInterval::ValidSized(kInfIndex - 5, 7)); EXPECT_FALSE(IndexInterval::ValidSized(-kInfIndex, 0)); EXPECT_FALSE(IndexInterval::ValidSized(-kInfIndex, 1)); EXPECT_FALSE(IndexInterval::ValidSized(kInfIndex, 1)); EXPECT_FALSE(IndexInterval::ValidSized(kInfIndex, 0)); } TEST(IndexIntervalTest, ValidClosed) { EXPECT_TRUE(IndexInterval::ValidClosed(0, 0)); EXPECT_TRUE(IndexInterval::ValidClosed(0, -1)); EXPECT_TRUE(IndexInterval::ValidClosed(-kInfIndex, kInfIndex)); EXPECT_TRUE(IndexInterval::ValidClosed(-5, kInfIndex)); EXPECT_TRUE(IndexInterval::ValidClosed(-kInfIndex, -kInfIndex + 1)); EXPECT_FALSE(IndexInterval::ValidClosed(0, -2)); EXPECT_FALSE(IndexInterval::ValidClosed(-kInfIndex - 1, 0)); EXPECT_FALSE(IndexInterval::ValidClosed(0, kInfIndex + 1)); EXPECT_FALSE(IndexInterval::ValidClosed(-kInfIndex, -kInfIndex)); EXPECT_FALSE(IndexInterval::ValidClosed(+kInfIndex, +kInfIndex)); } TEST(IndexIntervalTest, ValidHalfOpen) { EXPECT_TRUE(IndexInterval::ValidHalfOpen(0, 0)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(0, -1)); EXPECT_TRUE(IndexInterval::ValidHalfOpen(-kInfIndex, kInfIndex + 1)); EXPECT_TRUE(IndexInterval::ValidHalfOpen(-5, kInfIndex + 1)); EXPECT_TRUE(IndexInterval::ValidHalfOpen(-kInfIndex, -kInfIndex + 2)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(-kInfIndex - 1, 0)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(0, kInfIndex + 2)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(-kInfIndex, -kInfIndex)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(-kInfIndex, -kInfIndex + 1)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(kInfIndex, kInfIndex)); EXPECT_FALSE(IndexInterval::ValidHalfOpen(kInfIndex, kInfIndex + 1)); } TEST(IndexIntervalTest, Sized) { EXPECT_EQ(IndexInterval::UncheckedSized(0, 5), IndexInterval::Sized(0, 5)); EXPECT_THAT(IndexInterval::Sized(0, -1), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(IndexIntervalTest, UncheckedSized) { auto x = IndexInterval::UncheckedSized(1, 5); EXPECT_EQ(1, x.inclusive_min()); EXPECT_EQ(0, x.exclusive_min()); EXPECT_EQ(5, x.size()); EXPECT_EQ(5, x.inclusive_max()); EXPECT_EQ(6, x.exclusive_max()); } TEST(IndexIntervalTest, Equality) { EXPECT_TRUE(IndexInterval::UncheckedSized(1, 2) == IndexInterval::UncheckedSized(1, 2)); EXPECT_FALSE(IndexInterval::UncheckedSized(1, 2) != IndexInterval::UncheckedSized(1, 2)); EXPECT_FALSE(IndexInterval::UncheckedSized(1, 3) == IndexInterval::UncheckedSized(1, 2)); EXPECT_FALSE(IndexInterval::UncheckedSized(2, 2) == IndexInterval::UncheckedSized(1, 2)); EXPECT_TRUE(IndexInterval::UncheckedSized(2, 3) == IndexInterval::UncheckedClosed(2, 4)); EXPECT_TRUE(IndexInterval::UncheckedSized(2, 3) == IndexInterval::UncheckedHalfOpen(2, 5)); } TEST(IndexIntervalTest, UncheckedClosed) { EXPECT_EQ(IndexInterval::UncheckedSized(2, 3), IndexInterval::UncheckedClosed(2, 4)); } TEST(IndexIntervalTest, Closed) { EXPECT_EQ(IndexInterval::UncheckedClosed(2, 4), IndexInterval::Closed(2, 4)); EXPECT_THAT(IndexInterval::Closed(2, 0), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(IndexIntervalTest, UncheckedHalfOpen) { EXPECT_EQ(IndexInterval::UncheckedSized(2, 2), IndexInterval::UncheckedHalfOpen(2, 4)); } TEST(IndexIntervalTest, HalfOpen) { EXPECT_EQ(IndexInterval::UncheckedHalfOpen(2, 4), IndexInterval::HalfOpen(2, 4)); EXPECT_THAT(IndexInterval::HalfOpen(2, 0), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(IndexIntervalTest, ContainsIndex) { EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), 5)); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), 3)); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), 15)); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(3, 15), 2)); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(3, 15), 16)); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(-kInfIndex, 15), kMinFiniteIndex)); EXPECT_FALSE( Contains(IndexInterval::UncheckedClosed(-kInfIndex, 15), -kInfIndex)); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(-kInfIndex, 15), 16)); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, kInfIndex), 16)); EXPECT_TRUE( Contains(IndexInterval::UncheckedClosed(3, kInfIndex), kMaxFiniteIndex)); EXPECT_FALSE( Contains(IndexInterval::UncheckedClosed(3, kInfIndex), kInfIndex)); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex), -kInfIndex)); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex), kInfIndex)); EXPECT_TRUE( Contains(IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex), 3)); } TEST(IndexIntervalTest, ContainsInterval) { EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(3, 15))); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(4, 15))); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(3, 14))); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(6, 8))); EXPECT_TRUE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedSized(20, 0))); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(2, 10))); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(3, 16))); EXPECT_FALSE(Contains(IndexInterval::UncheckedClosed(3, 15), IndexInterval::UncheckedClosed(5, 16))); } TEST(IndexIntervalTest, IsFinite) { EXPECT_TRUE(IsFinite(IndexInterval::UncheckedClosed(3, 15))); EXPECT_FALSE(IsFinite(IndexInterval::UncheckedClosed(-kInfIndex, 15))); EXPECT_FALSE(IsFinite(IndexInterval::UncheckedClosed(3, kInfIndex))); EXPECT_FALSE(IsFinite(IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex))); } TEST(IndexIntervalTest, Intersect) { EXPECT_EQ(IndexInterval::UncheckedClosed(3, 5), Intersect(IndexInterval::UncheckedClosed(-3, 5), IndexInterval::UncheckedClosed(3, 10))); EXPECT_EQ(IndexInterval::UncheckedClosed(3, 5), Intersect(IndexInterval::UncheckedClosed(3, 10), IndexInterval::UncheckedClosed(-3, 5))); EXPECT_EQ(IndexInterval::UncheckedClosed(3, 10), Intersect(IndexInterval::UncheckedClosed(3, 10), IndexInterval::UncheckedClosed(-3, 11))); EXPECT_EQ(IndexInterval::UncheckedSized(3, 0), Intersect(IndexInterval::UncheckedClosed(-3, 0), IndexInterval::UncheckedClosed(3, 5))); } TEST(IndexIntervalTest, IntersectOptionallyImplicit) { using OIII = OptionallyImplicitIndexInterval; EXPECT_THAT( Intersect(OIII{IndexInterval::UncheckedClosed(1, 5), false, false}, OIII{IndexInterval::UncheckedClosed(2, 6), false, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(2, 5), false, false})); EXPECT_THAT( Intersect(OIII{IndexInterval::UncheckedClosed(2, 5), false, true}, OIII{IndexInterval::UncheckedClosed(1, 6), true, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(2, 5), false, true})); for (int x = 0; x < 16; x++) { const bool a = ((x & 1) != 0); const bool b = ((x & 2) != 0); const bool c = ((x & 4) != 0); const bool d = ((x & 8) != 0); EXPECT_THAT(Intersect(OIII{IndexInterval::UncheckedClosed(1, 5), a, b}, OIII{IndexInterval::UncheckedClosed(1, 5), c, d}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(1, 5), a && c, b && d})) << x; EXPECT_THAT(Intersect(OIII{IndexInterval::UncheckedClosed(-3, 5), a, b}, OIII{IndexInterval::UncheckedClosed(3, 10), c, d}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), c, b})) << x; } EXPECT_THAT( Intersect( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), true, true}, OIII{IndexInterval::UncheckedClosed(0, 10), false, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(0, 10), false, false})); EXPECT_THAT( Intersect( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), true, true}, OIII{IndexInterval::UncheckedClosed(kMinFiniteIndex, kInfIndex), false, false}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(kMinFiniteIndex, kMaxFiniteIndex), false, true})); EXPECT_THAT( Intersect( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), false, false}, OIII{IndexInterval::UncheckedClosed(0, 10), true, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(0, 10), true, true})); } TEST(IndexIntervalTest, IntersectPreferringExplicit) { using OIII = OptionallyImplicitIndexInterval; for (int x = 0; x < 16; x++) { const bool a = ((x & 1) != 0); const bool b = ((x & 2) != 0); const bool c = ((x & 4) != 0); const bool d = ((x & 8) != 0); EXPECT_THAT(Intersect(OIII{IndexInterval::UncheckedClosed(1, 5), a, b}, OIII{IndexInterval::UncheckedClosed(1, 5), c, d}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(1, 5), a && c, b && d})) << x; EXPECT_THAT(Intersect(OIII{IndexInterval::UncheckedClosed(-3, 5), a, b}, OIII{IndexInterval::UncheckedClosed(3, 10), a, b}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), a, b})) << x; } EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(1, 5), false, false}, OIII{IndexInterval::UncheckedClosed(2, 6), false, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(2, 5), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(2, 5), false, true}, OIII{IndexInterval::UncheckedClosed(1, 6), true, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(2, 5), false, true})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 5), true, false}, OIII{IndexInterval::UncheckedClosed(3, 10), true, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), true, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 5), false, false}, OIII{IndexInterval::UncheckedClosed(3, 10), false, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 5), false, true}, OIII{IndexInterval::UncheckedClosed(3, 10), false, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), false, true})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 5), true, true}, OIII{IndexInterval::UncheckedClosed(3, 10), true, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(3, 5), true, true})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 5), true, false}, OIII{IndexInterval::UncheckedClosed(-5, 10), false, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(-5, 5), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-5, 10), false, false}, OIII{IndexInterval::UncheckedClosed(-3, 5), true, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(-5, 5), false, false})); EXPECT_THAT(IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-3, 12), true, false}, OIII{IndexInterval::UncheckedClosed(-5, 10), false, true}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(-5, 12), false, false})); EXPECT_THAT(IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-5, 10), false, true}, OIII{IndexInterval::UncheckedClosed(-3, 12), true, false}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(-5, 12), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), true, true}, OIII{IndexInterval::UncheckedClosed(0, 10), false, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(0, 10), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), true, true}, OIII{IndexInterval::UncheckedClosed(kMinFiniteIndex, kInfIndex), false, false}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(kMinFiniteIndex, kInfIndex), false, false})); EXPECT_THAT( IntersectPreferringExplicit( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), false, false}, OIII{IndexInterval::UncheckedClosed(0, 10), true, true}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), false, false})); } TEST(IndexIntervalTest, Hull) { EXPECT_EQ(IndexInterval::UncheckedClosed(3, 15), Hull(IndexInterval::UncheckedClosed(3, 5), IndexInterval::UncheckedClosed(10, 15))); EXPECT_EQ(IndexInterval::UncheckedClosed(5, 15), Hull(IndexInterval::UncheckedClosed(0, -1), IndexInterval::UncheckedClosed(5, 15))); EXPECT_EQ(IndexInterval::UncheckedClosed(5, 15), Hull(IndexInterval::UncheckedClosed(5, 15), IndexInterval::UncheckedClosed(0, -1))); EXPECT_EQ(IndexInterval::UncheckedClosed(0, -1), Hull(IndexInterval::UncheckedClosed(5, 4), IndexInterval::UncheckedClosed(0, -1))); } TEST(IndexIntervalTest, HullOptionallyImplicit) { using OIII = OptionallyImplicitIndexInterval; EXPECT_THAT( Hull(OIII{IndexInterval::UncheckedClosed(1, 5), false, true}, OIII{IndexInterval::UncheckedClosed(2, 6), false, true}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(1, 6), false, true})); for (int x = 0; x < 16; x++) { const bool a = ((x & 1) != 0); const bool b = ((x & 2) != 0); const bool c = ((x & 4) != 0); const bool d = ((x & 8) != 0); EXPECT_THAT(Hull(OIII{IndexInterval::UncheckedClosed(1, 5), a, b}, OIII{IndexInterval::UncheckedClosed(1, 5), c, d}), ::testing::Eq( OIII{IndexInterval::UncheckedClosed(1, 5), a && c, b && d})) << x; EXPECT_THAT( Hull(OIII{IndexInterval::UncheckedClosed(-3, 5), a, b}, OIII{IndexInterval::UncheckedClosed(3, 10), c, d}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(-3, 10), a, d})) << x; } EXPECT_THAT( Hull(OIII{IndexInterval::UncheckedClosed(-kInfIndex, kMaxFiniteIndex), true, true}, OIII{IndexInterval::UncheckedClosed(kMinFiniteIndex, kInfIndex), false, false}), ::testing::Eq(OIII{IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex), true, false})); } TEST(IndexIntervalTest, ContainsOrUnbounded) { EXPECT_TRUE( ContainsOrUnbounded(IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(-kInfIndex, 10))); EXPECT_TRUE(ContainsOrUnbounded(IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(6, 9))); EXPECT_FALSE(ContainsOrUnbounded(IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(4, 10))); EXPECT_TRUE( ContainsOrUnbounded(IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(5, kInfIndex))); EXPECT_FALSE(ContainsOrUnbounded(IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(5, 11))); EXPECT_TRUE(ContainsOrUnbounded( IndexInterval::UncheckedClosed(5, 10), IndexInterval::UncheckedClosed(-kInfIndex, +kInfIndex))); } TEST(IndexIntervalTest, AreCompatibleOrUnbounded) { EXPECT_TRUE(AreCompatibleOrUnbounded(IndexInterval(), IndexInterval())); EXPECT_TRUE(AreCompatibleOrUnbounded(IndexInterval(), IndexInterval::UncheckedSized(1, 4))); EXPECT_TRUE(AreCompatibleOrUnbounded(IndexInterval::UncheckedSized(1, 4), IndexInterval())); EXPECT_FALSE(AreCompatibleOrUnbounded(IndexInterval::UncheckedSized(1, 4), IndexInterval::UncheckedSized(1, 5))); EXPECT_FALSE(AreCompatibleOrUnbounded(IndexInterval::UncheckedSized(1, 4), IndexInterval::UncheckedSized(2, 3))); EXPECT_TRUE( AreCompatibleOrUnbounded(IndexInterval::UncheckedClosed(1, 4), IndexInterval::UncheckedClosed(-kInfIndex, 4))); EXPECT_TRUE( AreCompatibleOrUnbounded(IndexInterval::UncheckedClosed(1, 4), IndexInterval::UncheckedClosed(1, kInfIndex))); } TEST(IndexIntervalTest, Ostream) { EXPECT_EQ("[1, 3)", StrCat(IndexInterval::UncheckedClosed(1, 2))); EXPECT_EQ("(-inf, 3)", StrCat(IndexInterval::UncheckedClosed(-kInfIndex, 2))); EXPECT_EQ("[7, +inf)", StrCat(IndexInterval::UncheckedClosed(7, kInfIndex))); } TEST(IndexIntervalTest, Hash) { EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ IndexInterval(), IndexInterval::UncheckedSized(0, 1), IndexInterval::UncheckedSized(0, 0), IndexInterval::UncheckedSized(0, 2), IndexInterval::UncheckedSized(1, 2), })); } TEST(IndexIntervalTest, ShiftInterval) { EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(1, 8), 2), Optional(IndexInterval::UncheckedClosed(3, 10))); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(-kInfIndex, 8), 2), Optional(IndexInterval::UncheckedClosed(-kInfIndex, 10))); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(1, kInfIndex), 2), Optional(IndexInterval::UncheckedClosed(3, kInfIndex))); EXPECT_THAT(ShiftInterval( IndexInterval::UncheckedClosed(kMinFiniteIndex + 1, 101), -1), Optional(IndexInterval::Closed(kMinFiniteIndex, 100))); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(5, 10), -kInfIndex), Optional(IndexInterval::UncheckedClosed(-kInfIndex + 5, -kInfIndex + 10))); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(5, 10), kInfIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "5 \\+ [0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(5, 10), kMaxFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "5 \\+ [0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(-1, 10), kMinFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "-1 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(-kInfIndex, -5), kMinFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "-5 \\+ -[0-9]+ is outside valid range .*")); } TEST(IndexIntervalTest, ShiftIntervalBackward) { EXPECT_THAT( ShiftIntervalBackward(IndexInterval(), std::numeric_limits<Index>::min()), Optional(IndexInterval())); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(1, 8), -2), Optional(IndexInterval::UncheckedClosed(3, 10))); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(-kInfIndex, 8), -2), Optional(IndexInterval::UncheckedClosed(-kInfIndex, 10))); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(1, kInfIndex), -2), Optional(IndexInterval::UncheckedClosed(3, kInfIndex))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(kMinFiniteIndex + 1, 101), 1), Optional(IndexInterval::Closed(kMinFiniteIndex, 100))); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(5, 10), kInfIndex), Optional( IndexInterval::UncheckedClosed(-kInfIndex + 5, -kInfIndex + 10))); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(5, 10), -kInfIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "5 \\+ [0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(5, 10), kMinFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "5 \\+ [0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(-1, 10), kMaxFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "-1 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(-kInfIndex, -5), kMaxFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "-5 \\+ -[0-9]+ is outside valid range .*")); } TEST(IndexIntervalTest, ShiftIntervalSeparateOffsets) { EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(1, 8), 2, 5), Optional(IndexInterval::UncheckedClosed(3, 13))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), 0, 5), Optional(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 13))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), 1, 5), Optional(IndexInterval::UncheckedClosed(-kMaxFiniteIndex + 1, 13))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), -1, 5), MatchesStatus(absl::StatusCode::kInvalidArgument, "-[0-9]+ \\+ -1 is outside valid range .*")); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(-1, 8), std::numeric_limits<Index>::min(), 5), MatchesStatus(absl::StatusCode::kInvalidArgument, "-1 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(2, kMaxFiniteIndex), -1, 0), Optional(IndexInterval::UncheckedClosed(1, kMaxFiniteIndex))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(2, kMaxFiniteIndex), -1, 1), MatchesStatus(absl::StatusCode::kInvalidArgument, "[0-9]+ \\+ 1 is outside valid range .*")); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(2, 1), -1, std::numeric_limits<Index>::max()), MatchesStatus(absl::StatusCode::kInvalidArgument, "1 \\+ [0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(0, 8), std::numeric_limits<Index>::min(), 5), MatchesStatus(absl::StatusCode::kInvalidArgument, "0 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftInterval(IndexInterval::UncheckedClosed(1, 8), 2, 5), Optional(IndexInterval::UncheckedClosed(3, 13))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(-kInfIndex, 8), 2, 5), Optional(IndexInterval::UncheckedClosed(-kInfIndex, 13))); EXPECT_THAT( ShiftInterval(IndexInterval::UncheckedClosed(1, +kInfIndex), 2, 5), Optional(IndexInterval::UncheckedClosed(3, +kInfIndex))); EXPECT_THAT(ShiftInterval( IndexInterval::UncheckedClosed(-kInfIndex, +kInfIndex), 2, 5), Optional(IndexInterval::UncheckedClosed(-kInfIndex, +kInfIndex))); } TEST(IndexIntervalTest, ShiftIntervalBackwardSeparateOffsets) { EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(1, 8), -2, -5), Optional(IndexInterval::UncheckedClosed(3, 13))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), 0, -5), Optional(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 13))); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), -1, -5), Optional(IndexInterval::UncheckedClosed(-kMaxFiniteIndex + 1, 13))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(-kMaxFiniteIndex, 8), 1, -5), MatchesStatus(absl::StatusCode::kInvalidArgument, "-[0-9]+ \\+ -1 is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(-1, 8), std::numeric_limits<Index>::max(), -5), MatchesStatus(absl::StatusCode::kInvalidArgument, "-1 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(2, kMaxFiniteIndex), 1, 0), Optional(IndexInterval::UncheckedClosed(1, kMaxFiniteIndex))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(2, kMaxFiniteIndex), 1, -1), MatchesStatus(absl::StatusCode::kInvalidArgument, "[0-9]+ \\+ 1 is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(2, 1), 1, std::numeric_limits<Index>::min()), MatchesStatus(absl::StatusCode::kInvalidArgument, "1 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftIntervalBackward(IndexInterval::UncheckedClosed(0, 8), std::numeric_limits<Index>::max(), -5), MatchesStatus(absl::StatusCode::kInvalidArgument, "0 \\+ -[0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftIntervalBackward(IndexInterval::UncheckedClosed(1, 8), -2, -5), Optional(IndexInterval::UncheckedClosed(3, 13))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(-kInfIndex, 8), -2, -5), Optional(IndexInterval::UncheckedClosed(-kInfIndex, 13))); EXPECT_THAT(ShiftIntervalBackward( IndexInterval::UncheckedClosed(1, +kInfIndex), -2, -5), Optional(IndexInterval::UncheckedClosed(3, +kInfIndex))); EXPECT_THAT( ShiftIntervalBackward( IndexInterval::UncheckedClosed(-kInfIndex, +kInfIndex), -2, -5), Optional(IndexInterval::UncheckedClosed(-kInfIndex, +kInfIndex))); } TEST(IndexIntervalTest, ShiftIntervalTo) { EXPECT_THAT(ShiftIntervalTo(IndexInterval::UncheckedClosed(1, 8), 3), Optional(IndexInterval::UncheckedClosed(3, 10))); EXPECT_THAT(ShiftIntervalTo(IndexInterval::UncheckedClosed(-kInfIndex, 8), 2), MatchesStatus(absl::StatusCode::kInvalidArgument, "Interval .* is not bounded below")); EXPECT_THAT(ShiftIntervalTo(IndexInterval::UncheckedClosed(1, kInfIndex), 3), Optional(IndexInterval::UncheckedClosed(3, kInfIndex))); EXPECT_THAT( ShiftIntervalTo(IndexInterval::UncheckedClosed(kMinFiniteIndex + 1, 101), kMinFiniteIndex), Optional(IndexInterval::Closed(kMinFiniteIndex, 100))); EXPECT_THAT( ShiftIntervalTo(IndexInterval::UncheckedClosed(5, 10), -kInfIndex), MatchesStatus(absl::StatusCode::kOutOfRange, "Origin -[0-9]+ is outside valid range .*")); EXPECT_THAT(ShiftIntervalTo(IndexInterval::UncheckedClosed(5, 10), kInfIndex), MatchesStatus(absl::StatusCode::kOutOfRange, "Origin [0-9]+ is outside valid range .*")); EXPECT_THAT( ShiftIntervalTo(IndexInterval::UncheckedClosed(5, 10), kMaxFiniteIndex), MatchesStatus(absl::StatusCode::kInvalidArgument, "10 \\+ [0-9]+ is outside valid range .*")); } TEST(ExtractStridedSliceTest, Closed) { using OIII = tensorstore::OptionallyImplicitIndexInterval; EXPECT_THAT( ExtractClosedStridedSlice( {IndexInterval::UncheckedClosed(5, 10), false, false}, 6,
531
cpp
google/tensorstore
schema
tensorstore/proto/schema.cc
tensorstore/proto/schema_test.cc
#ifndef TENSORSTORE_PROTO_SCHEMA_H_ #define TENSORSTORE_PROTO_SCHEMA_H_ #include "absl/status/status.h" #include "tensorstore/proto/schema.pb.h" #include "tensorstore/schema.h" #include "tensorstore/util/result.h" namespace tensorstore { Result<Schema> ParseSchemaFromProto(const ::tensorstore::proto::Schema& proto); void EncodeToProto(::tensorstore::proto::Schema& proto, const Schema& schema); } #endif #include "tensorstore/proto/schema.h" #include <stddef.h> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/chunk_layout.h" #include "tensorstore/codec_spec.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_units.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/json.h" #include "tensorstore/proto/array.h" #include "tensorstore/proto/index_transform.h" #include "tensorstore/proto/schema.pb.h" #include "tensorstore/rank.h" #include "tensorstore/schema.h" #include "tensorstore/serialization/batch.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/unit.h" namespace tensorstore { namespace { void EncodeToProto(::tensorstore::proto::OptionalUnit& proto, const std::optional<Unit>& unit) { if (unit.has_value()) { proto.set_base_unit(unit->base_unit); proto.set_multiplier(unit->multiplier); } } bool IsValidGridView(ChunkLayout::GridView view) { return (view.aspect_ratio().valid() || view.elements().valid() || view.shape().valid()); } void EncodeToProto(::tensorstore::proto::ChunkLayout& proto, const ChunkLayout& chunk_layout) { auto encode_grid = [](::tensorstore::proto::ChunkLayout::Grid& proto, ChunkLayout::GridView grid_view) { { DimensionSet soft_constraints(false); auto shape = grid_view.shape(); for (size_t i = 0; i < shape.size(); i++) { proto.add_shape(shape[i]); soft_constraints[i] = !shape.hard_constraint[i]; } if (soft_constraints) { proto.set_shape_soft_constraint_bitset(soft_constraints.to_uint()); } } { DimensionSet soft_constraints(false); auto aspect_ratio = grid_view.aspect_ratio(); for (size_t i = 0; i < aspect_ratio.size(); i++) { proto.add_aspect_ratio(aspect_ratio[i]); soft_constraints[i] = !aspect_ratio.hard_constraint[i]; } if (soft_constraints) { proto.set_aspect_ratio_soft_constraint_bitset( soft_constraints.to_uint()); } } if (grid_view.elements().valid()) { proto.set_elements(grid_view.elements().value); if (!grid_view.elements().hard_constraint) { proto.set_elements_soft_constraint(true); } } }; { DimensionSet grid_origin_soft_constraint_bitset(false); auto grid_origin = chunk_layout.grid_origin(); for (size_t i = 0; i < grid_origin.size(); i++) { proto.add_grid_origin(grid_origin[i]); grid_origin_soft_constraint_bitset[i] = !grid_origin.hard_constraint[i]; } if (grid_origin_soft_constraint_bitset) { proto.set_grid_origin_soft_constraint_bitset( grid_origin_soft_constraint_bitset.to_uint()); } } { auto inner_order = chunk_layout.inner_order(); if (!inner_order.hard_constraint) { proto.set_inner_order_soft_constraint(true); } for (size_t i = 0; i < inner_order.size(); i++) { proto.add_inner_order(inner_order[i]); } } if (IsValidGridView(chunk_layout.read_chunk())) { encode_grid(*proto.mutable_read_chunk(), chunk_layout.read_chunk()); } if (IsValidGridView(chunk_layout.write_chunk())) { encode_grid(*proto.mutable_write_chunk(), chunk_layout.write_chunk()); } if (IsValidGridView(chunk_layout.codec_chunk())) { encode_grid(*proto.mutable_codec_chunk(), chunk_layout.codec_chunk()); } } Result<ChunkLayout> ParseChunkLayoutFromProto( const ::tensorstore::proto::ChunkLayout& proto) { auto parse_grid = [](const ::tensorstore::proto::ChunkLayout::Grid& proto) -> Result<ChunkLayout::Grid> { ChunkLayout::Grid grid; if (proto.shape_size() > 0) { DimensionSet soft_constraints = DimensionSet::FromUint(proto.shape_soft_constraint_bitset()); TENSORSTORE_RETURN_IF_ERROR(grid.Set(ChunkLayout::Grid::Shape( tensorstore::span(proto.shape()), ~soft_constraints))); } if (proto.aspect_ratio_size() > 0) { DimensionSet soft_constraints = DimensionSet::FromUint(proto.aspect_ratio_soft_constraint_bitset()); TENSORSTORE_RETURN_IF_ERROR(grid.Set(ChunkLayout::Grid::AspectRatio( tensorstore::span(proto.aspect_ratio()), ~soft_constraints))); } if (proto.has_elements()) { TENSORSTORE_RETURN_IF_ERROR(grid.Set(ChunkLayout::Grid::Elements( proto.elements(), !proto.elements_soft_constraint()))); } return grid; }; ChunkLayout chunk_layout; if (proto.grid_origin_size() > 0) { DimensionSet soft_constraints = DimensionSet::FromUint(proto.grid_origin_soft_constraint_bitset()); TENSORSTORE_RETURN_IF_ERROR(chunk_layout.Set(ChunkLayout::GridOrigin( tensorstore::span(proto.grid_origin()), ~soft_constraints))); } if (proto.inner_order_size() > 0) { std::vector<DimensionIndex> inner_order(proto.inner_order().begin(), proto.inner_order().end()); TENSORSTORE_RETURN_IF_ERROR(chunk_layout.Set(ChunkLayout::InnerOrder( inner_order, !proto.inner_order_soft_constraint()))); } if (proto.has_read_chunk()) { TENSORSTORE_ASSIGN_OR_RETURN(auto grid, parse_grid(proto.read_chunk())); TENSORSTORE_RETURN_IF_ERROR(chunk_layout.Set( ChunkLayout::GridViewFor<ChunkLayout::Usage::kRead>(grid))); } if (proto.has_write_chunk()) { TENSORSTORE_ASSIGN_OR_RETURN(auto grid, parse_grid(proto.write_chunk())); TENSORSTORE_RETURN_IF_ERROR(chunk_layout.Set( ChunkLayout::GridViewFor<ChunkLayout::Usage::kWrite>(grid))); } if (proto.has_codec_chunk()) { TENSORSTORE_ASSIGN_OR_RETURN(auto grid, parse_grid(proto.codec_chunk())); TENSORSTORE_RETURN_IF_ERROR(chunk_layout.Set( ChunkLayout::GridViewFor<ChunkLayout::Usage::kCodec>(grid))); } return chunk_layout; } } void EncodeToProto(::tensorstore::proto::Schema& proto, const Schema& schema) { if (DimensionIndex rank = schema.rank(); rank != dynamic_rank) { proto.set_rank(rank); } if (DataType dtype = schema.dtype(); dtype.valid()) { proto.set_dtype(std::string(dtype.name())); } if (IndexDomain<> domain = schema.domain(); domain.valid()) { EncodeToProto(*proto.mutable_domain(), domain); } EncodeToProto(*proto.mutable_chunk_layout(), schema.chunk_layout()); if (Schema::FillValue fill_value = schema.fill_value(); fill_value.valid()) { EncodeToProto(*proto.mutable_fill_value(), fill_value); } if (CodecSpec codec = schema.codec(); codec.valid()) { auto serialized = tensorstore::serialization::EncodeBatch(schema.codec()); proto.set_codec(serialized.value()); } if (Schema::DimensionUnits dimension_units = schema.dimension_units(); dimension_units.valid()) { for (const auto& unit : dimension_units) { EncodeToProto(*proto.add_dimension_unit(), unit); } } } Result<Schema> ParseSchemaFromProto(const ::tensorstore::proto::Schema& proto) { Schema schema; if (proto.has_rank()) { TENSORSTORE_RETURN_IF_ERROR(schema.Set(RankConstraint(proto.rank()))); } if (proto.has_dtype() && !proto.dtype().empty()) { auto dtype = GetDataType(proto.dtype()); if (!dtype.valid()) { return absl::InvalidArgumentError("dtype is not valid"); } TENSORSTORE_RETURN_IF_ERROR(schema.Set(dtype)); } if (proto.has_domain()) { TENSORSTORE_ASSIGN_OR_RETURN(auto domain, ParseIndexDomainFromProto(proto.domain())) TENSORSTORE_RETURN_IF_ERROR(schema.Set(domain)); } if (proto.has_chunk_layout()) { TENSORSTORE_ASSIGN_OR_RETURN( auto chunk_layout, ParseChunkLayoutFromProto(proto.chunk_layout())) TENSORSTORE_RETURN_IF_ERROR(schema.Set(chunk_layout)); } if (proto.has_codec()) { CodecSpec codec; TENSORSTORE_RETURN_IF_ERROR( tensorstore::serialization::DecodeBatch(proto.codec(), codec)); TENSORSTORE_RETURN_IF_ERROR(schema.Set(codec)); } if (proto.has_fill_value()) { TENSORSTORE_ASSIGN_OR_RETURN( auto array, ParseArrayFromProto(proto.fill_value(), zero_origin)); TENSORSTORE_ASSIGN_OR_RETURN(auto fill_value, ArrayOriginCast<zero_origin>(array)); TENSORSTORE_RETURN_IF_ERROR(schema.Set(Schema::FillValue(fill_value))); } if (!proto.dimension_unit().empty()) { DimensionUnitsVector dimensions; for (size_t i = 0; i < proto.dimension_unit_size(); i++) { auto& unit = proto.dimension_unit(i); if (unit.has_multiplier() || !unit.base_unit().empty()) { dimensions.emplace_back(std::in_place, unit.multiplier(), unit.base_unit()); } else { dimensions.emplace_back(std::nullopt); } } TENSORSTORE_RETURN_IF_ERROR(schema.Set(Schema::DimensionUnits(dimensions))); } return schema; } }
#include "tensorstore/proto/schema.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/proto/protobuf_matchers.h" #include "tensorstore/proto/schema.pb.h" #include "tensorstore/schema.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::protobuf_matchers::EqualsProto; using ::tensorstore::MatchesStatus; using ::tensorstore::ParseSchemaFromProto; using ::tensorstore::Schema; template <typename Proto> Proto ParseProtoOrDie(const std::string& asciipb) { return protobuf_matchers::internal::MakePartialProtoFromAscii<Proto>(asciipb); } auto DoEncode(const Schema& schema) { ::tensorstore::proto::Schema proto; ::tensorstore::EncodeToProto(proto, schema); return proto; } TEST(SchemaProtoTest, Basic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto schema, Schema::FromJson( { {"rank", 3}, {"dtype", "uint8"}, {"domain", {{"labels", {"x", "y", "z"}}, {"inclusive_min", {1, 2, 3}}, {"exclusive_max", {5, 6, 7}}}}, {"chunk_layout", { {"codec_chunk", { {"elements_soft_constraint", 20}, {"aspect_ratio", {1, 2, 3}}, {"shape", {nullptr, 4, 5}}, }}, {"read_chunk", { {"elements", 30}, {"aspect_ratio", {4, 5, 6}}, {"shape_soft_constraint", {6, nullptr, 7}}, }}, {"write_chunk", { {"elements", 40}, {"aspect_ratio_soft_constraint", {7, 8, 9}}, {"shape", {8, 9, nullptr}}, }}, {"grid_origin", {nullptr, nullptr, 11}}, {"inner_order_soft_constraint", {2, 0, 1}}, }}, {"fill_value", 5}, {"dimension_units", {{4, "nm"}, nullptr, {30, "nm"}}}, })); auto proto = ParseProtoOrDie<::tensorstore::proto::Schema>(R"pb( rank: 3 dtype: "uint8" domain { origin: [ 1, 2, 3 ] shape: [ 4, 4, 4 ] labels: [ "x", "y", "z" ] } chunk_layout { grid_origin: [ -9223372036854775808, -9223372036854775808, 11 ] grid_origin_soft_constraint_bitset: 3 inner_order: [ 2, 0, 1 ] inner_order_soft_constraint: true write_chunk { aspect_ratio: [ 7, 8, 9 ] shape: [ 8, 9, 0 ] elements: 40 aspect_ratio_soft_constraint_bitset: 7 shape_soft_constraint_bitset: 4 } read_chunk { shape: [ 6, 0, 7 ] elements: 30 aspect_ratio: [ 4, 5, 6 ] shape_soft_constraint_bitset: 7 } codec_chunk { elements: 20 shape: [ 0, 4, 5 ] aspect_ratio: [ 1, 2, 3 ] elements_soft_constraint: true shape_soft_constraint_bitset: 1 } } fill_value { dtype: "uint8" void_data: "\x05" } dimension_unit { multiplier: 4 base_unit: "nm" } dimension_unit {} dimension_unit { multiplier: 30 base_unit: "nm" } )pb"); EXPECT_THAT(DoEncode(schema), EqualsProto(proto)); EXPECT_THAT(ParseSchemaFromProto(proto), testing::Eq(schema)); } TEST(SchemaProtoTest, Empty) { tensorstore::Schema schema; EXPECT_THAT( ParseSchemaFromProto(ParseProtoOrDie<::tensorstore::proto::Schema>(R"pb( )pb")), testing::Eq(schema)); } TEST(SchemaProtoTest, RankFromDimensionUnit) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto schema, ParseSchemaFromProto(ParseProtoOrDie<::tensorstore::proto::Schema>(R"pb( rank: 1 dimension_unit {} )pb"))); EXPECT_THAT( ParseSchemaFromProto(ParseProtoOrDie<::tensorstore::proto::Schema>(R"pb( dimension_unit {} )pb")), testing::Eq(schema)); } TEST(SchemaProtoTest, Errors) { EXPECT_THAT( ParseSchemaFromProto(ParseProtoOrDie<::tensorstore::proto::Schema>(R"pb( rank: -2 )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseSchemaFromProto(ParseProtoOrDie<::tensorstore::proto::Schema>(R"pb( dtype: "foo" )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseSchemaFromProto(ParseProtoOrDie<::tensorstore::proto::Schema>(R"pb( codec: "12345" )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument)); } }
532
cpp
google/tensorstore
contiguous_layout
tensorstore/contiguous_layout.cc
tensorstore/contiguous_layout_test.cc
#ifndef TENSORSTORE_CONTIGUOUS_LAYOUT_H_ #define TENSORSTORE_CONTIGUOUS_LAYOUT_H_ #include <stddef.h> #include <cassert> #include <iosfwd> #include "tensorstore/index.h" #include "tensorstore/util/span.h" namespace tensorstore { enum class ContiguousLayoutOrder { right = 0, c = 0, row_major = 0, left = 1, fortran = 1, column_major = 1 }; std::ostream& operator<<(std::ostream& os, ContiguousLayoutOrder order); constexpr ContiguousLayoutOrder c_order = ContiguousLayoutOrder::c; constexpr ContiguousLayoutOrder row_major_order = ContiguousLayoutOrder::row_major; constexpr ContiguousLayoutOrder fortran_order = ContiguousLayoutOrder::fortran; constexpr ContiguousLayoutOrder column_major_order = ContiguousLayoutOrder::column_major; void ComputeStrides(ContiguousLayoutOrder order, ptrdiff_t element_stride, span<const Index> shape, span<Index> strides); template <ContiguousLayoutOrder Order = c_order, typename I = Index> inline I GetContiguousOffset(span<const I> shape, span<const I> indices) { assert(shape.size() == indices.size()); I offset = 0; for (ptrdiff_t i = (Order == c_order) ? 0 : (indices.size() - 1); (Order == c_order) ? (i < indices.size()) : (i >= 0); (Order == c_order) ? ++i : --i) { assert(indices[i] >= 0 && indices[i] < shape[i]); offset *= shape[i]; offset += indices[i]; } return offset; } template <ContiguousLayoutOrder Order = c_order, typename I = Index> inline void GetContiguousIndices(I offset, span<const I> shape, span<I> indices) { assert(shape.size() == indices.size()); assert(offset >= 0); ptrdiff_t rank = shape.size(); for (ptrdiff_t i = (Order == c_order) ? (rank - 1) : 0; (Order == c_order) ? (i >= 0) : (i < rank); (Order == c_order) ? --i : ++i) { const I size = shape[i]; indices[i] = offset % size; offset /= size; } assert(offset == 0); } } #endif #include "tensorstore/contiguous_layout.h" #include <stddef.h> #include <cassert> #include <ostream> #include "tensorstore/index.h" #include "tensorstore/util/span.h" namespace tensorstore { void ComputeStrides(ContiguousLayoutOrder order, ptrdiff_t element_stride, span<const Index> shape, span<Index> strides) { const DimensionIndex rank = shape.size(); assert(strides.size() == rank); if (order == ContiguousLayoutOrder::right) { for (DimensionIndex i = rank - 1; i >= 0; --i) { strides[i] = element_stride; element_stride *= shape[i]; } } else { for (DimensionIndex i = 0; i < rank; ++i) { strides[i] = element_stride; element_stride *= shape[i]; } } } std::ostream& operator<<(std::ostream& os, ContiguousLayoutOrder order) { return os << (order == ContiguousLayoutOrder::c ? 'C' : 'F'); } }
#include "tensorstore/contiguous_layout.h" #include <array> #include <sstream> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index.h" #include "tensorstore/util/span.h" namespace { using ::tensorstore::ComputeStrides; using ::tensorstore::ContiguousLayoutOrder; using ::tensorstore::GetContiguousIndices; using ::tensorstore::GetContiguousOffset; using ::tensorstore::Index; using ::tensorstore::span; TEST(ContiguousLayoutOrderTest, PrintToOstream) { { std::ostringstream ostr; ostr << ContiguousLayoutOrder::c; EXPECT_EQ("C", ostr.str()); } { std::ostringstream ostr; ostr << ContiguousLayoutOrder::fortran; EXPECT_EQ("F", ostr.str()); } } TEST(ComputeStridesTest, COrder) { { std::array<Index, 3> strides; ComputeStrides(ContiguousLayoutOrder::c, 1, span<const Index>({3l, 4l, 5l}), strides); EXPECT_THAT(strides, ::testing::ElementsAre(20, 5, 1)); } { std::array<Index, 3> strides; ComputeStrides(ContiguousLayoutOrder::c, 2, span<const Index>({3l, 4l, 5l}), strides); EXPECT_THAT(strides, ::testing::ElementsAre(40, 10, 2)); } } TEST(ComputeStridesTest, FOrder) { std::array<Index, 3> strides; ComputeStrides(ContiguousLayoutOrder::fortran, 1, span<const Index>({3l, 4l, 5l}), strides); EXPECT_THAT(strides, ::testing::ElementsAre(1, 3, 12)); } TEST(GetContiguousOffsetTest, Basic) { Index indices[2]; EXPECT_EQ(3 * 11 + 4, GetContiguousOffset<ContiguousLayoutOrder::c>({{7, 11}}, {{3, 4}})); GetContiguousIndices<ContiguousLayoutOrder::c, Index>(3 * 11 + 4, {{7, 11}}, indices); EXPECT_THAT(indices, ::testing::ElementsAre(3, 4)); EXPECT_EQ(3 + 4 * 7, GetContiguousOffset<ContiguousLayoutOrder::fortran>( {{7, 11}}, {{3, 4}})); GetContiguousIndices<ContiguousLayoutOrder::fortran, Index>( 3 + 4 * 7, {{7, 11}}, indices); EXPECT_THAT(indices, ::testing::ElementsAre(3, 4)); EXPECT_EQ( 2 * (7 * 11) + 3 * 11 + 4, GetContiguousOffset<ContiguousLayoutOrder::c>({{5, 7, 11}}, {{2, 3, 4}})); EXPECT_EQ(2 + 5 * 3 + (5 * 7) * 4, GetContiguousOffset<ContiguousLayoutOrder::fortran>({{5, 7, 11}}, {{2, 3, 4}})); EXPECT_EQ(0, GetContiguousOffset<ContiguousLayoutOrder::c>({}, {})); EXPECT_EQ(0, GetContiguousOffset<ContiguousLayoutOrder::fortran>({}, {})); } }
533
cpp
google/tensorstore
array
tensorstore/proto/array.cc
tensorstore/proto/array_test.cc
#ifndef TENSORSTORE_PROTO_ARRAY_H_ #define TENSORSTORE_PROTO_ARRAY_H_ #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/index.h" #include "tensorstore/proto/array.pb.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/result.h" namespace tensorstore { void EncodeToProtoImpl(::tensorstore::proto::Array& proto, OffsetArrayView<const void> array); Result<SharedArray<void, dynamic_rank, offset_origin>> ParseArrayFromProto( const ::tensorstore::proto::Array& proto, ArrayOriginKind origin_kind = offset_origin, DimensionIndex rank_constraint = dynamic_rank); template <typename Element, DimensionIndex Rank, ArrayOriginKind OriginKind, ContainerKind LayoutCKind> void EncodeToProto( ::tensorstore::proto::Array& proto, const Array<Shared<Element>, Rank, OriginKind, LayoutCKind>& value) { EncodeToProtoImpl(proto, value); } } #endif #include "tensorstore/proto/array.h" #include <algorithm> #include <array> #include <cstddef> #include <cstdint> #include <limits> #include <string> #include <type_traits> #include "absl/status/status.h" #include "riegeli/bytes/string_reader.h" #include "riegeli/bytes/string_writer.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/unaligned_data_type_functions.h" #include "tensorstore/proto/array.pb.h" #include "tensorstore/rank.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace { struct WriteProtoImpl { tensorstore::proto::Array& proto; void operator()(const double* item, void*) { proto.add_double_data(*item); } void operator()(const float* item, void*) { proto.add_float_data(*item); } void operator()(const int16_t* item, void*) { proto.add_int_data(*item); } void operator()(const int32_t* item, void*) { proto.add_int_data(*item); } void operator()(const int64_t* item, void*) { proto.add_int_data(*item); } void operator()(const uint16_t* item, void*) { proto.add_uint_data(*item); } void operator()(const uint32_t* item, void*) { proto.add_uint_data(*item); } void operator()(const uint64_t* item, void*) { proto.add_uint_data(*item); } }; struct ReadProtoImpl { const tensorstore::proto::Array& proto; size_t index = 0; size_t error_count = 0; void operator()(double* item, void*) { *item = proto.double_data(index++); } void operator()(float* item, void*) { *item = proto.float_data(index++); } void operator()(int16_t* item, void*) { auto i = proto.int_data(index++); *item = static_cast<int16_t>(i); if (i > std::numeric_limits<int16_t>::max() || i < std::numeric_limits<int16_t>::min()) { error_count++; } } void operator()(int32_t* item, void*) { auto i = proto.int_data(index++); *item = static_cast<int32_t>(i); if (i > std::numeric_limits<int32_t>::max() || i < std::numeric_limits<int32_t>::min()) { error_count++; } } void operator()(int64_t* item, void*) { *item = proto.int_data(index++); } void operator()(uint16_t* item, void*) { auto i = proto.uint_data(index++); *item = static_cast<uint16_t>(i); if (i > std::numeric_limits<uint16_t>::max()) { error_count++; } } void operator()(uint32_t* item, void*) { auto i = proto.uint_data(index++); *item = static_cast<uint32_t>(i); if (i > std::numeric_limits<uint32_t>::max()) { error_count++; } } void operator()(uint64_t* item, void*) { *item = proto.uint_data(index++); } }; struct ProtoArrayDataTypeFunctions { const internal::ElementwiseFunction<1, void*>* write_fn = nullptr; const internal::ElementwiseFunction<1, void*>* read_fn = nullptr; }; const std::array<ProtoArrayDataTypeFunctions, kNumDataTypeIds> kProtoFunctions = MapCanonicalDataTypes([](auto dtype) { using T = typename decltype(dtype)::Element; ProtoArrayDataTypeFunctions functions; if constexpr (std::is_invocable_v<ReadProtoImpl, T*, void*>) { functions.write_fn = internal::SimpleElementwiseFunction<WriteProtoImpl(const T), void*>(); functions.read_fn = internal::SimpleElementwiseFunction<ReadProtoImpl(T), void*>(); } return functions; }); } void EncodeToProtoImpl(::tensorstore::proto::Array& proto, OffsetArrayView<const void> array) { const auto dtype = array.dtype(); proto.set_dtype(std::string(dtype.name())); { bool all_zero = true; for (Index x : array.origin()) { proto.add_origin(x); all_zero &= (x == 0); } if (all_zero) proto.clear_origin(); } for (Index x : array.shape()) { proto.add_shape(x); } { DimensionSet zero_byte_strides(false); for (DimensionIndex i = 0; i < array.rank(); i++) { zero_byte_strides[i] = (array.byte_strides()[i] == 0 && array.shape()[i] != 1); } if (zero_byte_strides) { proto.set_zero_byte_strides_bitset(zero_byte_strides.to_uint()); } } const size_t index = static_cast<size_t>(dtype.id()); if (kProtoFunctions[index].write_fn) { if (dtype.id() == DataTypeIdOf<int16_t> || dtype.id() == DataTypeIdOf<int32_t> || dtype.id() == DataTypeIdOf<int64_t>) { proto.mutable_int_data()->Reserve(array.num_elements()); } else if (dtype.id() == DataTypeIdOf<uint16_t> || dtype.id() == DataTypeIdOf<uint32_t> || dtype.id() == DataTypeIdOf<uint64_t>) { proto.mutable_uint_data()->Reserve(array.num_elements()); } else if (dtype.id() == DataTypeIdOf<double>) { proto.mutable_double_data()->Reserve(array.num_elements()); } else if (dtype.id() == DataTypeIdOf<float>) { proto.mutable_float_data()->Reserve(array.num_elements()); } WriteProtoImpl impl{proto}; internal::IterateOverArrays({kProtoFunctions[index].write_fn, &impl}, nullptr, {c_order, skip_repeated_elements}, array); } else { proto.mutable_void_data()->reserve(dtype.size() * array.num_elements()); riegeli::StringWriter writer(proto.mutable_void_data()); internal::IterateOverArrays( {&internal::kUnalignedDataTypeFunctions[index].write_native_endian, &writer}, nullptr, {c_order, skip_repeated_elements}, array); writer.Close(); } } Result<SharedArray<void, dynamic_rank, offset_origin>> ParseArrayFromProto( const ::tensorstore::proto::Array& proto, ArrayOriginKind origin_kind, DimensionIndex rank_constraint) { SharedArray<void, dynamic_rank, offset_origin> array; DataType dtype = GetDataType(proto.dtype()); if (!dtype.valid()) { return absl::DataLossError( "Cannot deserialize array with unspecified data type"); } const size_t rank = proto.shape_size(); if (rank_constraint != dynamic_rank && rank != rank_constraint) { return absl::InvalidArgumentError("Proto array rank mismatch"); } if (rank > kMaxRank) { return absl::InvalidArgumentError("Proto rank exceeds maximum rank"); } array.layout().set_rank(rank); std::copy(proto.shape().begin(), proto.shape().end(), array.layout().shape().begin()); std::fill(array.layout().origin().begin(), array.layout().origin().end(), Index(0)); if (proto.origin_size() > 0 && std::any_of(proto.origin().begin(), proto.origin().end(), [](auto x) { return x != 0; })) { if (origin_kind == zero_origin) { return absl::InvalidArgumentError( "Proto zero_origin array has non-zero origin"); } if (proto.origin_size() != rank) { return absl::InvalidArgumentError("Proto origin/rank mismatch"); } std::copy(proto.origin().begin(), proto.origin().end(), array.layout().origin().begin()); } Index num_elements = 1; { DimensionSet zero_byte_strides = (proto.has_zero_byte_strides_bitset()) ? DimensionSet::FromUint(proto.zero_byte_strides_bitset()) : DimensionSet(false); for (DimensionIndex i = rank - 1; i >= 0; --i) { if (!IndexInterval::ValidSized(array.origin()[i], array.shape()[i])) { return absl::InvalidArgumentError(tensorstore::StrCat( "Proto origin and shape of {", array.origin()[i], ", ", array.shape()[i], "} do not specify a valid IndexInterval for rank ", i)); } if (zero_byte_strides[i]) { array.layout().byte_strides()[i] = 0; } else { array.layout().byte_strides()[i] = 1; if (internal::MulOverflow(num_elements, array.shape()[i], &num_elements)) { return absl::DataLossError( tensorstore::StrCat("Invalid array shape ", array.shape())); } } } } array.element_pointer() = tensorstore::AllocateArrayElementsLike<void>( array.layout(), array.byte_strides().data(), {c_order, skip_repeated_elements}, default_init, dtype); const size_t index = static_cast<size_t>(dtype.id()); if (kProtoFunctions[index].read_fn && proto.void_data().empty()) { if ((dtype.id() == DataTypeIdOf<int16_t> || dtype.id() == DataTypeIdOf<int32_t> || dtype.id() == DataTypeIdOf<int64_t>)&&proto.int_data_size() != num_elements) { return absl::DataLossError("proto int_data incomplete"); } if ((dtype.id() == DataTypeIdOf<uint16_t> || dtype.id() == DataTypeIdOf<uint32_t> || dtype.id() == DataTypeIdOf<uint64_t>)&&proto.uint_data_size() != num_elements) { return absl::DataLossError("proto uint_data incomplete"); } if (dtype.id() == DataTypeIdOf<double> && proto.double_data_size() != num_elements) { return absl::DataLossError("proto double_data incomplete"); } if (dtype.id() == DataTypeIdOf<float> && proto.float_data_size() != num_elements) { return absl::DataLossError("proto float_data incomplete"); } ReadProtoImpl impl{proto}; internal::IterateOverArrays({kProtoFunctions[index].read_fn, &impl}, nullptr, {c_order, skip_repeated_elements}, array); if (impl.error_count > 0) { return absl::DataLossError("Array element truncated"); } } else { riegeli::StringReader reader(proto.void_data()); internal::IterateOverArrays( {&internal::kUnalignedDataTypeFunctions[index].read_native_endian, &reader}, nullptr, {c_order, skip_repeated_elements}, array); if (!reader.VerifyEndAndClose()) return reader.status(); } return array; } }
#include "tensorstore/proto/array.h" #include <memory> #include <random> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/internal/data_type_random_generator.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/proto/array.pb.h" #include "tensorstore/proto/protobuf_matchers.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/status_testutil.h" namespace { using ::protobuf_matchers::EqualsProto; using ::tensorstore::Index; using ::tensorstore::kInfIndex; using ::tensorstore::MatchesStatus; using ::tensorstore::ParseArrayFromProto; using ::tensorstore::StridedLayout; template <typename Proto> Proto ParseProtoOrDie(const std::string& asciipb) { return protobuf_matchers::internal::MakePartialProtoFromAscii<Proto>(asciipb); } template <typename T> auto DoEncode(const T& array) { ::tensorstore::proto::Array proto; ::tensorstore::EncodeToProto(proto, array); return proto; } TEST(ArrayProtoTest, Basic) { auto array = tensorstore::MakeArray<Index>({{{1, 0, 2, 2}, {4, 5, 6, 7}}}); auto proto = ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int64" shape: [ 1, 2, 4 ] int_data: [ 1, 0, 2, 2, 4, 5, 6, 7 ] )pb"); EXPECT_THAT(DoEncode(array), EqualsProto(proto)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); ASSERT_TRUE(copy.valid()); EXPECT_EQ(copy.layout(), array.layout()); EXPECT_THAT(copy, testing::Eq(array)); } TEST(ArrayProtoTest, BasicVoidData) { auto array = tensorstore::MakeOffsetArray<bool>({3, 1, -2}, {{{true}}, {{false}}}); auto proto = ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "bool" shape: [ 2, 1, 1 ] origin: [ 3, 1, -2 ] void_data: "\x01\x00" )pb"); EXPECT_THAT(DoEncode(array), EqualsProto(proto)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); ASSERT_TRUE(copy.valid()); EXPECT_EQ(copy.layout(), array.layout()); EXPECT_THAT(copy, testing::Eq(array)); } TEST(ArrayProtoTest, DecodeRank0) { auto proto = ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int64" int_data: [ 3 ] )pb"); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); EXPECT_TRUE(copy.valid()); EXPECT_THAT(copy.rank(), testing::Eq(0)); } TEST(ArrayProtoTest, ZeroStrides) { int data[] = {1, 2, 3, 4, 5, 6}; tensorstore::SharedArray<int> array( std::shared_ptr<int>(std::shared_ptr<void>(), &data[0]), tensorstore::StridedLayout<>({kInfIndex + 1, 2, 3, kInfIndex + 1}, {0, 3 * sizeof(int), sizeof(int), 0})); auto proto = ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 4611686018427387904, 2, 3, 4611686018427387904 ] zero_byte_strides_bitset: 9 int_data: [ 1, 2, 3, 4, 5, 6 ] )pb"); EXPECT_THAT(DoEncode(array), EqualsProto(proto)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); ASSERT_TRUE(copy.valid()); ASSERT_EQ(copy.layout(), array.layout()); EXPECT_EQ(array, copy); } TEST(ArrayProtoTest, Errors) { EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "foo" int_data: [ 3 ] )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" int_data: [ 3 ] )pb"), tensorstore::offset_origin, 2), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 1, 2, 3 ] origin: [ 1, 2, 3 ] )pb"), tensorstore::zero_origin), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 1, 2, 3 ] origin: [ 1, 2 ] )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 1, -2, 3 ] )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int32" shape: [ 2147483647, 2147483647, 2147483647 ] )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int64" int_data: [ 3, 4 ] )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "int64" shape: 2 int_data: [ 3 ] )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "uint64" shape: 2 )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "double" shape: 2 )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); EXPECT_THAT( ParseArrayFromProto(ParseProtoOrDie<::tensorstore::proto::Array>(R"pb( dtype: "float" shape: 2 )pb")), MatchesStatus(absl::StatusCode::kDataLoss)); } class RandomArrayProtoTest : public ::testing::TestWithParam<tensorstore::DataType> {}; INSTANTIATE_TEST_SUITE_P(DataTypes, RandomArrayProtoTest, ::testing::ValuesIn(tensorstore::kDataTypes)); TEST_P(RandomArrayProtoTest, COrder) { auto dtype = GetParam(); for (int iteration = 0; iteration < 100; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_PROTO_ARRAY_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto array = tensorstore::internal::MakeRandomArray(gen, box, dtype, tensorstore::c_order); auto proto = DoEncode(array); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); EXPECT_THAT(copy, testing::Eq(array)); } } TEST_P(RandomArrayProtoTest, FOrder) { auto dtype = GetParam(); for (int iteration = 0; iteration < 100; ++iteration) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_PROTO_ARRAY_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto array = tensorstore::internal::MakeRandomArray( gen, box, dtype, tensorstore::fortran_order); auto proto = DoEncode(array); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto copy, ParseArrayFromProto(proto)); EXPECT_THAT(copy, testing::Eq(array)); } } }
534
cpp
google/tensorstore
static_cast
tensorstore/static_cast.cc
tensorstore/static_cast_test.cc
#ifndef TENSORSTORE_STATIC_CAST_H_ #define TENSORSTORE_STATIC_CAST_H_ #include <cassert> #include <string_view> #include <type_traits> #include "absl/status/status.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace tensorstore { enum class CastChecking { checked = 0, unchecked = 1 }; struct unchecked_t { explicit constexpr unchecked_t() = default; constexpr operator CastChecking() const { return CastChecking::unchecked; } }; constexpr unchecked_t unchecked{}; template <typename T> struct StaticCastTraits; template <typename T> struct DefaultStaticCastTraits { template <typename SourceRef> static std::enable_if_t<std::is_constructible_v<T, unchecked_t, SourceRef>, T> Construct(SourceRef&& source) { return T(unchecked, std::forward<SourceRef>(source)); } template <typename SourceRef> static bool IsCompatible(SourceRef&& source) = delete; static std::string Describe() = delete; static std::string Describe(const T& value) = delete; }; template <typename T> using StaticCastTraitsType = StaticCastTraits<internal::remove_cvref_t<T>>; namespace internal_cast { template <CastChecking Checking, bool IsNoOp> struct CastImpl; absl::Status CastError(std::string_view source_description, std::string_view target_description); template <> struct CastImpl<CastChecking::checked, false> { template <typename SourceRef, typename Target> using ResultType = Result<Target>; template <typename Target, typename SourceRef> static Result<Target> StaticCast(SourceRef&& source) { if (!StaticCastTraits<Target>::IsCompatible(source)) { return CastError(StaticCastTraitsType<SourceRef>::Describe(source), StaticCastTraits<Target>::Describe()); } return StaticCastTraits<Target>::Construct(std::forward<SourceRef>(source)); } }; template <> struct CastImpl<CastChecking::unchecked, false> { template <typename SourceRef, typename Target> using ResultType = Target; template <typename Target, typename SourceRef> static Target StaticCast(SourceRef&& source) { assert(StaticCastTraits<Target>::IsCompatible(source) && "StaticCast is not valid"); return StaticCastTraits<Target>::Construct(std::forward<SourceRef>(source)); } }; template <> struct CastImpl<CastChecking::unchecked, true> { template <typename SourceRef, typename Target> using ResultType = SourceRef&&; template <typename Target, typename SourceRef> static SourceRef&& StaticCast(SourceRef&& source) { return std::forward<SourceRef>(source); } }; template <typename Target, typename SourceRef, CastChecking Checking, bool IsSame = std::is_same_v<Target, internal::remove_cvref_t<SourceRef>>> using CastImplType = internal_cast::CastImpl<Checking, (Checking == CastChecking::unchecked && IsSame)>; template <typename Target, typename SourceRef, typename ReturnType = Target> constexpr inline bool IsStaticCastConstructible = false; template <typename Target, typename SourceRef> constexpr inline bool IsStaticCastConstructible< Target, SourceRef, decltype(StaticCastTraits<Target>::Construct(std::declval<SourceRef>()))> = true; } template <typename Target, typename SourceRef> constexpr inline bool IsStaticCastConstructible = internal_cast::IsStaticCastConstructible<Target, SourceRef>; template <typename Target, typename SourceRef, CastChecking Checking = CastChecking::unchecked> using StaticCastResultType = std::enable_if_t< IsStaticCastConstructible<Target, SourceRef>, typename internal_cast::CastImplType< Target, SourceRef, Checking>::template ResultType<SourceRef, Target>>; template <typename Target, CastChecking Checking = CastChecking::checked, typename SourceRef> std::enable_if_t<IsStaticCastConstructible<Target, SourceRef>, StaticCastResultType<Target, SourceRef, Checking>> StaticCast(SourceRef&& source) { return internal_cast::CastImplType<Target, SourceRef, Checking>:: template StaticCast<Target>(std::forward<SourceRef>(source)); } } #endif #include "tensorstore/static_cast.h" #include "absl/status/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_cast { absl::Status CastError(std::string_view source_description, std::string_view target_description) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot cast ", source_description, " to ", target_description)); } } }
#include "tensorstore/static_cast.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::dynamic_extent; using ::tensorstore::IsStaticCastConstructible; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::span; using ::tensorstore::StaticCast; using ::tensorstore::unchecked; using ::tensorstore::unchecked_t; template <std::ptrdiff_t Extent> struct X { X(span<int, Extent> data) : data(data) {} template <std::ptrdiff_t OtherExtent, std::enable_if_t<(OtherExtent == Extent || OtherExtent == dynamic_extent || Extent == dynamic_extent)>* = nullptr> explicit X(unchecked_t, X<OtherExtent> other) : data(other.data.data(), other.data.size()) {} span<int, Extent> data; }; template <std::ptrdiff_t Extent> struct Y { Y(span<int, Extent> data) : data(data) {} span<int, Extent> data; }; } namespace tensorstore { template <std::ptrdiff_t Extent> struct StaticCastTraits<X<Extent>> : public DefaultStaticCastTraits<X<Extent>> { template <typename Other> static bool IsCompatible(const Other& other) { return other.data.size() == Extent || Extent == tensorstore::dynamic_extent; } static std::string Describe() { return StrCat("X with extent of ", Extent); } static std::string Describe(const X<Extent>& value) { return StrCat("X with extent of ", value.data.size()); } }; template <std::ptrdiff_t Extent> struct StaticCastTraits<Y<Extent>> { template <std::ptrdiff_t OtherExtent, std::enable_if_t<(OtherExtent == Extent || OtherExtent == dynamic_extent || Extent == dynamic_extent)>* = nullptr> static Y<Extent> Construct(Y<OtherExtent> other) { return Y<Extent>(span<int, Extent>(other.data.data(), other.data.size())); } template <typename Other> static bool IsCompatible(const Other& other) { return other.data.size() == Extent || Extent == tensorstore::dynamic_extent; } static std::string Describe() { return StrCat("Y with extent of ", Extent); } static std::string Describe(const Y<Extent>& value) { return StrCat("Y with extent of ", value.data.size()); } }; } namespace { static_assert(IsStaticCastConstructible<X<3>, X<dynamic_extent>>); static_assert(IsStaticCastConstructible<X<dynamic_extent>, X<3>>); static_assert(IsStaticCastConstructible<X<3>, X<3>>); static_assert(!IsStaticCastConstructible<X<3>, X<2>>); static_assert(IsStaticCastConstructible<Y<3>, Y<dynamic_extent>>); static_assert(IsStaticCastConstructible<Y<dynamic_extent>, Y<3>>); static_assert(IsStaticCastConstructible<Y<3>, Y<3>>); static_assert(!IsStaticCastConstructible<Y<3>, Y<2>>); static_assert(std::is_same_v<const X<3>&, decltype(StaticCast<X<3>, unchecked>( std::declval<const X<3>&>()))>); static_assert(std::is_same_v<X<3>&, decltype(StaticCast<X<3>, unchecked>( std::declval<X<3>&>()))>); static_assert(std::is_same_v<X<3>&&, decltype(StaticCast<X<3>, unchecked>( std::declval<X<3>&&>()))>); static_assert( std::is_same_v<X<3>, decltype(StaticCast<X<3>, unchecked>( std::declval<const X<dynamic_extent>&>()))>); static_assert(std::is_same_v<X<3>, decltype(StaticCast<X<3>, unchecked>( std::declval<X<dynamic_extent>&>()))>); static_assert(std::is_same_v<Result<X<3>>, decltype(StaticCast<X<3>>( std::declval<const X<3>&>()))>); static_assert(std::is_same_v< Result<X<3>>, decltype(StaticCast<X<3>>(std::declval<X<3>&>()))>); static_assert(std::is_same_v<Result<X<3>>, decltype(StaticCast<X<3>>( std::declval<const X<dynamic_extent>&>()))>); static_assert( std::is_same_v<Result<X<3>>, decltype(StaticCast<X<3>>( std::declval<X<dynamic_extent>&>()))>); TEST(DefaultCastTraitsTest, Success) { std::vector<int> vec{1, 2, 3}; X<dynamic_extent> x(vec); auto cast_result = StaticCast<X<3>>(x); static_assert(std::is_same_v<decltype(cast_result), Result<X<3>>>); ASSERT_TRUE(cast_result); EXPECT_EQ(vec.data(), cast_result->data.data()); auto& noop_cast_result = StaticCast<X<dynamic_extent>, unchecked>(x); EXPECT_EQ(&noop_cast_result, &x); auto unchecked_cast_result = StaticCast<X<3>, unchecked>(x); static_assert(std::is_same_v<decltype(unchecked_cast_result), X<3>>); } TEST(DefaultCastTraitsTest, CheckedFailure) { std::vector<int> vec{1, 2, 3}; X<dynamic_extent> x(vec); EXPECT_THAT( StaticCast<X<2>>(x), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot cast X with extent of 3 to X with extent of 2")); } TEST(DefaultCastTraitsDeathTest, UncheckedFailure) { std::vector<int> vec{1, 2, 3}; X<dynamic_extent> x(vec); EXPECT_DEBUG_DEATH((StaticCast<X<2>, unchecked>(x)), "StaticCast is not valid"); } TEST(CustomTraitsTest, Success) { std::vector<int> vec{1, 2, 3}; Y<dynamic_extent> x(vec); auto cast_result = StaticCast<Y<3>>(x); static_assert(std::is_same_v<decltype(cast_result), Result<Y<3>>>); ASSERT_TRUE(cast_result); EXPECT_EQ(vec.data(), cast_result->data.data()); auto& noop_cast_result = StaticCast<Y<dynamic_extent>, unchecked>(x); EXPECT_EQ(&noop_cast_result, &x); auto unchecked_cast_result = StaticCast<Y<3>, unchecked>(x); static_assert(std::is_same_v<decltype(unchecked_cast_result), Y<3>>); } TEST(CustomTraitsTest, CheckedFailure) { std::vector<int> vec{1, 2, 3}; Y<dynamic_extent> x(vec); EXPECT_THAT( StaticCast<Y<2>>(x), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot cast Y with extent of 3 to Y with extent of 2")); } TEST(CustomTraitsDeathTest, UncheckedFailure) { std::vector<int> vec{1, 2, 3}; Y<dynamic_extent> x(vec); EXPECT_DEBUG_DEATH((StaticCast<Y<2>, unchecked>(x)), "StaticCast is not valid"); } }
535
cpp
google/tensorstore
array_testutil
tensorstore/array_testutil.cc
tensorstore/array_testutil_test.cc
#ifndef TENSORSTORE_ARRAY_TESTUTIL_H_ #define TENSORSTORE_ARRAY_TESTUTIL_H_ #include <cstddef> #include <ostream> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/container_kind.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/rank.h" #include "tensorstore/static_cast.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/iterate_over_index_range.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_array { template <typename Element> class ArrayElementMatcherImpl : public ::testing::MatcherInterface<OffsetArrayView<const void>> { public: ArrayElementMatcherImpl( SharedOffsetArray<const ::testing::Matcher<Element>> element_matchers) : element_matchers_(std::move(element_matchers)) {} bool MatchAndExplain( OffsetArrayView<const void> value_untyped, ::testing::MatchResultListener* listener) const override { const bool listener_interested = listener->IsInterested(); if (value_untyped.dtype() != dtype_v<Element>) { if (listener_interested) { *listener << "which has a data type of " << value_untyped.dtype(); } return false; } if (element_matchers_.domain() != value_untyped.domain()) { return false; } auto value = StaticDataTypeCast<const Element, unchecked>(value_untyped); SharedOffsetArray<std::string> explanations; if (listener_interested) { explanations = AllocateArray<std::string>(value.domain()); } std::vector<Index> mismatch_indices; bool matches = IterateOverIndexRange(value.domain(), [&](span<const Index> indices) { const Element& element = value(indices); const auto& matcher = element_matchers_(indices); bool element_matches; if (listener_interested) { ::testing::StringMatchResultListener s; element_matches = matcher.MatchAndExplain(element, &s); explanations(indices) = s.str(); } else { element_matches = matcher.Matches(element); } if (!element_matches) { mismatch_indices.assign(indices.begin(), indices.end()); } return element_matches; }); if (!matches) { if (listener_interested) { *listener << "whose element at " << span(mismatch_indices) << " doesn't match"; const auto& explanation = explanations(mismatch_indices); if (!explanation.empty()) { *listener << ", " << explanation; } } return false; } if (listener_interested) { bool reason_printed = false; IterateOverIndexRange(value.domain(), [&](span<const Index> indices) { const std::string& explanation = explanations(indices); if (explanation.empty()) return; if (reason_printed) *listener << ",\nand "; *listener << "whose element at " << span(indices) << " matches, " << explanation; reason_printed = true; }); } return true; } void DescribeTo(std::ostream* os) const override { *os << "has a data type of " << dtype_v<Element> << " and a domain of " << element_matchers_.domain(); if (!element_matchers_.domain().is_empty()) { *os << " where\n"; bool is_first = true; IterateOverIndexRange(element_matchers_.domain(), [&](span<const Index> indices) { if (!is_first) { *os << ",\n"; } is_first = false; *os << "element at " << indices << " "; element_matchers_(indices).DescribeTo(os); }); } } void DescribeNegationTo(std::ostream* os) const override { *os << "doesn't have a data type of " << dtype_v<Element> << ", or\ndoesn't have a domain of " << element_matchers_.domain(); IterateOverIndexRange(element_matchers_.domain(), [&](span<const Index> indices) { *os << ", or\nelement at " << indices << " "; element_matchers_(indices).DescribeNegationTo(os); }); } private: SharedOffsetArray<const ::testing::Matcher<Element>> element_matchers_; }; } using ArrayMatcher = ::testing::Matcher<OffsetArrayView<const void>>; ArrayMatcher MatchesArray( SharedOffsetArray<const void> expected, EqualityComparisonKind comparison_kind = EqualityComparisonKind::equal); inline ArrayMatcher MatchesArrayIdentically( SharedOffsetArray<const void> expected) { return MatchesArray(std::move(expected), EqualityComparisonKind::identical); } template <typename Element> ArrayMatcher MatchesArray( SharedOffsetArray<const ::testing::Matcher<Element>> matcher_array) { return ::testing::MakeMatcher( new internal_array::ArrayElementMatcherImpl<Element>( std::move(matcher_array))); } template <typename Element> ArrayMatcher MatchesScalarArray(const ::testing::Matcher<Element>& matcher) { return MatchesArray<Element>( MakeScalarArray<::testing::Matcher<Element>>(matcher)); } template <typename Element, Index N0> ArrayMatcher MatchesArray( const ::testing::Matcher<Element> (&element_matchers)[N0]) { return MatchesArray<Element>(MakeArray(element_matchers)); } template <typename Element, Index N0> ArrayMatcher MatchesArray( span<const Index, 1> origin, const ::testing::Matcher<Element> (&element_matchers)[N0]) { return MatchesArray<Element>(MakeOffsetArray(origin, element_matchers)); } template <typename Element, Index N0, std::ptrdiff_t OriginRank> ArrayMatcher MatchesArray( const Index (&origin)[OriginRank], const ::testing::Matcher<Element> (&element_matchers)[N0]) { static_assert(OriginRank == 1, "Origin vector must have length 1."); return MatchesArray<Element>(MakeOffsetArray(origin, element_matchers)); } #include "tensorstore/array_testutil_matches_array.inc" namespace internal_array { inline StridedLayout<dynamic_rank, offset_origin> NormalizeStridedLayoutForComparison( StridedLayoutView<dynamic_rank, offset_origin> layout) { StridedLayout<dynamic_rank, offset_origin> normalized(layout); for (DimensionIndex i = 0; i < normalized.rank(); ++i) { if (normalized.shape()[i] <= 1 && normalized.origin()[i] == 0) { normalized.byte_strides()[i] = 0; } } return normalized; } template <typename ElementTag, DimensionIndex Rank, ArrayOriginKind OriginKind, ContainerKind LayoutCKind> Array<ElementTag, Rank, OriginKind> NormalizeArrayForComparison( const Array<ElementTag, Rank, OriginKind, LayoutCKind>& array) { Array<ElementTag, Rank, OriginKind> normalized(array); for (DimensionIndex i = 0; i < normalized.rank(); ++i) { if (normalized.shape()[i] <= 1) { auto& byte_stride = normalized.layout().byte_strides()[i]; const Index origin_value = normalized.origin()[i]; if (origin_value != 0) { normalized.element_pointer() = AddByteOffset( std::move(normalized.element_pointer()), internal::wrap_on_overflow::Multiply(byte_stride, origin_value)); } byte_stride = 0; } } return normalized; } } template <typename ElementTag, DimensionIndex Rank, ArrayOriginKind OriginKind, ContainerKind LayoutCKind> inline ArrayMatcher ReferencesSameDataAs( const Array<ElementTag, Rank, OriginKind, LayoutCKind>& array) { if (array.num_elements() == 0) { return ::testing::AllOf( ::testing::ResultOf( "dtype", [](const auto& a) { return a.dtype(); }, ::testing::Eq(array.dtype())), ::testing::ResultOf( "domain", [](const auto& a) { return a.domain(); }, ::testing::Eq(array.domain()))); } auto normalized_array = internal_array::NormalizeArrayForComparison(array); return ::testing::ResultOf( "normalized array", [](const auto& a) { return internal_array::NormalizeArrayForComparison(a); }, ::testing::AllOf(::testing::ResultOf( "dtype", [](const auto& a) { return a.dtype(); }, ::testing::Eq(normalized_array.dtype())), ::testing::ResultOf( "data", [](const auto& a) { return a.data(); }, ::testing::Eq(normalized_array.data())), ::testing::ResultOf( "layout", [](const auto& a) { return a.layout(); }, ::testing::Eq(normalized_array.layout())))); } } #endif #include "tensorstore/array_testutil.h" #include <ostream> #include <utility> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/util/iterate_over_index_range.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_array { class ArrayMatcherImpl : public ::testing::MatcherInterface<OffsetArrayView<const void>> { public: ArrayMatcherImpl(SharedOffsetArray<const void> expected, EqualityComparisonKind comparison_kind) : expected_(std::move(expected)), comparison_kind_(comparison_kind) {} bool MatchAndExplain( OffsetArrayView<const void> value, ::testing::MatchResultListener* listener) const override { const bool listener_interested = listener->IsInterested(); if (value.dtype() != expected_.dtype()) { if (listener_interested) { *listener << "which has a data type of " << value.dtype(); } return false; } if (expected_.domain() != value.domain()) { if (listener_interested) { *listener << "which has a domain of " << value.domain(); } return false; } if (AreArraysEqual(expected_, value, comparison_kind_)) { return true; } if (!listener_interested) return false; bool reason_printed = false; IterateOverIndexRange(value.domain(), [&](span<const Index> indices) { if (!AreArraysEqual(value[indices], expected_[indices], comparison_kind_)) { if (reason_printed) { *listener << ", "; } *listener << "whose element at " << indices << " doesn't match, expected=" << expected_[indices] << ", actual=" << value[indices]; reason_printed = true; } }); return false; } void DescribeTo(std::ostream* os) const override { *os << "has a data type of " << expected_.dtype() << " and a domain of " << expected_.domain() << " and is " << (comparison_kind_ == EqualityComparisonKind::equal ? "equal" : "identical") << " to " << expected_; } private: SharedOffsetArray<const void> expected_; EqualityComparisonKind comparison_kind_; }; } ArrayMatcher MatchesArray(SharedOffsetArray<const void> expected, EqualityComparisonKind comparison_kind) { return ::testing::MakeMatcher(new internal_array::ArrayMatcherImpl( std::move(expected), comparison_kind)); } }
#include "tensorstore/array_testutil.h" #include <sstream> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace { using ::tensorstore::Index; using ::tensorstore::MakeArray; using ::tensorstore::MakeOffsetArray; using ::tensorstore::MakeScalarArray; using ::tensorstore::MatchesArray; using ::tensorstore::MatchesScalarArray; using ::tensorstore::span; TEST(MatchesArrayTest, Describe) { std::ostringstream ss; MatchesArray<std::int32_t>({1, 2}).DescribeTo(&ss); EXPECT_EQ( R"(has a data type of int32 and a domain of {origin={0}, shape={2}} where element at {0} is equal to 1, element at {1} is equal to 2)", ss.str()); } TEST(MatchesArrayTest, DescribeNegation) { std::ostringstream ss; MatchesArray<std::int32_t>({1, 2}).DescribeNegationTo(&ss); EXPECT_EQ(R"(doesn't have a data type of int32, or doesn't have a domain of {origin={0}, shape={2}}, or element at {0} isn't equal to 1, or element at {1} isn't equal to 2)", ss.str()); } TEST(MatchesArrayTest, ExplainDataTypeMismatch) { ::testing::StringMatchResultListener listener; ::testing::ExplainMatchResult(MatchesArray<std::int32_t>({1, 2, 3}), MakeArray<float>({1, 2}), &listener); EXPECT_EQ("which has a data type of float32", listener.str()); } TEST(MatchesArrayTest, ExplainDomainMismatch) { ::testing::StringMatchResultListener listener; ::testing::ExplainMatchResult(MatchesArray<int>({1, 2, 3}), MakeArray<int>({1, 2}), &listener); EXPECT_EQ("", listener.str()); } TEST(MatchesArrayTest, ExplainElementMismatch) { ::testing::StringMatchResultListener listener; ::testing::ExplainMatchResult(MatchesArray<int>({1, 2}), MakeArray<int>({1, 3}), &listener); EXPECT_EQ("whose element at {1} doesn't match", listener.str()); } TEST(MatchesArrayTest, ExplainElementMatch) { ::testing::StringMatchResultListener listener; ::testing::ExplainMatchResult( MatchesArray<std::string>( {::testing::Not(::testing::ElementsAre('d')), ::testing::Not(::testing::ElementsAre('a', 'b'))}), MakeArray<std::string>({"x", "ac"}), &listener); EXPECT_EQ( "whose element at {0} matches, whose element #0 doesn't match,\n" "and whose element at {1} matches, whose element #1 doesn't match", listener.str()); } TEST(MatchesArrayTest, ExplainElementMismatchExplanation) { ::testing::StringMatchResultListener listener; ::testing::ExplainMatchResult( MatchesScalarArray<std::string>(::testing::ElementsAre('a', 'b')), MakeScalarArray<std::string>("ac"), &listener); EXPECT_EQ("whose element at {} doesn't match, whose element #1 doesn't match", listener.str()); } TEST(MatchesArrayTest, Matches) { EXPECT_THAT(MakeScalarArray<int>(1), MatchesScalarArray<int>(1)); EXPECT_THAT(MakeArray<int>({1, 2}), MatchesArray<int>({1, 2})); EXPECT_THAT(MakeArray<int>({{1, 2}}), MatchesArray<int>({{1, 2}})); EXPECT_THAT(MakeArray<int>({{{1, 2}}}), MatchesArray<int>({{{1, 2}}})); EXPECT_THAT(MakeArray<int>({{{{1, 2}}}}), MatchesArray<int>({{{{1, 2}}}})); EXPECT_THAT(MakeArray<int>({{{{{1, 2}}}}}), MatchesArray<int>({{{{{1, 2}}}}})); EXPECT_THAT(MakeArray<int>({{{{{{1, 2}}}}}}), MatchesArray<int>({{{{{{1, 2}}}}}})); EXPECT_THAT(MakeOffsetArray<int>({3}, {1, 2}), MatchesArray<int>({3}, {1, 2})); EXPECT_THAT(MakeOffsetArray<int>({3, 4}, {{1, 2}}), MatchesArray<int>({3, 4}, {{1, 2}})); EXPECT_THAT(MakeOffsetArray<int>({3, 4, 5}, {{{1, 2}}}), MatchesArray<int>({3, 4, 5}, {{{1, 2}}})); EXPECT_THAT(MakeOffsetArray<int>({3, 4, 5, 6}, {{{{1, 2}}}}), MatchesArray<int>({3, 4, 5, 6}, {{{{1, 2}}}})); EXPECT_THAT(MakeOffsetArray<int>({3, 4, 5, 6, 7}, {{{{{1, 2}}}}}), MatchesArray<int>({3, 4, 5, 6, 7}, {{{{{1, 2}}}}})); EXPECT_THAT(MakeOffsetArray<int>({3, 4, 5, 6, 7, 8}, {{{{{{1, 2}}}}}}), MatchesArray<int>({3, 4, 5, 6, 7, 8}, {{{{{{1, 2}}}}}})); EXPECT_THAT(MakeOffsetArray<int>({3}, {1, 2}), MatchesArray<int>(span<const Index, 1>({3}), {1, 2})); EXPECT_THAT(MakeOffsetArray<int>({3, 4}, {{1, 2}}), MatchesArray<int>(span<const Index, 2>({3, 4}), {{1, 2}})); EXPECT_THAT(MakeOffsetArray<int>({3, 4, 5}, {{{1, 2}}}), MatchesArray<int>(span<const Index, 3>({3, 4, 5}), {{{1, 2}}})); EXPECT_THAT( MakeOffsetArray<int>({3, 4, 5, 6}, {{{{1, 2}}}}), MatchesArray<int>(span<const Index, 4>({3, 4, 5, 6}), {{{{1, 2}}}})); EXPECT_THAT( MakeOffsetArray<int>({3, 4, 5, 6, 7}, {{{{{1, 2}}}}}), MatchesArray<int>(span<const Index, 5>({3, 4, 5, 6, 7}), {{{{{1, 2}}}}})); EXPECT_THAT(MakeOffsetArray<int>({3, 4, 5, 6, 7, 8}, {{{{{{1, 2}}}}}}), MatchesArray<int>(span<const Index, 6>({3, 4, 5, 6, 7, 8}), {{{{{{1, 2}}}}}})); EXPECT_THAT(MakeArray<int>({1, 3}), ::testing::Not(MatchesArray<int>({1, 2}))); EXPECT_THAT(MakeArray<int>({1}), ::testing::Not(MatchesArray<int>({1, 2}))); } }
536
cpp
google/tensorstore
strided_layout
tensorstore/strided_layout.cc
tensorstore/strided_layout_test.cc
#ifndef TENSORSTORE_STRIDED_LAYOUT_H_ #define TENSORSTORE_STRIDED_LAYOUT_H_ #include <stddef.h> #include <algorithm> #include <cassert> #include <iosfwd> #include <string> #include <type_traits> #include <utility> #include "tensorstore/box.h" #include "tensorstore/container_kind.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/internal/attributes.h" #include "tensorstore/internal/gdb_scripting.h" #include "tensorstore/internal/multi_vector.h" #include "tensorstore/internal/multi_vector_view.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/rank.h" #include "tensorstore/static_cast.h" #include "tensorstore/util/constant_vector.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/span.h" TENSORSTORE_GDB_AUTO_SCRIPT("multi_vector_gdb.py") namespace tensorstore { enum class ArrayOriginKind { zero, offset }; constexpr ArrayOriginKind zero_origin = ArrayOriginKind::zero; constexpr ArrayOriginKind offset_origin = ArrayOriginKind::offset; std::ostream& operator<<(std::ostream& os, ArrayOriginKind origin_kind); constexpr inline bool IsArrayOriginKindConvertible(ArrayOriginKind source, ArrayOriginKind target) { return static_cast<int>(source) <= static_cast<int>(target); } template <DimensionIndex Rank = dynamic_rank, ArrayOriginKind OriginKind = zero_origin, ContainerKind CKind = container> class StridedLayout; template <DimensionIndex Rank = dynamic_rank, ArrayOriginKind OriginKind = zero_origin> using StridedLayoutView = StridedLayout<Rank, OriginKind, view>; template <typename X> constexpr inline bool IsStridedLayout = false; template <DimensionIndex Rank, ArrayOriginKind OriginKind, ContainerKind CKind> constexpr inline bool IsStridedLayout<StridedLayout<Rank, OriginKind, CKind>> = true; template <typename T0, typename T1> inline std::enable_if_t<internal::IsIndexPack<T0, T1>, Index> IndexInnerProduct( DimensionIndex n, const T0* a, const T1* b) { return internal::wrap_on_overflow::InnerProduct<Index>(n, a, b); } template <DimensionIndex N, typename T0, typename T1> inline std::enable_if_t<internal::IsIndexPack<T0, T1>, Index> IndexInnerProduct( const T0* a, const T1* b) { return internal::wrap_on_overflow::InnerProduct<N, Index>(a, b); } template <DimensionIndex Rank, typename T0, typename T1> inline std::enable_if_t<internal::IsIndexPack<T0, T1>, Index> IndexInnerProduct( span<T0, Rank> a, span<T1, Rank> b) { assert(a.size() == b.size()); if constexpr (Rank == -1) { return IndexInnerProduct(a.size(), a.data(), b.data()); } else { return IndexInnerProduct<Rank>(a.data(), b.data()); } } template <DimensionIndex Rank, ArrayOriginKind OriginKind> void InitializeContiguousLayout(ContiguousLayoutOrder order, Index element_stride, StridedLayout<Rank, OriginKind>* layout) { ComputeStrides(order, element_stride, layout->shape(), layout->byte_strides()); } template <DimensionIndex Rank> void InitializeContiguousLayout( ContiguousLayoutOrder order, Index element_stride, BoxView<RankConstraint::FromInlineRank(Rank)> domain, StridedLayout<Rank, offset_origin>* layout) { const auto rank = domain.rank(); layout->set_rank(rank); std::copy_n(domain.origin().begin(), rank, layout->origin().begin()); std::copy_n(domain.shape().begin(), rank, layout->shape().begin()); InitializeContiguousLayout(order, element_stride, layout); } template <DimensionIndex Rank, ArrayOriginKind OriginKind> void InitializeContiguousLayout( ContiguousLayoutOrder order, Index element_stride, internal::type_identity_t< span<const Index, RankConstraint::FromInlineRank(Rank)>> shape, StridedLayout<Rank, OriginKind>* layout) { layout->set_rank(GetStaticOrDynamicExtent(shape)); std::copy(shape.begin(), shape.end(), layout->shape().begin()); if constexpr (OriginKind == offset_origin) { std::fill(layout->origin().begin(), layout->origin().end(), Index(0)); } InitializeContiguousLayout(order, element_stride, layout); } namespace internal_strided_layout { template <ArrayOriginKind OriginKind, typename StorageT> struct LayoutAccess; template <typename StorageT> struct LayoutAccess<zero_origin, StorageT> : public internal::MultiVectorAccess<StorageT> { using Base = internal::MultiVectorAccess<StorageT>; using Base::static_extent; using MaybeConstOriginIndex = const Index; using MaybeConstIndex = typename Base::template ElementType<0>; static span<const Index, static_extent> origin(const StorageT* storage) { return GetConstantVector<Index, 0>(Base::GetExtent(*storage)); } static span<MaybeConstIndex, static_extent> shape(StorageT* storage) { return Base::template get<0>(storage); } static span<MaybeConstIndex, static_extent> byte_strides(StorageT* storage) { return Base::template get<1>(storage); } using Base::Assign; template <typename Other> static void AssignFrom(StorageT* storage, const Other& other) { Assign(storage, StaticRankCast<static_extent, unchecked>(other.rank()), other.shape().data(), other.byte_strides().data()); } }; template <typename StorageT> struct LayoutAccess<offset_origin, StorageT> : public internal::MultiVectorAccess<StorageT> { using Base = internal::MultiVectorAccess<StorageT>; using RankType = typename Base::ExtentType; using MaybeConstIndex = typename Base::template ElementType<0>; using MaybeConstOriginIndex = MaybeConstIndex; using Base::static_extent; static span<MaybeConstIndex, static_extent> origin(StorageT* storage) { return Base::template get<0>(storage); } static span<MaybeConstIndex, static_extent> shape(StorageT* storage) { return Base::template get<1>(storage); } static span<MaybeConstIndex, static_extent> byte_strides(StorageT* storage) { return Base::template get<2>(storage); } using Base::Assign; static void Assign(StorageT* storage, RankType rank, const Index* shape, const Index* byte_strides) { Base::Assign(storage, rank, GetConstantVector<Index, 0>(rank).data(), shape, byte_strides); } template <typename Other> static void AssignFrom(StorageT* storage, const Other& other) { Assign(storage, StaticRankCast<static_extent, unchecked>(other.rank()), other.origin().data(), other.shape().data(), other.byte_strides().data()); } }; template <DimensionIndex Rank, ArrayOriginKind OriginKind, ContainerKind CKind> struct LayoutStorageSelector; template <DimensionIndex Rank> struct LayoutStorageSelector<Rank, zero_origin, container> { using Storage = internal::MultiVectorStorage<Rank, Index, Index>; using Access = LayoutAccess<zero_origin, Storage>; }; template <DimensionIndex Rank> struct LayoutStorageSelector<Rank, zero_origin, view> { using Storage = internal::MultiVectorViewStorage<Rank, const Index, const Index>; using Access = LayoutAccess<zero_origin, Storage>; }; template <DimensionIndex Rank> struct LayoutStorageSelector<Rank, offset_origin, container> { using Storage = internal::MultiVectorStorage<Rank, Index, Index, Index>; using Access = LayoutAccess<offset_origin, Storage>; }; template <DimensionIndex Rank> struct LayoutStorageSelector<Rank, offset_origin, view> { using Storage = internal::MultiVectorViewStorage<Rank, const Index, const Index, const Index>; using Access = LayoutAccess<offset_origin, Storage>; }; void PrintToOstream( std::ostream& os, const StridedLayout<dynamic_rank, offset_origin, view>& layout); std::string DescribeForCast(DimensionIndex rank); bool StridedLayoutsEqual(StridedLayoutView<dynamic_rank, offset_origin> a, StridedLayoutView<dynamic_rank, offset_origin> b); } template <DimensionIndex Rank, ArrayOriginKind OriginKind, ContainerKind CKind> class StridedLayout : public internal_strided_layout::LayoutStorageSelector<Rank, OriginKind, CKind>::Storage { private: static_assert(IsValidInlineRank(Rank)); using Selector = internal_strided_layout::LayoutStorageSelector<Rank, OriginKind, CKind>; using Storage = typename Selector::Storage; using Access = typename Selector::Access; public: constexpr static ArrayOriginKind array_origin_kind = OriginKind; constexpr static ContainerKind container_kind = CKind; static_assert(CKind == container || Rank >= dynamic_rank); constexpr static DimensionIndex static_rank = RankConstraint::FromInlineRank(Rank); template <DimensionIndex R, ArrayOriginKind O = OriginKind> using Rebind = StridedLayout<R, O, CKind>; using RankType = StaticOrDynamicRank<RankConstraint::FromInlineRank(Rank)>; using MaybeConstIndex = typename Access::MaybeConstIndex; using MaybeConstOriginIndex = typename Access::MaybeConstOriginIndex; RankType rank() const { return Access::GetExtent(*this); } StridedLayout() noexcept { if (container_kind == view) { const Index* zero_vec = GetConstantVector<Index, 0>(RankType{}).data(); Access::Assign(this, RankType{}, zero_vec, zero_vec); } } template <ContainerKind SfinaeC = CKind, typename = std::enable_if_t<SfinaeC == container>> explicit StridedLayout(RankType rank) { set_rank(rank); } explicit StridedLayout( span<const Index, RankConstraint::FromInlineRank(Rank)> shape, span<const Index, RankConstraint::FromInlineRank(Rank)> byte_strides) { assert(shape.size() == byte_strides.size()); Access::Assign(this, GetStaticOrDynamicExtent(shape), shape.data(), byte_strides.data()); } template <size_t N, typename = std::enable_if_t< RankConstraint::Implies(N, static_rank)>> explicit StridedLayout(const Index (&shape)[N], const Index (&byte_strides)[N]) { Access::Assign(this, StaticRank<N>{}, shape, byte_strides); } template <ArrayOriginKind SfinaeOKind = array_origin_kind, typename = std::enable_if_t<SfinaeOKind == offset_origin>> explicit StridedLayout( span<const Index, RankConstraint::FromInlineRank(Rank)> origin, span<const Index, RankConstraint::FromInlineRank(Rank)> shape, span<const Index, RankConstraint::FromInlineRank(Rank)> byte_strides) { assert(origin.size() == shape.size()); assert(origin.size() == byte_strides.size()); Access::Assign(this, GetStaticOrDynamicExtent(origin), origin.data(), shape.data(), byte_strides.data()); } template < size_t N, ArrayOriginKind SfinaeOKind = OriginKind, typename = std::enable_if_t<SfinaeOKind == offset_origin && RankConstraint::Implies(N, static_rank)>> explicit StridedLayout(const Index (&origin)[N], const Index (&shape)[N], const Index (&byte_strides)[N]) { Access::Assign(this, StaticRank<N>{}, origin, shape, byte_strides); } template <ArrayOriginKind SfinaeOKind = array_origin_kind, typename = std::enable_if_t<SfinaeOKind == offset_origin>> explicit StridedLayout( BoxView<RankConstraint::FromInlineRank(Rank)> domain, span<const Index, RankConstraint::FromInlineRank(Rank)> byte_strides) { assert(domain.rank() == byte_strides.size()); Access::Assign(this, domain.rank(), domain.origin().data(), domain.shape().data(), byte_strides.data()); } template < DimensionIndex R, ArrayOriginKind O, ContainerKind C, ContainerKind SfinaeC = CKind, typename = std::enable_if_t< (ExplicitRequires(SfinaeC == container && C != container && R != 0) && RankConstraint::Implies(RankConstraint::FromInlineRank(R), static_rank) && IsArrayOriginKindConvertible(O, OriginKind))>> explicit StridedLayout(const StridedLayout<R, O, C>& source) { Access::AssignFrom(this, source); } template <DimensionIndex R, ArrayOriginKind O, ContainerKind C, typename = std::enable_if_t< ((CKind == view || C == container || R == 0) && RankConstraint::Implies(RankConstraint::FromInlineRank(R), static_rank) && (R == 0 || IsArrayOriginKindConvertible(O, OriginKind)))>> StridedLayout(const StridedLayout<R, O, C>& source) { Access::AssignFrom(this, source); } template <DimensionIndex R, ArrayOriginKind O, ContainerKind C, typename = std::enable_if_t< (RankConstraint::EqualOrUnspecified( RankConstraint::FromInlineRank(R), static_rank) && (R == 0 || IsArrayOriginKindConvertible(O, OriginKind)))>> explicit StridedLayout(unchecked_t, const StridedLayout<R, O, C>& source) { assert(RankConstraint::EqualOrUnspecified(source.rank(), static_rank)); Access::AssignFrom(this, source); } explicit StridedLayout(unchecked_t, StridedLayout&& source) : StridedLayout(std::move(source)) {} explicit StridedLayout(RankType rank, const Index* shape, const Index* byte_strides) { Access::Assign(this, rank, shape, byte_strides); } template <ArrayOriginKind OKind = array_origin_kind, typename = std::enable_if_t<OKind == offset_origin>> explicit StridedLayout(RankType rank, const Index* origin, const Index* shape, const Index* byte_strides) { Access::Assign(this, rank, origin, shape, byte_strides); } template <ArrayOriginKind SfinaeOKind = array_origin_kind, typename = std::enable_if_t<(SfinaeOKind == offset_origin && container_kind == container)>> explicit StridedLayout(ContiguousLayoutOrder order, Index element_stride, BoxView<RankConstraint::FromInlineRank(Rank)> domain) { InitializeContiguousLayout(order, element_stride, domain, this); } template <ContainerKind SfinaeC = container_kind, typename = std::enable_if_t<(SfinaeC == container)>> explicit StridedLayout( ContiguousLayoutOrder order, Index element_stride, span<const Index, RankConstraint::FromInlineRank(Rank)> shape) { InitializeContiguousLayout(order, element_stride, shape, this); } template < DimensionIndex R, ContainerKind SfinaeC = CKind, typename = std::enable_if_t<(SfinaeC == container && RankConstraint::Implies(R, static_rank))>> explicit StridedLayout(ContiguousLayoutOrder order, Index element_stride, const Index (&shape)[R]) { InitializeContiguousLayout(order, element_stride, span(shape), this); } template <DimensionIndex R, ArrayOriginKind O, ContainerKind C> std::enable_if_t<(RankConstraint::Implies(RankConstraint::FromInlineRank(R), static_rank) && (R == 0 || IsArrayOriginKindConvertible(O, OriginKind))), StridedLayout&> operator=(const StridedLayout<R, O, C>& other) { Access::AssignFrom(this, other); return *this; } template <int&... ExplicitArgumentBarrier, ContainerKind SfinaeC = CKind> std::enable_if_t<SfinaeC == container> set_rank(RankType rank) { Access::Resize(this, rank); } span<const Index, RankConstraint::FromInlineRank(Rank)> origin() const { return const_cast<StridedLayout*>(this)->origin(); } span<MaybeConstOriginIndex, RankConstraint::FromInlineRank(Rank)> origin() { return Access::origin(this); } span<const Index, RankConstraint::FromInlineRank(Rank)> byte_strides() const { return const_cast<StridedLayout*>(this)->byte_strides(); } span<MaybeConstIndex, RankConstraint::FromInlineRank(Rank)> byte_strides() { return Access::byte_strides(this); } span<const Index, RankConstraint::FromInlineRank(Rank)> shape() const { return const_cast<StridedLayout*>(this)->shape(); } span<MaybeConstIndex, RankConstraint::FromInlineRank(Rank)> shape() { return Access::shape(this); } Index origin_byte_offset() const { return array_origin_kind == zero_origin ? 0 : IndexInnerProduct(this->rank(), this->origin().data(), this->byte_strides().data()); } template <typename Indices> std::enable_if_t<IsCompatiblePartialIndexVector<static_rank, Indices>, Index> operator[](const Indices& indices) const { const auto indices_span = span(indices); assert(indices_span.size() <= rank() && "Length of index vector is greater than rank of array"); assert(ContainsPartial(*this, indices_span) && "Array index out of bounds."); return IndexInnerProduct(indices_span.size(), byte_strides().data(), indices_span.data()); } template <typename IndexType, size_t N> std::enable_if_t< IsCompatiblePartialIndexVector<static_rank, const IndexType (&)[N]>, Index> operator[](const IndexType (&indices)[N]) const { return (*this)[span<const IndexType, N>(indices)]; } template <typename Indices> std::enable_if_t<IsCompatibleFullIndexVector<static_rank, Indices>, Index> operator()(const Indices& indices) const { const auto indices_span = span(indices); assert(indices_span.size() == rank() && "Length of index vector must match rank of array."); return (*this)[indices_span]; } template <size_t N> std::enable_if_t<RankConstraint::EqualOrUnspecified(static_rank, N), Index> operator()(const Index (&indices)[N]) const { return (*this)(span<const Index, N>(indices)); } template <typename... IndexType> std::enable_if_t<IsCompatibleFullIndexPack<static_rank, IndexType...>, Index> operator()(IndexType... index) const { constexpr size_t N = sizeof...(IndexType); if constexpr (N == 0) { assert(rank() == 0); return 0; } else { const Index indices[N] = {index...}; return (*this)(span<const Index, N>(indices)); } } Index num_elements() const { return ProductOfExtents(this->shape()); } BoxView<RankConstraint::FromInlineRank(Rank)> domain() const { return BoxView<static_rank>(this->origin(), this->shape()); } friend std::ostream& operator<<(std::ostream& os, const StridedLayout& layout) { internal_strided_layout::PrintToOstream(os, layout); return os; } template <DimensionIndex R, ArrayOriginKind O, ContainerKind C> friend bool operator==(const StridedLayout& a, const StridedLayout<R, O, C>& b) { return internal_strided_layout::StridedLayoutsEqual(a, b); } template <DimensionIndex R, ArrayOriginKind O, ContainerKind C> friend bool operator!=(const StridedLayout& a, const StridedLayout<R, O, C>& b) { return !internal_strided_layout::StridedLayoutsEqual(a, b); } }; template <DimensionIndex Rank> explicit StridedLayout(const Index (&shape)[Rank], const Index (&byte_strides)[Rank]) -> StridedLayout<Rank>; template <DimensionIndex Rank> explicit StridedLayout(const Index (&origin)[Rank], const Index (&shape)[Rank], const Index (&byte_strides)[Rank]) -> StridedLayout<Rank, offset_origin>; template <typename Shape, typename ByteStrides, std::enable_if_t<(IsIndexConvertibleVector<Shape> && IsIndexConvertibleVector<ByteStrides>)>* = nullptr> explicit StridedL
#include "tensorstore/strided_layout.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" #ifdef NDEBUG #define TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY(stmt, pattern) #else #define TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY(stmt, pattern) \ EXPECT_DEATH(stmt, pattern) #endif namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::ContiguousLayoutOrder; using ::tensorstore::DimensionIndex; using ::tensorstore::dynamic_rank; using ::tensorstore::GetSubLayoutView; using ::tensorstore::Index; using ::tensorstore::IndexInnerProduct; using ::tensorstore::IsStridedLayout; using ::tensorstore::MatchesStatus; using ::tensorstore::offset_origin; using ::tensorstore::span; using ::tensorstore::StaticCast; using ::tensorstore::StaticRankCast; using ::tensorstore::StrCat; using ::tensorstore::StridedLayout; using ::tensorstore::StridedLayoutView; using ::tensorstore::unchecked; using ::tensorstore::zero_origin; using ::tensorstore::internal::remove_cvref_t; static_assert(!IsStridedLayout<int>); static_assert(IsStridedLayout<StridedLayout<>>); static_assert(IsStridedLayout<StridedLayout<2, offset_origin>>); static_assert(IsStridedLayout<StridedLayoutView<>>); static_assert(IsStridedLayout<StridedLayoutView<2, offset_origin>>); namespace dynamic_layout_cast_tests { template <typename T> constexpr inline bool NoOpCheck = std::is_same_v<T, decltype(StaticCast<remove_cvref_t<T>, unchecked>( std::declval<T>()))>; static_assert(NoOpCheck<const StridedLayout<2>&>); static_assert(NoOpCheck<StridedLayout<2>&>); static_assert(NoOpCheck<StridedLayout<2>&&>); static_assert(NoOpCheck<const StridedLayout<2, offset_origin>&>); static_assert(NoOpCheck<StridedLayout<2, offset_origin>&>); static_assert(NoOpCheck<StridedLayout<2, offset_origin>&&>); } namespace dynamic_rank_cast_tests { template <typename T> constexpr inline bool NoOpCheck = std::is_same_v<T, decltype(StaticRankCast<remove_cvref_t<T>::static_rank, unchecked>(std::declval<T>()))>; static_assert(NoOpCheck<const StridedLayout<2>&>); static_assert(NoOpCheck<StridedLayout<2>&>); static_assert(NoOpCheck<StridedLayout<2>&&>); static_assert(NoOpCheck<const StridedLayout<2, offset_origin>&>); static_assert(NoOpCheck<StridedLayout<2, offset_origin>&>); static_assert(NoOpCheck<StridedLayout<2, offset_origin>&&>); } static_assert(std::is_empty_v<StridedLayout<0>>); static_assert(std::is_empty_v<StridedLayoutView<0>>); static_assert(sizeof(Index) * 2 == sizeof(StridedLayout<1>)); static_assert(sizeof(Index) * 4 == sizeof(StridedLayout<2>)); static_assert(sizeof(Index*) * 2 == sizeof(StridedLayout<>)); static_assert(sizeof(Index*) * 3 == sizeof(StridedLayoutView<>)); static_assert(sizeof(Index*) * 2 == sizeof(StridedLayoutView<2>)); static_assert(sizeof(Index*) * 3 == sizeof(StridedLayoutView<2, offset_origin>)); TEST(IndexInnerProductTest, Basic) { const Index a[] = {1, 2, 3}; const Index b[] = {4, 5, 6}; EXPECT_EQ(1 * 4 + 2 * 5 + 3 * 6, IndexInnerProduct(3, a, b)); } TEST(IndexInnerProductTest, WrapOnOverflowMultiply) { const Index a[] = {Index(1) << 62, 2, 3}; const Index b[] = {4, 5, 6}; EXPECT_EQ(2 * 5 + 3 * 6, IndexInnerProduct(3, a, b)); } TEST(IndexInnerProductTest, WrapOnOverflowAdd) { const Index a[] = {Index(1) << 62, Index(1) << 62}; const Index b[] = {2, 2}; EXPECT_EQ(0, IndexInnerProduct(2, a, b)); } TEST(IndexInnerProductTest, Span) { const Index a[] = {1, 2, 3}; const Index b[] = {4, 5, 6}; EXPECT_EQ(1 * 4 + 2 * 5 + 3 * 6, IndexInnerProduct(span(a), span(b))); } namespace conversion_tests { using ::tensorstore::internal::IsOnlyExplicitlyConvertible; static_assert(IsOnlyExplicitlyConvertible< StridedLayoutView<dynamic_rank, offset_origin>, StridedLayout<dynamic_rank, offset_origin>>); static_assert(IsOnlyExplicitlyConvertible< StridedLayoutView<2, offset_origin>, StridedLayout<dynamic_rank, offset_origin>>); static_assert( IsOnlyExplicitlyConvertible< StridedLayoutView<2, offset_origin>, StridedLayout<2, offset_origin>>); static_assert(IsOnlyExplicitlyConvertible< StridedLayoutView<dynamic_rank, zero_origin>, StridedLayout<dynamic_rank, offset_origin>>); static_assert( IsOnlyExplicitlyConvertible< StridedLayoutView<2, zero_origin>, StridedLayout<2, offset_origin>>); static_assert(IsOnlyExplicitlyConvertible< StridedLayoutView<dynamic_rank, zero_origin>, StridedLayout<dynamic_rank, zero_origin>>); static_assert(IsOnlyExplicitlyConvertible< StridedLayoutView<2, zero_origin>, StridedLayout<dynamic_rank, zero_origin>>); static_assert(!std::is_constructible_v< StridedLayout<dynamic_rank, zero_origin>, StridedLayoutView<dynamic_rank, offset_origin>>); static_assert(!std::is_constructible_v< StridedLayout<2, zero_origin>, StridedLayoutView<dynamic_rank, zero_origin>>); static_assert(!std::is_constructible_v< StridedLayout<2, zero_origin>, StridedLayoutView<3, zero_origin>>); static_assert(std::is_convertible_v< StridedLayoutView<0, offset_origin>, StridedLayout<dynamic_rank, zero_origin>>); static_assert( std::is_convertible_v< StridedLayoutView<0, offset_origin>, StridedLayout<0, zero_origin>>); static_assert(std::is_convertible_v< StridedLayout<2, zero_origin>, StridedLayoutView<2, zero_origin>>); static_assert(std::is_convertible_v< StridedLayout<2, zero_origin>, StridedLayoutView<dynamic_rank, zero_origin>>); static_assert(std::is_convertible_v< StridedLayout<2, zero_origin>, StridedLayoutView<2, offset_origin>>); static_assert(std::is_convertible_v< StridedLayout<2, zero_origin>, StridedLayoutView<dynamic_rank, offset_origin>>); static_assert(std::is_convertible_v< StridedLayout<2, offset_origin>, StridedLayoutView<dynamic_rank, offset_origin>>); static_assert(std::is_convertible_v< StridedLayout<dynamic_rank, offset_origin>, StridedLayoutView<dynamic_rank, offset_origin>>); static_assert(std::is_convertible_v< StridedLayout<2, zero_origin>, StridedLayout<2, offset_origin>>); static_assert(std::is_convertible_v< StridedLayout<2, zero_origin>, StridedLayout<dynamic_rank, zero_origin>>); static_assert(std::is_convertible_v< StridedLayout<2, zero_origin>, StridedLayout<2, offset_origin>>); static_assert(std::is_convertible_v< StridedLayout<2, zero_origin>, StridedLayout<dynamic_rank, offset_origin>>); static_assert(std::is_convertible_v< StridedLayout<2, offset_origin>, StridedLayout<dynamic_rank, offset_origin>>); static_assert(std::is_convertible_v< StridedLayout<0, offset_origin>, StridedLayout<dynamic_rank, zero_origin>>); static_assert(std::is_convertible_v< StridedLayout<0, offset_origin>, StridedLayout<0, zero_origin>>); } TEST(StridedLayoutTest, DynamicRank0) { StridedLayout<> layout; EXPECT_EQ(0, layout.rank()); EXPECT_EQ(1, layout.num_elements()); EXPECT_TRUE(layout.shape().empty()); EXPECT_TRUE(layout.byte_strides().empty()); EXPECT_EQ(0, layout()); } TEST(StridedLayoutDeathTest, DynamicRank0) { StridedLayout<> layout; TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY( layout[{1}], "Length of index vector is greater than rank of array"); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY( layout({1}), "Length of index vector must match rank of array."); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY( layout(1), "Length of index vector must match rank of array."); } TEST(StridedLayoutTest, DynamicRankCopyAndMove) { StridedLayout<> layout; layout.set_rank(3); EXPECT_EQ(3, layout.rank()); layout.shape()[0] = 7; layout.shape()[1] = 8; layout.shape()[2] = 9; layout.byte_strides()[0] = 4; layout.byte_strides()[1] = 5; layout.byte_strides()[2] = 6; EXPECT_EQ(7 * 8 * 9, layout.num_elements()); EXPECT_EQ(8 + 5, (layout[{2, 1}])); EXPECT_EQ(8 + 5 + 6, (layout[{2, 1, 1}])); EXPECT_EQ(8 + 5 + 6, (layout({2, 1, 1}))); EXPECT_EQ(8 + 5 + 6, layout(span({2, 1, 1}))); EXPECT_EQ(8 + 5 + 6, layout(2, 1, 1)); auto layout2 = layout; EXPECT_EQ(3, layout2.rank()); EXPECT_THAT(layout2.shape(), ::testing::ElementsAreArray({7, 8, 9})); EXPECT_THAT(layout2.byte_strides(), ::testing::ElementsAreArray({4, 5, 6})); EXPECT_TRUE(layout == layout2); EXPECT_FALSE(layout != layout2); layout.shape()[0] = 1; EXPECT_FALSE(layout == layout2); EXPECT_TRUE(layout != layout2); const auto* shape = layout2.shape().data(); const auto* byte_strides = layout2.byte_strides().data(); auto layout3 = std::move(layout2); EXPECT_EQ(0, layout2.rank()); EXPECT_EQ(3, layout3.rank()); EXPECT_EQ(shape, layout3.shape().data()); EXPECT_EQ(byte_strides, layout3.byte_strides().data()); StridedLayout<> layout4 = layout; layout4 = std::move(layout3); EXPECT_EQ(3, layout4.rank()); EXPECT_EQ(shape, layout4.shape().data()); EXPECT_EQ(byte_strides, layout4.byte_strides().data()); } TEST(StridedLayoutTest, ConstructDynamicFromShapeAndByteStrides) { const Index shape_arr[] = {1, 2}; const Index byte_strides_arr[] = {3, 4}; span<const Index> shape(shape_arr); span<const Index> byte_strides(byte_strides_arr); StridedLayout<> layout5(shape, byte_strides); EXPECT_EQ(2, layout5.rank()); EXPECT_THAT(layout5.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout5.byte_strides(), ::testing::ElementsAreArray({3, 4})); } TEST(StridedLayoutDeathTest, ConstructDynamicFromShapeAndByteStrides) { const Index shape_arr[] = {1, 2}; const Index byte_strides_arr[] = {3}; span<const Index> shape(shape_arr); span<const Index> byte_strides(byte_strides_arr); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY((StridedLayout<>(shape, byte_strides)), "shape"); } TEST(StridedLayoutTest, ConstructDynamicFromStridedLayoutView) { const Index shape_arr[] = {1, 2}; const Index byte_strides_arr[] = {3, 4}; StridedLayoutView<> layout_ref(shape_arr, byte_strides_arr); StridedLayout<> layout(layout_ref); EXPECT_EQ(2, layout.rank()); EXPECT_THAT(layout.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout.byte_strides(), ::testing::ElementsAreArray({3, 4})); EXPECT_NE(layout_ref.shape().data(), layout.shape().data()); EXPECT_NE(layout_ref.byte_strides().data(), layout.byte_strides().data()); } TEST(StridedLayoutTest, ConstructDynamicFromStatic) { StridedLayout<2> layout_s({1, 2}, {3, 4}); StridedLayout<> layout_d(layout_s); EXPECT_EQ(2, layout_d.rank()); EXPECT_THAT(layout_d.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout_d.byte_strides(), ::testing::ElementsAreArray({3, 4})); } TEST(StridedLayoutTest, AssignDynamicFromDynamic) { StridedLayout<> layout1({1, 2}, {3, 4}); StridedLayout<> layout2; layout2 = layout1; EXPECT_EQ(2, layout2.rank()); EXPECT_THAT(layout2.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout2.byte_strides(), ::testing::ElementsAreArray({3, 4})); } TEST(StridedLayoutTest, AssignDynamicFromDynamicRef) { StridedLayout<> layout1({1, 2}, {3, 4}); StridedLayoutView<> layout_ref = layout1; StridedLayout<> layout2; layout2 = layout_ref; EXPECT_EQ(2, layout2.rank()); EXPECT_THAT(layout2.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout2.byte_strides(), ::testing::ElementsAreArray({3, 4})); } TEST(StridedLayoutTest, AssignDynamicFromStatic) { StridedLayout<2> layout_s({1, 2}, {3, 4}); StridedLayout<> layout_d; layout_d = layout_s; EXPECT_EQ(2, layout_d.rank()); EXPECT_THAT(layout_d.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout_d.byte_strides(), ::testing::ElementsAreArray({3, 4})); } TEST(StridedLayoutDeathTest, DynamicRankIndexing) { StridedLayout<> layout(3); layout.shape()[0] = 7; layout.shape()[1] = 8; layout.shape()[2] = 9; layout.byte_strides()[0] = 4; layout.byte_strides()[1] = 5; layout.byte_strides()[2] = 6; EXPECT_EQ(4 * 6, (layout[{6}])); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY((layout[{7}]), "Array index out of bounds"); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY((layout[{-1}]), "Array index out of bounds"); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY((layout[{1, 2, 10}]), "Array index out of bounds"); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY( (layout[{1, 2, 3, 4}]), "Length of index vector is greater than rank of array"); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY( layout({1, 2}), "Length of index vector must match rank of array"); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY( (StridedLayout<>(span<const Index>({1}), span<const Index>({1, 2}))), "shape"); } TEST(StridedLayoutTest, StaticRank0) { StridedLayout<0> layout; EXPECT_EQ(1, layout.num_elements()); EXPECT_EQ(0, layout.rank()); EXPECT_TRUE(layout.shape().empty()); EXPECT_TRUE(layout.byte_strides().empty()); static_assert(!std::is_assignable_v<StridedLayout<0>, StridedLayout<>>); static_assert(!std::is_assignable_v<StridedLayout<0>, StridedLayoutView<>>); static_assert(!std::is_constructible_v<StridedLayout<0>, StridedLayout<1>>); static_assert( !std::is_constructible_v<StridedLayout<0>, StridedLayoutView<1>>); StridedLayout<0> layout3(span<const Index, 0>{}, span<const Index, 0>{}); [[maybe_unused]] StridedLayout<0> layout2 = layout; layout3 = layout; StridedLayout<0> layout5{StridedLayoutView<0>{}}; EXPECT_EQ(0, layout()); EXPECT_EQ(0, (layout[std::array<int, 0>{}])); EXPECT_EQ(0, (layout(std::array<int, 0>{}))); } TEST(StridedLayoutTest, DefaultConstructStatic) { StridedLayout<2> layout; EXPECT_EQ(2, layout.rank()); } TEST(StridedLayoutTest, ConstructStaticFromArrays) { StridedLayout<2> layout({1, 2}, {3, 4}); EXPECT_THAT(layout.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout.byte_strides(), ::testing::ElementsAreArray({3, 4})); } TEST(StridedLayoutTest, ConstructDynamicFromArrays) { StridedLayout<> layout({1, 2}, {3, 4}); EXPECT_EQ(2, layout.rank()); EXPECT_THAT(layout.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout.byte_strides(), ::testing::ElementsAreArray({3, 4})); } TEST(StridedLayoutTest, ConstructStaticFromDynamic) { StridedLayout<> layout_d({1, 2}, {3, 4}); auto layout_s = StaticRankCast<2>(layout_d).value(); static_assert(std::is_same_v<decltype(layout_s), StridedLayout<2>>); EXPECT_THAT(layout_s.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout_s.byte_strides(), ::testing::ElementsAreArray({3, 4})); static_assert(!std::is_constructible_v<StridedLayout<2>, StridedLayout<3>>); static_assert(!std::is_assignable_v<StridedLayout<2>, StridedLayout<3>>); StridedLayout<2> layout_s2(layout_s); EXPECT_THAT(layout_s2.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout_s2.byte_strides(), ::testing::ElementsAreArray({3, 4})); static_assert(!std::is_constructible_v<StridedLayout<2>, StridedLayout<>>); } TEST(StridedLayoutTest, ConstructStaticFromDynamicStridedLayoutView) { StridedLayout<> layout_d({1, 2}, {3, 4}); StridedLayoutView<> layout_ref = layout_d; auto layout_s = StaticCast<StridedLayout<2>>(layout_ref).value(); static_assert(std::is_same_v<decltype(layout_s), StridedLayout<2>>); EXPECT_THAT(layout_s.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout_s.byte_strides(), ::testing::ElementsAreArray({3, 4})); auto layout_ref2 = StaticCast<StridedLayoutView<2>>(layout_d).value(); StridedLayout<2> layout_s2(layout_ref2); EXPECT_THAT(layout_s2.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout_s2.byte_strides(), ::testing::ElementsAreArray({3, 4})); static_assert( !std::is_constructible_v<StridedLayout<2>, StridedLayoutView<3>>); } TEST(StridedLayoutTest, AssignStatic) { StridedLayout<> layout_d({1, 2}, {3, 4}); static_assert(!std::is_assignable_v<StridedLayout<2>, StridedLayout<>>); static_assert(!std::is_assignable_v<StridedLayout<2>, StridedLayoutView<>>); { StridedLayout<2> layout_s; layout_s = StaticRankCast<2>(layout_d).value(); EXPECT_THAT(layout_s.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout_s.byte_strides(), ::testing::ElementsAreArray({3, 4})); } { StridedLayout<2> layout_s; layout_s = StaticCast<StridedLayoutView<2>>(layout_d).value(); EXPECT_THAT(layout_s.shape(), ::testing::ElementsAreArray({1, 2})); EXPECT_THAT(layout_s.byte_strides(), ::testing::ElementsAreArray({3, 4})); } } TEST(StridedLayoutTest, StaticIndexing) { StridedLayout<2> layout({3, 5}, {3, 4}); EXPECT_EQ(6 + 4, layout(2, 1)); } TEST(StridedLayoutViewTest, StaticConstructDefault) { StridedLayoutView<2> ref; EXPECT_EQ(2, ref.rank()); EXPECT_EQ(0, ref.shape()[0]); EXPECT_EQ(0, ref.shape()[1]); EXPECT_EQ(0, ref.byte_strides()[0]); EXPECT_EQ(0, ref.byte_strides()[1]); } TEST(StridedLayoutViewTest, StaticConstructFromSpans) { const Index shape[] = {5, 3}; const Index byte_strides[] = {3, 4}; StridedLayoutView<2> ref(shape, byte_strides); EXPECT_EQ(&shape[0], ref.shape().data()); EXPECT_EQ(&byte_strides[0], ref.byte_strides().data()); } TEST(StridedLayoutViewTest, StaticConstructAndAssign) { const Index shape[] = {5, 3}; const Index byte_strides[] = {3, 4}; StridedLayoutView<2> ref(shape, byte_strides); { StridedLayoutView<2> ref2 = ref; EXPECT_EQ(&shape[0], ref2.shape().data()); EXPECT_EQ(&byte_strides[0], ref2.byte_strides().data()); } { StridedLayoutView<2> ref2 = StaticRankCast<2>(StridedLayoutView<>{ref}).value(); EXPECT_EQ(&shape[0], ref2.shape().data()); EXPECT_EQ(&byte_strides[0], ref2.byte_strides().data()); } static_assert( !std::is_convertible_v<StridedLayoutView<>, StridedLayoutView<2>>); static_assert(!std::is_convertible_v<StridedLayout<>, StridedLayoutView<2>>); static_assert( !std::is_constructible_v<StridedLayoutView<2>, StridedLayoutView<3>>); static_assert( !std::is_constructible_v<StridedLayoutView<2>, StridedLayoutView<>>); static_assert( !std::is_constructible_v<StridedLayoutView<2>, StridedLayout<>>); static_assert( !std::is_assignable_v<StridedLayoutView<2>, StridedLayoutView<>>); static_assert(!std::is_assignable_v<StridedLayoutView<2>, StridedLayout<>>); static_assert(!std::is_assignable_v<StridedLayoutView<2>, StridedLayout<3>>); static_assert( !std::is_assignable_v<StridedLayoutView<2>, StridedLayoutView<3>>); { StridedLayoutView<2> ref2; ref2 = ref; EXPECT_EQ(&shape[0], ref2.shape().data()); EXPECT_EQ(&byte_strides[0], ref2.byte_strides().data()); } { StridedLayout<2> layout(ref); StridedLayoutView<2> ref2; ref2 = layout; EXPECT_EQ(layout.shape().data(), ref2.shape().data()); EXPECT_EQ(layout.byte_strides().data(), ref2.byte_strides().data()); } StridedLayout<2> layout(std::integral_constant<DimensionIndex, 2>{}); } TEST(StridedLayoutViewTest, CastError) { const Index shape[] = {5, 3}; const Index byte_strides[] = {3, 4}; StridedLayoutView<> ref(shape, byte_strides); EXPECT_THAT(StaticCast<StridedLayout<1>>(ref), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot cast strided layout with rank of 2 to " "strided layout with rank of 1")); } TEST(StridedLayoutViewTest, DynamicConsructAndAssign) { const Index shape[] = {5, 3}; const Index byte_strides[] = {3, 4}; StridedLayoutView<2> ref(shape, byte_strides); { StridedLayoutView<> r; EXPECT_EQ(0, r.rank()); EXPECT_TRUE(r.shape().empty()); EXPECT_TRUE(r.byte_strides().empty()); } { StridedLayoutView<> r(shape, byte_strides); EXPECT_EQ(2, r.rank()); EXPECT_EQ(&shape[0], r.shape().data()); EXPECT_EQ(&byte_strides[0], r.byte_strides().data()); EXPECT_EQ(2, r.shape().size()); EXPECT_EQ(2, r.byte_strides().size()); { StridedLayoutView<> r2 = r; EXPECT_EQ(2, r2.rank()); EXPECT_EQ(&shape[0], r2.shape().data()); EXPECT_EQ(&byte_strides[0], r2.byte_strides().data()); } { StridedLayoutView<> r2; r2 = r; EXPECT_EQ(2, r2.rank()); EXPECT_EQ(&shape[0], r2.shape().data()); EXPECT_EQ(&byte_strides[0], r2.byte_strides().data()); } } { StridedLayoutView<> r = ref; EXPECT_EQ(2, r.rank()); EXPECT_EQ(&shape[0], r.shape().data()); EXPECT_EQ(&byte_strides[0], r.byte_strides().data()); } { StridedLayoutView<> r; r = ref; EXPECT_EQ(2, r.rank()); EXPECT_EQ(&shape[0], r.shape().data()); EXPECT_EQ(&byte_strides[0], r.byte_strides().data()); } { StridedLayout<> layout(ref); { StridedLayoutView<> r = layout; EXPECT_EQ(2, r.rank()); EXPECT_EQ(layout.shape().data(), r.shape().data()); EXPECT_EQ(layout.byte_strides().data(), r.byte_strides().data()); } { StridedLayoutView<> r; r = layout; EXPECT_EQ(2, r.rank()); EXPECT_EQ(layout.shape().data(), r.shape().data()); EXPECT_EQ(layout.byte_strides().data(), r.byte_strides().data()); } } { StridedLayout<2> layout(ref); { StridedLayoutView<> r = layout; EXPECT_EQ(2, r.rank()); EXPECT_EQ(layout.shape().data(), r.shape().data()); EXPECT_EQ(layout.byte_strides().data(), r.byte_strides().data()); } { StridedLayoutView<> r; r = layout; EXPECT_EQ(2, r.rank()); EXPECT_EQ(layout.shape().data(), r.shape().data()); EXPECT_EQ(layout.byte_strides().data(), r.byte_strides().data()); } } } TEST(StridedLayoutViewTest, Static0) { { StridedLayoutView<0> r; EXPECT_EQ(0, r.rank()); EXPECT_EQ(nullptr, r.shape().data()); EXPECT_EQ(nullptr, r.byte_strides().data()); } { StridedLayoutView<0> r; [[maybe_unused]] StridedLayoutView<0> r2 = r; } { StridedLayoutView<0> r(span<const Index, 0>{}, span<const Index, 0>{}); } { StridedLayout<0> layout; StridedLayoutView<0> r = layout; r = layout; } } TEST(StridedLayoutViewDeathTest, DynamicConstruct) { [[maybe_unused]] const Index shape[] = {5, 3}; [[maybe_unused]] const Index byte_strides[] = {3}; TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY( (StridedLayoutView<>(shape, byte_strides)), "shape"); StridedLayout<> x; x.set_rank(2); EXPECT_THAT(StaticCast<StridedLayoutView<0>>(StridedLayoutView<>(x)), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(StaticCast<StridedLayoutView<0>>(x), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(StridedLayoutViewTest, Compare) { StridedLayout<> r1(span<const Index>({1, 2}), span<const Index>({3, 4})); StridedLayout<> r2(span<const Index>({1, 2}), span<const Index>({3, 4})); StridedLayout<> r3(span<const Index>({1, 2, 3}), span<const Index>({3, 4, 5})); EXPECT_TRUE(r1 == r2); EXPECT_FALSE(r1 != r2); r1.shape()[0] = 2; EXPECT_FALSE(r1 == r2); EXPECT_TRUE(r1 != r2); EXPECT_FALSE(r1 == StridedLayoutView<>{}); EXPECT_TRUE(r1 != StridedLayoutView<>{}); EXPECT_TRUE(StridedLayout<0>() == StridedLayoutView<0>()); EXPECT_FALSE(r3 == r2); EXPECT_FALSE(r2 == r3); EXPECT_TRUE(r2 != r3); } TEST(StridedLayoutViewTest, SubLayout) { { StridedLayout<3> r({1, 2, 3}, {3, 4, 5}); { auto s = GetSubLayoutView<0>(r); static_assert(std::is_same_v<decltype(s), StridedLayoutView<3>>); EXPECT_EQ(r.rank(), s.rank()); EXPECT_EQ(r.shape().data(), s.shape().data()); EXPECT_EQ(r.byte_strides().data(), s.byte_strides().data()); } { auto s = GetSubLayoutView<1>(r); static_assert(std::is_same_v<decltype(s), StridedLayoutView<2>>); EXPECT_EQ(2, s.rank()); EXPECT_EQ(r.shape().data() + 1, s.shape().data()); EXPECT_EQ(r.byte_strides().data() + 1, s.byte_strides().data()); } { auto s = GetSubLayoutView(r, tensorstore::StaticRank<1>{}); static_assert(std::is_same_v<decltype(s), StridedLayoutView<2>>); EXPECT_EQ(2, s.rank()); EXPECT_EQ(r.shape().data() + 1, s.shape().data()); EXPECT_EQ(r.byte_strides().data() + 1, s.byte_strides().data()); } { auto s = GetSubLayoutView<2>(r); static_assert(std::is_same_v<decltype(s), StridedLayoutView<1>>); EXPECT_EQ(1, s.rank()); EXPECT_EQ(r.shape().data() + 2, s.shape().data()); EXPECT_EQ(r.byte_strides().data() + 2, s.byte_strides().data()); } { auto s = GetSubLayoutView<3>(r); static_assert(std::is_same_v<decltype(s), StridedLayoutView<0>>); EXPECT_EQ(0, s.rank()); } } { StridedLayout<3> r({1, 2, 3}, {3, 4, 5}); { auto s = GetSubLayoutView(r, 0); static_assert(std::is_same_v<decltype(s), StridedLayoutView<>>); EXPECT_EQ(r.rank(), s.rank()); EXPECT_EQ(r.shape().data(), s.shape().data()); EXPECT_EQ(r.byte_strides().data(), s.byte_strides().data()); } { auto s = GetSubLayoutView(r, 1); EXPECT_EQ(2, s.rank()); EXPECT_EQ(r.shape().data() + 1, s.shape().data()); EXPECT_EQ(r.byte_strides().data() + 1, s.byte_strides().data()); } { auto s = GetSubLayoutView(r, 2); EXPECT_EQ(1, s.rank()); EXPECT_EQ(r.shape().data() + 2, s.shape().data()); EXPECT_EQ(r.byte_strides().data() + 2, s.byte_strides().data()); } { auto s = GetSubLayoutView(r, 3); EXPECT_EQ(0, s.rank()); } } { StridedLayout<> r({1, 2, 3}, {3, 4, 5}); { auto s = GetSubLayoutView<0>(r); static_assert(std::is_same_v<decltype(s), StridedLayoutView<>>); EXPECT_EQ(r.rank(), s.rank()); EXPECT_EQ(r.shape().data(), s.shape().data()); EXPECT_EQ(r.byte_strides().data(), s.byte_strides().data()); } { auto s = GetSubLayoutView<1>(r); static_assert(std::is_same_v<decltype(s), StridedLayoutView<>>); EXPECT_EQ(2, s.rank()); EXPECT_EQ(r.shape().data() + 1, s.shape().data()); EXPECT_EQ(r.byte_strides().data() + 1, s.byte_strides().data()); } { auto s = GetSubLayoutView<2>(r); static_assert(std::is_same_v<decltype(s), StridedLayoutView<>>); EXPECT_EQ(1, s.rank()); EXPECT_EQ(r.shape().data() + 2, s.shape().data()); EXPECT_EQ(r.byte_strides().data() + 2, s.byte_strides().data()); } { auto s = GetSubLayoutView<3>(r); static_assert(std::is_same_v<decltype(s), StridedLayoutView<>>); EXPECT_EQ(0, s.rank()); } } { StridedLayout<> r({1, 2, 3}, {3, 4, 5}); { auto s = GetSubLayoutView(r, 0); static_assert(std::is_same_v<decltype(s), StridedLayoutView<>>); EXPECT_EQ(r.rank(), s.rank()); EXPECT_EQ(r.shape().data(), s.shape().data()); EXPECT_EQ(r.byte_strides().data(), s.byte_strides().data()); } { auto s = GetSubLayoutView(r, 1); EXPECT_EQ(2, s.rank()); EXPECT_EQ(r.shape().data() + 1, s.shape().data()); EXPECT_EQ(r.byte_strides().data() + 1, s.byte_strides().data()); } { auto s = GetSubLayoutView(r, 2); EXPECT_EQ(1, s.rank()); EXPECT_EQ(r.shape().data() + 2, s.shape().data()); EXPECT_EQ(r.byte_strides().data() + 2, s.byte_strides().data()); } { auto s = GetSubLayoutView(r, 3); EXPECT_EQ(0, s.rank()); } } } TEST(StridedLayoutViewDeathTest, SubLayout) { StridedLayout<> r({1, 2, 3}, {3, 4, 5}); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY(GetSubLayoutView(r, -1), "sub_rank"); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY(GetSubLayoutView(r, 4), "sub_rank"); TENSORSTORE_EXPECT_DEATH_DEBUG_ONLY(GetSubLayoutView<4>(r), "sub_rank"); } TEST(StridedLayoutTest, COrderStatic) { auto layout = StridedLayout(ContiguousLayoutOrder::c, 2, span<const Index, 3>({3, 4, 5})); static_assert(std::is_same_v<decltype(layout), StridedLayout<3>>); EXPECT_EQ(StridedLayout<3>({3, 4, 5}, {4 * 5 * 2, 5 * 2, 2}), layout); StridedLayout<3, offset_origin> layout_offset_origin(ContiguousLayoutOrder::c, 2, {3, 4, 5})
537
cpp
google/tensorstore
resize_options
tensorstore/resize_options.cc
tensorstore/resize_options_test.cc
#ifndef TENSORSTORE_RESIZE_OPTIONS_H_ #define TENSORSTORE_RESIZE_OPTIONS_H_ #include <iosfwd> #include <type_traits> #include "absl/meta/type_traits.h" #include "tensorstore/batch.h" namespace tensorstore { enum class ResolveBoundsMode { fix_resizable_bounds = 1, }; constexpr ResolveBoundsMode fix_resizable_bounds = ResolveBoundsMode::fix_resizable_bounds; constexpr inline ResolveBoundsMode operator&(ResolveBoundsMode a, ResolveBoundsMode b) { return static_cast<ResolveBoundsMode>(static_cast<int>(a) & static_cast<int>(b)); } constexpr inline ResolveBoundsMode operator|(ResolveBoundsMode a, ResolveBoundsMode b) { return static_cast<ResolveBoundsMode>(static_cast<int>(a) | static_cast<int>(b)); } constexpr inline bool operator!(ResolveBoundsMode a) { return !static_cast<int>(a); } std::ostream& operator<<(std::ostream& os, ResolveBoundsMode mode); struct ResolveBoundsOptions { template <typename T> constexpr static inline bool IsOption = false; template <typename... T, typename = std::enable_if_t< (IsOption<absl::remove_cvref_t<T>> && ...)>> ResolveBoundsOptions(T&&... option) { (Set(std::forward<T>(option)), ...); } void Set(ResolveBoundsMode value) { this->mode = value; } void Set(Batch value) { this->batch = std::move(value); } ResolveBoundsMode mode = ResolveBoundsMode{}; Batch batch{no_batch}; }; template <> constexpr inline bool ResolveBoundsOptions::IsOption<ResolveBoundsMode> = true; template <> constexpr inline bool ResolveBoundsOptions::IsOption<Batch> = true; template <> constexpr inline bool ResolveBoundsOptions::IsOption<Batch::View> = true; enum class ResizeMode { resize_metadata_only = 1, resize_tied_bounds = 2, expand_only = 4, shrink_only = 8, }; constexpr ResizeMode resize_metadata_only = ResizeMode::resize_metadata_only; constexpr ResizeMode resize_tied_bounds = ResizeMode::resize_tied_bounds; constexpr ResizeMode expand_only = ResizeMode::expand_only; constexpr ResizeMode shrink_only = ResizeMode::shrink_only; constexpr inline ResizeMode operator&(ResizeMode a, ResizeMode b) { return static_cast<ResizeMode>(static_cast<int>(a) & static_cast<int>(b)); } constexpr inline ResizeMode operator|(ResizeMode a, ResizeMode b) { return static_cast<ResizeMode>(static_cast<int>(a) | static_cast<int>(b)); } constexpr inline bool operator!(ResizeMode a) { return !static_cast<int>(a); } std::ostream& operator<<(std::ostream& os, ResizeMode mode); struct ResizeOptions { template <typename T> constexpr static inline bool IsOption = false; template <typename... T, typename = std::enable_if_t< (IsOption<absl::remove_cvref_t<T>> && ...)>> ResizeOptions(T&&... option) { (Set(std::forward<T>(option)), ...); } void Set(ResizeMode value) { this->mode = value; } ResizeMode mode = ResizeMode{}; }; template <> constexpr inline bool ResizeOptions::IsOption<ResizeMode> = true; } #endif #include "tensorstore/resize_options.h" #include <stddef.h> #include <ostream> #include "absl/base/macros.h" namespace tensorstore { std::ostream& operator<<(std::ostream& os, ResolveBoundsMode mode) { constexpr const char* kModeNames[] = { "fix_resizable_bounds", }; const char* sep = ""; constexpr const char* kSep = "|"; for (size_t i = 0; i < ABSL_ARRAYSIZE(kModeNames); ++i) { if (static_cast<int>(mode) & (1 << i)) { os << sep << kModeNames[i]; sep = kSep; } } return os; } std::ostream& operator<<(std::ostream& os, ResizeMode mode) { constexpr const char* kModeNames[] = { "resize_metadata_only", "resize_tied_bounds", "expand_only", "shrink_only", }; const char* sep = ""; constexpr const char* kSep = "|"; for (size_t i = 0; i < ABSL_ARRAYSIZE(kModeNames); ++i) { if (static_cast<int>(mode) & (1 << i)) { os << sep << kModeNames[i]; sep = kSep; } } return os; } }
#include "tensorstore/resize_options.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::ResizeMode; using ::tensorstore::ResolveBoundsMode; using ::tensorstore::StrCat; TEST(ResolveBoundsModeTest, PrintToOstream) { EXPECT_EQ("fix_resizable_bounds", StrCat(ResolveBoundsMode::fix_resizable_bounds)); EXPECT_EQ("", StrCat(ResolveBoundsMode{})); } TEST(ResolveBoundsModeTest, BitwiseOr) { EXPECT_EQ(ResolveBoundsMode::fix_resizable_bounds, ResolveBoundsMode::fix_resizable_bounds | ResolveBoundsMode{}); EXPECT_EQ(ResolveBoundsMode::fix_resizable_bounds, ResolveBoundsMode{} | ResolveBoundsMode::fix_resizable_bounds); } TEST(ResizeModeTest, PrintToOstream) { EXPECT_EQ( "resize_metadata_only|resize_tied_bounds|expand_only|shrink_only", StrCat(ResizeMode::resize_metadata_only | ResizeMode::resize_tied_bounds | ResizeMode::expand_only | ResizeMode::shrink_only)); EXPECT_EQ("", StrCat(ResizeMode{})); } TEST(ResizeModeTest, BitwiseOr) { EXPECT_EQ(ResizeMode::resize_metadata_only, ResizeMode::resize_metadata_only | ResizeMode{}); EXPECT_EQ(ResizeMode::resize_metadata_only, ResizeMode{} | ResizeMode::resize_metadata_only); } }
538
cpp
google/tensorstore
progress
tensorstore/progress.cc
tensorstore/progress_test.cc
#ifndef TENSORSTORE_PROGRESS_H_ #define TENSORSTORE_PROGRESS_H_ #include <iosfwd> #include <utility> #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/internal/poly/poly.h" #include "tensorstore/util/future.h" namespace tensorstore { struct ReadProgress { Index total_elements; Index copied_elements; friend bool operator==(const ReadProgress& a, const ReadProgress& b); friend bool operator!=(const ReadProgress& a, const ReadProgress& b); friend std::ostream& operator<<(std::ostream& os, const ReadProgress& a); }; struct WriteProgress { Index total_elements; Index copied_elements; Index committed_elements; friend bool operator==(const WriteProgress& a, const WriteProgress& b); friend bool operator!=(const WriteProgress& a, const WriteProgress& b); friend std::ostream& operator<<(std::ostream& os, const WriteProgress& a); }; struct CopyProgress { Index total_elements; Index read_elements; Index copied_elements; Index committed_elements; friend bool operator==(const CopyProgress& a, const CopyProgress& b); friend bool operator!=(const CopyProgress& a, const CopyProgress& b); friend std::ostream& operator<<(std::ostream& os, const CopyProgress& a); }; struct [[nodiscard]] WriteFutures { WriteFutures() = default; WriteFutures(Future<void> copy_future, Future<void> commit_future) : copy_future(std::move(copy_future)), commit_future(std::move(commit_future)) {} WriteFutures(absl::Status status) : copy_future(status), commit_future(copy_future) {} WriteFutures(Result<WriteFutures> result) { if (result) { *this = *result; } else { *this = WriteFutures(result.status()); } } Result<void>& result() const { return commit_future.result(); } absl::Status status() const { return commit_future.status(); } void value() const { return commit_future.value(); } void Force() const { commit_future.Force(); } Future<void> copy_future; Future<void> commit_future; }; inline absl::Status GetStatus(const WriteFutures& future) { return future.status(); } struct ReadProgressFunction { using Function = poly::Poly<sizeof(void*) * 2, false, void(ReadProgress)>; Function value; }; struct WriteProgressFunction { using Function = poly::Poly<sizeof(void*) * 2, false, void(WriteProgress)>; Function value; }; struct CopyProgressFunction { using Function = poly::Poly<sizeof(void*) * 2, false, void(CopyProgress)>; Function value; }; } #endif #include "tensorstore/progress.h" #include <ostream> namespace tensorstore { bool operator==(const ReadProgress& a, const ReadProgress& b) { return a.total_elements == b.total_elements && a.copied_elements == b.copied_elements; } bool operator!=(const ReadProgress& a, const ReadProgress& b) { return !(a == b); } std::ostream& operator<<(std::ostream& os, const ReadProgress& a) { return os << "{ total_elements=" << a.total_elements << ", copied_elements=" << a.copied_elements << " }"; } bool operator==(const WriteProgress& a, const WriteProgress& b) { return a.total_elements == b.total_elements && a.copied_elements == b.copied_elements && a.committed_elements == b.committed_elements; } bool operator!=(const WriteProgress& a, const WriteProgress& b) { return !(a == b); } std::ostream& operator<<(std::ostream& os, const WriteProgress& a) { return os << "{ total_elements=" << a.total_elements << ", copied_elements=" << a.copied_elements << ", committed_elements=" << a.committed_elements << " }"; } bool operator==(const CopyProgress& a, const CopyProgress& b) { return a.total_elements == b.total_elements && a.read_elements == b.read_elements && a.copied_elements == b.copied_elements && a.committed_elements == b.committed_elements; } bool operator!=(const CopyProgress& a, const CopyProgress& b) { return !(a == b); } std::ostream& operator<<(std::ostream& os, const CopyProgress& a) { return os << "{ total_elements=" << a.total_elements << ", read_elements=" << a.read_elements << ", copied_elements=" << a.copied_elements << ", committed_elements=" << a.committed_elements << " }"; } }
#include "tensorstore/progress.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::CopyProgress; using ::tensorstore::ReadProgress; using ::tensorstore::WriteProgress; TEST(ReadProgressTest, Comparison) { ReadProgress a{1, 1}; ReadProgress b{2, 2}; ReadProgress c{2, 1}; EXPECT_EQ(a, a); EXPECT_EQ(b, b); EXPECT_EQ(c, c); EXPECT_NE(a, b); EXPECT_NE(a, c); EXPECT_NE(b, c); } TEST(ReadProgressTest, Ostream) { EXPECT_EQ("{ total_elements=2, copied_elements=1 }", tensorstore::StrCat(ReadProgress{2, 1})); } TEST(WriteProgressTest, Comparison) { WriteProgress a{1, 1, 1}; WriteProgress b{2, 2, 2}; WriteProgress c{2, 1, 1}; WriteProgress d{2, 1, 2}; EXPECT_EQ(a, a); EXPECT_EQ(b, b); EXPECT_EQ(c, c); EXPECT_EQ(d, d); EXPECT_NE(a, b); EXPECT_NE(a, c); EXPECT_NE(a, d); EXPECT_NE(b, d); EXPECT_NE(b, c); EXPECT_NE(c, d); } TEST(WriteProgressTest, Ostream) { EXPECT_EQ("{ total_elements=3, copied_elements=2, committed_elements=1 }", tensorstore::StrCat(WriteProgress{3, 2, 1})); } TEST(CopyProgressTest, Comparison) { CopyProgress a{1, 1, 1, 1}; CopyProgress b{2, 1, 1, 1}; CopyProgress c{1, 2, 1, 1}; CopyProgress d{1, 1, 2, 1}; CopyProgress e{1, 1, 1, 2}; EXPECT_EQ(a, a); EXPECT_EQ(b, b); EXPECT_EQ(c, c); EXPECT_EQ(d, d); EXPECT_EQ(e, e); EXPECT_NE(a, b); EXPECT_NE(a, c); EXPECT_NE(a, d); EXPECT_NE(a, e); } TEST(CopyProgressTest, Ostream) { EXPECT_EQ( "{ total_elements=4, read_elements=3, copied_elements=2, " "committed_elements=1 }", tensorstore::StrCat(CopyProgress{4, 3, 2, 1})); } }
539
cpp
google/tensorstore
rank
tensorstore/rank.cc
tensorstore/rank_test.cc
#ifndef TENSORSTORE_RANK_H_ #define TENSORSTORE_RANK_H_ #include <cassert> #include <initializer_list> #include <string> #include <type_traits> #include "tensorstore/index.h" #include "tensorstore/static_cast.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace tensorstore { constexpr DimensionIndex kMaxRank = 32; constexpr inline bool IsValidRank(DimensionIndex rank) { return 0 <= rank && rank <= kMaxRank; } struct DynamicRank { constexpr operator DimensionIndex() const { return -1; } constexpr DimensionIndex operator()(DimensionIndex inline_buffer_size) const { assert(inline_buffer_size >= 0); assert(inline_buffer_size <= kMaxRank); return -1 - inline_buffer_size; } }; constexpr inline DynamicRank dynamic_rank = {}; using InlineRank = DimensionIndex; struct RankConstraint { constexpr RankConstraint() = default; constexpr RankConstraint(DynamicRank) {} constexpr explicit RankConstraint(DimensionIndex rank) : rank(rank) {} static constexpr RankConstraint FromInlineRank(InlineRank value) { return RankConstraint(value < 0 ? dynamic_rank : value); } DimensionIndex rank = dynamic_rank; constexpr operator DimensionIndex() const { return rank; } constexpr bool valid() const { return rank == -1 || (rank >= 0 && rank <= kMaxRank); } static constexpr RankConstraint And(DimensionIndex a, DimensionIndex b) { assert(EqualOrUnspecified(a, b)); return RankConstraint(a == dynamic_rank ? b : a); } static constexpr RankConstraint And( std::initializer_list<DimensionIndex> constraints) { assert(EqualOrUnspecified(constraints)); for (DimensionIndex x : constraints) { if (x == dynamic_rank) continue; return RankConstraint(x); } return dynamic_rank; } static constexpr RankConstraint Add(DimensionIndex a, DimensionIndex b) { if (a == dynamic_rank || b == dynamic_rank) return dynamic_rank; return RankConstraint(a + b); } static constexpr RankConstraint Add( std::initializer_list<DimensionIndex> constraints) { DimensionIndex result = 0; for (auto x : constraints) { if (x == dynamic_rank) return dynamic_rank; result += x; } return RankConstraint(result); } static constexpr RankConstraint Subtract(DimensionIndex a, DimensionIndex b) { if (a == dynamic_rank || b == dynamic_rank) return dynamic_rank; assert(a >= b); return RankConstraint(a - b); } static constexpr bool Implies(DimensionIndex inner, DimensionIndex outer) { return outer == dynamic_rank || outer == inner; } static constexpr bool EqualOrUnspecified(DimensionIndex a, DimensionIndex b) { return a == dynamic_rank || b == dynamic_rank || a == b; } static constexpr bool EqualOrUnspecified( std::initializer_list<DimensionIndex> constraints) { DimensionIndex common = dynamic_rank; for (auto x : constraints) { if (x == dynamic_rank) continue; if (x != common && common != dynamic_rank) { return false; } common = x; } return true; } static constexpr bool LessOrUnspecified(DimensionIndex a, DimensionIndex b) { return a == dynamic_rank || b == dynamic_rank || a < b; } static constexpr bool LessEqualOrUnspecified(DimensionIndex a, DimensionIndex b) { return a == dynamic_rank || b == dynamic_rank || a <= b; } static constexpr bool GreaterOrUnspecified(DimensionIndex a, DimensionIndex b) { return a == dynamic_rank || b == dynamic_rank || a > b; } static constexpr bool GreaterEqualOrUnspecified(DimensionIndex a, DimensionIndex b) { return a == dynamic_rank || b == dynamic_rank || a >= b; } }; constexpr inline bool IsValidInlineRank(InlineRank inline_rank) { return inline_rank >= (-kMaxRank - 1) && inline_rank <= kMaxRank; } constexpr inline DimensionIndex InlineRankLimit(InlineRank rank_spec) { return (rank_spec <= -1) ? -1 - rank_spec : 0; } template <DimensionIndex Rank> using StaticRank = std::enable_if_t<(Rank >= 0), std::integral_constant<DimensionIndex, Rank>>; template <DimensionIndex Rank> using StaticOrDynamicRank = std::conditional_t<(Rank <= dynamic_rank), DimensionIndex, std::integral_constant<DimensionIndex, Rank>>; template <DimensionIndex Rank> inline constexpr StaticOrDynamicRank<Rank> GetDefaultRank() { if constexpr (Rank == dynamic_rank) { return dynamic_rank; } else { return {}; } } template <typename SourceRef, DimensionIndex TargetRank> using RebindRank = typename StaticCastTraitsType<SourceRef>::template RebindRank<TargetRank>; template <DimensionIndex TargetRank, CastChecking Checking = CastChecking::checked, typename SourceRef> StaticCastResultType<RebindRank<SourceRef, TargetRank>, SourceRef, Checking> StaticRankCast(SourceRef&& source) { return StaticCast<RebindRank<SourceRef, TargetRank>, Checking>( std::forward<SourceRef>(source)); } template <> struct StaticCastTraits<DimensionIndex> : public DefaultStaticCastTraits<DimensionIndex> { static constexpr DimensionIndex Construct(DimensionIndex rank) { return rank; } template <DimensionIndex Rank> static constexpr DimensionIndex Construct( std::integral_constant<DimensionIndex, Rank> rank) { return rank; } template <typename SourceRef> static constexpr bool IsCompatible(SourceRef&& source) { return true; } static std::string Describe(DimensionIndex value); static std::string Describe() { return Describe(dynamic_rank); } template <DimensionIndex TargetRank> using RebindRank = StaticOrDynamicRank<TargetRank>; }; namespace internal_rank { std::string DescribeStaticRank(DimensionIndex rank); } template <DimensionIndex Rank> struct StaticCastTraits<std::integral_constant<DimensionIndex, Rank>> { static constexpr StaticRank<Rank> Construct(StaticRank<Rank>) { return {}; } static constexpr StaticRank<Rank> Construct(DimensionIndex) { return {}; } static constexpr bool IsCompatible(DimensionIndex source) { return RankConstraint::EqualOrUnspecified(source, Rank); } static std::string Describe() { return StaticCastTraits<DimensionIndex>::Describe(Rank); } static std::string Describe(StaticRank<Rank>) { return Describe(); } template <DimensionIndex TargetRank> using RebindRank = StaticOrDynamicRank<TargetRank>; }; absl::Status ValidateRank(DimensionIndex rank); } #endif #include "tensorstore/rank.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { std::string StaticCastTraits<DimensionIndex>::Describe(DimensionIndex value) { if (value == dynamic_rank) return "dynamic rank"; return tensorstore::StrCat("rank of ", value); } absl::Status ValidateRank(DimensionIndex rank) { if (!IsValidRank(rank)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Rank ", rank, " is outside valid range [0, ", kMaxRank, "]")); } return absl::OkStatus(); } }
#include "tensorstore/rank.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::dynamic_rank; using ::tensorstore::InlineRankLimit; using ::tensorstore::MatchesStatus; using ::tensorstore::RankConstraint; using ::tensorstore::StaticRankCast; using ::tensorstore::unchecked; static_assert(RankConstraint::Implies(3, 3)); static_assert(RankConstraint::Implies(3, dynamic_rank)); static_assert(RankConstraint::Implies(dynamic_rank, dynamic_rank)); static_assert(!RankConstraint::Implies(3, 2)); static_assert(!RankConstraint::Implies(dynamic_rank, 3)); static_assert(RankConstraint::EqualOrUnspecified(3, 3)); static_assert(RankConstraint::EqualOrUnspecified(dynamic_rank, dynamic_rank)); static_assert(RankConstraint::EqualOrUnspecified(dynamic_rank, 3)); static_assert(RankConstraint::EqualOrUnspecified(3, dynamic_rank)); static_assert(!RankConstraint::EqualOrUnspecified(3, 2)); static_assert(RankConstraint::Add(2, 3) == 5); static_assert(RankConstraint::Add({2, 3, 4}) == 9); static_assert(RankConstraint::Add({2}) == 2); static_assert(RankConstraint::Add({}) == 0); static_assert(RankConstraint::Add(dynamic_rank, 3) == dynamic_rank); static_assert(RankConstraint::Add(3, dynamic_rank) == dynamic_rank); static_assert(RankConstraint::Add(dynamic_rank, dynamic_rank) == dynamic_rank); static_assert(RankConstraint::Subtract(5, 2) == 3); static_assert(RankConstraint::Subtract(dynamic_rank, 3) == dynamic_rank); static_assert(RankConstraint::Subtract(3, dynamic_rank) == dynamic_rank); static_assert(RankConstraint::Subtract(dynamic_rank, dynamic_rank) == dynamic_rank); static_assert(RankConstraint::And(dynamic_rank, 5) == 5); static_assert(RankConstraint::And(5, dynamic_rank) == 5); static_assert(RankConstraint::And(dynamic_rank, dynamic_rank) == dynamic_rank); static_assert(RankConstraint::And({5, 5, dynamic_rank}) == 5); static_assert(RankConstraint::And({3}) == 3); static_assert(RankConstraint::And({}) == dynamic_rank); static_assert(RankConstraint::LessOrUnspecified(1, 2) == true); static_assert(RankConstraint::LessOrUnspecified(1, 1) == false); static_assert(RankConstraint::LessOrUnspecified(dynamic_rank, 2) == true); static_assert(RankConstraint::LessOrUnspecified(1, dynamic_rank) == true); static_assert(RankConstraint::LessOrUnspecified(dynamic_rank, dynamic_rank) == true); static_assert(RankConstraint::LessEqualOrUnspecified(1, 2) == true); static_assert(RankConstraint::LessEqualOrUnspecified(1, 1) == true); static_assert(RankConstraint::LessEqualOrUnspecified(1, 0) == false); static_assert(RankConstraint::LessEqualOrUnspecified(dynamic_rank, 2) == true); static_assert(RankConstraint::LessEqualOrUnspecified(1, dynamic_rank) == true); static_assert(RankConstraint::LessEqualOrUnspecified(dynamic_rank, dynamic_rank) == true); static_assert(RankConstraint::GreaterOrUnspecified(2, 1) == true); static_assert(RankConstraint::GreaterOrUnspecified(1, 1) == false); static_assert(RankConstraint::GreaterOrUnspecified(dynamic_rank, 2) == true); static_assert(RankConstraint::GreaterOrUnspecified(1, dynamic_rank) == true); static_assert(RankConstraint::GreaterOrUnspecified(dynamic_rank, dynamic_rank) == true); static_assert(RankConstraint::GreaterEqualOrUnspecified(2, 1) == true); static_assert(RankConstraint::GreaterEqualOrUnspecified(1, 1) == true); static_assert(RankConstraint::GreaterEqualOrUnspecified(0, 1) == false); static_assert(RankConstraint::GreaterEqualOrUnspecified(dynamic_rank, 2) == true); static_assert(RankConstraint::GreaterEqualOrUnspecified(1, dynamic_rank) == true); static_assert(RankConstraint::GreaterEqualOrUnspecified(dynamic_rank, dynamic_rank) == true); TEST(RankCastTest, Basic) { auto x = StaticRankCast<3>(std::integral_constant<DimensionIndex, 3>()).value(); static_assert( std::is_same_v<decltype(x), std::integral_constant<DimensionIndex, 3>>); auto y = StaticRankCast<dynamic_rank>(x).value(); EXPECT_EQ(3, y); static_assert(std::is_same_v<decltype(y), DimensionIndex>); auto a = StaticRankCast<3>(DimensionIndex(3)).value(); auto b = StaticRankCast<dynamic_rank>(DimensionIndex(3)).value(); static_assert( std::is_same_v<decltype(a), std::integral_constant<DimensionIndex, 3>>); static_assert(std::is_same_v<decltype(b), DimensionIndex>); EXPECT_THAT((StaticRankCast<3>(DimensionIndex(2))), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot cast rank of 2 to rank of 3")); EXPECT_THAT((StaticRankCast<3>(DimensionIndex(3))), ::testing::Optional(tensorstore::StaticRank<3>())); EXPECT_THAT((StaticRankCast<3>(DimensionIndex(dynamic_rank))), ::testing::Optional(tensorstore::StaticRank<3>())); } TEST(RankCastDeathTest, DynamicToStatic) { EXPECT_DEBUG_DEATH((StaticRankCast<3, unchecked>(DimensionIndex(1))), "StaticCast is not valid"); } static_assert(InlineRankLimit(dynamic_rank(0)) == 0); static_assert(InlineRankLimit(dynamic_rank(1)) == 1); static_assert(InlineRankLimit(dynamic_rank(2)) == 2); static_assert(RankConstraint::FromInlineRank(dynamic_rank(0)) == -1); static_assert(RankConstraint::FromInlineRank(dynamic_rank(1)) == -1); static_assert(RankConstraint::FromInlineRank(dynamic_rank(2)) == -1); static_assert(RankConstraint::FromInlineRank(0) == 0); static_assert(RankConstraint::FromInlineRank(1) == 1); static_assert(RankConstraint::FromInlineRank(2) == 2); }
540
cpp
google/tensorstore
open_mode
tensorstore/open_mode.cc
tensorstore/open_mode_test.cc
#ifndef TENSORSTORE_OPEN_MODE_H_ #define TENSORSTORE_OPEN_MODE_H_ #include <iosfwd> #include <string_view> #include "absl/status/status.h" namespace tensorstore { enum class OpenMode { unknown = 0, open = 1, create = 2, delete_existing = 4, open_or_create = open + create, assume_metadata = 8, assume_cached_metadata = 16, }; constexpr inline OpenMode operator&(OpenMode a, OpenMode b) { return static_cast<OpenMode>(static_cast<int>(a) & static_cast<int>(b)); } constexpr inline OpenMode operator|(OpenMode a, OpenMode b) { return static_cast<OpenMode>(static_cast<int>(a) | static_cast<int>(b)); } constexpr inline bool operator!(OpenMode a) { return !static_cast<int>(a); } constexpr inline OpenMode operator~(OpenMode a) { return static_cast<OpenMode>( ~static_cast<std::underlying_type_t<OpenMode>>(a)); } std::ostream& operator<<(std::ostream& os, OpenMode mode); enum class ReadWriteMode { dynamic = 0, read = 1, write = 2, read_write = 3, }; constexpr inline ReadWriteMode operator&(ReadWriteMode a, ReadWriteMode b) { return static_cast<ReadWriteMode>(static_cast<int>(a) & static_cast<int>(b)); } constexpr inline ReadWriteMode& operator&=(ReadWriteMode& a, ReadWriteMode b) { return a = (a & b); } constexpr inline ReadWriteMode operator|(ReadWriteMode a, ReadWriteMode b) { return static_cast<ReadWriteMode>(static_cast<int>(a) | static_cast<int>(b)); } constexpr inline ReadWriteMode& operator|=(ReadWriteMode& a, ReadWriteMode b) { return a = (a | b); } constexpr inline bool operator!(ReadWriteMode a) { return !static_cast<int>(a); } constexpr inline ReadWriteMode operator~(ReadWriteMode a) { return static_cast<ReadWriteMode>( ~static_cast<std::underlying_type_t<ReadWriteMode>>(a)); } constexpr inline bool IsModeExplicitlyConvertible(ReadWriteMode source, ReadWriteMode target) { return (target == ReadWriteMode::dynamic || source == ReadWriteMode::dynamic || (target & source) == target); } std::string_view to_string(ReadWriteMode mode); std::ostream& operator<<(std::ostream& os, ReadWriteMode mode); class MinimalSpec { public: constexpr explicit MinimalSpec(bool minimal_spec = true) : minimal_spec_(minimal_spec) {} bool minimal_spec() const { return minimal_spec_; } private: bool minimal_spec_; }; namespace internal { constexpr ReadWriteMode StaticReadWriteMask(ReadWriteMode mode) { return mode == ReadWriteMode::dynamic ? ReadWriteMode::read_write : mode; } constexpr bool IsModePossible(ReadWriteMode mode, ReadWriteMode constraint) { return constraint == ReadWriteMode::dynamic ? mode != ReadWriteMode::dynamic : mode == constraint; } absl::Status ValidateSupportsRead(ReadWriteMode mode); absl::Status ValidateSupportsWrite(ReadWriteMode mode); absl::Status ValidateSupportsModes(ReadWriteMode mode, ReadWriteMode required_modes); } } #endif #include "tensorstore/open_mode.h" #include <ostream> #include "absl/status/status.h" namespace tensorstore { std::string_view to_string(ReadWriteMode mode) { switch (mode) { case ReadWriteMode::dynamic: return "dynamic"; case ReadWriteMode::read: return "read"; case ReadWriteMode::write: return "write"; case ReadWriteMode::read_write: return "read_write"; default: return "<unknown>"; } } std::ostream& operator<<(std::ostream& os, ReadWriteMode mode) { return os << to_string(mode); } std::ostream& operator<<(std::ostream& os, OpenMode mode) { const char* sep = ""; constexpr const char* kSep = "|"; if (!!(mode & OpenMode::open)) { os << "open"; sep = kSep; } if (!!(mode & OpenMode::create)) { os << sep << "create"; sep = kSep; } if (!!(mode & OpenMode::delete_existing)) { os << sep << "delete_existing"; sep = kSep; } if (!!(mode & OpenMode::assume_metadata)) { os << sep << "assume_metadata"; sep = kSep; } return os; } namespace internal { absl::Status ValidateSupportsRead(ReadWriteMode mode) { return !(mode & ReadWriteMode::read) ? absl::InvalidArgumentError("Source does not support reading.") : absl::Status(); } absl::Status ValidateSupportsWrite(ReadWriteMode mode) { return !(mode & ReadWriteMode::write) ? absl::InvalidArgumentError( "Destination does not support writing.") : absl::Status(); } absl::Status ValidateSupportsModes(ReadWriteMode mode, ReadWriteMode required_modes) { if ((mode & required_modes) != required_modes) { if (!!(required_modes & ReadWriteMode::read) && !(mode & ReadWriteMode::read)) { return absl::InvalidArgumentError("Read mode not supported"); } if (!!(required_modes & ReadWriteMode::write) && !(mode & ReadWriteMode::write)) { return absl::InvalidArgumentError("Write mode not supported"); } } return absl::OkStatus(); } } }
#include "tensorstore/open_mode.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::OpenMode; using ::tensorstore::ReadWriteMode; using ::tensorstore::StrCat; static_assert(ReadWriteMode::read_write == (ReadWriteMode::read | ReadWriteMode::write)); static_assert((ReadWriteMode::read_write & ReadWriteMode::read) == ReadWriteMode::read); static_assert(!ReadWriteMode::dynamic); static_assert(tensorstore::internal::StaticReadWriteMask(ReadWriteMode::read) == ReadWriteMode::read); static_assert(tensorstore::internal::StaticReadWriteMask( ReadWriteMode::write) == ReadWriteMode::write); static_assert(tensorstore::internal::StaticReadWriteMask( ReadWriteMode::dynamic) == ReadWriteMode::read_write); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::read, ReadWriteMode::dynamic)); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::read, ReadWriteMode::read)); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::write, ReadWriteMode::dynamic)); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::write, ReadWriteMode::write)); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::read_write, ReadWriteMode::dynamic)); static_assert(tensorstore::internal::IsModePossible(ReadWriteMode::read_write, ReadWriteMode::read_write)); static_assert(!tensorstore::internal::IsModePossible(ReadWriteMode::dynamic, ReadWriteMode::dynamic)); static_assert(!tensorstore::internal::IsModePossible( ReadWriteMode::read, ReadWriteMode::read_write)); static_assert(!tensorstore::internal::IsModePossible(ReadWriteMode::read, ReadWriteMode::write)); static_assert(!tensorstore::internal::IsModePossible(ReadWriteMode::write, ReadWriteMode::read)); static_assert(!tensorstore::internal::IsModePossible( ReadWriteMode::write, ReadWriteMode::read_write)); static_assert(!tensorstore::internal::IsModePossible(ReadWriteMode::read_write, ReadWriteMode::read)); static_assert(!tensorstore::internal::IsModePossible(ReadWriteMode::read_write, ReadWriteMode::write)); TEST(ReadWriteModeTest, PrintToOstream) { EXPECT_EQ("dynamic", StrCat(ReadWriteMode::dynamic)); EXPECT_EQ("read", StrCat(ReadWriteMode::read)); EXPECT_EQ("write", StrCat(ReadWriteMode::write)); EXPECT_EQ("read_write", StrCat(ReadWriteMode::read_write)); EXPECT_EQ("<unknown>", StrCat(static_cast<ReadWriteMode>(10))); } TEST(OpenTest, PrintToOstream) { EXPECT_EQ("", StrCat(OpenMode{})); EXPECT_EQ("open", StrCat(OpenMode::open)); EXPECT_EQ("create", StrCat(OpenMode::create)); EXPECT_EQ("open|create", StrCat(OpenMode::open | OpenMode::create)); EXPECT_EQ("open|assume_metadata", StrCat(OpenMode::open | OpenMode::assume_metadata)); EXPECT_EQ("create|delete_existing", StrCat(OpenMode::create | OpenMode::delete_existing)); } }
541
cpp
google/tensorstore
index_transform_builder
tensorstore/index_space/index_transform_builder.cc
tensorstore/index_space/index_transform_builder_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INDEX_TRANSFORM_BUILDER_H_ #define TENSORSTORE_INDEX_SPACE_INDEX_TRANSFORM_BUILDER_H_ #include <stddef.h> #include <algorithm> #include <optional> #include <string> #include <string_view> #include <type_traits> #include <utility> #include "absl/container/inlined_vector.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/deep_copy_transform_rep_ptr.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/output_index_map.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/rank.h" #include "tensorstore/static_cast.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_index_space { enum class BuilderFlags : unsigned int { kDefault = 0, kSetLower = 1, kSetImplicitLower = 2, kSetUpper = 4, kSetImplicitUpper = 8 }; inline BuilderFlags operator|(BuilderFlags a, BuilderFlags b) { return static_cast<BuilderFlags>(static_cast<unsigned int>(a) | static_cast<unsigned int>(b)); } inline BuilderFlags& operator|=(BuilderFlags& a, BuilderFlags b) { return a = a | b; } inline BuilderFlags operator&(BuilderFlags a, BuilderFlags b) { return static_cast<BuilderFlags>(static_cast<unsigned int>(a) & static_cast<unsigned int>(b)); } class OutputIndexMapInitializer { public: OutputIndexMapInitializer() {} OutputIndexMapInitializer(DimensionIndex input_dimension) : input_dimension(input_dimension) {} OutputIndexMapInitializer(const SharedArrayView<const Index, dynamic_rank, offset_origin>& index_array, Result<IndexInterval> bounds) : index_array(index_array), index_array_bounds(bounds) {} std::optional<DimensionIndex> input_dimension; SharedArray<const Index, dynamic_rank, offset_origin> index_array; Result<IndexInterval> index_array_bounds{in_place}; }; template <typename Range, typename Element> void AssignRange(const Range& range, span<Element> dest); template <std::ptrdiff_t StaticExtent, typename Range, typename = void> constexpr inline bool IsStaticExtentCompatibleWithRange = true; template <std::ptrdiff_t StaticExtent, typename Range> constexpr inline bool IsStaticExtentCompatibleWithRange< StaticExtent, Range, std::void_t<internal::ConstSpanType<Range>>> = RankConstraint::EqualOrUnspecified(StaticExtent, internal::ConstSpanType<Range>::extent); } template <DimensionIndex InputRank = dynamic_rank, DimensionIndex OutputRank = dynamic_rank> class IndexTransformBuilder { static_assert(RankConstraint(InputRank).valid()); static_assert(RankConstraint(OutputRank).valid()); public: IndexTransformBuilder(std::nullptr_t) {} template <DimensionIndex IRank = InputRank, DimensionIndex ORank = OutputRank, typename = std::enable_if_t<(IRank == dynamic_rank && ORank == dynamic_rank)>> IndexTransformBuilder(DimensionIndex input_rank, DimensionIndex output_rank) : IndexTransformBuilder(std::true_type{}, input_rank, output_rank) {} template <DimensionIndex IRank = InputRank, DimensionIndex ORank = OutputRank, typename = std::enable_if_t<(IRank != dynamic_rank && ORank != dynamic_rank)>> IndexTransformBuilder( std::integral_constant<DimensionIndex, IRank> input_rank = {}, std::integral_constant<DimensionIndex, ORank> output_rank = {}) : IndexTransformBuilder(std::true_type{}, input_rank, output_rank) {} template <DimensionIndex IRank = InputRank, DimensionIndex ORank = OutputRank, typename = std::enable_if_t<(IRank == dynamic_rank && ORank != dynamic_rank)>> IndexTransformBuilder( DimensionIndex input_rank, std::integral_constant<DimensionIndex, ORank> output_rank = {}) : IndexTransformBuilder(std::true_type{}, input_rank, output_rank) {} IndexTransformBuilder(const IndexTransformBuilder&) = default; IndexTransformBuilder(IndexTransformBuilder&&) = default; IndexTransformBuilder& operator=(const IndexTransformBuilder&) = default; IndexTransformBuilder& operator=(IndexTransformBuilder&&) = default; bool valid() const { return static_cast<bool>(rep_); } StaticOrDynamicRank<InputRank> input_rank() const { return StaticRankCast<InputRank, unchecked>( static_cast<DimensionIndex>(rep_->input_rank)); } StaticOrDynamicRank<OutputRank> output_rank() const { return StaticRankCast<OutputRank, unchecked>( static_cast<DimensionIndex>(rep_->output_rank)); } span<Index, InputRank> input_origin() { flags_ |= internal_index_space::BuilderFlags::kSetLower; return {rep_->input_origin().data(), input_rank()}; } template <typename Indices> std::enable_if_t<internal_index_space::IsStaticExtentCompatibleWithRange< InputRank, Indices>, IndexTransformBuilder&> input_origin(const Indices& indices) { internal_index_space::AssignRange(indices, span<Index>(input_origin())); return *this; } template <size_t N> IndexTransformBuilder& input_origin(const Index (&indices)[N]) { static_assert(InputRank == dynamic_rank || InputRank == N, ""); return input_origin(span(indices)); } span<Index, InputRank> input_shape() { flags_ |= internal_index_space::BuilderFlags::kSetUpper; interval_form_ = IntervalForm::sized; return {rep_->input_shape().data(), input_rank()}; } template <typename Indices> std::enable_if_t<internal_index_space::IsStaticExtentCompatibleWithRange< InputRank, Indices>, IndexTransformBuilder&> input_shape(const Indices& indices) { internal_index_space::AssignRange(indices, span<Index>(input_shape())); return *this; } template <size_t N> IndexTransformBuilder& input_shape(const Index (&indices)[N]) { static_assert(InputRank == dynamic_rank || InputRank == N, ""); return input_shape(span(indices)); } span<Index, InputRank> input_exclusive_max() { flags_ |= internal_index_space::BuilderFlags::kSetUpper; interval_form_ = IntervalForm::half_open; return {rep_->input_shape().data(), input_rank()}; } template <typename Indices> std::enable_if_t<internal_index_space::IsStaticExtentCompatibleWithRange< InputRank, Indices>, IndexTransformBuilder&> input_exclusive_max(const Indices& indices) { internal_index_space::AssignRange(indices, span<Index>(input_exclusive_max())); return *this; } template <size_t N> IndexTransformBuilder& input_exclusive_max(const Index (&indices)[N]) { static_assert(InputRank == dynamic_rank || InputRank == N, ""); return input_exclusive_max(span(indices)); } span<Index, InputRank> input_inclusive_max() { flags_ |= internal_index_space::BuilderFlags::kSetUpper; interval_form_ = IntervalForm::closed; return {rep_->input_shape().data(), input_rank()}; } template <typename Indices> std::enable_if_t<internal_index_space::IsStaticExtentCompatibleWithRange< InputRank, Indices>, IndexTransformBuilder&> input_inclusive_max(const Indices& indices) { internal_index_space::AssignRange(indices, span<Index>(input_inclusive_max())); return *this; } template <size_t N> IndexTransformBuilder& input_inclusive_max(const Index (&indices)[N]) { static_assert(InputRank == dynamic_rank || InputRank == N, ""); return input_inclusive_max(span(indices)); } template <typename BoxLike> std::enable_if_t<IsBoxLikeImplicitlyConvertibleToRank<BoxLike, InputRank>, IndexTransformBuilder&> input_bounds(const BoxLike& box) { this->input_bounds().DeepAssign(box); return *this; } MutableBoxView<InputRank> input_bounds() { flags_ |= (internal_index_space::BuilderFlags::kSetLower | internal_index_space::BuilderFlags::kSetUpper); interval_form_ = IntervalForm::sized; return MutableBoxView<InputRank>(input_rank(), rep_->input_origin().data(), rep_->input_shape().data()); } IndexTransformBuilder& input_domain(IndexDomainView<InputRank> domain) { input_origin(domain.origin()); input_shape(domain.shape()); input_labels(domain.labels()); implicit_lower_bounds(domain.implicit_lower_bounds()); implicit_upper_bounds(domain.implicit_upper_bounds()); return *this; } span<std::string, InputRank> input_labels() { return {rep_->input_labels().data(), input_rank()}; } template <typename Labels> std::enable_if_t<internal_index_space::IsStaticExtentCompatibleWithRange< InputRank, Labels>, IndexTransformBuilder&> input_labels(const Labels& labels) { internal_index_space::AssignRange(labels, span<std::string>(input_labels())); return *this; } template <size_t N> IndexTransformBuilder& input_labels(const std::string_view (&labels)[N]) { static_assert(InputRank == dynamic_rank || InputRank == N, ""); return input_labels(span(labels)); } DimensionSet& implicit_lower_bounds() { flags_ |= internal_index_space::BuilderFlags::kSetImplicitLower; return rep_->implicit_lower_bounds; } IndexTransformBuilder& implicit_lower_bounds(DimensionSet x) { implicit_lower_bounds() = x; return *this; } template <size_t N> IndexTransformBuilder& implicit_lower_bounds(const bool (&x)[N]) { static_assert(InputRank == dynamic_rank || InputRank == N); ABSL_CHECK_EQ(N, input_rank()) << "range size mismatch"; return implicit_lower_bounds(DimensionSet::FromBools(x)); } DimensionSet& implicit_upper_bounds() { flags_ |= internal_index_space::BuilderFlags::kSetImplicitUpper; return rep_->implicit_upper_bounds; } IndexTransformBuilder& implicit_upper_bounds(DimensionSet x) { implicit_upper_bounds() = x; return *this; } template <size_t N> IndexTransformBuilder& implicit_upper_bounds(const bool (&x)[N]) { static_assert(InputRank == dynamic_rank || InputRank == N); ABSL_CHECK_EQ(N, input_rank()) << "range size mismatch"; return implicit_upper_bounds(DimensionSet::FromBools(x)); } template <DimensionIndex OtherInputRank> IndexTransformBuilder& output_map(DimensionIndex output_dim, OutputIndexMapRef<OtherInputRank> map) { switch (map.method()) { case OutputIndexMethod::constant: AssignOutput(output_dim, map.offset(), 0, internal_index_space::OutputIndexMapInitializer()); break; case OutputIndexMethod::single_input_dimension: AssignOutput(output_dim, map.offset(), map.stride(), internal_index_space::OutputIndexMapInitializer( map.input_dimension())); break; case OutputIndexMethod::array: { auto index_array = map.index_array(); AssignOutput( output_dim, map.offset(), map.stride(), internal_index_space::OutputIndexMapInitializer( index_array.shared_array_ref(), index_array.index_range())); break; } } return *this; } IndexTransformBuilder& output_constant(DimensionIndex output_dim, Index offset) { AssignOutput(output_dim, offset, 0, internal_index_space::OutputIndexMapInitializer()); return *this; } IndexTransformBuilder& output_single_input_dimension( DimensionIndex output_dim, Index offset, Index stride, DimensionIndex input_dim) { AssignOutput(output_dim, offset, stride, internal_index_space::OutputIndexMapInitializer(input_dim)); return *this; } IndexTransformBuilder& output_single_input_dimension( DimensionIndex output_dim, DimensionIndex input_dim) { return output_single_input_dimension(output_dim, 0, 1, input_dim); } IndexTransformBuilder& output_index_array( DimensionIndex output_dim, Index offset, Index stride, const SharedArrayView<const Index, dynamic_rank, offset_origin>& index_array, Result<IndexInterval> index_range = IndexInterval()) { AssignOutput(output_dim, offset, stride, internal_index_space::OutputIndexMapInitializer( index_array, std::move(index_range))); return *
#include "tensorstore/index_space/index_transform_builder.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionSet; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::OutputIndexMethod; using ::tensorstore::span; using ::tensorstore::internal_index_space::TransformAccess; TEST(IndexTransformTest, BuilderValid) { auto index_array = MakeArray<Index>({{{1, 0, 2, 2}}}); auto t = IndexTransformBuilder<3, 4>() .input_origin({1, 2, 3}) .input_shape({2, 2, 4}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"x", "y", "z"}) .output_constant(0, 4) .output_single_input_dimension(1, 5, 7, 2) .output_constant(2, 6) .output_index_array(3, 7, 9, index_array, IndexInterval::Closed(0, 3)) .Finalize() .value(); static_assert(std::is_same_v<decltype(t), IndexTransform<3, 4>>); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2, 3)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 2, 4)); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("x", "y", "z")); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({0, 1, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 0, 0})); EXPECT_EQ(IndexInterval::UncheckedSized(1, 2), t.input_domain()[0].interval()); EXPECT_EQ(IndexInterval::UncheckedSized(2, 2), t.input_domain()[1].interval()); EXPECT_EQ(IndexInterval::UncheckedSized(3, 4), t.input_domain()[2].interval()); { auto map = t.output_index_map(0); EXPECT_EQ(OutputIndexMethod::constant, map.method()); EXPECT_EQ(4, map.offset()); EXPECT_EQ(0, map.stride()); } { auto map = t.output_index_map(1); EXPECT_EQ(OutputIndexMethod::single_input_dimension, map.method()); EXPECT_EQ(2, map.input_dimension()); EXPECT_EQ(5, map.offset()); EXPECT_EQ(7, map.stride()); } { auto map = t.output_index_map(2); EXPECT_EQ(OutputIndexMethod::constant, map.method()); EXPECT_EQ(6, map.offset()); EXPECT_EQ(0, map.stride()); } { auto map = t.output_index_map(3); EXPECT_EQ(OutputIndexMethod::array, map.method()); EXPECT_EQ(7, map.offset()); EXPECT_EQ(9, map.stride()); auto index_array_ref = map.index_array(); EXPECT_EQ(&index_array(0, 0, 0), &index_array_ref.array_ref()(1, 2, 3)); EXPECT_THAT(index_array_ref.layout().byte_strides(), ::testing::ElementsAre(0, 0, sizeof(Index))); } { std::array<Index, 4> output_indices; ASSERT_EQ( absl::OkStatus(), t.TransformIndices(span<const Index, 3>({1, 2, 3}), output_indices)); EXPECT_THAT(output_indices, ::testing::ElementsAre(4, 26, 6, 16)); } } TEST(IndexTransformBuilderTest, Nullptr) { IndexTransformBuilder<> builder(nullptr); EXPECT_FALSE(builder.valid()); { IndexTransformBuilder<> other_builder(builder); EXPECT_FALSE(other_builder.valid()); } { IndexTransformBuilder<> other_builder(nullptr); other_builder = builder; EXPECT_FALSE(other_builder.valid()); } } TEST(IndexTransformBuilderTest, Move) { IndexTransformBuilder<> builder(1, 1); EXPECT_TRUE(builder.valid()); builder.input_origin({1}); auto builder2 = std::move(builder); EXPECT_TRUE(builder2.valid()); EXPECT_FALSE(builder.valid()); builder2.output_constant(0, 5); EXPECT_THAT(builder2.Finalize().value(), IndexTransformBuilder<>(1, 1) .input_origin({1}) .output_constant(0, 5) .Finalize() .value()); } TEST(IndexTransformBuilderTest, Copy) { IndexTransformBuilder<> builder(1, 1); EXPECT_TRUE(builder.valid()); builder.input_origin({1}); auto builder2 = builder; EXPECT_TRUE(builder.valid()); EXPECT_TRUE(builder2.valid()); builder.output_constant(0, 4); builder2.output_constant(0, 5); EXPECT_THAT(builder.Finalize().value(), IndexTransformBuilder<>(1, 1) .input_origin({1}) .output_constant(0, 4) .Finalize() .value()); EXPECT_THAT(builder2.Finalize().value(), IndexTransformBuilder<>(1, 1) .input_origin({1}) .output_constant(0, 5) .Finalize() .value()); } TEST(IndexTransformBuilderTest, Default) { auto t = IndexTransformBuilder<>(2, 1).Finalize().value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(-kInfIndex, -kInfIndex)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(kInfSize, kInfSize)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); auto map = t.output_index_map(0); EXPECT_EQ(0, map.offset()); EXPECT_EQ(0, map.stride()); EXPECT_EQ(OutputIndexMethod::constant, map.method()); } TEST(IndexTransformBuilderTest, InputOriginSpecified) { auto t = IndexTransformBuilder<>(2, 0).input_origin({1, 2}).Finalize().value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(1, kInfIndex)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(2, kInfIndex)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, ImplicitLowerBoundsSpecified) { auto t = IndexTransformBuilder<>(2, 0) .implicit_lower_bounds({1, 0}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, InputShapeSpecified) { auto t = IndexTransformBuilder<>(2, 0).input_shape({5, 10}).Finalize().value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedSized(0, 5)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedSized(0, 10)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, InputInclusiveMaxSpecified) { auto t = IndexTransformBuilder<>(2, 0) .input_inclusive_max({5, 10}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(-kInfIndex, 5)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(-kInfIndex, 10)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, InputExclusiveMaxSpecified) { auto t = IndexTransformBuilder<>(2, 0) .input_exclusive_max({5, 10}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedHalfOpen(-kInfIndex, 5)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedHalfOpen(-kInfIndex, 10)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({0, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, ImplicitUpperBoundsSpecified) { auto t = IndexTransformBuilder<>(2, 0) .implicit_upper_bounds({1, 0}) .Finalize() .value(); EXPECT_EQ(t.domain()[0].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_EQ(t.domain()[1].interval(), IndexInterval::UncheckedClosed(-kInfIndex, kInfIndex)); EXPECT_THAT(t.implicit_lower_bounds(), DimensionSet::FromBools({1, 1})); EXPECT_THAT(t.implicit_upper_bounds(), DimensionSet::FromBools({1, 0})); EXPECT_THAT(t.input_labels(), ::testing::ElementsAre("", "")); } TEST(IndexTransformBuilderTest, SingleInputDimensionDefaults) { EXPECT_EQ(IndexTransformBuilder<>(3, 1) .output_single_input_dimension(0, 2) .Finalize() .value(), IndexTransformBuilder<>(3, 1) .output_single_input_dimension(0, 2) .Finalize() .value()); } TEST(IndexTransformBuilderTest, InputOriginOutOfRange) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_origin({-kInfIndex - 1, -kInfIndex}) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".* do not specify a valid half-open index interval")); } TEST(IndexTransformBuilderTest, InputShapeOutOfRange) { EXPECT_THAT( IndexTransformBuilder<>(2, 1).input_shape({1, -1}).Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "\\(0, -1\\) do not specify a valid sized index interval")); } TEST(IndexTransformBuilderTest, InvalidInputDimensionNegative) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .output_single_input_dimension(0, 0, 1, -1) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Input dimension -1 specified for output dimension 0 " "is outside valid range \\[0, 2\\)")); } TEST(IndexTransformBuilderTest, InvalidInputDimensionPositive) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .output_single_input_dimension(0, 2) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Input dimension 2 specified for output dimension 0 " "is outside valid range \\[0, 2\\)")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayRank) { EXPECT_THAT(IndexTransformBuilder<>(2, 1) .output_index_array(0, 0, 1, MakeArray<Index>({1})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "has rank 1 but must have rank 2")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayShape) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({2, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}, {5, 6}})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 has shape \\{3, 2\\} " "which does not match input_shape \\{2, 2\\}")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayImplicitLowerBound) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({3, 2}) .implicit_lower_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}, {5, 6}})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "depends on input dimension 0 with implicit bounds")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayImplicitUpperBound) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({3, 2}) .implicit_upper_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}, {5, 6}})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "depends on input dimension 0 with implicit bounds")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayIndexRange) { EXPECT_THAT( IndexTransformBuilder<>(2, 1) .input_shape({2, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}, {3, 4}}), IndexInterval::Sized(3, -1)) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "\\(3, -1\\) do not specify a valid sized index interval")); } TEST(IndexTransformBuilderTest, InvalidIndexArrayWithUnboundedDomain) { EXPECT_THAT( IndexTransformBuilder(1, 1) .input_origin({tensorstore::kMaxFiniteIndex}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({1, 2})) .Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Index array for output dimension 0 " "depends on input dimension 0 with infinite bounds")); } TEST(IndexTransformBuilderDeathTest, InvalidArguments) { EXPECT_DEATH((IndexTransformBuilder<>(2, 1).input_origin({1, 2, 3})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).input_shape({1, 2, 3})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).implicit_lower_bounds({1, 1, 0})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).implicit_upper_bounds({1, 1, 0})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).input_labels({"a"})), "range size mismatch"); EXPECT_DEATH((IndexTransformBuilder<>(2, 1).output_constant(1, 0)), "invalid output dimension"); } TEST(IndexTransformBuilderTest, OutputStrideZero) { auto t = IndexTransformBuilder<>(1, 1) .output_single_input_dimension(0, 1, 0, 0) .Finalize() .value(); auto map = t.output_index_map(0); EXPECT_EQ(1, map.offset()); EXPECT_EQ(0, map.stride()); EXPECT_EQ(OutputIndexMethod::constant, map.method()); } TEST(IndexTransformBuilderTest, InclusiveMax) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_inclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(3, 4)); } TEST(IndexTransformBuilderTest, InputShapeInfSize) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({3, kInfSize}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(3, kInfIndex + 1 - 2)); } TEST(IndexTransformBuilderTest, ExclusiveMax) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_exclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexTransformBuilderTest, ExclusiveMaxAfterShape) { auto t = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({15, 16}) .input_exclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexTransformBuilderTest, InputDomainBox) { auto t = IndexTransformBuilder<>(2, 2) .input_bounds(tensorstore::BoxView({1, 2}, {2, 3})) .Finalize() .value(); EXPECT_THAT(t.input_origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(t.input_shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexTransformBuilderTest, InputDomain) { tensorstore::IndexDomain<2> domain(IndexTransformBuilder<2, 0>() .input_origin({1, 2}) .input_shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_labels({"x", "y"}) .Finalize() .value() .domain()); auto t = IndexTransformBuilder<>(2, 2).input_domain(domain).Finalize().value(); EXPECT_EQ(domain, t.domain()); } TEST(IndexTransformBuilderTest, OutputIdentityTransform) { EXPECT_THAT( IndexTransformBuilder(2, 2).output_identity_transform().Finalize(), ::testing::Optional(tensorstore::IdentityTransform(2))); EXPECT_EQ(IndexTransformBuilder(3, 2) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder(3, 2) .output_identity_transform() .Finalize() .value()); EXPECT_EQ(IndexTransformBuilder(2, 3) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_constant(2, 0) .Finalize() .value(), IndexTransformBuilder(2, 3) .output_identity_transform() .Finalize() .value()); } TEST(IndexTransformBuilderTest, CopyOutputMap) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(3, 4) .input_origin({1, 2, 3}) .input_shape({2, 2, 4}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"x", "y", "z"}) .output_constant(0, 4) .output_single_input_dimension(1, 5, 7, 2) .output_constant(2, 6) .output_index_array(3, 7, 9, MakeArray<Index>({{{1, 0, 2, 2}}}), IndexInterval::Closed(0, 3)) .Finalize()); EXPECT_THAT(IndexTransformBuilder(3, 4) .input_domain(t.domain()) .output_maps(t.output_index_maps()) .Finalize(), ::testing::Optional(t)); EXPECT_THAT(IndexTransformBuilder(3, 4) .input_domain(t.domain()) .output_constant(0, 4) .output_map(1, t.output_index_maps()[1]) .output_map(2, t.output_index_maps()[2]) .output_map(3, t.output_index_maps()[3]) .Finalize(), ::testing::Optional(t)); } TEST(InitializeTransformRepForBuilder, Basic) { auto source = tensorstore::internal_index_space::TransformRep::Allocate(1, 2); source->output_rank = 2; tensorstore::internal_index_space::InitializeTransformRepForBuilder( source.get()); EXPECT_EQ(0, source->output_index_maps()[0].offset()); EXPECT_EQ(0, source->output_index_maps()[0].stride()); EXPECT_EQ(0, source->output_index_maps()[1].offset()); EXPECT_EQ(0, source->output_index_maps()[1].stride()); } TEST(IndexTransformBuilder, NonUniqueLabels) { EXPECT_THAT( IndexTransformBuilder<>(3, 0).input_labels({"a", "", "a"}).Finalize(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Dimension label\\(s\\) \"a\" not unique")); } TEST(IndexTransformBuilderTest, IndexArrayWithEmptyExplicitDomain) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected, IndexTransformBuilder(2, 2) .input_shape({0, 2}) .output_constant(0, 0) .output_constant(1, 1) .Finalize()); EXPECT_THAT(IndexTransformBuilder(2, 2) .input_shape({0, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{2, 3}})) .output_constant(1, 1) .Finalize(), ::testing::Optional(expected)); } TEST(IndexDomainBuilderTest, Null) { IndexDomainBuilder builder(nullptr); EXPECT_FALSE(builder.valid()); } TEST(IndexDomainBuilderTest, Basic) { IndexDomainBuilder builder(3); EXPECT_EQ(3, builder.rank()); builder.origin(span<const Index, 3>({1, 2, 3})); EXPECT_THAT(builder.origin(), ::testing::ElementsAre(1, 2, 3)); builder.shape(span<const Index, 3>({4, 5, 6})); EXPECT_THAT(builder.shape(), ::testing::ElementsAre(4, 5, 6)); builder.exclusive_max(span<const Index, 3>({4, 5, 6})); EXPECT_THAT(builder.exclusive_max(), ::testing::ElementsAre(4, 5, 6)); builder.inclusive_max(span<const Index, 3>({4, 5, 6})); EXPECT_THAT(builder.inclusive_max(), ::testing::ElementsAre(4, 5, 6)); builder.implicit_lower_bounds({0, 1, 1}); builder.implicit_upper_bounds({1, 0, 1}); EXPECT_THAT(builder.implicit_lower_bounds(), DimensionSet::FromBools({0, 1, 1})); EXPECT_THAT(builder.implicit_upper_bounds(), DimensionSet::FromBools({1, 0, 1})); builder.labels(std::vector<std::string>{"x", "y", "z"}); EXPECT_THAT(builder.labels(), ::testing::ElementsAre("x", "y", "z")); } TEST(IndexDomainBuilderTest, Labels) { auto d = IndexDomainBuilder(2).labels({"x", "y"}).Finalize().value(); EXPECT_THAT(d.labels(), ::testing::ElementsAre("x", "y")); } TEST(IndexDomainBuilderTest, InclusiveMax) { auto d = IndexDomainBuilder(2) .origin({1, 2}) .inclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(3, 4)); } TEST(IndexDomainBuilderTest, Shape) { auto d = IndexDomainBuilder(2).origin({1, 2}).shape({3, 5}).Finalize().value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(3, 5)); } TEST(IndexDomainBuilderTest, ExclusiveMax) { auto d = IndexDomainBuilder(2) .origin({1, 2}) .exclusive_max({3, 5}) .Finalize() .value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexDomainBuilderTest, InputDomainBox) { auto d = IndexDomainBuilder(2) .bounds(tensorstore::BoxView({1, 2}, {2, 3})) .Finalize() .value(); EXPECT_THAT(d.origin(), ::testing::ElementsAre(1, 2)); EXPECT_THAT(d.shape(), ::testing::ElementsAre(2, 3)); } TEST(IndexDomainBuilderTest, InputDomain) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(tensorstore::IndexDomain<2> domain, IndexDomainBuilder<2>() .origin({1, 2}) .shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .labels({"x", "y"}) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto d, IndexDomainBuilder<>(2).domain(domain).Finalize()); EXPECT_EQ(domain, d); } }
542
cpp
google/tensorstore
index_transform
tensorstore/proto/index_transform.cc
tensorstore/proto/index_transform_test.cc
#ifndef TENSORSTORE_PROTO_INDEX_TRANSFORM_H_ #define TENSORSTORE_PROTO_INDEX_TRANSFORM_H_ #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/proto/index_transform.pb.h" #include "tensorstore/util/result.h" namespace tensorstore { Result<IndexTransform<>> ParseIndexTransformFromProto( const ::tensorstore::proto::IndexTransform& proto, DimensionIndex input_rank_constraint = dynamic_rank, DimensionIndex output_rank_constraint = dynamic_rank); Result<IndexDomain<>> ParseIndexDomainFromProto( const ::tensorstore::proto::IndexDomain& proto, DimensionIndex rank_constraint = dynamic_rank); void EncodeToProto(::tensorstore::proto::IndexTransform& proto, IndexTransformView<> t); void EncodeToProto(::tensorstore::proto::IndexDomain& proto, IndexDomainView<> d); } #endif #include "tensorstore/proto/index_transform.h" #include <algorithm> #include <cstddef> #include <vector> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/internal/json/array.h" #include "tensorstore/internal/json_binding/dimension_indexed.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/proto/index_transform.pb.h" #include "tensorstore/rank.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { Result<IndexDomain<>> ParseIndexDomainFromProto( const ::tensorstore::proto::IndexDomain& proto, DimensionIndex rank_constraint) { const DimensionIndex rank = [&]() -> DimensionIndex { if (proto.has_rank()) return proto.rank(); if (proto.origin_size() > 0) return proto.origin_size(); if (proto.shape_size() > 0) return proto.shape_size(); return proto.labels_size(); }(); if (rank < 0 || rank > kMaxRank) { return absl::InvalidArgumentError( tensorstore::StrCat("Expected rank to be in the range [0, ", kMaxRank, "], but is: ", rank)); } if (!RankConstraint::EqualOrUnspecified(rank_constraint, rank)) { return absl::InvalidArgumentError(tensorstore::StrCat( "Expected rank to be ", rank_constraint, ", but is: ", rank)); } if (proto.origin_size() > 0 && proto.origin_size() != rank) { return absl::InvalidArgumentError( tensorstore::StrCat("Proto origin must include ", rank, " items")); } if (proto.shape_size() > 0 && proto.shape_size() != rank) { return absl::InvalidArgumentError( tensorstore::StrCat("Proto shape must include ", rank, " items")); } if (proto.labels_size() > 0 && proto.labels_size() != rank) { return absl::InvalidArgumentError( tensorstore::StrCat("Proto labels must include ", rank, " items")); } if (proto.implicit_lower_bound_size() > 0 && proto.implicit_lower_bound_size() != rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Proto implicit_lower_bound must include ", rank, " items")); } if (proto.implicit_upper_bound_size() > 0 && proto.implicit_upper_bound_size() != rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Proto implicit_upper_bound must include ", rank, " items")); } IndexDomainBuilder builder(rank); if (proto.origin_size() > 0) { std::copy(proto.origin().begin(), proto.origin().end(), builder.origin().begin()); if (proto.implicit_lower_bound_size() > 0) { std::copy(proto.implicit_lower_bound().begin(), proto.implicit_lower_bound().end(), builder.implicit_lower_bounds().bools_view().begin()); } } if (proto.shape_size() > 0) { std::copy(proto.shape().begin(), proto.shape().end(), builder.shape().begin()); if (proto.implicit_upper_bound_size() > 0) { std::copy(proto.implicit_upper_bound().begin(), proto.implicit_upper_bound().end(), builder.implicit_upper_bounds().bools_view().begin()); } } if (!proto.labels().empty()) { std::copy(proto.labels().begin(), proto.labels().end(), builder.labels().begin()); } return builder.Finalize(); } Result<IndexTransform<>> ParseIndexTransformFromProto( const proto::IndexTransform& proto, DimensionIndex input_rank_constraint, DimensionIndex output_rank_constraint) { TENSORSTORE_ASSIGN_OR_RETURN( auto input_domain, ParseIndexDomainFromProto(proto.input_domain(), input_rank_constraint)); const DimensionIndex rank = input_domain.rank(); const DimensionIndex output_rank = [&]() -> DimensionIndex { if (proto.has_output_rank()) return proto.output_rank(); if (proto.output_size() == 0) return rank; return proto.output_size(); }(); if (output_rank < 0 || output_rank > kMaxRank) { return absl::InvalidArgumentError( tensorstore::StrCat("Expected output_rank to be in the range [0, ", kMaxRank, "], but is: ", output_rank)); } if (!RankConstraint::EqualOrUnspecified(output_rank_constraint, output_rank)) { return absl::InvalidArgumentError( tensorstore::StrCat("Expected output_rank to be ", output_rank_constraint, ", but is: ", output_rank)); } IndexTransformBuilder builder(rank, output_rank); if (proto.output().empty() && output_rank == rank) { builder.output_identity_transform(); } else { if (proto.output_size() != output_rank) { return absl::InvalidArgumentError( tensorstore::StrCat("Proto output expected ", output_rank, " items")); } for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& output_proto = proto.output(output_dim); if (output_proto.has_index_array()) { const auto& array = output_proto.index_array(); std::vector<tensorstore::Index> shape(array.shape().cbegin(), array.shape().cend()); auto a = MakeCopy( tensorstore::Array(tensorstore::ElementPointer<const int64_t>( &array.data()[0], dtype_v<int64_t>), shape)); Result<IndexInterval> index_range = IndexInterval(); if (output_proto.has_index_array_inclusive_min() && output_proto.has_index_array_exclusive_max()) { index_range = IndexInterval::HalfOpen(output_proto.index_array_inclusive_min(), output_proto.index_array_exclusive_max()); } builder.output_index_array(output_dim, output_proto.offset(), output_proto.stride(), a, index_range); continue; } if (output_proto.stride() == 0) { builder.output_constant(output_dim, output_proto.offset()); continue; } builder.output_single_input_dimension(output_dim, output_proto.offset(), output_proto.stride(), output_proto.input_dimension()); } } return builder.input_domain(input_domain).Finalize(); } void EncodeToProto(proto::IndexDomain& proto, IndexDomainView<> d) { const DimensionIndex rank = d.rank(); bool all_implicit_lower = true; bool all_implicit_upper = true; size_t implicit_lower_count = 0; size_t implicit_upper_count = 0; bool has_labels = false; for (DimensionIndex i = 0; i < rank; ++i) { implicit_lower_count += d.implicit_lower_bounds()[i]; all_implicit_lower = all_implicit_lower && d.implicit_lower_bounds()[i] && (d[i].inclusive_min() == -kInfIndex); implicit_upper_count += d.implicit_upper_bounds()[i]; all_implicit_upper = all_implicit_upper && d.implicit_upper_bounds()[i] && (d[i].exclusive_max() == (+kInfIndex + 1)); has_labels |= !d.labels()[i].empty(); } if (all_implicit_lower && all_implicit_upper && !has_labels) { proto.set_rank(rank); } for (DimensionIndex i = 0; i < rank; i++) { if (!all_implicit_lower) { proto.add_origin(d.origin()[i]); if (implicit_lower_count > 0) { proto.add_implicit_lower_bound(d.implicit_lower_bounds()[i]); } } if (!all_implicit_upper) { proto.add_shape(d.shape()[i]); if (implicit_upper_count > 0) { proto.add_implicit_upper_bound(d.implicit_upper_bounds()[i]); } } if (has_labels) { proto.add_labels(d.labels()[i]); } } } void EncodeToProto(proto::IndexTransform& proto, IndexTransformView<> t) { EncodeToProto(*proto.mutable_input_domain(), t.input_domain()); const DimensionIndex input_rank = t.input_rank(); bool all_identity = true; for (DimensionIndex i = 0; i < t.output_rank(); ++i) { const auto map = t.output_index_map(i); auto* out_proto = proto.add_output(); if (map.offset() != 0) { out_proto->set_offset(map.offset()); all_identity = false; } if (map.method() != OutputIndexMethod::constant) { out_proto->set_stride(map.stride()); if (map.stride() != 1) all_identity = false; } switch (map.method()) { case OutputIndexMethod::constant: all_identity = false; break; case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); out_proto->set_input_dimension(input_dim); if (input_dim != i) all_identity = false; break; } case OutputIndexMethod::array: { all_identity = false; const auto index_array_data = map.index_array(); auto index_array = UnbroadcastArrayPreserveRank(index_array_data.array_ref()); auto* out_array = out_proto->mutable_index_array(); for (Index size : index_array.shape()) { out_array->add_shape(size); } IndexInterval index_range = index_array_data.index_range(); if (index_range != IndexInterval::Infinite() && !ValidateIndexArrayBounds(index_range, index_array).ok()) { out_proto->set_index_array_inclusive_min(index_range.inclusive_min()); out_proto->set_index_array_exclusive_max(index_range.exclusive_max()); } IterateOverArrays( [&](const Index* value) { out_array->add_data(*value); }, c_order, index_array); break; } } } if (all_identity) { proto.clear_output(); } if (t.output_rank() != input_rank && t.output_rank() == 0) { proto.set_output_rank(t.output_rank()); } } }
#include "tensorstore/proto/index_transform.h" #include <string> #include <type_traits> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/proto/index_transform.pb.h" #include "tensorstore/proto/protobuf_matchers.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::protobuf_matchers::EqualsProto; using ::tensorstore::DimensionIndex; using ::tensorstore::dynamic_rank; using ::tensorstore::EncodeToProto; using ::tensorstore::Index; using ::tensorstore::IndexDomainView; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::kInfIndex; using ::tensorstore::MatchesStatus; using ::tensorstore::ParseIndexDomainFromProto; using ::tensorstore::ParseIndexTransformFromProto; template <typename Proto> Proto ParseProtoOrDie(const std::string& asciipb) { return protobuf_matchers::internal::MakePartialProtoFromAscii<Proto>(asciipb); } IndexTransform<> MakeLabeledExampleTransform() { return tensorstore::IndexTransformBuilder<4, 3>() .input_origin({-kInfIndex, 7, -kInfIndex, 8}) .input_exclusive_max({kInfIndex + 1, 10, kInfIndex + 1, 17}) .implicit_lower_bounds({0, 0, 1, 1}) .implicit_upper_bounds({0, 0, 1, 1}) .input_labels({"x", "y", "z", "t"}) .output_constant(0, 3) .output_single_input_dimension(1, 0, 2, 2) .output_index_array(2, 7, 1, tensorstore::MakeArray<Index>({{ {{1}}, {{2}}, {{3}}, }})) .Finalize() .value(); } IndexTransform<> MakeUnlabeledExampleTransform() { return tensorstore::IndexTransformBuilder<4, 3>() .input_origin({-kInfIndex, 7, -kInfIndex, 8}) .input_exclusive_max({kInfIndex + 1, 10, kInfIndex + 1, 17}) .implicit_lower_bounds({0, 0, 1, 1}) .implicit_upper_bounds({0, 0, 1, 1}) .output_constant(0, 3) .output_single_input_dimension(1, 0, 2, 2) .output_index_array(2, 7, 1, tensorstore::MakeArray<Index>({{ {{1}}, {{2}}, {{3}}, }}), IndexInterval::Closed(1, 2)) .Finalize() .value(); } ::tensorstore::proto::IndexTransform MakeUnlabeledExampleProto() { return ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { # rank: 4 origin: [ -4611686018427387903, 7, -4611686018427387903, 8 ] implicit_lower_bound: [ 0, 0, 1, 1 ] shape: [ 9223372036854775807, 3, 9223372036854775807, 9 ] implicit_upper_bound: [ 0, 0, 1, 1 ] } output { offset: 3 } output { stride: 2 input_dimension: 2 } output { offset: 7 stride: 1 index_array { shape: [ 1, 3, 1, 1 ] data: [ 1, 2, 3 ] } index_array_inclusive_min: 1 index_array_exclusive_max: 3 } )pb"); } ::tensorstore::proto::IndexTransform MakeLabeledExampleProto() { return ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { # rank: 4 origin: [ -4611686018427387903, 7, -4611686018427387903, 8 ] implicit_lower_bound: [ 0, 0, 1, 1 ] shape: [ 9223372036854775807, 3, 9223372036854775807, 9 ] implicit_upper_bound: [ 0, 0, 1, 1 ] labels: "x" labels: "y" labels: "z" labels: "t" } output { offset: 3 } output { stride: 2 input_dimension: 2 } output { offset: 7 stride: 1 index_array { shape: [ 1, 3, 1, 1 ] data: [ 1, 2, 3 ] } } )pb"); } auto DoEncode(IndexTransformView<> t) { ::tensorstore::proto::IndexTransform proto; EncodeToProto(proto, t); return proto; } TEST(IndexTransformProtoTest, Unlabeled) { EXPECT_THAT(DoEncode(MakeUnlabeledExampleTransform()), EqualsProto(MakeUnlabeledExampleProto())); EXPECT_THAT(ParseIndexTransformFromProto(MakeUnlabeledExampleProto()), testing::Eq(MakeUnlabeledExampleTransform())); } TEST(IndexTransformProtoTest, Labeled) { EXPECT_THAT(DoEncode(MakeLabeledExampleTransform()), EqualsProto(MakeLabeledExampleProto())); EXPECT_THAT(ParseIndexTransformFromProto(MakeLabeledExampleProto()), testing::Eq(MakeLabeledExampleTransform())); } TEST(IndexTransformProtoTest, IdentityTransform) { auto transform = tensorstore::IdentityTransform(tensorstore::BoxView({3, 4})); auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { # rank: 2 origin: [ 0, 0 ] shape: [ 3, 4 ] } )pb"); EXPECT_THAT(DoEncode(transform), EqualsProto(proto)); EXPECT_THAT(ParseIndexTransformFromProto(proto), testing::Eq(transform)); } TEST(IndexTransformProtoTest, IndexArrayOutOfBounds) { EXPECT_THAT( DoEncode(IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 0, 1, tensorstore::MakeArray<Index>({1, 2, 3})) .Finalize() .value()), EqualsProto(R"pb( input_domain { # rank: 1 origin: 0 shape: 3 } output { stride: 1 index_array { shape: 3 data: [ 1, 2, 3 ] } } )pb")); EXPECT_THAT( DoEncode(IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 0, 1, tensorstore::MakeArray<Index>({1, 2, 3}), IndexInterval::UncheckedClosed(1, 2)) .Finalize() .value()), EqualsProto(R"pb( input_domain { # rank: 1 origin: 0 shape: 3 } output { stride: 1 index_array { shape: 3 data: [ 1, 2, 3 ] } index_array_inclusive_min: 1 index_array_exclusive_max: 3 } )pb")); EXPECT_THAT(DoEncode(IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 0, 1, tensorstore::MakeArray<Index>( {1, kInfIndex + 1, 3})) .Finalize() .value()), EqualsProto(R"pb( input_domain { # rank: 1 origin: 0 shape: 3 } output { stride: 1 index_array { shape: 3 data: [ 1, 4611686018427387904, 3 ] } } )pb")); EXPECT_THAT( DoEncode(IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 0, 1, tensorstore::MakeArray<Index>({1, 2, 3}), IndexInterval::Closed(1, 3)) .Finalize() .value()), EqualsProto(R"pb( input_domain { # rank: 1 origin: 0 shape: 3 } output { stride: 1 index_array { shape: 3 data: [ 1, 2, 3 ] } } )pb")); } TEST(IndexTransformProtoTest, Translation) { auto transform = ChainResult(tensorstore::IdentityTransform(tensorstore::BoxView({3, 4})), tensorstore::AllDims().TranslateTo({1, 2})) .value(); auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { # rank: 2 origin: [ 1, 2 ] shape: [ 3, 4 ] } output { offset: -1 input_dimension: 0 stride: 1 } output { offset: -2 input_dimension: 1 stride: 1 } )pb"); EXPECT_THAT(DoEncode(transform), EqualsProto(proto)); EXPECT_THAT(ParseIndexTransformFromProto(proto), testing::Eq(transform)); } TEST(IndexTransformProtoTest, Labels) { auto transform = ChainResult(tensorstore::IdentityTransform(tensorstore::BoxView({3, 4})), tensorstore::AllDims().Label("x", "y")) .value(); auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { # rank: 2 origin: [ 0, 0 ] shape: [ 3, 4 ] labels: [ "x", "y" ] } )pb"); EXPECT_THAT(DoEncode(transform), EqualsProto(proto)); EXPECT_THAT(ParseIndexTransformFromProto(proto), testing::Eq(transform)); } TEST(IndexTransformProtoTest, Rank0) { auto transform = IndexTransformBuilder(0, 0).Finalize().value(); auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { rank: 0 } )pb"); EXPECT_THAT(DoEncode(transform), EqualsProto(proto)); EXPECT_THAT(ParseIndexTransformFromProto(proto), testing::Eq(transform)); } TEST(IndexTransformProtoTest, Rank0EmptyProto) { ::tensorstore::proto::IndexTransform proto; EXPECT_THAT(ParseIndexTransformFromProto(proto), testing::Eq(IndexTransformBuilder(0, 0).Finalize().value())); } TEST(IndexTransformProtoTest, Input1Output0) { auto transform = IndexTransformBuilder(1, 0).Finalize().value(); auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { rank: 1 } output_rank: 0 )pb"); EXPECT_THAT(DoEncode(transform), EqualsProto(proto)); EXPECT_THAT(ParseIndexTransformFromProto(proto), testing::Eq(transform)); } TEST(IndexTransformProtoTest, LabelsOnly) { auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>( R"pb( input_domain { labels: [ "x", "y" ] } )pb"); EXPECT_THAT(DoEncode(ParseIndexTransformFromProto(proto).value()), EqualsProto(proto)); } TEST(IndexTransformProtoTest, MinOnlyNotImplicit) { auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { origin: -4611686018427387903 } )pb"); EXPECT_THAT(DoEncode(ParseIndexTransformFromProto(proto).value()), EqualsProto(proto)); } TEST(IndexTransformProtoTest, SingleInfiniteMaxNotImplicit) { auto transform = IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_exclusive_max({kInfIndex + 1}) .output_identity_transform() .Finalize() .value(); auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { shape: 4611686018427387904 } )pb"); EXPECT_THAT(ParseIndexTransformFromProto(proto), testing::Eq(transform)); EXPECT_THAT(DoEncode(transform), EqualsProto(R"pb( input_domain { origin: 0 shape: 4611686018427387904 } )pb")); } TEST(IndexTransformProtoTest, IdentityTransformWithInf) { auto transform = IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_exclusive_max({5, kInfIndex + 1}) .output_identity_transform() .Finalize() .value(); auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { origin: [ 1, 2 ] shape: [ 4, 4611686018427387902 ] } )pb"); EXPECT_THAT(DoEncode(transform), EqualsProto(proto)); EXPECT_THAT(ParseIndexTransformFromProto(proto), testing::Eq(transform)); } TEST(IndexTransformProtoTest, BadOutputRank) { auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { origin: [ 1, 2 ] shape: [ 4, 5 ] } output_rank: 1 )pb"); EXPECT_THAT(ParseIndexTransformFromProto(proto), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(IndexTransformProtoTest, RankMismatch) { EXPECT_THAT(ParseIndexTransformFromProto(MakeLabeledExampleProto(), 3), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected rank to be 3, but is: 4")); } TEST(IndexTransformProtoTest, MissingInputRank) { auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( output { offset: 3 stride: 1 } output { stride: 2 input_dimension: 1 } )pb"); EXPECT_THAT(ParseIndexTransformFromProto(proto), MatchesStatus(absl::StatusCode::kInvalidArgument, "Input dimension 0 specified for output dimension " "0 is outside valid range .*")); } TEST(IndexTransformProtoTest, InvalidShape) { auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { origin: [ 1, 2 ] shape: [ 3, 4, 5 ] } )pb"); EXPECT_THAT(ParseIndexTransformFromProto(proto), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(IndexTransformProtoTest, MissingOutputs) { auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { origin: [ 1, 2 ] shape: [ 3, 4 ] } )pb"); EXPECT_THAT(ParseIndexTransformFromProto(proto, dynamic_rank, 2), testing::Eq(tensorstore::IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({3, 4}) .output_identity_transform() .Finalize() .value())); EXPECT_THAT(ParseIndexTransformFromProto(proto, dynamic_rank, 3), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected output_rank to be 3, but is: 2")); } TEST(IndexTransformProtoTest, DuplicateLabels) { auto proto = ParseProtoOrDie<::tensorstore::proto::IndexTransform>(R"pb( input_domain { origin: [ 1, 2 ] labels: [ "a", "a" ] } )pb"); EXPECT_THAT(ParseIndexTransformFromProto(proto), MatchesStatus(absl::StatusCode::kInvalidArgument, "Dimension label.*not unique")); } auto DoEncode(IndexDomainView<> t) { ::tensorstore::proto::IndexDomain proto; EncodeToProto(proto, t); return proto; } TEST(IndexDomainProtoTest, Simple) { auto domain = tensorstore::IndexDomainBuilder<4>() .origin({-kInfIndex, 7, -kInfIndex, 8}) .exclusive_max({kInfIndex + 1, 10, kInfIndex + 1, 17}) .implicit_lower_bounds({0, 0, 1, 1}) .implicit_upper_bounds({0, 0, 1, 1}) .labels({"x", "y", "z", "t"}) .Finalize() .value(); auto proto = ParseProtoOrDie<::tensorstore::proto::IndexDomain>(R"pb( # rank: 4 origin: [ -4611686018427387903, 7, -4611686018427387903, 8 ] implicit_upper_bound: [ 0, 0, 1, 1 ] shape: [ 9223372036854775807, 3, 9223372036854775807, 9 ] implicit_lower_bound: [ 0, 0, 1, 1 ] labels: [ "x", "y", "z", "t" ] )pb"); EXPECT_THAT(DoEncode(domain), EqualsProto(proto)); EXPECT_THAT(ParseIndexDomainFromProto(proto), testing::Eq(domain)); } TEST(IndexDomainProtoTest, NoImplicit) { auto domain = tensorstore::IndexDomainBuilder<3>() .origin({1, 2, 3}) .exclusive_max({100, 200, 300}) .labels({"x", "y", "z"}) .Finalize() .value(); auto proto = ParseProtoOrDie<::tensorstore::proto::IndexDomain>(R"pb( # rank: 3 origin: [ 1, 2, 3 ] shape: [ 99, 198, 297 ] labels: [ "x", "y", "z" ] )pb"); EXPECT_THAT(DoEncode(domain), EqualsProto(proto)); EXPECT_THAT(ParseIndexDomainFromProto(proto), testing::Eq(domain)); } TEST(IndexDomainProtoTest, Errors) { EXPECT_THAT(ParseIndexDomainFromProto( ParseProtoOrDie<::tensorstore::proto::IndexDomain>(R"pb( rank: 33 )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected rank .*: 33")); EXPECT_THAT(ParseIndexDomainFromProto( ParseProtoOrDie<::tensorstore::proto::IndexDomain>(R"pb( origin: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected rank .*: 34")); EXPECT_THAT(ParseIndexDomainFromProto( ParseProtoOrDie<::tensorstore::proto::IndexDomain>(R"pb( shape: [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected rank .*: 34")); EXPECT_THAT(ParseIndexDomainFromProto( ParseProtoOrDie<::tensorstore::proto::IndexDomain>(R"pb( labels: [ "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "" ] )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected rank .*: 33")); EXPECT_THAT(ParseIndexDomainFromProto( ParseProtoOrDie<::tensorstore::proto::IndexDomain>(R"pb( origin: [ 1, 2, 3 ] implicit_lower_bound: [ 1 ] )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseIndexDomainFromProto( ParseProtoOrDie<::tensorstore::proto::IndexDomain>(R"pb( shape: [ 1, 2, 3 ] implicit_upper_bound: [ 1 ] )pb")), MatchesStatus(absl::StatusCode::kInvalidArgument)); } }
543
cpp
google/tensorstore
alignment
tensorstore/index_space/alignment.cc
tensorstore/index_space/alignment_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_ALIGNMENT_H_ #define TENSORSTORE_INDEX_SPACE_ALIGNMENT_H_ #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace tensorstore { enum class DomainAlignmentOptions { none = 0, permute = 1, translate = 2, broadcast = 4, all = 7, }; constexpr inline DomainAlignmentOptions operator|(DomainAlignmentOptions a, DomainAlignmentOptions b) { return static_cast<DomainAlignmentOptions>(static_cast<int>(a) | static_cast<int>(b)); } constexpr inline DomainAlignmentOptions operator&(DomainAlignmentOptions a, DomainAlignmentOptions b) { return static_cast<DomainAlignmentOptions>(static_cast<int>(a) & static_cast<int>(b)); } constexpr inline bool operator!(DomainAlignmentOptions a) { return !static_cast<int>(a); } Result<IndexTransform<>> AlignDomainTo( IndexDomainView<> source, IndexDomainView<> target, DomainAlignmentOptions options = DomainAlignmentOptions::all); absl::Status AlignDimensionsTo( IndexDomainView<> source, IndexDomainView<> target, span<DimensionIndex> source_matches, DomainAlignmentOptions options = DomainAlignmentOptions::all); Result<IndexTransform<>> AlignTransformTo( IndexTransform<> source_transform, IndexDomainView<> target, DomainAlignmentOptions options = DomainAlignmentOptions::all); } #endif #include "tensorstore/index_space/alignment.h" #include <algorithm> #include <numeric> #include "absl/status/status.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { absl::Status AlignDimensionsTo(IndexDomainView<> source, IndexDomainView<> target, span<DimensionIndex> source_matches, DomainAlignmentOptions options) { assert(source.valid()); assert(target.valid()); const DimensionIndex source_rank = source.rank(); const DimensionIndex target_rank = target.rank(); if (!(options & DomainAlignmentOptions::broadcast) && source_rank != target_rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Aligning source domain of rank ", source_rank, " to target domain of rank ", target_rank, " requires broadcasting")); } assert(source_matches.size() == source_rank); const auto source_labels = source.labels(); const auto target_labels = target.labels(); if (!(options & DomainAlignmentOptions::permute) || internal_index_space::IsUnlabeled(source_labels) || internal_index_space::IsUnlabeled(target_labels)) { const DimensionIndex match_rank = std::min(source_rank, target_rank); const DimensionIndex source_match_start = source_rank - match_rank; const DimensionIndex target_match_start = target_rank - match_rank; std::fill_n(source_matches.begin(), source_match_start, DimensionIndex(-1)); std::iota(source_matches.begin() + source_match_start, source_matches.end(), target_match_start); } else { DimensionIndex next_potentially_unlabeled_target = target_rank - 1; for (DimensionIndex i = source_rank - 1; i >= 0; --i) { std::string_view source_label = source_labels[i]; DimensionIndex j; if (source_label.empty()) { while (true) { if (next_potentially_unlabeled_target < 0) { j = -1; break; } if (target_labels[next_potentially_unlabeled_target].empty()) { j = next_potentially_unlabeled_target--; break; } --next_potentially_unlabeled_target; } } else { for (j = target_rank - 1; j >= 0; --j) { if (target_labels[j] == source_label) break; } } source_matches[i] = j; } } std::string mismatch_error; const auto source_shape = source.shape(); const auto target_shape = target.shape(); for (DimensionIndex i = 0; i < source_rank; ++i) { DimensionIndex& j = source_matches[i]; const DimensionIndex source_size = source_shape[i]; if (j != -1) { if (!(options & DomainAlignmentOptions::translate) ? source[i] != target[j] : source_size != target_shape[j]) { if (!(options & DomainAlignmentOptions::broadcast) || source_size != 1) { tensorstore::StrAppend(&mismatch_error, "source dimension ", i, " ", source[i], " mismatch with target dimension ", j, " ", target[j], ", "); } j = -1; } } else { if (!(options & DomainAlignmentOptions::broadcast)) { tensorstore::StrAppend(&mismatch_error, "unmatched source dimension ", i, " ", source[i], ", "); } if (source_size != 1) { tensorstore::StrAppend(&mismatch_error, "unmatched source dimension ", i, " ", source[i], " does not have a size of 1, "); } } } if (!mismatch_error.empty()) { mismatch_error.resize(mismatch_error.size() - 2); return absl::InvalidArgumentError( tensorstore::StrCat("Error aligning dimensions: ", mismatch_error)); } return absl::OkStatus(); } Result<IndexTransform<>> AlignDomainTo(IndexDomainView<> source, IndexDomainView<> target, DomainAlignmentOptions options) { using internal_index_space::TransformAccess; assert(source.valid()); assert(target.valid()); const DimensionIndex source_rank = source.rank(); DimensionIndex source_matches[kMaxRank]; TENSORSTORE_RETURN_IF_ERROR(AlignDimensionsTo( source, target, span(source_matches).first(source_rank), options)); const DimensionIndex target_rank = target.rank(); auto alignment = internal_index_space::TransformRep::Allocate(target_rank, source_rank); CopyTransformRepDomain(TransformAccess::rep(target), alignment.get()); alignment->output_rank = source_rank; const auto maps = alignment->output_index_maps(); span<const Index> source_origin = source.origin(); span<const Index> target_origin = target.origin(); for (DimensionIndex i = 0; i < source_rank; ++i) { auto& map = maps[i]; const DimensionIndex j = source_matches[i]; const Index source_origin_value = source_origin[i]; if (j == -1) { map.SetConstant(); map.offset() = source_origin_value; map.stride() = 0; } else { map.SetSingleInputDimension(j); map.offset() = source_origin_value - target_origin[j]; map.stride() = 1; } } internal_index_space::DebugCheckInvariants(alignment.get()); return TransformAccess::Make<IndexTransform<>>(std::move(alignment)); } Result<IndexTransform<>> AlignTransformTo(IndexTransform<> source_transform, IndexDomainView<> target, DomainAlignmentOptions options) { TENSORSTORE_ASSIGN_OR_RETURN( auto alignment, AlignDomainTo(source_transform.domain(), target, options)); return ComposeTransforms(source_transform, alignment); } }
#include "tensorstore/index_space/alignment.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Index; using ::tensorstore::IndexDomain; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::MatchesStatus; using Dao = tensorstore::DomainAlignmentOptions; TEST(AlignDimensionsToTest, AllUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({2, 0, 6}) .exclusive_max({6, 4, 12}) .Finalize() .value(); for (auto options : {Dao::all, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); } { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, source, source_matches, Dao::none)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, 1, 2)); } { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT( AlignDimensionsTo(source, target, source_matches, Dao::translate), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 1 \\[5, 6\\) mismatch with target " "dimension 1 \\[0, 4\\)")); } { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT( AlignDimensionsTo(source, target, source_matches, Dao::broadcast), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 0 \\[3, 7\\) mismatch with target " "dimension 0 \\[2, 6\\), " "source dimension 2 \\[4, 10\\) mismatch with target " "dimension 2 \\[6, 12\\)")); } } TEST(AlignDimensionsToTest, MismatchedLabelsNoPermute) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"a", "b", "c"}) .origin({2, 0, 6}) .exclusive_max({6, 4, 12}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, Dao::translate | Dao::broadcast)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, Dao::all), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "unmatched source dimension 0 \"x\": \\[3, 7\\) " "does not have a size of 1, " "unmatched source dimension 2 \"z\": \\[4, 10\\) " "does not have a size of 1")); } TEST(AlignDimensionsToTest, SourceUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({4, 0, 6}) .labels({"x", "y", "z"}) .exclusive_max({8, 4, 12}) .Finalize() .value(); for (auto options : {Dao::all, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); } } TEST(AlignDimensionsToTest, TargetUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .labels({"x", "y", "z"}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({4, 0, 6}) .exclusive_max({8, 4, 12}) .Finalize() .value(); for (auto options : {Dao::all, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1, 2)); } } TEST(AlignDimensionsToTest, AllLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, -1, 0)); } TEST(AlignDimensionsToTest, AllLabeledPermuteOnly) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({4, 3, 5}) .exclusive_max({10, 7, 6}) .Finalize() .value(); for (auto options : {Dao::permute, Dao::permute | Dao::translate, Dao::permute | Dao::broadcast, Dao::all}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2, 0)); } for (auto options : {Dao::none, Dao::translate, Dao::broadcast, Dao::translate | Dao::broadcast}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, options), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: .*")); } } TEST(AlignDimensionsToTest, AllLabeledPermuteTranslateOnly) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 9, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2, 0)); } TEST(AlignDimensionsToTest, PartiallyLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", ""}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(4) .labels({"", "", "x", "y"}) .origin({0, 6, 4, 0}) .exclusive_max({10, 12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(2, -1, 1)); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, Dao::none), MatchesStatus(absl::StatusCode::kInvalidArgument, "Aligning source domain of rank 3 to target " "domain of rank 4 requires broadcasting")); } TEST(AlignDomainToTest, PartiallyLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", ""}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(4) .labels({"", "", "x", "y"}) .origin({0, 6, 4, 0}) .exclusive_max({10, 12, 8, 4}) .Finalize() .value(); IndexTransform<> alignment = IndexTransformBuilder<>(4, 3) .input_domain(target) .output_single_input_dimension(0, -1, 1, 2) .output_constant(1, 5) .output_single_input_dimension(2, -2, 1, 1) .Finalize() .value(); EXPECT_EQ(alignment, AlignDomainTo(source, target)); } TEST(AlignDimensionsToTest, BroadcastOnly) { auto source = IndexDomainBuilder(2) .origin({2, 3}) .exclusive_max({5, 6}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({1, 2, 3}) .exclusive_max({4, 5, 6}) .Finalize() .value(); for (auto options : {Dao::broadcast, Dao::broadcast | Dao::translate, Dao::broadcast | Dao::permute, Dao::all}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2)); } for (auto options : {Dao::none, Dao::permute, Dao::translate, Dao::permute | Dao::translate}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches, options), MatchesStatus(absl::StatusCode::kInvalidArgument, "Aligning source domain of rank 2 to target " "domain of rank 3 requires broadcasting")); } } TEST(AlignDimensionsToTest, PermuteAndBroadcast) { auto source = IndexDomainBuilder(2) .origin({2, 3}) .exclusive_max({5, 4}) .labels({"x", "y"}) .Finalize() .value(); auto target = IndexDomainBuilder(2) .origin({2, 5}) .exclusive_max({5, 10}) .labels({"x", "z"}) .Finalize() .value(); for (auto options : {Dao::permute | Dao::broadcast, Dao::all}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches, options)); EXPECT_THAT(source_matches, ::testing::ElementsAre(0, -1)); } for (auto options : {Dao::permute, Dao::permute | Dao::translate}) { std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT( AlignDimensionsTo(source, target, source_matches, options), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "unmatched source dimension 1 \"y\": \\[3, 4\\)")); } } TEST(AlignDimensionsToTest, UnmatchedUnlabeledSourceDimension) { auto source = IndexDomainBuilder(4) .labels({"x", "y", "", ""}) .origin({3, 5, 7, 4}) .exclusive_max({7, 9, 8, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"", "x", "y"}) .origin({0, 4, 0}) .exclusive_max({6, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_EQ(absl::OkStatus(), AlignDimensionsTo(source, target, source_matches)); EXPECT_THAT(source_matches, ::testing::ElementsAre(1, 2, -1, 0)); } TEST(AlignDimensionsToTest, MismatchedLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "w", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "unmatched source dimension 0 \"x\": \\[3, 7\\) " "does not have a size of 1")); } TEST(AlignDomainToTest, MismatchedLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 6, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "w", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); EXPECT_THAT(AlignDomainTo(source, target), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(AlignDimensionsToTest, MismatchedSizeLabeled) { auto source = IndexDomainBuilder(3) .labels({"x", "y", "z"}) .origin({3, 5, 4}) .exclusive_max({7, 7, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .labels({"z", "x", "y"}) .origin({6, 4, 0}) .exclusive_max({12, 8, 4}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 1 \"y\": \\[5, 7\\) mismatch " "with target dimension 2 \"y\": \\[0, 4\\)")); } TEST(AlignDimensionsToTest, MismatchedSizeUnlabeled) { auto source = IndexDomainBuilder(3) .origin({3, 5, 4}) .exclusive_max({7, 7, 10}) .Finalize() .value(); auto target = IndexDomainBuilder(3) .origin({4, 0, 6}) .exclusive_max({8, 4, 12}) .Finalize() .value(); std::vector<DimensionIndex> source_matches(source.rank()); EXPECT_THAT(AlignDimensionsTo(source, target, source_matches), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error aligning dimensions: " "source dimension 1 \\[5, 7\\) mismatch with " "target dimension 1 \\[0, 4\\)")); } }
544
cpp
google/tensorstore
dimension_identifier
tensorstore/index_space/dimension_identifier.cc
tensorstore/index_space/dimension_identifier_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_DIMENSION_IDENTIFIER_H_ #define TENSORSTORE_INDEX_SPACE_DIMENSION_IDENTIFIER_H_ #include <cstddef> #include <optional> #include <string> #include <string_view> #include <variant> #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/util/result.h" namespace tensorstore { class DimensionIdentifier { public: DimensionIdentifier() = default; constexpr DimensionIdentifier(DimensionIndex index) : index_(index) {} constexpr DimensionIdentifier(int index) : index_(index) {} constexpr DimensionIdentifier(std::string_view label) : label_(label) { assert(label.data() != nullptr); } DimensionIdentifier(const std::string& label) : label_(label) {} constexpr DimensionIdentifier(const char* label) : label_(label) { assert(label != nullptr); } DimensionIdentifier(std::nullptr_t) = delete; constexpr DimensionIndex index() const { return index_; } constexpr std::string_view label() const { return label_; } friend bool operator==(const DimensionIdentifier& a, const DimensionIdentifier& b) { return a.index_ == b.index_ && a.label_ == b.label_; } friend bool operator!=(const DimensionIdentifier& a, const DimensionIdentifier& b) { return !(a == b); } friend std::ostream& operator<<(std::ostream& os, const DimensionIdentifier& x); private: DimensionIndex index_ = std::numeric_limits<DimensionIndex>::max(); std::string_view label_; }; Result<DimensionIndex> NormalizeDimensionIndex(DimensionIndex index, DimensionIndex rank); Result<DimensionIndex> NormalizeDimensionLabel(std::string_view label, span<const std::string> labels); Result<DimensionIndex> NormalizeDimensionLabel( std::string_view label, span<const std::string_view> labels); Result<DimensionIndex> NormalizeDimensionIdentifier( DimensionIdentifier identifier, span<const std::string> labels); struct DimRangeSpec { std::optional<DimensionIndex> inclusive_start; std::optional<DimensionIndex> exclusive_stop; DimensionIndex step = 1; friend std::ostream& operator<<(std::ostream& os, const DimRangeSpec& spec); friend bool operator==(const DimRangeSpec& a, const DimRangeSpec& b); friend bool operator!=(const DimRangeSpec& a, const DimRangeSpec& b) { return !(a == b); } constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.inclusive_start, x.exclusive_stop, x.step); }; }; absl::Status NormalizeDimRangeSpec(const DimRangeSpec& spec, DimensionIndex rank, DimensionIndexBuffer* result); using DynamicDimSpec = std::variant<DimensionIndex, std::string, DimRangeSpec>; absl::Status NormalizeDynamicDimSpec(const DynamicDimSpec& spec, span<const std::string> labels, DimensionIndexBuffer* result); absl::Status NormalizeDynamicDimSpecs(span<const DynamicDimSpec> specs, span<const std::string> labels, DimensionIndexBuffer* result); } #endif #include "tensorstore/index_space/dimension_identifier.h" #include <cassert> #include <ostream> #include <string> #include <system_error> #include <variant> #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/util/division.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { std::ostream& operator<<(std::ostream& os, const DimensionIdentifier& x) { if (x.label().data()) { return os << QuoteString(x.label()); } return os << x.index(); } Result<DimensionIndex> NormalizeDimensionIndex(DimensionIndex index, DimensionIndex rank) { assert(rank >= 0); if (index < -rank || index >= rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Dimension index ", index, " is outside valid range [-", rank, ", ", rank, ")")); } return index >= 0 ? index : index + rank; } Result<DimensionIndex> NormalizeDimensionExclusiveStopIndex( DimensionIndex index, DimensionIndex rank) { assert(rank >= 0); if (index < -rank - 1 || index > rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "Dimension exclusive stop index ", index, " is outside valid range [-", rank + 1, ", ", rank, "]")); } return index >= 0 ? index : index + rank; } namespace { template <typename Label> Result<DimensionIndex> NormalizeDimensionLabelImpl(std::string_view label, span<const Label> labels) { if (label.empty()) { return absl::InvalidArgumentError( "Dimension cannot be specified by empty label"); } const DimensionIndex dim = std::find(labels.begin(), labels.end(), label) - labels.begin(); if (dim == labels.size()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Label ", QuoteString(label), " does not match one of {", absl::StrJoin(labels, ", ", [](std::string* out, std::string_view x) { *out += QuoteString(x); }), "}")); } return dim; } } Result<DimensionIndex> NormalizeDimensionLabel(std::string_view label, span<const std::string> labels) { return NormalizeDimensionLabelImpl(label, labels); } Result<DimensionIndex> NormalizeDimensionLabel( std::string_view label, span<const std::string_view> labels) { return NormalizeDimensionLabelImpl(label, labels); } Result<DimensionIndex> NormalizeDimensionIdentifier( DimensionIdentifier identifier, span<const std::string> labels) { if (identifier.label().data()) { return NormalizeDimensionLabel(identifier.label(), labels); } else { return NormalizeDimensionIndex(identifier.index(), labels.size()); } } std::ostream& operator<<(std::ostream& os, const DimRangeSpec& spec) { if (spec.inclusive_start) os << *spec.inclusive_start; os << ':'; if (spec.exclusive_stop) os << *spec.exclusive_stop; if (spec.step != 1) os << ':' << spec.step; return os; } bool operator==(const DimRangeSpec& a, const DimRangeSpec& b) { return a.inclusive_start == b.inclusive_start && a.exclusive_stop == b.exclusive_stop && a.step == b.step; } absl::Status NormalizeDimRangeSpec(const DimRangeSpec& spec, DimensionIndex rank, DimensionIndexBuffer* result) { const DimensionIndex step = spec.step; if (step == 0) { return absl::InvalidArgumentError("step must not be 0"); } DimensionIndex inclusive_start; if (spec.inclusive_start) { TENSORSTORE_ASSIGN_OR_RETURN( inclusive_start, NormalizeDimensionIndex(*spec.inclusive_start, rank)); } else if (step > 0) { inclusive_start = 0; } else { inclusive_start = rank - 1; } DimensionIndex exclusive_stop; if (spec.exclusive_stop) { TENSORSTORE_ASSIGN_OR_RETURN( exclusive_stop, NormalizeDimensionExclusiveStopIndex(*spec.exclusive_stop, rank)); if ((step > 0 && exclusive_stop < inclusive_start) || (step < 0 && exclusive_stop > inclusive_start)) { return absl::InvalidArgumentError( tensorstore::StrCat(spec, " is not a valid range")); } } else if (step > 0) { exclusive_stop = rank; } else { exclusive_stop = -1; } const DimensionIndex size = CeilOfRatio(exclusive_stop - inclusive_start, step); result->reserve(result->size() + size); for (DimensionIndex i = 0; i < size; ++i) { result->push_back(inclusive_start + step * i); } return absl::OkStatus(); } absl::Status NormalizeDynamicDimSpec(const DynamicDimSpec& spec, span<const std::string> labels, DimensionIndexBuffer* result) { struct Visitor { span<const std::string> labels; DimensionIndexBuffer* result; absl::Status operator()(DimensionIndex i) const { TENSORSTORE_ASSIGN_OR_RETURN(DimensionIndex index, NormalizeDimensionIndex(i, labels.size())); result->push_back(index); return absl::OkStatus(); } absl::Status operator()(const std::string& label) const { TENSORSTORE_ASSIGN_OR_RETURN(DimensionIndex index, NormalizeDimensionLabel(label, labels)); result->push_back(index); return absl::OkStatus(); } absl::Status operator()(const DimRangeSpec& s) const { return NormalizeDimRangeSpec(s, labels.size(), result); } }; return std::visit(Visitor{labels, result}, spec); } absl::Status NormalizeDynamicDimSpecs(span<const DynamicDimSpec> specs, span<const std::string> labels, DimensionIndexBuffer* result) { for (const auto& spec : specs) { TENSORSTORE_RETURN_IF_ERROR(NormalizeDynamicDimSpec(spec, labels, result)); } return absl::OkStatus(); } }
#include "tensorstore/index_space/dimension_identifier.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::DimensionIdentifier; using ::tensorstore::DimensionIndexBuffer; using ::tensorstore::DimRangeSpec; using ::tensorstore::DynamicDimSpec; using ::tensorstore::Index; using ::tensorstore::MatchesStatus; using ::tensorstore::NormalizeDimensionIdentifier; using ::tensorstore::NormalizeDimensionIndex; using ::tensorstore::span; using ::tensorstore::StrCat; TEST(DimensionIdentifierTest, ConstructDefault) { DimensionIdentifier d; EXPECT_EQ(std::numeric_limits<Index>::max(), d.index()); EXPECT_EQ(nullptr, d.label().data()); } TEST(DimensionIdentifierTest, ConstructDimensionIndex) { DimensionIdentifier d(5); EXPECT_EQ(5, d.index()); EXPECT_EQ(nullptr, d.label().data()); } TEST(DimensionIdentifierTest, ConstructStringView) { DimensionIdentifier d(std::string_view("hello")); EXPECT_EQ(std::numeric_limits<Index>::max(), d.index()); EXPECT_EQ("hello", d.label()); } TEST(DimensionIdentifierTest, ConstructCString) { DimensionIdentifier d("hello"); EXPECT_EQ(std::numeric_limits<Index>::max(), d.index()); EXPECT_EQ("hello", d.label()); } TEST(DimensionIdentifierTest, ConstructStdString) { std::string s = "hello"; DimensionIdentifier d(s); EXPECT_EQ(std::numeric_limits<Index>::max(), d.index()); EXPECT_EQ("hello", d.label()); } TEST(DimensionIdentifierTest, Compare) { EXPECT_EQ(DimensionIdentifier(3), DimensionIdentifier(3)); EXPECT_EQ(DimensionIdentifier("a"), DimensionIdentifier("a")); EXPECT_NE(DimensionIdentifier("a"), DimensionIdentifier(2)); EXPECT_NE(DimensionIdentifier("a"), DimensionIdentifier("b")); EXPECT_NE(DimensionIdentifier(2), DimensionIdentifier(3)); } TEST(DimensionIdentifierTest, PrintToOstream) { EXPECT_EQ("3", StrCat(DimensionIdentifier(3))); EXPECT_EQ("\"a\"", StrCat(DimensionIdentifier("a"))); } TEST(NormalizeDimensionIndexTest, ValidNonNegative) { EXPECT_EQ(0, NormalizeDimensionIndex(0, 5)); EXPECT_EQ(3, NormalizeDimensionIndex(3, 5)); EXPECT_EQ(4, NormalizeDimensionIndex(4, 5)); } TEST(NormalizeDimensionIndexTest, ValidNegative) { EXPECT_EQ(0, NormalizeDimensionIndex(-5, 5)); EXPECT_EQ(2, NormalizeDimensionIndex(-3, 5)); EXPECT_EQ(4, NormalizeDimensionIndex(-1, 5)); } TEST(NormalizeDimensionIndexTest, InvalidNegative) { EXPECT_THAT(NormalizeDimensionIndex(-6, 5), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(NormalizeDimensionIndex(-7, 5), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(NormalizeDimensionIndexTest, InvalidNonNegative) { EXPECT_THAT(NormalizeDimensionIndex(5, 5), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(NormalizeDimensionIndex(6, 5), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(NormalizeDimensionLabelTest, ValidLabel) { EXPECT_EQ(2, NormalizeDimensionLabel( "x", span<const std::string>({"a", "b", "x", "y"}))); } TEST(NormalizeDimensionLabelTest, MissingLabel) { EXPECT_THAT(NormalizeDimensionLabel( "w", span<const std::string>({"a", "b", "x", "y"})), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(NormalizeDimensionLabelTest, EmptyLabel) { EXPECT_THAT(NormalizeDimensionLabel( "", span<const std::string>({"a", "b", "x", "y"})), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(NormalizeDimensionIdentifierTest, ValidLabel) { EXPECT_EQ(2, NormalizeDimensionIdentifier( "x", span<const std::string>({"a", "b", "x", "y"}))); } TEST(NormalizeDimensionIdentifierTest, ValidPositiveIndex) { EXPECT_EQ(2, NormalizeDimensionIdentifier( 2, span<const std::string>({"a", "b", "x", "y"}))); EXPECT_EQ(0, NormalizeDimensionIdentifier( 0, span<const std::string>({"a", "b", "x", "y"}))); EXPECT_EQ(3, NormalizeDimensionIdentifier( 3, span<const std::string>({"a", "b", "x", "y"}))); } TEST(NormalizeDimensionIdentifierTest, ValidNegativeIndex) { EXPECT_EQ(2, NormalizeDimensionIdentifier( -2, span<const std::string>({"a", "b", "x", "y"}))); EXPECT_EQ(3, NormalizeDimensionIdentifier( -1, span<const std::string>({"a", "b", "x", "y"}))); EXPECT_EQ(0, NormalizeDimensionIdentifier( -4, span<const std::string>({"a", "b", "x", "y"}))); } TEST(NormalizeDimensionIdentifierTest, InvalidIndex) { EXPECT_THAT(NormalizeDimensionIdentifier( 4, span<const std::string>({"a", "b", "x", "y"})), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(NormalizeDimensionIdentifier( -5, span<const std::string>({"a", "b", "x", "y"})), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(DimRangeSpecTest, Comparison) { DimRangeSpec a{1, 5, 1}; DimRangeSpec b{0, 5, 1}; DimRangeSpec c{1, 6, 1}; DimRangeSpec d{1, 6, 2}; EXPECT_EQ(a, a); EXPECT_NE(a, b); EXPECT_NE(a, c); EXPECT_NE(a, d); } TEST(DimRangeSpecTest, PrintToOstream) { EXPECT_EQ("1:5", StrCat(DimRangeSpec{1, 5, 1})); EXPECT_EQ("1:5:2", StrCat(DimRangeSpec{1, 5, 2})); EXPECT_EQ(":5", StrCat(DimRangeSpec{std::nullopt, 5, 1})); EXPECT_EQ("1:", StrCat(DimRangeSpec{1, std::nullopt, 1})); EXPECT_EQ(":", StrCat(DimRangeSpec{std::nullopt, std::nullopt, 1})); EXPECT_EQ("::-1", StrCat(DimRangeSpec{std::nullopt, std::nullopt, -1})); } TEST(NormalizeDimRangeSpecTest, ValidFullySpecifiedStep1) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{2, 10, 1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(2, 3, 4, 5, 6, 7, 8, 9)); } TEST(NormalizeDimRangeSpecTest, ValidFullySpecifiedStep2) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{2, 10, 2}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(2, 4, 6, 8)); } TEST(NormalizeDimRangeSpecTest, ValidFullySpecifiedStep2Floor) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{2, 7, 3}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(2, 5)); } TEST(NormalizeDimRangeSpecTest, ValidFullySpecifiedStepNeg1) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{9, 1, -1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(9, 8, 7, 6, 5, 4, 3, 2)); } TEST(NormalizeDimRangeSpecTest, ValidFullySpecifiedStepNeg2) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{9, 1, -2}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(9, 7, 5, 3)); } TEST(NormalizeDimRangeSpecTest, ValidStartOnlyStep1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{15, std::nullopt, 1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(15, 16, 17, 18, 19)); } TEST(NormalizeDimRangeSpecTest, ValidStartOnlyStepNegative1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{5, std::nullopt, -1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(5, 4, 3, 2, 1, 0)); } TEST(NormalizeDimRangeSpecTest, ValidNegativeStartOnlyStep1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{-5, std::nullopt, 1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(15, 16, 17, 18, 19)); } TEST(NormalizeDimRangeSpecTest, ValidStopOnlyStep1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, 5, 1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(0, 1, 2, 3, 4)); } TEST(NormalizeDimRangeSpecTest, ValidNegativeStopOnlyStep1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, -15, 1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(0, 1, 2, 3, 4)); } TEST(NormalizeDimRangeSpecTest, ValidStopOnlyStepNeg1) { DimensionIndexBuffer buffer; EXPECT_EQ( absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, 15, -1}, 20, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(19, 18, 17, 16)); } TEST(NormalizeDimRangeSpecTest, ValidNoBoundsStep1) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, std::nullopt, 1}, 5, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(0, 1, 2, 3, 4)); } TEST(NormalizeDimRangeSpecTest, ValidNoBoundsStep2) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, std::nullopt, 2}, 5, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(0, 2, 4)); } TEST(NormalizeDimRangeSpecTest, ValidMaxStop) { DimensionIndexBuffer buffer; EXPECT_EQ(absl::OkStatus(), NormalizeDimRangeSpec(DimRangeSpec{1, 5, 1}, 5, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(1, 2, 3, 4)); } TEST(NormalizeDimRangeSpecTest, InvalidStep0) { DimensionIndexBuffer buffer; EXPECT_THAT( NormalizeDimRangeSpec(DimRangeSpec{std::nullopt, std::nullopt, 0}, 5, &buffer), MatchesStatus(absl::StatusCode::kInvalidArgument, "step must not be 0")); } TEST(NormalizeDimRangeSpecTest, InvalidIntervalStep1) { DimensionIndexBuffer buffer; EXPECT_THAT(NormalizeDimRangeSpec(DimRangeSpec{3, 1, 1}, 5, &buffer), MatchesStatus(absl::StatusCode::kInvalidArgument, "3:1 is not a valid range")); } TEST(NormalizeDimRangeSpecTest, InvalidIntervalStepNeg1) { DimensionIndexBuffer buffer; EXPECT_THAT(NormalizeDimRangeSpec(DimRangeSpec{1, 3, -1}, 5, &buffer), MatchesStatus(absl::StatusCode::kInvalidArgument, "1:3:-1 is not a valid range")); } TEST(NormalizeDimRangeSpecTest, InvalidIndex) { DimensionIndexBuffer buffer; EXPECT_THAT(NormalizeDimRangeSpec(DimRangeSpec{1, 8, 1}, 5, &buffer), MatchesStatus(absl::StatusCode::kInvalidArgument, "Dimension exclusive stop index 8 is outside valid " "range \\[-6, 5\\]")); } }
545
cpp
google/tensorstore
index_vector_or_scalar
tensorstore/index_space/index_vector_or_scalar.cc
tensorstore/index_space/index_vector_or_scalar_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INDEX_VECTOR_OR_SCALAR_H_ #define TENSORSTORE_INDEX_SPACE_INDEX_VECTOR_OR_SCALAR_H_ #include <type_traits> #include <variant> #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace tensorstore { template <typename T, typename = std::true_type> struct IsIndexVectorOrScalar { static constexpr bool value = false; static constexpr DimensionIndex extent = -1; using normalized_type = void; }; template <typename T> struct IsIndexVectorOrScalar< T, std::integral_constant<bool, static_cast<bool>(internal::IsIndexPack<T>)>> : public std::true_type { using normalized_type = Index; constexpr static std::ptrdiff_t extent = dynamic_extent; }; template <typename T> struct IsIndexVectorOrScalar< T, std::integral_constant< bool, static_cast<bool>( std::is_same_v< typename internal::ConstSpanType<T>::value_type, Index>)>> : public std::true_type { using normalized_type = internal::ConstSpanType<T>; constexpr static std::ptrdiff_t extent = normalized_type::extent; }; namespace internal_index_space { using IndexVectorOrScalarContainer = std::variant<std::vector<Index>, Index>; class IndexVectorOrScalarView { public: IndexVectorOrScalarView(const IndexVectorOrScalarContainer& c) { if (auto* v = std::get_if<std::vector<Index>>(&c)) { pointer = v->data(); size_or_scalar = v->size(); } else { pointer = nullptr; size_or_scalar = *std::get_if<Index>(&c); } } IndexVectorOrScalarView(span<const Index> s) : pointer(s.data()), size_or_scalar(s.size()) {} IndexVectorOrScalarView(const Index scalar) : pointer(nullptr), size_or_scalar(scalar) {} Index operator[](DimensionIndex i) const { return pointer ? pointer[i] : size_or_scalar; } const Index* pointer; Index size_or_scalar; }; absl::Status CheckIndexVectorSize(IndexVectorOrScalarView indices, DimensionIndex size); } } #endif #include "tensorstore/index_space/index_vector_or_scalar.h" #include <system_error> #include "absl/status/status.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { absl::Status CheckIndexVectorSize(IndexVectorOrScalarView indices, DimensionIndex size) { if (indices.pointer && indices.size_or_scalar != size) return absl::InvalidArgumentError(tensorstore::StrCat( "Number of dimensions (", size, ") does not match number of indices (", indices.size_or_scalar, ")")); return absl::OkStatus(); } } }
#include "tensorstore/index_space/index_vector_or_scalar.h" #include <cstdint> #include <system_error> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::dynamic_extent; using ::tensorstore::Index; using ::tensorstore::IsIndexVectorOrScalar; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal_index_space::CheckIndexVectorSize; using ::tensorstore::internal_index_space::IndexVectorOrScalarView; static_assert(IsIndexVectorOrScalar<Index>::value == true); static_assert(IsIndexVectorOrScalar<std::int32_t>::value == true); static_assert(IsIndexVectorOrScalar<float>::value == false); static_assert( std::is_same_v< typename IsIndexVectorOrScalar<std::int32_t>::normalized_type, Index>); static_assert(IsIndexVectorOrScalar<std::int32_t>::extent == dynamic_extent); static_assert(IsIndexVectorOrScalar<std::vector<std::int32_t>>::value == false); static_assert(IsIndexVectorOrScalar<const std::vector<Index>>::value == true); static_assert(std::is_same_v<typename IsIndexVectorOrScalar< const std::vector<Index>>::normalized_type, span<const Index>>); static_assert(IsIndexVectorOrScalar<const std::vector<Index>>::extent == dynamic_extent); static_assert(IsIndexVectorOrScalar<span<const Index>>::value == true); static_assert( std::is_same_v<typename IsIndexVectorOrScalar<span<Index>>::normalized_type, span<const Index>>); static_assert(IsIndexVectorOrScalar<span<const Index>>::extent == dynamic_extent); static_assert(IsIndexVectorOrScalar<span<const Index, 5>>::value == true); static_assert(std::is_same_v< typename IsIndexVectorOrScalar<span<Index, 5>>::normalized_type, span<const Index, 5>>); static_assert(IsIndexVectorOrScalar<span<Index, 5>>::extent == 5); TEST(IndexVectorOrScalarTest, Scalar) { IndexVectorOrScalarView v(5); EXPECT_EQ(5, v.size_or_scalar); EXPECT_EQ(nullptr, v.pointer); EXPECT_EQ(5, v[0]); EXPECT_EQ(5, v[1]); EXPECT_TRUE(CheckIndexVectorSize(v, 3).ok()); } TEST(IndexVectorOrScalarTest, Vector) { const Index arr[] = {1, 2, 3}; IndexVectorOrScalarView v{span(arr)}; EXPECT_EQ(3, v.size_or_scalar); EXPECT_EQ(&arr[0], v.pointer); EXPECT_EQ(1, v[0]); EXPECT_EQ(2, v[1]); EXPECT_EQ(3, v[2]); EXPECT_TRUE(CheckIndexVectorSize(v, 3).ok()); EXPECT_THAT(CheckIndexVectorSize(v, 5), tensorstore::MatchesStatus(absl::StatusCode::kInvalidArgument)); } }
546
cpp
google/tensorstore
dimension_permutation
tensorstore/index_space/dimension_permutation.cc
tensorstore/index_space/dimension_permutation_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_DIMENSION_PERMUTATION_H_ #define TENSORSTORE_INDEX_SPACE_DIMENSION_PERMUTATION_H_ #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/span.h" namespace tensorstore { void SetPermutation(ContiguousLayoutOrder order, span<DimensionIndex> permutation); bool IsValidPermutation(span<const DimensionIndex> permutation); bool PermutationMatchesOrder(span<const DimensionIndex> permutation, ContiguousLayoutOrder order); void InvertPermutation(DimensionIndex rank, const DimensionIndex* perm, DimensionIndex* inverse_perm); void SetPermutationFromStridedLayout(StridedLayoutView<> layout, span<DimensionIndex> permutation); void TransformOutputDimensionOrder(IndexTransformView<> transform, span<const DimensionIndex> output_perm, span<DimensionIndex> input_perm); void TransformInputDimensionOrder(IndexTransformView<> transform, span<const DimensionIndex> input_perm, span<DimensionIndex> output_perm); } #endif #include "tensorstore/index_space/dimension_permutation.h" #include <algorithm> #include <numeric> #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/span.h" namespace tensorstore { void SetPermutation(ContiguousLayoutOrder order, span<DimensionIndex> permutation) { if (order == c_order) { for (DimensionIndex i = 0; i < permutation.size(); ++i) { permutation[i] = i; } } else { for (DimensionIndex i = 0; i < permutation.size(); ++i) { permutation[i] = permutation.size() - 1 - i; } } } bool IsValidPermutation(span<const DimensionIndex> permutation) { DimensionSet seen_dims; const DimensionIndex rank = permutation.size(); if (rank > kMaxRank) return false; for (DimensionIndex i = 0; i < rank; ++i) { DimensionIndex dim = permutation[i]; if (dim < 0 || dim >= rank || seen_dims[dim]) { return false; } seen_dims[dim] = true; } return true; } bool PermutationMatchesOrder(span<const DimensionIndex> permutation, ContiguousLayoutOrder order) { if (order == c_order) { for (DimensionIndex i = 0; i < permutation.size(); ++i) { if (permutation[i] != i) return false; } } else { for (DimensionIndex i = 0; i < permutation.size(); ++i) { if (permutation[i] != permutation.size() - i - 1) return false; } } return true; } void InvertPermutation(DimensionIndex rank, const DimensionIndex* perm, DimensionIndex* inverse_perm) { assert(IsValidPermutation(span(perm, rank))); for (DimensionIndex i = 0; i < rank; ++i) { inverse_perm[perm[i]] = i; } } void SetPermutationFromStridedLayout(StridedLayoutView<> layout, span<DimensionIndex> permutation) { assert(layout.rank() == permutation.size()); std::iota(permutation.begin(), permutation.end(), DimensionIndex(0)); const auto get_effective_byte_stride_nabs = [&](DimensionIndex i) -> Index { const Index byte_stride = layout.byte_strides()[i]; if (byte_stride > 0) return -byte_stride; return byte_stride; }; std::stable_sort(permutation.begin(), permutation.end(), [&](DimensionIndex a, DimensionIndex b) { return get_effective_byte_stride_nabs(a) < get_effective_byte_stride_nabs(b); }); } void TransformOutputDimensionOrder(IndexTransformView<> transform, span<const DimensionIndex> output_perm, span<DimensionIndex> input_perm) { assert(transform.valid()); assert(IsValidPermutation(output_perm)); const DimensionIndex output_rank = transform.output_rank(); const DimensionIndex input_rank = transform.input_rank(); assert(input_rank == input_perm.size()); assert(output_rank == output_perm.size()); DimensionIndex min_output_dim[kMaxRank]; std::fill_n(min_output_dim, input_rank, kMaxRank); for (DimensionIndex orig_perm_i = 0; orig_perm_i < output_rank; ++orig_perm_i) { const DimensionIndex output_dim = output_perm[orig_perm_i]; const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) continue; const DimensionIndex input_dim = map.input_dimension(); min_output_dim[input_dim] = std::min(min_output_dim[input_dim], orig_perm_i); } std::iota(input_perm.begin(), input_perm.end(), DimensionIndex(0)); std::sort(input_perm.begin(), input_perm.end(), [&](DimensionIndex a, DimensionIndex b) { DimensionIndex a_ordinal = min_output_dim[a]; DimensionIndex b_ordinal = min_output_dim[b]; if (a_ordinal != b_ordinal) return a_ordinal < b_ordinal; return a < b; }); assert(IsValidPermutation(input_perm)); } void TransformInputDimensionOrder(IndexTransformView<> transform, span<const DimensionIndex> input_perm, span<DimensionIndex> output_perm) { assert(transform.valid()); assert(IsValidPermutation(input_perm)); [[maybe_unused]] const DimensionIndex output_rank = transform.output_rank(); const DimensionIndex input_rank = transform.input_rank(); assert(input_rank == input_perm.size()); assert(output_rank == output_perm.size()); DimensionIndex inverse_input_perm[kMaxRank]; InvertPermutation(input_rank, input_perm.data(), inverse_input_perm); std::iota(output_perm.begin(), output_perm.end(), DimensionIndex(0)); const auto get_output_dim_ordinal = [&](DimensionIndex output_dim) { const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) { return kMaxRank; } return inverse_input_perm[map.input_dimension()]; }; std::sort(output_perm.begin(), output_perm.end(), [&](DimensionIndex a, DimensionIndex b) { DimensionIndex a_ordinal = get_output_dim_ordinal(a); DimensionIndex b_ordinal = get_output_dim_ordinal(b); if (a_ordinal != b_ordinal) return a_ordinal < b_ordinal; return a < b; }); assert(IsValidPermutation(output_perm)); } }
#include "tensorstore/index_space/dimension_permutation.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::IsValidPermutation; using ::tensorstore::PermutationMatchesOrder; using ::tensorstore::span; TEST(SetPermutationTest, Rank0) { std::vector<DimensionIndex> permutation(0); tensorstore::SetPermutation(tensorstore::c_order, permutation); tensorstore::SetPermutation(tensorstore::fortran_order, permutation); } TEST(SetPermutationTest, Rank1COrder) { std::vector<DimensionIndex> permutation(1, 42); tensorstore::SetPermutation(tensorstore::c_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0)); } TEST(SetPermutationTest, Rank1FortranOrder) { std::vector<DimensionIndex> permutation(1, 42); tensorstore::SetPermutation(tensorstore::fortran_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0)); } TEST(SetPermutationTest, Rank2COrder) { std::vector<DimensionIndex> permutation(2, 42); tensorstore::SetPermutation(tensorstore::c_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0, 1)); } TEST(SetPermutationTest, Rank2FortranOrder) { std::vector<DimensionIndex> permutation(2, 42); tensorstore::SetPermutation(tensorstore::fortran_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(1, 0)); } TEST(SetPermutationTest, Rank3COrder) { std::vector<DimensionIndex> permutation(3, 42); tensorstore::SetPermutation(tensorstore::c_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0, 1, 2)); } TEST(SetPermutationTest, Rank3FortranOrder) { std::vector<DimensionIndex> permutation(3, 42); tensorstore::SetPermutation(tensorstore::fortran_order, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(2, 1, 0)); } TEST(IsValidPermutationTest, Basic) { EXPECT_TRUE(IsValidPermutation(span<const DimensionIndex>())); EXPECT_TRUE(IsValidPermutation(span<const DimensionIndex>({0}))); EXPECT_FALSE(IsValidPermutation(span<const DimensionIndex>({1}))); EXPECT_FALSE(IsValidPermutation(span<const DimensionIndex>({-1}))); EXPECT_TRUE(IsValidPermutation(span<const DimensionIndex>({0, 1}))); EXPECT_TRUE(IsValidPermutation(span<const DimensionIndex>({1, 0}))); EXPECT_FALSE(IsValidPermutation(span<const DimensionIndex>({1, 1}))); EXPECT_FALSE(IsValidPermutation(span<const DimensionIndex>({0, 0}))); EXPECT_TRUE(IsValidPermutation(span<const DimensionIndex>({1, 2, 0}))); EXPECT_FALSE(IsValidPermutation(span<const DimensionIndex>({1, 2, 1}))); } TEST(PermutationMatchesOrderTest, Basic) { EXPECT_TRUE(PermutationMatchesOrder({}, tensorstore::c_order)); EXPECT_TRUE(PermutationMatchesOrder({}, tensorstore::fortran_order)); EXPECT_TRUE(PermutationMatchesOrder({{0}}, tensorstore::c_order)); EXPECT_TRUE(PermutationMatchesOrder({{0}}, tensorstore::fortran_order)); EXPECT_TRUE(PermutationMatchesOrder({{0, 1}}, tensorstore::c_order)); EXPECT_FALSE(PermutationMatchesOrder({{0, 1}}, tensorstore::fortran_order)); EXPECT_TRUE(PermutationMatchesOrder({{0, 1, 2}}, tensorstore::c_order)); EXPECT_FALSE(PermutationMatchesOrder({{1}}, tensorstore::c_order)); EXPECT_FALSE(PermutationMatchesOrder({{1}}, tensorstore::fortran_order)); EXPECT_FALSE(PermutationMatchesOrder({{1, 0}}, tensorstore::c_order)); EXPECT_TRUE(PermutationMatchesOrder({{1, 0}}, tensorstore::fortran_order)); } TEST(InvertPermutationTest, Rank0) { std::vector<DimensionIndex> source; std::vector<DimensionIndex> dest; tensorstore::InvertPermutation(0, source.data(), dest.data()); } TEST(InvertPermutationTest, Rank1) { std::vector<DimensionIndex> source{0}; std::vector<DimensionIndex> dest(1, 42); tensorstore::InvertPermutation(1, source.data(), dest.data()); EXPECT_THAT(dest, ::testing::ElementsAre(0)); } TEST(InvertPermutationTest, Rank2Identity) { std::vector<DimensionIndex> source{0, 1}; std::vector<DimensionIndex> dest(2, 42); tensorstore::InvertPermutation(2, source.data(), dest.data()); EXPECT_THAT(dest, ::testing::ElementsAre(0, 1)); } TEST(InvertPermutationTest, Rank2Transpose) { std::vector<DimensionIndex> source{1, 0}; std::vector<DimensionIndex> dest(2, 42); tensorstore::InvertPermutation(2, source.data(), dest.data()); EXPECT_THAT(dest, ::testing::ElementsAre(1, 0)); } TEST(InvertPermutationTest, Rank3) { std::vector<DimensionIndex> source{1, 2, 0}; std::vector<DimensionIndex> dest(3, 42); tensorstore::InvertPermutation(3, source.data(), dest.data()); EXPECT_THAT(dest, ::testing::ElementsAre(2, 0, 1)); std::vector<DimensionIndex> source2(3, 42); tensorstore::InvertPermutation(3, dest.data(), source2.data()); EXPECT_EQ(source, source2); } TEST(SetPermutationFromStridedLayoutTest, Rank0) { tensorstore::StridedLayout<> layout(0); std::vector<DimensionIndex> permutation(0); tensorstore::SetPermutationFromStridedLayout(layout, permutation); } TEST(SetPermutationFromStridedLayoutTest, Rank1) { tensorstore::StridedLayout<> layout({5}, {10}); std::vector<DimensionIndex> permutation(1, 42); tensorstore::SetPermutationFromStridedLayout(layout, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0)); } TEST(SetPermutationFromStridedLayoutTest, Rank2COrder) { tensorstore::StridedLayout<> layout({5, 6}, {10, 5}); std::vector<DimensionIndex> permutation(2, 42); tensorstore::SetPermutationFromStridedLayout(layout, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0, 1)); } TEST(SetPermutationFromStridedLayoutTest, Rank2FortranOrder) { tensorstore::StridedLayout<> layout({5, 6}, {5, 10}); std::vector<DimensionIndex> permutation(2, 42); tensorstore::SetPermutationFromStridedLayout(layout, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(1, 0)); } TEST(SetPermutationFromStridedLayoutTest, Rank2ZeroStride) { tensorstore::StridedLayout<> layout({5, 6}, {0, 0}); std::vector<DimensionIndex> permutation(2, 42); tensorstore::SetPermutationFromStridedLayout(layout, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0, 1)); } TEST(SetPermutationFromStridedLayoutTest, Rank4) { tensorstore::StridedLayout<> layout({5, 6, 7, 8}, {10, 5, 6, 6}); std::vector<DimensionIndex> permutation(4, 42); tensorstore::SetPermutationFromStridedLayout(layout, permutation); EXPECT_THAT(permutation, ::testing::ElementsAre(0, 2, 3, 1)); } TEST(TransformOutputDimensionOrderTest, Rank0) { std::vector<DimensionIndex> source; std::vector<DimensionIndex> dest; tensorstore::TransformOutputDimensionOrder(tensorstore::IdentityTransform(0), source, dest); } TEST(TransformOutputDimensionOrderTest, Rank1Identity) { std::vector<DimensionIndex> source{0}; std::vector<DimensionIndex> dest(1, 42); tensorstore::TransformOutputDimensionOrder(tensorstore::IdentityTransform(1), source, dest); EXPECT_THAT(dest, ::testing::ElementsAre(0)); } TEST(TransformOutputDimensionOrderTest, Rank2COrderIdentity) { std::vector<DimensionIndex> source{0, 1}; std::vector<DimensionIndex> dest(2, 42); std::vector<DimensionIndex> source2(2, 42); auto transform = tensorstore::IdentityTransform(2); tensorstore::TransformOutputDimensionOrder(transform, source, dest); EXPECT_THAT(dest, ::testing::ElementsAre(0, 1)); tensorstore::TransformInputDimensionOrder(transform, dest, source2); EXPECT_EQ(source, source2); } TEST(TransformOutputDimensionOrderTest, Rank2FortranOrderIdentity) { std::vector<DimensionIndex> source{1, 0}; std::vector<DimensionIndex> dest(2, 42); std::vector<DimensionIndex> source2(2, 42); auto transform = tensorstore::IdentityTransform(2); tensorstore::TransformOutputDimensionOrder(transform, source, dest); EXPECT_THAT(dest, ::testing::ElementsAre(1, 0)); tensorstore::TransformInputDimensionOrder(transform, dest, source2); EXPECT_EQ(source, source2); } TEST(TransformOutputDimensionOrderTest, Rank2COrderTranspose) { std::vector<DimensionIndex> source{0, 1}; std::vector<DimensionIndex> dest(2, 42); std::vector<DimensionIndex> source2(2, 42); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IdentityTransform(2) | Dims(1, 0).Transpose()); tensorstore::TransformOutputDimensionOrder(transform, source, dest); EXPECT_THAT(dest, ::testing::ElementsAre(1, 0)); tensorstore::TransformInputDimensionOrder(transform, dest, source2); EXPECT_EQ(source, source2); } TEST(TransformOutputDimensionOrderTest, Rank2FortranOrderTranspose) { std::vector<DimensionIndex> source{1, 0}; std::vector<DimensionIndex> dest(2, 42); std::vector<DimensionIndex> source2(2, 42); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IdentityTransform(2) | Dims(1, 0).Transpose()); tensorstore::TransformOutputDimensionOrder(transform, source, dest); EXPECT_THAT(dest, ::testing::ElementsAre(0, 1)); tensorstore::TransformInputDimensionOrder(transform, dest, source2); EXPECT_EQ(source, source2); } }
547
cpp
google/tensorstore
transformed_array
tensorstore/index_space/transformed_array.cc
tensorstore/index_space/transformed_array_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_TRANSFORMED_ARRAY_H_ #define TENSORSTORE_INDEX_SPACE_TRANSFORMED_ARRAY_H_ #include <stddef.h> #include <memory> #include <string> #include <type_traits> #include <utility> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/container_kind.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/transform_array_constraints.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/internal/void_wrapper.h" #include "tensorstore/rank.h" #include "tensorstore/static_cast.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { template <typename ElementTagType, DimensionIndex Rank = dynamic_rank, ContainerKind LayoutCKind = container> class TransformedArray; template <typename ElementTagType, DimensionIndex Rank = dynamic_rank> using TransformedArrayView = TransformedArray<ElementTagType, Rank>; template <typename Element, DimensionIndex Rank = dynamic_rank, ContainerKind LayoutCKind = container> using TransformedSharedArray = TransformedArray<Shared<Element>, Rank, LayoutCKind>; template <typename Element, DimensionIndex Rank = dynamic_rank> using TransformedSharedArrayView = TransformedArray<Shared<Element>, Rank, view>; template <typename T> constexpr inline bool IsTransformedArray = false; template <typename ElementTagType, DimensionIndex Rank, ContainerKind LayoutCKind> constexpr inline bool IsTransformedArray<TransformedArray<ElementTagType, Rank, LayoutCKind>> = true; template <typename T> constexpr inline bool IsTransformedArrayLike = IsArray<T> || IsTransformedArray<T>; namespace internal_index_space { TransformRep::Ptr<> MakeTransformFromStridedLayout( StridedLayoutView<dynamic_rank, offset_origin> layout); Result<TransformRep::Ptr<>> MakeTransformFromStridedLayoutAndTransform( StridedLayoutView<dynamic_rank, offset_origin> layout, TransformRep::Ptr<> transform); StridedLayoutView<dynamic_rank, offset_origin> GetUnboundedLayout( DimensionIndex rank); template <typename A, typename Func> using TransformedArrayMapTransformResultType = FlatMapResultType< A::template RebindTransform, internal::remove_cvref_t<std::invoke_result_t< Func, const typename internal::remove_cvref_t<A>::Transform&>>>; template <typename A, typename Func> static TransformedArrayMapTransformResultType<internal::remove_cvref_t<A>, Func> TransformedArrayMapTransform(A&& a, Func&& func) { using ResultType = TransformedArrayMapTransformResultType<internal::remove_cvref_t<A>, Func>; using AX = internal::remove_cvref_t<A>; using MappedTransform = UnwrapResultType< std::invoke_result_t<Func, const typename AX::Transform&>>; return MapResult( [&](MappedTransform transform) { return typename ResultType::value_type{ std::forward<A>(a).element_pointer(), std::move(transform)}; }, std::forward<Func>(func)(std::forward<A>(a).transform())); } template <bool Condition> struct ConditionalTransformedArrayMapTransformResultType { template <typename A, typename Func> using type = TransformedArrayMapTransformResultType<A, Func>; }; template <> struct ConditionalTransformedArrayMapTransformResultType<false> {}; template <bool Condition, typename A, typename Func> using EnableIfTransformedArrayMapTransformResultType = typename ConditionalTransformedArrayMapTransformResultType< Condition>::template type<A, Func>; std::string DescribeTransformedArrayForCast(DataType dtype, DimensionIndex rank); } template <typename ElementTagType, DimensionIndex Rank, ContainerKind LayoutCKind> class TransformedArray { static_assert(IsElementTag<ElementTagType>, "ElementTagType must be an ElementTag type."); static_assert(Rank == dynamic_rank || Rank >= 0, "Rank must be dynamic_rank or >= 0."); public: using ElementTag = ElementTagType; using ElementPointer = tensorstore::ElementPointer<ElementTag>; using Pointer = typename ElementPointer::Pointer; using Transform = IndexTransform<Rank, dynamic_rank, LayoutCKind>; using Element = typename ElementPointer::Element; using DataType = dtype_t<Element>; constexpr static DimensionIndex static_rank = Transform::static_input_rank; constexpr static ContainerKind layout_container_kind = LayoutCKind; using RankType = StaticOrDynamicRank<static_rank>; template <ContainerKind CKind> using RebindContainerKind = TransformedArray<ElementTagType, Rank, CKind>; template <typename OtherTransform> using RebindTransform = TransformedArray<ElementTagType, OtherTransform::static_input_rank>; TransformedArray() = default; template <typename P, typename T, std::enable_if_t<internal::IsPairImplicitlyConvertible< P, T, ElementPointer, Transform>>* = nullptr> TransformedArray(P&& element_pointer, T&& transform) noexcept : element_pointer_(std::forward<P>(element_pointer)), transform_(std::forward<T>(transform)) {} template <typename A, ContainerKind SfinaeC = LayoutCKind, typename = std::enable_if_t< (SfinaeC == container && IsArray<internal::remove_cvref_t<A>> && std::is_convertible_v< typename internal::remove_cvref_t<A>::ElementPointer, ElementPointer> && RankConstraint::Implies( internal::remove_cvref_t<A>::static_rank, Rank))>> TransformedArray(A&& array) : element_pointer_(std::forward<A>(array).element_pointer()), transform_(internal_index_space::TransformAccess::Make<Transform>( internal_index_space::MakeTransformFromStridedLayout( array.layout()))) {} template <typename Other, std::enable_if_t< (IsTransformedArray<internal::remove_cvref_t<Other>> && internal::IsPairImplicitlyConvertible< typename internal::remove_cvref_t<Other>::ElementPointer, typename internal::remove_cvref_t<Other>::Transform, ElementPointer, Transform>)>* = nullptr> TransformedArray(Other&& other) noexcept : element_pointer_(std::forward<Other>(other).element_pointer()), transform_(std::forward<Other>(other).transform()) {} template <typename Other, std::enable_if_t<( IsTransformedArray<internal::remove_cvref_t<Other>> && IsStaticCastConstructible< ElementPointer, typename internal::remove_cvref_t<Other>::ElementPointer> && IsStaticCastConstructible<Transform, typename internal::remove_cvref_t< Other>::Transform>)>* = nullptr> explicit TransformedArray(unchecked_t, Other&& other) noexcept : element_pointer_(unchecked, std::forward<Other>(other).element_pointer()), transform_(unchecked, std::forward<Other>(other).transform()) {} template < typename A, ContainerKind SfinaeC = LayoutCKind, std::enable_if_t< (SfinaeC == container && IsArray<internal::remove_cvref_t<A>> && IsStaticCastConstructible< ElementPointer, typename internal::remove_cvref_t<A>::ElementPointer> && RankConstraint::EqualOrUnspecified( internal::remove_cvref_t<A>::static_rank, Rank))>* = nullptr> explicit TransformedArray(unchecked_t, A&& array) noexcept : element_pointer_(unchecked, std::forward<A>(array).element_pointer()), transform_(unchecked, internal_index_space::TransformAccess::Make<Transform>( internal_index_space::MakeTransformFromStridedLayout( array.layout()))) {} template <typename Other, std::enable_if_t< (IsTransformedArray<internal::remove_cvref_t<Other>> && internal::IsPairImplicitlyConvertible< typename internal::remove_cvref_t<Other>::ElementPointer, typename internal::remove_cvref_t<Other>::Transform, ElementPointer, Transform>)>* = nullptr> TransformedArray& operator=(Other&& other) noexcept { element_pointer_ = std::forward<Other>(other).element_pointer(); transform_ = std::forward<Other>(other).transform(); return *this; } template <typename A, ContainerKind SfinaeC = LayoutCKind, typename = std::enable_if_t< (SfinaeC == container && IsArray<internal::remove_cvref_t<A>> && std::is_assignable_v< ElementPointer, typename internal::remove_cvref_t<A>::ElementPointer> && RankConstraint::Implies( internal::remove_cvref_t<A>::static_rank, Rank))>> TransformedArray& operator=(A&& array) noexcept { element_pointer_ = std::forward<A>(array).element_pointer(); transform_ = internal_index_space::TransformAccess::Make<Transform>( internal_index_space::MakeTransformFromStridedLayout(array.layout())); return *this; } RankType rank() const { return transform_.input_rank(); } IndexDomainView<static_rank> domain() const { return transform_.domain(); } span<const Index, static_rank> origin() const { return domain().origin(); } span<const Index, static_rank> shape() const { return domain().shape(); } span<const std::string, static_rank> labels() const { return transform_.input_labels(); } DataType dtype() const { return element_pointer_.dtype(); } const ElementPointer& element_pointer() const& { return element_pointer_; } ElementPointer& element_pointer() & { return element_pointer_; } ElementPointer&& element_pointer() && { return std::move(element_pointer_); } Element* data() const { return element_pointer_.data(); } const Transform& transform() const& { return transform_; } Transform& transform() & { return transform_; } Transform&& transform() && { return std::move(transform_); } ArrayView<ElementTag, dynamic_rank, offset_origin> base_array() const { return {element_pointer(), internal_index_space::GetUnboundedLayout(transform_.output_rank())}; } template <ArrayOriginKind OriginKind = offset_origin> Result<SharedArray<const Element, Rank, OriginKind>> Materialize( TransformArrayConstraints constraints = skip_repeated_elements) const { return TransformArray<OriginKind>(UnownedToShared(base_array()), transform(), constraints); } template <typename Func> PipelineResultType<const TransformedArray&, Func> operator|( Func&& func) const& { return static_cast<Func&&>(func)(*this); } template <typename Func> PipelineResultType<TransformedArray&&, Func> operator|(Func&& func) && { return static_cast<Func&&>(func)(std::move(*this)); } private: ElementPointer element_pointer_; Transform transform_; }; template <typename Element, DimensionIndex Rank, ContainerKind LayoutCKind> std::enable_if_t<!IsShared<Element>, TransformedArray<Shared<Element>, Rank, LayoutCKind>> UnownedToShared(TransformedArray<Element, Rank, LayoutCKind> array) { return TransformedArray<Shared<Element>, Rank, LayoutCKind>( UnownedToShared(array.element_pointer()), std::move(array.transform())); } template <typename T, typename Element, DimensionIndex Rank, ContainerKind LayoutCKind> std::enable_if_t<!IsShared<Element>, TransformedArray<Shared<Element>, Rank, LayoutCKind>> UnownedToShared(const std::shared_ptr<T>& owned, TransformedArray<Element, Rank, LayoutCKind> array) { return TransformedArray<Shared<Element>, Rank, LayoutCKind>( UnownedToShared(owned, array.element_pointer()), std::move(array.transform())); } template <typename Element, DimensionIndex Rank, ContainerKind LayoutCKind> TransformedArray<Shared<Element>, Rank, LayoutCKind> UnownedToShared( TransformedArray<Shared<Element>, Rank, LayoutCKind> array) { return array; } template <typename ElementTagType, DimensionIndex Rank, ContainerKind LayoutContainerKind> struct StaticCastTraits< TransformedArray<ElementTagType, Rank, LayoutContainerKind>> : public DefaultStaticCastTraits< TransformedArray<ElementTagType, Rank, LayoutContainerKind>> { using type = TransformedArray<ElementTagType, Rank, LayoutContainerKind>; template <typename TargetElement> using RebindDataType = TransformedArray< typename ElementTagTraits<ElementTagType>::template rebind<TargetElement>, Rank, LayoutContainerKind>; template <DimensionIndex TargetRank> using RebindRank = TransformedArray<ElementTagType, TargetRank, LayoutContainerKind>; template <typename Other> static bool IsCompatible(const Other& other) { return RankConstraint::EqualOrUnspecified(other.rank(), Rank) && IsPossiblySameDataType(other.dtype(), typename type::DataType()); } static std::string Describe() { return internal_index_space::DescribeTransformedArrayForCast( typename type::DataType(), Rank); } static std::string Describe(const type& value) { return internal_index_space::DescribeTransformedArrayForCast(value.dtype(), value.rank()); } }; template <typename ElementTagType, DimensionIndex Rank, ContainerKind LayoutCKind> constexpr inline bool HasBoxDomain<TransformedArray<ElementTagType, Rank, LayoutCKind>> = true; template <typename ElementTagType, DimensionIndex Rank, ContainerKind LayoutCKind> BoxView<Rank> GetBoxDomainOf( const TransformedArray<ElementTagType, Rank, LayoutCKind>& array) { return array.domain().box(); } template <typename A> using TransformedArrayTypeFromArray = std::enable_if_t<IsArray<A>, TransformedArray<typename A::ElementTag, A::static_rank, A::layout_container_kind>>; template <typename ElementTag, DimensionIndex Rank, ArrayOriginKind OriginKind, ContainerKind LayoutCKind> TransformedArray(Array<ElementTag, Rank, OriginKind, LayoutCKind> array) -> TransformedArray<ElementTag, RankConstraint::FromInlineRank(Rank)>; template <typename A, typename T> using TransformedArrayTypeFromArrayAndTransform = std::enable_if_t< (IsArray<A> && IsIndexTransform<T> && A::static_rank == T::static_output_rank), TransformedArray<typename A::ElementTag, T::static_input_rank, container>>; template <DimensionIndex R, ArrayOriginKind O, ContainerKind AC, typename T> inline std::enable_if_t< (IsIndexTransform<internal::remove_cvref_t<T>>), Result<IndexTransform<internal::remove_cvref_t<T>::static_input_rank, RankConstraint::FromInlineRank(R)>>> ComposeLayoutAndTransform(const StridedLayout<R, O, AC>& layout, T&& transform) { static_assert(RankConstraint::FromInlineRank(R) == internal::remove_cvref_t<T>::static_output_rank); using TX = internal::remove_cvref_t<T>; using internal_index_space::TransformAccess; TENSORSTORE_ASSIGN_OR_RETURN(auto transform_ptr, MakeTransformFromStridedLayoutAndTransform( layout, TransformAccess::rep_ptr<container>( std::forward<T>(transform)))); return TransformAccess::Make< IndexTransform<TX::static_input_rank, RankConstraint::FromInlineRank(R)>>( std::move(transform_ptr)); } template <typename A, typename T> inline Result<TransformedArrayTypeFromArrayAndTransform< internal::remove_cvref_t<A>, internal::remove_cvref_t<T>>> MakeTransformedArray(A&& array, T&& transform) { TENSORSTORE_ASSIGN_OR_RETURN( auto composed_transform, ComposeLayoutAndTransform(array.layout(), std::forward<T>(transform))); return {std::in_place, std::forward<A>(array).element_pointer(), std::move(composed_transform)}; } template <ArrayOriginKind OriginKind = offset_origin, typename A> inline std::enable_if_t< IsTransformedArray<A>, Result<SharedArray<std::remove_const_t<typename A::Element>, A::static_rank, OriginKind>>> MakeCopy(const A& transformed_array, IterationConstraints constraints = { c_order, include_repeated_elements}) { return MakeCopy<OriginKind>(transformed_array.base_array(), transformed_array.transform(), constraints); } namespace internal_index_space { absl::Status CopyTransformedArrayImpl(TransformedArrayView<const void> source, TransformedArrayView<void> dest); } template <typename SourceResult, typename DestResult> std::enable_if_t<(IsTransformedArrayLike<UnwrapResultType<SourceResult>> && IsTransformedArrayLike<UnwrapResultType<DestResult>>), absl::Status> CopyTransformedArray(const SourceResult& source, const DestResult& dest) { using Source = UnwrapResultType<SourceResult>; using Dest = UnwrapResultType<DestResult>; static_assert(RankConstraint::EqualOrUnspecified(Dest::static_rank, Source::static_rank), "Arrays must have compatible ranks."); static_assert(!std::is_const_v<typename Dest::Element>, "Dest array must have a non-const element type."); if constexpr (IsResult<SourceResult>) { if (!source.ok()) return source.status(); } if constexpr (IsResult<DestResult>) { if (!dest.ok()) return dest.status(); } return internal_index_space::CopyTransformedArrayImpl(UnwrapResult(source), UnwrapResult(dest)); } template <typename Expr, typename T> internal_index_space::EnableIfTransformedArrayMapTransformResultType< IsTransformedArray<internal::remove_cvref_t<T>>, internal::remove_cvref_t<T>, Expr> ApplyIndexTransform(Expr&& expr, T&& t) { return internal_index_space::TransformedArrayMapTransform( std::forward<T>(t), std::forward<Expr>(expr)); } template <typename Expr, typename T> internal_index_space::EnableIfTransformedArrayMapTransformResultT
#include "tensorstore/index_space/transformed_array.h" #include <stddef.h> #include <stdint.h> #include <random> #include <type_traits> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/array_testutil.h" #include "tensorstore/box.h" #include "tensorstore/container_kind.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/index_space/transform_array_constraints.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/rank.h" #include "tensorstore/static_cast.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::dynamic_rank; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::kImplicit; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::MakeOffsetArray; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::Shared; using ::tensorstore::StaticDataTypeCast; using ::tensorstore::StaticRankCast; using ::tensorstore::TransformedArray; using ::tensorstore::dtypes::float32_t; static_assert(std::is_convertible_v<tensorstore::TransformedSharedArray<int, 1>, tensorstore::TransformedArrayView<int, 1>>); static_assert( !std::is_convertible_v<tensorstore::TransformedArrayView<int, 1>, tensorstore::TransformedSharedArray<int, 1>>); static_assert(std::is_convertible_v<tensorstore::TransformedArrayView<int, 1>, tensorstore::TransformedArray<int, 1>>); static_assert( std::is_same_v<typename tensorstore::TransformedArrayView<int, 1>:: template RebindContainerKind<tensorstore::container>, tensorstore::TransformedArray<int, 1>>); static_assert(tensorstore::HasBoxDomain<tensorstore::TransformedArray<int, 1>>); template <typename TA> std::vector<const typename TA::Element*> GetPointers(const TA& a) { using Element = const typename TA::Element; std::vector<Element*> pointers; auto result = IterateOverTransformedArrays( [&](Element* x) { pointers.push_back(x); }, tensorstore::skip_repeated_elements, a); EXPECT_TRUE(result); return pointers; } using TransformedArrayTestTypes = ::testing::Types<tensorstore::TransformedSharedArray<int>, tensorstore::TransformedSharedArray<int, 1>>; template <typename T> class TransformedArrayConstructorTest : public ::testing::Test {}; TYPED_TEST_SUITE(TransformedArrayConstructorTest, TransformedArrayTestTypes); template <typename TransformedArrayType, typename SourceArray> void TestCopyAndMove(SourceArray&& source, std::vector<const int*> expected_pointers) { { TransformedArrayType tb(source); EXPECT_EQ(GetBoxDomainOf(source), GetBoxDomainOf(tb)); EXPECT_EQ(expected_pointers, GetPointers(tb)); } { auto source_copy = source; TransformedArrayType tc(std::move(source_copy)); EXPECT_EQ(GetBoxDomainOf(source), GetBoxDomainOf(tc)); EXPECT_EQ(expected_pointers, GetPointers(tc)); } { TransformedArrayType td; td = source; EXPECT_EQ(GetBoxDomainOf(source), GetBoxDomainOf(td)); EXPECT_EQ(expected_pointers, GetPointers(td)); } { auto source_copy = source; TransformedArrayType td; td = std::move(source_copy); EXPECT_EQ(expected_pointers, GetPointers(td)); EXPECT_EQ(GetBoxDomainOf(source), GetBoxDomainOf(td)); } } TYPED_TEST(TransformedArrayConstructorTest, DefaultConstruct) { TypeParam ta; EXPECT_FALSE(ta.transform()); EXPECT_EQ(nullptr, ta.element_pointer()); } template <typename TransformedArrayType, typename Array> void TestConstructFromArray(Array&& array, std::vector<const int*> expected_pointers) { auto array_copy = array; TransformedArrayType ta(std::forward<Array>(array)); EXPECT_EQ(array_copy.domain(), ta.domain().box()); EXPECT_EQ(array_copy.domain(), GetBoxDomainOf(ta)); auto pointers = GetPointers(ta); EXPECT_EQ(expected_pointers, pointers); TestCopyAndMove<TransformedArrayType>(ta, expected_pointers); TestCopyAndMove<typename TransformedArrayType::template RebindContainerKind< tensorstore::container>>(ta, expected_pointers); } TYPED_TEST(TransformedArrayConstructorTest, ConstructFromZeroOriginArray) { auto a = MakeArray<int>({1, 2, 3}); const std::vector<const int*> expected_pointers{&a(0), &a(1), &a(2)}; TestConstructFromArray<TypeParam>(a, expected_pointers); TestConstructFromArray<TypeParam>(tensorstore::SharedArrayView<int, 1>(a), expected_pointers); } TYPED_TEST(TransformedArrayConstructorTest, ConstructFromOffsetOriginArray) { auto a = MakeOffsetArray<int>({3}, {1, 2, 3}); const std::vector<const int*> expected_pointers{&a(3), &a(4), &a(5)}; TestConstructFromArray<TypeParam>(a, expected_pointers); TestConstructFromArray<TypeParam>( tensorstore::SharedOffsetArrayView<int, 1>(a), expected_pointers); } template <typename TransformedArrayType, typename ElementPointer, typename Transform> void TestConstructFromElementPointerAndTransform( ElementPointer&& element_pointer, Transform&& transform, std::vector<const int*> expected_pointers) { auto element_pointer_copy = element_pointer; auto transform_copy = transform; TransformedArrayType ta(std::forward<ElementPointer>(element_pointer), std::forward<Transform>(transform)); EXPECT_EQ(GetBoxDomainOf(transform_copy), GetBoxDomainOf(ta)); EXPECT_EQ(transform_copy, ta.transform()); EXPECT_EQ(element_pointer_copy, ta.element_pointer()); auto pointers = GetPointers(ta); EXPECT_EQ(expected_pointers, pointers); TestCopyAndMove<TransformedArrayType>(ta, expected_pointers); TestCopyAndMove<typename TransformedArrayType::template RebindContainerKind< tensorstore::container>>(ta, expected_pointers); } TYPED_TEST(TransformedArrayConstructorTest, ConstructFromElementPointerAndTransform) { auto a = MakeArray<int>({1, 2, 3}); const std::vector<const int*> expected_pointers{&a(0), &a(1), &a(2)}; auto t = tensorstore::IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_single_input_dimension(0, 0, sizeof(int), 0) .Finalize() .value(); TestConstructFromElementPointerAndTransform<TypeParam>(a.element_pointer(), t, expected_pointers); auto element_pointer = a.element_pointer(); auto t_copy = t; TestConstructFromElementPointerAndTransform<TypeParam>( std::move(element_pointer), std::move(t_copy), expected_pointers); tensorstore::IndexTransformView<1, 1> t_view = t; TestConstructFromElementPointerAndTransform<TypeParam>( a.element_pointer(), t_view, expected_pointers); } TEST(TransformedArrayTest, Array) { auto a = MakeOffsetArray<int>({3}, {1, 2, 3}); auto ta = tensorstore::TransformedArray(a); static_assert(std::is_same_v<decltype(ta), tensorstore::TransformedSharedArray<int, 1>>); auto a_copy = a; EXPECT_EQ(3, a.pointer().use_count()); auto tb = tensorstore::TransformedArray(std::move(a_copy)); static_assert(std::is_same_v<decltype(tb), tensorstore::TransformedSharedArray<int, 1>>); EXPECT_EQ(3, a.pointer().use_count()); EXPECT_FALSE(a_copy.valid()); } TEST(TransformedArrayTest, TransformedArray) { auto a = MakeOffsetArray<int>({3}, {1, 2, 3}); auto ta = tensorstore::TransformedArray(a); auto tb = tensorstore::TransformedArray(ta); static_assert(std::is_same_v<decltype(tb), tensorstore::TransformedSharedArray<int, 1>>); auto ta_copy = ta; EXPECT_EQ(4, a.pointer().use_count()); auto tc = tensorstore::TransformedArray(std::move(ta_copy)); static_assert(std::is_same_v<decltype(tc), tensorstore::TransformedSharedArray<int, 1>>); EXPECT_EQ(a.element_pointer(), tc.element_pointer()); EXPECT_EQ(4, a.pointer().use_count()); EXPECT_FALSE(ta_copy.element_pointer()); } TEST(TransformedArrayTest, MapTransform) { auto array = MakeArray<int>({1, 2, 3}); tensorstore::TransformedArray<int, 1> tarray(array); auto tarray2 = ChainResult(tarray, tensorstore::Dims(0).SizedInterval(1, 2)).value(); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 3}), tarray2.Materialize().value()); } TEST(TransformedArrayTest, ArrayAndTransform) { auto a = MakeOffsetArray<int>({3}, {1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, (tensorstore::IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .input_labels({"a"}) .output_single_input_dimension(0, 3, 1, 0) .Finalize())); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ta, tensorstore::MakeTransformedArray(a, t)); static_assert(std::is_same_v<decltype(ta), tensorstore::TransformedSharedArray<int, 1>>); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto expected_transform, (tensorstore::IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .input_labels({"a"}) .output_single_input_dimension( 0, 3 * sizeof(int), 1 * sizeof(int), 0) .Finalize())); EXPECT_EQ(expected_transform, ta.transform()); } TEST(TransformedArrayTest, DimExpression) { auto a = MakeOffsetArray<int>({10, 20}, {{1, 2, 3}, {4, 5, 6}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto ta, a | tensorstore::Dims(0, 1).IndexVectorArraySlice( MakeArray<Index>({{10, 22}, {11, 21}, {11, 22}})) | tensorstore::Dims(0).Label("a")); EXPECT_EQ(ta.transform(), (tensorstore::IndexTransformBuilder<1, 2>() .input_origin({0}) .input_shape({3}) .input_labels({"a"}) .output_index_array(0, 0, sizeof(int) * 3, MakeArray<Index>({10, 11, 11}), IndexInterval::Sized(10, 2)) .output_index_array(1, 0, sizeof(int), MakeArray<Index>({22, 21, 22}), IndexInterval::Sized(20, 3)) .Finalize() .value())); EXPECT_EQ(a.element_pointer(), ta.element_pointer()); EXPECT_EQ(ta.domain().box(), tensorstore::BoxView<1>({3})); } TEST(TransformedArrayTest, MaterializeWithOffsetOrigin) { EXPECT_EQ(MakeOffsetArray<int>({2}, {3, 5, 6}), ChainResult(MakeOffsetArray<int>({10, 20}, {{1, 2, 3}, {4, 5, 6}}), tensorstore::Dims(0, 1) .IndexVectorArraySlice(MakeArray<Index>( {{10, 22}, {11, 21}, {11, 22}})) .TranslateTo(2)) .value() .Materialize()); } TEST(TransformedArrayTest, MaterializeWithZeroOrigin) { EXPECT_EQ(MakeArray<int>({3, 5, 6}), ChainResult(MakeOffsetArray<int>({10, 20}, {{1, 2, 3}, {4, 5, 6}}), tensorstore::Dims(0, 1) .IndexVectorArraySlice(MakeArray<Index>( {{10, 22}, {11, 21}, {11, 22}})) .TranslateTo(2)) .value() .template Materialize<tensorstore::zero_origin>() .value()); } TEST(TransformedArrayTest, MaterializeConstraints) { auto array = MakeOffsetArray<int>({2, 3}, {{3, 4, 5}, {6, 7, 8}}); auto transformed_array = ChainResult(array, tensorstore::Dims(1) .ClosedInterval(kImplicit, kImplicit, 2) .MoveToFront(), tensorstore::Dims(2).AddNew().SizedInterval(5, 3)) .value(); auto expected_array = MakeOffsetArray<int>( {1, 2, 5}, {{{3, 3, 3}, {6, 6, 6}}, {{5, 5, 5}, {8, 8, 8}}}); { auto new_array = transformed_array.Materialize().value(); EXPECT_EQ(GetPointers(transformed_array), GetPointers(new_array)); } const auto ValidateCopy = [&](const Result<tensorstore::SharedOffsetArray<const int, 3>>& new_array, const std::vector<Index>& expected_byte_strides) { TENSORSTORE_ASSERT_OK(new_array); EXPECT_NE(GetPointers(transformed_array), GetPointers(*new_array)); EXPECT_EQ(expected_array, *new_array); EXPECT_THAT(new_array->byte_strides(), ::testing::ElementsAreArray(expected_byte_strides)); }; const auto TestCopyAndMaterialize = [&](tensorstore::TransformArrayConstraints constraints, std::vector<Index> expected_byte_strides) { SCOPED_TRACE(tensorstore::StrCat("TestCopyAndMaterialize: constraints=", constraints.value())); { SCOPED_TRACE("Materialize"); auto new_array = transformed_array.Materialize(constraints); static_assert(std::is_same_v< decltype(new_array), Result<tensorstore::SharedOffsetArray<const int, 3>>>); ValidateCopy(new_array, expected_byte_strides); } { SCOPED_TRACE("MakeCopy"); auto new_array = MakeCopy(transformed_array, constraints.iteration_constraints()); static_assert( std::is_same_v<decltype(new_array), Result<tensorstore::SharedOffsetArray<int, 3>>>); ValidateCopy(new_array, expected_byte_strides); } }; TestCopyAndMaterialize( {tensorstore::skip_repeated_elements, tensorstore::must_allocate}, {sizeof(int), sizeof(int) * 2, 0}); TestCopyAndMaterialize( {tensorstore::c_order, tensorstore::skip_repeated_elements, tensorstore::must_allocate}, {sizeof(int) * 2, sizeof(int), 0}); TestCopyAndMaterialize( {tensorstore::fortran_order, tensorstore::skip_repeated_elements, tensorstore::must_allocate}, {sizeof(int), sizeof(int) * 2, 0}); TestCopyAndMaterialize( {tensorstore::fortran_order, tensorstore::include_repeated_elements, tensorstore::must_allocate}, {sizeof(int), sizeof(int) * 2, sizeof(int) * 2 * 2}); TestCopyAndMaterialize( {tensorstore::c_order, tensorstore::include_repeated_elements, tensorstore::must_allocate}, {sizeof(int) * 2 * 3, sizeof(int) * 3, sizeof(int)}); } TEST(TransformedArrayTest, MaterializeError) { EXPECT_THAT( ChainResult(MakeArray<int>({1, 2}), tensorstore::Dims(0).IndexArraySlice( MakeArray<Index>({3, 4}))) .value() .Materialize(), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(TransformedArrayTest, MakeCopy) { EXPECT_THAT(MakeCopy(ChainResult(MakeArray<int>({1, 2}), tensorstore::Dims(0).IndexArraySlice( MakeArray<Index>({3, 4}))) .value()), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(TransformedArrayTest, MoveConstructViewFromContainer) { MapResult( [](tensorstore::TransformedSharedArrayView<const void> x) { EXPECT_EQ(tensorstore::BoxView({2, 3}, {2, 2}), GetBoxDomainOf(x)); return absl::OkStatus(); }, tensorstore::MakeTransformedArray( tensorstore::MakeOffsetArray<int>({2, 3}, {{1, 2}, {3, 4}}), tensorstore::IdentityTransform(tensorstore::BoxView({2, 3}, {2, 2})))) .value(); } TEST(ComposeLayoutAndTransformTest, NoTransform) { tensorstore::StridedLayout<tensorstore::dynamic_rank, tensorstore::offset_origin> layout({1, 2}, {3, 4}, {5, 6}); auto transform = tensorstore::ComposeLayoutAndTransform( layout, tensorstore::IndexTransform<>()) .value(); EXPECT_EQ(transform, tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({3, 4}) .output_single_input_dimension(0, 0, 5, 0) .output_single_input_dimension(1, 0, 6, 1) .Finalize() .value()); } TEST(ComposeLayoutAndTransformTest, ExistingTransform) { tensorstore::StridedLayout<tensorstore::dynamic_rank, tensorstore::offset_origin> layout({1, 2}, {3, 4}, {5, 6}); auto transform = tensorstore::ComposeLayoutAndTransform( layout, tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({11, 12}) .input_shape({3, 2}) .input_labels({"x", "y"}) .output_single_input_dimension(0, -10, 1, 0) .output_single_input_dimension(1, -22, 2, 1) .Finalize() .value()) .value(); EXPECT_EQ(transform, tensorstore::IndexTransformBuilder<>(2, 2) .input_origin({11, 12}) .input_shape({3, 2}) .input_labels({"x", "y"}) .output_single_input_dimension(0, -10 * 5, 1 * 5, 0) .output_single_input_dimension(1, -22 * 6, 2 * 6, 1) .Finalize() .value()); } TEST(ComposeLayoutAndTransformTest, RankMismatch) { tensorstore::StridedLayout<tensorstore::dynamic_rank, tensorstore::offset_origin> layout({1, 2}, {3, 4}, {5, 6}); EXPECT_THAT(tensorstore::ComposeLayoutAndTransform( layout, tensorstore::IdentityTransform(3)), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform output rank \\(3\\) does not equal " "array rank \\(2\\)")); } TEST(MakeTransformedArrayTest, TwoArgumentBaseArrayAndTransform) { auto array = MakeOffsetArray<int>({2, 3}, {{3, 4, 5}, {6, 7, 8}}); auto t = tensorstore::IndexTransformBuilder<1, 2>() .implicit_lower_bounds({1}) .implicit_upper_bounds({1}) .output_single_input_dimension(0, 1, 1, 0) .output_single_input_dimension(1, 2, 1, 0) .Finalize() .value(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ta, tensorstore::MakeTransformedArray(array, t)); EXPECT_EQ(array.element_pointer(), ta.element_pointer()); EXPECT_EQ( tensorstore::IndexTransformBuilder<>(1, 2) .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, sizeof(int) * 3, sizeof(int) * 3, 0) .output_single_input_dimension(1, sizeof(int) * 2, sizeof(int), 0) .Finalize() .value(), ta.transform()); } TEST(GetUnboundedLayoutTest, Basic) { EXPECT_EQ((tensorstore::StridedLayout<tensorstore::dynamic_rank, tensorstore::offset_origin>( {-kInfIndex, -kInfIndex}, {kInfSize, kInfSize}, {1, 1})), tensorstore::internal_index_space::GetUnboundedLayout(2)); } TEST(TransformedArrayTest, StaticDataTypeCast) { TransformedArray<int32_t, 1> ta_orig = MakeArray<int32_t>({3, 4}); TransformedArray<void, 1> ta = ta_orig; auto ta_int = StaticDataTypeCast<int32_t>(ta); static_assert( std::is_same_v<decltype(ta_int), Result<TransformedArray<int, 1>>>); ASSERT_TRUE(ta_int); EXPECT_THAT(GetPointers(*ta_int), ::testing::ElementsAreArray(GetPointers(ta_orig))); } TEST(TransformedArrayTest, CastArrayToTransformedArray) { tensorstore::SharedArray<int32_t> a = MakeArray<int32_t>({1, 2}); auto ta_result = tensorstore::StaticCast<tensorstore::TransformedArrayView<int32_t, 1>>(a); TENSORSTORE_ASSERT_OK(ta_result); EXPECT_THAT(GetPointers(*ta_result), ::testing::ElementsAre(&a(0), &a(1))); } TEST(TransformedArrayTest, StaticDataTypeCastShared) { auto ta_orig = tensorstore::TransformedArray(MakeArray<int32_t>({3, 4})); TransformedArray<Shared<void>, 1> ta = ta_orig; auto ta_int = StaticDataTypeCast<int32_t>(ta); static_assert(std::is_same_v<decltype(ta_int), Result<TransformedArray<Shared<int32_t>, 1>>>); ASSERT_TRUE(ta_int); EXPECT_THAT(GetPointers(*ta_int), ::testing::ElementsAreArray(GetPointers(ta_orig))); } TEST(TransformedArrayTest, StaticRankCast) { TransformedArray<Shared<int32_t>, dynamic_rank> ta = MakeArray<int32_t>({3, 4}); auto ta1 = StaticRankCast<1>(ta); static_assert(std::is_same_v<decltype(ta1), Result<TransformedArray<Shared<int32_t>, 1>>>); ASSERT_TRUE(ta1); EXPECT_THAT(GetPointers(*ta1), ::testing::ElementsAreArray(GetPointers(ta))); EXPECT_THAT( StaticRankCast<2>(ta), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot cast transformed array with data type of int32 and rank of 1 " "to transformed array with data type of int32 and rank of 2")); } TEST(TransformedArrayTest, ApplyIndexTransform) { auto array = MakeArray<int>({{1, 2, 3}, {4, 5, 6}}); auto result = ChainResult(array, tensorstore::IdentityTransform<2>()); TENSORSTORE_ASSERT_OK(result); EXPECT_EQ(array, MakeCopy(*result)); } TEST(CopyTransformedArrayTest, Int32ToUint32) { auto a = MakeArray<int32_t>({{1, 2, 3}, {4, 5, 6}}); auto b = tensorstore::AllocateArray<uint32_t>({3, 2}); EXPECT_EQ(absl::OkStatus(), CopyTransformedArray( a, ChainResult(b, tensorstore::Dims(1, 0).Transpose()))); EXPECT_EQ(b, MakeArray<uint32_t>({{1, 4}, {2, 5}, {3, 6}})); } TEST(CopyTransformedArrayTest, Int32ToInt32) { auto a = MakeArray<int32_t>({{1, 2, 3}, {4, 5, 6}}); auto b = tensorstore::AllocateArray<int32_t>({3, 2}); EXPECT_EQ(absl::OkStatus(), CopyTransformedArray( a, ChainResult(b, tensorstore::Dims(1, 0).Transpose()))); EXPECT_EQ(b, MakeArray<int32_t>({{1, 4}, {2, 5}, {3, 6}})); } TEST(CopyTransformedArrayTest, Int32ToFloat32) { auto a = MakeArray<int32_t>({{1, 2, 3}, {4, 5, 6}}); auto b = tensorstore::AllocateArray<float32_t>({3, 2}); EXPECT_EQ(absl::OkStatus(), CopyTransformedArray( ChainResult(a, tensorstore::Dims(1, 0).Transpose()), b)); EXPECT_EQ(b, MakeArray<float32_t>({{1.0, 4.0}, {2.0, 5.0}, {3.0, 6.0}})); } TEST(CopyTransformedArrayTest, InvalidDataType) { auto a = MakeArray<::tensorstore::dtypes::string_t>({"x", "y"}); auto b = tensorstore::AllocateArray<float32_t>({2}); EXPECT_THAT(CopyTransformedArray(a, b), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot convert string -> float32")); } TEST(TransformedArrayTest, UnownedToShared) { auto a = MakeArray<int>({1, 2, 3}); TransformedArray<int> ta = a; auto shared_ta = UnownedToShared(ta); static_assert( std::is_same_v<decltype(shared_ta), TransformedArray<Shared<int>>>); } TEST(TransformedArrayTest, UnownedToSharedAliasing) { auto a = MakeArray<int>({1, 2, 3}); TransformedArray<int> ta = a; EXPECT_EQ(1, a.pointer().use_count()); { auto shared_ta = UnownedToShared(a.pointer(), ta); EXPECT_EQ(2, a.pointer().use_count()); static_assert( std::is_same_v<decltype(shared_ta), TransformedArray<Shared<int>>>); auto shared_ta_copy = UnownedToShared(shared_ta); static_assert( std::is_same_v<decltype(shared_ta), TransformedArray<Shared<int>>>); EXPECT_EQ(3, a.pointer().use_count()); } EXPECT_EQ(1, a.pointer().use_count()); } TEST(TryConvertToArrayTest, Basic) { auto array = tensorstore::AllocateArray<int32_t>({2, 3}, tensorstore::c_order, tensorstore::value_init); EXPECT_THAT(array | tensorstore::IdentityTransform<2>() | tensorstore::TryConvertToArray(), ::testing::Optional(tensorstore::ReferencesSameDataAs(array))); EXPECT_THAT(array | tensorstore::Dims(0).IndexSlice(1) | tensorstore::TryConvertToArray(), ::testing::Optional(tensorstore::ReferencesSameDataAs(array[1]))); EXPECT_THAT(array | tensorstore::Dims(0).TranslateTo(1) | tensorstore::TryConvertToArray<tensorstore::zero_origin>(), ::testing::Optional(tensorstore::ReferencesSameDataAs(array))); EXPECT_THAT(array | tensorstore::Dims(0).OuterIndexArraySlice( tensorstore::MakeArray<Index>({0, 1, 1})) | tensorstore::TryConvertToArray(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(TryConvertToArrayTest, Random) { tensorstore::SharedArray<const void> array = tensorstore::AllocateArray<int32_t>({2, 3}, tensorstore::c_order, tensorstore::value_init); std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_VIEW_AS_ARRAY")}; constexpr size_t kNumIterations = 10; for (size_t iter_i = 0; iter_i < kNumIterations; ++iter_i) { tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters p; p.max_stride = 2; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, tensorstore::IndexDomain<>(array.domain()), p); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto materialized_zero_origin, array | transform | tensorstore::Materialize<tensorstore::zero_origin>()); EXPECT_THAT(array | transform | tensorstore::TryConvertToArray<tensorstore::zero_origin>(), ::testing::Optional(materialized_zero_origin)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto materialized_offset_origin, array | transform | tensorstore::Materialize()); EXPECT_THAT(array | transform | tensorstore::TryConvertToArray(), ::testing::Optional(materialized_offset_origin)); } } }
548
cpp
google/tensorstore
dimension_units
tensorstore/index_space/dimension_units.cc
tensorstore/index_space/dimension_units_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_DIMENSION_UNITS_H_ #define TENSORSTORE_INDEX_SPACE_DIMENSION_UNITS_H_ #include <optional> #include <vector> #include "tensorstore/index_space/index_transform.h" #include "tensorstore/util/span.h" #include "tensorstore/util/unit.h" namespace tensorstore { using DimensionUnitsVector = std::vector<std::optional<Unit>>; std::string DimensionUnitsToString(span<const std::optional<Unit>> u); absl::Status MergeDimensionUnits(DimensionUnitsVector& existing_units, span<const std::optional<Unit>> new_units); Result<DimensionUnitsVector> TransformInputDimensionUnits( IndexTransformView<> transform, DimensionUnitsVector input_units); DimensionUnitsVector TransformOutputDimensionUnits( IndexTransformView<> transform, DimensionUnitsVector output_units); } #endif #include "tensorstore/index_space/dimension_units.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { Result<DimensionUnitsVector> TransformInputDimensionUnits( IndexTransformView<> transform, DimensionUnitsVector input_units) { if (!transform.valid()) return input_units; const DimensionIndex input_rank = transform.input_rank(), output_rank = transform.output_rank(); assert(input_units.size() == input_rank); std::optional<Unit> output_units[kMaxRank]; DimensionSet seen_input_dims; for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) continue; const Index stride = map.stride(); if (stride == 0) continue; const DimensionIndex input_dim = map.input_dimension(); const auto& input_unit = input_units[input_dim]; if (!input_unit) continue; seen_input_dims[input_dim] = true; auto& output_unit = output_units[output_dim]; output_unit = input_unit; *output_unit /= std::abs(static_cast<double>(stride)); } for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { if (!input_units[input_dim] || seen_input_dims[input_dim]) continue; return absl::InvalidArgumentError(tensorstore::StrCat( "No output dimension corresponds to input dimension ", input_dim, " with unit ", *input_units[input_dim])); } input_units.resize(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { input_units[output_dim] = std::move(output_units[output_dim]); } return input_units; } DimensionUnitsVector TransformOutputDimensionUnits( IndexTransformView<> transform, DimensionUnitsVector output_units) { if (!transform.valid()) return output_units; const DimensionIndex input_rank = transform.input_rank(), output_rank = transform.output_rank(); assert(output_units.size() == output_rank); DimensionSet one_to_one_input_dims = internal::GetOneToOneInputDimensions(transform).one_to_one; std::optional<Unit> input_units[kMaxRank]; for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& output_unit = output_units[output_dim]; if (!output_unit) continue; const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) continue; const Index stride = map.stride(); if (stride == 0) continue; const DimensionIndex input_dim = map.input_dimension(); if (!one_to_one_input_dims[input_dim]) continue; auto& input_unit = input_units[input_dim]; input_unit = output_unit; *input_unit *= std::abs(static_cast<double>(stride)); } output_units.resize(input_rank); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { output_units[input_dim] = std::move(input_units[input_dim]); } return output_units; } absl::Status MergeDimensionUnits(DimensionUnitsVector& existing_units, span<const std::optional<Unit>> new_units) { assert(existing_units.empty() || existing_units.size() == new_units.size()); existing_units.resize(new_units.size()); for (size_t i = 0; i < new_units.size(); ++i) { auto& existing_unit = existing_units[i]; auto& new_unit = new_units[i]; if (!new_unit) continue; if (existing_unit && existing_unit != new_unit) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot merge dimension units ", DimensionUnitsToString(new_units), " and ", DimensionUnitsToString(existing_units))); } } for (size_t i = 0; i < new_units.size(); ++i) { auto& existing_unit = existing_units[i]; auto& new_unit = new_units[i]; if (!new_unit || existing_unit) continue; existing_unit = new_unit; } return absl::OkStatus(); } std::string DimensionUnitsToString(span<const std::optional<Unit>> u) { std::string result = "["; std::string_view sep = ""; for (const auto& unit : u) { result += sep; sep = ", "; if (!unit) { result += "null"; } else { result += tensorstore::QuoteString(tensorstore::StrCat(*unit)); } } result += "]"; return result; } }
#include "tensorstore/index_space/dimension_units.h" #include <stddef.h> #include <iterator> #include <optional> #include <random> #include <string> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/random/bit_gen_ref.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/unit.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::DimensionUnitsToString; using ::tensorstore::DimensionUnitsVector; using ::tensorstore::MatchesStatus; using ::tensorstore::MergeDimensionUnits; using ::tensorstore::TransformInputDimensionUnits; using ::tensorstore::TransformOutputDimensionUnits; using ::tensorstore::Unit; TEST(DimensionUnitsToStringTest, Basic) { EXPECT_EQ("[null, \"4 nm\"]", DimensionUnitsToString(DimensionUnitsVector{ std::nullopt, Unit("4nm")})); } TEST(MergeDimensionUnitsTest, BothUnspecified) { DimensionUnitsVector existing_units{std::nullopt, std::nullopt}; DimensionUnitsVector new_units{std::nullopt, std::nullopt}; TENSORSTORE_EXPECT_OK(MergeDimensionUnits(existing_units, new_units)); EXPECT_THAT(existing_units, ::testing::ElementsAre(std::nullopt, std::nullopt)); } TEST(MergeDimensionUnitsTest, OneSpecifiedOneUnspecified) { DimensionUnitsVector existing_units{std::nullopt, Unit("4nm")}; DimensionUnitsVector new_units{Unit("8nm"), std::nullopt}; TENSORSTORE_EXPECT_OK(MergeDimensionUnits(existing_units, new_units)); EXPECT_THAT(existing_units, ::testing::ElementsAre(Unit("8nm"), Unit("4nm"))); } TEST(MergeDimensionUnitsTest, BothSpecifiedSame) { DimensionUnitsVector existing_units{Unit("8nm"), Unit("4nm")}; DimensionUnitsVector new_units{Unit("8nm"), std::nullopt}; TENSORSTORE_EXPECT_OK(MergeDimensionUnits(existing_units, new_units)); EXPECT_THAT(existing_units, ::testing::ElementsAre(Unit("8nm"), Unit("4nm"))); } TEST(MergeDimensionUnitsTest, BothSpecifiedDistinct) { DimensionUnitsVector existing_units{std::nullopt, Unit("4nm")}; DimensionUnitsVector new_units{Unit("8nm"), Unit("5nm")}; EXPECT_THAT( MergeDimensionUnits(existing_units, new_units), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot merge dimension units \\[\"8 nm\", \"5 nm\"\\] " "and \\[null, \"4 nm\"\\]")); EXPECT_THAT(existing_units, ::testing::ElementsAre(std::nullopt, Unit("4nm"))); } std::optional<Unit> MakeRandomUnit(absl::BitGenRef gen) { constexpr std::string_view kBaseUnits[] = { "", "nm", "um", }; if (absl::Bernoulli(gen, 0.2)) return std::nullopt; const double multiplier = absl::Uniform<int>(gen, 5, 20); const auto base_unit = kBaseUnits[absl::Uniform<size_t>(gen, 0, std::size(kBaseUnits))]; return Unit(multiplier, std::string(base_unit)); } DimensionUnitsVector MakeRandomDimensionUnits(DimensionIndex rank, absl::BitGenRef gen) { DimensionUnitsVector units(rank); for (auto& unit : units) { unit = MakeRandomUnit(gen); } return units; } TEST(TransformOutputDimensionUnitsTest, InvertibleRoundTrip) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_TRANSFORM_DIMENSION_UNITS_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto domain = tensorstore::IndexDomain(box); auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain); auto output_units = MakeRandomDimensionUnits(domain.rank(), gen); auto input_units = TransformOutputDimensionUnits(transform, output_units); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_transform, InverseTransform(transform)); EXPECT_THAT(TransformInputDimensionUnits(transform, input_units), ::testing::Optional(::testing::ElementsAreArray(output_units))); EXPECT_THAT(TransformOutputDimensionUnits(inv_transform, input_units), ::testing::ElementsAreArray(output_units)); } } TEST(TransformOutputDimensionUnitsTest, StridedNonInvertibleRoundTrip) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_TRANSFORM_DIMENSION_UNITS_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto domain = tensorstore::IndexDomain(box); tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters p; p.max_stride = 4; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain, p); auto output_units = MakeRandomDimensionUnits(domain.rank(), gen); auto input_units = TransformOutputDimensionUnits(transform, output_units); EXPECT_THAT(TransformInputDimensionUnits(transform, input_units), ::testing::Optional(::testing::ElementsAreArray(output_units))); } } TEST(TransformInputDimensionUnitsTest, NoCorrespondingOutputDimension) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IndexTransformBuilder(1, 0).Finalize()); DimensionUnitsVector input_units{"4nm"}; EXPECT_THAT(TransformInputDimensionUnits(transform, input_units), MatchesStatus(absl::StatusCode::kInvalidArgument, "No output dimension corresponds to " "input dimension 0 with unit 4 nm")); } TEST(TransformOutputDimensionUnitsTest, NonUnique) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IndexTransformBuilder(2, 3) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .output_single_input_dimension(2, 1) .Finalize()); DimensionUnitsVector output_units{"4nm", "5nm", "6nm"}; EXPECT_THAT(TransformOutputDimensionUnits(transform, output_units), ::testing::ElementsAre(std::nullopt, Unit("6nm"))); } }
549
cpp
google/tensorstore
json
tensorstore/serialization/json.cc
tensorstore/serialization/json_test.cc
#ifndef TENSORSTORE_UTIL_GARBAGE_COLLECTION_JSON_H_ #define TENSORSTORE_UTIL_GARBAGE_COLLECTION_JSON_H_ #include <nlohmann/json_fwd.hpp> #include "tensorstore/util/garbage_collection/fwd.h" TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED(::nlohmann::json) #endif #include "tensorstore/serialization/json.h" #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/riegeli/json_input.h" #include "tensorstore/internal/riegeli/json_output.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace serialization { bool Serializer<::nlohmann::json>::Encode(EncodeSink& sink, const ::nlohmann::json& value) { return internal::WriteCbor(sink.writer(), value); } bool Serializer<::nlohmann::json>::Decode(DecodeSource& source, ::nlohmann::json& value) { return internal::ReadCbor(source.reader(), value, false); } } }
#include "tensorstore/serialization/json.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json.hpp> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::serialization::SerializationRoundTrip; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(SerializationTest, Valid) { TestSerializationRoundTrip(::nlohmann::json(5)); TestSerializationRoundTrip(::nlohmann::json("abc")); } TEST(SerializationTest, Invalid) { EXPECT_THAT(SerializationRoundTrip( ::nlohmann::json(::nlohmann::json::value_t::discarded)), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot encode discarded json value.*")); } }
550
cpp
google/tensorstore
transform_broadcastable_array
tensorstore/index_space/transform_broadcastable_array.cc
tensorstore/index_space/transform_broadcastable_array_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_TRANSFORM_BROADCASTABLE_ARRAY_H_ #define TENSORSTORE_INDEX_SPACE_TRANSFORM_BROADCASTABLE_ARRAY_H_ #include "tensorstore/array.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/util/result.h" namespace tensorstore { Result<SharedArray<const void>> TransformOutputBroadcastableArray( IndexTransformView<> transform, SharedArrayView<const void> output_array, IndexDomainView<> output_domain); Result<SharedArray<const void>> TransformInputBroadcastableArray( IndexTransformView<> transform, SharedArrayView<const void> input_array); } #endif #include "tensorstore/index_space/transform_broadcastable_array.h" #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/result.h" namespace tensorstore { Result<SharedArray<const void>> TransformOutputBroadcastableArray( IndexTransformView<> transform, SharedArrayView<const void> output_array, IndexDomainView<> output_domain) { assert(transform.valid()); Box<dynamic_rank(kMaxRank)> broadcast_domain(transform.output_rank()); if (output_domain.valid()) { broadcast_domain = output_domain.box(); } else { TENSORSTORE_RETURN_IF_ERROR( tensorstore::GetOutputRange(transform, broadcast_domain)); const DimensionIndex output_rank = transform.output_rank(); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto map = transform.output_index_maps()[output_dim]; switch (map.method()) { case OutputIndexMethod::constant: break; case OutputIndexMethod::array: { broadcast_domain[output_dim] = IndexInterval(); break; } case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); if (map.stride() != 1 && map.stride() != -1) { broadcast_domain[output_dim] = IndexInterval::Infinite(); } else { const DimensionIndex output_array_dim = output_dim + output_array.rank() - output_rank; if (output_array_dim >= 0 && transform.domain()[input_dim].optionally_implicit_interval() == OptionallyImplicitIndexInterval{IndexInterval::Infinite(), true, true}) { broadcast_domain[output_dim] = output_array.domain()[output_array_dim]; } } break; } } } } TENSORSTORE_ASSIGN_OR_RETURN( auto broadcast_output_array, tensorstore::BroadcastArray(std::move(output_array), broadcast_domain)); TENSORSTORE_ASSIGN_OR_RETURN(auto input_array, std::move(broadcast_output_array) | transform | tensorstore::Materialize()); return UnbroadcastArray(std::move(input_array)); } Result<SharedArray<const void>> TransformInputBroadcastableArray( IndexTransformView<> transform, SharedArrayView<const void> input_array) { assert(transform.valid()); SharedArray<const void> output_array; output_array.layout().set_rank(transform.output_rank()); DimensionSet seen_input_dims; ByteStridedPointer<const void> data_pointer = input_array.byte_strided_pointer(); const DimensionIndex input_rank = transform.input_rank(); for (DimensionIndex output_dim = 0; output_dim < output_array.rank(); ++output_dim) { const auto map = transform.output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) { return absl::InvalidArgumentError( tensorstore::StrCat("Cannot transform input array through ", map.method(), " output index map")); } const DimensionIndex input_dim = map.input_dimension(); if (seen_input_dims[input_dim]) { return absl::InvalidArgumentError( "Cannot transform input array with multiple " "output dimensions mapping to the same input dimension"); } if (std::abs(map.stride()) != 1) { return absl::InvalidArgumentError( "Cannot transform input array through " "non-unit-stride output index map"); } seen_input_dims[input_dim] = true; const DimensionIndex input_array_dim = input_array.rank() - input_rank + input_dim; if (input_array_dim < 0) { output_array.shape()[output_dim] = 1; output_array.byte_strides()[output_dim] = 0; } else { const Index size = input_array.shape()[input_array_dim]; output_array.shape()[output_dim] = size; const Index byte_stride = input_array.byte_strides()[input_array_dim]; const Index stride = map.stride(); output_array.byte_strides()[output_dim] = internal::wrap_on_overflow::Multiply(byte_stride, stride); if (stride == -1 && size != 0) { data_pointer += internal::wrap_on_overflow::Multiply(byte_stride, size - 1); } } } for (DimensionIndex input_array_dim = 0; input_array_dim < input_array.rank(); ++input_array_dim) { if (input_array.shape()[input_array_dim] == 1 || input_array.byte_strides()[input_array_dim] == 0) { continue; } const DimensionIndex input_dim = input_rank - input_array.rank() + input_array_dim; if (input_dim < 0 || !seen_input_dims[input_dim]) { return absl::InvalidArgumentError( tensorstore::StrCat("Cannot transform input array; " "dimension ", input_array_dim, " cannot be mapped")); } } output_array.element_pointer() = SharedElementPointer<const void>( std::shared_ptr<const void>(std::move(input_array.pointer()), data_pointer.get()), input_array.dtype()); return UnbroadcastArray(std::move(output_array)); } }
#include "tensorstore/index_space/transform_broadcastable_array.h" #include <stddef.h> #include <random> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Index; using ::tensorstore::IndexDomain; using ::tensorstore::IndexDomainView; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::MakeArray; using ::tensorstore::MakeScalarArray; using ::tensorstore::MatchesStatus; using ::tensorstore::SharedArray; using ::tensorstore::SharedArrayView; using ::tensorstore::span; using ::tensorstore::TransformInputBroadcastableArray; using ::tensorstore::TransformOutputBroadcastableArray; void TestRoundTrip(IndexTransformView<> transform, SharedArrayView<const void> input_array, SharedArrayView<const void> output_array, IndexDomainView<> output_domain) { SCOPED_TRACE(tensorstore::StrCat( "transform=", transform, ", output_domain=", output_domain, ", input_array.shape=", input_array.shape(), ", output_array.shape=", output_array.shape())); EXPECT_THAT( TransformOutputBroadcastableArray(transform, output_array, output_domain), ::testing::Optional(input_array)); EXPECT_THAT(TransformInputBroadcastableArray(transform, input_array), ::testing::Optional(output_array)); } void TestRoundTrip(IndexTransformView<> transform, SharedArrayView<const void> output_array, IndexDomainView<> output_domain = IndexDomainView<>(), bool test_inverse = false) { SCOPED_TRACE(tensorstore::StrCat( "transform=", transform, ", output_domain=", output_domain, ", output_array.shape=", output_array.shape())); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto input_array, TransformOutputBroadcastableArray( transform, output_array, output_domain)); EXPECT_THAT(TransformInputBroadcastableArray(transform, input_array), ::testing::Optional(output_array)); if (test_inverse) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inverse_transform, tensorstore::InverseTransform(transform)); EXPECT_THAT( TransformInputBroadcastableArray(inverse_transform, output_array), ::testing::Optional(input_array)); } } SharedArray<int> MakeTestArray(span<const Index> shape) { auto array = tensorstore::AllocateArray<int>(shape); for (Index i = 0, num_elements = array.num_elements(); i < num_elements; ++i) { array.data()[i] = i; } return array; } TEST(RoundTripTest, IdentityTransform) { for (DimensionIndex rank = 0; rank <= 3; ++rank) { SCOPED_TRACE(tensorstore::StrCat("rank=", rank)); std::vector<Index> shape(rank); for (DimensionIndex dim = 0; dim < rank; ++dim) { shape[dim] = dim + 2; } auto array = MakeTestArray(shape); TestRoundTrip(tensorstore::IdentityTransform(shape), array, array, tensorstore::IndexDomain<>()); TestRoundTrip(tensorstore::IdentityTransform(rank), array, array, tensorstore::IndexDomain<>()); TestRoundTrip(tensorstore::IdentityTransform(shape), array, array, tensorstore::IdentityTransform(shape).domain()); } } TEST(RoundTripTest, RandomInvertibleTransform) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_TRANSFORM_BROADCASTABLE_ARRAY_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto array = tensorstore::UnbroadcastArray(MakeTestArray(box.shape())); auto domain = IndexDomain(box); auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain); TestRoundTrip(transform, array); TestRoundTrip(transform, array, domain); } } TEST(RoundTripTest, RandomInvertibleTransformNoNewDims) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_TRANSFORM_BROADCASTABLE_ARRAY_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); auto array = tensorstore::UnbroadcastArray(MakeTestArray(box.shape())); auto domain = IndexDomain(box); tensorstore::internal::MakeStridedIndexTransformForOutputSpaceParameters p; p.max_new_dims = 0; auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain, p); TestRoundTrip(transform, array, IndexDomain(), true); TestRoundTrip(transform, array, domain, true); } } TEST(TransformOutputBroadcastableArrayTest, ConstantMap) { auto array = MakeArray<int>({{1}, {2}, {3}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(1, 2) .output_single_input_dimension(0, 5, -1, 0) .output_constant(1, 42) .Finalize()); EXPECT_THAT( TransformOutputBroadcastableArray(transform, array, IndexDomain()), ::testing::Optional(MakeArray<int>({3, 2, 1}))); } TEST(TransformOutputBroadcastableArrayTest, NonUnitStrideMap) { auto array = MakeArray<int>({{1}, {2}, {3}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(2, 2) .output_single_input_dimension(0, 5, -1, 0) .output_single_input_dimension(1, 42, 2, 1) .Finalize()); EXPECT_THAT( TransformOutputBroadcastableArray(transform, array, IndexDomain()), ::testing::Optional(MakeArray<int>({{3}, {2}, {1}}))); } TEST(TransformOutputBroadcastableArrayTest, ArrayMap) { auto array = MakeArray<int>({{1}, {2}, {3}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(1, 2) .input_shape({3}) .output_single_input_dimension(0, 5, -1, 0) .output_index_array(1, 20, 1, MakeArray<Index>({0, 5, 10})) .Finalize()); EXPECT_THAT( TransformOutputBroadcastableArray(transform, array, IndexDomain()), ::testing::Optional(MakeArray<int>({3, 2, 1}))); } TEST(TransformInputBroadcastableArrayTest, ConstantMap) { auto array = MakeScalarArray<int>(42); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(0, 1).output_constant(0, 42).Finalize()); EXPECT_THAT( TransformInputBroadcastableArray(transform, array), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot transform input array through constant output index map")); } TEST(TransformInputBroadcastableArrayTest, NonUnitStrideMap) { auto array = MakeArray<int>({1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(1, 1) .output_single_input_dimension(0, 5, 2, 0) .Finalize()); EXPECT_THAT(TransformInputBroadcastableArray(transform, array), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot transform input array through " "non-unit-stride output index map")); } TEST(TransformInputBroadcastableArrayTest, ArrayMap) { auto array = MakeArray<int>({1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 20, 1, MakeArray<Index>({0, 5, 10})) .Finalize()); EXPECT_THAT( TransformInputBroadcastableArray(transform, array), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot transform input array through array output index map")); } TEST(TransformInputBroadcastableArrayTest, Diagonal) { auto array = MakeArray<int>({1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto transform, IndexTransformBuilder(1, 2) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .Finalize()); EXPECT_THAT( TransformInputBroadcastableArray(transform, array), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot transform input array with multiple " "output dimensions mapping to the same input dimension")); } TEST(TransformInputBroadcastableArrayTest, UnmappedNoError) { auto array = MakeArray<int>({1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto transform, IndexTransformBuilder(2, 1) .output_single_input_dimension(0, 1) .Finalize()); EXPECT_THAT(TransformInputBroadcastableArray(transform, array), ::testing::Optional(array)); } TEST(TransformInputBroadcastableArrayTest, UnmappedError) { auto array = MakeArray<int>({1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto transform, IndexTransformBuilder(2, 1) .output_single_input_dimension(0, 0) .Finalize()); EXPECT_THAT( TransformInputBroadcastableArray(transform, array), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot transform input array; dimension 0 cannot be mapped")); } TEST(TransformInputBroadcastableArrayTest, ExtraDimensionError) { auto array = MakeArray<int>({{1, 2, 3}, {4, 5, 6}}); EXPECT_THAT( TransformInputBroadcastableArray(tensorstore::IdentityTransform(1), array), MatchesStatus( absl::StatusCode::kInvalidArgument, "Cannot transform input array; dimension 0 cannot be mapped")); } TEST(TransformInputBroadcastableArrayTest, ExtraDimensionNoError) { auto array = MakeArray<int>({{1, 2, 3}}); EXPECT_THAT(TransformInputBroadcastableArray( tensorstore::IdentityTransform(1), array), ::testing::Optional(MakeArray<int>({1, 2, 3}))); } }
551
cpp
google/tensorstore
transpose_op
tensorstore/index_space/internal/transpose_op.cc
tensorstore/index_space/transpose_op_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_TRANSPOSE_OP_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_TRANSPOSE_OP_H_ #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/meta.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyTransposeTo( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const DimensionIndex> target_dimensions, bool domain_only); Result<IndexTransform<>> ApplyTransposeToDynamic( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const DynamicDimSpec> target_dim_specs, bool domain_only); Result<IndexTransform<>> ApplyTranspose( IndexTransform<> transform, span<const DynamicDimSpec> source_dim_specs, bool domain_only); template <typename Container> struct TransposeToOp { static constexpr bool selected_dimensions_are_new = false; static constexpr DimensionIndex static_selection_rank = internal::ConstSpanType<Container>::extent; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( (input_rank == dynamic_rank || input_rank >= static_selection_rank) && "Number of dimensions must not exceed input rank."); return input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( RankConstraint::EqualOrUnspecified(num_input_dims, static_selection_rank) && "Number of selected dimensions must match number of target " "dimensions."); return num_input_dims == dynamic_rank ? static_selection_rank : num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyTransposeTo(std::move(transform), dimensions, target_dimensions, domain_only); } Container target_dimensions; }; Result<IndexTransform<>> ApplyTranspose(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only); struct TransposeOp { static constexpr bool selected_dimensions_are_new = false; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( RankConstraint::EqualOrUnspecified(input_rank, num_input_dims) && "Number of selected dimensions must equal input rank."); return input_rank == dynamic_rank ? num_input_dims : input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { return num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyTranspose(std::move(transform), dimensions, domain_only); } }; Result<IndexTransform<>> ApplyMoveDimsTo(IndexTransform<> transform, DimensionIndexBuffer* dimensions, DimensionIndex target, bool domain_only); struct MoveToOp { static constexpr bool selected_dimensions_are_new = false; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { return input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { return num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyMoveDimsTo(std::move(transform), dimensions, target, domain_only); } DimensionIndex target; }; } } #endif #include "tensorstore/index_space/internal/transpose_op.h" #include <cassert> #include <numeric> #include "absl/status/status.h" #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/index_space/dimension_permutation.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transpose.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { absl::Status MakePermutationFromMoveDimsTarget( DimensionIndexBuffer* dimensions, DimensionIndex target, span<DimensionIndex> permutation) { if (dimensions->empty()) { std::iota(permutation.begin(), permutation.end(), static_cast<DimensionIndex>(0)); return absl::OkStatus(); } const DimensionIndex input_rank = permutation.size(); const DimensionIndex num_dims = dimensions->size(); TENSORSTORE_ASSIGN_OR_RETURN( target, NormalizeDimensionIndex(target, input_rank - num_dims + 1)); std::fill(permutation.begin(), permutation.end(), static_cast<DimensionIndex>(-1)); DimensionSet moved_dims = false; for (DimensionIndex i = 0; i < num_dims; ++i) { DimensionIndex& input_dim = (*dimensions)[i]; moved_dims[input_dim] = true; permutation[target + i] = input_dim; input_dim = target + i; } for (DimensionIndex i = 0, orig_input_dim = 0; i < input_rank; ++i) { if (permutation[i] != -1) continue; while (moved_dims[orig_input_dim]) ++orig_input_dim; permutation[i] = orig_input_dim++; } return absl::OkStatus(); } } Result<IndexTransform<>> ApplyMoveDimsTo(IndexTransform<> transform, DimensionIndexBuffer* dimensions, DimensionIndex target, bool domain_only) { const DimensionIndex input_rank = transform.input_rank(); DimensionIndex permutation[kMaxRank]; TENSORSTORE_RETURN_IF_ERROR(MakePermutationFromMoveDimsTarget( dimensions, target, span<DimensionIndex>(&permutation[0], input_rank))); return TransformAccess::Make<IndexTransform<>>(TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), span<const DimensionIndex>(&permutation[0], input_rank), domain_only)); } Result<IndexTransform<>> ApplyTranspose(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) { if (static_cast<DimensionIndex>(dimensions->size()) != transform.input_rank()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of dimensions (", dimensions->size(), ") must equal input_rank (", transform.input_rank(), ").")); } TransformRep::Ptr<> rep = TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), *dimensions, domain_only); std::iota(dimensions->begin(), dimensions->end(), static_cast<DimensionIndex>(0)); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } Result<IndexTransform<>> ApplyTransposeTo( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const DimensionIndex> target_dimensions, bool domain_only) { const DimensionIndex input_rank = transform.input_rank(); if (static_cast<DimensionIndex>(dimensions->size()) != target_dimensions.size()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of selected dimensions (", dimensions->size(), ") must equal number of target dimensions (", target_dimensions.size(), ")")); } DimensionSet seen_existing_dim = false; DimensionIndex permutation[kMaxRank]; std::fill_n(permutation, input_rank, -1); for (DimensionIndex i = 0; i < target_dimensions.size(); ++i) { DimensionIndex& orig_dim = (*dimensions)[i]; TENSORSTORE_ASSIGN_OR_RETURN( const DimensionIndex target_dim, NormalizeDimensionIndex(target_dimensions[i], input_rank)); if (permutation[target_dim] != -1) { return absl::InvalidArgumentError(tensorstore::StrCat( "Target dimension ", target_dim, " occurs more than once")); } seen_existing_dim[orig_dim] = true; permutation[target_dim] = orig_dim; orig_dim = target_dim; } for (DimensionIndex orig_dim = 0, target_dim = 0; orig_dim < input_rank; ++orig_dim) { if (seen_existing_dim[orig_dim]) continue; while (permutation[target_dim] != -1) ++target_dim; permutation[target_dim] = orig_dim; } return TransformAccess::Make<IndexTransform<>>(TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), span<const DimensionIndex>(&permutation[0], input_rank), domain_only)); } Result<IndexTransform<>> ApplyTransposeToDynamic( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const DynamicDimSpec> target_dim_specs, bool domain_only) { if (target_dim_specs.size() == 1) { if (auto* target = std::get_if<DimensionIndex>(&target_dim_specs.front())) { return ApplyMoveDimsTo(std::move(transform), dimensions, *target, domain_only); } } DimensionIndexBuffer target_dimensions; const DimensionIndex input_rank = transform.input_rank(); for (const auto& s : target_dim_specs) { if (auto* index = std::get_if<DimensionIndex>(&s)) { target_dimensions.push_back(*index); } else if (auto* r = std::get_if<DimRangeSpec>(&s)) { TENSORSTORE_RETURN_IF_ERROR( NormalizeDimRangeSpec(*r, input_rank, &target_dimensions)); } else { return absl::InvalidArgumentError( "Target dimensions cannot be specified by label"); } } return ApplyTransposeTo(std::move(transform), dimensions, target_dimensions, domain_only); } Result<IndexTransform<>> ApplyTranspose( IndexTransform<> transform, span<const DynamicDimSpec> source_dim_specs, bool domain_only) { DimensionIndexBuffer source_dimensions; source_dimensions.reserve(transform.input_rank()); TENSORSTORE_RETURN_IF_ERROR(NormalizeDynamicDimSpecs( source_dim_specs, transform.input_labels(), &source_dimensions)); if (!IsValidPermutation(source_dimensions)) { return absl::InvalidArgumentError( tensorstore::StrCat("Source dimension list ", span(source_dimensions), " is not a valid dimension permutation for rank ", transform.input_rank())); } return TransformAccess::Make<IndexTransform<>>(TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), source_dimensions, domain_only)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::MakeArray; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(TransposeTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({1, 0, 0}) .implicit_upper_bounds({0, 1, 0}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({3, 1, 2}) .input_shape({2, 3, 4}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({0, 0, 1}) .input_labels({"z", "x", "y"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .output_single_input_dimension(2, 0) .Finalize() .value(); const EquivalentIndices equivalent_indices = {{{2, 3, 4}, {4, 2, 3}}}; TestDimExpression(original_transform, Dims(2, 0, 1).Transpose(), {0, 1, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("z", "x", "y").Transpose(), {0, 1, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TransposeTest, Simple) { TestDimExpression( IndexTransformBuilder<4, 2>() .input_origin({1, 2, 3, 4}) .input_shape({5, 6, 4, 8}) .output_single_input_dimension(0, 1, 2, 1) .output_index_array( 1, 2, 3, MakeArray<Index>({{{{1}, {2}, {3}, {4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), Dims(2, 0, 1, 3).Transpose(), {0, 1, 2, 3}, IndexTransformBuilder<4, 4>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .output_single_input_dimension(2, 0) .output_single_input_dimension(3, 3) .Finalize() .value(), IndexTransformBuilder<4, 2>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .output_single_input_dimension(0, 1, 2, 2) .output_index_array( 1, 2, 3, MakeArray<Index>( {{{{1}}}, {{{2}}}, {{{3}}}, {{{4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), {{{2, 4, 3, 5}, {3, 2, 4, 5}}}); } TEST(TransposeTest, Constant) { TestDimExpression(IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({5, 6}) .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(), Dims(1, 0).Transpose(), {0, 1}, IndexTransformBuilder<2, 2>() .input_origin({2, 1}) .input_shape({6, 5}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 0) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({2, 1}) .input_shape({6, 5}) .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(), {}); } TEST(TransposeTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({5, 6}) .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(), Dims(1).Transpose(), absl::StatusCode::kInvalidArgument, "Number of dimensions \\(1\\) must equal input_rank \\(2\\)\\."); } TEST(TransposeTest, Labeled) { TestDimExpression( IndexTransformBuilder<4, 2>() .input_origin({1, 2, 3, 4}) .input_shape({5, 6, 4, 8}) .input_labels({"a", "b", "c", "d"}) .output_single_input_dimension(0, 1, 2, 1) .output_index_array( 1, 2, 3, MakeArray<Index>({{{{1}, {2}, {3}, {4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), Dims(2, 0, 1, 3).Transpose(), {0, 1, 2, 3}, IndexTransformBuilder<4, 4>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .input_labels({"c", "a", "b", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .output_single_input_dimension(2, 0) .output_single_input_dimension(3, 3) .Finalize() .value(), IndexTransformBuilder<4, 2>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .input_labels({"c", "a", "b", "d"}) .output_single_input_dimension(0, 1, 2, 2) .output_index_array( 1, 2, 3, MakeArray<Index>( {{{{1}}}, {{{2}}}, {{{3}}}, {{{4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), {{{2, 4, 3, 5}, {3, 2, 4, 5}}}); } }
552
cpp
google/tensorstore
transpose
tensorstore/driver/zarr3/codec/transpose.cc
tensorstore/driver/zarr3/codec/transpose_test.cc
#ifndef TENSORSTORE_DRIVER_ZARR3_CODEC_TRANSPOSE_H_ #define TENSORSTORE_DRIVER_ZARR3_CODEC_TRANSPOSE_H_ #include <utility> #include <variant> #include <vector> #include "absl/status/status.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/index.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_zarr3 { class TransposeCodecSpec : public ZarrArrayToArrayCodecSpec { public: using Order = std::variant<std::vector<DimensionIndex>, ContiguousLayoutOrder>; struct Options { Order order; }; TransposeCodecSpec() = default; explicit TransposeCodecSpec(Options&& options) : options(std::move(options)) {} absl::Status MergeFrom(const ZarrCodecSpec& other, bool strict) override; ZarrCodecSpec::Ptr Clone() const override; absl::Status PropagateDataTypeAndShape( const ArrayDataTypeAndShapeInfo& decoded, ArrayDataTypeAndShapeInfo& encoded) const override; absl::Status GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& encoded_info, const ArrayCodecChunkLayoutInfo& encoded, const ArrayDataTypeAndShapeInfo& decoded_info, ArrayCodecChunkLayoutInfo& decoded) const override; Result<ZarrArrayToArrayCodec::Ptr> Resolve( ArrayCodecResolveParameters&& decoded, ArrayCodecResolveParameters& encoded, ZarrArrayToArrayCodecSpec::Ptr* resolved_spec) const override; Options options; }; } } #endif #include "tensorstore/driver/zarr3/codec/transpose.h" #include <array> #include <cassert> #include <optional> #include <string_view> #include <utility> #include <variant> #include <vector> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/driver/chunk.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/driver/zarr3/codec/registry.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_permutation.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/dimension_indexed.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_variant.h" #include "tensorstore/internal/storage_statistics.h" #include "tensorstore/rank.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_zarr3 { namespace { namespace jb = ::tensorstore::internal_json_binding; absl::Status InvalidPermutationError(span<const DimensionIndex> order, DimensionIndex rank) { return absl::InvalidArgumentError(tensorstore::StrCat( order, " is not a valid dimension permutation for a rank ", rank, " array")); } constexpr auto OrderJsonBinder() { return jb::Variant( jb::Validate( [](const auto& options, auto* obj) { if (!IsValidPermutation(*obj)) { return absl::InvalidArgumentError( tensorstore::StrCat(span<const DimensionIndex>(*obj), " is not a valid permutation")); } return absl::OkStatus(); }, jb::DimensionIndexedVector( nullptr, jb::Integer<DimensionIndex>(0, kMaxRank - 1))), jb::Enum<ContiguousLayoutOrder, std::string_view>({ {c_order, "C"}, {fortran_order, "F"}, })); } bool TryMergeOrder(TransposeCodecSpec::Order& a, const TransposeCodecSpec::Order& b) { struct Visitor { TransposeCodecSpec::Order& merged; bool operator()(const std::vector<DimensionIndex>& a, ContiguousLayoutOrder b) const { return PermutationMatchesOrder(a, b); } bool operator()(ContiguousLayoutOrder a, const std::vector<DimensionIndex>& b) const { if (PermutationMatchesOrder(b, a)) { merged = b; return true; } return false; } bool operator()(ContiguousLayoutOrder a, ContiguousLayoutOrder b) { return a == b; } bool operator()(const std::vector<DimensionIndex>& a, const std::vector<DimensionIndex>& b) { return a == b; } }; return std::visit(Visitor{a}, a, b); } } absl::Status TransposeCodecSpec::MergeFrom(const ZarrCodecSpec& other, bool strict) { using Self = TransposeCodecSpec; const auto& other_options = static_cast<const Self&>(other).options; return MergeConstraint<&Options::order>("order", options, other_options, OrderJsonBinder(), &TryMergeOrder); } ZarrCodecSpec::Ptr TransposeCodecSpec::Clone() const { return internal::MakeIntrusivePtr<TransposeCodecSpec>(*this); } namespace { class TransposeCodec : public ZarrArrayToArrayCodec { public: explicit TransposeCodec(std::vector<DimensionIndex> inverse_order) : inverse_order_(std::move(inverse_order)) {} class State : public ZarrArrayToArrayCodec::PreparedState { public: span<const Index> encoded_shape() const final { return encoded_shape_; } Result<SharedArray<const void>> EncodeArray( SharedArrayView<const void> decoded) const final { span<const DimensionIndex> inverse_order = codec_->inverse_order_; assert(decoded.rank() == inverse_order.size()); SharedArray<const void> encoded; encoded.layout().set_rank(inverse_order.size()); encoded.element_pointer() = std::move(decoded.element_pointer()); for (DimensionIndex decoded_dim = 0; decoded_dim < encoded.rank(); ++decoded_dim) { const DimensionIndex encoded_dim = inverse_order[decoded_dim]; encoded.shape()[encoded_dim] = decoded.shape()[decoded_dim]; encoded.byte_strides()[encoded_dim] = decoded.byte_strides()[decoded_dim]; } return encoded; } Result<SharedArray<const void>> DecodeArray( SharedArrayView<const void> encoded, span<const Index> decoded_shape) const final { span<const DimensionIndex> inverse_order = codec_->inverse_order_; assert(encoded.rank() == inverse_order.size()); SharedArray<const void> decoded; decoded.layout().set_rank(inverse_order.size()); decoded.element_pointer() = std::move(encoded.element_pointer()); for (DimensionIndex decoded_dim = 0; decoded_dim < encoded.rank(); ++decoded_dim) { const DimensionIndex encoded_dim = inverse_order[decoded_dim]; decoded.shape()[decoded_dim] = encoded.shape()[encoded_dim]; decoded.byte_strides()[decoded_dim] = encoded.byte_strides()[encoded_dim]; } assert(internal::RangesEqual(decoded_shape, decoded.shape())); return decoded; } void Read(const NextReader& next, span<const Index> decoded_shape, IndexTransform<> transform, AnyFlowReceiver<absl::Status, internal::ReadChunk, IndexTransform<>>&& receiver) const final { next(std::move(transform).TransposeOutput(codec_->inverse_order_), std::move(receiver)); } void Write(const NextWriter& next, span<const Index> decoded_shape, IndexTransform<> transform, AnyFlowReceiver<absl::Status, internal::WriteChunk, IndexTransform<>>&& receiver) const final { next(std::move(transform).TransposeOutput(codec_->inverse_order_), std::move(receiver)); } void GetStorageStatistics( const NextGetStorageStatistics& next, span<const Index> decoded_shape, IndexTransform<> transform, internal::IntrusivePtr< internal::GetStorageStatisticsAsyncOperationState> state) const final { next(std::move(transform).TransposeOutput(codec_->inverse_order_), std::move(state)); } const TransposeCodec* codec_; std::vector<Index> encoded_shape_; }; Result<PreparedState::Ptr> Prepare( span<const Index> decoded_shape) const final { if (decoded_shape.size() != inverse_order_.size()) { std::vector<DimensionIndex> order(inverse_order_.size()); InvertPermutation(order.size(), inverse_order_.data(), order.data()); return InvalidPermutationError(order, decoded_shape.size()); } auto state = internal::MakeIntrusivePtr<State>(); state->codec_ = this; state->encoded_shape_.resize(decoded_shape.size()); for (DimensionIndex decoded_dim = 0; decoded_dim < decoded_shape.size(); ++decoded_dim) { const DimensionIndex encoded_dim = inverse_order_[decoded_dim]; state->encoded_shape_[encoded_dim] = decoded_shape[decoded_dim]; } return state; } private: std::vector<DimensionIndex> inverse_order_; }; Result<span<const DimensionIndex>> ResolveOrder( const TransposeCodecSpec::Order& order, DimensionIndex rank, span<DimensionIndex, kMaxRank> temp_permutation) { if (auto* permutation = std::get_if<std::vector<DimensionIndex>>(&order)) { if (!RankConstraint::Implies(permutation->size(), rank)) { return InvalidPermutationError(*permutation, rank); } return {std::in_place, *permutation}; } auto perm = temp_permutation.first(rank); SetPermutation(std::get<ContiguousLayoutOrder>(order), perm); return perm; } } absl::Status TransposeCodecSpec::PropagateDataTypeAndShape( const ArrayDataTypeAndShapeInfo& decoded, ArrayDataTypeAndShapeInfo& encoded) const { DimensionIndex temp_perm[kMaxRank]; TENSORSTORE_ASSIGN_OR_RETURN( auto order, ResolveOrder(options.order, decoded.rank, temp_perm)); encoded.dtype = decoded.dtype; encoded.rank = order.size(); if (decoded.shape) { auto& encoded_shape = encoded.shape.emplace(); const auto& decoded_shape = *decoded.shape; for (DimensionIndex encoded_dim = 0; encoded_dim < order.size(); ++encoded_dim) { const DimensionIndex decoded_dim = order[encoded_dim]; encoded_shape[encoded_dim] = decoded_shape[decoded_dim]; } } return absl::OkStatus(); } namespace { void PropagateInnerOrderToDecoded( span<const DimensionIndex> order, const std::optional<std::array<DimensionIndex, kMaxRank>>& encoded_inner_order, std::optional<std::array<DimensionIndex, kMaxRank>>& decoded_inner_order) { if (!encoded_inner_order) return; auto& encoded = *encoded_inner_order; auto& decoded = decoded_inner_order.emplace(); for (DimensionIndex i = 0; i < order.size(); ++i) { decoded[i] = order[encoded[i]]; } } void PropagateShapeToDecoded( span<const DimensionIndex> order, const std::optional<std::array<Index, kMaxRank>>& encoded_shape, std::optional<std::array<Index, kMaxRank>>& decoded_shape) { if (!encoded_shape) return; auto& encoded = *encoded_shape; auto& decoded = decoded_shape.emplace(); for (DimensionIndex encoded_dim = 0; encoded_dim < order.size(); ++encoded_dim) { const DimensionIndex decoded_dim = order[encoded_dim]; decoded[decoded_dim] = encoded[encoded_dim]; } } } absl::Status TransposeCodecSpec::GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& encoded_info, const ArrayCodecChunkLayoutInfo& encoded, const ArrayDataTypeAndShapeInfo& decoded_info, ArrayCodecChunkLayoutInfo& decoded) const { DimensionIndex temp_perm[kMaxRank]; TENSORSTORE_ASSIGN_OR_RETURN( auto order, ResolveOrder(options.order, decoded_info.rank, temp_perm)); assert(encoded_info.rank == order.size()); assert(decoded_info.rank == order.size()); PropagateInnerOrderToDecoded(order, encoded.inner_order, decoded.inner_order); PropagateShapeToDecoded(order, encoded.read_chunk_shape, decoded.read_chunk_shape); PropagateShapeToDecoded(order, encoded.codec_chunk_shape, decoded.codec_chunk_shape); return absl::OkStatus(); } Result<ZarrArrayToArrayCodec::Ptr> TransposeCodecSpec::Resolve( ArrayCodecResolveParameters&& decoded, ArrayCodecResolveParameters& encoded, ZarrArrayToArrayCodecSpec::Ptr* resolved_spec) const { DimensionIndex temp_perm[kMaxRank]; TENSORSTORE_ASSIGN_OR_RETURN( auto order, ResolveOrder(options.order, decoded.rank, temp_perm)); encoded.dtype = decoded.dtype; encoded.rank = decoded.rank; assert(decoded.fill_value.rank() == 0); encoded.fill_value = std::move(decoded.fill_value); std::vector<DimensionIndex> inverse_order(order.size()); InvertPermutation(order.size(), order.data(), inverse_order.data()); PropagateInnerOrderToDecoded(inverse_order, decoded.inner_order, encoded.inner_order); PropagateShapeToDecoded(inverse_order, decoded.read_chunk_shape, encoded.read_chunk_shape); PropagateShapeToDecoded(inverse_order, decoded.codec_chunk_shape, encoded.codec_chunk_shape); if (resolved_spec) { resolved_spec->reset(new TransposeCodecSpec({TransposeCodecSpec::Order( std::vector<DimensionIndex>(order.begin(), order.end()))})); } return internal::MakeIntrusivePtr<TransposeCodec>(std::move(inverse_order)); } TENSORSTORE_GLOBAL_INITIALIZER { using Self = TransposeCodecSpec; using Options = Self::Options; RegisterCodec<Self>( "transpose", jb::Projection<&Self::options>(jb::Sequence(jb::Member( "order", jb::Projection<&Options::order>(OrderJsonBinder()))))); } } }
#include <cstdint> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/driver/zarr3/codec/codec_test_util.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::dtype_v; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_zarr3::ArrayCodecResolveParameters; using ::tensorstore::internal_zarr3::CodecRoundTripTestParams; using ::tensorstore::internal_zarr3::CodecSpecRoundTripTestParams; using ::tensorstore::internal_zarr3::GetDefaultBytesCodecJson; using ::tensorstore::internal_zarr3::TestCodecMerge; using ::tensorstore::internal_zarr3::TestCodecRoundTrip; using ::tensorstore::internal_zarr3::TestCodecSpecResolve; using ::tensorstore::internal_zarr3::TestCodecSpecRoundTrip; using ::tensorstore::internal_zarr3::ZarrCodecChainSpec; TEST(TransposeTest, Basic) { CodecSpecRoundTripTestParams p; p.orig_spec = { {{"name", "transpose"}, {"configuration", {{"order", {2, 1, 0}}}}}, }; p.resolve_params.rank = 3; p.expected_spec = { {{"name", "transpose"}, {"configuration", {{"order", {2, 1, 0}}}}}, GetDefaultBytesCodecJson(), }; TestCodecSpecRoundTrip(p); } TEST(TransposeTest, C) { CodecSpecRoundTripTestParams p; p.orig_spec = { {{"name", "transpose"}, {"configuration", {{"order", "C"}}}}, }; p.resolve_params.rank = 3; p.expected_spec = { {{"name", "transpose"}, {"configuration", {{"order", {0, 1, 2}}}}}, GetDefaultBytesCodecJson(), }; TestCodecSpecRoundTrip(p); } TEST(TransposeTest, F) { CodecSpecRoundTripTestParams p; p.orig_spec = { {{"name", "transpose"}, {"configuration", {{"order", "F"}}}}, }; p.resolve_params.rank = 3; p.expected_spec = { {{"name", "transpose"}, {"configuration", {{"order", {2, 1, 0}}}}}, GetDefaultBytesCodecJson(), }; TestCodecSpecRoundTrip(p); } TEST(TransposeTest, InvalidPermutation) { EXPECT_THAT( ZarrCodecChainSpec::FromJson( {{{"name", "transpose"}, {"configuration", {{"order", {2, 1, 2}}}}}}), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*is not a valid permutation.*")); } TEST(TransposeTest, RoundTrip) { CodecRoundTripTestParams p; p.spec = {{{"name", "transpose"}, {"configuration", {{"order", {2, 1, 0}}}}}}; TestCodecRoundTrip(p); } TEST(TransposeTest, RankMismatch) { ArrayCodecResolveParameters p; p.dtype = dtype_v<uint16_t>; p.rank = 2; EXPECT_THAT( TestCodecSpecResolve( {{{"name", "transpose"}, {"configuration", {{"order", {2, 1, 0}}}}}}, p), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error resolving codec spec .* is not a valid dimension " "permutation for a rank 2 array")); } TEST(TransposeTest, AttributeMismatch) { ArrayCodecResolveParameters p; p.dtype = dtype_v<uint16_t>; p.rank = 2; EXPECT_THAT( TestCodecSpecResolve( {{{"name", "transpose"}, {"configuration", {{"order", {0, 1}}, {"extra", 1}}}}}, p), MatchesStatus(absl::StatusCode::kInvalidArgument, ".* \"extra\"")); } TEST(TransposeTest, Merge) { ::nlohmann::json perm_012 = { {{"name", "transpose"}, {"configuration", {{"order", {0, 1, 2}}}}}}; ::nlohmann::json perm_210 = { {{"name", "transpose"}, {"configuration", {{"order", {2, 1, 0}}}}}}; ::nlohmann::json perm_C = { {{"name", "transpose"}, {"configuration", {{"order", "C"}}}}}; ::nlohmann::json perm_F = { {{"name", "transpose"}, {"configuration", {{"order", "F"}}}}}; EXPECT_THAT(TestCodecMerge(perm_012, perm_C, false), ::testing::Optional(MatchesJson(perm_012))); EXPECT_THAT(TestCodecMerge(perm_C, perm_012, false), ::testing::Optional(MatchesJson(perm_012))); EXPECT_THAT(TestCodecMerge(perm_210, perm_F, false), ::testing::Optional(MatchesJson(perm_210))); EXPECT_THAT(TestCodecMerge(perm_F, perm_210, false), ::testing::Optional(MatchesJson(perm_210))); EXPECT_THAT(TestCodecMerge(perm_C, perm_C, false), ::testing::Optional(MatchesJson(perm_C))); EXPECT_THAT(TestCodecMerge(perm_F, perm_F, false), ::testing::Optional(MatchesJson(perm_F))); EXPECT_THAT(TestCodecMerge(perm_012, perm_210, false), MatchesStatus(absl::StatusCode::kFailedPrecondition)); EXPECT_THAT(TestCodecMerge(perm_C, perm_F, false), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } }
553
cpp
google/tensorstore
index_array_slice_op
tensorstore/index_space/internal/index_array_slice_op.cc
tensorstore/index_space/index_array_slice_op_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_INDEX_ARRAY_SLICE_OP_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_INDEX_ARRAY_SLICE_OP_H_ #include "tensorstore/array.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/meta.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyIndexArraySlice( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const SharedArrayView<const Index>> index_arrays, bool outer_indexing, bool domain_only = false); template <bool OuterIndexing, DimensionIndex IndexArrayInputRank, typename IndexArrays> struct IndexArraySliceOp { static constexpr bool selected_dimensions_are_new = false; using IndexArrayType = typename IndexArrays::value_type; constexpr static DimensionIndex static_selection_rank = internal::ConstSpanType<IndexArrays>::extent; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( (input_rank == dynamic_rank || input_rank >= static_selection_rank) && "Number of dimensions must not exceed input rank."); return RankConstraint::Add( RankConstraint::Subtract(input_rank, num_input_dims), IndexArrayInputRank); } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( RankConstraint::EqualOrUnspecified(num_input_dims, static_selection_rank) && "Number of selected dimensions must match number of indices."); return IndexArrayInputRank; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyIndexArraySlice(std::move(transform), dimensions, index_arrays, OuterIndexing, domain_only); } IndexArrays index_arrays; }; Result<IndexTransform<>> ApplyIndexVectorArraySlice( IndexTransform<> transform, DimensionIndexBuffer* dimensions, DimensionIndex vector_dimension, const SharedArrayView<const Index>& index_vector_array, bool domain_only = false); template <DimensionIndex IndexVectorArrayRank> struct IndexVectorArraySliceOp { static_assert(IndexVectorArrayRank >= 1, "Index vector array must have rank >= 1."); static constexpr bool selected_dimensions_are_new = false; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { return RankConstraint::Add( RankConstraint::Subtract(input_rank, num_input_dims), RankConstraint::Subtract(IndexVectorArrayRank, 1)); } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { return RankConstraint::Subtract(IndexVectorArrayRank, 1); } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyIndexVectorArraySlice(std::move(transform), dimensions, vector_dimension, index_vector_array, domain_only); } SharedArrayView<const Index, IndexVectorArrayRank> index_vector_array; DimensionIndex vector_dimension; }; } } #endif #include "tensorstore/index_space/internal/index_array_slice_op.h" #include <algorithm> #include <numeric> #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { bool BroadcastSizes(Index source, Index* result) { if (source == *result) return true; if (*result == 1) { *result = source; return true; } else if (source == 1) { return true; } return false; } bool BroadcastShapes(span<const Index> source_shape, span<Index> result_shape) { if (source_shape.size() != result_shape.size()) return false; for (DimensionIndex i = 0; i < source_shape.size(); ++i) { if (!BroadcastSizes(source_shape[i], &result_shape[i])) return false; } return true; } template <typename GetNewDimensionShapeFn, typename GetIndexArrayBasePointerFn, typename GetIndexArrayByteStrideFn> Result<TransformRep::Ptr<>> MakeTransformFromJointIndexArrays( DimensionIndex num_new_dims, TransformRep* orig_transform, DimensionIndexBuffer* dimensions, GetNewDimensionShapeFn get_new_dimension_bounds, GetIndexArrayBasePointerFn get_index_array_base_pointer, GetIndexArrayByteStrideFn get_index_array_byte_stride) { const DimensionIndex num_indexed_dims = dimensions->size(); const DimensionIndex output_rank = orig_transform->input_rank; const DimensionIndex input_rank = output_rank - dimensions->size() + num_new_dims; TENSORSTORE_RETURN_IF_ERROR(ValidateRank(input_rank)); auto result = TransformRep::Allocate(input_rank, output_rank); result->input_rank = input_rank; result->output_rank = output_rank; result->implicit_lower_bounds = false; result->implicit_upper_bounds = false; span<OutputIndexMap> maps = result->output_index_maps().first(output_rank); const DimensionIndex num_preserved_dims = output_rank - num_indexed_dims; for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { maps[output_dim].SetSingleInputDimension(0); } const auto input_domain = result->input_domain(input_rank); for (DimensionIndex new_dim = 0; new_dim < num_new_dims; ++new_dim) { input_domain[new_dim] = get_new_dimension_bounds(new_dim); } for (DimensionIndex indexed_dim = 0; indexed_dim < num_indexed_dims; ++indexed_dim) { const DimensionIndex output_dim = (*dimensions)[indexed_dim]; auto& map = maps[output_dim]; map.offset() = 0; map.stride() = 1; auto& index_array_data = map.SetArrayIndexing(input_rank); std::fill_n(index_array_data.byte_strides + num_new_dims, num_preserved_dims, 0); for (DimensionIndex new_dim = 0; new_dim < num_new_dims; ++new_dim) { index_array_data.byte_strides[new_dim] = get_index_array_byte_stride(indexed_dim, new_dim); } index_array_data.element_pointer = get_index_array_base_pointer(indexed_dim); } for (DimensionIndex output_dim = 0, input_dim = num_new_dims; output_dim < output_rank; ++output_dim) { auto& map = maps[output_dim]; if (map.method() != OutputIndexMethod::single_input_dimension) continue; map.SetSingleInputDimension(input_dim); map.offset() = 0; map.stride() = 1; result->input_dimension(input_dim) = orig_transform->input_dimension(output_dim); ++input_dim; } if (IsDomainExplicitlyEmpty(result.get())) { ReplaceAllIndexArrayMapsWithConstantMaps(result.get()); } dimensions->resize(num_new_dims); std::iota(dimensions->begin(), dimensions->end(), static_cast<DimensionIndex>(0)); internal_index_space::DebugCheckInvariants(result.get()); return result; } Result<TransformRep::Ptr<>> MakeTransformFromIndexArrays( TransformRep* orig_transform, DimensionIndexBuffer* dimensions, span<const SharedArrayView<const Index>> index_arrays) { const DimensionIndex num_indexed_dims = dimensions->size(); if (index_arrays.size() != num_indexed_dims) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of selected dimensions (", num_indexed_dims, ") does not equal number of index arrays (", index_arrays.size(), ")")); } if (index_arrays.empty()) { return absl::InvalidArgumentError( tensorstore::StrCat("At least one index array must be specified")); } Index shape[kMaxRank]; const DimensionIndex num_new_dims = index_arrays[0].rank(); std::fill_n(&shape[0], num_new_dims, Index(1)); bool error = false; for (DimensionIndex i = 0; i < index_arrays.size(); ++i) { if (!BroadcastShapes(index_arrays[i].shape(), span<Index>(&shape[0], num_new_dims))) { error = true; } } if (error) { std::string shape_msg; for (DimensionIndex i = 0; i < index_arrays.size(); ++i) { tensorstore::StrAppend(&shape_msg, (shape_msg.empty() ? "" : ", "), index_arrays[i].shape()); } return absl::InvalidArgumentError( tensorstore::StrCat("Index arrays with shapes ", shape_msg, " cannot be broadcast to a common shape")); } const auto get_new_dimension_bounds = [&](DimensionIndex new_dim) { return IndexInterval::UncheckedSized(0, shape[new_dim]); }; const auto get_index_array_base_pointer = [&](DimensionIndex indexed_dim) { return index_arrays[indexed_dim].pointer(); }; const auto get_index_array_byte_stride = [&](DimensionIndex indexed_dim, DimensionIndex new_dim) { return index_arrays[indexed_dim].shape()[new_dim] == 1 ? 0 : index_arrays[indexed_dim].byte_strides()[new_dim]; }; return MakeTransformFromJointIndexArrays( num_new_dims, orig_transform, dimensions, get_new_dimension_bounds, get_index_array_base_pointer, get_index_array_byte_stride); } Result<TransformRep::Ptr<>> MakeTransformFromOuterIndexArrays( TransformRep* orig_transform, DimensionIndexBuffer* dimensions, span<const SharedArrayView<const Index>> index_arrays) { const DimensionIndex num_indexed_dims = dimensions->size(); if (index_arrays.size() != num_indexed_dims) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of selected dimensions (", num_indexed_dims, ") does not equal number of index arrays (", index_arrays.size(), ")")); } const DimensionIndex output_rank = orig_transform->input_rank; DimensionIndex input_rank = output_rank - num_indexed_dims; for (const auto& index_array : index_arrays) { input_rank += index_array.rank(); } TENSORSTORE_RETURN_IF_ERROR(ValidateRank(input_rank)); auto result = TransformRep::Allocate(input_rank, output_rank); result->input_rank = input_rank; result->output_rank = output_rank; result->implicit_lower_bounds = false; result->implicit_upper_bounds = false; DimensionIndex index_array_start_dim[kMaxRank]; DimensionIndex index_array_order[kMaxRank]; std::iota(&index_array_order[0], &index_array_order[num_indexed_dims], static_cast<DimensionIndex>(0)); std::sort(&index_array_order[0], &index_array_order[num_indexed_dims], [&](DimensionIndex a, DimensionIndex b) { return (*dimensions)[a] < (*dimensions)[b]; }); span<Index> input_origin = result->input_origin().first(input_rank); span<Index> input_shape = result->input_shape().first(input_rank); span<OutputIndexMap> maps = result->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0, reordered_indexed_dim = 0, input_dim = 0; output_dim < output_rank; ++output_dim) { auto& map = maps[output_dim]; map.stride() = 1; map.offset() = 0; if (reordered_indexed_dim < num_indexed_dims) { const DimensionIndex indexed_dim = index_array_order[reordered_indexed_dim]; if ((*dimensions)[indexed_dim] == output_dim) { index_array_start_dim[indexed_dim] = input_dim; const auto& array = index_arrays[indexed_dim]; MutableBoxView<>(input_origin.subspan(input_dim, array.rank()), input_shape.subspan(input_dim, array.rank())) .DeepAssign(array.domain()); const DimensionIndex end_input_dim = input_dim + array.rank(); if (array.num_elements() == 1) { map.SetConstant(); map.offset() = *array.data(); map.stride() = 0; } else { auto& index_array_data = map.SetArrayIndexing(input_rank); index_array_data.element_pointer = array.element_pointer(); std::fill_n(index_array_data.byte_strides, input_dim, 0); std::copy(array.byte_strides().begin(), array.byte_strides().end(), index_array_data.byte_strides + input_dim); std::fill(index_array_data.byte_strides + end_input_dim, index_array_data.byte_strides + input_rank, 0); } input_dim = end_input_dim; ++reordered_indexed_dim; continue; } } result->input_dimension(input_dim) = orig_transform->input_dimension(output_dim); map.SetSingleInputDimension(input_dim); ++input_dim; } if (IsDomainExplicitlyEmpty(result.get())) { ReplaceAllIndexArrayMapsWithConstantMaps(result.get()); } dimensions->clear(); dimensions->reserve(input_rank - output_rank); for (DimensionIndex indexed_dim = 0; indexed_dim < num_indexed_dims; ++indexed_dim) { const DimensionIndex start_input_dim = index_array_start_dim[indexed_dim]; for (DimensionIndex input_dim = start_input_dim, end_input_dim = start_input_dim + index_arrays[indexed_dim].rank(); input_dim != end_input_dim; ++input_dim) { dimensions->push_back(input_dim); } } internal_index_space::DebugCheckInvariants(result.get()); return result; } Result<TransformRep::Ptr<>> MakeTransformFromIndexVectorArray( TransformRep* orig_transform, DimensionIndexBuffer* dimensions, DimensionIndex vector_dimension, const SharedArrayView<const Index>& index_vector_array) { TENSORSTORE_ASSIGN_OR_RETURN( vector_dimension, NormalizeDimensionIndex(vector_dimension, index_vector_array.rank())); const DimensionIndex num_indexed_dims = dimensions->size(); if (index_vector_array.shape()[vector_dimension] != num_indexed_dims) { return absl::InvalidArgumentError( tensorstore::StrCat("Number of selected dimensions (", num_indexed_dims, ") does not equal index vector length (", index_vector_array.shape()[vector_dimension], ")")); } const DimensionIndex num_new_dims = index_vector_array.rank() - 1; const auto get_index_vector_array_dim = [&](DimensionIndex new_dim) { return new_dim >= vector_dimension ? new_dim + 1 : new_dim; }; const auto get_new_dimension_bounds = [&](DimensionIndex new_dim) { return index_vector_array.domain()[get_index_vector_array_dim(new_dim)]; }; const auto get_index_array_base_pointer = [&](DimensionIndex indexed_dim) { return std::shared_ptr<const Index>( index_vector_array.pointer(), index_vector_array.byte_strided_pointer() + index_vector_array.byte_strides()[vector_dimension] * indexed_dim); }; const auto get_index_array_byte_stride = [&](DimensionIndex indexed_dim, DimensionIndex new_dim) { const DimensionIndex index_vector_array_dim = get_index_vector_array_dim(new_dim); return index_vector_array.shape()[index_vector_array_dim] == 1 ? 0 : index_vector_array.byte_strides()[index_vector_array_dim]; }; return MakeTransformFromJointIndexArrays( num_new_dims, orig_transform, dimensions, get_new_dimension_bounds, get_index_array_base_pointer, get_index_array_byte_stride); } } Result<IndexTransform<>> ApplyIndexArraySlice( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const SharedArrayView<const Index>> index_arrays, bool outer_indexing, bool domain_only) { TENSORSTORE_ASSIGN_OR_RETURN( auto other_transform, outer_indexing ? MakeTransformFromOuterIndexArrays(TransformAccess::rep(transform), dimensions, index_arrays) : MakeTransformFromIndexArrays(TransformAccess::rep(transform), dimensions, index_arrays)); TENSORSTORE_ASSIGN_OR_RETURN( auto new_rep, ComposeTransforms(TransformAccess::rep(transform), false, other_transform.get(), true, domain_only)); return TransformAccess::Make<IndexTransform<>>(std::move(new_rep)); } Result<IndexTransform<>> ApplyIndexVectorArraySlice( IndexTransform<> transform, DimensionIndexBuffer* dimensions, DimensionIndex vector_dimension, const SharedArrayView<const Index>& index_vector_array, bool domain_only) { TENSORSTORE_ASSIGN_OR_RETURN(auto other_transform, MakeTransformFromIndexVectorArray( TransformAccess::rep(transform), dimensions, vector_dimension, index_vector_array)); TENSORSTORE_ASSIGN_OR_RETURN( auto new_rep, ComposeTransforms(TransformAccess::rep(transform), false, other_transform.get(), true, domain_only)); return TransformAccess::Make<IndexTransform<>>(std::move(new_rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::AllDims; using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::MakeArray; using ::tensorstore::SharedArrayView; using ::tensorstore::span; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(IndexArraySliceTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 0, 2}) .input_shape({2, 3, 4}) .input_labels({"", "", "y"}) .output_index_array( 0, 0, 1, MakeArray<Index>({{{1}, {2}, {3}}, {{4}, {5}, {6}}}), IndexInterval::Sized(0, 7)) .output_single_input_dimension(1, 2) .output_index_array( 2, 0, 1, MakeArray<Index>({{{7}, {8}, {9}}, {{0}, {1}, {2}}}), IndexInterval::Sized(0, 10)) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{1, 3, 7}, {0, 0, 3}}, {{2, 3, 8}, {0, 1, 3}}, {{3, 3, 9}, {0, 2, 3}}, {{6, 3, 2}, {1, 2, 3}}, }; TestDimExpression( original_transform, Dims(0, 2).IndexArraySlice(MakeArray<Index>({{1, 2, 3}, {4, 5, 6}}), MakeArray<Index>({{7, 8, 9}, {0, 1, 2}})), {0, 1}, expected_new_transform, expected_new_transform, equivalent_indices, false); TestDimExpression( original_transform, Dims("x", "z").IndexArraySlice(MakeArray<Index>({{1, 2, 3}, {4, 5, 6}}), MakeArray<Index>({{7, 8, 9}, {0, 1, 2}})), {0, 1}, expected_new_transform, expected_new_transform, equivalent_indices, false); } TEST(IndexVectorArraySliceTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 0, 2}) .input_shape({2, 3, 4}) .input_labels({"", "", "y"}) .output_index_array( 0, 0, 1, MakeArray<Index>({{{1}, {2}, {3}}, {{4}, {5}, {6}}}), IndexInterval::Sized(0, 7)) .output_single_input_dimension(1, 2) .output_index_array( 2, 0, 1, MakeArray<Index>({{{7}, {8}, {9}}, {{0}, {1}, {2}}}), IndexInterval::Sized(0, 10)) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 8}, {0, 1, 3}}, {{6, 3, 2}, {1, 2, 3}}, }; TestDimExpression(original_transform, Dims(0, 2).IndexVectorArraySlice( MakeArray<Index>({{{1, 7}, {2, 8}, {3, 9}}, {{4, 0}, {5, 1}, {6, 2}}}), -1), {0, 1}, expected_new_transform, expected_new_transform, equivalent_indices, false); TestDimExpression(original_transform, Dims("x", "z").IndexVectorArraySlice( MakeArray<Index>({{{1, 7}, {2, 8}, {3, 9}}, {{4, 0}, {5, 1}, {6, 2}}}), -1), {0, 1}, expected_new_transform, expected_new_transform, equivalent_indices, false); } TEST(IndexArrayOuterIndexArraySliceTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({4, 2, 0}) .input_shape({5, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<4, 3>() .input_origin({0, 2, 0, 0}) .input_shape({2, 4, 2, 2}) .input_labels({"", "y", "", ""}) .output_index_array(0, 0, 1, MakeArray<Index>({{{{6}}}, {{{7}}}}), IndexInterval::Sized(4, 5)) .output_single_input_dimension(1, 1) .output_index_array(2, 0, 1, MakeArray<Index>({{{{2, 3}, {4, 5}}}}), IndexInterval::Sized(0, 10)) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{6, 3, 3}, {0, 3, 0, 1}}, {{7, 3, 4}, {1, 3, 1, 0}}, }; TestDimExpression( original_transform, Dims(2, 0).OuterIndexArraySlice(MakeArray<Index>({{2, 3}, {4, 5}}), MakeArray<Index>({6, 7})), {2, 3, 0}, expected_new_transform, expected_new_transform, equivalent_indices, false); TestDimExpression( original_transform, Dims("z", "x").OuterIndexArraySlice(MakeArray<Index>({{2, 3}, {4, 5}}), MakeArray<Index>({6, 7})), {2, 3, 0}, expected_new_transform, expected_new_transform, equivalent_indices, false); } TEST(IndexArraySliceTest, OneDOutputOneDArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0).IndexArraySlice(MakeArray<Index>({1, 2})), {0}, IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .output_index_array(0, 0, 1, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .output_index_array(0, -2, -3, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), {{{1, 5}, {0, 5}}, {{2, 5}, {1, 5}}}, false); } TEST(IndexArraySliceTest, ZeroElementIndexArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0).IndexArraySlice( tensorstore::AllocateArray<Index>({5, 0, 3})), {0, 1, 2}, IndexTransformBuilder<4, 2>() .input_origin({0, 0, 0, -100}) .input_shape({5, 0, 3, 200}) .output_constant(0, 0) .output_single_input_dimension(1, 3) .Finalize() .value(), IndexTransformBuilder<4, 2>() .input_origin({0, 0, 0, -100}) .input_shape({5, 0, 3, 200}) .output_constant(0, -2) .output_single_input_dimension(1, 10, 11, 3) .Finalize() .value(), {}, false); } TEST(IndexArraySliceTest, OneElementIndexArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0).IndexArraySlice(MakeArray<Index>({{5}})), {0, 1}, IndexTransformBuilder<3, 2>() .input_origin({0, 0, -100}) .input_shape({1, 1, 200}) .output_constant(0, 5) .output_single_input_dimension(1, 2) .Finalize() .value(), IndexTransformBuilder<3, 2>() .input_origin({0, 0, -100}) .input_shape({1, 1, 200}) .output_constant(0, -17) .output_single_input_dimension(1, 10, 11, 2) .Finalize() .value(), {{{5, 6}, {0, 0, 6}}}, false); } TEST(IndexArraySliceTest, OneDOutputOneDArrayLabeled) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .input_labels({"x", "y"}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0) .IndexArraySlice(MakeArray<Index>({1, 2})) .Label("index"), {0}, IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .input_labels({"index", "y"}) .output_index_array(0, 0, 1, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .input_labels({"index", "y"}) .output_index_array(0, -2, -3, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), {{{1, 5}, {0, 5}}, {{2, 5}, {1, 5}}}, false); } TEST(IndexArraySliceTest, TwoDOutputOneDArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -2}) .input_shape({20, 15}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, -4, 2, 1) .Finalize() .value(), AllDims() .IndexArraySlice(MakeArray<Index>({1, 2}), MakeArray<Index>({3, 4})) .Label("index"), {0}, IndexTransformBuilder<1, 2>() .input_origin({0}) .input_shape({2}) .input_labels({"index"}) .output_index_array(0, 0, 1, MakeArray<Index>({1, 2}), IndexInterval::Sized(-10, 20)) .output_index_array(1, 0, 1, MakeArray<Index>({3, 4}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), IndexTransformBuilder<1, 2>() .input_origin({0}) .input_shape({2}) .input_labels({"index"}) .output_index_array(0, -2, -3, MakeArray<Index>({1, 2}), IndexInterval::Sized(-10, 20)) .output_index_array(1, -4, 2, MakeArray<Index>({3, 4}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), {{{1, 3}, {0}}, {{2, 4}, {1}}}, false); } TEST(IndexArraySliceTest, TwoDOutputOneDArrayBroadcast) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -2}) .input_shape({20, 15}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, -4, 2, 1) .Finalize() .value(), AllDims().IndexArraySlice(MakeArray<Index>({{1, 2}}), MakeArray<Index>({{3}, {4}})), {0, 1}, IndexTransformBuilder<2, 2>() .input_origin({0, 0}) .input_shape({2, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2}}), IndexInterval::Sized(-10, 20)) .output_index_array(1, 0, 1, MakeArray<Index>({{3}, {4}}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, 0}) .input_shape({2, 2}) .output_index_array(0, -2, -3, MakeArray<Index>({{1, 2}}), IndexInterval::Sized(-10, 20)) .output_index_array(1, -4, 2, MakeArray<Index>({{3}, {4}}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), {{{1, 3}, {0, 0}}, {{1, 4}, {1, 0}}, {{2, 4}, {1, 1}}}, false); } TEST(IndexArraySliceTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(span<const DimensionIndex>({0})) .IndexArraySlice(MakeArray<Index>({1, 2}), MakeArray<Index>({3, 4})), absl::StatusCode::kInvalidArgument, "Number of selected dimensions \\(1\\) does not equal number of index " "arrays \\(2\\)"); TestDimExpressionError( IndexTransformBuilder<1, 0>().Finalize().value(), Dims(span<const DimensionIndex>()) .IndexArraySlice(span<const SharedArrayView<const Index>>()), absl::StatusCode::kInvalidArgument, "At least one index array must be specified"); TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(0, 1).IndexArraySlice(MakeArray<Index>({1, 2}), MakeArray<Index>({3, 4, 5})), absl::StatusCode::kInvalidArgument, "Index arrays with shapes \\{2\\}, \\{3\\} cannot be broadcast " "to a common shape"); } TEST(IndexArraySliceTest, InvalidRank) { auto index_array = tensorstore::AllocateArray<Index>( std::vector<Index>(32, 1), tensorstore::c_order, tensorstore::value_init); TestDimExpressionError(tensorstore::IdentityTransform(2), Dims(0).IndexArraySlice(index_array), absl::StatusCode::kInvalidArgument, "Rank 33 is outside valid range \\[0, 32\\]"); } TEST(IndexVectorArraySliceTest, OneDOutputOneDArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0).IndexVectorArraySlice(MakeArray<Index>({{1, 2}}), 0), {0}, IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .output_index_array(0, 0, 1, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .output_index_array(0, -2, -3, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), {{{1, 5}, {0, 5}}, {{2, 5}, {1, 5}}}, false); } TEST(IndexVectorArraySliceTest, OneElementIndexArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0).IndexVectorArraySlice(MakeArray<Index>({{1}}), 0), {0}, IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({1, 200}) .output_constant(0, 1) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({1, 200}) .output_constant(0, -5) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), {{{1, 5}, {0, 5}}}, false); } TEST(IndexVectorArraySliceTest, OneDOutputOneDArrayLabeled) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -100}) .input_shape({20, 200}) .input_labels({"x", "y"}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), Dims(0) .IndexVectorArraySlice(MakeArray<Index>({{1, 2}}), 0) .Label("index"), {0}, IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .input_labels({"index", "y"}) .output_index_array(0, 0, 1, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({0, -100}) .input_shape({2, 200}) .input_labels({"index", "y"}) .output_index_array(0, -2, -3, MakeArray<Index>({{1}, {2}}), IndexInterval::Sized(-10, 20)) .output_single_input_dimension(1, 10, 11, 1) .Finalize() .value(), {{{1, 5}, {0, 5}}, {{2, 5}, {1, 5}}}, false); } TEST(IndexVectorArraySliceTest, TwoDOutputOneDArray) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({-10, -2}) .input_shape({20, 15}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, -4, 2, 1) .Finalize() .value(), AllDims() .IndexVectorArraySlice( MakeArray<Index>({{1, 3}, {2, 4}}), -1) .Label("index"), {0}, IndexTransformBuilder<1, 2>() .input_origin({0}) .input_shape({2}) .input_labels({"index"}) .output_index_array(0, 0, 1, MakeArray<Index>({1, 2}), IndexInterval::Sized(-10, 20)) .output_index_array(1, 0, 1, MakeArray<Index>({3, 4}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), IndexTransformBuilder<1, 2>() .input_origin({0}) .input_shape({2}) .input_labels({"index"}) .output_index_array(0, -2, -3, MakeArray<Index>({1, 2}), IndexInterval::Sized(-10, 20)) .output_index_array(1, -4, 2, MakeArray<Index>({3, 4}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), {{{1, 3}, {0}}, {{2, 4}, {1}}}, false); } TEST(IndexVectorArraySliceTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(0).IndexVectorArraySlice(MakeArray<Index>({1, 2}), 0), absl::StatusCode::kInvalidArgument, "Number of selected dimensions \\(1\\) does not equal index vector " "length \\(2\\)"); TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(0).IndexVectorArraySlice(MakeArray<Index>({1, 2}), 1), absl::StatusCode::kInvalidArgument, "Dimension index 1 is outside valid range \\[-1, 1\\)"); } TEST(IndexVectorArraySliceTest, InvalidRank) { TestDimExpressionError( tensorstore::IdentityTransform(4), Dims(0, 1).IndexVectorArraySlice( tensorstore::AllocateArray<Index>({1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2}, tensorstore::c_order, tensorstore::default_init), -1), absl::StatusCode::kInvalidArgument, "Rank 33 is outside valid range \\[0, 32\\]"); } TEST(OuterIndexArraySliceTest, Integration) { TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({-10, -100, -2}) .input_shape({21, 200, 15}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 6, 5, 1) .output_single_input_dimension(2, -4, 2, 2) .Finalize() .value(), Dims(0, 2).OuterIndexArraySlice( MakeArray<Index>({{3, 4, 5}, {8, 9, 10}}), MakeArray<Index>({1, 2})), {0, 1, 3}, IndexTransformBuilder<4, 3>() .input_origin({0, 0, -100, 0}) .input_shape({2, 3, 200, 2}) .output_index_array( 0, 0, 1, MakeArray<Index>({{{{3}}, {{4}}, {{5}}}, {{{8}}, {{9}}, {{10}}}}), IndexInterval::Sized(-10, 21)) .output_single_input_dimension(1, 2) .output_index_array(2, 0, 1, MakeArray<Index>({{{{1, 2}}}}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), IndexTransformBuilder<4, 3>() .input_origin({0, 0, -100, 0}) .input_shape({2, 3, 200, 2}) .output_index_array( 0, -2, -3, MakeArray<Index>({{{{3}}, {{4}}, {{5}}}, {{{8}}, {{9}}, {{10}}}}), IndexInterval::Sized(-10, 21)) .output_single_input_dimension(1, 6, 5, 2) .output_index_array(2, -4, 2, MakeArray<Index>({{{{1, 2}}}}), IndexInterval::Sized(-2, 15)) .Finalize() .value(), {{{3, 5, 1}, {0, 0, 5, 0}}, {{9, 5, 2}, {1, 1, 5, 1}}, {{8, 5, 2}, {1, 0, 5, 1}}, {{10, 5, 2}, {1, 2, 5, 1}}}, false); } TEST(OuterIndexArraySliceTest, OneElementIndexArray) { TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({-10, -100, -2}) .input_shape({21, 200, 15}) .output_single_input_dimension(0, -2, -3, 0) .output_single_input_dimension(1, 6, 5, 1) .output_single_input_dimension(2, -4, 2, 2) .Finalize() .value(), Dims(0, 2).OuterIndexArraySlice( MakeArray<Index>({{3, 4, 5}, {8, 9, 10}}), MakeArray<Index>({1})), {0, 1, 3}, IndexTransformBuilder<4, 3>() .input_origin({0, 0, -100, 0}) .input_shape({2, 3, 200, 1}) .output_index_array( 0, 0, 1, MakeArray<Index>({{{{3}}, {{4}}, {{5}}}, {{{8}}, {{9}}, {{10}}}}), IndexInterval::Sized(-10, 21)) .output_single_input_dimension(1, 2) .output_constant(2, 1) .Finalize() .value(), IndexTransformBuilder<4, 3>() .input_origin({0, 0, -100, 0}) .input_shape({2, 3, 200, 1}) .output_index_array( 0, -2, -3, MakeArray<Index>({{{{3}}, {{4}}, {{5}}}, {{{8}}, {{9}}, {{10}}}}), IndexInterval::Sized(-10, 21)) .output_single_input_dimension(1, 6, 5, 2) .output_constant(2, -2) .Finalize() .value(), {{{3, 5, 1}, {0, 0, 5, 0}}}, false); } TEST(OuterIndexArraySliceTest, ErrorHandling) { TestDimExpre
554
cpp
google/tensorstore
identity_transform
tensorstore/index_space/internal/identity_transform.cc
tensorstore/index_space/identity_transform_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_IDENTITY_TRANSFORM_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_IDENTITY_TRANSFORM_H_ #include "tensorstore/box.h" #include "tensorstore/index_space/internal/transform_rep.h" namespace tensorstore { namespace internal_index_space { void SetToIdentityTransform(span<OutputIndexMap> maps); TransformRep::Ptr<> MakeIdentityTransform(DimensionIndex rank, bool domain_only = false); TransformRep::Ptr<> MakeIdentityTransform(internal::StringLikeSpan labels, bool domain_only = false); TransformRep::Ptr<> MakeIdentityTransform(BoxView<> domain, bool domain_only = false); TransformRep::Ptr<> MakeIdentityTransformLike(TransformRep* data, bool domain_only = false); TransformRep::Ptr<> MakeIdentityTransform(span<const Index> shape, bool domain_only = false); } } #endif #include "tensorstore/index_space/internal/identity_transform.h" namespace tensorstore { namespace internal_index_space { void SetToIdentityTransform(span<OutputIndexMap> maps) { for (DimensionIndex i = 0; i < maps.size(); ++i) { auto& map = maps[i]; map.SetSingleInputDimension(i); map.offset() = 0; map.stride() = 1; } } namespace { void SetUnboundedDomain(TransformRep* data, DimensionIndex rank) { assert(data->input_rank_capacity >= rank); data->input_rank = rank; std::fill_n(data->input_origin().begin(), rank, -kInfIndex); std::fill_n(data->input_shape().begin(), rank, kInfSize); const auto mask = DimensionSet::UpTo(rank); data->implicit_lower_bounds = mask; data->implicit_upper_bounds = mask; } void SetIdentityOutputOrDomainOnly(TransformRep* data, DimensionIndex rank, bool domain_only) { if (domain_only) { data->output_rank = 0; } else { assert(data->output_rank_capacity >= rank); data->output_rank = rank; SetToIdentityTransform(data->output_index_maps().first(rank)); } } void SetToIdentityTransform(TransformRep* data, DimensionIndex rank, bool domain_only) { SetUnboundedDomain(data, rank); SetIdentityOutputOrDomainOnly(data, rank, domain_only); } } TransformRep::Ptr<> MakeIdentityTransform(DimensionIndex rank, bool domain_only) { auto data = TransformRep::Allocate(rank, domain_only ? 0 : rank); SetToIdentityTransform(data.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(data.get()); return data; } TransformRep::Ptr<> MakeIdentityTransform(internal::StringLikeSpan labels, bool domain_only) { const DimensionIndex rank = labels.size(); auto data = TransformRep::Allocate(rank, domain_only ? 0 : rank); SetToIdentityTransform(data.get(), rank, domain_only); span<std::string> input_labels = data->input_labels().first(rank); for (DimensionIndex i = 0; i < rank; ++i) { std::string_view label = labels[i]; input_labels[i].assign(label.data(), label.size()); } internal_index_space::DebugCheckInvariants(data.get()); return data; } TransformRep::Ptr<> MakeIdentityTransformLike(TransformRep* data, bool domain_only) { assert(data != nullptr); const DimensionIndex rank = data->input_rank; auto result = TransformRep::Allocate(rank, domain_only ? 0 : rank); CopyTransformRepDomain(data, result.get()); SetIdentityOutputOrDomainOnly(result.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(result.get()); return result; } TransformRep::Ptr<> MakeIdentityTransform(span<const Index> shape, bool domain_only) { const DimensionIndex rank = shape.size(); auto result = TransformRep::Allocate(rank, domain_only ? 0 : rank); result->input_rank = rank; std::fill_n(result->input_origin().begin(), rank, 0); std::copy_n(shape.begin(), rank, result->input_shape().begin()); result->implicit_lower_bounds = false; result->implicit_upper_bounds = false; SetIdentityOutputOrDomainOnly(result.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(result.get()); return result; } TransformRep::Ptr<> MakeIdentityTransform(BoxView<> domain, bool domain_only) { const DimensionIndex rank = domain.rank(); auto result = TransformRep::Allocate(rank, domain_only ? 0 : rank); result->input_rank = rank; result->input_domain(rank).DeepAssign(domain); result->implicit_lower_bounds = false; result->implicit_upper_bounds = false; SetIdentityOutputOrDomainOnly(result.get(), rank, domain_only); internal_index_space::DebugCheckInvariants(result.get()); return result; } } }
#include <type_traits> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::AllocateArray; using ::tensorstore::Box; using ::tensorstore::IdentityTransform; using ::tensorstore::Index; using ::tensorstore::IndexDomain; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::span; TEST(IdentityTransformTest, Static) { auto t = IdentityTransform<2>(); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(t.input_rank()); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, Dynamic) { auto t = IdentityTransform(2); static_assert(std::is_same_v<decltype(t), IndexTransform<>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(t.input_rank()); static_assert(std::is_same_v<decltype(d), IndexDomain<>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, LabeledCString) { auto t = IdentityTransform({"x", "y"}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({"x", "y"}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, LabeledStdString) { auto t = IdentityTransform({std::string("x"), std::string("y")}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({std::string("x"), std::string("y")}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IndexTransformTest, LabeledStringView) { auto t = IdentityTransform({std::string_view("x"), std::string_view("y")}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .implicit_lower_bounds({1, 1}) .implicit_upper_bounds({1, 1}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({std::string_view("x"), std::string_view("y")}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformLikeTest, IndexTransform) { EXPECT_EQ((IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value()), IdentityTransformLike(IndexTransformBuilder<2, 3>() .input_origin({1, 2}) .input_shape({3, 4}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 5, 7, 1) .output_single_input_dimension(1, 6, 8, 0) .output_single_input_dimension(2, 7, 9, 0) .Finalize() .value())); } TEST(IdentityTransformLikeTest, Array) { EXPECT_EQ((IndexTransformBuilder<2, 2>() .input_origin({0, 0}) .input_shape({3, 5}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value()), IdentityTransformLike(AllocateArray<float>({3, 5}))); } TEST(IdentityTransformTest, StaticBox) { auto box = Box({1, 2}, {3, 4}); auto t = IdentityTransform(box); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({3, 4}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); EXPECT_EQ(box, t.domain().box()); static_assert(tensorstore::HasBoxDomain<IndexTransform<2, 2>>); EXPECT_EQ(box, GetBoxDomainOf(t)); auto d = IndexDomain(box); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, DynamicBox) { auto t = IdentityTransform(Box<>({1, 2}, {3, 4})); static_assert(std::is_same_v<decltype(t), IndexTransform<>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({3, 4}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(Box<>({1, 2}, {3, 4})); static_assert(std::is_same_v<decltype(d), IndexDomain<>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, FromShape) { auto t = IdentityTransform(span<const Index, 2>({2, 3})); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({2, 3}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain(span<const Index, 2>({2, 3})); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } TEST(IdentityTransformTest, FromShapeBracedList) { auto t = IdentityTransform({2, 3}); static_assert(std::is_same_v<decltype(t), IndexTransform<2, 2>>); EXPECT_EQ(IndexTransformBuilder<>(2, 2) .input_origin({0, 0}) .input_shape({2, 3}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), t); auto d = IndexDomain({2, 3}); static_assert(std::is_same_v<decltype(d), IndexDomain<2>>); EXPECT_EQ(t.domain(), d); } }
555
cpp
google/tensorstore
inverse_transform
tensorstore/index_space/internal/inverse_transform.cc
tensorstore/index_space/inverse_transform_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_INVERSE_TRANSFORM_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_INVERSE_TRANSFORM_H_ #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_index_space { Result<TransformRep::Ptr<>> InverseTransform(TransformRep* transform); } } #endif #include "tensorstore/index_space/internal/inverse_transform.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { Result<TransformRep::Ptr<>> InverseTransform(TransformRep* transform) { if (!transform) { return TransformRep::Ptr<>(); } const DimensionIndex input_rank = transform->input_rank; const DimensionIndex output_rank = transform->output_rank; auto new_transform = TransformRep::Allocate(output_rank, input_rank); new_transform->input_rank = output_rank; new_transform->output_rank = input_rank; new_transform->implicit_lower_bounds = false; new_transform->implicit_upper_bounds = false; const auto maps = transform->output_index_maps().first(output_rank); const auto new_maps = new_transform->output_index_maps().first(input_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& map = maps[output_dim]; const auto new_d = new_transform->input_dimension(output_dim); switch (map.method()) { case OutputIndexMethod::array: return absl::InvalidArgumentError(tensorstore::StrCat( "Transform is not invertible due to index array " "map for output dimension ", output_dim)); case OutputIndexMethod::constant: { if (!IsFiniteIndex(map.offset())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Transform is not invertible due to offset ", map.offset(), " outside valid range ", IndexInterval::FiniteRange(), " for output dimension ", output_dim)); } new_d.domain() = IndexInterval::UncheckedSized(map.offset(), 1); new_d.implicit_lower_bound() = false; new_d.implicit_upper_bound() = false; break; } case OutputIndexMethod::single_input_dimension: { if (map.stride() != 1 && map.stride() != -1) { return absl::InvalidArgumentError(tensorstore::StrCat( "Transform is not invertible due to " "stride of ", map.stride(), " for output dimension ", output_dim)); } const DimensionIndex input_dim = map.input_dimension(); auto& new_map = new_maps[input_dim]; if (new_map.method() == OutputIndexMethod::single_input_dimension) { return absl::InvalidArgumentError(tensorstore::StrCat( "Transform is not invertible because input dimension ", input_dim, " maps to output dimensions ", new_map.input_dimension(), " and ", output_dim)); } new_map.SetSingleInputDimension(output_dim); auto new_domain_result = GetAffineTransformRange( transform->input_dimension(input_dim).optionally_implicit_domain(), map.offset(), map.stride()); if (!new_domain_result.ok()) { return MaybeAnnotateStatus( new_domain_result.status(), tensorstore::StrCat("Error inverting map from input dimension ", input_dim, " -> output dimension ", output_dim)); } if (map.offset() == std::numeric_limits<Index>::min()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow occurred while inverting map from " "input dimension ", input_dim, " -> output dimension ", output_dim)); } new_map.offset() = -map.offset() * map.stride(); new_map.stride() = map.stride(); new_d.domain() = new_domain_result->interval(); new_d.label() = transform->input_dimension(input_dim).label(); new_d.implicit_lower_bound() = new_domain_result->implicit_lower(); new_d.implicit_upper_bound() = new_domain_result->implicit_upper(); break; } } } for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { auto& new_map = new_maps[input_dim]; if (new_map.method() == OutputIndexMethod::single_input_dimension) { continue; } auto input_domain = transform->input_dimension(input_dim).optionally_implicit_domain(); if (input_domain.implicit_lower() || input_domain.implicit_upper() || input_domain.size() != 1) { return absl::InvalidArgumentError(tensorstore::StrCat( "Transform is not invertible due to non-singleton input dimension ", input_dim, " with domain ", input_domain, " that is not mapped by an output dimension")); } new_map.offset() = input_domain.inclusive_min(); new_map.stride() = 0; } internal_index_space::DebugCheckInvariants(new_transform.get()); return new_transform; } } }
#include <cstddef> #include <limits> #include <random> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::InverseTransform; using ::tensorstore::kMaxFiniteIndex; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; TEST(InverseTransformTest, Null) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv, InverseTransform(IndexTransform<>())); EXPECT_FALSE(inv.valid()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_static, InverseTransform(IndexTransform<3, 3>())); EXPECT_FALSE(inv_static.valid()); } TEST(InverseTransformTest, Example) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(3, 3) .input_labels({"x", "", "y"}) .input_origin({1, 3, 2}) .input_exclusive_max({5, 4, 8}) .implicit_lower_bounds({1, 0, 0}) .implicit_upper_bounds({0, 0, 1}) .output_single_input_dimension(0, 5, -1, 2) .output_single_input_dimension(1, 3, 1, 0) .output_constant(2, 7) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto expected_inv, IndexTransformBuilder(3, 3) .input_labels({"y", "x", ""}) .input_origin({-2, 4, 7}) .input_exclusive_max({4, 8, 8}) .implicit_lower_bounds({1, 1, 0}) .implicit_upper_bounds({0, 0, 0}) .output_single_input_dimension(0, -3, 1, 1) .output_constant(1, 3) .output_single_input_dimension(2, 5, -1, 0) .Finalize()); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, IdentityRank3) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({3, 4, 5}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_identity_transform() .Finalize() .value(); EXPECT_EQ(t, InverseTransform(t)); } TEST(InverseTransformTest, Offsets) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({3, 4, 5}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, 6, 1, 0) .output_single_input_dimension(1, 7, 1, 1) .output_single_input_dimension(2, 8, 1, 2) .Finalize() .value(); auto expected_inv = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({9, 11, 13}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, -6, 1, 0) .output_single_input_dimension(1, -7, 1, 1) .output_single_input_dimension(2, -8, 1, 2) .Finalize() .value(); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, Strides) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({3, 4, 5}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, 0, -1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0, -1, 2) .Finalize() .value(); auto expected_inv = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({-12, 4, -16}) .input_shape({10, 11, 12}) .implicit_lower_bounds({0, 0, 1}) .implicit_upper_bounds({1, 1, 1}) .output_single_input_dimension(0, 0, -1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0, -1, 2) .Finalize() .value(); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, Permutation) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({3, 4, 5}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .output_single_input_dimension(2, 0) .Finalize() .value(); auto expected_inv = IndexTransformBuilder<>(3, 3) .input_labels({"y", "z", "x"}) .input_origin({4, 5, 3}) .input_shape({11, 12, 10}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({1, 1, 0}) .output_single_input_dimension(1, 0) .output_single_input_dimension(2, 1) .output_single_input_dimension(0, 2) .Finalize() .value(); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, OffsetsAndStrides) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({9, 11, 13}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, -6, -1, 0) .output_single_input_dimension(1, -7, 1, 1) .output_single_input_dimension(2, -8, -1, 2) .Finalize() .value(); auto expected_inv = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({-24, 4, -32}) .input_shape({10, 11, 12}) .implicit_lower_bounds({0, 0, 1}) .implicit_upper_bounds({1, 1, 1}) .output_single_input_dimension(0, -6, -1, 0) .output_single_input_dimension(1, 7, 1, 1) .output_single_input_dimension(2, -8, -1, 2) .Finalize() .value(); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, OffsetsAndStridesAndPermutation) { auto t = IndexTransformBuilder<>(3, 3) .input_labels({"x", "y", "z"}) .input_origin({9, 11, 13}) .input_shape({10, 11, 12}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, -6, -1, 1) .output_single_input_dimension(1, -7, 1, 2) .output_single_input_dimension(2, -8, -1, 0) .Finalize() .value(); auto expected_inv = IndexTransformBuilder<>(3, 3) .input_labels({"y", "z", "x"}) .input_origin({-27, 6, -26}) .input_shape({11, 12, 10}) .implicit_lower_bounds({1, 1, 0}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(1, -6, -1, 0) .output_single_input_dimension(2, 7, 1, 1) .output_single_input_dimension(0, -8, -1, 2) .Finalize() .value(); EXPECT_EQ(expected_inv, InverseTransform(t)); EXPECT_EQ(t, InverseTransform(expected_inv)); } TEST(InverseTransformTest, ErrorNonSingletonUnmappedInputDimension) { EXPECT_THAT( InverseTransform(IndexTransformBuilder<>(3, 2) .output_identity_transform() .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to non-singleton " "input dimension 2 with domain \\(-inf\\*, \\+inf\\*\\) " "that is not mapped by an output dimension")); EXPECT_THAT(InverseTransform(IndexTransformBuilder(1, 0) .input_origin({0}) .input_shape({2}) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to non-singleton " "input dimension 0 with domain \\[0, 2\\) " "that is not mapped by an output dimension")); EXPECT_THAT(InverseTransform(IndexTransformBuilder(1, 0) .input_origin({0}) .input_shape({1}) .implicit_lower_bounds({1}) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to non-singleton " "input dimension 0 with domain \\[0\\*, 1\\) " "that is not mapped by an output dimension")); EXPECT_THAT(InverseTransform(IndexTransformBuilder(1, 0) .input_origin({0}) .input_shape({1}) .implicit_upper_bounds({1}) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to non-singleton " "input dimension 0 with domain \\[0, 1\\*\\) " "that is not mapped by an output dimension")); } TEST(InverseTransformTest, ConstantMap) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(0, 1).output_constant(0, 42).Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_inv, IndexTransformBuilder(1, 0) .input_origin({42}) .input_shape({1}) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto expected_inv_with_label, IndexTransformBuilder(1, 0) .input_origin({42}) .input_labels({"x"}) .input_shape({1}) .Finalize()); EXPECT_THAT(InverseTransform(t), ::testing::Optional(expected_inv)); EXPECT_THAT(InverseTransform(expected_inv), ::testing::Optional(t)); EXPECT_THAT(InverseTransform(expected_inv_with_label), ::testing::Optional(t)); } TEST(InverseTransformTest, IndexArrayMap) { EXPECT_THAT(InverseTransform( IndexTransformBuilder<>(1, 1) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({0, 1})) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to " "index array map for output dimension 0")); } TEST(InverseTransformTest, NonUnitStride) { EXPECT_THAT(InverseTransform(IndexTransformBuilder<>(1, 1) .output_single_input_dimension(0, 0, 2, 0) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible due to stride of 2 " "for output dimension 0")); } TEST(InverseTransformTest, Diagonal) { EXPECT_THAT(InverseTransform(IndexTransformBuilder<>(2, 2) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Transform is not invertible because input " "dimension 0 maps to output dimensions 0 and 1")); } TEST(InverseTransformTest, DomainOverflow) { EXPECT_THAT(InverseTransform( IndexTransformBuilder<>(1, 1) .input_origin({10}) .input_shape({5}) .output_single_input_dimension(0, kMaxFiniteIndex, 1, 0) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error inverting map from input dimension 0 -> " "output dimension 0: Integer overflow .*")); } TEST(InverseTransformTest, OffsetOverflow) { EXPECT_THAT( InverseTransform(IndexTransformBuilder<>(1, 1) .output_single_input_dimension( 0, std::numeric_limits<Index>::min(), 1, 0) .Finalize() .value()), MatchesStatus(absl::StatusCode::kInvalidArgument, "Integer overflow occurred while inverting map from input " "dimension 0 -> output dimension 0")); } TEST(InverseTransformTest, RandomFromOutputSpace) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_INVERSE_TRANSFORM_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder(box.rank()).bounds(box).Finalize()); auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForOutputSpace( gen, domain); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_transform, InverseTransform(transform)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_inv_transform, InverseTransform(inv_transform)); EXPECT_EQ(transform, inv_inv_transform); } } TEST(InverseTransformTest, RandomFromInputSpace) { constexpr size_t kNumIterations = 100; for (size_t i = 0; i < kNumIterations; ++i) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_INTERNAL_INVERSE_TRANSFORM_TEST_SEED")}; auto box = tensorstore::internal::MakeRandomBox(gen); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder(box.rank()).bounds(box).Finalize()); auto transform = tensorstore::internal::MakeRandomStridedIndexTransformForInputSpace( gen, domain); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_transform, InverseTransform(transform)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto inv_inv_transform, InverseTransform(inv_transform)); EXPECT_EQ(transform, inv_inv_transform); } } }
556
cpp
google/tensorstore
compose_transforms
tensorstore/index_space/internal/compose_transforms.cc
tensorstore/index_space/compose_transforms_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_COMPOSE_TRANSFORMS_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_COMPOSE_TRANSFORMS_H_ #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_index_space { Result<TransformRep::Ptr<>> ComposeTransforms(TransformRep* b_to_c, bool can_move_from_b_to_c, TransformRep* a_to_b, bool can_move_from_a_to_b, bool domain_only = false); Result<IndexTransform<dynamic_rank, dynamic_rank, container>> ComposeTransforms( IndexTransform<dynamic_rank, dynamic_rank, container> b_to_c, IndexTransform<dynamic_rank, dynamic_rank, container> a_to_b, bool domain_only); } } #endif #include "tensorstore/index_space/internal/compose_transforms.h" #include <cassert> #include <sstream> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_replace.h" #include "tensorstore/box.h" #include "tensorstore/container_kind.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/propagate_bounds.h" #include "tensorstore/index_space/internal/transform_array.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/rank.h" #include "tensorstore/static_cast.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { bool IsSingletonIndexArrayMap(StridedLayoutView<> layout) { for (DimensionIndex dim = 0, rank = layout.rank(); dim < rank; ++dim) { if (layout.byte_strides()[dim] == 0) continue; if (layout.shape()[dim] != 1) return false; } return true; } absl::Status ComposeTransformsImpl(TransformRep* b_to_c, bool can_move_from_b_to_c, TransformRep* a_to_b, bool can_move_from_a_to_b, TransformRep* a_to_c, bool domain_only) { assert(b_to_c != nullptr && a_to_b != nullptr && a_to_c != nullptr); const DimensionIndex a_to_c_output_rank = domain_only ? 0 : b_to_c->output_rank; assert(a_to_c_output_rank <= a_to_c->output_rank_capacity && a_to_b->output_rank == b_to_c->input_rank && a_to_b->input_rank <= a_to_c->input_rank_capacity); assert(a_to_c != b_to_c && a_to_c != a_to_b); const DimensionIndex a_rank = a_to_b->input_rank; const DimensionIndex b_rank = a_to_b->output_rank; const DimensionIndex c_rank = b_to_c->output_rank; a_to_c->input_rank = a_rank; a_to_c->output_rank = a_to_c_output_rank; CopyInputLabels(a_to_b, a_to_c, can_move_from_a_to_b); BoxView<> b_to_c_domain = b_to_c->input_domain(b_rank); MutableBoxView<> a_to_c_domain = a_to_c->input_domain(a_rank); TENSORSTORE_RETURN_IF_ERROR(PropagateBounds( b_to_c_domain, b_to_c->implicit_lower_bounds, b_to_c->implicit_upper_bounds, a_to_b, a_to_c_domain, a_to_c->implicit_lower_bounds, a_to_c->implicit_upper_bounds)); if (domain_only) { internal_index_space::DebugCheckInvariants(a_to_c); return absl::OkStatus(); } span<const OutputIndexMap> b_to_c_output_index_maps = b_to_c->output_index_maps().first(c_rank); span<const OutputIndexMap> a_to_b_output_index_maps = a_to_b->output_index_maps().first(b_rank); span<OutputIndexMap> a_to_c_output_index_maps = a_to_c->output_index_maps().first(c_rank); const bool a_to_c_domain_is_explicitly_empty = IsDomainExplicitlyEmpty(a_to_c); for (DimensionIndex c_dim = 0; c_dim < c_rank; ++c_dim) { auto& b_to_c_map = b_to_c_output_index_maps[c_dim]; auto& a_to_c_map = a_to_c_output_index_maps[c_dim]; const OutputIndexMethod b_to_c_method = b_to_c_map.stride() == 0 ? OutputIndexMethod::constant : b_to_c_map.method(); switch (b_to_c_method) { case OutputIndexMethod::constant: { a_to_c_map.SetConstant(); a_to_c_map.stride() = 0; a_to_c_map.offset() = b_to_c_map.offset(); break; } case OutputIndexMethod::single_input_dimension: { const DimensionIndex b_dim = b_to_c_map.input_dimension(); assert(b_dim >= 0 && b_dim < b_rank); auto& a_to_b_map = a_to_b_output_index_maps[b_dim]; const OutputIndexMethod a_to_b_method = a_to_b_map.stride() == 0 ? OutputIndexMethod::constant : a_to_b_map.method(); Index new_output_offset; if (internal::MulOverflow(a_to_b_map.offset(), b_to_c_map.stride(), &new_output_offset) || internal::AddOverflow(b_to_c_map.offset(), new_output_offset, &a_to_c_map.offset())) { return absl::InvalidArgumentError( tensorstore::StrCat("Integer overflow computing output " "offset for output dimension ", c_dim, ".")); } if (a_to_b_method == OutputIndexMethod::constant) { a_to_c_map.SetConstant(); a_to_c_map.stride() = 0; break; } if (internal::MulOverflow(a_to_b_map.stride(), b_to_c_map.stride(), &a_to_c_map.stride())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing output_strides[", c_dim, "] = ", a_to_b_map.stride(), " * ", b_to_c_map.stride(), ".")); } if (a_to_b_method == OutputIndexMethod::single_input_dimension) { const DimensionIndex a_dim = a_to_b_map.input_dimension(); assert(a_dim >= 0 && a_dim < a_rank); a_to_c_map.SetSingleInputDimension(a_dim); break; } assert(a_to_b_method == OutputIndexMethod::array); if (a_to_c_domain_is_explicitly_empty) { a_to_c_map.SetConstant(); a_to_c_map.offset() = 0; a_to_c_map.stride() = 0; break; } const auto& a_to_b_index_array_data = a_to_b_map.index_array_data(); IndexInterval index_range; { TENSORSTORE_ASSIGN_OR_RETURN( const IndexInterval propagated_bounds, GetAffineTransformDomain( OptionallyImplicitIndexInterval{ b_to_c_domain[b_dim], b_to_c->implicit_lower_bounds[b_dim], b_to_c->implicit_upper_bounds[b_dim]} .effective_interval(), a_to_b_map.offset(), a_to_b_map.stride())); index_range = Intersect(a_to_b_index_array_data.index_range, propagated_bounds); } if (IsSingletonIndexArrayMap( StridedLayoutView<>(a_rank, a_to_c_domain.shape().data(), a_to_b_index_array_data.byte_strides))) { a_to_c_map.SetConstant(); TENSORSTORE_RETURN_IF_ERROR(ReplaceZeroRankIndexArrayIndexMap( *a_to_b_index_array_data.array_view(a_to_b->input_domain(a_rank)) .byte_strided_origin_pointer(), index_range, &a_to_c_map.offset(), &a_to_c_map.stride())); } else { auto& index_array = a_to_c_map.SetArrayIndexing(a_rank, a_to_b_index_array_data); index_array.index_range = index_range; } break; } case OutputIndexMethod::array: { auto& a_to_c_map = a_to_c_output_index_maps[c_dim]; if (a_to_c_domain_is_explicitly_empty) { a_to_c_map.SetConstant(); a_to_c_map.offset() = 0; a_to_c_map.stride() = 0; break; } auto& index_array_data = b_to_c_map.index_array_data(); auto& result_array_data = a_to_c_map.SetArrayIndexing(a_rank); result_array_data.index_range = index_array_data.index_range; TENSORSTORE_ASSIGN_OR_RETURN( auto transformed_element_pointer, TransformArraySubRegion( index_array_data.shared_array_view(b_to_c_domain), a_to_b, a_to_c_domain.origin().data(), a_to_c_domain.shape().data(), result_array_data.byte_strides, {skip_repeated_elements})); auto new_index_array_origin_pointer = StaticDataTypeCast<const Index, unchecked>( std::move(transformed_element_pointer)); result_array_data.element_pointer = AddByteOffset( new_index_array_origin_pointer, -IndexInnerProduct(a_rank, result_array_data.byte_strides, a_to_c_domain.origin().data())); Index output_offset = b_to_c_map.offset(); Index output_stride = b_to_c_map.stride(); if (IsSingletonIndexArrayMap( StridedLayoutView<>(a_rank, a_to_c_domain.shape().data(), result_array_data.byte_strides))) { TENSORSTORE_RETURN_IF_ERROR(ReplaceZeroRankIndexArrayIndexMap( *new_index_array_origin_pointer.data(), result_array_data.index_range, &output_offset, &output_stride)); a_to_c_map.SetConstant(); } a_to_c_map.offset() = output_offset; a_to_c_map.stride() = output_stride; break; } } } internal_index_space::DebugCheckInvariants(a_to_c); return absl::OkStatus(); } } Result<TransformRep::Ptr<>> ComposeTransforms(TransformRep* b_to_c, bool can_move_from_b_to_c, TransformRep* a_to_b, bool can_move_from_a_to_b, bool domain_only) { assert(b_to_c); assert(a_to_b); const DimensionIndex a_rank = a_to_b->input_rank; const DimensionIndex b_rank = a_to_b->output_rank; const DimensionIndex c_rank = b_to_c->output_rank; absl::Status status; if (b_rank == b_to_c->input_rank) { auto data = TransformRep::Allocate(a_rank, domain_only ? 0 : c_rank); status = ComposeTransformsImpl(b_to_c, can_move_from_b_to_c, a_to_b, can_move_from_a_to_b, data.get(), domain_only); if (status.ok()) { return data; } } else { status = absl::InvalidArgumentError( tensorstore::StrCat("Rank ", b_to_c->input_rank, " -> ", c_rank, " transform cannot be composed with rank ", a_rank, " -> ", b_rank, " transform.")); } assert(!status.ok()); auto format_transform = [](TransformRep* rep) { std::ostringstream os; internal_index_space::PrintToOstream(os, rep); std::string str = os.str(); absl::StrReplaceAll({{"\n", " "}}, &str); return absl::Cord(str); }; AddStatusPayload(status, "transform", format_transform(a_to_b)); if (!status.GetPayload("domain").has_value()) { AddStatusPayload(status, "left_transform", format_transform(b_to_c)); } return status; } Result<IndexTransform<dynamic_rank, dynamic_rank, container>> ComposeTransforms( IndexTransform<dynamic_rank, dynamic_rank, container> b_to_c, IndexTransform<dynamic_rank, dynamic_rank, container> a_to_b, bool domain_only) { auto b_to_c_rep = TransformAccess::rep(b_to_c); auto a_to_b_rep = TransformAccess::rep(a_to_b); TENSORSTORE_ASSIGN_OR_RETURN( auto a_to_c_rep, internal_index_space::ComposeTransforms( b_to_c_rep, b_to_c_rep->is_unique(), a_to_b_rep, a_to_b_rep->is_unique(), domain_only)); return TransformAccess::Make<IndexTransform<>>(std::move(a_to_c_rep)); } } }
#include "tensorstore/index_space/internal/compose_transforms.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::IdentityTransform; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::kMaxFiniteIndex; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; TEST(ComposeTransformsTest, EmptyDomain) { auto b_to_c = IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({5, 6, 7}) .output_identity_transform() .Finalize() .value(); auto a_to_b = IndexTransformBuilder<2, 3>() .input_origin({1, 2}) .input_shape({5, 0}) .output_identity_transform() .output_constant(2, 5) .Finalize() .value(); auto a_to_c = ComposeTransforms(b_to_c, a_to_b).value(); auto expected_a_to_c = IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({5, 0}) .output_identity_transform() .Finalize() .value(); EXPECT_EQ(expected_a_to_c, a_to_c); } TEST(ComposeTransformsTest, TransformArrayError) { auto b_to_c = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({1, 2})) .Finalize() .value(); auto a_to_b = IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({1}), IndexInterval::Closed(4, 6)) .Finalize() .value(); EXPECT_THAT(ComposeTransforms(b_to_c, a_to_b), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(ComposeTransformsTest, BtoCIndexArrayWithSingleIndex) { auto b_to_c = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({7, 8})) .Finalize() .value(); auto a_to_b = IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({1}) .output_identity_transform() .Finalize() .value(); auto a_to_c = ComposeTransforms(b_to_c, a_to_b).value(); auto expected_a_to_c = IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({1}) .output_constant(0, 8) .Finalize() .value(); EXPECT_EQ(expected_a_to_c, a_to_c); } TEST(ComposeTransformsTest, BtoCIndexArrayWithInvalidSingleIndex) { auto b_to_c = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_index_array(0, 0, 1, MakeArray<Index>({7, 8}), IndexInterval::Closed(2, 3)) .Finalize() .value(); auto a_to_b = IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({1}) .output_identity_transform() .Finalize() .value(); EXPECT_THAT(ComposeTransforms(b_to_c, a_to_b), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(ComposeTransformsTest, AtoBIndexArrayWithSingleIndex) { auto b_to_c = IndexTransformBuilder<1, 1>() .output_identity_transform() .Finalize() .value(); auto a_to_b = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({7})) .Finalize() .value(); auto a_to_c = ComposeTransforms(b_to_c, a_to_b).value(); auto expected_a_to_c = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({1}) .output_constant(0, 7) .Finalize() .value(); EXPECT_EQ(expected_a_to_c, a_to_c); } TEST(ComposeTransformsTest, AtoBIndexArrayWithInvalidSingleIndex) { auto b_to_c = IndexTransformBuilder<1, 1>() .output_identity_transform() .Finalize() .value(); auto a_to_b = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({1}) .output_index_array(0, 0, 1, MakeArray<Index>({7}), IndexInterval::Closed(2, 3)) .Finalize() .value(); EXPECT_THAT(ComposeTransforms(b_to_c, a_to_b), MatchesStatus(absl::StatusCode::kOutOfRange)); } TEST(ComposeTransformsTest, ConstantOutOfDomain) { auto b_to_c = IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({5, 6, 7}) .output_identity_transform() .Finalize() .value(); auto a_to_b = IndexTransformBuilder<2, 3>() .input_origin({1, 2}) .input_shape({5, 4}) .output_identity_transform() .output_constant(2, 2) .Finalize() .value(); EXPECT_THAT(ComposeTransforms(b_to_c, a_to_b).status(), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Index 2 is outside valid range \\[3, 10\\)")); } TEST(ComposeTransformsTest, ConstantOverflow) { EXPECT_THAT(ComposeTransforms(IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 0, 100, 0) .Finalize() .value(), IndexTransformBuilder<0, 1>() .output_constant(0, kMaxFiniteIndex) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ComposeTransforms(IndexTransformBuilder<1, 1>() .output_single_input_dimension( 0, std::numeric_limits<Index>::max(), 1, 0) .Finalize() .value(), IndexTransformBuilder<0, 1>() .output_constant(0, 100) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(ComposeTransformsTest, SingleInputDimensionOverflow) { EXPECT_THAT( ComposeTransforms(IndexTransformBuilder<1, 1>() .output_single_input_dimension( 0, std::numeric_limits<Index>::max(), 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({10}) .output_single_input_dimension(0, 100, 1, 0) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ComposeTransforms( IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 0, 100, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({10}) .output_single_input_dimension(0, kMaxFiniteIndex, 1, 0) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ComposeTransforms(IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 0, 100, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({10}) .output_single_input_dimension( 0, 0, std::numeric_limits<Index>::max() - 1, 0) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(ComposeTransformsTest, IndexArrayBoundsOverflow) { EXPECT_THAT(ComposeTransforms( IndexTransformBuilder<1, 1>() .input_origin({2}) .input_shape({100}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_index_array(0, std::numeric_limits<Index>::min(), 1, MakeArray<Index>({1, 2}), IndexInterval::Closed(0, 100)) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(ComposeTransformsTest, RankMismatch) { EXPECT_THAT( ComposeTransforms(IdentityTransform(2), IdentityTransform(3)).status(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Rank 2 -> 2 transform cannot be composed with rank 3 -> 3 " "transform\\.")); } TEST(ComposeTransformsTest, FunctionCallOperator) { const auto t0 = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_single_input_dimension(0, 10, 1, 0) .Finalize() .value(); const auto t1 = IndexTransformBuilder<1, 1>() .input_origin({10}) .input_shape({5}) .output_single_input_dimension(0, 20, 1, 0) .Finalize() .value(); const auto expected_composed = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_single_input_dimension(0, 30, 1, 0) .Finalize() .value(); const auto composed = t0(t1).value(); EXPECT_EQ(expected_composed, composed); EXPECT_EQ(expected_composed, ComposeTransforms(t1, t0).value()); } TEST(ComposeTransformsTest, RankZero) { auto t0 = IdentityTransform(0); EXPECT_EQ(t0, ComposeTransforms(t0, t0).value()); } TEST(ComposeTransformsTest, ImplicitOutOfBounds) { const auto t0 = IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({4}) .implicit_lower_bounds({1}) .output_identity_transform() .Finalize() .value(); const auto t1 = IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_exclusive_max({2}) .output_identity_transform() .Finalize() .value(); EXPECT_THAT(ComposeTransforms(t0, t1), ::testing::Optional(t1)); } TEST(ComposeTransformsTest, TransformIndexArraySkipRepeatedElements) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t0, IndexTransformBuilder(2, 2) .input_shape({5, 2}) .output_index_array( 0, 0, 1, MakeArray<Index>({{0}, {1}, {2}, {3}, {4}})) .output_single_input_dimension(1, 1) .Finalize()); EXPECT_THAT(t0.output_index_maps()[0].index_array().byte_strides(), ::testing::ElementsAre(8, 0)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto t1, ComposeTransforms(t0, t0)); EXPECT_EQ(t0, t1); EXPECT_THAT(t1.output_index_maps()[0].index_array().byte_strides(), ::testing::ElementsAre(8, 0)); } }
557
cpp
google/tensorstore
transform_rep
tensorstore/index_space/internal/transform_rep.cc
tensorstore/index_space/transform_rep_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_TRANSFORM_REP_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_TRANSFORM_REP_H_ #include <atomic> #include <cstddef> #include <iosfwd> #include <memory> #include <string> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/index_space/transform_array_constraints.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/string_like.h" #include "tensorstore/rank.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/division.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/span.h" namespace tensorstore { template <DimensionIndex InputRank, DimensionIndex OutputRank, ContainerKind CKind> class IndexTransform; template <DimensionIndex Rank, ContainerKind CKind> class IndexDomain; namespace internal_index_space { struct IndexArrayData { SharedElementPointer<const Index> element_pointer; IndexInterval index_range; DimensionIndex rank_capacity; Index byte_strides[]; StridedLayoutView<dynamic_rank, offset_origin> layout( BoxView<> input_domain) const { assert(rank_capacity >= input_domain.rank()); return StridedLayoutView<dynamic_rank, offset_origin>( input_domain.rank(), input_domain.origin().data(), input_domain.shape().data(), byte_strides); } ArrayView<const Index, dynamic_rank, offset_origin> array_view( BoxView<> input_domain) const { return {element_pointer, layout(input_domain)}; } SharedArrayView<const Index, dynamic_rank, offset_origin> shared_array_view( BoxView<> input_domain) const { return {element_pointer, layout(input_domain)}; } }; static_assert(alignof(IndexArrayData) >= 2, "Platform has unsupported alignment."); class OutputIndexMap { public: OutputIndexMap() = default; OutputIndexMap(OutputIndexMap&& other) : value_(0), offset_(other.offset_), stride_(other.stride_) { std::swap(other.value_, value_); } OutputIndexMap& operator=(OutputIndexMap&& other) { std::swap(value_, other.value_); offset_ = other.offset_; stride_ = other.stride_; return *this; } OutputIndexMethod method() const { return value_ == 0 ? OutputIndexMethod::constant : value_ & 1 ? OutputIndexMethod::single_input_dimension : OutputIndexMethod::array; } DimensionIndex input_dimension() const { assert(method() == OutputIndexMethod::single_input_dimension); return static_cast<DimensionIndex>(value_ >> 1); } const IndexArrayData& index_array_data() const { assert(method() == OutputIndexMethod::array); return *reinterpret_cast<IndexArrayData*>(value_); } IndexArrayData& index_array_data() { assert(method() == OutputIndexMethod::array); return *reinterpret_cast<IndexArrayData*>(value_); } Result<Index> operator()(span<const Index> input_indices) const; void SetConstant(); void SetSingleInputDimension(DimensionIndex input_dim); IndexArrayData& SetArrayIndexing(DimensionIndex rank); IndexArrayData& SetArrayIndexing(DimensionIndex rank, const IndexArrayData& other); void Assign(DimensionIndex rank, const OutputIndexMap& other); ~OutputIndexMap() { SetConstant(); } constexpr Index offset() const { return offset_; } constexpr Index stride() const { return stride_; } Index& offset() { return offset_; } Index& stride() { return stride_; } private: std::uintptr_t value_ = 0; Index offset_, stride_; }; class InputDimensionsView; class InputDimensionRef; struct TransformRep { std::int16_t input_rank; std::int16_t output_rank; std::int16_t input_rank_capacity; std::int16_t output_rank_capacity; DimensionSet implicit_lower_bounds; DimensionSet implicit_upper_bounds; DimensionSet implicit_dimensions() const { return implicit_lower_bounds | implicit_upper_bounds; } static_assert(kMaxRank * 2 <= 64); std::atomic<std::uint64_t> reference_count; bool is_unique() const { return reference_count.load(std::memory_order_acquire) == 1; } InputDimensionsView all_input_dimensions(DimensionIndex rank); InputDimensionRef input_dimension(DimensionIndex i); span<Index> input_origin() { return span(reinterpret_cast<Index*>(this + 1), input_rank_capacity); } span<Index> input_shape() { return span(reinterpret_cast<Index*>(this + 1) + input_rank_capacity, input_rank_capacity); } MutableBoxView<> input_domain(DimensionIndex rank) { assert(0 <= rank && rank <= input_rank_capacity); return MutableBoxView<>(rank, input_origin().data(), input_shape().data()); } span<OutputIndexMap> output_index_maps() { return span(reinterpret_cast<OutputIndexMap*>(this) - output_rank_capacity, output_rank_capacity); } span<std::string> input_labels() { return span(reinterpret_cast<std::string*>(input_shape().end()), input_rank_capacity); } static void Free(TransformRep* ptr); template <typename PointerType = TransformRep*> struct IntrusivePtrTraits { template <typename> using pointer = PointerType; static void increment(TransformRep* rep) { rep->reference_count.fetch_add(1, std::memory_order_acq_rel); } static void decrement(TransformRep* rep) { if (rep->reference_count.fetch_sub(1, std::memory_order_acq_rel) == 1) { Free(rep); } } }; template <ContainerKind CKind = container> using Ptr = std::conditional_t< CKind == view, TransformRep*, internal::IntrusivePtr<TransformRep, IntrusivePtrTraits<>>>; static Ptr<> Allocate(DimensionIndex input_rank_capacity, DimensionIndex output_rank_capacity); }; #ifdef NDEBUG inline void DebugCheckInvariants(TransformRep* rep) {} #else void DebugCheckInvariants(TransformRep* rep); #endif inline void NormalizeImplicitBounds(TransformRep& rep) { const auto mask = DimensionSet::UpTo(rep.input_rank); rep.implicit_lower_bounds &= mask; rep.implicit_upper_bounds &= mask; } static_assert(alignof(OutputIndexMap) <= sizeof(Index), "Platform has unsupported alignment."); static_assert(alignof(std::string) <= sizeof(Index), "Platform has unsupported alignment."); class InputDimensionRef { public: explicit InputDimensionRef(TransformRep* rep, DimensionIndex input_dim) : rep_(rep), input_dim_(input_dim) {} IndexIntervalRef domain() const { return rep_->input_domain(rep_->input_rank_capacity)[input_dim_]; } OptionallyImplicitIndexInterval optionally_implicit_domain() const { return {domain(), implicit_lower_bound(), implicit_upper_bound()}; } template <ContainerKind LabelCKind = view> IndexDomainDimension<LabelCKind> index_domain_dimension() const { return {optionally_implicit_domain(), label()}; } DimensionSet::reference implicit_lower_bound() const { return rep_->implicit_lower_bounds[input_dim_]; } DimensionSet::reference implicit_upper_bound() const { return rep_->implicit_upper_bounds[input_dim_]; } std::string& label() const { return rep_->input_labels()[input_dim_]; } const InputDimensionRef& operator=(const InputDimensionRef& other) const { domain() = other.domain(); implicit_lower_bound() = other.implicit_lower_bound(); implicit_upper_bound() = other.implicit_upper_bound(); label() = other.label(); return *this; } void SetEmptyLabel() const { label().clear(); } template <ContainerKind LabelCKind> const InputDimensionRef& operator=( const IndexDomainDimension<LabelCKind>& other) const { domain() = other.interval(); implicit_lower_bound() = other.implicit_lower(); implicit_upper_bound() = other.implicit_upper(); label().assign(other.label().begin(), other.label().end()); return *this; } template <ContainerKind LabelCKind = view> operator IndexDomainDimension<LabelCKind>() const { return index_domain_dimension<LabelCKind>(); } private: TransformRep* const rep_; const DimensionIndex input_dim_; }; class InputDimensionsView { public: explicit InputDimensionsView(TransformRep* rep, DimensionIndex input_rank) : rep_(rep), size_(input_rank) {} DimensionIndex size() const { return size_; } InputDimensionRef operator[](DimensionIndex i) const { assert(i >= 0 && i <= size_); return InputDimensionRef(rep_, i); } private: TransformRep* rep_; DimensionIndex size_; }; inline ABSL_ATTRIBUTE_ALWAYS_INLINE InputDimensionsView TransformRep::all_input_dimensions(DimensionIndex rank) { assert(rank >= 0 && rank <= input_rank_capacity); return InputDimensionsView(this, rank); } inline ABSL_ATTRIBUTE_ALWAYS_INLINE InputDimensionRef TransformRep::input_dimension(DimensionIndex i) { assert(i >= 0 && i <= input_rank_capacity); return InputDimensionRef(this, i); } void CopyTransformRep(TransformRep* source, TransformRep* dest); void CopyTransformRepDomain(TransformRep* source, TransformRep* dest); void MoveTransformRep(TransformRep* source, TransformRep* dest); TransformRep::Ptr<> MutableRep(TransformRep::Ptr<> ptr, bool domain_only = false); void ResetOutputIndexMaps(TransformRep* ptr); TransformRep::Ptr<> NewOrMutableRep(TransformRep* ptr, DimensionIndex input_rank_capacity, DimensionIndex output_rank_capacity, bool domain_only = false); bool IsDomainExplicitlyEmpty(TransformRep* ptr); void ReplaceAllIndexArrayMapsWithConstantMaps(TransformRep* ptr); bool AreDomainsEqual(TransformRep* a, TransformRep* b); bool AreEqual(TransformRep* a, TransformRep* b); void PrintToOstream(std::ostream& os, TransformRep* transform); void PrintDomainToOstream(std::ostream& os, TransformRep* transform); DimensionSet GetIndexArrayInputDimensions(TransformRep* transform); TransformRep::Ptr<> WithImplicitDimensions(TransformRep::Ptr<> transform, DimensionSet implicit_lower_bounds, DimensionSet implicit_upper_bounds, bool domain_only); absl::Status TransformIndices(TransformRep* data, span<const Index> input_indices, span<Index> output_indices); TransformRep::Ptr<> GetSubDomain(TransformRep* rep, span<const DimensionIndex> dims); bool IsUnlabeled(span<const std::string> labels); class TransformAccess { public: template <typename T> static TransformRep* rep(const T& x) { return internal::to_address(x.rep_); } template <ContainerKind TargetCKind, typename T> static auto rep_ptr(T&& x) { if constexpr (TargetCKind == view) { return rep(x); } else { return TransformRep::Ptr<>(std::forward<T>(x).rep_); } } template <typename T> static decltype(auto) rep_ptr(T&& x) { return (std::forward<T>(x).rep_); } template <DimensionIndex Rank, ContainerKind CKind> static IndexTransform<Rank, dynamic_rank, view> transform( const IndexDomain<Rank, CKind>& x) { return Make<IndexTransform<Rank, dynamic_rank, view>>(rep(x)); } template <DimensionIndex Rank> static IndexTransform<Rank, dynamic_rank, container> transform( IndexDomain<Rank, container>&& x) { return Make<IndexTransform<Rank, dynamic_rank, container>>( std::move(x.rep_)); } template <typename T> static T Make(TransformRep::Ptr<T::container_kind> ptr) { T t; t.rep_ = std::move(ptr); return t; } }; } } #endif #include "tensorstore/index_space/internal/transform_rep.h" #include <memory> #include <new> #include <utility> #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/internal/dimension_labels.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/division.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { void FreeIndexArrayData(IndexArrayData* data) { std::destroy_at(data); std::free(data); } void CopyTrivialFields(TransformRep* source, TransformRep* dest) { assert(dest->input_rank_capacity >= source->input_rank && dest->output_rank_capacity >= source->output_rank); const DimensionIndex input_rank = dest->input_rank = source->input_rank; dest->output_rank = source->output_rank; std::copy_n(source->input_origin().begin(), input_rank, dest->input_origin().begin()); std::copy_n(source->input_shape().begin(), input_rank, dest->input_shape().begin()); dest->implicit_lower_bounds = source->implicit_lower_bounds; dest->implicit_upper_bounds = source->implicit_upper_bounds; } } void CopyInputLabels(TransformRep* source, TransformRep* dest, bool can_move) { assert(dest->input_rank_capacity >= source->input_rank); const DimensionIndex input_rank = source->input_rank; if (can_move) { std::copy_n(std::make_move_iterator(source->input_labels().begin()), input_rank, dest->input_labels().begin()); } else { std::copy_n(source->input_labels().begin(), input_rank, dest->input_labels().begin()); } } void OutputIndexMap::SetConstant() { if (method() == OutputIndexMethod::array) { FreeIndexArrayData(&index_array_data()); } value_ = 0; } void OutputIndexMap::SetSingleInputDimension(DimensionIndex input_dim) { if (method() == OutputIndexMethod::array) { FreeIndexArrayData(&index_array_data()); } value_ = (input_dim << 1) | 1; } IndexArrayData& OutputIndexMap::SetArrayIndexing(DimensionIndex rank) { IndexArrayData* data; if (method() == OutputIndexMethod::array) { data = &index_array_data(); if (data->rank_capacity >= rank) return *data; SharedElementPointer<const Index> element_pointer = std::move(data->element_pointer); auto bounds = data->index_range; std::destroy_at(data); IndexArrayData* new_data = static_cast<IndexArrayData*>( std::realloc(static_cast<void*>(data), sizeof(IndexArrayData) + sizeof(Index) * rank)); if (new_data) data = new_data; new (data) IndexArrayData; data->element_pointer = std::move(element_pointer); data->index_range = bounds; if (!new_data) TENSORSTORE_THROW_BAD_ALLOC; data->rank_capacity = rank; } else { data = static_cast<IndexArrayData*>( std::malloc(sizeof(IndexArrayData) + sizeof(Index) * rank)); if (!data) { TENSORSTORE_THROW_BAD_ALLOC; } new (data) IndexArrayData; data->rank_capacity = rank; } value_ = reinterpret_cast<std::uintptr_t>(data); return *data; } IndexArrayData& OutputIndexMap::SetArrayIndexing(DimensionIndex rank, const IndexArrayData& other) { assert(other.rank_capacity >= rank); auto& data = SetArrayIndexing(rank); data.element_pointer = other.element_pointer; data.index_range = other.index_range; std::memcpy(data.byte_strides, other.byte_strides, sizeof(Index) * rank); return data; } void OutputIndexMap::Assign(DimensionIndex rank, const OutputIndexMap& other) { if (other.method() == OutputIndexMethod::array) { SetArrayIndexing(rank, other.index_array_data()); } else { value_ = other.value_; } offset_ = other.offset_; stride_ = other.stride_; } TransformRep::Ptr<> TransformRep::Allocate( DimensionIndex input_rank_capacity, DimensionIndex output_rank_capacity) { ABSL_CHECK(input_rank_capacity >= 0 && output_rank_capacity >= 0 && input_rank_capacity <= kMaxRank && output_rank_capacity <= kMaxRank); const size_t total_size = sizeof(TransformRep) + sizeof(OutputIndexMap) * output_rank_capacity + input_rank_capacity * (sizeof(Index) * 2 + sizeof(std::string)); char* base_ptr = static_cast<char*>(::operator new(total_size)); TransformRep* ptr = new (base_ptr + sizeof(OutputIndexMap) * output_rank_capacity) TransformRep; ptr->reference_count.store(1, std::memory_order_relaxed); ptr->input_rank_capacity = input_rank_capacity; ptr->output_rank_capacity = output_rank_capacity; std::uninitialized_default_construct_n(ptr->output_index_maps().begin(), output_rank_capacity); std::uninitialized_default_construct_n(ptr->input_labels().begin(), input_rank_capacity); return TransformRep::Ptr<>(ptr, internal::adopt_object_ref); } void DestroyLabelFields(TransformRep* ptr) { std::destroy_n(ptr->input_labels().begin(), ptr->input_rank_capacity); } void TransformRep::Free(TransformRep* ptr) { assert(ptr->reference_count == 0); DestroyLabelFields(ptr); std::destroy_n(ptr->output_index_maps().begin(), ptr->output_rank_capacity); ::operator delete(static_cast<void*>(ptr->output_index_maps().data())); } void CopyTransformRep(TransformRep* source, TransformRep* dest) { assert(source != nullptr); assert(dest != nullptr); assert(dest->output_rank_capacity >= source->output_rank); CopyTransformRepDomain(source, dest); const DimensionIndex input_rank = source->input_rank; const DimensionIndex output_rank = dest->output_rank = source->output_rank; span<const OutputIndexMap> source_maps = source->output_index_maps().first(output_rank); span<OutputIndexMap> dest_maps = dest->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { dest_maps[output_dim].Assign(input_rank, source_maps[output_dim]); } } void CopyTransformRepDomain(TransformRep* source, TransformRep* dest) { assert(source != nullptr); assert(dest != nullptr); assert(dest->input_rank_capacity >= source->input_rank); const DimensionIndex input_rank = dest->input_rank = sou
#include "tensorstore/index_space/internal/transform_rep.h" #include <cstddef> #include <limits> #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/macros.h" #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/container_kind.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/internal/testing/concurrent.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { #if ABSL_HAVE_EXCEPTIONS #define TENSORSTORE_EXPECT_OOM(expr) EXPECT_THROW(expr, std::bad_alloc); #else #define TENSORSTORE_EXPECT_OOM(expr) EXPECT_DEATH(expr, "Out of memory"); #endif using ::tensorstore::Box; using ::tensorstore::DimensionIndex; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::kMaxFiniteIndex; using ::tensorstore::kMinFiniteIndex; using ::tensorstore::MatchesStatus; using ::tensorstore::OutputIndexMethod; using ::tensorstore::internal_index_space::CopyTransformRep; using ::tensorstore::internal_index_space::MoveTransformRep; using ::tensorstore::internal_index_space::MutableRep; using ::tensorstore::internal_index_space::NewOrMutableRep; using ::tensorstore::internal_index_space::OutputIndexMap; using ::tensorstore::internal_index_space::ReplaceZeroRankIndexArrayIndexMap; using ::tensorstore::internal_index_space::TransformAccess; using ::tensorstore::internal_index_space::TransformRep; using ::tensorstore::internal_index_space::ValidateAndIntersectBounds; using ::tensorstore::internal_testing::TestConcurrent; TEST(OutputIndexMapTest, Basic) { OutputIndexMap map; EXPECT_EQ(OutputIndexMethod::constant, map.method()); map.SetSingleInputDimension(2); EXPECT_EQ(OutputIndexMethod::single_input_dimension, map.method()); EXPECT_EQ(2, map.input_dimension()); map.SetSingleInputDimension(3); EXPECT_EQ(OutputIndexMethod::single_input_dimension, map.method()); EXPECT_EQ(3, map.input_dimension()); map.SetConstant(); EXPECT_EQ(OutputIndexMethod::constant, map.method()); { auto& index_array_data = map.SetArrayIndexing(3); EXPECT_EQ(OutputIndexMethod::array, map.method()); EXPECT_EQ(3, index_array_data.rank_capacity); EXPECT_EQ(IndexInterval(), index_array_data.index_range); EXPECT_EQ(nullptr, index_array_data.element_pointer); EXPECT_EQ(&index_array_data, &map.SetArrayIndexing(1)); EXPECT_EQ(3, index_array_data.rank_capacity); auto ptr = std::make_shared<Index>(); index_array_data.element_pointer = ptr; index_array_data.index_range = IndexInterval::UncheckedClosed(1, 10); index_array_data.byte_strides[0] = 1; index_array_data.byte_strides[1] = 2; index_array_data.byte_strides[2] = 3; auto& new_index_array_data = map.SetArrayIndexing(4); EXPECT_EQ(4, new_index_array_data.rank_capacity); EXPECT_EQ(ptr, new_index_array_data.element_pointer.pointer()); EXPECT_EQ(IndexInterval::UncheckedClosed(1, 10), new_index_array_data.index_range); EXPECT_EQ(1, new_index_array_data.byte_strides[0]); EXPECT_EQ(2, new_index_array_data.byte_strides[1]); EXPECT_EQ(3, new_index_array_data.byte_strides[2]); } map.SetSingleInputDimension(3); EXPECT_EQ(OutputIndexMethod::single_input_dimension, map.method()); EXPECT_EQ(3, map.input_dimension()); { auto& index_array_data = map.SetArrayIndexing(3); EXPECT_EQ(OutputIndexMethod::array, map.method()); EXPECT_EQ(3, index_array_data.rank_capacity); } } TEST(OutputIndexMapDeathTest, Basic) { OutputIndexMap map; TENSORSTORE_EXPECT_OOM( map.SetArrayIndexing(static_cast<DimensionIndex>(1) << 60)); map.SetArrayIndexing(5); TENSORSTORE_EXPECT_OOM( map.SetArrayIndexing(static_cast<DimensionIndex>(1) << 60)); } TEST(ReplaceZeroRankIndexArrayIndexMapTest, Basic) { Index output_offset = 5, output_stride = 3; EXPECT_EQ(absl::OkStatus(), ReplaceZeroRankIndexArrayIndexMap( 10, IndexInterval::UncheckedClosed(3, 15), &output_offset, &output_stride)); EXPECT_EQ(5 + 10 * 3, output_offset); EXPECT_EQ(0, output_stride); } TEST(ReplaceZeroRankIndexArrayIndexMapTest, OutOfBounds) { Index output_offset = 5, output_stride = 3; EXPECT_THAT(ReplaceZeroRankIndexArrayIndexMap( 10, IndexInterval::UncheckedClosed(11, 15), &output_offset, &output_stride), MatchesStatus(absl::StatusCode::kOutOfRange, "Index 10 is outside valid range \\[11, 16\\)")); } TEST(ReplaceZeroRankIndexArrayIndexMapTest, OverflowOffset) { Index output_offset = std::numeric_limits<Index>::max(), output_stride = 3; EXPECT_THAT( ReplaceZeroRankIndexArrayIndexMap(10, IndexInterval::UncheckedClosed(5, 15), &output_offset, &output_stride), MatchesStatus( absl::StatusCode::kInvalidArgument, ".*Integer overflow computing offset for output dimension.*")); } TEST(ReplaceZeroRankIndexArrayIndexMapTest, OverflowStride) { Index output_offset = 5, output_stride = 100; EXPECT_THAT( ReplaceZeroRankIndexArrayIndexMap(kMaxFiniteIndex, IndexInterval(), &output_offset, &output_stride), MatchesStatus( absl::StatusCode::kInvalidArgument, ".*Integer overflow computing offset for output dimension.*")); } TEST(Allocate, Basic) { auto ptr = TransformRep::Allocate(3, 2); EXPECT_EQ(3, ptr->input_rank_capacity); EXPECT_EQ(2, ptr->output_rank_capacity); EXPECT_EQ(OutputIndexMethod::constant, ptr->output_index_maps()[0].method()); EXPECT_EQ(OutputIndexMethod::constant, ptr->output_index_maps()[1].method()); EXPECT_TRUE(ptr->input_labels()[0].empty()); EXPECT_TRUE(ptr->input_labels()[1].empty()); EXPECT_TRUE(ptr->input_labels()[2].empty()); } TEST(CopyTransformRep, Basic) { auto source = TransformRep::Allocate(1, 2); source->input_rank = 1; source->output_rank = 2; source->input_origin()[0] = 5; source->input_shape()[0] = 2; auto& source_map = source->output_index_maps()[0]; source_map.offset() = 3; source_map.stride() = 4; auto index_array_ptr = std::make_shared<Index>(); auto& source_index_array_data = source_map.SetArrayIndexing(1); source_index_array_data.element_pointer = index_array_ptr; source_index_array_data.byte_strides[0] = 0; source->input_labels()[0] = "source"; auto dest = TransformRep::Allocate(1, 2); dest->input_rank = 0; dest->output_rank = 0; dest->input_origin()[0] = 6; dest->input_shape()[0] = 7; dest->input_labels()[0] = "dest"; auto& dest_map = dest->output_index_maps()[0]; dest_map.offset() = 10; dest_map.stride() = 11; CopyTransformRep(source.get(), dest.get()); EXPECT_EQ(5, source->input_origin()[0]); EXPECT_EQ(2, source->input_shape()[0]); EXPECT_EQ(3, source_map.offset()); EXPECT_EQ(4, source_map.stride()); EXPECT_EQ(OutputIndexMethod::array, source_map.method()); EXPECT_EQ(&source_index_array_data, &source_map.index_array_data()); EXPECT_EQ(index_array_ptr, source_index_array_data.element_pointer.pointer()); EXPECT_EQ(0, source_index_array_data.byte_strides[0]); EXPECT_EQ("source", source->input_labels()[0]); EXPECT_EQ(1, dest->input_rank); EXPECT_EQ(2, dest->output_rank); EXPECT_EQ(5, dest->input_origin()[0]); EXPECT_EQ(2, dest->input_shape()[0]); EXPECT_EQ(3, dest_map.offset()); EXPECT_EQ(4, dest_map.stride()); EXPECT_EQ(OutputIndexMethod::array, dest_map.method()); auto& dest_index_array_data = dest_map.index_array_data(); EXPECT_EQ(index_array_ptr, dest_index_array_data.element_pointer.pointer()); EXPECT_EQ(0, dest_index_array_data.byte_strides[0]); EXPECT_EQ(3, index_array_ptr.use_count()); EXPECT_EQ("source", dest->input_labels()[0]); } TEST(MoveTransformRep, Basic) { using ::tensorstore::DimensionSet; auto source = TransformRep::Allocate(1, 2); source->input_rank = 1; source->output_rank = 2; source->implicit_lower_bounds = DimensionSet::UpTo(source->input_rank); source->implicit_upper_bounds = DimensionSet::UpTo(source->input_rank); source->input_origin()[0] = 5; source->input_shape()[0] = 2; auto& source_map = source->output_index_maps()[0]; source_map.SetSingleInputDimension(0); source_map.offset() = 3; source_map.stride() = 4; auto index_array_ptr = std::make_shared<Index>(); auto& source_index_array_data = source_map.SetArrayIndexing(1); source_index_array_data.element_pointer = index_array_ptr; source_index_array_data.byte_strides[0] = 0; source->input_labels()[0] = "source"; auto dest = TransformRep::Allocate(1, 2); dest->input_rank = 0; dest->output_rank = 0; dest->input_origin()[0] = 6; dest->input_shape()[0] = 7; dest->input_labels()[0] = "dest"; auto& dest_map = dest->output_index_maps()[0]; dest_map.offset() = 10; dest_map.stride() = 11; MoveTransformRep(source.get(), dest.get()); EXPECT_EQ(5, source->input_origin()[0]); EXPECT_EQ(2, source->input_shape()[0]); EXPECT_EQ(3, source_map.offset()); EXPECT_EQ(4, source_map.stride()); EXPECT_EQ(OutputIndexMethod::constant, source_map.method()); EXPECT_EQ(1, dest->input_rank); EXPECT_EQ(2, dest->output_rank); EXPECT_EQ(5, dest->input_origin()[0]); EXPECT_EQ(2, dest->input_shape()[0]); EXPECT_EQ(3, dest_map.offset()); EXPECT_EQ(4, dest_map.stride()); EXPECT_EQ(OutputIndexMethod::array, dest_map.method()); auto& dest_index_array_data = dest_map.index_array_data(); EXPECT_EQ(&dest_index_array_data, &source_index_array_data); EXPECT_EQ(index_array_ptr, dest_index_array_data.element_pointer.pointer()); EXPECT_EQ(0, dest_index_array_data.byte_strides[0]); EXPECT_EQ(2, index_array_ptr.use_count()); EXPECT_EQ("source", dest->input_labels()[0]); } tensorstore::IndexTransform<> MakeTestTransform() { return IndexTransformBuilder<>(3, 3) .input_origin({1, 2, 3}) .input_shape({2, 3, 4}) .input_labels({"a", "b", "c"}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({0, 1, 1}) .output_constant(2, 5) .output_single_input_dimension(1, 5, 7, 2) .output_index_array(0, 8, 11, tensorstore::MakeArray<Index>({{{8}}, {{9}}}), tensorstore::IndexInterval::Sized(7, 3)) .Finalize() .value(); } TEST(MutableRepTest, Basic) { auto transform = MakeTestTransform(); EXPECT_TRUE(TransformAccess::rep(transform)->is_unique()); auto rep1 = TransformAccess::rep_ptr<tensorstore::container>(transform); EXPECT_FALSE(TransformAccess::rep(transform)->is_unique()); auto rep2 = MutableRep(std::move(rep1)); EXPECT_NE(TransformAccess::rep(transform), rep2.get()); EXPECT_EQ(transform, TransformAccess::Make<tensorstore::IndexTransformView<>>( rep2.get())); EXPECT_TRUE(rep2->is_unique()); TransformRep* rep2_ptr = rep2.get(); auto rep3 = MutableRep(std::move(rep2)); EXPECT_EQ(rep2_ptr, rep3.get()); } TEST(MutableRepTest, Concurrent) { auto orig = IndexTransformBuilder<>(1, 1) .input_origin({1}) .input_shape({2}) .input_labels({"a"}) .implicit_lower_bounds({0}) .implicit_upper_bounds({0}) .output_constant(0, 5) .Finalize() .value(); TransformRep* orig_ptr; TransformRep::Ptr<> write_ptr = TransformAccess::rep_ptr(orig); write_ptr->output_rank = 0; TransformRep::Ptr<> read_ptr; [[maybe_unused]] size_t num_reads_before_write = 0; const size_t num_iterations = 1000; TestConcurrent( num_iterations, [&] { write_ptr->input_rank = 1; orig_ptr = write_ptr.get(); read_ptr = write_ptr; }, [&] { EXPECT_EQ(0, write_ptr->input_rank); }, [&] { write_ptr = MutableRep(std::move(write_ptr)); if (orig_ptr == write_ptr.get()) { ++num_reads_before_write; } write_ptr->input_rank = 0; }, [&] { EXPECT_EQ(1, read_ptr->input_rank); read_ptr.reset(); }); #if 0 EXPECT_LT(0, num_reads_before_write); EXPECT_LT(num_reads_before_write, num_iterations); #endif } TEST(NewOrMutableRepTest, Basic) { auto transform = MakeTestTransform(); { auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 3, 3); EXPECT_EQ(TransformAccess::rep(transform), mutable_rep.get()); } { auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 2, 2); EXPECT_EQ(TransformAccess::rep(transform), mutable_rep.get()); } { auto transform_copy = transform; auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 3, 3); EXPECT_NE(TransformAccess::rep(transform), mutable_rep.get()); EXPECT_EQ(3, mutable_rep->input_rank_capacity); EXPECT_EQ(3, mutable_rep->output_rank_capacity); } { auto transform_copy = transform; auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 1, 2); EXPECT_NE(TransformAccess::rep(transform), mutable_rep.get()); EXPECT_EQ(1, mutable_rep->input_rank_capacity); EXPECT_EQ(2, mutable_rep->output_rank_capacity); } { auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 3, 4); EXPECT_NE(TransformAccess::rep(transform), mutable_rep.get()); EXPECT_EQ(3, mutable_rep->input_rank_capacity); EXPECT_EQ(4, mutable_rep->output_rank_capacity); } { auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 4, 3); EXPECT_NE(TransformAccess::rep(transform), mutable_rep.get()); EXPECT_EQ(4, mutable_rep->input_rank_capacity); EXPECT_EQ(3, mutable_rep->output_rank_capacity); } { auto transform_copy = transform; auto mutable_rep = NewOrMutableRep(TransformAccess::rep(transform), 3, 4); EXPECT_NE(TransformAccess::rep(transform), mutable_rep.get()); EXPECT_EQ(3, mutable_rep->input_rank_capacity); EXPECT_EQ(4, mutable_rep->output_rank_capacity); } } TEST(ValidateAndIntersectBoundsTest, Success) { const Box<> inner({-kInfIndex, 6}, {kInfIndex + 8, 3}); Box<> combined({1, 5}, {9, kInfIndex - 5 + 1}); auto status = ValidateAndIntersectBounds( inner, combined, [](IndexInterval outer, IndexInterval inner) { return ContainsOrUnbounded(outer, inner); }); TENSORSTORE_CHECK_OK(status); EXPECT_EQ(Box<>({1, 6}, {7, 3}), combined); } TEST(ValidateAndIntersectBoundsTest, Failure) { const Box<> inner({-kInfIndex, 4}, {kInfIndex + 8, 3}); Box<> combined({1, 5}, {9, kInfIndex - 5 + 1}); auto status = ValidateAndIntersectBounds( inner, combined, [](IndexInterval outer, IndexInterval inner) { return ContainsOrUnbounded(outer, inner); }); EXPECT_THAT( status, MatchesStatus( absl::StatusCode::kOutOfRange, ".*Propagated bounds are incompatible with existing bounds in " "dimension 1 bounds .* vs. propagated bounds.*")); } }
558
cpp
google/tensorstore
propagate_bounds
tensorstore/index_space/internal/propagate_bounds.cc
tensorstore/index_space/propagate_bounds_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_PROPAGATE_BOUNDS_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_PROPAGATE_BOUNDS_H_ #include "absl/status/status.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/util/dimension_set.h" namespace tensorstore { namespace internal_index_space { absl::Status PropagateBounds(BoxView<> b, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep* a_to_b, MutableBoxView<> a); absl::Status PropagateExplicitBounds(BoxView<> b, TransformRep* a_to_b, MutableBoxView<> a); absl::Status PropagateBounds(BoxView<> b, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep* a_to_b, MutableBoxView<> a, DimensionSet& a_implicit_lower_bounds, DimensionSet& a_implicit_upper_bounds); Result<TransformRep::Ptr<>> PropagateBoundsToTransform( BoxView<> b_domain, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep::Ptr<> a_to_b); Result<TransformRep::Ptr<>> PropagateExplicitBoundsToTransform( BoxView<> b_domain, TransformRep::Ptr<> a_to_b); } } #endif #include "tensorstore/index_space/internal/propagate_bounds.h" #include <algorithm> #include <cassert> #include <sstream> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_replace.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/internal/identity_transform.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/rank.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { absl::Status PropagateBoundsImpl(BoxView<> b, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep* a_to_b, MutableBoxView<> a) { if (!a_to_b) { assert(a.rank() == b.rank()); a.DeepAssign(b); return absl::OkStatus(); } assert(a_to_b->input_rank == a.rank()); assert(a_to_b->output_rank == b.rank()); a.Fill(); span<const OutputIndexMap> maps = a_to_b->output_index_maps().first(b.rank()); DimensionSet propagated_to_a; DimensionSet inferred_implicit_lower_bounds(true); DimensionSet inferred_implicit_upper_bounds(true); auto& implicit_lower_bounds = a_to_b->implicit_lower_bounds; auto& implicit_upper_bounds = a_to_b->implicit_upper_bounds; const auto existing_input_domain = a_to_b->input_domain(a.rank()); bool is_domain_empty = false; for (DimensionIndex a_dim = 0; a_dim < a.rank(); ++a_dim) { if (!implicit_lower_bounds[a_dim] && !implicit_upper_bounds[a_dim] && existing_input_domain[a_dim].empty()) { is_domain_empty = true; break; } } for (DimensionIndex b_dim = 0; b_dim < b.rank(); ++b_dim) { auto& map = maps[b_dim]; const Index output_stride = map.stride(); if (map.method() == OutputIndexMethod::array) continue; OptionallyImplicitIndexInterval b_bounds_oi{b[b_dim], b_implicit_lower_bounds[b_dim], b_implicit_upper_bounds[b_dim]}; if (output_stride == 0 || map.method() == OutputIndexMethod::constant) { if (!is_domain_empty) { TENSORSTORE_RETURN_IF_ERROR( CheckContains(b_bounds_oi.effective_interval(), map.offset()), MaybeAnnotateStatus( _, tensorstore::StrCat("Checking bounds of constant output " "index map for dimension ", b_dim))); } continue; } const DimensionIndex a_dim = map.input_dimension(); assert(a_dim >= 0 && a_dim < a.rank()); TENSORSTORE_ASSIGN_OR_RETURN( OptionallyImplicitIndexInterval propagated_a_bounds, GetAffineTransformDomain(b_bounds_oi, map.offset(), map.stride()), MaybeAnnotateStatus( _, tensorstore::StrCat("Propagating bounds from dimension ", b_dim, " to input dimension ", a_dim))); propagated_a_bounds = IntersectPreferringExplicit( propagated_a_bounds, OptionallyImplicitIndexInterval{a[a_dim], inferred_implicit_lower_bounds[a_dim], inferred_implicit_upper_bounds[a_dim]}); a[a_dim] = propagated_a_bounds.interval(); inferred_implicit_lower_bounds[a_dim] = propagated_a_bounds.implicit_lower(); inferred_implicit_upper_bounds[a_dim] = propagated_a_bounds.implicit_upper(); propagated_to_a[a_dim] = true; } for (DimensionIndex a_dim = 0; a_dim < a.rank(); ++a_dim) { IndexInterval existing = existing_input_domain[a_dim]; IndexIntervalRef inferred = a[a_dim]; if (!propagated_to_a[a_dim]) { inferred = existing; continue; } const Index inclusive_min = implicit_lower_bounds[a_dim] ? inferred.inclusive_min() : existing.inclusive_min(); const Index inclusive_max = std::max(inclusive_min - 1, implicit_upper_bounds[a_dim] ? inferred.inclusive_max() : existing.inclusive_max()); const IndexInterval combined = IndexInterval::UncheckedClosed(inclusive_min, inclusive_max); const OptionallyImplicitIndexInterval inferred_oi{ inferred, inferred_implicit_lower_bounds[a_dim], inferred_implicit_upper_bounds[a_dim]}; if (!is_domain_empty && !Contains(inferred_oi.effective_interval(), combined)) { std::ostringstream os; os << "Propagated bounds " << inferred_oi; if (inferred_oi.size() != kInfSize) { os << ", with size=" << inferred_oi.size() << ", "; } os << "for dimension " << a_dim << " are incompatible with existing bounds " << combined; if (combined.size() != kInfSize) { os << ", with size=" << combined.size(); } os << "."; return absl::OutOfRangeError(os.str()); } inferred = combined; } return absl::OkStatus(); } void PropagateImplicitBoundState(DimensionIndex b_rank, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep* a_to_b, DimensionIndex a_rank, DimensionSet& a_implicit_lower_bounds, DimensionSet& a_implicit_upper_bounds) { if (!a_to_b) { a_implicit_lower_bounds = b_implicit_lower_bounds; a_implicit_upper_bounds = b_implicit_upper_bounds; return; } a_implicit_lower_bounds = a_to_b->implicit_lower_bounds; a_implicit_upper_bounds = a_to_b->implicit_upper_bounds; span<const OutputIndexMap> maps = a_to_b->output_index_maps().first(b_rank); for (DimensionIndex b_dim = 0; b_dim < b_rank; ++b_dim) { auto& map = maps[b_dim]; if (map.method() != OutputIndexMethod::single_input_dimension || map.stride() == 0) { continue; } const DimensionIndex a_dim = map.input_dimension(); assert(a_dim >= 0 && a_dim < a_rank); bool implicit_lower = b_implicit_lower_bounds[b_dim]; bool implicit_upper = b_implicit_upper_bounds[b_dim]; if (map.stride() < 0) { std::swap(implicit_lower, implicit_upper); } if (!implicit_lower) a_implicit_lower_bounds[a_dim] = false; if (!implicit_upper) a_implicit_upper_bounds[a_dim] = false; } } } absl::Status PropagateBounds(BoxView<> b, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep* a_to_b, MutableBoxView<> a) { auto status = PropagateBoundsImpl(b, b_implicit_lower_bounds, b_implicit_upper_bounds, a_to_b, a); if (!status.ok()) { std::ostringstream os; internal_index_space::PrintToOstream(os, a_to_b); std::string str = os.str(); absl::StrReplaceAll({{"\n", " "}}, &str); AddStatusPayload(status, "transform", absl::Cord(str)); AddStatusPayload(status, "domain", absl::Cord(tensorstore::StrCat(b))); } return status; } absl::Status PropagateExplicitBounds(BoxView<> b, TransformRep* a_to_b, MutableBoxView<> a) { return PropagateBounds(b, false, false, a_to_b, a); } absl::Status PropagateBounds(BoxView<> b, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep* a_to_b, MutableBoxView<> a, DimensionSet& a_implicit_lower_bounds, DimensionSet& a_implicit_upper_bounds) { PropagateImplicitBoundState(b.rank(), b_implicit_lower_bounds, b_implicit_upper_bounds, a_to_b, a.rank(), a_implicit_lower_bounds, a_implicit_upper_bounds); return PropagateBounds(b, b_implicit_lower_bounds, b_implicit_upper_bounds, a_to_b, a); } Result<TransformRep::Ptr<>> PropagateBoundsToTransform( BoxView<> b_domain, DimensionSet b_implicit_lower_bounds, DimensionSet b_implicit_upper_bounds, TransformRep::Ptr<> a_to_b) { const DimensionIndex b_rank = b_domain.rank(); if (!a_to_b) { a_to_b = TransformRep::Allocate(b_rank, b_rank); a_to_b->input_rank = a_to_b->output_rank = b_rank; SetToIdentityTransform(a_to_b->output_index_maps().first(b_rank)); a_to_b->input_domain(b_rank).DeepAssign(b_domain); a_to_b->implicit_lower_bounds = b_implicit_lower_bounds; a_to_b->implicit_upper_bounds = b_implicit_upper_bounds; internal_index_space::DebugCheckInvariants(a_to_b.get()); return a_to_b; } const DimensionIndex a_rank = a_to_b->input_rank; Box<dynamic_rank(internal::kNumInlinedDims)> bounds_temp(a_rank); TENSORSTORE_RETURN_IF_ERROR(PropagateBounds(b_domain, b_implicit_lower_bounds, b_implicit_upper_bounds, a_to_b.get(), bounds_temp)); a_to_b = MutableRep(std::move(a_to_b)); a_to_b->input_domain(a_rank).DeepAssign(bounds_temp); PropagateImplicitBoundState( b_rank, b_implicit_lower_bounds, b_implicit_upper_bounds, a_to_b.get(), a_rank, a_to_b->implicit_lower_bounds, a_to_b->implicit_upper_bounds); const bool domain_is_explicitly_empty = IsDomainExplicitlyEmpty(a_to_b.get()); const auto output_index_maps = a_to_b->output_index_maps().first(b_rank); for (DimensionIndex b_dim = 0; b_dim < b_rank; ++b_dim) { auto& map = output_index_maps[b_dim]; if (map.method() != OutputIndexMethod::array) continue; if (domain_is_explicitly_empty) { map.SetConstant(); map.offset() = 0; map.stride() = 0; continue; } auto& index_array_data = map.index_array_data(); TENSORSTORE_ASSIGN_OR_RETURN( const IndexInterval propagated_bounds, GetAffineTransformDomain( OptionallyImplicitIndexInterval(b_domain[b_dim], b_implicit_lower_bounds[b_dim], b_implicit_upper_bounds[b_dim]) .effective_interval(), map.offset(), map.stride())); index_array_data.index_range = Intersect(propagated_bounds, index_array_data.index_range); } internal_index_space::DebugCheckInvariants(a_to_b.get()); return a_to_b; } Result<TransformRep::Ptr<>> PropagateExplicitBoundsToTransform( BoxView<> b_domain, TransformRep::Ptr<> a_to_b) { return PropagateBoundsToTransform(b_domain, false, false, std::move(a_to_b)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::DimensionIndex; using ::tensorstore::DimensionSet; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kMinFiniteIndex; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::PropagateBounds; using ::tensorstore::PropagateBoundsToTransform; using ::tensorstore::PropagateExplicitBounds; using ::tensorstore::PropagateExplicitBoundsToTransform; TEST(PropagateExplicitBoundsTest, IdentityTransform) { DimensionIndex rank = 2; const Box<> b({2, 3}, {4, 5}); Box<> a(rank); TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, IndexTransform<>(), a)); EXPECT_EQ(a, b); } TEST(PropagateBoundsTest, IdentityTransform) { auto b = Box({2, 3}, {4, 5}); Box<2> a; DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; auto b_implicit_lower_bounds = DimensionSet::FromBools({0, 1}); auto b_implicit_upper_bounds = DimensionSet::FromBools({1, 0}); TENSORSTORE_ASSERT_OK( PropagateBounds(b, b_implicit_lower_bounds, b_implicit_upper_bounds, IndexTransform<2, 2>(), a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(a, b); EXPECT_EQ(b_implicit_lower_bounds, a_implicit_lower_bounds); EXPECT_EQ(b_implicit_upper_bounds, a_implicit_upper_bounds); } TEST(PropagateBoundsTest, ValidateOnly) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({5, 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<2> a; DimensionSet b_implicit_lower_bounds = DimensionSet::FromBools({0, 1, 0}); DimensionSet b_implicit_upper_bounds = DimensionSet::FromBools({1, 0, 0}); DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; TENSORSTORE_ASSERT_OK(PropagateBounds( b, b_implicit_lower_bounds, b_implicit_upper_bounds, transform, a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(BoxView({2, 3}, {5, 10}), a); EXPECT_THAT(a_implicit_lower_bounds, DimensionSet()); EXPECT_THAT(a_implicit_upper_bounds, DimensionSet()); } TEST(PropagateBoundsTest, Constant) { auto transform = IndexTransformBuilder<0, 2>() .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(); Box<0> a; TENSORSTORE_ASSERT_OK(PropagateBounds( Box({2, 1}, {2, 3}), DimensionSet::FromBools({1, 0}), DimensionSet::FromBools({0, 0}), transform, a)); } TEST(PropagateBoundsTest, ConstantError) { auto transform = IndexTransformBuilder<0, 2>() .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(); Box<0> a; EXPECT_THAT(PropagateBounds( Box({2, 1}, {2, 3}), DimensionSet::FromBools({0, 1}), DimensionSet::FromBools({0, 0}), transform, a), MatchesStatus(absl::StatusCode::kOutOfRange, "Checking bounds of constant output index map for " "dimension 0: Index 1 is outside valid range .*")); } TEST(PropagateBoundsTest, ConstantEmptyDomain) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto transform, (IndexTransformBuilder<2, 1>() .input_shape({0, 2}) .output_constant(0, 42) .Finalize())); Box<2> a; TENSORSTORE_EXPECT_OK(PropagateBounds( Box<1>({5}), DimensionSet(), DimensionSet(), transform, a)); EXPECT_EQ(a, BoxView({0, 2})); } TEST(PropagateBoundsTest, Propagate0Upper1Lower) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_shape({5, 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); Box<2> a; DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; TENSORSTORE_ASSERT_OK(PropagateBounds( Box({2, 3, 4}, {50, 66, 100}), DimensionSet::FromBools({0, 1, 1}), DimensionSet::FromBools({1, 0, 1}), transform, a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(BoxView({2, -9}, {19 - 2, 13 - -9}), a); EXPECT_THAT(a_implicit_lower_bounds, DimensionSet::FromBools({0, 1})); EXPECT_THAT(a_implicit_upper_bounds, DimensionSet::FromBools({1, 0})); } TEST(PropagateBoundsTest, PropagateImplicitConstraints1) { const auto transform = IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_exclusive_max({2}) .implicit_upper_bounds({1}) .output_identity_transform() .Finalize() .value(); Box<1> a; DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; TENSORSTORE_ASSERT_OK( PropagateBounds(Box({0}, {4}), DimensionSet::FromBools({1}), DimensionSet(), transform, a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(BoxView({-1}, {5}), a); EXPECT_THAT(a_implicit_lower_bounds, DimensionSet()); EXPECT_THAT(a_implicit_upper_bounds, DimensionSet()); } TEST(PropagateBoundsTest, PropagateImplicitConstraints2) { const auto transform = IndexTransformBuilder<1, 2>() .input_origin({-1}) .input_exclusive_max({2}) .implicit_upper_bounds({1}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .Finalize() .value(); Box<1> a; DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; TENSORSTORE_ASSERT_OK(PropagateBounds( Box({-1, 0}, {3, 4}), DimensionSet::FromBools({1, 1}), DimensionSet::FromBools({1, 0}), transform, a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(BoxView({-1}, {5}), a); EXPECT_THAT(a_implicit_lower_bounds, DimensionSet()); EXPECT_THAT(a_implicit_upper_bounds, DimensionSet()); } TEST(PropagateBoundsTest, PropagateNegativeStride) { auto transform = IndexTransformBuilder<2, 1>() .input_origin({2, 3}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({1, 0}) .input_shape({4, 10}) .output_single_input_dimension(0, 15, -2, 0) .Finalize() .value(); const Box<1> b({2}, {50}); Box<2> a; DimensionSet b_implicit_lower_bounds; DimensionSet b_implicit_upper_bounds = DimensionSet::FromBools({1}); DimensionSet a_implicit_lower_bounds, a_implicit_upper_bounds; TENSORSTORE_ASSERT_OK(PropagateBounds( b, b_implicit_lower_bounds, b_implicit_upper_bounds, transform, a, a_implicit_lower_bounds, a_implicit_upper_bounds)); EXPECT_EQ(BoxView({2, 3}, {7 - 2, 10}), a); EXPECT_THAT(a_implicit_lower_bounds, DimensionSet::FromBools({0, 1})); EXPECT_THAT(a_implicit_upper_bounds, DimensionSet::FromBools({0, 0})); } TEST(PropagateExplicitBoundsTest, Propagate0Upper1Upper) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 10}) .input_shape({5, 11}) .implicit_lower_bounds({0, 1}) .implicit_upper_bounds({0, 1}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<2> a; TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, transform, a)); EXPECT_EQ(Box<>({2, -9}, {5, 22}), a); } TEST(PropagateExplicitBoundsTest, PropagateExtraExplicit) { auto transform = IndexTransformBuilder<3, 3>() .input_origin({2, 10, 7}) .input_shape({5, 11, 8}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({0, 1, 0}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<3> a; TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, transform, a)); EXPECT_EQ(Box<>({2, -9, 7}, {5, 22, 8}), a); } TEST(PropagateExplicitBoundsTest, PropagateExtraImplicitLower) { auto transform = IndexTransformBuilder<3, 3>() .input_origin({2, 10, 7}) .input_shape({5, 11, 8}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({0, 1, 0}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<3> a; TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, transform, a)); EXPECT_EQ(Box<>({2, -9, 7}, {5, 22, 8}), a); } TEST(PropagateExplicitBoundsTest, PropagateExtraImplicitUpper) { auto transform = IndexTransformBuilder<3, 3>() .input_origin({2, 10, 7}) .input_shape({5, 11, 8}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({0, 1, 1}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<3> a; TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, transform, a)); EXPECT_EQ(Box<>({2, -9, 7}, {5, 22, 8}), a); } TEST(PropagateExplicitBoundsTest, OutOfBounds) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({5, 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 60, 100}); Box<2> a; EXPECT_THAT( PropagateExplicitBounds(b, transform, a), MatchesStatus( absl::StatusCode::kOutOfRange, "Propagated bounds \\[-9, 11\\), with size=20, for dimension 1 are " "incompatible with existing bounds \\[3, 13\\), with size=10.*")); } TEST(PropagateExplicitBoundsTest, OutOfBoundsEmptyDomain) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({0, 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 60, 100}); Box<2> a; TENSORSTORE_EXPECT_OK(PropagateExplicitBounds(b, transform, a)); } TEST(PropagateExplicitBoundsTest, OutOfBoundsInfLower) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, -kInfIndex}) .input_shape({5, kInfIndex + 4}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 60, 100}); Box<2> a; EXPECT_THAT(PropagateExplicitBounds(b, transform, a), MatchesStatus( absl::StatusCode::kOutOfRange, "Propagated bounds \\[-9, 11\\), with size=20, for dimension " "1 are incompatible with existing bounds \\(-inf, 4\\).*")); } TEST(PropagateExplicitBoundsTest, OutOfBoundsInfUpper) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 2}) .input_shape({5, kInfIndex + 1 - 2}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 60, 100}); Box<2> a; EXPECT_THAT( PropagateExplicitBounds(b, transform, a), MatchesStatus( absl::StatusCode::kOutOfRange, "Propagated bounds \\[-9, 11\\), with size=20, for dimension 1 are " "incompatible with existing bounds \\[2, \\+inf\\).*")); } TEST(PropagateExplicitBoundsTest, Overflow) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, -kInfIndex}) .input_shape({5, kInfIndex + 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 1, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, kMinFiniteIndex, 4}, {50, -kMinFiniteIndex + 69, 100}); Box<2> a; EXPECT_THAT(PropagateExplicitBounds(b, transform, a), MatchesStatus(absl::StatusCode::kInvalidArgument, "Propagating bounds from dimension 1 to input " "dimension 1: Integer overflow propagating .*")); } TEST(PropagateExplicitBoundsTest, ZeroSize) { auto transform = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({5, 0}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> b({2, 3, 4}, {50, 66, 100}); Box<2> a; TENSORSTORE_ASSERT_OK(PropagateExplicitBounds(b, transform, a)); EXPECT_EQ(BoxView({2, 3}, {5, 0}), a); } TEST(PropagateExplicitBoundsToTransformTest, InvalidTransformTreatedAsIdentityTransformDefaultImplicit) { IndexTransform<2, 2> t; Box<2> output_domain({1, 2}, {3, 4}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t_expected, IndexTransformBuilder(2, 2) .input_bounds(output_domain) .implicit_lower_bounds({0, 0}) .implicit_upper_bounds({0, 0}) .output_identity_transform() .Finalize()); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), ::testing::Optional(t_expected)); } TEST(PropagateBoundsToTransformTest, InvalidTransformTreatedAsIdentityTransformImplicit) { IndexTransform<2, 2> t; Box<2> output_domain({1, 2}, {3, 4}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t_expected, IndexTransformBuilder(2, 2) .input_bounds(output_domain) .implicit_lower_bounds({1, 0}) .implicit_upper_bounds({0, 1}) .output_identity_transform() .Finalize()); EXPECT_THAT( PropagateBoundsToTransform(output_domain, DimensionSet::FromBools({1, 0}), DimensionSet::FromBools({0, 1}), t), ::testing::Optional(t_expected)); } TEST(PropagateExplicitBoundsToTransformTest, IndexArrayNoPropagationNeeded) { Box<1> output_domain({1}, {10}); auto t = IndexTransformBuilder<1, 1>() .input_origin({11}) .input_shape({3}) .output_index_array(0, 2, 3, MakeArray<Index>({1, 2, 1}), IndexInterval::Closed(1, 2)) .Finalize() .value(); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), ::testing::Optional(t)); } TEST(PropagateExplicitBoundsToTransformTest, IndexArrayZeroElements) { Box<2> output_domain({0, 2}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(2, 2) .input_shape({3, 2}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 0) .output_index_array(1, 0, 1, MakeArray<Index>({{1, 2}})) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t_expected, IndexTransformBuilder(2, 2) .input_shape({0, 2}) .output_single_input_dimension(0, 0) .output_constant(1, 0) .Finalize()); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), ::testing::Optional(t_expected)); } TEST(PropagateExplicitBoundsToTransformTest, SingleInputDimensionNoPropagationNeeded) { Box<1> output_domain({1}, {10}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(1, 1) .input_origin({11}) .input_shape({3}) .output_single_input_dimension(0, -32, 3, 0) .Finalize()); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), ::testing::Optional(t)); } TEST(PropagateExplicitBoundsToTransformTest, PropagateToIndexRange) { Box<1> output_domain({1}, {10}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(1, 1) .input_origin({11}) .input_shape({3}) .output_index_array(0, 2, 3, MakeArray<Index>({1, 2, 1})) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t_expected, IndexTransformBuilder(1, 1) .input_origin({11}) .input_shape({3}) .output_index_array(0, 2, 3, MakeArray<Index>({1, 2, 1}), IndexInterval::Closed(0, 2)) .Finalize()); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), ::testing::Optional(t_expected)); } TEST(PropagateBoundsToTransformTest, PropagateToIndexRange) { Box<1> output_domain({1}, {10}); const auto get_transform = [](tensorstore::Result<IndexInterval> index_range) { return IndexTransformBuilder<1, 1>() .input_origin({11}) .input_shape({3}) .output_index_array(0, 2, 3, MakeArray<Index>({1, 2, 1}), index_range) .Finalize() .value(); }; EXPECT_THAT( PropagateBoundsToTransform(output_domain, DimensionSet::FromBools({0}), DimensionSet::FromBools({0}), get_transform(IndexInterval())), ::testing::Optional(get_transform(IndexInterval::Closed(0, 2)))); EXPECT_THAT( PropagateBoundsToTransform(output_domain, DimensionSet::FromBools({1}), DimensionSet::FromBools({0}), get_transform(IndexInterval())), ::testing::Optional(get_transform(IndexInterval::Closed(-kInfIndex, 2)))); EXPECT_THAT( PropagateBoundsToTransform(output_domain, DimensionSet::FromBools({0}), DimensionSet::FromBools({1}), get_transform(IndexInterval())), ::testing::Optional(get_transform(IndexInterval::Closed(0, kInfIndex)))); EXPECT_THAT( PropagateBoundsToTransform(output_domain, DimensionSet::FromBools({1}), DimensionSet::FromBools({1}), get_transform(IndexInterval())), ::testing::Optional(get_transform(IndexInterval()))); } TEST(PropagateBoundsToTransformTest, PropagateToInputDomain) { Box<1> output_bounds({1}, {10}); auto t = IndexTransformBuilder<1, 1>() .implicit_lower_bounds({1}) .implicit_upper_bounds({1}) .output_single_input_dimension(0, -32, 3, 0) .Finalize() .value(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto propagated_transform, PropagateBoundsToTransform(output_bounds, DimensionSet::FromBools({1}), DimensionSet::FromBools({0}), t)); auto expected_transform = IndexTransformBuilder<1, 1>() .input_origin({11}) .input_shape({4}) .implicit_lower_bounds({1}) .implicit_upper_bounds({0}) .output_single_input_dimension(0, -32, 3, 0) .Finalize() .value(); EXPECT_EQ(expected_transform, propagated_transform); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto output_domain, IndexDomainBuilder<1>() .bounds(output_bounds) .implicit_lower_bounds({1}) .implicit_upper_bounds({0}) .Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto propagated_transform2, PropagateBoundsToTransform(output_domain, t)); EXPECT_EQ(expected_transform, propagated_transform2); } TEST(PropagateExplicitBoundsToTransformTest, OutOfBounds) { auto t = IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({5, 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 3, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> output_domain({2, 3, 4}, {50, 60, 100}); EXPECT_THAT( PropagateExplicitBoundsToTransform(output_domain, t), MatchesStatus( absl::StatusCode::kOutOfRange, "Propagated bounds \\[-9, 11\\), with size=20, for dimension 1 are " "incompatible with existing bounds \\[3, 13\\), with size=10.*")); } TEST(PropagateExplicitBoundsToTransformTest, Overflow) { auto t = IndexTransformBuilder<2, 3>() .input_origin({2, -kInfIndex}) .input_shape({5, kInfIndex + 10}) .output_single_input_dimension(0, 15, 2, 0) .output_single_input_dimension(1, 30, 1, 1) .output_single_input_dimension(2, 45, 4, 1) .Finalize() .value(); const Box<3> output_domain({2, kMinFiniteIndex, 4}, {50, -kMinFiniteIndex + 69, 100}); EXPECT_THAT(PropagateExplicitBoundsToTransform(output_domain, t), MatchesStatus(absl::StatusCode::kInvalidArgument, "Propagating bounds from dimension 1 to input " "dimension 1: Integer overflow propagating .*")); } }
559
cpp
google/tensorstore
interval_slice_op
tensorstore/index_space/internal/interval_slice_op.cc
tensorstore/index_space/interval_slice_op_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_INTERVAL_SLICE_OP_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_INTERVAL_SLICE_OP_H_ #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_vector_or_scalar.h" #include "tensorstore/internal/meta.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyIntervalSliceOp( IndexTransform<> transform, DimensionIndexBuffer* dimensions, IntervalForm interval_form, bool translate, IndexVectorOrScalarView start_vector, IndexVectorOrScalarView stop_or_size_vector, IndexVectorOrScalarView stride_vector, bool domain_only = false); template <typename StartVector, typename StopOrSizeVector, typename StrideVector> struct IntervalSliceOp { static constexpr bool selected_dimensions_are_new = false; static constexpr DimensionIndex static_selection_rank = RankConstraint::And({IsIndexVectorOrScalar<StartVector>::extent, IsIndexVectorOrScalar<StopOrSizeVector>::extent, IsIndexVectorOrScalar<StrideVector>::extent}); constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( (input_rank == dynamic_rank || input_rank >= static_selection_rank) && "Number of dimensions must not exceed input rank."); return input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( RankConstraint::EqualOrUnspecified(num_input_dims, static_selection_rank) && "Number of selected dimensions must match number of indices."); return num_input_dims == dynamic_rank ? static_selection_rank : num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyIntervalSliceOp( std::move(transform), dimensions, interval_form, translate, IndexVectorOrScalarView(start_vector), IndexVectorOrScalarView(stop_or_size_vector), IndexVectorOrScalarView(stride_vector), domain_only); } IntervalForm interval_form; bool translate; StartVector start_vector; StopOrSizeVector stop_or_size_vector; StrideVector stride_vector; }; Result<IndexTransform<>> ApplyStrideOp(IndexTransform<> transform, DimensionIndexBuffer* dimensions, IndexVectorOrScalarView strides, bool domain_only); template <typename StrideVector> struct StrideOp { static constexpr bool selected_dimensions_are_new = false; static constexpr DimensionIndex static_selection_rank = IsIndexVectorOrScalar<StrideVector>::extent; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( (input_rank == dynamic_rank || input_rank >= static_selection_rank) && "Number of dimensions must not exceed input rank."); return input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( RankConstraint::EqualOrUnspecified(num_input_dims, static_selection_rank) && "Number of selected dimensions must match number of strides."); return num_input_dims == dynamic_rank ? static_selection_rank : num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyStrideOp(std::move(transform), dimensions, IndexVectorOrScalarView(stride_vector), domain_only); } StrideVector stride_vector; }; template <DimensionIndex Rank> struct BoxSliceOp { static constexpr bool selected_dimensions_are_new = false; static constexpr DimensionIndex static_selection_rank = Rank; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( (input_rank == dynamic_rank || input_rank >= static_selection_rank) && "Number of dimensions must not exceed input rank."); return input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( RankConstraint::EqualOrUnspecified(num_input_dims, static_selection_rank) && "Number of selected dimensions must match number of strides."); return num_input_dims == dynamic_rank ? static_selection_rank : num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyIntervalSliceOp( std::move(transform), dimensions, IntervalForm::sized, translate, IndexVectorOrScalarView(box.origin()), IndexVectorOrScalarView(box.shape()), 1, domain_only); } BoxView<Rank> box; bool translate; }; } } #endif #include "tensorstore/index_space/internal/interval_slice_op.h" #include <algorithm> #include "absl/status/status.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/division.h" #include "tensorstore/util/span.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { struct InputDimensionIntervalSliceInfo { Index offset; Index stride; }; absl::Status GetIntervalSliceInfo( span<InputDimensionIntervalSliceInfo> dimension_info, TransformRep* transform, span<const DimensionIndex> dimensions, IntervalForm interval_form, bool translate, IndexVectorOrScalarView start_vector, IndexVectorOrScalarView stop_or_size_vector, IndexVectorOrScalarView stride_vector) { const DimensionIndex input_rank = dimension_info.size(); assert(input_rank == transform->input_rank); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { dimension_info[input_dim] = InputDimensionIntervalSliceInfo{0, 1}; } auto compute_input_domain_slice = [&](DimensionIndex i, DimensionIndex input_dim) { const Index stride = stride_vector[i]; const InputDimensionRef d = transform->input_dimension(input_dim); auto& info = dimension_info[input_dim]; info.stride = stride; OptionallyImplicitIndexInterval new_domain; TENSORSTORE_RETURN_IF_ERROR(ComputeStridedSliceMap( d.optionally_implicit_domain(), interval_form, translate ? 0 : kImplicit, start_vector[i], stop_or_size_vector[i], stride, &new_domain, &info.offset)); d.domain() = new_domain.interval(); d.implicit_lower_bound() = new_domain.implicit_lower(); d.implicit_upper_bound() = new_domain.implicit_upper(); return absl::OkStatus(); }; for (DimensionIndex i = 0; i < dimensions.size(); ++i) { const DimensionIndex input_dim = dimensions[i]; TENSORSTORE_RETURN_IF_ERROR( compute_input_domain_slice(i, input_dim), MaybeAnnotateStatus( _, tensorstore::StrCat("Computing interval slice for input dimension ", input_dim))); } return absl::OkStatus(); } absl::Status ApplyOffsetsAndStridesToOutputIndexMaps( TransformRep* rep, span<const InputDimensionIntervalSliceInfo> input_dimension_info) { const DimensionIndex input_rank = input_dimension_info.size(); const DimensionIndex output_rank = rep->output_rank; BoxView<> input_domain = rep->input_domain(input_rank); const bool domain_is_explicitly_empty = IsDomainExplicitlyEmpty(rep); span<OutputIndexMap> maps = rep->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& map = maps[output_dim]; switch (map.method()) { case OutputIndexMethod::constant: break; case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); const auto& slice_info = input_dimension_info[input_dim]; Index offset; if (internal::MulOverflow(slice_info.offset, map.stride(), &offset) || internal::AddOverflow(offset, map.offset(), &map.offset())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing offset for output dimension ", output_dim)); } if (internal::MulOverflow(slice_info.stride, map.stride(), &map.stride())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing stride for output dimension ", output_dim)); } break; } case OutputIndexMethod::array: { if (domain_is_explicitly_empty) { map.SetConstant(); map.offset() = 0; map.stride() = 0; break; } auto& index_array_data = map.index_array_data(); Index element_pointer_byte_offset = 0; bool array_is_singleton = true; for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { const auto& slice_info = input_dimension_info[input_dim]; Index& byte_stride = index_array_data.byte_strides[input_dim]; element_pointer_byte_offset = internal::wrap_on_overflow::Add( element_pointer_byte_offset, internal::wrap_on_overflow::Multiply( byte_stride, slice_info.offset)); byte_stride = internal::wrap_on_overflow::Multiply(byte_stride, slice_info.stride); if (input_domain.shape()[input_dim] == 1) { element_pointer_byte_offset = internal::wrap_on_overflow::Add( element_pointer_byte_offset, internal::wrap_on_overflow::Multiply( byte_stride, input_domain.origin()[input_dim])); byte_stride = 0; } else if (byte_stride != 0) { array_is_singleton = false; } } index_array_data.element_pointer = AddByteOffset(std::move(index_array_data.element_pointer), element_pointer_byte_offset); if (array_is_singleton) { const Index index = *index_array_data.array_view(input_domain) .byte_strided_origin_pointer(); const IndexInterval index_range = index_array_data.index_range; map.SetConstant(); TENSORSTORE_RETURN_IF_ERROR(ReplaceZeroRankIndexArrayIndexMap( index, index_range, &map.offset(), &map.stride())); } break; } } } internal_index_space::DebugCheckInvariants(rep); return absl::OkStatus(); } } Result<IndexTransform<>> ApplyIntervalSliceOp( IndexTransform<> transform, DimensionIndexBuffer* dimensions, IntervalForm interval_form, bool translate, IndexVectorOrScalarView start_vector, IndexVectorOrScalarView stop_or_size_vector, IndexVectorOrScalarView stride_vector, bool domain_only) { const DimensionIndex num_dims = dimensions->size(); const DimensionIndex input_rank = transform.input_rank(); TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(start_vector, num_dims)); TENSORSTORE_RETURN_IF_ERROR( CheckIndexVectorSize(stop_or_size_vector, num_dims)); TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(stride_vector, num_dims)); TransformRep::Ptr<> rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); InputDimensionIntervalSliceInfo input_dimension_info[kMaxRank]; TENSORSTORE_RETURN_IF_ERROR( GetIntervalSliceInfo(span(input_dimension_info).first(input_rank), rep.get(), *dimensions, interval_form, translate, start_vector, stop_or_size_vector, stride_vector)); TENSORSTORE_RETURN_IF_ERROR(ApplyOffsetsAndStridesToOutputIndexMaps( rep.get(), span(input_dimension_info).first(input_rank))); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } Result<IndexTransform<>> ApplyStrideOp(IndexTransform<> transform, DimensionIndexBuffer* dimensions, IndexVectorOrScalarView strides, bool domain_only) { const DimensionIndex num_dims = dimensions->size(); const DimensionIndex input_rank = transform.input_rank(); TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(strides, num_dims)); TransformRep::Ptr<> rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); InputDimensionIntervalSliceInfo input_dimension_info[kMaxRank]; std::fill_n(&input_dimension_info[0], input_rank, InputDimensionIntervalSliceInfo{0, 1}); const auto compute_input_domain = [&](DimensionIndex i, DimensionIndex input_dim) { const Index stride = strides[i]; if (stride == 0) { return absl::InvalidArgumentError("Stride must be non-zero"); } input_dimension_info[input_dim].stride = stride; const InputDimensionRef d = rep->input_dimension(input_dim); TENSORSTORE_ASSIGN_OR_RETURN( auto new_domain, GetAffineTransformDomain(d.optionally_implicit_domain(), 0, stride)); d.domain() = new_domain.interval(); d.implicit_lower_bound() = new_domain.implicit_lower(); d.implicit_upper_bound() = new_domain.implicit_upper(); return absl::OkStatus(); }; for (DimensionIndex i = 0; i < num_dims; ++i) { const DimensionIndex input_dim = (*dimensions)[i]; TENSORSTORE_RETURN_IF_ERROR( compute_input_domain(i, input_dim), MaybeAnnotateStatus( _, tensorstore::StrCat("Applying stride to input dimension ", input_dim))); } TENSORSTORE_RETURN_IF_ERROR(ApplyOffsetsAndStridesToOutputIndexMaps( rep.get(), span(input_dimension_info).first(input_rank))); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::AllDims; using ::tensorstore::BoxView; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kImplicit; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::StrCat; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; using ::tensorstore::internal_index_space::TestDimExpressionError; TEST(ClosedIntervalTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, -4}) .input_shape({4, 4, 3}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0, -2, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 6}, {2, 3, -3}}, }; TestDimExpression( original_transform, Dims(0, 2).ClosedInterval({1, 8}, {4, 3}, {1, -2}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression( original_transform, Dims("x", "z").ClosedInterval({1, 8}, {4, 3}, {1, -2}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(ClosedIntervalTest, ExampleWithOffset) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, -4}) .input_shape({4, 4, 4}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 1, -2, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 7}, {2, 3, -3}}, }; TestDimExpression( original_transform, Dims(0, 2).ClosedInterval({1, 9}, {4, 3}, {1, -2}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(HalfOpenIntervalTest, Example) { const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, -4}) .input_shape({3, 4, 3}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0, -2, 2) .Finalize() .value(); TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(), Dims(0, 2).HalfOpenInterval({1, 8}, {4, 3}, {1, -2}), {0, 2}, expected_new_transform, expected_new_transform, {{{2, 3, 6}, {2, 3, -3}}}); } TEST(SizedIntervalTest, Example) { const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, -4}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0, -2, 2) .Finalize() .value(); TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({0, 2, 0}) .input_shape({7, 4, 10}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(), Dims(0, 2).SizedInterval({1, 8}, {3, 2}, {1, -2}), {0, 2}, expected_new_transform, expected_new_transform, {{{2, 3, 6}, {2, 3, -3}}}); } TEST(ClosedIntervalTest, OneDimensionalConstantNonStrided) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({10}) .output_constant(0, 3) .Finalize() .value(), AllDims().ClosedInterval(-3, 4), {0}, IndexTransformBuilder<1, 1>() .input_origin({-3}) .input_shape({8}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-3}) .input_shape({8}) .output_constant(0, 3) .Finalize() .value(), {{{1}, {1}}}); } TEST(ClosedIntervalTest, OneDimensionalConstantPositiveStrided) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({12}) .output_constant(0, 3) .Finalize() .value(), AllDims().ClosedInterval(-3, 5, 2), {0}, IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({5}) .output_single_input_dimension(0, -1, 2, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({5}) .output_constant(0, 3) .Finalize() .value(), {{{1}, {1}}}); } TEST(ClosedIntervalTest, OneDimensionalConstantNegativeStrided) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({12}) .output_constant(0, 3) .Finalize() .value(), AllDims().ClosedInterval(5, -3, -2), {0}, IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({5}) .output_single_input_dimension(0, 1, -2, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({5}) .output_constant(0, 3) .Finalize() .value(), {{{1}, {1}}}); } TEST(ClosedIntervalTest, OneDimensionalSingleInputDimensionNonStrided) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({10}) .output_single_input_dimension(0, 3, 2, 0) .Finalize() .value(), AllDims().ClosedInterval(-3, 4), {0}, IndexTransformBuilder<1, 1>() .input_origin({-3}) .input_shape({8}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-3}) .input_shape({8}) .output_single_input_dimension(0, 3, 2, 0) .Finalize() .value(), {{{1}, {1}}}); } TEST(ClosedIntervalTest, OneDimensionalSingleInputDimensionPositiveStrided) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({12}) .output_single_input_dimension(0, 3, 2, 0) .Finalize() .value(), AllDims().ClosedInterval(-3, 5, 2), {0}, IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({5}) .output_single_input_dimension(0, -1, 2, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({5}) .output_single_input_dimension(0, 1, 4, 0) .Finalize() .value(), {{{-3}, {-1}}, {{-1}, {0}}}); } TEST(ClosedIntervalTest, OneDimensionalArrayNonStrided) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3})) .Finalize() .value(), AllDims().ClosedInterval(-1, 1), {0}, IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({3}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({3}) .output_index_array(0, 3, 2, MakeArray<Index>({5, 4, 3})) .Finalize() .value(), {{{1}, {1}}}); } TEST(ClosedIntervalTest, OneDimensionalArrayNonStridedZeroElements) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3})) .Finalize() .value(), AllDims().ClosedInterval(-1, -2), {0}, IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({0}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({0}) .output_constant(0, 0) .Finalize() .value(), {}); } TEST(ClosedIntervalTest, OneDimensionalArrayNonStridedOneElement) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3})) .Finalize() .value(), AllDims().ClosedInterval(-1, -1), {0}, IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({1}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({-1}) .input_shape({1}) .output_constant(0, 13) .Finalize() .value(), {{{-1}, {-1}}}); } TEST(ClosedIntervalTest, OneDimensionalArrayNonStridedInvalidOneElement) { TestDimExpressionError( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3}), IndexInterval::Closed(3, 4)) .Finalize() .value(), AllDims().ClosedInterval(-1, -1), absl::StatusCode::kOutOfRange, "Index 5 is outside valid range \\[3, 5\\)"); } TEST(SliceTranslateClosedIntervalTest, OneDimensionalArrayNonStrided) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3})) .Finalize() .value(), AllDims().TranslateClosedInterval(-1, 1), {0}, IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_single_input_dimension(0, -1, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_index_array(0, 3, 2, MakeArray<Index>({5, 4, 3})) .Finalize() .value(), {{{1}, {2}}}); } TEST(SliceTranslateClosedIntervalTest, OneDimensionalArrayStrided) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({4}) .output_index_array(0, 3, 2, MakeArray<Index>({6, 5, 4, 3})) .Finalize() .value(), AllDims().TranslateClosedInterval(-1, 1, 2), {0}, IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_single_input_dimension(0, -1, 2, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({2}) .output_index_array(0, 3, 2, MakeArray<Index>({5, 3})) .Finalize() .value(), {{{-1}, {0}}}); } TEST(ClosedIntervalTest, DimSubset) { TestDimExpression( IndexTransformBuilder<4, 4>() .input_origin({-10, 1, 2, -kInfIndex}) .input_shape({kInfIndex + 1, 4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 1) .output_single_input_dimension(1, 2, 3, 3) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>( {{{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}}})) .Finalize() .value(), Dims(1, 2, 0).ClosedInterval({2, 2, -5}, {3, 4, 10}), {1, 2, 0}, IndexTransformBuilder<4, 4>() .input_origin({-5, 2, 2, -kInfIndex}) .input_shape({16, 2, 3, kInfIndex + 7}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<4, 4>() .input_origin({-5, 2, 2, -kInfIndex}) .input_shape({16, 2, 3, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 1) .output_single_input_dimension(1, 2, 3, 3) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>( {{{{15}, {16}, {17}}, {{25}, {26}, {27}}}})) .Finalize() .value(), {{{1, 2, 3, 4}, {1, 2, 3, 4}}}); } TEST(SliceClosedIntervalTest, DimSubsetStriding) { TestDimExpression( IndexTransformBuilder<4, 4>() .input_origin({-10, 1, 2, -kInfIndex}) .input_shape({kInfIndex + 1, 4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 1) .output_single_input_dimension(1, 2, 3, 3) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>( {{{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}}})) .Finalize() .value(), Dims(1, 2, 0, 3) .ClosedInterval({3, 2, 10, 1}, {2, 4, -5, kImplicit}, {-1, 2, -2, 4}), {1, 2, 0, 3}, IndexTransformBuilder<4, 4>() .input_origin({-5, -3, 1, 0}) .input_shape({8, 2, 2, 2}) .output_single_input_dimension(0, 0, -2, 0) .output_single_input_dimension(1, 0, -1, 1) .output_single_input_dimension(2, 0, 2, 2) .output_single_input_dimension(3, 1, 4, 3) .Finalize() .value(), IndexTransformBuilder<4, 4>() .input_origin({-5, -3, 1, 0}) .input_shape({8, 2, 2, 2}) .output_single_input_dimension(0, 1, -4, 1) .output_single_input_dimension(1, 5, 12, 3) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{{25}, {27}}, {{15}, {17}}}})) .Finalize() .value(), {{{2, 2, 2, 5}, {-1, -2, 1, 1}}}); } TEST(SliceClosedIntervalTest, UnboundedStart) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).ClosedInterval(kImplicit, 9), {0}, IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({5}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({5}) .Finalize() .value(), {}); } TEST(SliceClosedIntervalTest, OneDimensionalNegativeStridedUnboundedStop) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).ClosedInterval(12, kImplicit, -1), {0}, IndexTransformBuilder<1, 1>() .input_origin({-12}) .input_shape({8}) .output_single_input_dimension(0, 0, -1, 0) .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({-12}) .input_shape({8}) .Finalize() .value(), {}); } TEST(SliceHalfOpenIntervalTest, OneDimensionalUnstrided) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).HalfOpenInterval(6, 10), {0}, IndexTransformBuilder<1, 1>() .input_origin({6}) .input_shape({4}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({6}) .input_shape({4}) .Finalize() .value(), {}); } TEST(SliceHalfOpenIntervalTest, OneDimensionalUnstridedUnboundedStart) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).HalfOpenInterval(kImplicit, 10), {0}, IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({5}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({5}) .Finalize() .value(), {}); } TEST(SliceHalfOpenIntervalTest, OneDimensionalUnstridedUnboundedStop) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).HalfOpenInterval(6, kImplicit), {0}, IndexTransformBuilder<1, 1>() .input_origin({6}) .input_shape({9}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({6}) .input_shape({9}) .Finalize() .value(), {}); } TEST(SliceHalfOpenIntervalTest, OneDimensionalNegativeStridedUnboundedStop) { TestDimExpression(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).HalfOpenInterval(12, kImplicit, -1), {0}, IndexTransformBuilder<1, 1>() .input_origin({-12}) .input_shape({8}) .output_single_input_dimension(0, 0, -1, 0) .Finalize() .value(), IndexTransformBuilder<1, 0>() .input_origin({-12}) .input_shape({8}) .Finalize() .value(), {}); } TEST(SliceHalfOpenIntervalTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<1, 0>().Finalize().value(), Dims(0).HalfOpenInterval(6, std::numeric_limits<Index>::min() + 1), absl::StatusCode::kInvalidArgument, StrCat(".* do not specify a valid closed index interval")); } TEST(SliceClosedIntervalTest, ErrorHandling) { TestDimExpressionError(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).ClosedInterval(6, 10, 0), absl::StatusCode::kInvalidArgument, ".*Invalid stride 0"); TestDimExpressionError( IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).ClosedInterval(6, 4), absl::StatusCode::kInvalidArgument, ".*\\(6, 4\\) do not specify a valid closed index interval"); TestDimExpressionError( IndexTransformBuilder<1, 0>().input_shape({10}).Finalize().value(), Dims(0).ClosedInterval(-kInfIndex, 4, 2), absl::StatusCode::kInvalidArgument, ".*Slicing with non-unit stride of 2 requires a finite start index"); TestDimExpressionError( IndexTransformBuilder<1, 0>() .input_origin({2}) .input_shape({kInfIndex - 2 + 1}) .Finalize() .value(), Dims(0).ClosedInterval(kInfIndex, 4, -2), absl::StatusCode::kInvalidArgument, ".*Slicing with non-unit stride of -2 requires a finite start index"); TestDimExpressionError(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).ClosedInterval(6, 15), absl::StatusCode::kOutOfRange, ".*Slice interval \\[6, 16\\) is not " "contained within domain \\[5, 15\\)"); TestDimExpressionError( IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, 0, std::numeric_limits<Index>::max(), 0) .Finalize() .value(), Dims(0).ClosedInterval(5, 10, 3), absl::StatusCode::kInvalidArgument, "Integer overflow computing offset for output dimension 0"); TestDimExpressionError( IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, std::numeric_limits<Index>::max(), 1, 0) .Finalize() .value(), Dims(0).ClosedInterval(5, 10, 3), absl::StatusCode::kInvalidArgument, "Integer overflow computing offset for output dimension 0"); TestDimExpressionError( IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, 0, std::numeric_limits<Index>::max(), 0) .Finalize() .value(), Dims(0).ClosedInterval(5, 10, 2), absl::StatusCode::kInvalidArgument, "Integer overflow computing stride for output dimension 0"); } TEST(SliceTranslateClosedIntervalTest, ErrorHandling) { TestDimExpressionError(IndexTransformBuilder<1, 0>().Finalize().value(), Dims(0).TranslateClosedInterval(-kInfIndex, 100), absl::StatusCode::kInvalidArgument, ".*Interval \\(-inf, 101\\) is not bounded below"); } TEST(SliceSizedIntervalTest, ErrorHandling) { TestDimExpressionError(IndexTransformBuilder<1, 0>() .input_origin({5}) .input_shape({10}) .Finalize() .value(), Dims(0).SizedInterval(6, -2), absl::StatusCode::kInvalidArgument,
560
cpp
google/tensorstore
transform_array
tensorstore/index_space/internal/transform_array.cc
tensorstore/index_space/transform_array_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_TRANSFORM_ARRAY_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_TRANSFORM_ARRAY_H_ #include "tensorstore/array.h" #include "tensorstore/index_space/internal/transform_rep.h" namespace tensorstore { namespace internal_index_space { Result<SharedElementPointer<const void>> TransformArraySubRegion( const SharedArrayView<const void, dynamic_rank, offset_origin>& array, TransformRep* transform, const Index* result_origin, const Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints); Result<SharedElementPointer<const void>> TransformArrayPreservingOrigin( SharedArrayView<const void, dynamic_rank, offset_origin> array, TransformRep* transform, Index* result_origin, Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints); Result<SharedElementPointer<const void>> TransformArrayDiscardingOrigin( SharedArrayView<const void, dynamic_rank, offset_origin> array, TransformRep* transform, Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints); } } #endif #include "tensorstore/index_space/internal/transform_array.h" #include "absl/status/status.h" #include "tensorstore/index_space/internal/iterate_impl.h" #include "tensorstore/index_space/internal/propagate_bounds.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" namespace tensorstore { namespace internal_index_space { Result<SharedElementPointer<const void>> TransformArraySubRegion( const SharedArrayView<const void, dynamic_rank, offset_origin>& array, TransformRep* transform, const Index* result_origin, const Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints) { const DimensionIndex input_rank = transform ? transform->input_rank : array.rank(); for (DimensionIndex i = 0; i < input_rank; ++i) { if (result_shape[i] == 0) { std::fill_n(result_byte_strides, input_rank, 0); return SharedElementPointer<const void>(std::shared_ptr<const void>(), array.dtype()); } } namespace flags = input_dimension_iteration_flags; flags::Bitmask input_dimension_flags[kMaxRank]; std::fill_n( &input_dimension_flags[0], input_rank, flags::GetDefaultBitmask(constraints.repeated_elements_constraint())); SingleArrayIterationState single_array_states[2]; TENSORSTORE_RETURN_IF_ERROR( internal_index_space::InitializeSingleArrayIterationState( array, transform, result_origin, result_shape, &single_array_states[0], &input_dimension_flags[0])); if (single_array_states[0].num_array_indexed_output_dimensions == 0) { if (constraints.allocate_constraint() != must_allocate) { std::copy_n(&single_array_states[0].input_byte_strides[0], input_rank, result_byte_strides); return SharedElementPointer<void>( std::shared_ptr<void>(array.pointer(), single_array_states[0].base_pointer), array.element_pointer().dtype()); } const StridedLayoutView<> source_layout( input_rank, result_shape, &single_array_states[0].input_byte_strides[0]); const StridedLayoutView<> new_layout(input_rank, result_shape, result_byte_strides); auto element_pointer = internal::AllocateArrayLike( array.element_pointer().dtype(), source_layout, result_byte_strides, constraints.iteration_constraints(), default_init); CopyArray(ArrayView<const void>( ElementPointer<void>(single_array_states[0].base_pointer, array.element_pointer().dtype()), source_layout), ArrayView<void>(element_pointer, new_layout)); return element_pointer; } MarkSingletonDimsAsSkippable(span(result_shape, input_rank), &input_dimension_flags[0]); SharedElementPointer<void> new_element_pointer; if (constraints.order_constraint()) { Index new_shape[kMaxRank]; for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { new_shape[input_dim] = input_dimension_flags[input_dim] == flags::can_skip ? 1 : result_shape[input_dim]; } ComputeStrides(constraints.order_constraint().order(), array.dtype()->size, span<const Index>(&new_shape[0], input_rank), span(result_byte_strides, input_rank)); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { if (new_shape[input_dim] <= 1) result_byte_strides[input_dim] = 0; } const Index new_origin_offset = IndexInnerProduct(input_rank, result_byte_strides, result_origin); new_element_pointer = internal::AllocateAndConstructSharedElements( ProductOfExtents(span<const Index>(new_shape, input_rank)), default_init, array.dtype()); const absl::Status init_status = internal_index_space::InitializeSingleArrayIterationState( ArrayView<void, dynamic_rank, offset_origin>( AddByteOffset(ElementPointer<void>(new_element_pointer), -new_origin_offset), StridedLayoutView<dynamic_rank, offset_origin>( input_rank, result_origin, &new_shape[0], result_byte_strides)), nullptr, result_origin, result_shape, &single_array_states[1], &input_dimension_flags[0]); assert(init_status.ok()); } DimensionIterationOrder base_layout = constraints.order_constraint() ? ComputeDimensionIterationOrder<2>( single_array_states, span(input_dimension_flags).first(input_rank), {}) : ComputeDimensionIterationOrder<1>( {&single_array_states[0], 1}, span(input_dimension_flags).first(input_rank), {}); if (!constraints.order_constraint()) { Index new_shape[kMaxRank]; Index new_byte_strides[kMaxRank]; for (DimensionIndex i = 0; i < base_layout.pure_strided_end_dim; ++i) { const DimensionIndex input_dim = base_layout.input_dimension_order[i]; new_shape[i] = result_shape[input_dim]; } std::fill_n(result_byte_strides, input_rank, 0); ComputeStrides( ContiguousLayoutOrder::c, array.dtype()->size, span<const Index>(&new_shape[0], base_layout.pure_strided_end_dim), span<Index>(&new_byte_strides[0], base_layout.pure_strided_end_dim)); for (DimensionIndex i = 0; i < base_layout.pure_strided_end_dim; ++i) { const DimensionIndex input_dim = base_layout.input_dimension_order[i]; result_byte_strides[input_dim] = new_byte_strides[i]; } new_element_pointer = internal::AllocateAndConstructSharedElements( ProductOfExtents( span<const Index>(&new_shape[0], base_layout.pure_strided_end_dim)), default_init, array.dtype()); const Index new_origin_offset = IndexInnerProduct(input_rank, result_byte_strides, result_origin); const absl::Status init_status = internal_index_space::InitializeSingleArrayIterationState( ArrayView<void, dynamic_rank, offset_origin>( AddByteOffset(ElementPointer<void>(new_element_pointer), -new_origin_offset), StridedLayoutView<dynamic_rank, offset_origin>( input_rank, result_origin, &new_shape[0], result_byte_strides)), nullptr, result_origin, result_shape, &single_array_states[1], &input_dimension_flags[0]); assert(init_status.ok()); } SimplifiedDimensionIterationOrder layout = SimplifyDimensionIterationOrder<2>( base_layout, span(result_shape, input_rank), single_array_states); const std::array<std::ptrdiff_t, 2> element_sizes{array.dtype()->size, array.dtype()->size}; [[maybe_unused]] const bool success = IterateUsingSimplifiedLayout<2>( layout, span(result_shape, input_rank), {&array.dtype()->copy_assign, nullptr}, nullptr, single_array_states, element_sizes); assert(success); return new_element_pointer; } Result<SharedElementPointer<const void>> TransformArrayPreservingOrigin( SharedArrayView<const void, dynamic_rank, offset_origin> array, TransformRep* transform, Index* result_origin, Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints) { const DimensionIndex input_rank = transform ? transform->input_rank : array.rank(); TENSORSTORE_RETURN_IF_ERROR(PropagateExplicitBounds( array.domain(), transform, MutableBoxView<>(input_rank, result_origin, result_shape))); TENSORSTORE_ASSIGN_OR_RETURN( auto element_pointer, TransformArraySubRegion(array, transform, result_origin, result_shape, result_byte_strides, constraints)); return AddByteOffset(std::move(element_pointer), -IndexInnerProduct(transform->input_rank, result_byte_strides, result_origin)); } Result<SharedElementPointer<const void>> TransformArrayDiscardingOrigin( SharedArrayView<const void, dynamic_rank, offset_origin> array, TransformRep* transform, Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints) { const DimensionIndex input_rank = transform ? transform->input_rank : array.rank(); Index result_origin[kMaxRank]; TENSORSTORE_RETURN_IF_ERROR(PropagateExplicitBounds( array.domain(), transform, MutableBoxView<>(input_rank, &result_origin[0], result_shape))); return TransformArraySubRegion(array, transform, &result_origin[0], result_shape, result_byte_strides, constraints); } } }
#include "tensorstore/index_space/internal/transform_array.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::IdentityTransform; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::MakeArray; using ::tensorstore::MakeOffsetArray; using ::tensorstore::MatchesStatus; TEST(TransformArrayTest, OneDimensionalIdentity) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IdentityTransform<1>()) .value(); EXPECT_EQ(original_array, new_array); } TEST(TransformArrayTest, OneDimensionalIdentityWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IdentityTransform<1>()) .value(); EXPECT_EQ(original_array, new_array); } TEST(TransformArrayTest, OneDimensionalSliceUnstrided) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(1), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 3}), new_array); } TEST(TransformArrayTest, OneDimensionalSliceUnstridedWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, 5, 1, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(6), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 3}), new_array); } TEST(TransformArrayTest, OneDimensionalSliceStrided) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, -1, 2, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(1), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 4}), new_array); } TEST(TransformArrayTest, OneDimensionalSliceStridedWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, 4, 2, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(6), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 4}), new_array); } TEST(TransformArrayTest, OneDArrayOneDIndexArray) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({2}) .input_shape({4}) .output_index_array(0, 1, 1, MakeArray<Index>({0, 2, 2, 1})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({2}, {2, 4, 4, 3}), new_array); } TEST(TransformArrayTest, OneDArrayOneDIndexArray1025) { constexpr Index kSize = 1025; auto index_array = tensorstore::AllocateArray<Index>({kSize}); for (Index i = 0; i < kSize; ++i) index_array(i) = i; auto new_array = tensorstore::TransformArray(index_array, IndexTransformBuilder<1, 1>() .input_shape({kSize}) .output_index_array(0, 0, 1, index_array) .Finalize() .value()) .value(); EXPECT_EQ(index_array, new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayRetainZeroStride) { auto index_array = tensorstore::MakeArray<Index>({0, 1, 2, 3, 4}); tensorstore::SharedArray<Index, 2> index_array2; index_array2.element_pointer() = index_array.element_pointer(); index_array2.shape()[0] = 5; index_array2.shape()[1] = 2; index_array2.byte_strides()[0] = index_array.byte_strides()[0]; index_array2.byte_strides()[1] = 0; EXPECT_EQ(index_array2, MakeArray<Index>({{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}})); auto new_array = tensorstore::TransformArray(index_array2, IndexTransformBuilder<2, 2>() .input_shape({5, 2}) .output_index_array(0, 0, 1, index_array2) .output_single_input_dimension(1, 1) .Finalize() .value()) .value(); EXPECT_EQ(index_array2, new_array); EXPECT_EQ(index_array2.layout(), new_array.layout()); } TEST(TransformArrayTest, IndexArrayBoundsOverflow) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); EXPECT_THAT(tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({2}) .input_shape({4}) .output_index_array(0, std::numeric_limits<Index>::min(), 1, MakeArray<Index>({0, 2, 2, 1})) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Integer overflow propagating range.*")); } TEST(TransformArrayTest, OneDArrayOneDIndexArrayWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({2}) .input_shape({4}) .output_index_array(0, 6, 1, MakeArray<Index>({0, 2, 2, 1})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({2}, {2, 4, 4, 3}), new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArray) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, -1, 1, 0) .output_index_array(1, 1, 1, MakeArray<Index>({{0, 2, 2, 1}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{2, 4, 4, 3}, {6, 8, 8, 7}}), new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 4, 1, 0) .output_index_array(1, 7, 1, MakeArray<Index>({{0, 2, 2, 1}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{2, 4, 4, 3}, {6, 8, 8, 7}}), new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayStrided) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 2, -1, 0) .output_index_array(1, 1, 2, MakeArray<Index>({{0, 1, 1, 0}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{6, 8, 8, 6}, {2, 4, 4, 2}}), new_array); } TEST(TransformArrayTest, ArrayIndexOutOfBounds) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3, 4}, {5, 6, 7, 8}}); EXPECT_THAT( tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 2, -1, 0) .output_index_array(1, 1, 2, MakeArray<Index>({{0, 2, 1, 0}})) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Index 2 is outside valid range \\[0, 2\\).*")); EXPECT_THAT( tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 2, -1, 0) .output_index_array(1, 1, 2, MakeArray<Index>({{0, -1, 1, 0}})) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Index -1 is outside valid range \\[0, 2\\).*")); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayStridedWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{0, 1, 1, 0}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{6, 8, 8, 6}, {2, 4, 4, 2}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int), sizeof(int) * 2)); } TEST(TransformArrayTest, IncludeRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), tensorstore::include_repeated_elements) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT( new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 2, sizeof(int) * 4, sizeof(int))); } TEST(TransformArrayTest, SkipSingleton) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 1}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), tensorstore::skip_repeated_elements) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6}, {8}, {8}, {6}}, {{2}, {4}, {4}, {2}}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int), sizeof(int) * 2, 0)); } TEST(TransformArrayTest, SkipRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), tensorstore::skip_repeated_elements) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int), sizeof(int) * 2, 0)); } TEST(TransformArrayTest, OrderConstraint) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{0, 1, 1, 0}})) .Finalize() .value(), tensorstore::c_order) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{6, 8, 8, 6}, {2, 4, 4, 2}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 4, sizeof(int))); } TEST(TransformArrayTest, OrderConstraintIncludeRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), {tensorstore::c_order, tensorstore::include_repeated_elements}) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT( new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 8, sizeof(int) * 2, sizeof(int))); } TEST(TransformArrayTest, OrderConstraintSkipRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), {tensorstore::c_order, tensorstore::skip_repeated_elements}) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 4, sizeof(int), 0)); } TEST(TransformArrayTest, MultipleArrayIndexedDimensions) { auto original_array = tensorstore::MakeArray<int>({{1, 2}, {5, 6}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({0, 0}) .input_shape({2, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{0, 1}})) .output_index_array(1, 0, 1, MakeArray<Index>({{0}, {1}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeArray<int>({{1, 5}, {2, 6}}), new_array); } TEST(TransformArrayTest, EmptyDomain) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3}, {4, 5, 6}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, (IndexTransformBuilder<2, 2>() .input_shape({0, 3}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 0) .output_index_array(0, 0, 1, MakeArray<Index>({{0, 1, 2}})) .Finalize())); EXPECT_THAT(tensorstore::TransformArray(original_array, transform), ::testing::Optional(tensorstore::AllocateArray<int>({0, 3}))); } }
561
cpp
google/tensorstore
mark_explicit_op
tensorstore/index_space/internal/mark_explicit_op.cc
tensorstore/index_space/mark_explicit_op_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_MARK_EXPLICIT_OP_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_MARK_EXPLICIT_OP_H_ #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyChangeImplicitState( IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool implicit, bool lower, bool upper, bool domain_only = false); struct ChangeImplicitStateOp { static constexpr bool selected_dimensions_are_new = false; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { return input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { return num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyChangeImplicitState(std::move(transform), dimensions, implicit, lower, upper, domain_only); } bool implicit; bool lower; bool upper; }; } } #endif #include "tensorstore/index_space/internal/mark_explicit_op.h" #include "absl/status/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyChangeImplicitState( IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool implicit, bool lower, bool upper, bool domain_only) { if (!lower && !upper) { return transform; } TransformRep::Ptr<> rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); if (implicit) { for (DimensionIndex output_dim = 0, output_rank = rep->output_rank; output_dim < output_rank; ++output_dim) { auto& map = rep->output_index_maps()[output_dim]; if (map.method() != OutputIndexMethod::array) continue; auto& index_array_data = map.index_array_data(); for (DimensionIndex input_dim : *dimensions) { if (index_array_data.byte_strides[input_dim] != 0) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot mark input dimension ", input_dim, " as having implicit bounds because it indexes the index array " "map for output dimension ", output_dim)); } } } } for (DimensionIndex input_dim : *dimensions) { const auto d = rep->input_dimension(input_dim); if (lower) d.implicit_lower_bound() = implicit; if (upper) d.implicit_upper_bound() = implicit; } if (!implicit && IsDomainExplicitlyEmpty(rep.get())) { ReplaceAllIndexArrayMapsWithConstantMaps(rep.get()); } internal_index_space::DebugCheckInvariants(rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::MakeArray; using ::tensorstore::internal_index_space::TestDimExpression; using ::tensorstore::internal_index_space::TestDimExpressionErrorTransformOnly; TEST(MarkBoundsExplicitTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({0, 0, 0}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).MarkBoundsExplicit(), {0, 2}, expected_new_transform, expected_new_transform, {}); TestDimExpression(original_transform, Dims(0, 2).MarkBoundsExplicit(true, true), {0, 2}, expected_new_transform, expected_new_transform, {}); TestDimExpression(original_transform, Dims("x", "z").MarkBoundsExplicit(), {0, 2}, expected_new_transform, expected_new_transform, {}); } TEST(MarkBoundsExplicitTest, IndexArray) { TestDimExpression( IndexTransformBuilder(2, 1) .input_shape({2, 3}) .implicit_upper_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), Dims(0).MarkBoundsExplicit(), {0}, IndexTransformBuilder(2, 2) .input_shape({2, 3}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder(2, 1) .input_shape({2, 3}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), {}); } TEST(MarkBoundsExplicitTest, IndexArrayZeroSize) { TestDimExpression( IndexTransformBuilder(2, 1) .input_shape({0, 3}) .implicit_upper_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), Dims(0).MarkBoundsExplicit(), {0}, IndexTransformBuilder(2, 2) .input_shape({0, 3}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder(2, 1) .input_shape({0, 3}) .output_constant(0, 0) .Finalize() .value(), {}); } TEST(UnsafeMarkBoundsImplicitTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 0, 0}) .implicit_upper_bounds({0, 0, 0}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({1, 0, 1}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).UnsafeMarkBoundsImplicit(), {0, 2}, expected_new_transform, expected_new_transform, {}, true, false); TestDimExpression( original_transform, Dims(0, 2).UnsafeMarkBoundsImplicit(true, true), {0, 2}, expected_new_transform, expected_new_transform, {}, true, false); TestDimExpression(original_transform, Dims("x", "z").UnsafeMarkBoundsImplicit(), {0, 2}, expected_new_transform, expected_new_transform, {}, true, false); } TEST(UnsafeMarkBoundsImplicitTest, IndexArray) { TestDimExpression( IndexTransformBuilder(2, 1) .input_shape({2, 3}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), Dims(0).UnsafeMarkBoundsImplicit(false, true), {0}, IndexTransformBuilder(2, 2) .input_shape({2, 3}) .implicit_upper_bounds({1, 0}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder(2, 1) .input_shape({2, 3}) .implicit_upper_bounds({1, 0}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), {}, true, false); } TEST(UnsafeMarkBoundsImplicitTest, IndexArrayInvalid) { TestDimExpressionErrorTransformOnly( IndexTransformBuilder(2, 1) .input_shape({2, 3}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), Dims(1).UnsafeMarkBoundsImplicit(false, true), absl::StatusCode::kInvalidArgument, "Cannot mark input dimension 1 as having implicit bounds because it " "indexes the index array map for output dimension 0", IndexDomainBuilder(2) .shape({2, 3}) .implicit_upper_bounds({0, 1}) .Finalize() .value()); } TEST(MarkBoundsExplicitTest, LowerOnly) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({1, 0, 0}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({1, 0, 0}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).MarkBoundsExplicit(true, false), {0, 2}, expected_new_transform, expected_new_transform, {}); } TEST(MarkBoundsExplicitTest, UpperOnly) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({1, 0, 0}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({0, 0, 0}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).MarkBoundsExplicit(false, true), {0, 2}, expected_new_transform, expected_new_transform, {}); } TEST(MarkBoundsExplicitTest, None) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({0, 1, 1}) .implicit_upper_bounds({1, 0, 0}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).MarkBoundsExplicit(false, false), {0, 2}, original_transform, original_transform, {}); } }
562
cpp
google/tensorstore
add_new_dims_op
tensorstore/index_space/internal/add_new_dims_op.cc
tensorstore/index_space/add_new_dims_op_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_ADD_NEW_DIMS_OP_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_ADD_NEW_DIMS_OP_H_ #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/string_like.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyAddNewDims(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only); struct AddNewDimsOp { static constexpr bool selected_dimensions_are_new = true; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { return RankConstraint::Add(input_rank, num_input_dims); } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { return num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyAddNewDims(std::move(transform), dimensions, domain_only); } }; } } #endif #include "tensorstore/index_space/internal/add_new_dims_op.h" #include <cassert> #include <utility> #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/rank.h" #include "tensorstore/util/dimension_set.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_index_space { namespace { void AddNewDims(TransformRep* original, TransformRep* result, DimensionIndexBuffer* dimensions, bool domain_only) { const DimensionIndex orig_input_rank = original->input_rank; const DimensionIndex new_input_rank = orig_input_rank + dimensions->size(); assert(result->input_rank_capacity >= new_input_rank); const DimensionIndex output_rank = domain_only ? 0 : original->output_rank; assert(result->output_rank_capacity >= output_rank); DimensionSet newly_added_input_dims; for (DimensionIndex new_input_dim : *dimensions) { newly_added_input_dims[new_input_dim] = true; } DimensionIndex orig_to_new_input_dim[kMaxRank]; for (DimensionIndex new_input_dim = 0, orig_input_dim = 0; new_input_dim < new_input_rank; ++new_input_dim) { if (newly_added_input_dims[new_input_dim]) continue; orig_to_new_input_dim[orig_input_dim] = new_input_dim; ++orig_input_dim; } span<const OutputIndexMap> orig_maps = original->output_index_maps().first(output_rank); span<OutputIndexMap> result_maps = result->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& orig_map = orig_maps[output_dim]; auto& result_map = result_maps[output_dim]; result_map.stride() = orig_map.stride(); result_map.offset() = orig_map.offset(); switch (orig_map.method()) { case OutputIndexMethod::constant: result_map.SetConstant(); break; case OutputIndexMethod::single_input_dimension: { const DimensionIndex orig_input_dim = orig_map.input_dimension(); assert(orig_input_dim >= 0 && orig_input_dim < orig_input_rank); const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; result_map.SetSingleInputDimension(new_input_dim); break; } case OutputIndexMethod::array: { auto& result_index_array = result_map.SetArrayIndexing(new_input_rank); const auto& orig_index_array = orig_map.index_array_data(); for (DimensionIndex orig_input_dim = orig_input_rank - 1; orig_input_dim >= 0; --orig_input_dim) { const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; assert(new_input_dim >= orig_input_dim); result_index_array.byte_strides[new_input_dim] = orig_index_array.byte_strides[orig_input_dim]; } for (const DimensionIndex new_input_dim : *dimensions) { result_index_array.byte_strides[new_input_dim] = 0; } result_index_array.index_range = orig_index_array.index_range; result_index_array.element_pointer = orig_index_array.element_pointer; break; } } } for (DimensionIndex orig_input_dim = orig_input_rank - 1; orig_input_dim >= 0; --orig_input_dim) { const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; result->input_dimension(new_input_dim) = original->input_dimension(orig_input_dim); } for (DimensionIndex new_input_dim : *dimensions) { const auto d = result->input_dimension(new_input_dim); d.domain() = IndexInterval::UncheckedSized(-kInfIndex, kInfSize); d.implicit_lower_bound() = true; d.implicit_upper_bound() = true; d.SetEmptyLabel(); } result->input_rank = new_input_rank; result->output_rank = output_rank; } } Result<IndexTransform<>> ApplyAddNewDims(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) { const DimensionIndex new_input_rank = transform.input_rank() + dimensions->size(); TENSORSTORE_RETURN_IF_ERROR(ValidateRank(new_input_rank)); auto new_rep = NewOrMutableRep(TransformAccess::rep(transform), new_input_rank, transform.output_rank(), domain_only); AddNewDims(TransformAccess::rep(transform), new_rep.get(), dimensions, domain_only); internal_index_space::DebugCheckInvariants(new_rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(new_rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" namespace { using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::internal_index_space::TestDimExpression; using ::tensorstore::internal_index_space::TestDimExpressionError; TEST(AddNewTest, Example) { const auto expected_new_transform = IndexTransformBuilder<3, 1>() .input_origin({-kInfIndex, 1, -kInfIndex}) .input_shape({kInfSize, 5, kInfSize}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({1, 0, 1}) .input_labels({"", "x", ""}) .output_single_input_dimension(0, 1) .Finalize() .value(); TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({5}) .input_labels({"x"}) .output_single_input_dimension(0, 0) .Finalize() .value(), Dims(0, -1).AddNew(), {0, 2}, expected_new_transform, expected_new_transform, { {{2}, {1, 2, 8}}, {{2}, {5, 2, 9}}, }, false); } TEST(AddNewTest, Simple) { TestDimExpression( IndexTransformBuilder<2, 3>() .input_origin({2, 3}) .input_shape({3, 4}) .output_single_input_dimension(0, 1, 3, 1) .output_single_input_dimension(1, 2, 4, 0) .output_index_array(2, 3, 5, MakeArray<Index>({{1, 2, 3, 4}}), IndexInterval::Closed(-1, 10)) .Finalize() .value(), Dims(0, -1).AddNew(), {0, 3}, IndexTransformBuilder<4, 2>() .input_origin({-kInfIndex, 2, 3, -kInfIndex}) .input_shape({kInfSize, 3, 4, kInfSize}) .implicit_lower_bounds({1, 0, 0, 1}) .implicit_upper_bounds({1, 0, 0, 1}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .Finalize() .value(), IndexTransformBuilder<4, 3>() .input_origin({-kInfIndex, 2, 3, -kInfIndex}) .input_shape({kInfSize, 3, 4, kInfSize}) .implicit_lower_bounds({1, 0, 0, 1}) .implicit_upper_bounds({1, 0, 0, 1}) .output_single_input_dimension(0, 1, 3, 2) .output_single_input_dimension(1, 2, 4, 1) .output_index_array( 2, 3, 5, MakeArray<Index>({{{{1}, {2}, {3}, {4}}}}), IndexInterval::Closed(-1, 10)) .Finalize() .value(), { {{3, 4}, {100, 3, 4, 500}}, {{3, 4}, {-100, 3, 4, -500}}, }, false); } TEST(AddNewTest, Constant) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({5}) .output_constant(0, 1) .Finalize() .value(), Dims(0).AddNew(), {0}, IndexTransformBuilder<2, 1>() .input_origin({-kInfIndex, 1}) .input_shape({kInfSize, 5}) .implicit_lower_bounds({1, 0}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 1) .Finalize() .value(), IndexTransformBuilder<2, 1>() .input_origin({-kInfIndex, 1}) .input_shape({kInfSize, 5}) .implicit_lower_bounds({1, 0}) .implicit_upper_bounds({1, 0}) .output_constant(0, 1) .Finalize() .value(), { {{1}, {-100, 1}}, {{1}, {100, 1}}, }, false); } TEST(AddNewTest, Labeled) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({5}) .input_labels({"a"}) .output_constant(0, 1) .Finalize() .value(), Dims(-1, 0).AddNew().Label("x", "y"), {2, 0}, IndexTransformBuilder<3, 1>() .input_origin({-kInfIndex, 1, -kInfIndex}) .input_shape({kInfSize, 5, kInfSize}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({1, 0, 1}) .input_labels({"y", "a", "x"}) .output_single_input_dimension(0, 1) .Finalize() .value(), IndexTransformBuilder<3, 1>() .input_origin({-kInfIndex, 1, -kInfIndex}) .input_shape({kInfSize, 5, kInfSize}) .implicit_lower_bounds({1, 0, 1}) .implicit_upper_bounds({1, 0, 1}) .input_labels({"y", "a", "x"}) .output_constant(0, 1) .Finalize() .value(), { {{2}, {1, 2, 8}}, {{2}, {5, 2, 9}}, }, false); } TEST(AddNewTest, EmptyDimensionSelection) { const auto transform = IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({5}) .input_labels({"x"}) .output_single_input_dimension(0, 0) .Finalize() .value(); TestDimExpression( transform, Dims().AddNew(), {}, transform, transform, { {{2}, {2}}, {{3}, {3}}, }, true); } TEST(AddNewTest, InvalidRank) { TestDimExpressionError(tensorstore::IdentityTransform(31), Dims(0, 1).AddNew(), absl::StatusCode::kInvalidArgument, ".*Rank 33 is outside valid range \\[0, 32\\]"); } }
563
cpp
google/tensorstore
translate_op
tensorstore/index_space/internal/translate_op.cc
tensorstore/index_space/translate_op_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_TRANSLATE_OP_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_TRANSLATE_OP_H_ #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_vector_or_scalar.h" #include "tensorstore/internal/meta.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_index_space { enum class TranslateOpKind { kTranslateTo, kTranslateBy, kTranslateBackwardBy, }; Result<IndexTransform<>> ApplyTranslate(IndexTransform<> transform, DimensionIndexBuffer* dimensions, IndexVectorOrScalarView offsets, TranslateOpKind kind, bool domain_only = false); template <typename OffsetOrOriginVector, TranslateOpKind Kind> struct TranslateOp { static constexpr bool selected_dimensions_are_new = false; static constexpr DimensionIndex static_selection_rank = IsIndexVectorOrScalar<OffsetOrOriginVector>::extent; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( (input_rank == dynamic_rank || input_rank >= static_selection_rank) && "Number of dimensions must not exceed input rank."); return input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( RankConstraint::EqualOrUnspecified(num_input_dims, static_selection_rank) && "Number of selected dimensions must match number of offsets."); return num_input_dims == dynamic_rank ? static_selection_rank : num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyTranslate(std::move(transform), dimensions, IndexVectorOrScalarView(offset_or_origin_vector), Kind, domain_only); } OffsetOrOriginVector offset_or_origin_vector; }; template <typename Offsets> using TranslateToOp = TranslateOp<Offsets, TranslateOpKind::kTranslateTo>; template <typename Offsets> using TranslateByOp = TranslateOp<Offsets, TranslateOpKind::kTranslateBy>; template <typename Offsets> using TranslateBackwardByOp = TranslateOp<Offsets, TranslateOpKind::kTranslateBackwardBy>; } } #endif #include "tensorstore/index_space/internal/translate_op.h" #include <algorithm> #include "absl/status/status.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { absl::Status TranslateOutputOffsetsUsingInputOffsets( TransformRep* transform, const Index* input_offsets) { const DimensionIndex output_rank = transform->output_rank; const DimensionIndex input_rank = transform->input_rank; span<OutputIndexMap> maps = transform->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { auto& map = maps[output_dim]; switch (map.method()) { case OutputIndexMethod::single_input_dimension: { const DimensionIndex input_dim = map.input_dimension(); const Index offset_change = input_offsets[input_dim]; Index new_offset; if (internal::MulOverflow(offset_change, map.stride(), &new_offset) || internal::SubOverflow(map.offset(), new_offset, &map.offset())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing output offset for dimension ", output_dim, ".")); } break; } case OutputIndexMethod::array: { auto& index_array_data = map.index_array_data(); index_array_data.element_pointer = AddByteOffset( std::move(index_array_data.element_pointer), -IndexInnerProduct(input_rank, index_array_data.byte_strides, input_offsets)); break; } case OutputIndexMethod::constant: break; } } return absl::OkStatus(); } } Result<IndexTransform<>> ApplyTranslate(IndexTransform<> transform, DimensionIndexBuffer* dimensions, IndexVectorOrScalarView offsets, TranslateOpKind kind, bool domain_only) { const DimensionIndex num_dims = dimensions->size(); const DimensionIndex input_rank = transform.input_rank(); TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(offsets, num_dims)); TransformRep::Ptr<> rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); const auto input_domain = rep->input_domain(input_rank); Index input_offsets[kMaxRank]; std::fill_n(&input_offsets[0], input_rank, static_cast<Index>(0)); for (DimensionIndex i = 0; i < num_dims; ++i) { const DimensionIndex input_dim = (*dimensions)[i]; Index offset = offsets[i]; if (offset == kImplicit) continue; const IndexInterval old_interval = input_domain[input_dim]; IndexInterval new_interval; switch (kind) { case TranslateOpKind::kTranslateTo: { TENSORSTORE_ASSIGN_OR_RETURN(new_interval, ShiftIntervalTo(old_interval, offset)); offset = new_interval.inclusive_min() - old_interval.inclusive_min(); break; } case TranslateOpKind::kTranslateBackwardBy: { offset = -offset; } [[fallthrough]]; case TranslateOpKind::kTranslateBy: { TENSORSTORE_ASSIGN_OR_RETURN(new_interval, ShiftInterval(old_interval, offset)); break; } } input_domain[input_dim] = new_interval; input_offsets[input_dim] = offset; } TENSORSTORE_RETURN_IF_ERROR( TranslateOutputOffsetsUsingInputOffsets(rep.get(), &input_offsets[0])); internal_index_space::DebugCheckInvariants(rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::AllDims; using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kImplicit; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::kMaxFiniteIndex; using ::tensorstore::kMinFiniteIndex; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(TranslateByTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({11, 2, 23}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, -10, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -20, 1, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 3}, {12, 3, 23}}, }; TestDimExpression(original_transform, Dims(0, 2).TranslateBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("x", "z").TranslateBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TranslateBackwardByTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({-9, 2, -17}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 10, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 20, 1, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 3}, {-8, 3, -17}}, }; TestDimExpression(original_transform, Dims(0, 2).TranslateBackwardBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("x", "z").TranslateBackwardBy({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TranslateToTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({10, 2, 20}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, -9, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -17, 1, 2) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 3}, {11, 3, 20}}, }; TestDimExpression(original_transform, Dims(0, 2).TranslateTo({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims(0, 2).TranslateTo({10, 20}), {0, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TranslateByTest, OneDimensionalConstant) { TestDimExpression( IndexTransformBuilder<1, 1>() .output_constant(0, 2) .Finalize() .value(), AllDims().TranslateBy(5), {0}, IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, -5, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .output_constant(0, 2) .Finalize() .value(), {{{4}, {9}}}); } TEST(TranslateByTest, OneDimensionalSingleInputDimension) { TestDimExpression( IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateBy(5), {0}, IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, -5, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2 - 3 * 5, 3, 0) .Finalize() .value(), {{{4}, {9}}}); } TEST(TranslateByTest, OneDimensionalSingleInputDimensionImplicit) { TestDimExpression( IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateBy(kImplicit), {0}, IndexTransformBuilder<1, 1>() .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<1, 1>() .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), {{{4}, {4}}}); } TEST(TranslateByTest, OneDimensionalIndexArray) { TestDimExpression( IndexTransformBuilder<1, 1>() .input_origin({-2}) .input_shape({5}) .output_index_array(0, 2, 3, MakeArray<Index>({6, 7, 8, 9, 10})) .Finalize() .value(), AllDims().TranslateBy(5), {0}, IndexTransformBuilder<1, 1>() .input_origin({3}) .input_shape({5}) .output_single_input_dimension(0, -5, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({3}) .input_shape({5}) .output_index_array(0, 2, 3, MakeArray<Index>({6, 7, 8, 9, 10})) .Finalize() .value(), {{{1}, {6}}}); } TEST(TranslateByTest, AllDimsUniform) { TestDimExpression( IndexTransformBuilder<3, 5>() .input_origin({-kInfIndex, 5, -kInfIndex}) .input_shape({kInfSize, 30, kInfIndex + 10}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 5, 0) .output_constant(2, 3) .output_single_input_dimension(3, 4, 7, 1) .output_single_input_dimension(4, 5, 8, 2) .Finalize() .value(), AllDims().TranslateBy(5), {0, 1, 2}, IndexTransformBuilder<3, 3>() .input_origin({-kInfIndex, 10, -kInfIndex}) .input_shape({kInfSize, 30, kInfIndex + 15}) .output_single_input_dimension(0, -5, 1, 0) .output_single_input_dimension(1, -5, 1, 1) .output_single_input_dimension(2, -5, 1, 2) .Finalize() .value(), IndexTransformBuilder<3, 5>() .input_origin({-kInfIndex, 10, -kInfIndex}) .input_shape({kInfSize, 30, kInfIndex + 15}) .output_single_input_dimension(0, 1 - 4 * 5, 4, 0) .output_single_input_dimension(1, 2 - 5 * 5, 5, 0) .output_constant(2, 3) .output_single_input_dimension(3, 4 - 7 * 5, 7, 1) .output_single_input_dimension(4, 5 - 8 * 5, 8, 2) .Finalize() .value(), {{{4, 5, 6}, {4 + 5, 5 + 5, 6 + 5}}}); } TEST(TranslateByTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<1, 1>().Finalize().value(), AllDims().TranslateBy(span<const Index>({1, 2})), absl::StatusCode::kInvalidArgument, "Number of dimensions \\(1\\) does not match number of " "indices \\(2\\)"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({kMinFiniteIndex}) .input_shape({10}) .Finalize() .value(), AllDims().TranslateBy(-kInfIndex), absl::StatusCode::kInvalidArgument, ".* is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({kMinFiniteIndex}) .input_shape({10}) .Finalize() .value(), AllDims().TranslateBy(-1), absl::StatusCode::kInvalidArgument, ".* is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({kMaxFiniteIndex - 1}) .input_shape({2}) .Finalize() .value(), AllDims().TranslateBy(1), absl::StatusCode::kInvalidArgument, ".* is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<1, 1>() .output_single_input_dimension( 0, std::numeric_limits<Index>::min(), 1, 0) .Finalize() .value(), AllDims().TranslateBy(1), absl::StatusCode::kInvalidArgument, "Integer overflow computing output offset .*"); } TEST(TranslateByTest, DimSubsetUniform) { TestDimExpression(IndexTransformBuilder<3, 2>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 2) .Finalize() .value(), Dims(0, 2).TranslateBy(5), {0, 2}, IndexTransformBuilder<3, 3>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 5}) .output_single_input_dimension(0, -5, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -5, 1, 2) .Finalize() .value(), IndexTransformBuilder<3, 2>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 5}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2 - 2 * 5, 2, 2) .Finalize() .value(), {{{4, 5, 6}, {4 + 5, 5, 6 + 5}}}); } TEST(TranslateByTest, DimSubsetNonUniform) { TestDimExpression(IndexTransformBuilder<3, 2>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 2) .Finalize() .value(), Dims(0, 2).TranslateBy({5, 6}), {0, 2}, IndexTransformBuilder<3, 3>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 6}) .output_single_input_dimension(0, -5, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, -6, 1, 2) .Finalize() .value(), IndexTransformBuilder<3, 2>() .input_origin({6, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7 + 6}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2 - 2 * 6, 2, 2) .Finalize() .value(), {{{3, 4, 5}, {3 + 5, 4, 5 + 6}}}); } TEST(TranslateToTest, OneDimensionalConstant) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_constant(0, 2) .Finalize() .value(), AllDims().TranslateTo(8), {0}, IndexTransformBuilder<1, 1>() .input_origin({8}) .input_shape({10}) .output_single_input_dimension(0, -3, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({8}) .input_shape({10}) .output_constant(0, 2) .Finalize() .value(), {{{7}, {10}}}); } TEST(TranslateToTest, OneDimensionalSingleInputDimension) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateTo(5), {0}, IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, -1, 1, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({5}) .input_shape({10}) .output_single_input_dimension(0, 2 - 3, 3, 0) .Finalize() .value(), {{{6}, {7}}}); } TEST(TranslateToTest, OneDimensionalSingleInputDimensionImplicit) { TestDimExpression(IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), AllDims().TranslateTo(kImplicit), {0}, IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 0) .Finalize() .value(), IndexTransformBuilder<1, 1>() .input_origin({4}) .input_shape({10}) .output_single_input_dimension(0, 2, 3, 0) .Finalize() .value(), {{{6}, {6}}}); } TEST(TranslateToTest, TwoDimensionalSingleInputDimensionOneImplicit) { TestDimExpression(IndexTransformBuilder<2, 2>() .input_origin({4, 5}) .input_shape({10, 11}) .output_single_input_dimension(0, 2, 3, 0) .output_single_input_dimension(1, 4, 5, 1) .Finalize() .value(), AllDims().TranslateTo({kImplicit, 10}), {0, 1}, IndexTransformBuilder<2, 2>() .input_origin({4, 10}) .input_shape({10, 11}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, -5, 1, 1) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({4, 10}) .input_shape({10, 11}) .output_single_input_dimension(0, 2, 3, 0) .output_single_input_dimension(1, -25 + 4, 5, 1) .Finalize() .value(), {{{6, 7}, {6, 12}}}); } TEST(TranslateToTest, ErrorHandling) { TestDimExpressionError(IndexTransformBuilder<1, 1>().Finalize().value(), AllDims().TranslateTo(1), absl::StatusCode::kInvalidArgument, "Interval \\(-inf, \\+inf\\) is not bounded below"); TestDimExpressionError( IndexTransformBuilder<1, 1>() .input_origin({-5}) .input_shape({10}) .Finalize() .value(), AllDims().TranslateTo(std::numeric_limits<Index>::max()), absl::StatusCode::kOutOfRange, "Origin [0-9]+ is outside valid range .*"); } TEST(TranslateToTest, IndexDomain) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder<3>().origin({1, 2, 3}).shape({6, 7, 8}).Finalize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto translated_domain, IndexDomainBuilder<3>().origin({4, 5, 6}).shape({6, 7, 8}).Finalize()); EXPECT_THAT(domain | AllDims().TranslateTo({4, 5, 6}), ::testing::Optional(translated_domain)); } TEST(TranslateToTest, IndexDomainOverflow) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, IndexTransformBuilder(1, 1) .input_shape({10}) .output_single_input_dimension(0, kMaxFiniteIndex, kMaxFiniteIndex, 0) .Finalize()); auto domain = transform.domain(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto translated_domain, IndexDomainBuilder(1).origin({-5}).shape({10}).Finalize()); EXPECT_THAT(transform | AllDims().TranslateTo({-5}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(domain | AllDims().TranslateTo({-5}), ::testing::Optional(translated_domain)); } }
564
cpp
google/tensorstore
single_index_slice_op
tensorstore/index_space/internal/single_index_slice_op.cc
tensorstore/index_space/single_index_slice_op_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_SINGLE_INDEX_SLICE_OP_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_SINGLE_INDEX_SLICE_OP_H_ #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_vector_or_scalar.h" #include "tensorstore/internal/meta.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplySingleIndexSlice(IndexTransform<> transform, DimensionIndexBuffer* dimensions, IndexVectorOrScalarView indices, bool domain_only); template <typename Indices> struct SingleIndexSliceOp { static constexpr bool selected_dimensions_are_new = false; static constexpr DimensionIndex static_selection_rank = IsIndexVectorOrScalar<Indices>::extent; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex NumSelectedDims) { TENSORSTORE_CONSTEXPR_ASSERT( (input_rank == dynamic_rank || input_rank >= static_selection_rank) && "Number of dimensions must not exceed input rank."); return RankConstraint::Subtract( input_rank, RankConstraint::And(NumSelectedDims, static_selection_rank)); } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( RankConstraint::EqualOrUnspecified(num_input_dims, static_selection_rank) && "Number of selected dimensions must match number of indices."); return 0; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplySingleIndexSlice(std::move(transform), dimensions, IndexVectorOrScalarView(indices), domain_only); } Indices indices; }; } } #endif #include "tensorstore/index_space/internal/single_index_slice_op.h" #include "absl/status/status.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { struct InputDimensionSingletonSliceInfo { DimensionIndex new_input_dim; Index offset; }; struct SingletonSlicingInfo { explicit SingletonSlicingInfo(DimensionIndex original_input_rank, DimensionIndex new_input_rank) : original_input_rank(original_input_rank), new_input_rank(new_input_rank) { std::fill_n(&original_input_dimension_info[0], original_input_rank, InputDimensionSingletonSliceInfo{0, 0}); } DimensionIndex original_input_rank; DimensionIndex new_input_rank; InputDimensionSingletonSliceInfo original_input_dimension_info[kMaxRank]; }; Result<SingletonSlicingInfo> GetSingletonSlicingInfo( TransformRep* original, DimensionIndexBuffer* dimensions_buffer, IndexVectorOrScalarView indices) { const span<const DimensionIndex> dimensions(*dimensions_buffer); const DimensionIndex num_dims = dimensions.size(); const DimensionIndex original_input_rank = original->input_rank; const DimensionIndex new_input_rank = original_input_rank - num_dims; TENSORSTORE_RETURN_IF_ERROR(CheckIndexVectorSize(indices, num_dims)); Result<SingletonSlicingInfo> result(tensorstore::in_place, original_input_rank, new_input_rank); const Index* indices_pointer = indices.pointer ? indices.pointer : &indices.size_or_scalar; const Index indices_stride = indices.pointer ? 1 : 0; std::string slice_error; for (DimensionIndex i = 0; i < num_dims; ++i) { const DimensionIndex original_input_dim = dimensions[i]; const Index index = indices_pointer[i * indices_stride]; const auto domain = original->input_dimension(original_input_dim) .optionally_implicit_domain(); if (!Contains(domain.effective_interval(), index)) { tensorstore::StrAppend(&slice_error, (slice_error.empty() ? "" : ", "), "in input dimension ", original_input_dim, " index ", index, " is outside valid domain ", domain); } result->original_input_dimension_info[original_input_dim] = InputDimensionSingletonSliceInfo{-1, index}; } if (!slice_error.empty()) { result = absl::OutOfRangeError( tensorstore::StrCat("Slice mismatch: ", slice_error)); return result; } for (DimensionIndex original_input_dim = 0, new_input_dim = 0; original_input_dim < original_input_rank; ++original_input_dim) { auto& new_dim = result->original_input_dimension_info[original_input_dim].new_input_dim; if (new_dim == -1) continue; new_dim = new_input_dim; ++new_input_dim; } dimensions_buffer->clear(); return result; } absl::Status PerformSingleIndexSlice(TransformRep* original_transform, TransformRep* new_transform, const SingletonSlicingInfo& info, bool domain_only) { const DimensionIndex original_input_rank = original_transform->input_rank; const DimensionIndex new_input_rank = info.new_input_rank; span<const InputDimensionSingletonSliceInfo> original_input_dimension_info = info.original_input_dimension_info; bool domain_is_explicitly_empty = false; for (DimensionIndex original_input_dim = 0, new_input_dim = 0; original_input_dim < original_input_rank; ++original_input_dim) { if (original_input_dimension_info[original_input_dim].new_input_dim < 0) continue; const InputDimensionRef new_dim_ref = new_transform->input_dimension(new_input_dim); new_dim_ref = original_transform->input_dimension(original_input_dim); if (new_dim_ref.domain().empty() && !new_dim_ref.implicit_lower_bound() && !new_dim_ref.implicit_upper_bound()) { domain_is_explicitly_empty = true; } ++new_input_dim; } const DimensionIndex output_rank = domain_only ? 0 : original_transform->output_rank; span<const OutputIndexMap> original_maps = original_transform->output_index_maps().first(output_rank); span<OutputIndexMap> new_maps = new_transform->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const OutputIndexMap& original_map = original_maps[output_dim]; OutputIndexMap& new_map = new_maps[output_dim]; switch (original_map.method()) { case OutputIndexMethod::constant: { new_map.offset() = original_map.offset(); new_map.SetConstant(); new_map.stride() = 0; break; } case OutputIndexMethod::single_input_dimension: { const DimensionIndex original_input_dim = original_map.input_dimension(); assert(original_input_dim >= 0 && original_input_dim < original_input_rank); const auto slice_info = original_input_dimension_info[original_input_dim]; const Index output_stride = original_map.stride(); const Index output_offset = original_map.offset(); if (slice_info.new_input_dim == -1) { Index new_offset; if (internal::MulOverflow(slice_info.offset, output_stride, &new_offset) || internal::AddOverflow(new_offset, output_offset, &new_map.offset())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Integer overflow computing offset for output dimension ", output_dim, ".")); } new_map.SetConstant(); new_map.stride() = 0; } else { new_map.SetSingleInputDimension(slice_info.new_input_dim); new_map.stride() = output_stride; new_map.offset() = output_offset; } break; } case OutputIndexMethod::array: { if (domain_is_explicitly_empty) { new_map.SetConstant(); new_map.offset() = 0; new_map.stride() = 0; break; } const IndexArrayData& original_index_array_data = original_map.index_array_data(); IndexArrayData& new_index_array_data = new_map.SetArrayIndexing(new_input_rank); new_index_array_data.index_range = original_index_array_data.index_range; Index array_byte_offset = 0; bool has_non_zero_byte_strides = false; for (DimensionIndex original_input_dim = 0; original_input_dim < original_input_rank; ++original_input_dim) { const auto slice_info = original_input_dimension_info[original_input_dim]; const Index byte_stride = original_index_array_data.byte_strides[original_input_dim]; if (slice_info.new_input_dim == -1) { array_byte_offset = internal::wrap_on_overflow::Add( array_byte_offset, internal::wrap_on_overflow::Multiply( byte_stride, slice_info.offset)); } else { new_index_array_data.byte_strides[slice_info.new_input_dim] = byte_stride; if (byte_stride != 0) has_non_zero_byte_strides = true; } } Index output_stride = original_map.stride(); Index output_offset = original_map.offset(); if (has_non_zero_byte_strides) { new_index_array_data.element_pointer = AddByteOffset( original_index_array_data.element_pointer, array_byte_offset); } else { TENSORSTORE_RETURN_IF_ERROR(ReplaceZeroRankIndexArrayIndexMap( original_index_array_data.element_pointer .byte_strided_pointer()[array_byte_offset], new_index_array_data.index_range, &output_offset, &output_stride)); new_map.SetConstant(); } new_map.stride() = output_stride; new_map.offset() = output_offset; break; } } } new_transform->input_rank = new_input_rank; new_transform->output_rank = output_rank; NormalizeImplicitBounds(*new_transform); internal_index_space::DebugCheckInvariants(new_transform); return absl::OkStatus(); } } Result<IndexTransform<>> ApplySingleIndexSlice(IndexTransform<> transform, DimensionIndexBuffer* dimensions, IndexVectorOrScalarView indices, bool domain_only) { TransformRep* rep = TransformAccess::rep(transform); auto slicing_info = GetSingletonSlicingInfo(rep, dimensions, indices); if (!slicing_info) return slicing_info.status(); auto new_rep = NewOrMutableRep(rep, slicing_info->new_input_rank, rep->output_rank, domain_only); TENSORSTORE_RETURN_IF_ERROR( PerformSingleIndexSlice(rep, new_rep.get(), *slicing_info, domain_only)); return TransformAccess::Make<IndexTransform<>>(new_rep); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::AllDims; using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::MakeArray; using ::tensorstore::span; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(SingleIndexSliceTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<1, 3>() .input_origin({2}) .input_shape({4}) .input_labels({"y"}) .output_constant(0, 2) .output_single_input_dimension(1, 0) .output_constant(2, 4) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{2, 3, 4}, {3}}, }; TestDimExpression(original_transform, Dims(0, 2).IndexSlice({2, 4}), {}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("x", "z").IndexSlice({2, 4}), {}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(SingleIndexSliceTest, ImplicitLowerBound) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .implicit_lower_bounds({1, 1, 0}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<1, 3>() .input_origin({2}) .implicit_lower_bounds({1}) .input_shape({4}) .input_labels({"y"}) .output_constant(0, -7) .output_single_input_dimension(1, 0) .output_constant(2, 4) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{-7, 3, 4}, {3}}, }; TestDimExpression(original_transform, Dims(0, 2).IndexSlice({-7, 4}), {}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(SingleIndexSliceTest, DimSubsetUniformIndexArrayRetained) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}})) .Finalize() .value(), Dims(1, 2).IndexSlice(3), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 3) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 3 * 3) .output_constant(2, 3) .output_index_array(3, 4, 1, MakeArray<Index>({6, 16, 26, 36})) .Finalize() .value(), {{{4, 3, 3}, {4}}}); } TEST(SingleIndexSliceTest, DimSubsetUniformIndexArrayEliminated) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}})) .Finalize() .value(), Dims(1, 2).IndexSlice(3), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 3) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 3 * 3) .output_constant(2, 3) .output_constant(3, 4 + 1 * 6) .Finalize() .value(), {{{4, 3, 3}, {4}}}); } TEST(SingleIndexSliceTest, DimSubsetNonUniform) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}})) .Finalize() .value(), Dims(1, 2).IndexSlice({3, 4}), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 4) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 4 * 3) .output_constant(2, 3) .output_index_array(3, 4, 1, MakeArray<Index>({6, 16, 26, 36})) .Finalize() .value(), {{{4, 3, 4}, {4}}}); } TEST(SingleIndexSliceTest, DimSubsetNonUniformLabeled) { TestDimExpression( IndexTransformBuilder<3, 4>() .input_origin({1, 2, -kInfIndex}) .input_shape({4, 5, kInfIndex + 7}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 1, 4, 0) .output_single_input_dimension(1, 2, 3, 2) .output_constant(2, 3) .output_index_array( 3, 4, 1, MakeArray<Index>({{{5}, {6}, {7}, {8}, {9}}, {{15}, {16}, {17}, {18}, {19}}, {{25}, {26}, {27}, {28}, {29}}, {{35}, {36}, {37}, {38}, {39}}})) .Finalize() .value(), Dims(1, 2).IndexSlice({3, 4}), {}, IndexTransformBuilder<1, 3>() .input_origin({1}) .input_shape({4}) .input_labels({"x"}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .output_constant(2, 4) .Finalize() .value(), IndexTransformBuilder<1, 4>() .input_origin({1}) .input_shape({4}) .input_labels({"x"}) .output_single_input_dimension(0, 1, 4, 0) .output_constant(1, 2 + 4 * 3) .output_constant(2, 3) .output_index_array(3, 4, 1, MakeArray<Index>({6, 16, 26, 36})) .Finalize() .value(), {{{4, 3, 4}, {4}}}); } TEST(SingleIndexSliceTest, EmptyDomain) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({0, 3}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 2, 7, 0) .output_index_array(1, 4, 3, MakeArray<Index>({{1, 2, 3}})) .Finalize() .value(), Dims(1).IndexSlice({3}), {}, IndexTransformBuilder<1, 2>() .input_origin({1}) .input_shape({0}) .input_labels({"x"}) .output_single_input_dimension(0, 0) .output_constant(1, 3) .Finalize() .value(), IndexTransformBuilder<1, 2>() .input_origin({1}) .input_shape({0}) .input_labels({"x"}) .output_single_input_dimension(0, 2, 7, 0) .output_constant(1, 0) .Finalize() .value(), {}); } TEST(ErrorHandlingTest, DimensionSelectionRankMismatch) { TestDimExpressionError(IndexTransformBuilder<1, 1>().Finalize().value(), AllDims().IndexSlice(span<const Index>({1, 2})), absl::StatusCode::kInvalidArgument, "Number of dimensions .* does not match number of " "indices .*"); } TEST(ErrorHandlingTest, OutOfBounds) { TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({-10}) .input_shape({15}) .Finalize() .value(), AllDims().IndexSlice({5}), absl::StatusCode::kOutOfRange, "Slice mismatch: .* is outside valid domain .*"); } TEST(ErrorHandlingTest, OutOfBoundsInfinity) { TestDimExpressionError(IndexTransformBuilder<1, 1>() .input_origin({-kInfIndex}) .input_shape({15}) .Finalize() .value(), AllDims().IndexSlice({-kInfIndex}), absl::StatusCode::kOutOfRange, "Slice mismatch: .* is outside valid domain .*"); } TEST(ErrorHandlingTest, SingleInputDimensionMapIntegerOverflow) { TestDimExpressionErrorTransformOnly( IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({10}) .output_single_input_dimension(0, std::numeric_limits<Index>::max(), 1, 0) .Finalize() .value(), AllDims().IndexSlice({1}), absl::StatusCode::kInvalidArgument, "Integer overflow computing offset for output dimension.*", IndexDomainBuilder<0>().Finalize().value()); } TEST(ErrorHandlingTest, IndexArrayMapIntegerOverflow) { TestDimExpressionErrorTransformOnly( IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_index_array(0, std::numeric_limits<Index>::max(), 1, MakeArray<Index>({0, 1, 2})) .Finalize() .value(), AllDims().IndexSlice({1}), absl::StatusCode::kInvalidArgument, "Integer overflow computing offset for output dimension.*", IndexDomainBuilder<0>().Finalize().value()); } TEST(ErrorHandlingTest, IndexArrayMapOutOfBounds) { TestDimExpressionErrorTransformOnly( IndexTransformBuilder<1, 1>() .input_origin({0}) .input_shape({3}) .output_index_array(0, 0, 1, MakeArray<Index>({0, 1, 2}), IndexInterval::Closed(-5, -3)) .Finalize() .value(), AllDims().IndexSlice({1}), absl::StatusCode::kOutOfRange, "Index .* is outside valid range .*", IndexDomainBuilder<0>().Finalize().value()); } }
565
cpp
google/tensorstore
iterate
tensorstore/util/iterate.cc
tensorstore/util/iterate_test.cc
#ifndef TENSORSTORE_INTERNAL_ITERATE_H_ #define TENSORSTORE_INTERNAL_ITERATE_H_ #include <array> #include <cstddef> #include "absl/container/inlined_vector.h" #include "tensorstore/index.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/util/byte_strided_pointer.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_iterate { template <size_t N> struct DimensionSizeAndStrides { Index size; std::array<Index, N> strides; }; template <size_t N> using StridedIterationLayout = absl::InlinedVector<DimensionSizeAndStrides<N>, internal::kNumInlinedDims>; template <size_t N, DimensionIndex InnerRank> struct InnerShapeAndStrides { std::array<Index, InnerRank> shape; std::array<std::array<Index, InnerRank>, N> strides; }; } namespace internal { template <size_t Arity> class StridedLayoutFunctionApplyer { static_assert(Arity > 0 && Arity <= kMaxSupportedIterationArity, "Invalid arity."); public: explicit StridedLayoutFunctionApplyer( span<const Index> shape, std::array<const Index*, Arity> strides, IterationConstraints constraints, ElementwiseClosure<Arity, void*> function, std::array<std::ptrdiff_t, Arity> element_sizes); explicit StridedLayoutFunctionApplyer( const Index* shape, span<const DimensionIndex> dimension_order, std::array<const Index*, Arity> strides, ElementwiseClosure<Arity, void*> function, std::array<std::ptrdiff_t, Arity> element_sizes); bool operator()(std::array<ByteStridedPointer<void>, Arity> pointers, void* arg) const; DimensionIndex outer_rank() const { return static_cast<DimensionIndex>(iteration_layout_.size()); } Index inner_size() const { return inner_layout_.shape[0] * inner_layout_.shape[1]; } private: struct WrappedFunction; internal_iterate::StridedIterationLayout<Arity> iteration_layout_; internal_iterate::InnerShapeAndStrides<Arity, 2> inner_layout_; void* context_; SpecializedElementwiseFunctionPointer<Arity, void*> callback_; }; } } #endif #include "tensorstore/util/iterate.h" #include <stddef.h> #include <algorithm> #include <array> #include <ostream> #include <type_traits> #include "absl/container/inlined_vector.h" #include "absl/utility/utility.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/util/byte_strided_pointer.h" #include "tensorstore/util/internal/iterate.h" #include "tensorstore/util/internal/iterate_impl.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_iterate { template <size_t Arity> static bool AreStridesContiguous( const InnerShapeAndStrides<Arity, 2>& inner_layout, const std::array<ptrdiff_t, Arity>& element_sizes) { if (inner_layout.shape[1] > 1) { for (size_t i = 0; i < Arity; ++i) { if (inner_layout.strides[i][1] != element_sizes[i]) return false; } } return true; } absl::InlinedVector<DimensionIndex, internal::kNumInlinedDims> ComputeStridedLayoutDimensionIterationOrder(IterationConstraints constraints, span<const Index> shape, span<const Index* const> strides) { const DimensionIndex rank = shape.size(); absl::InlinedVector<DimensionIndex, internal::kNumInlinedDims> dimension_order(rank); { DimensionIndex num_dims_preserved = 0; for (DimensionIndex dim_i = 0; dim_i < rank; ++dim_i) { const Index size = shape[dim_i]; if (size == 1) continue; if (size != 0 && constraints.repeated_elements_constraint() == skip_repeated_elements) { for (std::ptrdiff_t i = 0; i < strides.size(); ++i) { if (strides[i][dim_i] != 0) goto cannot_skip_dimension; } continue; } cannot_skip_dimension: dimension_order[num_dims_preserved++] = dim_i; } dimension_order.resize(num_dims_preserved); } if (constraints.order_constraint()) { if (constraints.order_constraint() == ContiguousLayoutOrder::fortran) { std::reverse(dimension_order.begin(), dimension_order.end()); } } else { std::sort(dimension_order.begin(), dimension_order.end(), [&](DimensionIndex a, DimensionIndex b) { for (ptrdiff_t j = 0; j < strides.size(); ++j) { const Index stride_a = strides[j][a]; const Index stride_b = strides[j][b]; if (stride_a > stride_b) return true; if (stride_a < stride_b) return false; } return false; }); } return dimension_order; } } namespace internal { template <size_t Arity> static SpecializedElementwiseFunctionPointer<Arity, void*> PickElementwiseFunction( const internal_iterate::InnerShapeAndStrides<Arity, 2>& inner_layout, const ElementwiseFunction<Arity, void*>& function, std::array<std::ptrdiff_t, Arity> element_sizes) { return function[internal_iterate::AreStridesContiguous(inner_layout, element_sizes) ? IterationBufferKind::kContiguous : IterationBufferKind::kStrided]; } template <size_t Arity> StridedLayoutFunctionApplyer<Arity>::StridedLayoutFunctionApplyer( span<const Index> shape, std::array<const Index*, Arity> strides, IterationConstraints constraints, ElementwiseClosure<Arity, void*> closure, std::array<std::ptrdiff_t, Arity> element_sizes) : iteration_layout_(internal_iterate::SimplifyStridedIterationLayout( constraints, shape, strides)), inner_layout_( internal_iterate::ExtractInnerShapeAndStrides<2>(&iteration_layout_)), context_(closure.context), callback_(PickElementwiseFunction(inner_layout_, *closure.function, element_sizes)) {} template <size_t Arity> StridedLayoutFunctionApplyer<Arity>::StridedLayoutFunctionApplyer( const Index* shape, span<const DimensionIndex> dimension_order, std::array<const Index*, Arity> strides, ElementwiseClosure<Arity, void*> closure, std::array<std::ptrdiff_t, Arity> element_sizes) : iteration_layout_( internal_iterate::PermuteAndSimplifyStridedIterationLayout( shape, dimension_order, strides)), inner_layout_( internal_iterate::ExtractInnerShapeAndStrides<2>(&iteration_layout_)), context_(closure.context), callback_(PickElementwiseFunction(inner_layout_, *closure.function, element_sizes)) {} template <size_t Arity> struct StridedLayoutFunctionApplyer<Arity>::WrappedFunction { template <typename... Pointer> bool operator()(Pointer... pointer) const { return CallHelper(std::index_sequence_for<Pointer...>(), pointer...); } template <size_t... Is> static bool OuterCallHelper( const StridedLayoutFunctionApplyer& data, std::index_sequence<Is...>, std::array<ByteStridedPointer<void>, Arity> pointers, void* arg) { return internal_iterate::IterateHelper< WrappedFunction, std::enable_if_t<true || Is, ByteStridedPointer<void>>...>:: Start(WrappedFunction{data, arg}, data.iteration_layout_, pointers[Is]...); } template <size_t... Is, typename... Pointer> bool CallHelper(std::index_sequence<Is...>, Pointer... pointer) const { return data_.callback_( data_.context_, data_.inner_layout_.shape, IterationBufferPointer{pointer, data_.inner_layout_.strides[Is][0], data_.inner_layout_.strides[Is][1]}..., arg_); } const StridedLayoutFunctionApplyer& data_; void* arg_; }; template <size_t Arity> bool StridedLayoutFunctionApplyer<Arity>::operator()( std::array<ByteStridedPointer<void>, Arity> pointers, void* arg) const { return WrappedFunction::OuterCallHelper( *this, std::make_index_sequence<Arity>(), pointers, arg); } template <size_t Arity> bool IterateOverStridedLayouts( ElementwiseClosure<Arity, void*> closure, void* arg, span<const Index> shape, std::array<ByteStridedPointer<void>, Arity> pointers, std::array<const Index*, Arity> strides, IterationConstraints constraints, std::array<std::ptrdiff_t, Arity> element_sizes) { return StridedLayoutFunctionApplyer<Arity>( shape, strides, constraints, closure, element_sizes)(pointers, arg); } #define TENSORSTORE_DO_INSTANTIATE_ITERATE(Arity) \ template class StridedLayoutFunctionApplyer<Arity>; \ template bool IterateOverStridedLayouts<Arity>( \ ElementwiseClosure<Arity, void*> closure, void* arg, \ span<const Index> shape, \ std::array<ByteStridedPointer<void>, Arity> pointers, \ std::array<const Index*, Arity> strides, \ IterationConstraints constraints, \ std::array<std::ptrdiff_t, Arity> element_sizes); TENSORSTORE_INTERNAL_FOR_EACH_ARITY(TENSORSTORE_DO_INSTANTIATE_ITERATE) #undef TENSORSTORE_DO_INSTANTIATE_ITERATE } }
#include "tensorstore/util/internal/iterate.h" #include <array> #include <tuple> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/inlined_vector.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/util/internal/iterate_impl.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/span.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::c_order; using ::tensorstore::ContiguousLayoutOrder; using ::tensorstore::DimensionIndex; using ::tensorstore::fortran_order; using ::tensorstore::include_repeated_elements; using ::tensorstore::Index; using ::tensorstore::IterationConstraints; using ::tensorstore::LayoutOrderConstraint; using ::tensorstore::skip_repeated_elements; using ::tensorstore::span; using ::tensorstore::internal::AdvanceIndices; using ::tensorstore::internal::DefaultIterationResult; using ::tensorstore::internal_iterate:: ComputeStridedLayoutDimensionIterationOrder; using ::tensorstore::internal_iterate::ExtractInnerShapeAndStrides; using ::tensorstore::internal_iterate::InnerShapeAndStrides; using ::tensorstore::internal_iterate::PermuteAndSimplifyStridedIterationLayout; using ::tensorstore::internal_iterate::SimplifyStridedIterationLayout; using ::tensorstore::internal_iterate::StridedIterationLayout; using ::testing::ElementsAre; TEST(LayoutOrderConstraint, Basic) { static_assert(!LayoutOrderConstraint{}, ""); static_assert(!LayoutOrderConstraint(tensorstore::unspecified_order), ""); static_assert(LayoutOrderConstraint(ContiguousLayoutOrder::c), ""); static_assert(LayoutOrderConstraint(ContiguousLayoutOrder::fortran), ""); static_assert( 0 == LayoutOrderConstraint(tensorstore::unspecified_order).value(), ""); static_assert(2 == LayoutOrderConstraint(ContiguousLayoutOrder::c).value(), ""); static_assert( 3 == LayoutOrderConstraint(ContiguousLayoutOrder::fortran).value(), ""); static_assert(ContiguousLayoutOrder::c == LayoutOrderConstraint(ContiguousLayoutOrder::c).order(), ""); static_assert( ContiguousLayoutOrder::fortran == LayoutOrderConstraint(ContiguousLayoutOrder::fortran).order(), ""); } TEST(IterationConstraintsTest, Basic) { static_assert(!IterationConstraints().order_constraint(), ""); static_assert( !IterationConstraints(tensorstore::unspecified_order).order_constraint(), ""); static_assert( IterationConstraints(ContiguousLayoutOrder::c).order_constraint(), ""); static_assert( IterationConstraints(ContiguousLayoutOrder::fortran).order_constraint(), ""); static_assert( ContiguousLayoutOrder::c == IterationConstraints(ContiguousLayoutOrder::c) .order_constraint() .order(), ""); static_assert(ContiguousLayoutOrder::fortran == IterationConstraints(ContiguousLayoutOrder::fortran) .order_constraint() .order(), ""); static_assert(include_repeated_elements == IterationConstraints().repeated_elements_constraint(), ""); static_assert(include_repeated_elements == IterationConstraints(include_repeated_elements) .repeated_elements_constraint(), ""); static_assert( skip_repeated_elements == IterationConstraints(skip_repeated_elements) .repeated_elements_constraint(), ""); static_assert( skip_repeated_elements == IterationConstraints(ContiguousLayoutOrder::c, skip_repeated_elements) .repeated_elements_constraint(), ""); static_assert(include_repeated_elements == IterationConstraints(ContiguousLayoutOrder::c, include_repeated_elements) .repeated_elements_constraint(), ""); static_assert(ContiguousLayoutOrder::c == IterationConstraints(ContiguousLayoutOrder::c, include_repeated_elements) .order_constraint() .order(), ""); static_assert(ContiguousLayoutOrder::fortran == IterationConstraints(ContiguousLayoutOrder::fortran, include_repeated_elements) .order_constraint() .order(), ""); static_assert(ContiguousLayoutOrder::fortran == IterationConstraints(ContiguousLayoutOrder::fortran, include_repeated_elements) .order_constraint() .order(), ""); static_assert(3 == IterationConstraints(ContiguousLayoutOrder::fortran, include_repeated_elements) .value(), ""); } TEST(PermuteAndSimplifyStridedIterationLayoutTest, Fortran1D) { const Index shape[] = {3, 4, 5}; const DimensionIndex dimension_order[] = {2, 1, 0}; const Index strides[] = {1, 3, 12}; auto layout = PermuteAndSimplifyStridedIterationLayout<1>( shape, dimension_order, {{strides}}); StridedIterationLayout<1> expected_layout{{60, {{1}}}}; EXPECT_EQ(expected_layout, layout); } TEST(PermuteAndSimplifyStridedIterationLayoutTest, C1D) { const Index shape[] = {3, 4, 5}; const DimensionIndex dimension_order[] = {0, 1, 2}; const Index strides[] = {20, 5, 1}; auto layout = PermuteAndSimplifyStridedIterationLayout<1>( shape, dimension_order, {{strides}}); StridedIterationLayout<1> expected_layout{{60, {{1}}}}; EXPECT_EQ(expected_layout, layout); } TEST(PermuteAndSimplifyStridedIterationLayoutTest, C2D) { const Index shape[] = {3, 4, 5}; const DimensionIndex dimension_order[] = {0, 1, 2}; const Index strides[] = {40, 5, 1}; auto layout = PermuteAndSimplifyStridedIterationLayout<1>( shape, dimension_order, {{strides}}); StridedIterationLayout<1> expected_layout{{3, {{40}}}, {20, {{1}}}}; EXPECT_EQ(expected_layout, layout); } TEST(PermuteAndSimplifyStridedIterationLayoutTest, C2D2Layouts) { const Index shape[] = {3, 4, 5}; const ptrdiff_t dimension_order[] = {0, 1, 2}; const Index strides0[] = {40, 5, 1}; const Index strides1[] = {40, 10, 2}; auto layout = PermuteAndSimplifyStridedIterationLayout<2>( shape, dimension_order, {{strides0, strides1}}); StridedIterationLayout<2> expected_layout{{3, {{40, 40}}}, {20, {{1, 2}}}}; EXPECT_EQ(expected_layout, layout); } TEST(PermuteAndSimplifyStridedIterationLayoutTest, C3D2Layouts) { const Index shape[] = {3, 4, 5}; const ptrdiff_t dimension_order[] = {0, 1, 2}; const Index strides0[] = {40, 5, 1}; const Index strides1[] = {40, 10, 1}; auto layout = PermuteAndSimplifyStridedIterationLayout<2>( shape, dimension_order, {{strides0, strides1}}); StridedIterationLayout<2> expected_layout{ {3, {{40, 40}}}, {4, {{5, 10}}}, {5, {{1, 1}}}}; EXPECT_EQ(expected_layout, layout); } TEST(ComputeStridedLayoutDimensionIterationOrderTest, Unconstrained1D1Layout) { const Index shape[] = {3, 4, 5}; const Index strides0[] = {20, 1, 4}; EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( include_repeated_elements, shape, span({strides0})), ElementsAre(0, 2, 1)); } TEST(ComputeStridedLayoutDimensionIterationOrderTest, Unconstrained1D1LayoutSkipRepeated) { const Index shape[] = {3, 5, 4, 5}; const Index strides0[] = {20, 0, 1, 4}; EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( include_repeated_elements, shape, span({strides0})), ElementsAre(0, 3, 2, 1)); EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( skip_repeated_elements, shape, span({strides0})), ElementsAre(0, 3, 2)); } TEST(ComputeStridedLayoutDimensionIterationOrderTest, Unconstrained1D1LayoutSingletonDims) { const Index shape[] = {3, 1, 4, 5}; const Index strides0[] = {20, 5, 1, 4}; EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( include_repeated_elements, shape, span({strides0})), ElementsAre(0, 3, 2)); } TEST(ComputeStridedLayoutDimensionIterationOrderTest, Unconstrained1D2Layouts) { const Index shape[] = {3, 4, 5}; const Index strides0[] = {20, 1, 4}; const Index strides1[] = {40, 2, 8}; EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( include_repeated_elements, shape, span({strides0, strides1})), ElementsAre(0, 2, 1)); } TEST(ComputeStridedLayoutDimensionIterationOrderTest, Unconstrained1D2LayoutsSkipRepeated) { const Index shape[] = {3, 5, 4, 5, 2}; const Index strides0[] = {20, 0, 1, 4, 71}; const Index strides1[] = {40, 0, 2, 8, 0}; EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( include_repeated_elements, shape, span({strides0, strides1})), ElementsAre(4, 0, 3, 2, 1)); EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( skip_repeated_elements, shape, span({strides0, strides1})), ElementsAre(4, 0, 3, 2)); EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( skip_repeated_elements, shape, span({strides1, strides0})), ElementsAre(0, 3, 2, 4)); } TEST(ComputeStridedLayoutDimensionIterationOrderTest, Fortran1D) { const Index shape[] = {3, 4, 5}; const Index strides[] = {1, 3, 12}; EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( {ContiguousLayoutOrder::fortran, include_repeated_elements}, shape, span({strides})), ElementsAre(2, 1, 0)); } TEST(ComputeStridedLayoutDimensionIterationOrderTest, Fortran1DSkipRepeated) { const Index shape[] = {3, 4, 2, 5}; const Index strides[] = {1, 3, 0, 12}; EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( {ContiguousLayoutOrder::fortran, include_repeated_elements}, shape, span({strides})), ElementsAre(3, 2, 1, 0)); EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( {ContiguousLayoutOrder::fortran, skip_repeated_elements}, shape, span({strides})), ElementsAre(3, 1, 0)); } TEST(ComputeStridedLayoutDimensionIterationOrderTest, C3D) { const Index shape[] = {3, 4, 5}; const Index strides[] = {1, 3, 12}; EXPECT_THAT(ComputeStridedLayoutDimensionIterationOrder( {ContiguousLayoutOrder::c, include_repeated_elements}, shape, span({strides})), ElementsAre(0, 1, 2)); } TEST(SimplifyStridedIterationLayoutTest, Unconstrained1D1Layout) { const Index shape[] = {3, 4, 5}; const Index strides0[] = {20, 1, 4}; auto layout = SimplifyStridedIterationLayout<1>(include_repeated_elements, shape, {{strides0}}); StridedIterationLayout<1> expected_layout{{60, {{1}}}}; EXPECT_EQ(expected_layout, layout); } TEST(SimplifyStridedIterationLayoutTest, Unconstrained1D1LayoutSkipRepeated) { const Index shape[] = {3, 5, 4, 5}; const Index strides0[] = {20, 0, 1, 4}; { auto layout = SimplifyStridedIterationLayout<1>(include_repeated_elements, shape, {{strides0}}); StridedIterationLayout<1> expected_layout{{{60, {{1}}}, {5, {{0}}}}}; EXPECT_EQ(expected_layout, layout); } { auto layout = SimplifyStridedIterationLayout<1>(skip_repeated_elements, shape, {{strides0}}); StridedIterationLayout<1> expected_layout{{60, {{1}}}}; EXPECT_EQ(expected_layout, layout); } } TEST(SimplifyStridedIterationLayoutTest, Unconstrained1D1LayoutSingletonDims) { const Index shape[] = {3, 1, 4, 5}; const Index strides0[] = {20, 5, 1, 4}; auto layout = SimplifyStridedIterationLayout<1>(include_repeated_elements, shape, {{strides0}}); StridedIterationLayout<1> expected_layout{{60, {{1}}}}; EXPECT_EQ(expected_layout, layout); } TEST(SimplifyStridedIterationLayoutTest, Unconstrained1D2Layouts) { const Index shape[] = {3, 4, 5}; const Index strides0[] = {20, 1, 4}; const Index strides1[] = {40, 2, 8}; auto layout = SimplifyStridedIterationLayout<2>( include_repeated_elements, shape, {{strides0, strides1}}); StridedIterationLayout<2> expected_layout{{60, {{1, 2}}}}; EXPECT_EQ(expected_layout, layout); } TEST(SimplifyStridedIterationLayoutTest, Unconstrained1D2LayoutsSkipRepeated) { const Index shape[] = {3, 5, 4, 5, 2}; const Index strides0[] = {20, 0, 1, 4, 71}; const Index strides1[] = {40, 0, 2, 8, 0}; { auto layout = SimplifyStridedIterationLayout<2>( include_repeated_elements, shape, {{strides0, strides1}}); StridedIterationLayout<2> expected_layout{ {2, {{71, 0}}}, {60, {{1, 2}}}, {5, {{0, 0}}}}; EXPECT_EQ(expected_layout, layout); } { auto layout = SimplifyStridedIterationLayout<2>( skip_repeated_elements, shape, {{strides0, strides1}}); StridedIterationLayout<2> expected_layout{{2, {{71, 0}}}, {60, {{1, 2}}}}; EXPECT_EQ(expected_layout, layout); } { auto layout = SimplifyStridedIterationLayout<2>( skip_repeated_elements, shape, {{strides1, strides0}}); StridedIterationLayout<2> expected_layout{{60, {{2, 1}}}, {2, {{0, 71}}}}; EXPECT_EQ(expected_layout, layout); } } TEST(SimplifyStridedIterationLayoutTest, Fortran1D) { const Index shape[] = {3, 4, 5}; const Index strides[] = {1, 3, 12}; auto layout = SimplifyStridedIterationLayout<1>( {ContiguousLayoutOrder::fortran, include_repeated_elements}, shape, {{strides}}); StridedIterationLayout<1> expected_layout{{60, {{1}}}}; EXPECT_EQ(expected_layout, layout); } TEST(SimplifyStridedIterationLayoutTest, Fortran1DSkipRepeated) { const Index shape[] = {3, 4, 2, 5}; const Index strides[] = {1, 3, 0, 12}; { auto layout = SimplifyStridedIterationLayout<1>( {ContiguousLayoutOrder::fortran, include_repeated_elements}, shape, {{strides}}); StridedIterationLayout<1> expected_layout{ {5, {{12}}}, {2, {{0}}}, {12, {{1}}}}; EXPECT_EQ(expected_layout, layout); } { auto layout = SimplifyStridedIterationLayout<1>( {ContiguousLayoutOrder::fortran, skip_repeated_elements}, shape, {{strides}}); StridedIterationLayout<1> expected_layout{{60, {{1}}}}; EXPECT_EQ(expected_layout, layout); } } TEST(SimplifyStridedIterationLayoutTest, C3D) { const Index shape[] = {3, 4, 5}; const Index strides[] = {1, 3, 12}; auto layout = SimplifyStridedIterationLayout<1>( {ContiguousLayoutOrder::c, include_repeated_elements}, shape, {{strides}}); StridedIterationLayout<1> expected_layout{ {3, {{1}}}, {4, {{3}}}, {5, {{12}}}}; EXPECT_EQ(expected_layout, layout); } TEST(ExtractInnerShapeAndStridesTest, N2Rank2Inner0) { StridedIterationLayout<2> iteration_layout{{3, {{1, 2}}}, {4, {{4, 5}}}}; auto inner_layout = ExtractInnerShapeAndStrides<0>(&iteration_layout); InnerShapeAndStrides<2, 0> expected_inner; StridedIterationLayout<2> expected_outer{{3, {{1, 2}}}, {4, {{4, 5}}}}; EXPECT_EQ(expected_inner, inner_layout); EXPECT_EQ(expected_outer, iteration_layout); } TEST(ExtractInnerShapeAndStridesTest, N2Rank2Inner1) { StridedIterationLayout<2> iteration_layout{{3, {{1, 2}}}, {4, {{4, 5}}}}; auto inner_layout = ExtractInnerShapeAndStrides<1>(&iteration_layout); InnerShapeAndStrides<2, 1> expected_inner{{{4}}, {{{{4}}, {{5}}}}}; StridedIterationLayout<2> expected_outer{{3, {{1, 2}}}}; EXPECT_EQ(expected_inner, inner_layout); EXPECT_EQ(expected_outer, iteration_layout); } TEST(ExtractInnerShapeAndStridesTest, N2Rank2Inner2) { StridedIterationLayout<2> iteration_layout{{3, {{1, 2}}}, {4, {{4, 5}}}}; auto inner_layout = ExtractInnerShapeAndStrides<2>(&iteration_layout); InnerShapeAndStrides<2, 2> expected_inner{{{3, 4}}, {{{{1, 4}}, {{2, 5}}}}}; StridedIterationLayout<2> expected_outer; EXPECT_EQ(expected_inner, inner_layout); EXPECT_EQ(expected_outer, iteration_layout); } TEST(ExtractInnerShapeAndStridesTest, N2Rank2Inner3) { StridedIterationLayout<2> iteration_layout{{3, {{1, 2}}}, {4, {{4, 5}}}}; auto inner_layout = ExtractInnerShapeAndStrides<3>(&iteration_layout); InnerShapeAndStrides<2, 3> expected_inner{{{1, 3, 4}}, {{{{0, 1, 4}}, {{0, 2, 5}}}}}; StridedIterationLayout<2> expected_outer; EXPECT_EQ(expected_inner, inner_layout); EXPECT_EQ(expected_outer, iteration_layout); } template <typename Func, typename... Pointer> std::invoke_result_t<Func&, Pointer...> IterateOverStridedLayouts( span<const Index> shape, std::array<const Index*, sizeof...(Pointer)> strides, Func&& func, tensorstore::IterationConstraints constraints, Pointer... pointer) { auto iteration_layout = SimplifyStridedIterationLayout(constraints, shape, strides); return tensorstore::internal_iterate::IterateHelper<Func&, Pointer...>::Start( func, iteration_layout, pointer...); } TEST(IterateOverStridedLayoutsTest, InnerRank0ContiguousC) { const Index shape[] = {2, 3}; const Index strides0[] = {3, 1}; const Index strides1[] = {3 * 4, 1 * 4}; using R = std::tuple<int, int>; std::vector<R> result; auto func = [&](int a, int b) { result.emplace_back(a, b); return true; }; IterateOverStridedLayouts(shape, {{strides0, strides1}}, func, ContiguousLayoutOrder::c, 0, 0); std::vector<R> expected_result{R{0, 0}, R{1, 4}, R{2, 8}, R{3, 12}, R{4, 16}, R{5, 20}}; EXPECT_EQ(expected_result, result); } TEST(IterateOverStridedLayoutsTest, EmptyDomain) { const Index shape[] = {0, 3}; const Index strides[] = {0, 1}; std::vector<int> result; auto func = [&](int a) { result.emplace_back(a); return true; }; IterateOverStridedLayouts(shape, {{strides}}, func, {ContiguousLayoutOrder::c, skip_repeated_elements}, 0); EXPECT_THAT(result, ::testing::ElementsAre()); } TEST(IterateOverStridedLayoutsTest, InnerRank0ContiguousCStop) { const Index shape[] = {2, 3}; const Index strides0[] = {3, 1}; const Index strides1[] = {3 * 4, 1 * 4}; using R = std::tuple<int, int>; std::vector<R> result; auto func = [&](int a, int b) { result.emplace_back(a, b); return a != 2; }; EXPECT_EQ(false, IterateOverStridedLayouts(shape, {{strides0, strides1}}, func, ContiguousLayoutOrder::c, 0, 0)); std::vector<R> expected_result{R{0, 0}, R{1, 4}, R{2, 8}}; EXPECT_EQ(expected_result, result); } TEST(IterateOverStridedLayoutsTest, InnerRank0NonContiguousFortran) { const Index shape[] = {2, 3}; const Index strides0[] = {3, 1}; const Index strides1[] = {3 * 4, 1 * 4}; using R = std::tuple<int, int>; std::vector<R> result; auto func = [&](int a, int b) { result.emplace_back(a, b); return true; }; IterateOverStridedLayouts(shape, {{strides0, strides1}}, func, ContiguousLayoutOrder::fortran, 0, 0); std::vector<R> expected_result{R{0, 0}, R{3, 12}, R{1, 4}, R{4, 16}, R{2, 8}, R{5, 20}}; EXPECT_EQ(expected_result, result); } TEST(IterateOverStridedLayoutsTest, InnerRank0NonContiguousFortranStop) { const Index shape[] = {2, 3}; const Index strides0[] = {3, 1}; const Index strides1[] = {3 * 4, 1 * 4}; using R = std::tuple<int, int>; std::vector<R> result; auto func = [&](int a, int b) { result.emplace_back(a, b); return a != 3; }; IterateOverStridedLayouts(shape, {{strides0, strides1}}, func, ContiguousLayoutOrder::fortran, 0, 0); std::vector<R> expected_result{R{0, 0}, R{3, 12}}; EXPECT_EQ(expected_result, result); } template <ContiguousLayoutOrder Order> std::vector<std::vector<int>> GetIndexVectors(std::vector<int> shape) { std::vector<std::vector<int>> result; std::vector<int> indices(shape.size()); do { result.push_back(indices); } while (AdvanceIndices<Order>(indices.size(), indices.data(), shape.data())); return result; } template <ContiguousLayoutOrder Order> std::vector<std::vector<int>> GetIndexVectors(std::vector<int> inclusive_min, std::vector<int> exclusive_max) { std::vector<std::vector<int>> result; std::vector<int> indices = inclusive_min; do { result.push_back(indices); } while (AdvanceIndices<Order>(indices.size(), indices.data(), inclusive_min.data(), exclusive_max.data())); return result; } TEST(AdvanceIndicesTest, COrderRank0) { EXPECT_THAT(GetIndexVectors<c_order>({}), ElementsAre(ElementsAre())); } TEST(AdvanceIndicesTest, FortranOrderRank0) { EXPECT_THAT(GetIndexVectors<fortran_order>({}), ElementsAre(ElementsAre())); } TEST(AdvanceIndicesTest, COrderShape) { EXPECT_THAT(GetIndexVectors<c_order>({2, 3}), ElementsAre( ElementsAre(0, 0), ElementsAre(0, 1), ElementsAre(0, 2), ElementsAre(1, 0), ElementsAre(1, 1), ElementsAre(1, 2))); } TEST(AdvanceIndicesTest, FortranOrderShape) { EXPECT_THAT(GetIndexVectors<fortran_order>({2, 3}), ElementsAre(ElementsAre(0, 0), ElementsAre(1, 0), ElementsAre(0, 1), ElementsAre(1, 1), ElementsAre(0, 2), ElementsAre(1, 2))); } TEST(AdvanceIndicesTest, COrderInclusiveMinExclusiveMax) { EXPECT_THAT( GetIndexVectors<c_order>({1, 2}, {3, 5}), ElementsAre(ElementsAre(1, 2), ElementsAre(1, 3), ElementsAre(1, 4), ElementsAre(2, 2), ElementsAre(2, 3), ElementsAre(2, 4))); } TEST(AdvanceIndicesTest, FortranOrderInclusiveMinExclusiveMax) { EXPECT_THAT(GetIndexVectors<fortran_order>({1, 2}, {3, 5}), ElementsAre(ElementsAre(1, 2), ElementsAre(2, 2), ElementsAre(1, 3), ElementsAre(2, 3), ElementsAre(1, 4), ElementsAre(2, 4))); } static_assert(DefaultIterationResult<bool>::value() == true, ""); static_assert(DefaultIterationResult<int>::value() == 0, ""); }
566
cpp
google/tensorstore
label_op
tensorstore/index_space/internal/label_op.cc
tensorstore/index_space/label_op_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_LABEL_OP_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_LABEL_OP_H_ #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/meta.h" #include "tensorstore/internal/string_like.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyLabel(IndexTransform<> transform, DimensionIndexBuffer* dimensions, internal::StringLikeSpan labels, bool domain_only); template <typename Labels> struct LabelOp { static constexpr DimensionIndex num_required_dims = internal::ConstSpanType<Labels>::extent; static constexpr bool selected_dimensions_are_new = false; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( (input_rank == dynamic_rank || input_rank >= num_required_dims) && "Number of dimensions must not exceed input rank."); return input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( RankConstraint::EqualOrUnspecified(num_input_dims, num_required_dims) && "Number of selected dimensions must match number of indices."); return num_input_dims == dynamic_rank ? num_required_dims : num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyLabel(std::move(transform), dimensions, internal::StringLikeSpan(labels), domain_only); } Labels labels; }; } } #endif #include "tensorstore/index_space/internal/label_op.h" #include <stddef.h> #include <string> #include <string_view> #include <utility> #include "absl/status/status.h" #include "tensorstore/container_kind.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/internal/dimension_labels.h" #include "tensorstore/internal/string_like.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyLabel(IndexTransform<> transform, DimensionIndexBuffer* dimensions, internal::StringLikeSpan labels, bool domain_only) { if (dimensions->size() != static_cast<size_t>(labels.size())) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of dimensions (", dimensions->size(), ") does not match number of labels (", labels.size(), ").")); } auto rep = MutableRep( TransformAccess::rep_ptr<container>(std::move(transform)), domain_only); const DimensionIndex input_rank = rep->input_rank; span<std::string> input_labels = rep->input_labels().first(input_rank); for (DimensionIndex i = 0; i < static_cast<DimensionIndex>(dimensions->size()); ++i) { const DimensionIndex input_dim = (*dimensions)[i]; std::string_view label = labels[i]; input_labels[input_dim].assign(label.begin(), label.end()); } TENSORSTORE_RETURN_IF_ERROR( internal::ValidateDimensionLabelsAreUnique(input_labels)); internal_index_space::DebugCheckInvariants(rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::IdentityTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::span; using ::tensorstore::internal_index_space::TestDimExpression; TEST(LabelTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .input_labels({"a", "y", "b"}) .output_identity_transform() .Finalize() .value(); TestDimExpression(original_transform, Dims(0, 2).Label("a", "b"), {0, 2}, expected_new_transform, expected_new_transform, {}); TestDimExpression(original_transform, Dims("x", "z").Label("a", "b"), {0, 2}, expected_new_transform, expected_new_transform, {}); } TEST(LabelTest, MultipleArguments) { TestDimExpression( IndexTransformBuilder<3, 1>() .output_constant(0, 1) .Finalize() .value(), Dims(1, 0).Label("x", "y"), {1, 0}, IndexTransformBuilder<3, 3>() .input_labels({"y", "x", ""}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<3, 1>() .input_labels({"y", "x", ""}) .output_constant(0, 1) .Finalize() .value(), {}); } TEST(LabelTest, ErrorHandling) { TestDimExpressionError( IdentityTransform(1), Dims(span<const DimensionIndex>({0})).Label("x", "y"), absl::StatusCode::kInvalidArgument, "Number of dimensions \\(1\\) does not match number of " "labels \\(2\\)\\."); } }
567
cpp
google/tensorstore
dimension_selection
tensorstore/index_space/internal/dimension_selection.cc
tensorstore/index_space/dimension_selection_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_DIMENSION_SELECTION_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_DIMENSION_SELECTION_H_ #include "absl/status/status.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" namespace tensorstore { namespace internal_index_space { absl::Status GetDimensions(IndexTransformView<> transform, span<const DimensionIndex> dimensions, DimensionIndexBuffer* result); absl::Status GetNewDimensions(DimensionIndex input_rank, span<const DimensionIndex> dimensions, DimensionIndexBuffer* result); absl::Status GetDimensions(IndexTransformView<> transform, span<const DimensionIdentifier> dimensions, DimensionIndexBuffer* result); absl::Status GetDimensions(span<const std::string> labels, span<const DynamicDimSpec> dimensions, DimensionIndexBuffer* result); absl::Status GetNewDimensions(DimensionIndex input_rank, span<const DynamicDimSpec> dimensions, DimensionIndexBuffer* result); absl::Status GetAllDimensions(DimensionIndex input_rank, DimensionIndexBuffer* result); template <typename Container> class DimensionList { public: absl::Status GetDimensions(IndexTransformView<> transform, DimensionIndexBuffer* buffer) const { if constexpr (std::is_same_v<typename Container::value_type, DynamicDimSpec>) { return internal_index_space::GetDimensions(transform.input_labels(), container, buffer); } else { return internal_index_space::GetDimensions(transform, container, buffer); } } absl::Status GetNewDimensions(DimensionIndex input_rank, DimensionIndexBuffer* buffer) const { static_assert( !std::is_same_v<typename Container::value_type, DimensionIdentifier>, "New dimensions must be specified by index."); return internal_index_space::GetNewDimensions(input_rank, container, buffer); } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex input_rank) { if constexpr (std::is_same_v<typename Container::value_type, DynamicDimSpec>) { return dynamic_rank; } else { return internal::ConstSpanType<Container>::extent; } } constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex selection_rank) { return input_rank; } Container container; }; class AllDims { public: absl::Status GetDimensions(IndexTransformView<> transform, DimensionIndexBuffer* buffer) const { return internal_index_space::GetAllDimensions(transform.input_rank(), buffer); } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex input_rank) { return input_rank; } constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex selection_rank) { return input_rank; } }; template <typename T> constexpr inline bool IsDimensionIdentifier = false; template <> constexpr inline bool IsDimensionIdentifier<DimensionIndex> = true; template <> constexpr inline bool IsDimensionIdentifier<DimensionIdentifier> = true; template <> constexpr inline bool IsDimensionIdentifier<DynamicDimSpec> = true; template <typename Dimensions, typename DimensionsSpan = internal::ConstSpanType<Dimensions>> using DimensionListFromSpanType = std::enable_if_t<IsDimensionIdentifier<typename DimensionsSpan::value_type>, DimensionList<DimensionsSpan>>; template <typename... DimensionId> using DimensionsFromPackType = std::conditional_t< internal::IsPackConvertibleWithoutNarrowing<DimensionIndex, DimensionId...>, DimensionList<std::array<DimensionIndex, sizeof...(DimensionId)>>, std::conditional_t< internal::IsPackConvertibleWithoutNarrowing<DimensionIdentifier, DimensionId...>, DimensionList<std::array<DimensionIdentifier, sizeof...(DimensionId)>>, std::enable_if_t<internal::IsPackConvertibleWithoutNarrowing< DynamicDimSpec, DimensionId...>, DimensionList<std::array<DynamicDimSpec, sizeof...(DimensionId)>>>>>; } } #endif #include "tensorstore/index_space/internal/dimension_selection.h" #include <numeric> #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { absl::Status CheckAndNormalizeDimensions(DimensionIndex input_rank, span<DimensionIndex> dimensions) { if (dimensions.size() > input_rank) { return absl::InvalidArgumentError( tensorstore::StrCat("Number of dimensions (", dimensions.size(), ") exceeds input rank (", input_rank, ").")); } std::vector<DimensionIndex> error_dimensions; for (DimensionIndex i = 0; i < dimensions.size(); ++i) { TENSORSTORE_ASSIGN_OR_RETURN( const DimensionIndex dim, NormalizeDimensionIndex(dimensions[i], input_rank)); dimensions[i] = dim; for (DimensionIndex j = 0; j < i; ++j) { if (dimensions[j] == dim) { error_dimensions.push_back(dim); } } } if (!error_dimensions.empty()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Input dimensions {", absl::StrJoin(error_dimensions, ", "), "} specified more than once")); } return absl::OkStatus(); } absl::Status GetDimensions(DimensionIndex input_rank, span<const DimensionIndex> dimensions, DimensionIndexBuffer* result) { result->assign(dimensions.begin(), dimensions.end()); return CheckAndNormalizeDimensions(input_rank, *result); } absl::Status GetDimensions(IndexTransformView<> transform, span<const DimensionIndex> dimensions, DimensionIndexBuffer* result) { return GetDimensions(transform.input_rank(), dimensions, result); } absl::Status GetDimensions(IndexTransformView<> transform, span<const DimensionIdentifier> dimensions, DimensionIndexBuffer* result) { const DimensionIndex input_rank = transform.input_rank(); result->resize(dimensions.size()); span<const std::string> input_labels = transform.input_labels(); for (DimensionIndex i = 0; i < dimensions.size(); ++i) { TENSORSTORE_ASSIGN_OR_RETURN( (*result)[i], NormalizeDimensionIdentifier(dimensions[i], input_labels)); } return CheckAndNormalizeDimensions(input_rank, *result); } absl::Status GetNewDimensions(DimensionIndex input_rank, span<const DimensionIndex> dimensions, DimensionIndexBuffer* result) { return GetDimensions(input_rank + dimensions.size(), dimensions, result); } absl::Status GetAllDimensions(DimensionIndex input_rank, DimensionIndexBuffer* result) { result->resize(input_rank); std::iota(result->begin(), result->end(), static_cast<DimensionIndex>(0)); return absl::OkStatus(); } absl::Status GetDimensions(span<const std::string> labels, span<const DynamicDimSpec> dimensions, DimensionIndexBuffer* result) { result->clear(); TENSORSTORE_RETURN_IF_ERROR( NormalizeDynamicDimSpecs(dimensions, labels, result)); return CheckAndNormalizeDimensions(labels.size(), *result); } namespace { Result<DimensionIndex> GetNumNewDimensions(const DimRangeSpec& spec) { const DimensionIndex step = spec.step; if (step == 0) return absl::InvalidArgumentError("step must not be 0"); if (spec.inclusive_start) { const DimensionIndex inclusive_start = *spec.inclusive_start; if (spec.exclusive_stop) { const DimensionIndex exclusive_stop = *spec.exclusive_stop; if ((exclusive_stop < 0) == (inclusive_start < 0) && ((step > 0 && exclusive_stop >= inclusive_start) || (step < 0 && exclusive_stop <= inclusive_start))) { return CeilOfRatio(*spec.exclusive_stop - inclusive_start, step); } } else if (step > 0) { if (inclusive_start < 0) { return CeilOfRatio(-inclusive_start, step); } } else { if (inclusive_start >= 0) { return CeilOfRatio(inclusive_start + 1, -step); } } } else if (spec.exclusive_stop) { const DimensionIndex exclusive_stop = *spec.exclusive_stop; if (step > 0) { if (exclusive_stop >= 0) { return CeilOfRatio(exclusive_stop, step); } } else { if (exclusive_stop < 0) { return CeilOfRatio(-(exclusive_stop + 1), -step); } } } return absl::InvalidArgumentError(tensorstore::StrCat( "`", spec, "` is not a valid specification for new dimensions")); } } absl::Status GetNewDimensions(DimensionIndex input_rank, span<const DynamicDimSpec> dimensions, DimensionIndexBuffer* result) { DimensionIndex new_rank = input_rank; for (const auto& spec : dimensions) { if (auto* r = std::get_if<DimRangeSpec>(&spec)) { TENSORSTORE_ASSIGN_OR_RETURN(DimensionIndex x, GetNumNewDimensions(*r)); new_rank += x; } else { new_rank += 1; } } result->clear(); result->reserve(new_rank); struct Visitor { DimensionIndex new_rank; DimensionIndexBuffer* result; absl::Status operator()(DimensionIndex i) const { TENSORSTORE_ASSIGN_OR_RETURN(DimensionIndex index, NormalizeDimensionIndex(i, new_rank)); result->push_back(index); return absl::OkStatus(); } absl::Status operator()(const std::string& label) const { return absl::InvalidArgumentError( "New dimensions cannot be specified by label"); } absl::Status operator()(const DimRangeSpec& s) const { return NormalizeDimRangeSpec(s, new_rank, result); } }; for (const auto& spec : dimensions) { TENSORSTORE_RETURN_IF_ERROR(std::visit(Visitor{new_rank, result}, spec)); } return CheckAndNormalizeDimensions(new_rank, *result); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_domain_builder.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::DimensionIndexBuffer; using ::tensorstore::DimRangeSpec; using ::tensorstore::Dims; using ::tensorstore::dynamic_rank; using ::tensorstore::DynamicDims; using ::tensorstore::IndexDomainBuilder; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::span; using ::tensorstore::internal_index_space::TestDimExpressionError; TEST(DimsTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<2, 0>().Finalize().value(), Dims(span<const DimensionIndex>({0, 0, 1})).IndexSlice(0), absl::StatusCode::kInvalidArgument, "Number of dimensions .* exceeds input rank .*"); TestDimExpressionError(IndexTransformBuilder<2, 0>().Finalize().value(), Dims(2).Label("b"), absl::StatusCode::kInvalidArgument, "Dimension index 2 is outside valid range .*"); TestDimExpressionError(IndexTransformBuilder<2, 0>().Finalize().value(), Dims(1, 1).Label("b", "c"), absl::StatusCode::kInvalidArgument, "Input dimensions \\{1\\} specified more than once.*"); } TEST(DimsTest, SelectUsingLabels) { TestDimExpression( IndexTransformBuilder<2, 0>() .input_labels({"x", "y"}) .Finalize() .value(), Dims("x").Label("a"), {0}, IndexTransformBuilder<2, 2>() .input_labels({"a", "y"}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<2, 0>().input_labels({"a", "y"}).Finalize().value(), {}); TestDimExpressionError( IndexTransformBuilder<2, 0>().input_labels({"x", "y"}).Finalize().value(), Dims("a").Label("z"), absl::StatusCode::kInvalidArgument, "Label \"a\" does not match one of \\{\"x\", \"y\"\\}"); TestDimExpressionError( IndexTransformBuilder<2, 0>().input_labels({"", ""}).Finalize().value(), Dims("").Label("z"), absl::StatusCode::kInvalidArgument, "Dimension cannot be specified by empty label"); TestDimExpression( IndexTransformBuilder<2, 0>() .input_labels({"x", "y"}) .Finalize() .value(), Dims({"x", -1}).Label("a", "b"), {0, 1}, IndexTransformBuilder<2, 2>() .input_labels({"a", "b"}) .output_identity_transform() .Finalize() .value(), IndexTransformBuilder<2, 0>().input_labels({"a", "b"}).Finalize().value(), {}); } TEST(DynamicDimsTest, Existing) { const auto original_transform = IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(); const auto expected_identity_new_transform = IndexTransformBuilder<4, 4>() .input_labels({"a1", "b1", "c1", "d1"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<4, 0>() .input_labels({"a1", "b1", "c1", "d1"}) .Finalize() .value(); TestDimExpression( original_transform, Dims(DimRangeSpec{1, 4, 2}, 0, "c").Label("b1", "d1", "a1", "c1"), {1, 3, 0, 2}, expected_identity_new_transform, expected_new_transform, {}); TestDimExpression( original_transform, DynamicDims({DimRangeSpec{1, 4, 2}, 0, "c"}) .Label("b1", "d1", "a1", "c1"), {1, 3, 0, 2}, expected_identity_new_transform, expected_new_transform, {}); } TEST(DynamicDimsTest, CombinedNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, 4, 2}, 0, -1).AddNew().Label("e", "f", "g", "h"), {1, 3, 0, 7}, IndexTransformBuilder<dynamic_rank, 4>(8, tensorstore::StaticRank<4>{}) .input_labels({"g", "e", "a", "f", "b", "c", "d", "h"}) .output_single_input_dimension(0, 2) .output_single_input_dimension(1, 4) .output_single_input_dimension(2, 5) .output_single_input_dimension(3, 6) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(8) .input_labels({"g", "e", "a", "f", "b", "c", "d", "h"}) .Finalize() .value(), {}, false); } TEST(DynamicDimsTest, InvalidNewLabel) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, 4, 2}, "x").AddNew(), absl::StatusCode::kInvalidArgument, "New dimensions cannot be specified by label"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewUnbounded) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, std::nullopt, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`:` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewMissingStop) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{5, std::nullopt, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`5:` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewNegativeStop) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, -3, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`:-3` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewNegativeStartNegativeStep) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-5, std::nullopt, -1}).AddNew(), absl::StatusCode::kInvalidArgument, "`-5::-1` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewMissingStart) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, 5, -1}).AddNew(), absl::StatusCode::kInvalidArgument, "`:5:-1` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewInvalidInterval) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{6, 5, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`6:5` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewInvalidMixedSigns) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-1, 4, 1}).AddNew(), absl::StatusCode::kInvalidArgument, "`-1:4` is not a valid specification for new dimensions"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewZeroStep) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, 4, 0}).AddNew(), absl::StatusCode::kInvalidArgument, "step must not be 0"); } TEST(DynamicDimsTest, InvalidDimRangeSpecNewInvalidIntervalNegativeStep) { TestDimExpressionError( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{5, 6, -1}).AddNew(), absl::StatusCode::kInvalidArgument, "`5:6:-1` is not a valid specification for new dimensions"); } TEST(DimsTest, DimRangeSpecNegativeStep) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-4, -7, -2}).AddNew().Label("e", "f"), {2, 0}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"f", "a", "e", "b", "c", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"f", "a", "e", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecNegativeIndicesNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-6, -3, 2}).AddNew().Label("e", "f"), {0, 2}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStopNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{-3, std::nullopt, 2}).AddNew().Label("e", "f"), {3, 5}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"a", "b", "c", "e", "d", "f"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 2) .output_single_input_dimension(3, 4) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"a", "b", "c", "e", "d", "f"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStopNegativeStepNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{1, std::nullopt, -1}).AddNew().Label("e", "f"), {1, 0}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"f", "e", "a", "b", "c", "d"}) .output_single_input_dimension(0, 2) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"f", "e", "a", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStartNegativeStepNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, -4, -2}).AddNew().Label("e", "f"), {5, 3}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"a", "b", "c", "f", "d", "e"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 2) .output_single_input_dimension(3, 4) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"a", "b", "c", "f", "d", "e"}) .Finalize() .value(), {}, false); } TEST(DimsTest, DimRangeSpecImplicitStartNew) { TestDimExpression( IndexTransformBuilder<4, 0>() .input_labels({"a", "b", "c", "d"}) .Finalize() .value(), Dims(DimRangeSpec{std::nullopt, 3, 2}).AddNew().Label("e", "f"), {0, 2}, IndexTransformBuilder<dynamic_rank, 4>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 3) .output_single_input_dimension(2, 4) .output_single_input_dimension(3, 5) .Finalize() .value(), IndexTransformBuilder<dynamic_rank, 0>(6) .input_labels({"e", "a", "f", "b", "c", "d"}) .Finalize() .value(), {}, false); } TEST(ResolveTest, Example) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto domain, IndexDomainBuilder<3>().labels({"x", "y", "z"}).Finalize()); DimensionIndexBuffer buffer; TENSORSTORE_EXPECT_OK(Dims("x", "z").Resolve(domain, &buffer)); EXPECT_THAT(buffer, ::testing::ElementsAre(0, 2)); } }
568
cpp
google/tensorstore
diagonal_op
tensorstore/index_space/internal/diagonal_op.cc
tensorstore/index_space/diagonal_op_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_DIAGONAL_OP_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_DIAGONAL_OP_H_ #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/string_like.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyDiagonal(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only); struct DiagonalOp { static constexpr bool selected_dimensions_are_new = false; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { return RankConstraint::Add( RankConstraint::Subtract(input_rank, num_input_dims), 1); } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { return 1; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyDiagonal(std::move(transform), dimensions, domain_only); } }; } } #endif #include "tensorstore/index_space/internal/diagonal_op.h" #include <algorithm> namespace tensorstore { namespace internal_index_space { namespace { template <typename R> void ShiftRangeForwardByOne(R range) { for (DimensionIndex i = range.size() - 1; i > 0; --i) { range[i] = range[i - 1]; } } void ExtractDiagonal(TransformRep* original, TransformRep* result, DimensionIndexBuffer* dimensions, bool domain_only) { const DimensionIndex orig_input_rank = original->input_rank; const DimensionIndex output_rank = domain_only ? 0 : original->output_rank; const DimensionIndex new_input_rank = orig_input_rank - dimensions->size() + 1; assert(result->input_rank_capacity >= new_input_rank); const DimensionIndex diag_input_dim = 0; DimensionIndex orig_to_new_input_dim[kMaxRank]; std::fill_n(&orig_to_new_input_dim[0], orig_input_rank, static_cast<DimensionIndex>(-1)); bool lower_diagonal_bound_implicit = true, upper_diagonal_bound_implicit = true; IndexInterval diagonal_bounds; for (DimensionIndex orig_input_dim : *dimensions) { orig_to_new_input_dim[orig_input_dim] = diag_input_dim; const auto d = original->input_dimension(orig_input_dim); diagonal_bounds = Intersect(diagonal_bounds, d.domain()); if (!d.implicit_lower_bound()) { lower_diagonal_bound_implicit = false; } if (!d.implicit_upper_bound()) { upper_diagonal_bound_implicit = false; } } for (DimensionIndex orig_input_dim = 0, new_input_dim = 1; orig_input_dim < orig_input_rank; ++orig_input_dim) { if (orig_to_new_input_dim[orig_input_dim] == -1) { orig_to_new_input_dim[orig_input_dim] = new_input_dim++; } } const bool domain_is_explicitly_empty = !lower_diagonal_bound_implicit && !upper_diagonal_bound_implicit && diagonal_bounds.empty(); span<const OutputIndexMap> orig_maps = original->output_index_maps().first(output_rank); span<OutputIndexMap> result_maps = result->output_index_maps().first(output_rank); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { const auto& orig_map = orig_maps[output_dim]; auto& result_map = result_maps[output_dim]; result_map.stride() = orig_map.stride(); result_map.offset() = orig_map.offset(); switch (orig_map.method()) { case OutputIndexMethod::constant: result_map.SetConstant(); break; case OutputIndexMethod::single_input_dimension: { const DimensionIndex orig_input_dim = orig_map.input_dimension(); assert(orig_input_dim >= 0 && orig_input_dim < orig_input_rank); const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; result_map.SetSingleInputDimension(new_input_dim); break; } case OutputIndexMethod::array: { if (domain_is_explicitly_empty) { result_map.SetConstant(); result_map.stride() = 0; result_map.offset() = 0; break; } auto& result_index_array = result_map.SetArrayIndexing(new_input_rank); const auto& orig_index_array = orig_map.index_array_data(); assert(orig_index_array.rank_capacity >= orig_input_rank); Index diag_byte_stride = 0; for (DimensionIndex orig_input_dim : *dimensions) { diag_byte_stride += orig_index_array.byte_strides[orig_input_dim]; } for (DimensionIndex orig_input_dim = 0; orig_input_dim < orig_input_rank; ++orig_input_dim) { const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; if (new_input_dim == diag_input_dim) continue; assert(new_input_dim - 1 <= orig_input_dim); result_index_array.byte_strides[new_input_dim - 1] = orig_index_array.byte_strides[orig_input_dim]; } ShiftRangeForwardByOne( span(result_index_array.byte_strides, new_input_rank)); result_index_array.byte_strides[diag_input_dim] = diag_byte_stride; result_index_array.index_range = orig_index_array.index_range; result_index_array.element_pointer = orig_index_array.element_pointer.pointer(); break; } } } for (DimensionIndex orig_input_dim = 0; orig_input_dim < orig_input_rank; ++orig_input_dim) { const DimensionIndex new_input_dim = orig_to_new_input_dim[orig_input_dim]; if (new_input_dim == diag_input_dim) continue; assert(new_input_dim - 1 <= orig_input_dim); result->input_dimension(new_input_dim - 1) = original->input_dimension(orig_input_dim); } ShiftRangeForwardByOne(result->all_input_dimensions(new_input_rank)); { const auto d = result->input_dimension(diag_input_dim); d.domain() = diagonal_bounds; d.implicit_lower_bound() = lower_diagonal_bound_implicit; d.implicit_upper_bound() = upper_diagonal_bound_implicit; d.SetEmptyLabel(); } result->input_rank = new_input_rank; result->output_rank = output_rank; dimensions->clear(); dimensions->push_back(diag_input_dim); NormalizeImplicitBounds(*result); } } Result<IndexTransform<>> ApplyDiagonal(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) { TransformRep* rep = TransformAccess::rep(transform); const DimensionIndex new_input_rank = rep->input_rank - dimensions->size() + 1; TransformRep::Ptr<> new_rep = NewOrMutableRep(rep, new_input_rank, rep->output_rank, domain_only); ExtractDiagonal(rep, new_rep.get(), dimensions, domain_only); internal_index_space::DebugCheckInvariants(new_rep.get()); return TransformAccess::Make<IndexTransform<>>(std::move(new_rep)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" namespace { using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::kInfSize; using ::tensorstore::MakeArray; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(DiagonalTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({5, 4, 5}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<2, 3>() .input_origin({3, 2}) .input_shape({3, 4}) .input_labels({"", "y"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(); const EquivalentIndices equivalent_indices = { {{4, 3, 4}, {4, 3}}, }; TestDimExpression(original_transform, Dims(0, 2).Diagonal(), {0}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("x", "z").Diagonal(), {0}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(DiagonalTest, ZeroDimensional) { TestDimExpression(IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({5, 4}) .input_labels({"x", "y"}) .output_single_input_dimension(0, 5, 1, 0) .output_single_input_dimension(1, 1) .Finalize() .value(), Dims().Diagonal(), {0}, IndexTransformBuilder<3, 2>() .input_origin({-kInfIndex, 1, 2}) .input_shape({kInfSize, 5, 4}) .implicit_lower_bounds({1, 0, 0}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"", "x", "y"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .Finalize() .value(), IndexTransformBuilder<3, 2>() .input_origin({-kInfIndex, 1, 2}) .input_shape({kInfSize, 5, 4}) .implicit_lower_bounds({1, 0, 0}) .implicit_upper_bounds({1, 0, 0}) .input_labels({"", "x", "y"}) .output_single_input_dimension(0, 5, 1, 1) .output_single_input_dimension(1, 2) .Finalize() .value(), {{{3, 4}, {8, 3, 4}}}, false); } TEST(DiagonalTest, OneDimensional) { TestDimExpression(IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({5, 4, 5}) .input_labels({"x", "y", "z"}) .output_single_input_dimension(0, 5, 1, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 2) .Finalize() .value(), Dims(1).Diagonal(), {0}, IndexTransformBuilder<3, 3>() .input_origin({2, 1, 3}) .input_shape({4, 5, 5}) .input_labels({"", "x", "z"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 0) .output_single_input_dimension(2, 2) .Finalize() .value(), IndexTransformBuilder<3, 3>() .input_origin({2, 1, 3}) .input_shape({4, 5, 5}) .input_labels({"", "x", "z"}) .output_single_input_dimension(0, 5, 1, 1) .output_single_input_dimension(1, 0) .output_single_input_dimension(2, 2) .Finalize() .value(), {{{4, 3, 5}, {3, 4, 5}}}); } TEST(DiagonalTest, TwoDimensionalSimple) { TestDimExpression(IndexTransformBuilder<3, 3>() .input_origin({5, 6, 7}) .input_shape({10, 9, 15}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 2) .Finalize() .value(), Dims(2, 0).Diagonal(), {0}, IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(), IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 0) .Finalize() .value(), {{{10, 11, 10}, {10, 11}}}); } TEST(DiagonalTest, TwoDimensionalSimpleImplicitLower) { TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({5, 6, 7}) .input_shape({10, 9, 15}) .implicit_lower_bounds({1, 0, 1}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 2) .Finalize() .value(), Dims(2, 0).Diagonal(), {0}, IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .implicit_lower_bounds({1, 0}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(), IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .implicit_lower_bounds({1, 0}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 0) .Finalize() .value(), {{{10, 11, 10}, {10, 11}}}); } TEST(DiagonalTest, TwoDimensionalSimpleImplicitUpper) { TestDimExpression( IndexTransformBuilder<3, 3>() .input_origin({5, 6, 7}) .input_shape({10, 9, 15}) .implicit_upper_bounds({1, 0, 1}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 2) .Finalize() .value(), Dims(2, 0).Diagonal(), {0}, IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(), IndexTransformBuilder<2, 3>() .input_origin({7, 6}) .input_shape({8, 9}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 1, 1, 1) .output_single_input_dimension(1, 2, 2, 0) .output_single_input_dimension(2, 3, 3, 0) .Finalize() .value(), {{{10, 11, 10}, {10, 11}}}); } TEST(DiagonalTest, IndexArray) { TestDimExpression( IndexTransformBuilder<3, 2>() .input_origin({5, 6, 6}) .input_shape({4, 5, 2}) .output_index_array( 0, 2, 3, MakeArray<Index>( {{{1, 4}}, {{2, 5}}, {{3, 6}}, {{4, 7}}})) .output_constant(1, 0) .Finalize() .value(), Dims(0, 2).Diagonal(), {0}, IndexTransformBuilder<2, 3>() .input_origin({6, 6}) .input_shape({2, 5}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({6, 6}) .input_shape({2, 5}) .output_index_array(0, 2, 3, MakeArray<Index>({{2}, {6}})) .output_constant(1, 0) .Finalize() .value(), {{{6, 8, 6}, {6, 8}}}); } TEST(DiagonalTest, IndexArrayZeroSize) { TestDimExpression( IndexTransformBuilder<2, 2>() .input_shape({0, 2}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 0) .output_index_array(1, 0, 1, MakeArray<Index>({{1, 2}})) .Finalize() .value(), Dims(0, 1).Diagonal(), {0}, IndexTransformBuilder<1, 2>() .input_shape({0}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 0) .Finalize() .value(), IndexTransformBuilder<1, 2>() .input_shape({0}) .output_single_input_dimension(0, 0) .output_constant(1, 0) .Finalize() .value(), {}); } TEST(DiagonalTest, Labeled) { TestDimExpression( IndexTransformBuilder<3, 2>() .input_origin({5, 6, 6}) .input_shape({4, 5, 2}) .input_labels({"a", "b", "c"}) .output_index_array( 0, 2, 3, MakeArray<Index>( {{{1, 4}}, {{2, 5}}, {{3, 6}}, {{4, 7}}})) .output_constant(1, 0) .Finalize() .value(), Dims(0, 2).Diagonal().Label("diag"), {0}, IndexTransformBuilder<2, 3>() .input_origin({6, 6}) .input_shape({2, 5}) .input_labels({"diag", "b"}) .output_single_input_dimension(0, 0) .output_single_input_dimension(1, 1) .output_single_input_dimension(2, 0) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({6, 6}) .input_shape({2, 5}) .input_labels({"diag", "b"}) .output_index_array(0, 2, 3, MakeArray<Index>({{2}, {6}})) .output_constant(1, 0) .Finalize() .value(), {{{6, 8, 6}, {6, 8}}}); } }
569
cpp
google/tensorstore
kvs_backed_chunk_driver
tensorstore/driver/kvs_backed_chunk_driver.cc
tensorstore/driver/kvs_backed_chunk_driver_test.cc
#ifndef TENSORSTORE_DRIVER_KVS_BACKED_CHUNK_DRIVER_H_ #define TENSORSTORE_DRIVER_KVS_BACKED_CHUNK_DRIVER_H_ #include <memory> #include <string_view> #include "absl/status/status.h" #include "tensorstore/box.h" #include "tensorstore/driver/chunk_cache_driver.h" #include "tensorstore/driver/driver.h" #include "tensorstore/driver/registry.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/cache/aggregate_writeback_cache.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/async_initialized_cache_mixin.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/cache/chunk_cache.h" #include "tensorstore/internal/cache/kvs_backed_cache.h" #include "tensorstore/internal/cache/kvs_backed_chunk_cache.h" #include "tensorstore/internal/chunk_grid_specification.h" #include "tensorstore/internal/context_binding.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/estimate_heap_usage/std_vector.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/open_mode_spec.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/open_mode.h" #include "tensorstore/serialization/absl_time.h" #include "tensorstore/spec.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_kvs_backed_chunk_driver { struct KvsDriverSpec : public internal::DriverSpec, public internal::OpenModeSpec { kvstore::Spec store; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency; Context::Resource<internal::CachePoolResource> cache_pool; StalenessBounds staleness; static constexpr auto ApplyMembers = [](auto& x, auto f) { return f(internal::BaseCast<internal::DriverSpec>(x), internal::BaseCast<internal::OpenModeSpec>(x), x.store, x.data_copy_concurrency, x.cache_pool, x.staleness); }; kvstore::Spec GetKvstore() const override; OpenMode open_mode() const override; absl::Status ApplyOptions(SpecOptions&& options) override; }; TENSORSTORE_DECLARE_JSON_BINDER(SpecJsonBinder, KvsDriverSpec, JsonSerializationOptions, JsonSerializationOptions, ::nlohmann::json::object_t); enum AtomicUpdateConstraint { kNone, kRequireExisting, kRequireMissing, }; class MetadataCache : public internal::AggregateWritebackCache< MetadataCache, internal::KvsBackedCache<MetadataCache, internal::AsyncCache>>, public internal::AsyncInitializedCacheMixin { using Base = internal::AggregateWritebackCache< MetadataCache, internal::KvsBackedCache<MetadataCache, internal::AsyncCache>>; public: using MetadataPtr = std::shared_ptr<const void>; struct Initializer { Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency; Context::Resource<internal::CachePoolResource> cache_pool; }; explicit MetadataCache(Initializer initializer); virtual std::string GetMetadataStorageKey(std::string_view entry_key) = 0; virtual Result<MetadataPtr> DecodeMetadata(std::string_view entry_key, absl::Cord encoded_metadata) = 0; virtual Result<absl::Cord> EncodeMetadata(std::string_view entry_key, const void* metadata) = 0; using UpdateFunction = std::function<Result<MetadataPtr>(const MetadataPtr& existing_metadata)>; struct PendingWrite { UpdateFunction update; AtomicUpdateConstraint update_constraint; Promise<void> promise; }; class Entry : public Base::Entry { public: using OwningCache = MetadataCache; MetadataPtr GetMetadata() { return ReadLock<void>(*this).shared_data(); } Result<MetadataPtr> GetMetadata(internal::OpenTransactionPtr transaction); void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override; void DoEncode(std::shared_ptr<const void> data, EncodeReceiver receiver) override; std::string GetKeyValueStoreKey() override; Future<const void> RequestAtomicUpdate( const internal::OpenTransactionPtr& transaction, UpdateFunction update, AtomicUpdateConstraint update_constraint, std::optional<absl::Time> read_time = {}); }; class TransactionNode : public Base::TransactionNode { public: using OwningCache = MetadataCache; using MetadataCache::Base::TransactionNode::TransactionNode; Result<MetadataPtr> GetUpdatedMetadata(MetadataPtr metadata); Result<MetadataPtr> GetUpdatedMetadata(); void DoApply(ApplyOptions options, ApplyReceiver receiver) override; void InvalidateReadState() override; private: friend class Entry; MetadataPtr updated_metadata_base_state_; Result<MetadataPtr> updated_metadata_ = nullptr; }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { return new TransactionNode(static_cast<Entry&>(entry)); } kvstore::Driver* base_store() { return base_store_.get(); } const Executor& executor() { return data_copy_concurrency_->executor; } kvstore::DriverPtr base_store_; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency_; Context::Resource<internal::CachePoolResource> cache_pool_; }; class DataCacheBase { public: using MetadataPtr = MetadataCache::MetadataPtr; struct Initializer { internal::PinnedCacheEntry<MetadataCache> metadata_cache_entry; MetadataPtr metadata; }; explicit DataCacheBase(Initializer&& initializer); virtual ~DataCacheBase(); virtual internal::Cache& cache() = 0; using Ptr = internal::CachePtr<DataCacheBase>; virtual absl::Status ValidateMetadataCompatibility( const void* existing_metadata, const void* new_metadata) = 0; virtual absl::Status GetBoundSpecData(KvsDriverSpec& spec, const void* metadata, size_t component_index) = 0; virtual Result<IndexTransform<>> GetExternalToInternalTransform( const void* metadata, size_t component_index); virtual void GetComponentBounds(const void* metadata, size_t component_index, Box<dynamic_rank(kMaxRank)>& bounds, DimensionSet& implicit_lower_bounds, DimensionSet& implicit_upper_bounds) = 0; virtual std::string GetBaseKvstorePath() = 0; MetadataCache* metadata_cache() const { return &GetOwningCache(*metadata_cache_entry_); } const Executor& executor() const { return metadata_cache()->executor(); } const internal::PinnedCacheEntry<MetadataCache>& metadata_cache_entry() const { return metadata_cache_entry_; } const MetadataPtr& initial_metadata() const { return initial_metadata_; } const internal::PinnedCacheEntry<MetadataCache> metadata_cache_entry_; const MetadataPtr initial_metadata_; }; class ChunkedDataCacheBase : public DataCacheBase { public: using Ptr = internal::CachePtr<ChunkedDataCacheBase>; using DataCacheBase::DataCacheBase; using DataCacheBase::executor; virtual const internal::ChunkGridSpecification& grid() const = 0; virtual std::string GetChunkStorageKey(span<const Index> cell_indices) = 0; virtual void GetChunkGridBounds(const void* metadata, MutableBoxView<> bounds, DimensionSet& implicit_lower_bounds, DimensionSet& implicit_upper_bounds) = 0; void GetComponentBounds(const void* metadata, size_t component_index, Box<dynamic_rank(kMaxRank)>& bounds, DimensionSet& implicit_lower_bounds, DimensionSet& implicit_upper_bounds) override; virtual Result<ChunkLayout> GetChunkLayoutFromMetadata( const void* metadata_ptr, size_t component_index) = 0; virtual Result<ChunkLayout> GetChunkLayout(size_t component_index); virtual Result<std::shared_ptr<const void>> GetResizedMetadata( const void* existing_metadata, span<const Index> new_inclusive_min, span<const Index> new_exclusive_max) = 0; virtual Future<const void> DeleteCell( span<const Index> grid_cell_indices, internal::OpenTransactionPtr transaction) = 0; }; struct DataCacheInitializer : public ChunkedDataCacheBase::Initializer { kvstore::DriverPtr store; }; class DataCache : public internal::KvsBackedChunkCache, public ChunkedDataCacheBase { public: using DataCacheBase::executor; using Initializer = DataCacheInitializer; explicit DataCache(Initializer&& initializer, internal::ChunkGridSpecification&& grid); const Executor& executor() const final { return ChunkedDataCacheBase::executor(); } internal::Cache& cache() final { return *this; } const internal::ChunkGridSpecification& grid() const final { return grid_; } Future<const void> DeleteCell(span<const Index> grid_cell_indices, internal::OpenTransactionPtr transaction) final; internal::ChunkGridSpecification grid_; }; struct PrivateOpenState { internal::OpenTransactionPtr transaction_; Batch batch_{no_batch}; internal::DriverSpec::PtrT<const KvsDriverSpec> spec_; ReadWriteMode read_write_mode_; std::string metadata_cache_key_; internal::PinnedCacheEntry<MetadataCache> metadata_cache_entry_; absl::Time request_time_; }; class KvsMetadataDriverBase : public internal::Driver { public: Future<IndexTransform<>> ResolveBounds(ResolveBoundsRequest request) override; Future<IndexTransform<>> ResolveBounds( ResolveBoundsRequest request, StalenessBound metadata_staleness_bound); Future<MetadataCache::MetadataPtr> ResolveMetadata( internal::OpenTransactionPtr transaction, absl::Time metadata_staleness_bound); Result<IndexTransform<>> GetBoundSpecData( internal::OpenTransactionPtr transaction, KvsDriverSpec& spec, IndexTransformView<> transform); KvStore GetKvstore(const Transaction& transaction) override; struct GarbageCollectionBase { static void Visit(garbage_collection::GarbageCollectionVisitor& visitor, const KvsMetadataDriverBase& value); }; virtual DataCacheBase* cache() const = 0; virtual size_t component_index() const = 0; const StalenessBound& metadata_staleness_bound() const { return metadata_staleness_bound_; } virtual const StalenessBound& data_staleness_bound() const = 0; StalenessBound metadata_staleness_bound_; std::shared_ptr<const void> assumed_metadata_; absl::Time assumed_metadata_time_ = absl::InfinitePast(); }; class KvsChunkedDriverBase : public KvsMetadataDriverBase { public: virtual ChunkedDataCacheBase* cache() const override = 0; Result<ChunkLayout> GetChunkLayout(IndexTransformView<> transform) override; Future<IndexTransform<>> Resize( internal::Driver::ResizeRequest request) override; }; using DriverInitializer = internal::ChunkCacheDriverInitializer<DataCacheBase>; class MetadataOpenState : public internal::AtomicReferenceCount<MetadataOpenState>, private PrivateOpenState { public: using Ptr = internal::IntrusivePtr<MetadataOpenState>; struct Initializer { internal::DriverSpec::PtrT<const KvsDriverSpec> spec; internal::DriverOpenRequest request; }; explicit MetadataOpenState(Initializer initializer); virtual ~MetadataOpenState(); virtual std::string GetPrefixForDeleteExisting() = 0; virtual std::string GetMetadataCacheEntryKey() = 0; virtual AtomicUpdateConstraint GetCreateConstraint(); struct CreateOptions { bool assume_metadata = false; }; virtual Result<std::shared_ptr<const void>> Create( const void* existing_metadata, CreateOptions options) = 0; virtual std::string GetMetadataCacheKey(); virtual std::unique_ptr<MetadataCache> GetMetadataCache( MetadataCache::Initializer initializer) = 0; virtual Result<kvstore::DriverPtr> GetMetadataKeyValueStore( kvstore::DriverPtr base_kv_store); virtual Result<internal::Driver::Handle> CreateDriverHandleFromMetadata( std::shared_ptr<const void> metadata) = 0; virtual ReadWriteMode GetReadWriteMode(const void* metadata); const KvsDriverSpec& spec() const { return *spec_; } const Executor& executor() const { return spec_->data_copy_concurrency->executor; } const Context::Resource<internal::CachePoolResource>& cache_pool() const { return spec_->cache_pool; } }; class OpenState : public MetadataOpenState { public: using Ptr = internal::IntrusivePtr<OpenState>; using MetadataOpenState::MetadataOpenState; Result<internal::Driver::Handle> CreateDriverHandleFromMetadata( std::shared_ptr<const void> metadata) override; virtual KvsMetadataDriverBase* AllocateDriver( DriverInitializer&& initializer) = 0; virtual std::string GetDataCacheKey(const void* metadata) = 0; virtual std::unique_ptr<DataCacheBase> GetDataCache( DataCacheInitializer&& initializer) = 0; virtual Result<kvstore::DriverPtr> GetDataKeyValueStore( kvstore::DriverPtr base_kv_store, const void* metadata); virtual Result<size_t> GetComponentIndex(const void* metadata, OpenMode open_mode) = 0; };
#include "tensorstore/driver/kvs_backed_chunk_driver.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/driver/kvs_backed_chunk_driver_impl.h" #include "tensorstore/index.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Box; using ::tensorstore::Index; using ::tensorstore::kImplicit; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_kvs_backed_chunk_driver:: ValidateResizeConstraints; using ISpan = ::tensorstore::span<const Index>; TEST(ValidateResizeConstraintsTest, Success) { EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 6}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), false, false)); EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({4, 6}), ISpan({0, 0}), ISpan({4, kImplicit}), false, false)); EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 6}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), true, false)); EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 3}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), false, true)); EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 5}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), true, true)); EXPECT_EQ(absl::OkStatus(), ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 5}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), true, true)); } TEST(ValidateResizeConstraintsTest, Failure) { EXPECT_THAT( ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 6}), ISpan({0, 0}), ISpan({5, kImplicit}), false, false), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Resize operation would also affect output dimension 0 " "over the out-of-bounds interval \\[4, 5\\)")); EXPECT_THAT( ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 6}), ISpan({0, 0}), ISpan({3, kImplicit}), false, false), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Resize operation would also affect output dimension 0 over the " "interval \\[3, 4\\) but `resize_tied_bounds` was not specified")); EXPECT_THAT( ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 6}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), false, true), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Resize operation would expand output dimension 1 from " "\\[0, 5\\) to \\[0, 6\\) but `shrink_only` was specified")); EXPECT_THAT( ValidateResizeConstraints( Box({0, 0}, {4, 5}), ISpan({kImplicit, kImplicit}), ISpan({kImplicit, 4}), ISpan({0, 0}), ISpan({kImplicit, kImplicit}), true, false), MatchesStatus( absl::StatusCode::kFailedPrecondition, "Resize operation would shrink output dimension 1 from " "\\[0, 5\\) to \\[0, 4\\) but `expand_only` was specified")); } }
570
cpp
google/tensorstore
driver
tensorstore/kvstore/ocdbt/driver.cc
tensorstore/kvstore/ocdbt/distributed/driver_test.cc
#ifndef TENSORSTORE_KVSTORE_OCDBT_DRIVER_H_ #define TENSORSTORE_KVSTORE_OCDBT_DRIVER_H_ #include <stddef.h> #include <optional> #include <string> #include <string_view> #include "absl/status/status.h" #include "absl/time/time.h" #include <nlohmann/json_fwd.hpp> #include "tensorstore/context.h" #include "tensorstore/context_resource_provider.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/concurrency_resource.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/ocdbt/btree_writer.h" #include "tensorstore/kvstore/ocdbt/config.h" #include "tensorstore/kvstore/ocdbt/distributed/rpc_security.h" #include "tensorstore/kvstore/ocdbt/io/io_handle_impl.h" #include "tensorstore/kvstore/ocdbt/io_handle.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/transaction.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/result.h" #include "tensorstore/internal/cache_key/absl_time.h" #include "tensorstore/internal/cache_key/std_optional.h" #include "tensorstore/internal/cache_key/std_variant.h" #include "tensorstore/serialization/absl_time.h" #include "tensorstore/serialization/std_optional.h" #include "tensorstore/serialization/std_variant.h" #include "tensorstore/util/garbage_collection/std_optional.h" namespace tensorstore { namespace internal_ocdbt { struct OcdbtCoordinatorResource : public internal::ContextResourceTraits<OcdbtCoordinatorResource> { static constexpr char id[] = "ocdbt_coordinator"; struct Spec { std::optional<std::string> address; std::optional<absl::Duration> lease_duration; RpcSecurityMethod::Ptr security; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.address, x.lease_duration, x.security); }; }; using Resource = Spec; }; struct OcdbtDriverSpecData { Context::Resource<internal::CachePoolResource> cache_pool; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency; kvstore::Spec base; std::optional<kvstore::Spec> manifest; ConfigConstraints config; DataFilePrefixes data_file_prefixes; std::optional<size_t> experimental_read_coalescing_threshold_bytes; std::optional<size_t> experimental_read_coalescing_merged_bytes; std::optional<absl::Duration> experimental_read_coalescing_interval; std::optional<size_t> target_data_file_size; bool assume_config = false; Context::Resource<OcdbtCoordinatorResource> coordinator; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(OcdbtDriverSpecData, internal_json_binding::NoOptions, IncludeDefaults, ::nlohmann::json::object_t) constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.base, x.manifest, x.config, x.data_file_prefixes, x.cache_pool, x.data_copy_concurrency, x.experimental_read_coalescing_threshold_bytes, x.experimental_read_coalescing_merged_bytes, x.experimental_read_coalescing_interval, x.target_data_file_size, x.coordinator); }; }; class OcdbtDriverSpec : public internal_kvstore::RegisteredDriverSpec<OcdbtDriverSpec, OcdbtDriverSpecData> { public: static constexpr char id[] = "ocdbt"; Future<kvstore::DriverPtr> DoOpen() const override; absl::Status ApplyOptions(kvstore::DriverSpecOptions&& options) override; Result<kvstore::Spec> GetBase(std::string_view path) const override; }; class OcdbtDriver : public internal_kvstore::RegisteredDriver<OcdbtDriver, OcdbtDriverSpec> { public: Future<ReadResult> Read(Key key, ReadOptions options) override; Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override; Future<const void> DeleteRange(KeyRange range) override; Future<const void> ExperimentalCopyRangeFrom( const internal::OpenTransactionPtr& transaction, const KvStore& source, Key target_prefix, kvstore::CopyRangeOptions options) override; std::string DescribeKey(std::string_view key) override; void ListImpl(ListOptions options, ListReceiver receiver) override; absl::Status GetBoundSpecData(OcdbtDriverSpecData& spec) const; kvstore::SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final; Result<KvStore> GetBase(std::string_view path, const Transaction& transaction) const override; absl::Status ReadModifyWrite(internal::OpenTransactionPtr& transaction, size_t& phase, Key key, ReadModifyWriteSource& source) override; absl::Status TransactionalDeleteRange( const internal::OpenTransactionPtr& transaction, KeyRange range) override; const Executor& executor() { return data_copy_concurrency_->executor; } IoHandle::Ptr io_handle_; Context::Resource<internal::CachePoolResource> cache_pool_; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency_; kvstore::KvStore base_; kvstore::KvStore manifest_kvstore_; BtreeWriterPtr btree_writer_; DataFilePrefixes data_file_prefixes_; std::optional<size_t> experimental_read_coalescing_threshold_bytes_; std::optional<size_t> experimental_read_coalescing_merged_bytes_; std::optional<absl::Duration> experimental_read_coalescing_interval_; std::optional<size_t> target_data_file_size_; Context::Resource<OcdbtCoordinatorResource> coordinator_; }; } namespace garbage_collection { template <> struct GarbageCollection<internal_ocdbt::OcdbtDriver> { static void Visit(GarbageCollectionVisitor& visitor, const internal_ocdbt::OcdbtDriver& value) { garbage_collection::GarbageCollectionVisit(visitor, value.base_); garbage_collection::GarbageCollectionVisit(visitor, value.manifest_kvstore_); } }; } } #endif #include <stddef.h> #include <stdint.h> #include <algorithm> #include <memory> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/match.h" #include "absl/strings/str_format.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/context.h" #include "tensorstore/context_resource_provider.h" #include "tensorstore/internal/concurrency_resource.h" #include "tensorstore/internal/concurrency_resource_provider.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/http/http_header.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/retries_context_resource.h" #include "tensorstore/internal/retry.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/generic_coalescing_batch_util.h" #include "tensorstore/kvstore/http/byte_range_util.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/url_registry.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "tensorstore/internal/cache_key/std_vector.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/serialization/std_vector.h" using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::internal_http::HttpRequestBuilder; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_http::HttpTransport; namespace tensorstore { namespace { namespace jb = tensorstore::internal_json_binding; auto& http_read = internal_metrics::Counter<int64_t>::New( "/tensorstore/kvstore/http/read", "http driver kvstore::Read calls"); auto& http_batch_read = internal_metrics::Counter<int64_t>::New( "/tensorstore/kvstore/http/batch_read", "http driver reads after batching"); auto& http_bytes_read = internal_metrics::Counter<int64_t>::New( "/tensorstore/kvstore/http/bytes_read", "Bytes read by the http kvstore driver"); ABSL_CONST_INIT internal_log::VerboseFlag http_logging("http_kvstore"); struct HttpRequestConcurrencyResource : public internal::ConcurrencyResource { static constexpr char id[] = "http_request_concurrency"; }; struct HttpRequestRetries : public internal::RetriesResource<HttpRequestRetries> { static constexpr char id[] = "http_request_retries"; }; struct HttpRequestConcurrencyResourceTraits : public internal::ConcurrencyResourceTraits, public internal::ContextResourceTraits<HttpRequestConcurrencyResource> { HttpRequestConcurrencyResourceTraits() : ConcurrencyResourceTraits(32) {} }; const internal::ContextResourceRegistration< HttpRequestConcurrencyResourceTraits> http_request_concurrency_registration; const internal::ContextResourceRegistration<HttpRequestRetries> http_request_retries_registration; bool IsRetriable(const absl::Status& status) { return (status.code() == absl::StatusCode::kDeadlineExceeded || status.code() == absl::StatusCode::kUnavailable); } absl::Status ValidateParsedHttpUrl(const internal::ParsedGenericUri& parsed) { if (parsed.scheme != "http" && parsed.scheme != "https") { return absl::InvalidArgumentError(tensorstore::StrCat( "Expected scheme of \"http\" or \"https\" but received: ", tensorstore::QuoteString(parsed.scheme))); } if (!parsed.fragment.empty()) { return absl::InvalidArgumentError("Fragment identifier not supported"); } return absl::OkStatus(); } void SplitParsedHttpUrl(const internal::ParsedGenericUri& parsed, std::string& base_url, std::string& path) { size_t end_of_authority = parsed.authority_and_path.find('/'); std::string_view authority = parsed.authority_and_path.substr(0, end_of_authority); std::string_view encoded_path = (end_of_authority == std::string_view::npos) ? "/" : parsed.authority_and_path.substr(end_of_authority); base_url = tensorstore::StrCat(parsed.scheme, ": parsed.query.empty() ? "" : "?", parsed.query); path = internal::PercentDecode(encoded_path); } struct HttpKeyValueStoreSpecData { std::string base_url; Context::Resource<HttpRequestConcurrencyResource> request_concurrency; Context::Resource<HttpRequestRetries> retries; std::vector<std::string> headers; constexpr static auto ApplyMembers = [](auto& x, auto f) { return f(x.base_url, x.request_concurrency, x.retries, x.headers); }; constexpr static auto default_json_binder = jb::Object( jb::Member( "base_url", jb::Projection<&HttpKeyValueStoreSpecData::base_url>( jb::Validate([](const auto& options, const std::string* x) { return ValidateParsedHttpUrl(internal::ParseGenericUri(*x)); }))), jb::Member("headers", jb::Projection<&HttpKeyValueStoreSpecData::headers>( jb::DefaultInitializedValue(jb::Array(jb::Validate( [](const auto& options, const std::string* x) { return internal_http::ValidateHttpHeader(*x); }))))), jb::Member( HttpRequestConcurrencyResource::id, jb::Projection<&HttpKeyValueStoreSpecData::request_concurrency>()), jb::Member(HttpRequestRetries::id, jb::Projection<&HttpKeyValueStoreSpecData::retries>())); std::string GetUrl(std::string_view path) const { auto parsed = internal::ParseGenericUri(base_url); return tensorstore::StrCat(parsed.scheme, ": absl::StartsWith(path, "/") ? "" : "/", internal::PercentEncodeUriPath(path), parsed.query.empty() ? "" : "?", parsed.query); } }; class HttpKeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec<HttpKeyValueStoreSpec, HttpKeyValueStoreSpecData> { public: static constexpr char id[] = "http"; Future<kvstore::DriverPtr> DoOpen() const override; Result<std::string> ToUrl(std::string_view path) const override { return data_.GetUrl(path); } absl::Status NormalizeSpec(std::string& path) override { auto parsed = internal::ParseGenericUri(data_.base_url); std::string base_url; std::string new_path; SplitParsedHttpUrl(parsed, base_url, new_path); if (path.empty()) { path = std::move(new_path); } else if (path[0] != '/') { internal::AppendPathComponent(new_path, path); path = std::move(new_path); } else if (new_path != "/") { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot specify absolute path ", tensorstore::QuoteString(path), " in conjunction with base URL ", tensorstore::QuoteString(data_.base_url), " that includes a path component")); } data_.base_url = std::move(base_url); return absl::OkStatus(); } }; class HttpKeyValueStore : public internal_kvstore::RegisteredDriver<HttpKeyValueStore, HttpKeyValueStoreSpec> { public: internal_kvstore_batch::CoalescingOptions GetBatchReadCoalescingOptions() const { return internal_kvstore_batch::kDefaultRemoteStorageCoalescingOptions; } Future<ReadResult> Read(Key key, ReadOptions options) override; Future<ReadResult> ReadImpl(Key&& key, ReadOptions&& options); const Executor& executor() const { return spec_.request_concurrency->executor; } absl::Status GetBoundSpecData(SpecData& spec) const { spec = spec_; return absl::OkStatus(); } std::string DescribeKey(std::string_view key) override { return spec_.GetUrl(key); } HttpKeyValueStoreSpecData spec_; std::shared_ptr<HttpTransport> transport_; }; Future<kvstore::DriverPtr> HttpKeyValueStoreSpec::DoOpen() const { auto driver = internal::MakeIntrusivePtr<HttpKeyValueStore>(); driver->spec_ = data_; driver->transport_ = internal_http::GetDefaultHttpTransport(); return driver; } struct ReadTask { IntrusivePtr<HttpKeyValueStore> owner; std::string url; kvstore::ReadOptions options; HttpResponse httpresponse; absl::Status DoRead() { HttpRequestBuilder request_builder( options.byte_range.size() == 0 ? "HEAD" : "GET", url); for (const auto& header : owner->spec_.headers) { request_builder.AddHeader(header); } if (options.byte_range.size() != 0) { request_builder.MaybeAddRangeHeader(options.byte_range); } request_builder .MaybeAddStalenessBoundCacheControlHeader(options.staleness_bound) .EnableAcceptEncoding(); if (StorageGeneration::IsCleanValidValue( options.generation_conditions.if_equal)) { request_builder.AddHeader(absl::StrFormat( "if-match: \"%s\"", StorageGeneration::DecodeString( options.generation_conditions.if_equal))); } if (StorageGeneration::IsCleanValidValue( options.generation_conditions.if_not_equal)) { request_builder.AddHeader( absl::StrFormat("if-none-match: \"%s\"", StorageGeneration::DecodeString( options.generation_conditions.if_not_equal))); } auto request = request_builder.BuildRequest(); ABSL_LOG_IF(INFO, http_logging) << "[http] Read: " << request; auto response = owner->transport_->IssueRequest(request, {}).result(); if (!response.ok()) return response.status(); httpresponse = std::move(*response); http_bytes_read.IncrementBy(httpresponse.payload.size()); ABSL_LOG_IF(INFO, http_logging.Level(1)) << "[http] Read response: " << httpresponse; switch (httpresponse.status_code) { case 412: case 404: case 304: return absl::OkStatus(); } return HttpResponseCodeToStatus(httpresponse); } Result<kvstore::ReadResult> HandleResult(absl::Time start_time) { absl::Time response_date; if (auto date_it = httpresponse.headers.find("date"); date_it != httpresponse.headers.end()) { if (!absl::ParseTime(internal_http::kHttpTimeFormat, date_it->second, &response_date, nullptr) || response_date == absl::InfiniteFuture() || response_date == absl::InfinitePast()) { return absl::InvalidArgumentError( tensorstore::StrCat("Invalid \"date\" response header: ", tensorstore::QuoteString(date_it->second))); } if (response_date < start_time) { if (options.staleness_bound < start_time && response_date < options.staleness_bound) { start_time = options.staleness_bound; } else { start_time = response_date; } } } switch (httpresponse.status_code) { case 204: case 404: return kvstore::ReadResult::Missing(start_time); case 412: return kvstore::ReadResult::Unspecified(TimestampedStorageGeneration{ StorageGeneration::Unknown(), start_time}); case 304: return kvstore::ReadResult::Unspecified(TimestampedStorageGeneration{ options.generation_conditions.if_not_equal, start_time}); } absl::Cord value; if (options.byte_range.size() != 0) { ByteRange byte_range; int64_t total_size; TENSORSTORE_RETURN_IF_ERROR(internal_http::ValidateResponseByteRange( httpresponse, options.byte_range, value, byte_range, total_size)); } StorageGeneration generation = StorageGeneration::Invalid(); { auto it = httpresponse.headers.find("etag"); if (it != httpresponse.headers.end() && it->second.size() > 2 && it->second.front() == '"' && it->second.back() == '"') { std::string_view etag(it->second); etag.remove_prefix(1); etag.remove_suffix(1); generation = StorageGeneration::FromString(etag); } } return kvstore::ReadResult::Value( std::move(value), TimestampedStorageGeneration{std::move(generation), start_time}); } Result<kvstore::ReadResult> operator()() { absl::Time start_time; absl::Status status; const int max_retries = owner->spec_.retries->max_retries; int attempt = 0; for (; attempt < max_retries; attempt++) { start_time = absl::Now(); status = DoRead(); if (status.ok() || !IsRetriable(status)) break; auto delay = internal::BackoffForAttempt( attempt, owner->spec_.retries->initial_delay, owner->spec_.retries->max_delay, std::min(absl::Seconds(1), owner->spec_.retries->initial_delay)); ABSL_LOG_IF(INFO, http_logging) << "The operation failed and will be automatically retried in " << delay << " seconds (attempt " << attempt + 1 << " out of " << max_retries << "), caused by: " << status; absl::SleepFor(delay); } if (!status.ok()) { if (IsRetriable(status)) { return MaybeAnnotateStatus( std::move(status), absl::StrFormat("All %d retry attempts failed", attempt), absl::StatusCode::kAborted); } return status; } return HandleResult(start_time); } }; Future<kvstore::ReadResult> HttpKeyValueStore::Read(Key key, ReadOptions options) { http_read.Increment(); return internal_kvstore_batch::HandleBatchRequestByGenericByteRangeCoalescing( *this, std::move(key), std::move(options)); } Future<kvstore::ReadResult> HttpKeyValueStore::ReadImpl(Key&& key, ReadOptions&& options) { http_batch_read.Increment(); std::string url = spec_.GetUrl(key); return MapFuture(executor(), ReadTask{IntrusivePtr<HttpKeyValueStore>(this), std::move(url), std::move(options)}); } Result<kvstore::Spec> ParseHttpUrl(std::string_view url) { auto parsed = internal::ParseGenericUri(url); TENSORSTORE_RETURN_IF_ERROR(ValidateParsedHttpUrl(parsed)); std::string path; auto driver_spec = internal::MakeIntrusivePtr<HttpKeyValueStoreSpec>(); SplitParsedHttpUrl(parsed, driver_spec->data_.base_url, path); driver_spec->data_.request_concurrency = Context::Resource<HttpRequestConcurrencyResource>::DefaultSpec(); driver_spec->data_.retries = Context::Resource<HttpRequestRetries>::DefaultSpec(); return {std::in_place, std::move(driver_spec), std::move(path)}; } } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED( tensorstore::HttpKeyValueStore) TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED( tensorstore::HttpKeyValueStoreSpecData) namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::HttpKeyValueStoreSpec> registration; const tensorstore::internal_kvstore::UrlSchemeRegistration http_url_scheme_registration{"http", tensorstore::ParseHttpUrl}; const tensorstore::internal_kvstore::UrlSchemeRegistration https_url_scheme_registration{"https", tensorstore::ParseHttpUrl}; }
#include "tensorstore/kvstore/driver.h" #include <functional> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/batch.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/http/http_header.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/http/mock_http_transport.h" #include "tensorstore/internal/queue_testutil.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::Batch; using ::tensorstore::Future; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::StorageGeneration; using ::tensorstore::internal::MatchesKvsReadResult; using ::tensorstore::internal::MatchesKvsReadResultNotFound; using ::tensorstore::internal_http::ApplyResponseToHandler; using ::tensorstore::internal_http::HttpRequest; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_http::HttpResponseHandler; using ::tensorstore::internal_http::HttpTransport; using ::tensorstore::internal_http::IssueRequestOptions; using ::tensorstore::internal_http::SetDefaultHttpTransport; class MyMockTransport : public HttpTransport { public: void IssueRequestWithHandler(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) override { requests_.push({request, [response_handler](Result<HttpResponse> response) { ApplyResponseToHandler(response, response_handler); }}); } struct Request { HttpRequest request; std::function<void(tensorstore::Result<HttpResponse>)> set_result; }; void Reset() { requests_.pop_all(); } tensorstore::internal::ConcurrentQueue<Request> requests_; }; class HttpKeyValueStoreTest : public ::testing::Test { public: ~HttpKeyValueStoreTest() { mock_transport->Reset(); } static void SetUpTestSuite() { SetDefaultHttpTransport(mock_transport); } static void TearDownTestSuite() { SetDefaultHttpTransport(nullptr); } static std::shared_ptr<MyMockTransport> mock_transport; }; std::shared_ptr<MyMockTransport> HttpKeyValueStoreTest::mock_transport = std::make_shared<MyMockTransport>(); TEST(DescribeKeyTest, Basic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: EXPECT_EQ("https: store.driver->DescribeKey("/my/path/xyz")); } TEST_F(HttpKeyValueStoreTest, UnconditionalReadUncachedWithEtag) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: auto read_future = kvstore::Read(store, "abc"); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("cache-control: no-cache")); request.set_result( HttpResponse{200, absl::Cord("value"), {{"etag", "\"xyz\""}}}); EXPECT_THAT(read_future.result(), MatchesKvsReadResult(absl::Cord("value"), StorageGeneration::FromString("xyz"))); } TEST_F(HttpKeyValueStoreTest, ReadNotFound) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: auto read_future = kvstore::Read(store, "abc"); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("cache-control: no-cache")); request.set_result(HttpResponse{404, absl::Cord()}); EXPECT_THAT(read_future.result(), MatchesKvsReadResultNotFound()); } TEST_F(HttpKeyValueStoreTest, UnconditionalReadWeakEtag) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: auto read_future = kvstore::Read(store, "abc"); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("cache-control: no-cache")); request.set_result( HttpResponse{200, absl::Cord("value"), {{"etag", "W/\"xyz\""}}}); EXPECT_THAT( read_future.result(), MatchesKvsReadResult(absl::Cord("value"), StorageGeneration::Invalid())); } TEST_F(HttpKeyValueStoreTest, ReadByteRange) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: kvstore::ReadOptions options; options.byte_range.inclusive_min = 10; options.byte_range.exclusive_max = 20; auto read_future = kvstore::Read(store, "abc", options); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.method, "GET"); EXPECT_THAT(request.request.headers, ::testing::UnorderedElementsAre("cache-control: no-cache", "Range: bytes=10-19")); request.set_result(HttpResponse{ 206, absl::Cord("valueabcde"), {{"content-range", "bytes 10-19/50"}}}); EXPECT_THAT(read_future.result(), MatchesKvsReadResult(absl::Cord("valueabcde"), StorageGeneration::Invalid())); } TEST_F(HttpKeyValueStoreTest, ReadBatch) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: std::vector<Future<kvstore::ReadResult>> futures; { auto batch = Batch::New(); { kvstore::ReadOptions options; options.byte_range.inclusive_min = 10; options.byte_range.exclusive_max = 20; options.batch = batch; futures.push_back(kvstore::Read(store, "abc", options)); } { kvstore::ReadOptions options; options.byte_range.inclusive_min = 20; options.byte_range.exclusive_max = 25; options.batch = batch; futures.push_back(kvstore::Read(store, "abc", options)); } } auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.method, "GET"); EXPECT_THAT(request.request.headers, ::testing::UnorderedElementsAre("cache-control: no-cache", "Range: bytes=10-24")); request.set_result(HttpResponse{206, absl::Cord("valueabcde01234"), {{"content-range", "bytes 10-24/50"}}}); EXPECT_THAT(futures[0].result(), MatchesKvsReadResult(absl::Cord("valueabcde"), StorageGeneration::Invalid())); EXPECT_THAT( futures[1].result(), MatchesKvsReadResult(absl::Cord("01234"), StorageGeneration::Invalid())); } TEST_F(HttpKeyValueStoreTest, ReadZeroByteRange) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: kvstore::ReadOptions options; options.byte_range.inclusive_min = 10; options.byte_range.exclusive_max = 10; auto read_future = kvstore::Read(store, "abc", options); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("cache-control: no-cache")); request.set_result(HttpResponse{200, absl::Cord(), {}}); EXPECT_THAT(read_future.result(), MatchesKvsReadResult(absl::Cord(), StorageGeneration::Invalid())); } TEST_F(HttpKeyValueStoreTest, ReadWithStalenessBound) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: kvstore::ReadOptions options; options.staleness_bound = absl::Now() - absl::Milliseconds(4900); auto read_future = kvstore::Read(store, "abc", options); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre(::testing::AnyOf( "cache-control: max-age=5", "cache-control: max-age=4", "cache-control: max-age=3"))); request.set_result(HttpResponse{200, absl::Cord("value")}); EXPECT_THAT( read_future.result(), MatchesKvsReadResult(absl::Cord("value"), StorageGeneration::Invalid())); } TEST_F(HttpKeyValueStoreTest, IfEqualSatisfied) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: kvstore::ReadOptions options; options.generation_conditions.if_equal = StorageGeneration::FromString("xyz"); auto read_future = kvstore::Read(store, "abc", options); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT( request.request.headers, ::testing::ElementsAre("cache-control: no-cache", "if-match: \"xyz\"")); request.set_result(HttpResponse{200, absl::Cord("value")}); EXPECT_THAT(read_future.result(), MatchesKvsReadResult(absl::Cord("value"))); } TEST_F(HttpKeyValueStoreTest, IfEqualNotSatisfied) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: kvstore::ReadOptions options; options.generation_conditions.if_equal = StorageGeneration::FromString("xyz"); auto read_future = kvstore::Read(store, "abc", options); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT( request.request.headers, ::testing::ElementsAre("cache-control: no-cache", "if-match: \"xyz\"")); request.set_result(HttpResponse{412}); EXPECT_THAT(read_future.result(), MatchesKvsReadResult(kvstore::ReadResult::kUnspecified, StorageGeneration::Unknown())); } TEST_F(HttpKeyValueStoreTest, IfNotEqualSatisfied) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: kvstore::ReadOptions options; options.generation_conditions.if_not_equal = StorageGeneration::FromString("xyz"); auto read_future = kvstore::Read(store, "abc", options); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("cache-control: no-cache", "if-none-match: \"xyz\"")); request.set_result(HttpResponse{200, absl::Cord("value")}); EXPECT_THAT( read_future.result(), MatchesKvsReadResult(absl::Cord("value"), StorageGeneration::Invalid())); } TEST_F(HttpKeyValueStoreTest, IfNotEqualNotSatisfied) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: kvstore::ReadOptions options; options.generation_conditions.if_not_equal = StorageGeneration::FromString("xyz"); auto read_future = kvstore::Read(store, "abc", options); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("cache-control: no-cache", "if-none-match: \"xyz\"")); request.set_result(HttpResponse{304}); EXPECT_THAT(read_future.result(), MatchesKvsReadResult(kvstore::ReadResult::kUnspecified, StorageGeneration::FromString("xyz"))); } TEST_F(HttpKeyValueStoreTest, Retry) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: auto read_future = kvstore::Read(store, "abc"); { auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("cache-control: no-cache")); request.set_result(HttpResponse{503, absl::Cord()}); } { auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("cache-control: no-cache")); request.set_result( HttpResponse{200, absl::Cord("value"), {{"etag", "\"xyz\""}}}); } EXPECT_THAT(read_future.result(), MatchesKvsReadResult(absl::Cord("value"), StorageGeneration::FromString("xyz"))); } TEST_F(HttpKeyValueStoreTest, RetryMax) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open( {{"driver", "http"}, {"base_url", "https: {"context", {{"http_request_retries", {{"max_retries", 1}}}}}}) .result()); auto read_future = kvstore::Read(store, "abc"); { auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("cache-control: no-cache")); request.set_result(HttpResponse{503, absl::Cord()}); } EXPECT_THAT(read_future.result(), MatchesStatus(absl::StatusCode::kAborted)); } TEST_F(HttpKeyValueStoreTest, Date) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: kvstore::ReadOptions options; options.staleness_bound = absl::InfinitePast(); auto read_future = kvstore::Read(store, "abc", options); auto response_date = absl::UnixEpoch() + absl::Seconds(100); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre()); request.set_result(HttpResponse{ 200, absl::Cord("value"), {{"date", absl::FormatTime(tensorstore::internal_http::kHttpTimeFormat, response_date, absl::UTCTimeZone())}}}); EXPECT_THAT( read_future.result(), MatchesKvsReadResult(absl::Cord("value"), StorageGeneration::Invalid(), response_date)); } TEST_F(HttpKeyValueStoreTest, DateSkew) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: kvstore::ReadOptions options; options.staleness_bound = absl::Now() - absl::Milliseconds(5900); auto read_future = kvstore::Read(store, "abc", options); auto response_date = absl::UnixEpoch() + absl::Seconds(100); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre(::testing::AnyOf( "cache-control: max-age=5", "cache-control: max-age=4"))); request.set_result(HttpResponse{ 200, absl::Cord("value"), {{"date", absl::FormatTime(tensorstore::internal_http::kHttpTimeFormat, response_date, absl::UTCTimeZone())}}}); EXPECT_THAT( read_future.result(), MatchesKvsReadResult(absl::Cord("value"), StorageGeneration::Invalid(), options.staleness_bound)); } TEST_F(HttpKeyValueStoreTest, Query) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: auto read_future = kvstore::Read(store, "abc"); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("cache-control: no-cache")); request.set_result(HttpResponse{200, absl::Cord("value")}); EXPECT_THAT(read_future.result(), MatchesKvsReadResult(absl::Cord("value"))); } TEST_F(HttpKeyValueStoreTest, InvalidDate) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open("https: auto read_future = kvstore::Read(store, "abc"); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("cache-control: no-cache")); request.set_result(HttpResponse{200, absl::Cord("value"), {{"date", "xyz"}}}); EXPECT_THAT(read_future.result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Invalid \"date\" response header: \"xyz\"")); } TEST_F(HttpKeyValueStoreTest, ExtraHeaders) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", "http"}, {"base_url", "https: {"headers", {"a!#$%&'*+-.^_`|~3X: b\xfe"}}}) .result()); auto read_future = kvstore::Read(store, "abc"); auto request = mock_transport->requests_.pop(); EXPECT_EQ("https: EXPECT_THAT(request.request.headers, ::testing::ElementsAre("a!#$%&'*+-.^_`|~3X: b\xfe", "cache-control: no-cache")); request.set_result(HttpResponse{200, absl::Cord("value")}); EXPECT_THAT(read_future.result(), MatchesKvsReadResult(absl::Cord("value"))); } TEST(UrlTest, UrlRoundtrip) { tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "http"}, {"base_url", "https: {"path", "/abc"}}, "https: tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "http"}, {"base_url", "https: {"path", "/abc def"}}, "https: tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "http"}, {"base_url", "http: {"path", "/abc def"}}, "http: tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", "http"}, {"base_url", "https: {"path", "/abc def"}}, "https: } TEST(UrlTest, InvalidUri) { EXPECT_THAT(kvstore::Spec::FromUrl("http: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Fragment identifier not supported")); } TEST(SpecTest, InvalidScheme) { EXPECT_THAT( kvstore::Open({{"driver", "http"}, {"base_url", "file: MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(SpecTest, MissingScheme) { EXPECT_THAT(kvstore::Open({{"driver", "http"}, {"base_url", "abc"}}).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(SpecTest, InvalidFragment) { EXPECT_THAT(kvstore::Open({{"driver", "http"}, {"base_url", "https: .result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(SpecTest, InvalidHeader) { EXPECT_THAT(kvstore::Open({{"driver", "http"}, {"base_url", "https: {"headers", {"a"}}}) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(SpecTest, SpecRoundtrip) { tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.check_write_read = false; options.check_data_persists = false; options.check_data_after_serialization = false; options.full_spec = {{"driver", "http"}, {"base_url", "https: {"headers", {"a: b"}}, {"path", "/abc"}}; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(SpecTest, NormalizeSpecRelativePath) { tensorstore::internal::TestKeyValueStoreSpecRoundtripNormalize( {{"driver", "http"}, {"base_url", "https: {"path", "abc"}}, {{"driver", "http"}, {"base_url", "https: {"path", "/my/path/abc"}}); } TEST(SpecTest, NormalizeSpecAbsolutePath) { tensorstore::internal::TestKeyValueStoreSpecRoundtripNormalize( {{"driver", "http"}, {"base_url", "https: {"path", "/abc"}}, {{"driver", "http"}, {"base_url", "https: {"path", "/abc"}}); } TEST(SpecTest, NormalizeSpecInvalidAbsolutePath) { EXPECT_THAT( kvstore::Open({{"driver", "http"}, {"base_url", "https: {"path", "/abc"}}) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, "Cannot specify absolute path \"/abc\" in conjunction with " "base URL \".*\" that includes a path component")); } }
571
cpp
google/tensorstore
compressor
tensorstore/driver/n5/compressor.cc
tensorstore/driver/zarr/compressor_test.cc
#ifndef TENSORSTORE_DRIVER_N5_COMPRESSOR_H_ #define TENSORSTORE_DRIVER_N5_COMPRESSOR_H_ #include "tensorstore/internal/compression/json_specified_compressor.h" #include "tensorstore/internal/json_binding/bindable.h" namespace tensorstore { namespace internal_n5 { class Compressor : public internal::JsonSpecifiedCompressor::Ptr { public: TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER( Compressor, internal::JsonSpecifiedCompressor::FromJsonOptions, internal::JsonSpecifiedCompressor::ToJsonOptions) }; } } #endif #include "tensorstore/driver/n5/compressor.h" #include <utility> #include "absl/base/no_destructor.h" #include "tensorstore/driver/n5/compressor_registry.h" #include "tensorstore/internal/compression/json_specified_compressor.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_registry.h" namespace tensorstore { namespace internal_n5 { using CompressorRegistry = internal::JsonSpecifiedCompressor::Registry; CompressorRegistry& GetCompressorRegistry() { static absl::NoDestructor<CompressorRegistry> registry; return *registry; } TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(Compressor, [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) { namespace jb = tensorstore::internal_json_binding; auto& registry = GetCompressorRegistry(); return jb::Object( jb::Member("type", jb::MapValue(registry.KeyBinder(), std::make_pair(Compressor{}, "raw"))), registry.RegisteredObjectBinder())(is_loading, options, obj, j); }) } }
#include "tensorstore/driver/zarr/compressor.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json.hpp> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::internal_zarr::Compressor; TEST(ParseCompressorTest, Null) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto compressor, Compressor::FromJson(nullptr)); EXPECT_EQ(nullptr, ::nlohmann::json(compressor)); } TEST(ParseCompressorTest, ZlibSuccess) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto compressor, Compressor::FromJson({{"id", "zlib"}, {"level", 5}})); EXPECT_EQ((::nlohmann::json{{"id", "zlib"}, {"level", 5}}), ::nlohmann::json(compressor)); } TEST(ParseCompressorTest, ZlibFailure) { EXPECT_THAT( Compressor::FromJson(::nlohmann::json{{"id", "zlib"}, {"level", "a"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"level\": .*")); } TEST(ParseCompressorTest, UnsupportedId) { EXPECT_THAT( Compressor::FromJson(::nlohmann::json{{"id", "invalid"}, {"level", "a"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"id\": " "\"invalid\" is not registered")); } TEST(ParseCompressorTest, InvalidId) { EXPECT_THAT(Compressor::FromJson(::nlohmann::json{{"id", 5}, {"level", "a"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"id\": " "Expected string, but received: 5")); } }
572
cpp
google/tensorstore
metadata
tensorstore/driver/neuroglancer_precomputed/metadata.cc
tensorstore/driver/neuroglancer_precomputed/metadata_test.cc
#ifndef TENSORSTORE_INTERNAL_METRICS_METADATA_H_ #define TENSORSTORE_INTERNAL_METRICS_METADATA_H_ #include <string_view> namespace tensorstore { namespace internal_metrics { struct MetricMetadata { MetricMetadata() = default; MetricMetadata(const char* description) : description(description) {} MetricMetadata(std::string_view description) : description(description) {} std::string_view description; }; bool IsValidMetricName(std::string_view name); bool IsValidMetricLabel(std::string_view name); } } #endif #include "tensorstore/internal/metrics/metadata.h" #include <string_view> #include "absl/strings/ascii.h" namespace tensorstore { namespace internal_metrics { bool IsValidMetricName(std::string_view name) { if (name.size() < 2) return false; if (name[0] != '/') return false; if (name[name.size() - 1] == '/') return false; if (!absl::ascii_isalpha(name[1])) return false; size_t last_slash = 0; for (size_t i = 1; i < name.size(); i++) { const auto ch = name[i]; if (ch == '/') { if (i - last_slash == 1) return false; if (i - last_slash > 63) return false; last_slash = i; } else if (ch != '_' && !absl::ascii_isalnum(ch)) { return false; } } return true; } bool IsValidMetricLabel(std::string_view name) { if (name.empty()) return false; if (!absl::ascii_isalpha(name[0])) return false; for (auto ch : name) { if (ch != '_' && !absl::ascii_isalnum(ch)) { return false; } } return true; } } }
#include "tensorstore/internal/metrics/metadata.h" #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> namespace { using ::tensorstore::internal_metrics::IsValidMetricLabel; using ::tensorstore::internal_metrics::IsValidMetricName; TEST(MetadataTest, IsValidMetricName) { EXPECT_FALSE(IsValidMetricName("")); EXPECT_FALSE(IsValidMetricName("/")); EXPECT_FALSE(IsValidMetricName(" EXPECT_FALSE(IsValidMetricName("/foo/")); EXPECT_FALSE(IsValidMetricName("/foo EXPECT_FALSE(IsValidMetricName("/_foo")); EXPECT_FALSE(IsValidMetricName("/foo%")); EXPECT_FALSE(IsValidMetricName("/foo%")); EXPECT_FALSE(IsValidMetricName("/foo.bar")); EXPECT_FALSE(IsValidMetricName("foo_1")); EXPECT_TRUE(IsValidMetricName("/foo/1_bar/Baz")); } TEST(MetadataTest, IsValidMetricLabel) { EXPECT_FALSE(IsValidMetricLabel("")); EXPECT_FALSE(IsValidMetricLabel("/")); EXPECT_FALSE(IsValidMetricLabel("1_bar")); EXPECT_FALSE(IsValidMetricLabel("_bar")); EXPECT_FALSE(IsValidMetricLabel("foo/bar")); EXPECT_FALSE(IsValidMetricLabel("foo-bar")); EXPECT_FALSE(IsValidMetricLabel("foo.bar")); EXPECT_TRUE(IsValidMetricLabel("a")); EXPECT_TRUE(IsValidMetricLabel("foB_1")); } }
573
cpp
google/tensorstore
bzip2_compressor
tensorstore/driver/n5/bzip2_compressor.cc
tensorstore/driver/n5/bzip2_compressor_test.cc
#ifndef TENSORSTORE_INTERNAL_COMPRESSION_BZIP2_COMPRESSOR_H_ #define TENSORSTORE_INTERNAL_COMPRESSION_BZIP2_COMPRESSOR_H_ #include <cstddef> #include <memory> #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/compression/json_specified_compressor.h" namespace tensorstore { namespace internal { struct Bzip2Options { int level = 1; }; class Bzip2Compressor : public internal::JsonSpecifiedCompressor, public Bzip2Options { public: std::unique_ptr<riegeli::Writer> GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const override; virtual std::unique_ptr<riegeli::Reader> GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const override; }; } } #endif #include "tensorstore/internal/compression/bzip2_compressor.h" #include <cstddef> #include "riegeli/bzip2/bzip2_reader.h" #include "riegeli/bzip2/bzip2_writer.h" #include "tensorstore/internal/compression/json_specified_compressor.h" namespace tensorstore { namespace internal { std::unique_ptr<riegeli::Writer> Bzip2Compressor::GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const { using Writer = riegeli::Bzip2Writer<std::unique_ptr<riegeli::Writer>>; Writer::Options options; options.set_compression_level(level); return std::make_unique<Writer>(std::move(base_writer), options); } std::unique_ptr<riegeli::Reader> Bzip2Compressor::GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const { using Reader = riegeli::Bzip2Reader<std::unique_ptr<riegeli::Reader>>; return std::make_unique<Reader>(std::move(base_reader)); } } }
#include <cstdint> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/driver/n5/compressor.h" #include "tensorstore/driver/n5/metadata.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Index; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal_n5::Compressor; using ::tensorstore::internal_n5::DecodeChunk; using ::tensorstore::internal_n5::N5Metadata; TEST(Bzip2CompressionTest, Parse) { tensorstore::TestJsonBinderRoundTripJsonOnlyInexact<Compressor>({ {{{"type", "bzip2"}}, {{"type", "bzip2"}, {"blockSize", 9}}}, {{{"type", "bzip2"}, {"blockSize", 3}}, {{"type", "bzip2"}, {"blockSize", 3}}}, }); EXPECT_THAT(Compressor::FromJson({{"type", "bzip2"}, {"blockSize", "x"}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "bzip2"}, {"blockSize", 0}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "bzip2"}, {"blockSize", 10}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "bzip2"}, {"extra", "x"}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(Bzip2CompressionTest, Golden) { const unsigned char kData[] = { 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x42, 0x5a, 0x68, 0x39, 0x31, 0x41, 0x59, 0x26, 0x53, 0x59, 0x02, 0x3e, 0x0d, 0xd2, 0x00, 0x00, 0x00, 0x40, 0x00, 0x7f, 0x00, 0x20, 0x00, 0x31, 0x0c, 0x01, 0x0d, 0x31, 0xa8, 0x73, 0x94, 0x33, 0x7c, 0x5d, 0xc9, 0x14, 0xe1, 0x42, 0x40, 0x08, 0xf8, 0x37, 0x48, }; std::string encoded_data(std::begin(kData), std::end(kData)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto metadata, N5Metadata::FromJson({{"dimensions", {10, 11, 12}}, {"blockSize", {1, 2, 3}}, {"dataType", "uint16"}, {"compression", {{"type", "bzip2"}}}})); auto array = MakeArray<uint16_t>({{{1, 3, 5}, {2, 4, 6}}}); EXPECT_EQ(array, DecodeChunk(metadata, absl::Cord(encoded_data))); { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto buffer, EncodeChunk(metadata, array)); EXPECT_EQ(array, DecodeChunk(metadata, buffer)); } } }
574
cpp
google/tensorstore
blosc_compressor
tensorstore/driver/n5/blosc_compressor.cc
tensorstore/driver/n5/blosc_compressor_test.cc
#ifndef TENSORSTORE_INTERNAL_COMPRESSION_BLOSC_COMPRESSOR_H_ #define TENSORSTORE_INTERNAL_COMPRESSION_BLOSC_COMPRESSOR_H_ #include <cstddef> #include <memory> #include <string> #include "absl/status/status.h" #include <blosc.h> #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/compression/json_specified_compressor.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal { class BloscCompressor : public JsonSpecifiedCompressor { public: std::unique_ptr<riegeli::Writer> GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const override; std::unique_ptr<riegeli::Reader> GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const override; static constexpr auto CodecBinder() { namespace jb = tensorstore::internal_json_binding; return jb::Validate([](const auto& options, std::string* cname) { if (cname->find('\0') != std::string::npos || blosc_compname_to_compcode(cname->c_str()) == -1) { return absl::InvalidArgumentError( tensorstore::StrCat("Expected one of ", blosc_list_compressors(), " but received: ", QuoteString(*cname))); } return absl::OkStatus(); }); } std::string codec; int level; int shuffle; size_t blocksize; }; } } #endif #include "tensorstore/internal/compression/blosc_compressor.h" #include <cstddef> #include <limits> #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/string_view.h" #include "riegeli/base/chain.h" #include "riegeli/bytes/chain_reader.h" #include "riegeli/bytes/cord_writer.h" #include "riegeli/bytes/read_all.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/write.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/compression/blosc.h" namespace tensorstore { namespace internal { namespace { class BloscDeferredWriter : public riegeli::CordWriter<absl::Cord> { public: explicit BloscDeferredWriter(blosc::Options options, std::unique_ptr<riegeli::Writer> base_writer) : CordWriter(riegeli::CordWriterBase::Options().set_max_block_size( std::numeric_limits<size_t>::max())), options_(std::move(options)), base_writer_(std::move(base_writer)) {} void Done() override { CordWriter::Done(); auto output = blosc::Encode(dest().Flatten(), options_); if (!output.ok()) { Fail(std::move(output).status()); return; } auto status = riegeli::Write(*std::move(output), std::move(base_writer_)); if (!status.ok()) { Fail(std::move(status)); return; } } private: blosc::Options options_; std::unique_ptr<riegeli::Writer> base_writer_; }; } std::unique_ptr<riegeli::Writer> BloscCompressor::GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const { return std::make_unique<BloscDeferredWriter>( blosc::Options{codec.c_str(), level, shuffle, blocksize, element_bytes}, std::move(base_writer)); } std::unique_ptr<riegeli::Reader> BloscCompressor::GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const { auto output = riegeli::ReadAll( std::move(base_reader), [](absl::string_view input) -> absl::StatusOr<std::string> { auto output = blosc::Decode(input); if (!output.ok()) return std::move(output).status(); return *std::move(output); }); auto reader = std::make_unique<riegeli::ChainReader<riegeli::Chain>>( output.ok() ? riegeli::Chain(std::move(*output)) : riegeli::Chain()); if (!output.ok()) { reader->Fail(std::move(output).status()); } return reader; } } }
#include <cstdint> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/driver/n5/compressor.h" #include "tensorstore/driver/n5/metadata.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Index; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal_n5::Compressor; using ::tensorstore::internal_n5::DecodeChunk; using ::tensorstore::internal_n5::N5Metadata; TEST(BloscCompressionTest, Parse) { for (auto codec : {"lz4", "blosclz", "lz4hc", "snappy", "zlib", "zstd"}) { for (int level = 0; level <= 9; ++level) { for (int shuffle = 0; shuffle <= 2; ++shuffle) { for (int blocksize : {0, 256}) { ::nlohmann::json j{{"type", "blosc"}, {"cname", codec}, {"shuffle", shuffle}, {"clevel", level}, {"blocksize", blocksize}}; tensorstore::TestJsonBinderRoundTripJsonOnly<Compressor>({j}); } } } } EXPECT_THAT( Compressor::FromJson({{"type", "blosc"}, {"shuffle", 0}, {"clevel", 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson( {{"type", "blosc"}, {"cname", "lz4"}, {"clevel", 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson( {{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", 0}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( Compressor::FromJson( {{"type", "blosc"}, {"cname", 3}, {"shuffle", 0}, {"clevel", 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "blosc"}, {"cname", "invalid"}, {"shuffle", 0}, {"clevel", 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", 0}, {"clevel", -1}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", 0}, {"clevel", 10}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", -1}, {"clevel", 3}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( Compressor::FromJson( {{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", 3}, {"clevel", 3}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Compressor::FromJson({{"type", "blosc"}, {"cname", "lz4"}, {"shuffle", 0}, {"clevel", 3}, {"extra", 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(BloscCompressionTest, RoundTrip) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto metadata, N5Metadata::FromJson({{"dimensions", {10, 11, 12}}, {"blockSize", {1, 2, 3}}, {"dataType", "uint16"}, {"compression", {{"type", "blosc"}, {"cname", "lz4"}, {"clevel", 5}, {"shuffle", 0}}}})); auto array = MakeArray<uint16_t>({{{1, 2, 3}, {4, 5, 6}}}); { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto buffer, EncodeChunk(metadata, array)); EXPECT_EQ(array, DecodeChunk(metadata, buffer)); } } TEST(BloscCompressionTest, Golden) { const unsigned char kData[] = { 0x00, 0x00, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x03, 0x02, 0x01, 0x96, 0x02, 0x0c, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x1c, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x03, 0x00, 0x04, 0x00, 0x05, 0x00, 0x06, }; std::string encoded_data(std::begin(kData), std::end(kData)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, N5Metadata::FromJson({ {"dimensions", {10, 11, 12}}, {"blockSize", {1, 2, 3}}, {"dataType", "uint16"}, {"compression", { {"type", "blosc"}, {"clevel", 3}, {"blocksize", 0}, {"cname", "zstd"}, {"shuffle", 2}, }}, })); auto array = MakeArray<uint16_t>({{{1, 3, 5}, {2, 4, 6}}}); EXPECT_EQ(array, DecodeChunk(metadata, absl::Cord(encoded_data))); { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto buffer, EncodeChunk(metadata, array)); EXPECT_EQ(array, DecodeChunk(metadata, buffer)); } } }
575
cpp
google/tensorstore
dtype
tensorstore/driver/zarr/dtype.cc
tensorstore/driver/zarr/dtype_test.cc
#ifndef TENSORSTORE_DRIVER_ZARR_DTYPE_H_ #define TENSORSTORE_DRIVER_ZARR_DTYPE_H_ #include <nlohmann/json.hpp> #include "tensorstore/data_type.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_zarr { struct ZarrDType { struct BaseDType { std::string encoded_dtype; DataType dtype; tensorstore::endian endian; std::vector<Index> flexible_shape; }; struct Field : public BaseDType { std::vector<Index> outer_shape; std::string name; std::vector<Index> field_shape; Index num_inner_elements; Index byte_offset; Index num_bytes; }; bool has_fields; std::vector<Field> fields; Index bytes_per_outer_element; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(ZarrDType, internal_json_binding::NoOptions) friend void to_json(::nlohmann::json& out, const ZarrDType& dtype); }; Result<ZarrDType> ParseDType(const ::nlohmann::json& value); absl::Status ValidateDType(ZarrDType& dtype); Result<ZarrDType::BaseDType> ParseBaseDType(std::string_view dtype); Result<ZarrDType::BaseDType> ChooseBaseDType(DataType dtype); } } #endif #include "tensorstore/driver/zarr/dtype.h" #include <stddef.h> #include "absl/base/optimization.h" #include "tensorstore/data_type.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_zarr { constexpr char kDtypeBfloat16[] = "bfloat16"; constexpr char kDtypeFloat8e4m3fn[] = "float8_e4m3fn"; constexpr char kDtypeFloat8e4m3fnuz[] = "float8_e4m3fnuz"; constexpr char kDtypeFloat8e4m3b11fnuz[] = "float8_e4m3b11fnuz"; constexpr char kDtypeFloat8e5m2[] = "float8_e5m2"; constexpr char kDtypeFloat8e5m2fnuz[] = "float8_e5m2fnuz"; constexpr char kDtypeInt4[] = "int4"; Result<ZarrDType::BaseDType> ParseBaseDType(std::string_view dtype) { using D = ZarrDType::BaseDType; if (dtype == kDtypeBfloat16) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::bfloat16_t>, endian::little}; } if (dtype == kDtypeFloat8e4m3fn) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float8_e4m3fn_t>, endian::little}; } if (dtype == kDtypeFloat8e4m3fnuz) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float8_e4m3fnuz_t>, endian::little}; } if (dtype == kDtypeFloat8e4m3b11fnuz) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float8_e4m3b11fnuz_t>, endian::little}; } if (dtype == kDtypeFloat8e5m2) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float8_e5m2_t>, endian::little}; } if (dtype == kDtypeFloat8e5m2fnuz) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float8_e5m2fnuz_t>, endian::little}; } if (dtype == kDtypeInt4) { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::int4_t>, endian::little}; } if (dtype.size() < 3) goto error; { const char endian_indicator = dtype[0]; const char type_indicator = dtype[1]; const std::string_view suffix = dtype.substr(2); endian endian_value; switch (endian_indicator) { case '<': endian_value = endian::little; break; case '>': endian_value = endian::big; break; case '|': endian_value = endian::native; break; default: goto error; } switch (type_indicator) { case 'b': if (suffix != "1") goto error; ABSL_FALLTHROUGH_INTENDED; case 'S': case 'V': endian_value = endian::native; break; case 'i': case 'u': if (endian_indicator == '|') { if (suffix != "1") goto error; endian_value = endian::native; break; } else if (suffix == "1") { endian_value = endian::native; break; } [[fallthrough]]; case 'f': case 'c': case 'm': case 'M': if (endian_indicator == '|') { goto error; } break; } switch (type_indicator) { case 'b': return D{std::string(dtype), dtype_v<bool>, endian::native}; case 'i': if (suffix == "1") { return D{std::string(dtype), dtype_v<int8_t>, endian_value}; } if (suffix == "2") { return D{std::string(dtype), dtype_v<int16_t>, endian_value}; } if (suffix == "4") { return D{std::string(dtype), dtype_v<int32_t>, endian_value}; } if (suffix == "8") { return D{std::string(dtype), dtype_v<int64_t>, endian_value}; } goto error; case 'u': if (suffix == "1") { return D{std::string(dtype), dtype_v<uint8_t>, endian_value}; } if (suffix == "2") { return D{std::string(dtype), dtype_v<uint16_t>, endian_value}; } if (suffix == "4") { return D{std::string(dtype), dtype_v<uint32_t>, endian_value}; } if (suffix == "8") { return D{std::string(dtype), dtype_v<uint64_t>, endian_value}; } goto error; case 'f': if (suffix == "2") { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float16_t>, endian_value}; } if (suffix == "4") { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float32_t>, endian_value}; } if (suffix == "8") { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::float64_t>, endian_value}; } goto error; case 'c': if (suffix == "8") { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::complex64_t>, endian_value}; } if (suffix == "16") { return D{std::string(dtype), dtype_v<::tensorstore::dtypes::complex128_t>, endian_value}; } goto error; case 'S': case 'V': { Index num_elements = 0; for (char c : suffix) { if (internal::MulOverflow(num_elements, Index(10), &num_elements)) goto error; if (c < '0' || c > '9') goto error; if (internal::AddOverflow(num_elements, Index(c - '0'), &num_elements)) goto error; } return D{std::string(dtype), (type_indicator == 'S') ? DataType(dtype_v<::tensorstore::dtypes::char_t>) : DataType(dtype_v<::tensorstore::dtypes::byte_t>), endian::native, {num_elements}}; } } } error: return absl::InvalidArgumentError( tensorstore::StrCat("Unsupported zarr dtype: ", QuoteString(dtype))); } namespace { Result<ZarrDType> ParseDTypeNoDerived(const nlohmann::json& value) { ZarrDType out; if (value.is_string()) { out.has_fields = false; out.fields.resize(1); TENSORSTORE_ASSIGN_OR_RETURN( static_cast<ZarrDType::BaseDType&>(out.fields[0]), ParseBaseDType(value.get<std::string>())); return out; } out.has_fields = true; auto parse_result = internal_json::JsonParseArray( value, [&](std::ptrdiff_t size) { out.fields.resize(size); return absl::OkStatus(); }, [&](const ::nlohmann::json& x, std::ptrdiff_t field_i) { auto& field = out.fields[field_i]; return internal_json::JsonParseArray( x, [&](std::ptrdiff_t size) { if (size < 2 || size > 3) { return absl::InvalidArgumentError(tensorstore::StrCat( "Expected array of size 2 or 3, but received: ", x.dump())); } return absl::OkStatus(); }, [&](const ::nlohmann::json& v, std::ptrdiff_t i) { switch (i) { case 0: if (internal_json::JsonRequireValueAs(v, &field.name).ok()) { if (!field.name.empty()) return absl::OkStatus(); } return absl::InvalidArgumentError(tensorstore::StrCat( "Expected non-empty string, but received: ", v.dump())); case 1: { std::string dtype_string; TENSORSTORE_RETURN_IF_ERROR( internal_json::JsonRequireValueAs(v, &dtype_string)); TENSORSTORE_ASSIGN_OR_RETURN( static_cast<ZarrDType::BaseDType&>(field), ParseBaseDType(dtype_string)); return absl::OkStatus(); } case 2: { return internal_json::JsonParseArray( v, [&](std::ptrdiff_t size) { field.outer_shape.resize(size); return absl::OkStatus(); }, [&](const ::nlohmann::json& x, std::ptrdiff_t j) { return internal_json::JsonRequireInteger( x, &field.outer_shape[j], true, 1, kInfIndex); }); } default: ABSL_UNREACHABLE(); } }); }); if (!parse_result.ok()) return parse_result; return out; } } absl::Status ValidateDType(ZarrDType& dtype) { dtype.bytes_per_outer_element = 0; for (size_t field_i = 0; field_i < dtype.fields.size(); ++field_i) { auto& field = dtype.fields[field_i]; if (std::any_of( dtype.fields.begin(), dtype.fields.begin() + field_i, [&](const ZarrDType::Field& f) { return f.name == field.name; })) { return absl::InvalidArgumentError(tensorstore::StrCat( "Field name ", QuoteString(field.name), " occurs more than once")); } field.field_shape.resize(field.flexible_shape.size() + field.outer_shape.size()); std::copy(field.flexible_shape.begin(), field.flexible_shape.end(), std::copy(field.outer_shape.begin(), field.outer_shape.end(), field.field_shape.begin())); field.num_inner_elements = ProductOfExtents(span(field.field_shape)); if (field.num_inner_elements == std::numeric_limits<Index>::max()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Product of dimensions ", span(field.field_shape), " is too large")); } if (internal::MulOverflow(field.num_inner_elements, static_cast<Index>(field.dtype->size), &field.num_bytes)) { return absl::InvalidArgumentError("Field size in bytes is too large"); } field.byte_offset = dtype.bytes_per_outer_element; if (internal::AddOverflow(dtype.bytes_per_outer_element, field.num_bytes, &dtype.bytes_per_outer_element)) { return absl::InvalidArgumentError( "Total number of bytes per outer array element is too large"); } } return absl::OkStatus(); } Result<ZarrDType> ParseDType(const nlohmann::json& value) { TENSORSTORE_ASSIGN_OR_RETURN(ZarrDType dtype, ParseDTypeNoDerived(value)); TENSORSTORE_RETURN_IF_ERROR(ValidateDType(dtype)); return dtype; } void to_json(::nlohmann::json& out, const ZarrDType::Field& field) { using array_t = ::nlohmann::json::array_t; if (field.outer_shape.empty()) { out = array_t{field.name, field.encoded_dtype}; } else { out = array_t{field.name, field.encoded_dtype, field.outer_shape}; } } void to_json(::nlohmann::json& out, const ZarrDType& dtype) { if (!dtype.has_fields) { out = dtype.fields[0].encoded_dtype; } else { out = dtype.fields; } } TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(ZarrDType, [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { TENSORSTORE_ASSIGN_OR_RETURN(*obj, ParseDType(*j)); } else { to_json(*j, *obj); } return absl::OkStatus(); }) char EndianIndicator(tensorstore::endian e) { return e == tensorstore::endian::little ? '<' : '>'; } Result<ZarrDType::BaseDType> ChooseBaseDType(DataType dtype) { ZarrDType::BaseDType base_dtype; base_dtype.endian = endian::native; base_dtype.dtype = dtype; const auto set_typestr = [&](std::string_view typestr, int size) { if (size > 1) { base_dtype.encoded_dtype = tensorstore::StrCat( EndianIndicator(base_dtype.endian), typestr, size); } else { base_dtype.encoded_dtype = tensorstore::StrCat("|", typestr, size); } }; switch (dtype.id()) { case DataTypeId::bool_t: set_typestr("b", 1); break; case DataTypeId::uint8_t: set_typestr("u", 1); break; case DataTypeId::uint16_t: set_typestr("u", 2); break; case DataTypeId::uint32_t: set_typestr("u", 4); break; case DataTypeId::uint64_t: set_typestr("u", 8); break; case DataTypeId::int4_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeInt4; break; case DataTypeId::int8_t: set_typestr("i", 1); break; case DataTypeId::int16_t: set_typestr("i", 2); break; case DataTypeId::int32_t: set_typestr("i", 4); break; case DataTypeId::int64_t: set_typestr("i", 8); break; case DataTypeId::float8_e4m3fn_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeFloat8e4m3fn; break; case DataTypeId::float8_e4m3fnuz_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeFloat8e4m3fnuz; break; case DataTypeId::float8_e4m3b11fnuz_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeFloat8e4m3b11fnuz; break; case DataTypeId::float8_e5m2_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeFloat8e5m2; break; case DataTypeId::float8_e5m2fnuz_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeFloat8e5m2fnuz; break; case DataTypeId::float16_t: set_typestr("f", 2); break; case DataTypeId::bfloat16_t: base_dtype.endian = endian::little; base_dtype.encoded_dtype = kDtypeBfloat16; break; case DataTypeId::float32_t: set_typestr("f", 4); break; case DataTypeId::float64_t: set_typestr("f", 8); break; case DataTypeId::complex64_t: set_typestr("c", 8); break; case DataTypeId::complex128_t: set_typestr("c", 16); break; default: return absl::InvalidArgumentError( tensorstore::StrCat("Data type not supported: ", dtype)); } return base_dtype; } } }
#include "tensorstore/driver/zarr/dtype.h" #include <stdint.h> #include <cstddef> #include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr/metadata_testutil.h" #include "tensorstore/index.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::DataType; using ::tensorstore::dtype_v; using ::tensorstore::endian; using ::tensorstore::Index; using ::tensorstore::kInfIndex; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_zarr::ChooseBaseDType; using ::tensorstore::internal_zarr::ParseBaseDType; using ::tensorstore::internal_zarr::ParseDType; using ::tensorstore::internal_zarr::ZarrDType; void CheckBaseDType(std::string dtype, DataType r, endian e, std::vector<Index> flexible_shape) { EXPECT_THAT(ParseBaseDType(dtype), ::testing::Optional(ZarrDType::BaseDType{ dtype, r, e, flexible_shape})) << dtype; } TEST(ParseBaseDType, Success) { CheckBaseDType("|b1", dtype_v<bool>, endian::native, {}); CheckBaseDType("<b1", dtype_v<bool>, endian::native, {}); CheckBaseDType(">b1", dtype_v<bool>, endian::native, {}); CheckBaseDType("|S150", dtype_v<char>, endian::native, {150}); CheckBaseDType(">S150", dtype_v<char>, endian::native, {150}); CheckBaseDType("<S150", dtype_v<char>, endian::native, {150}); CheckBaseDType("|S9223372036854775807", dtype_v<char>, endian::native, {9223372036854775807}); CheckBaseDType("|V150", dtype_v<std::byte>, endian::native, {150}); CheckBaseDType("<V150", dtype_v<std::byte>, endian::native, {150}); CheckBaseDType(">V150", dtype_v<std::byte>, endian::native, {150}); CheckBaseDType("|i1", dtype_v<std::int8_t>, endian::native, {}); CheckBaseDType("<i1", dtype_v<std::int8_t>, endian::native, {}); CheckBaseDType(">i1", dtype_v<std::int8_t>, endian::native, {}); CheckBaseDType("|u1", dtype_v<std::uint8_t>, endian::native, {}); CheckBaseDType("<u1", dtype_v<std::uint8_t>, endian::native, {}); CheckBaseDType(">u1", dtype_v<std::uint8_t>, endian::native, {}); CheckBaseDType("<i2", dtype_v<std::int16_t>, endian::little, {}); CheckBaseDType("<i4", dtype_v<std::int32_t>, endian::little, {}); CheckBaseDType("<i8", dtype_v<std::int64_t>, endian::little, {}); CheckBaseDType("<u2", dtype_v<std::uint16_t>, endian::little, {}); CheckBaseDType("<u4", dtype_v<std::uint32_t>, endian::little, {}); CheckBaseDType("<u8", dtype_v<std::uint64_t>, endian::little, {}); CheckBaseDType(">i2", dtype_v<std::int16_t>, endian::big, {}); CheckBaseDType(">i4", dtype_v<std::int32_t>, endian::big, {}); CheckBaseDType(">i8", dtype_v<std::int64_t>, endian::big, {}); CheckBaseDType(">u2", dtype_v<std::uint16_t>, endian::big, {}); CheckBaseDType(">u4", dtype_v<std::uint32_t>, endian::big, {}); CheckBaseDType(">u8", dtype_v<std::uint64_t>, endian::big, {}); CheckBaseDType("float8_e4m3fn", dtype_v<tensorstore::dtypes::float8_e4m3fn_t>, endian::little, {}); CheckBaseDType("float8_e4m3fnuz", dtype_v<tensorstore::dtypes::float8_e4m3fnuz_t>, endian::little, {}); CheckBaseDType("float8_e4m3b11fnuz", dtype_v<tensorstore::dtypes::float8_e4m3b11fnuz_t>, endian::little, {}); CheckBaseDType("float8_e5m2", dtype_v<tensorstore::dtypes::float8_e5m2_t>, endian::little, {}); CheckBaseDType("float8_e5m2fnuz", dtype_v<tensorstore::dtypes::float8_e5m2fnuz_t>, endian::little, {}); CheckBaseDType("<f2", dtype_v<tensorstore::dtypes::float16_t>, endian::little, {}); CheckBaseDType("bfloat16", dtype_v<tensorstore::dtypes::bfloat16_t>, endian::little, {}); CheckBaseDType("<f4", dtype_v<tensorstore::dtypes::float32_t>, endian::little, {}); CheckBaseDType("<f8", dtype_v<tensorstore::dtypes::float64_t>, endian::little, {}); CheckBaseDType(">f2", dtype_v<tensorstore::dtypes::float16_t>, endian::big, {}); CheckBaseDType(">f4", dtype_v<tensorstore::dtypes::float32_t>, endian::big, {}); CheckBaseDType(">f8", dtype_v<tensorstore::dtypes::float64_t>, endian::big, {}); CheckBaseDType("<c8", dtype_v<tensorstore::dtypes::complex64_t>, endian::little, {}); CheckBaseDType("<c16", dtype_v<tensorstore::dtypes::complex128_t>, endian::little, {}); CheckBaseDType(">c8", dtype_v<tensorstore::dtypes::complex64_t>, endian::big, {}); CheckBaseDType(">c16", dtype_v<tensorstore::dtypes::complex128_t>, endian::big, {}); } TEST(ParseBaseDType, Failure) { EXPECT_THAT(ParseBaseDType(""), MatchesStatus(absl::StatusCode::kInvalidArgument, "Unsupported zarr dtype: \"\"")); EXPECT_THAT(ParseBaseDType("|f4"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|f8"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|c8"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|c16"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|b2"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|i2"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<i9"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<u9"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<S"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|S999999999999999999999999999"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|S9223372036854775808"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|Sa"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("|S "), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<f5"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<c5"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<m8"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<M8"), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(ParseBaseDType("<X5"), MatchesStatus(absl::StatusCode::kInvalidArgument)); } void CheckDType(const ::nlohmann::json& json, const ZarrDType& expected) { SCOPED_TRACE(json.dump()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto dtype, ParseDType(json)); EXPECT_EQ(expected, dtype); EXPECT_EQ(json, ::nlohmann::json(dtype)); } TEST(ParseDType, SimpleStringBool) { CheckDType("|b1", ZarrDType{ false, { {{ "|b1", dtype_v<bool>, endian::native, {}, }, {}, "", {}, 1, 0, 1}, }, 1, }); } TEST(ParseDType, SingleNamedFieldChar) { CheckDType(::nlohmann::json::array_t{{"x", "|S10"}}, ZarrDType{ true, { {{ "|S10", dtype_v<char>, endian::native, {10}, }, {}, "x", {10}, 10, 0, 10}, }, 10, }); } TEST(ParseDType, TwoNamedFieldsCharAndInt) { CheckDType( ::nlohmann::json::array_t{{"x", "|S10", {2, 3}}, {"y", "<i2", {5}}}, ZarrDType{ true, { {{ "|S10", dtype_v<char>, endian::native, {10}, }, {2, 3}, "x", {2, 3, 10}, 10 * 2 * 3, 0, 10 * 2 * 3}, {{ "<i2", dtype_v<std::int16_t>, endian::little, {}, }, {5}, "y", {5}, 5, 10 * 2 * 3, 2 * 5}, }, 10 * 2 * 3 + 2 * 5, }); } TEST(ParseDType, FieldSpecTooShort) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x"}}), MatchesStatus( absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Expected array of size 2 or 3, but received: \\[\"x\"\\]")); } TEST(ParseDType, FieldSpecTooLong) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x", "<i2", {2, 3}, 5}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Expected array of size 2 or 3, but received: " "\\[\"x\",\"<i2\",\\[2,3\\],5\\]")); } TEST(ParseDType, InvalidFieldName) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{3, "<i2"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Error parsing value at position 0: " "Expected non-empty string, but received: 3")); } TEST(ParseDType, EmptyFieldName) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"", "<i2"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Error parsing value at position 0: " "Expected non-empty string, but received: \"\"")); } TEST(ParseDType, DuplicateFieldName) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x", "<i2"}, {"x", "<u2"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Field name \"x\" occurs more than once")); } TEST(ParseDType, NonStringFieldBaseDType) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x", 3}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Error parsing value at position 1: " "Expected string, but received: 3")); } TEST(ParseDType, InvalidFieldBaseDType) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x", "<X2"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing value at position 0: " "Error parsing value at position 1: " "Unsupported zarr dtype: \"<X2\"")); } TEST(ParseDType, ProductOfDimensionsOverflow) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{ {"x", "|i1", {kInfIndex, kInfIndex}}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Product of dimensions .* is too large")); } TEST(ParseDType, FieldSizeInBytesOverflow) { EXPECT_THAT(ParseDType(::nlohmann::json::array_t{{"x", "<f8", {kInfIndex}}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Field size in bytes is too large")); } TEST(ParseDType, BytesPerOuterElementOverflow) { EXPECT_THAT( ParseDType(::nlohmann::json::array_t{{"x", "<i2", {kInfIndex}}, {"y", "<i2", {kInfIndex}}}), MatchesStatus( absl::StatusCode::kInvalidArgument, "Total number of bytes per outer array element is too large")); } TEST(ChooseBaseDTypeTest, RoundTrip) { constexpr tensorstore::DataType kSupportedDataTypes[] = { dtype_v<bool>, dtype_v<uint8_t>, dtype_v<uint16_t>, dtype_v<uint32_t>, dtype_v<uint64_t>, dtype_v<int8_t>, dtype_v<int16_t>, dtype_v<int32_t>, dtype_v<int64_t>, dtype_v<::tensorstore::dtypes::float8_e4m3fn_t>, dtype_v<::tensorstore::dtypes::float8_e4m3fnuz_t>, dtype_v<::tensorstore::dtypes::float8_e4m3b11fnuz_t>, dtype_v<::tensorstore::dtypes::float8_e5m2_t>, dtype_v<::tensorstore::dtypes::float8_e5m2fnuz_t>, dtype_v<::tensorstore::dtypes::float16_t>, dtype_v<::tensorstore::dtypes::bfloat16_t>, dtype_v<::tensorstore::dtypes::float32_t>, dtype_v<::tensorstore::dtypes::float64_t>, dtype_v<::tensorstore::dtypes::complex64_t>, dtype_v<::tensorstore::dtypes::complex128_t>, }; for (auto dtype : kSupportedDataTypes) { SCOPED_TRACE(tensorstore::StrCat("dtype=", dtype)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto base_zarr_dtype, ChooseBaseDType(dtype)); EXPECT_EQ(dtype, base_zarr_dtype.dtype); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto parsed, ParseBaseDType(base_zarr_dtype.encoded_dtype)); EXPECT_EQ(dtype, parsed.dtype); EXPECT_EQ(base_zarr_dtype.endian, parsed.endian); EXPECT_EQ(base_zarr_dtype.flexible_shape, parsed.flexible_shape); EXPECT_EQ(base_zarr_dtype.encoded_dtype, parsed.encoded_dtype); } } TEST(ChooseBaseDTypeTest, Invalid) { struct X {}; EXPECT_THAT(ChooseBaseDType(dtype_v<X>), MatchesStatus(absl::StatusCode::kInvalidArgument, "Data type not supported: .*")); EXPECT_THAT(ChooseBaseDType(dtype_v<::tensorstore::dtypes::string_t>), MatchesStatus(absl::StatusCode::kInvalidArgument, "Data type not supported: string")); } }
576
cpp
google/tensorstore
zstd_compressor
tensorstore/driver/n5/zstd_compressor.cc
tensorstore/driver/n5/zstd_compressor_test.cc
#ifndef TENSORSTORE_INTERNAL_COMPRESSION_ZSTD_COMPRESSOR_H_ #define TENSORSTORE_INTERNAL_COMPRESSION_ZSTD_COMPRESSOR_H_ #include <cstddef> #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/compression/json_specified_compressor.h" namespace tensorstore { namespace internal { struct ZstdOptions { int level = 0; }; class ZstdCompressor : public JsonSpecifiedCompressor, public ZstdOptions { public: std::unique_ptr<riegeli::Writer> GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const override; virtual std::unique_ptr<riegeli::Reader> GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const override; }; } } #endif #include "tensorstore/internal/compression/zstd_compressor.h" #include <cstddef> #include "riegeli/zstd/zstd_reader.h" #include "riegeli/zstd/zstd_writer.h" #include "tensorstore/internal/compression/json_specified_compressor.h" namespace tensorstore { namespace internal { std::unique_ptr<riegeli::Writer> ZstdCompressor::GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const { using Writer = riegeli::ZstdWriter<std::unique_ptr<riegeli::Writer>>; Writer::Options options; options.set_compression_level(level); return std::make_unique<Writer>(std::move(base_writer), options); } std::unique_ptr<riegeli::Reader> ZstdCompressor::GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const { using Reader = riegeli::ZstdReader<std::unique_ptr<riegeli::Reader>>; return std::make_unique<Reader>(std::move(base_reader)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/driver/n5/compressor.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::internal_n5::Compressor; TEST(ZstdCompressorTest, SmallRoundtrip) { auto compressor = Compressor::FromJson({{"type", "zstd"}, {"level", 6}}).value(); const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result, decode_result; TENSORSTORE_ASSERT_OK(compressor->Encode(input, &encode_result, 1)); TENSORSTORE_ASSERT_OK(compressor->Decode(encode_result, &decode_result, 1)); EXPECT_EQ(input, decode_result); } TEST(ZstdCompressorTest, DefaultLevel) { auto compressor1 = Compressor::FromJson({{"type", "zstd"}}).value(); auto compressor2 = Compressor::FromJson({{"type", "zstd"}, {"level", 1}}).value(); const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result1, encode_result2; TENSORSTORE_ASSERT_OK(compressor1->Encode(input, &encode_result1, 1)); TENSORSTORE_ASSERT_OK(compressor2->Encode(input, &encode_result2, 1)); EXPECT_EQ(encode_result1, encode_result2); } TEST(ZstdCompressorTest, NonDefaultLevel) { auto compressor = Compressor::FromJson({{"type", "zstd"}, {"level", 9}}).value(); const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result; TENSORSTORE_ASSERT_OK(compressor->Encode(input, &encode_result, 1)); absl::Cord decode_result; TENSORSTORE_ASSERT_OK(compressor->Decode(encode_result, &decode_result, 1)); EXPECT_EQ(input, decode_result); } TEST(ZstdCompressorTest, InvalidParameter) { EXPECT_THAT(Compressor::FromJson({{"type", "zstd"}, {"level", "6"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"level\": .*")); EXPECT_THAT(Compressor::FromJson({{"type", "zstd"}, {"level", -131073}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"level\": .*")); EXPECT_THAT(Compressor::FromJson({{"type", "zstd"}, {"level", 23}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"level\": .*")); EXPECT_THAT(Compressor::FromJson({{"type", "zstd"}, {"foo", 10}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Object includes extra members: \"foo\"")); } TEST(ZstdCompressorTest, ToJson) { auto compressor = Compressor::FromJson({{"type", "zstd"}, {"level", 5}}).value(); EXPECT_EQ(nlohmann::json({{"type", "zstd"}, {"level", 5}}), compressor.ToJson()); } }
577
cpp
google/tensorstore
zlib_compressor
tensorstore/driver/zarr/zlib_compressor.cc
tensorstore/driver/zarr/zlib_compressor_test.cc
#ifndef TENSORSTORE_INTERNAL_COMPRESSION_ZLIB_COMPRESSOR_H_ #define TENSORSTORE_INTERNAL_COMPRESSION_ZLIB_COMPRESSOR_H_ #include <cstddef> #include <memory> #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/compression/json_specified_compressor.h" #include "tensorstore/internal/compression/zlib.h" namespace tensorstore { namespace internal { class ZlibCompressor : public JsonSpecifiedCompressor, public zlib::Options { public: std::unique_ptr<riegeli::Writer> GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const override; virtual std::unique_ptr<riegeli::Reader> GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const override; }; } } #endif #include "tensorstore/internal/compression/zlib_compressor.h" #include <cstddef> #include <memory> #include "riegeli/zlib/zlib_reader.h" #include "riegeli/zlib/zlib_writer.h" #include "tensorstore/internal/compression/json_specified_compressor.h" namespace tensorstore { namespace internal { std::unique_ptr<riegeli::Writer> ZlibCompressor::GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const { using Writer = riegeli::ZlibWriter<std::unique_ptr<riegeli::Writer>>; Writer::Options options; if (level != -1) options.set_compression_level(level); options.set_header(use_gzip_header ? Writer::Header::kGzip : Writer::Header::kZlib); return std::make_unique<Writer>(std::move(base_writer), options); } std::unique_ptr<riegeli::Reader> ZlibCompressor::GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const { using Reader = riegeli::ZlibReader<std::unique_ptr<riegeli::Reader>>; Reader::Options options; options.set_header(use_gzip_header ? Reader::Header::kGzip : Reader::Header::kZlib); return std::make_unique<Reader>(std::move(base_reader), options); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/driver/zarr/compressor.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::internal_zarr::Compressor; class ZlibCompressorTest : public ::testing::TestWithParam<const char*> {}; INSTANTIATE_TEST_SUITE_P(ZlibCompressorTestCases, ZlibCompressorTest, ::testing::Values("zlib", "gzip")); TEST_P(ZlibCompressorTest, SmallRoundtrip) { auto compressor = Compressor::FromJson({{"id", GetParam()}, {"level", 6}}).value(); const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result, decode_result; TENSORSTORE_ASSERT_OK(compressor->Encode(input, &encode_result, 1)); TENSORSTORE_ASSERT_OK(compressor->Decode(encode_result, &decode_result, 1)); EXPECT_EQ(input, decode_result); } TEST_P(ZlibCompressorTest, DefaultLevel) { auto compressor1 = Compressor::FromJson({{"id", GetParam()}}).value(); auto compressor2 = Compressor::FromJson({{"id", GetParam()}, {"level", 1}}).value(); const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result1, encode_result2; TENSORSTORE_ASSERT_OK(compressor1->Encode(input, &encode_result1, 1)); TENSORSTORE_ASSERT_OK(compressor2->Encode(input, &encode_result2, 1)); EXPECT_EQ(encode_result1, encode_result2); } TEST_P(ZlibCompressorTest, NonDefaultLevel) { auto compressor = Compressor::FromJson({{"id", GetParam()}, {"level", 9}}).value(); const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result; TENSORSTORE_ASSERT_OK(compressor->Encode(input, &encode_result, 1)); absl::Cord decode_result; TENSORSTORE_ASSERT_OK(compressor->Decode(encode_result, &decode_result, 1)); EXPECT_EQ(input, decode_result); } TEST_P(ZlibCompressorTest, InvalidParameter) { EXPECT_THAT(Compressor::FromJson({{"id", GetParam()}, {"level", "6"}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"level\": .*")); EXPECT_THAT(Compressor::FromJson({{"id", GetParam()}, {"level", -1}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"level\": .*")); EXPECT_THAT(Compressor::FromJson({{"id", GetParam()}, {"level", 10}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Error parsing object member \"level\": .*")); EXPECT_THAT(Compressor::FromJson({{"id", GetParam()}, {"foo", 10}}), MatchesStatus(absl::StatusCode::kInvalidArgument, "Object includes extra members: \"foo\"")); } TEST_P(ZlibCompressorTest, ToJson) { auto compressor = Compressor::FromJson({{"id", GetParam()}, {"level", 5}}).value(); EXPECT_EQ(nlohmann::json({{"id", GetParam()}, {"level", 5}}), compressor.ToJson()); } }
578
cpp
google/tensorstore
downsample_util
tensorstore/driver/downsample/downsample_util.cc
tensorstore/driver/downsample/downsample_util_test.cc
#ifndef TENSORSTORE_DRIVER_DOWNSAMPLE_DOWNSAMPLE_UTIL_H_ #define TENSORSTORE_DRIVER_DOWNSAMPLE_DOWNSAMPLE_UTIL_H_ #include <iosfwd> #include "absl/container/inlined_vector.h" #include "tensorstore/box.h" #include "tensorstore/downsample_method.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_downsample { struct PropagatedIndexTransformDownsampling { IndexTransform<> transform; absl::InlinedVector<Index, internal::kNumInlinedDims> input_downsample_factors; friend bool operator==(const PropagatedIndexTransformDownsampling& a, const PropagatedIndexTransformDownsampling& b) { return a.transform == b.transform && a.input_downsample_factors == b.input_downsample_factors; } friend bool operator!=(const PropagatedIndexTransformDownsampling& a, const PropagatedIndexTransformDownsampling& b) { return !(a == b); } friend std::ostream& operator<<( std::ostream& os, const PropagatedIndexTransformDownsampling& x); }; absl::Status PropagateIndexTransformDownsampling( IndexTransformView<> downsampled_transform, BoxView<> output_base_bounds, span<const Index> output_downsample_factors, PropagatedIndexTransformDownsampling& propagated); absl::Status PropagateAndComposeIndexTransformDownsampling( IndexTransformView<> downsampled_transform, IndexTransformView<> base_transform, span<const Index> base_downsample_factors, PropagatedIndexTransformDownsampling& propagated); Result<PropagatedIndexTransformDownsampling> PropagateIndexTransformDownsampling( IndexTransformView<> downsampled_transform, BoxView<> output_base_bounds, span<const Index> output_downsample_factors); IndexInterval DownsampleInterval(IndexInterval base_interval, Index downsample_factor, DownsampleMethod method); void DownsampleBounds(BoxView<> base_bounds, MutableBoxView<> downsampled_bounds, span<const Index> downsample_factors, DownsampleMethod method); IndexDomain<> DownsampleDomain(IndexDomainView<> base_domain, span<const Index> downsample_factors, DownsampleMethod method); IndexTransform<> GetDownsampledDomainIdentityTransform( IndexDomainView<> base_domain, span<const Index> downsample_factors, DownsampleMethod method); bool CanDownsampleIndexTransform(IndexTransformView<> base_transform, BoxView<> base_bounds, span<const Index> downsample_factors); } } #endif #include "tensorstore/driver/downsample/downsample_util.h" #include <algorithm> #include <cassert> #include <cstdlib> #include <limits> #include <ostream> #include <utility> #include "absl/base/optimization.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/strings/str_join.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/downsample_method.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_domain.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/identity_transform.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/rank.h" #include "tensorstore/util/byte_strided_pointer.h" #include "tensorstore/util/division.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_downsample { std::ostream& operator<<(std::ostream& os, const PropagatedIndexTransformDownsampling& x) { return os << "transform=" << x.transform << "\ninput_downsample_factors=" << absl::StrJoin(x.input_downsample_factors, ","); } namespace { DimensionIndex ComputeAdditionalInputDimensionsNeeded( IndexTransformView<> downsampled_transform, span<const Index> output_downsample_factors, span<DimensionIndex> input_dimension_ref_counts, bool is_domain_empty) { using internal_index_space::TransformAccess; assert(downsampled_transform.valid()); const DimensionIndex output_rank = downsampled_transform.output_rank(); assert(input_dimension_ref_counts.size() == downsampled_transform.input_rank()); assert(output_downsample_factors.size() == output_rank); DimensionIndex additional_input_dims = 0; auto old_transform_rep = TransformAccess::rep(downsampled_transform); for (DimensionIndex output_dim = 0; output_dim < output_rank; ++output_dim) { assert(output_downsample_factors[output_dim] > 0); if (output_downsample_factors[output_dim] == 1) { continue; } const auto& output_map = old_transform_rep->output_index_maps()[output_dim]; switch (output_map.method()) { case OutputIndexMethod::constant: if (!is_domain_empty) { ++additional_input_dims; } break; case OutputIndexMethod::single_input_dimension: if ((std::abs(output_map.stride()) != 1 || input_dimension_ref_counts[output_map.input_dimension()] != 1) && !downsampled_transform.input_domain() .box()[output_map.input_dimension()] .empty()) { ++additional_input_dims; } break; case OutputIndexMethod::array: { ++additional_input_dims; break; } } } return additional_input_dims; } absl::Status ExtendOutputIndexMap( const internal_index_space::OutputIndexMap& output_map, internal_index_space::OutputIndexMap& new_output_map, DimensionIndex input_rank, DimensionIndex new_input_rank) { new_output_map.offset() = output_map.offset(); new_output_map.stride() = output_map.stride(); switch (output_map.method()) { case OutputIndexMethod::constant: new_output_map.SetConstant(); break; case OutputIndexMethod::single_input_dimension: new_output_map.SetSingleInputDimension(output_map.input_dimension()); break; case OutputIndexMethod::array: { const auto& index_array_data = output_map.index_array_data(); auto& new_index_array_data = new_output_map.SetArrayIndexing(new_input_rank); new_index_array_data.element_pointer = index_array_data.element_pointer; new_index_array_data.index_range = index_array_data.index_range; std::copy_n(index_array_data.byte_strides, input_rank, new_index_array_data.byte_strides); std::fill_n(new_index_array_data.byte_strides + input_rank, new_input_rank - input_rank, Index(0)); break; } } return absl::OkStatus(); } absl::Status PropagateUnitStrideSingleInputDimensionMapDownsampling( Index original_offset, Index original_stride, IndexInterval input_interval, Index output_downsample_factor, internal_index_space::OutputIndexMap& new_output_map, IndexInterval output_base_bounds, MutableBoxView<> new_input_domain, DimensionIndex new_input_dim, PropagatedIndexTransformDownsampling& propagated) { assert(original_stride == 1 || original_stride == -1); if (internal::MulOverflow(original_offset, output_downsample_factor, &new_output_map.offset())) { return absl::OutOfRangeError( tensorstore::StrCat("Integer overflow computing output offset ", original_offset, " * ", output_downsample_factor)); } TENSORSTORE_ASSIGN_OR_RETURN( auto bounds_interval, GetAffineTransformDomain(output_base_bounds, new_output_map.offset(), original_stride)); auto input_bounds = DownsampleInterval( bounds_interval, output_downsample_factor, DownsampleMethod::kMean); if (!Contains(input_bounds, input_interval)) { return absl::OutOfRangeError( tensorstore::StrCat("Propagated bounds interval ", input_bounds, " does not contain ", input_interval)); } propagated.input_downsample_factors[new_input_dim] = output_downsample_factor; new_output_map.SetSingleInputDimension(new_input_dim); TENSORSTORE_ASSIGN_OR_RETURN( auto new_interval, GetAffineTransformInverseDomain( input_interval, 0, original_stride * output_downsample_factor)); new_interval = Intersect(new_interval, bounds_interval); new_output_map.stride() = original_stride; new_input_domain[new_input_dim] = new_interval; return absl::OkStatus(); } absl::Status PropagateSingleInputDimensionMapDownsamplingAsNewDimension( const internal_index_space::OutputIndexMap& output_map, IndexInterval input_interval, Index output_downsample_factor, internal_index_space::OutputIndexMap& new_output_map, IndexInterval output_base_bounds, MutableBoxView<> new_input_domain, DimensionIndex new_input_dim, PropagatedIndexTransformDownsampling& propagated) { if (input_interval.size() == 1 || output_map.stride() == 0) { Index adjusted_offset; if (internal::MulOverflow(input_interval.inclusive_min(), output_map.stride(), &adjusted_offset) || internal::AddOverflow(adjusted_offset, output_map.offset(), &adjusted_offset)) { return absl::OutOfRangeError(tensorstore::StrCat( "Integer overflow computing offset ", output_map.offset(), " + ", input_interval.inclusive_min(), " * ", output_map.stride())); } return PropagateUnitStrideSingleInputDimensionMapDownsampling( adjusted_offset, 1, IndexInterval::UncheckedSized(0, 1), output_downsample_factor, new_output_map, output_base_bounds, new_input_domain, new_input_dim, propagated); } propagated.input_downsample_factors[new_input_dim] = output_downsample_factor; if (output_downsample_factor > kInfIndex) { return absl::OutOfRangeError("Downsample factor is out of range"); } new_input_domain[new_input_dim] = IndexInterval::UncheckedSized(0, output_downsample_factor); new_output_map.offset() = 0; new_output_map.stride() = 1; auto& new_index_array_data = new_output_map.SetArrayIndexing(new_input_domain.rank()); new_index_array_data.index_range = output_base_bounds; Index adjusted_stride; Index adjusted_offset; if (internal::MulOverflow(output_map.stride(), output_downsample_factor, &adjusted_stride)) { return absl::OutOfRangeError(tensorstore::StrCat( "Integer overflow computing stride ", output_map.stride(), " * ", output_downsample_factor)); } if (internal::MulOverflow(output_map.offset(), output_downsample_factor, &adjusted_offset)) { return absl::OutOfRangeError(tensorstore::StrCat( "Integer overflow computing offset ", output_map.offset(), " * ", output_downsample_factor)); } if (!input_interval.empty()) { TENSORSTORE_ASSIGN_OR_RETURN( auto output_range, GetAffineTransformRange(input_interval, adjusted_offset, adjusted_stride)); TENSORSTORE_ASSIGN_OR_RETURN( output_range, ShiftInterval(output_range, output_downsample_factor - 1, 0)); if (!Contains(output_base_bounds, output_range)) { return absl::OutOfRangeError(tensorstore::StrCat( "Output bounds interval ", output_base_bounds, " does not contain output range interval ", output_range)); } } std::fill_n(new_index_array_data.byte_strides, new_input_domain.rank(), Index(0)); new_index_array_data.byte_strides[output_map.input_dimension()] = 1; new_index_array_data.byte_strides[new_input_dim] = 2; new_index_array_data.element_pointer = AllocateArrayElementsLike<Index>( new_index_array_data.layout(new_input_domain), new_index_array_data.byte_strides, skip_repeated_elements); Index* array_origin = const_cast<Index*>(new_index_array_data.array_view(new_input_domain) .byte_strided_origin_pointer() .get()); for (Index j = 0; j < input_interval.size(); ++j) { const Index base_index = adjusted_offset + adjusted_stride * (input_interval.inclusive_min() + j); for (Index i = 0; i < output_downsample_factor; ++i) { Index x; if (internal::AddOverflow(base_index, i, &x) || x > output_base_bounds.inclusive_max()) { x = output_base_bounds.inclusive_max(); } else if (x < output_base_bounds.inclusive_min()) { x = output_base_bounds.inclusive_min(); } array_origin[input_interval.size() * i + j] = x; } } return absl::OkStatus(); } absl::Status PropagateIndexMapThatRequiresNewInputDimensionForEmptyDomain( Index output_downsample_factor, internal_index_space::OutputIndexMap& new_output_map, MutableBoxView<> new_input_domain, DimensionIndex new_input_dim, PropagatedIndexTransformDownsampling& propagated) { propagated.input_downsample_factors[new_input_dim] = output_downsample_factor; if (output_downsample_factor > kInfIndex) { return absl::OutOfRangeError("Downsample factor is out of range"); } new_input_domain[new_input_dim] = IndexInterval::UncheckedSized(0, output_downsample_factor); new_output_map.SetConstant(); new_output_map.offset() = 0; new_output_map.stride() = 0; return absl::OkStatus(); } absl::Status PropagateIndexArrayMapDownsampling( const internal_index_space::OutputIndexMap& output_map, BoxView<> downsampled_input_domain, Index output_downsample_factor, internal_index_space::OutputIndexMap& new_output_map, IndexInterval output_base_bounds, MutableBoxView<> new_input_domain, DimensionIndex new_input_dim, PropagatedIndexTransformDownsampling& propagated) { new_output_map.offset() = 0; propagated.input_downsample_factors[new_input_dim] = output_downsample_factor; if (output_downsample_factor > kInfIndex) { return absl::OutOfRangeError("Downsample factor is out of range"); } new_input_domain[new_input_dim] = IndexInterval::UncheckedSized(0, output_downsample_factor); const DimensionIndex input_rank = downsampled_input_domain.rank(); const auto& index_array_data = output_map.index_array_data(); new_output_map.stride() = 1; auto& new_index_array_data = new_output_map.SetArrayIndexing(new_input_domain.rank()); Index adjusted_stride; Index adjusted_offset; if (internal::MulOverflow(output_map.stride(), output_downsample_factor, &adjusted_stride)) { return absl::OutOfRangeError(tensorstore::StrCat( "Integer overflow computing stride ", output_map.stride(), " * ", output_downsample_factor)); } if (internal::MulOverflow(output_map.offset(), output_downsample_factor, &adjusted_offset)) { return absl::OutOfRangeError(tensorstore::StrCat( "Integer overflow computing offset ", output_map.offset(), " * ", output_downsample_factor)); } TENSORSTORE_ASSIGN_OR_RETURN( auto padded_output_interval, ShiftInterval(output_base_bounds, -(output_downsample_factor - 1), 0)); TENSORSTORE_ASSIGN_OR_RETURN( auto effective_index_range, GetAffineTransformDomain(padded_output_interval, adjusted_offset, adjusted_stride)); effective_index_range = Intersect(effective_index_range, index_array_data.index_range); new_index_array_data.index_range = output_base_bounds; std::copy_n(index_array_data.byte_strides, input_rank, new_index_array_data.byte_strides); std::fill_n(new_index_array_data.byte_strides + input_rank, new_input_domain.rank() - input_rank, Index(0)); new_index_array_data.byte_strides[new_input_dim] = std::numeric_limits<Index>::max(); new_index_array_data.element_pointer = AllocateArrayElementsLike<Index>( new_index_array_data.layout(new_input_domain), new_index_array_data.byte_strides, skip_repeated_elements); absl::Status status; IterateOverArrays( [&](const Index* existing_index, ByteStridedPointer<const Index> new_index) { const Index existing_index_value = *existing_index; if (!Contains(effective_index_range, existing_index_value)) { status = CheckContains(effective_index_range, existing_index_value); return false; } Index base_index = existing_index_value * adjusted_stride + adjusted_offset; const Index byte_stride = new_index_array_data.byte_strides[new_input_dim]; Index cur_index = std::max(base_index, output_base_bounds.inclusive_min()); for (Index i = 0; i < output_downsample_factor; ++i) { Index x; if (!internal::AddOverflow(base_index, i, &x) && output_base_bounds.exclusive_max() > x) { cur_index = std::max(cur_index, x); } assert(Contains(output_base_bounds, cur_index)); *const_cast<Index*>((new_index + i * byte_stride).get()) = cur_index; } return true; }, skip_repeated_elements, index_array_data.array_view(downsampled_input_domain), new_index_array_data.array_view(downsampled_input_domain)); return status; } } absl::Status PropagateIndexTransformDownsampling( IndexTransformView<> downsampled_transform, BoxView<> output_base_bounds, span<const Index> output_downsample_factors, PropagatedIndexTransformDownsampling& propagated) { using internal_index_space::TransformAccess; using internal_index_space::TransformRep; assert(downsampled_transform.valid()); const DimensionIndex output_rank = downsampled_transform.output_rank(); const DimensionIndex input_rank = downsampled_transform.input_rank(); assert(output_base_bounds.rank() == output_rank); assert(output_downsample_factors.size() == output_rank); DimensionIndex input_dimension_ref_counts[kMaxRank]; internal::ComputeInputDimensionReferenceCounts( downsampled_transform, span(&input_dimension_ref_counts[0], input_rank)); const bool is_domain_empty = downsampled_transform.domain().box().is_empty(); Dime
#include "tensorstore/driver/downsample/downsample_util.h" #include <stddef.h> #include <stdint.h> #include <limits> #include <random> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/random/bit_gen_ref.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/data_type.h" #include "tensorstore/downsample_method.h" #include "tensorstore/driver/downsample/downsample_array.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/index_transform_testutil.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/internal/data_type_random_generator.h" #include "tensorstore/internal/testing/random_seed.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::DimensionIndex; using ::tensorstore::Dims; using ::tensorstore::DownsampleMethod; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::kInfIndex; using ::tensorstore::MakeArray; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal_downsample::CanDownsampleIndexTransform; using ::tensorstore::internal_downsample::DownsampleArray; using ::tensorstore::internal_downsample::DownsampleBounds; using ::tensorstore::internal_downsample::DownsampleInterval; using ::tensorstore::internal_downsample::DownsampleTransformedArray; using ::tensorstore::internal_downsample::PropagatedIndexTransformDownsampling; using ::tensorstore::internal_downsample::PropagateIndexTransformDownsampling; using ::testing::Optional; TEST(PropagateIndexTransformDownsamplingTest, Rank0) { EXPECT_THAT(PropagateIndexTransformDownsampling( tensorstore::IdentityTransform(0), {}, {}), Optional(PropagatedIndexTransformDownsampling{ tensorstore::IdentityTransform(0), {}})); } TEST(PropagateIndexTransformDownsamplingTest, Rank1SingleInputDimension) { EXPECT_THAT(PropagateIndexTransformDownsampling( tensorstore::IdentityTransform(BoxView({1}, {3})), BoxView<1>({7}), span<const Index>({2})), Optional(PropagatedIndexTransformDownsampling{ tensorstore::IdentityTransform(BoxView({2}, {5})), {2}})); } TEST(PropagateIndexTransformDownsamplingTest, InvalidRank) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_transform, tensorstore::IdentityTransform(32) | Dims(0).Stride(2)); EXPECT_THAT(PropagateIndexTransformDownsampling( downsampled_transform, Box(32), std::vector<Index>(32, 2)), MatchesStatus(absl::StatusCode::kInvalidArgument, "Rank 33 is outside valid range \\[0, 32\\]")); } TEST(PropagateIndexTransformDownsamplingTest, Rank1Constant) { EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(0, 1).output_constant(0, 2).Finalize().value(), BoxView({7}, {2}), span<const Index>({3})), Optional(PropagatedIndexTransformDownsampling{ IndexTransformBuilder(1, 1) .input_origin({1}) .input_exclusive_max({3}) .output_single_input_dimension(0, 6, 1, 0) .Finalize() .value(), {3}})); } TEST(PropagateIndexTransformDownsamplingTest, Rank1SingleInputDimensionPartialStartBlock) { EXPECT_THAT(PropagateIndexTransformDownsampling( tensorstore::IdentityTransform(BoxView({0}, {4})), BoxView({1}, {6}), span<const Index>({2})), Optional(PropagatedIndexTransformDownsampling{ tensorstore::IdentityTransform(BoxView({1}, {6})), {2}})); } TEST(PropagateIndexTransformDownsamplingTest, Rank2WithIgnoredDimension) { EXPECT_THAT( PropagateIndexTransformDownsampling( tensorstore::IdentityTransform(BoxView({1, 2}, {3, 5})), BoxView({7, 10}), span<const Index>({2, 1})), Optional(PropagatedIndexTransformDownsampling{ tensorstore::IdentityTransform(BoxView({2, 2}, {5, 5})), {2, 1}})); } TEST(PropagateIndexTransformDownsamplingTest, Rank1IndexArray) { EXPECT_THAT(PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 0, 1, MakeArray<Index>({4, 7, 3})) .Finalize() .value(), BoxView<1>({50}), span<const Index>({4})), Optional(PropagatedIndexTransformDownsampling{ IndexTransformBuilder(2, 1) .input_shape({3, 4}) .output_index_array(0, 0, 1, MakeArray<Index>({{16, 17, 18, 19}, {28, 29, 30, 31}, {12, 13, 14, 15}}), IndexInterval::Sized(0, 50)) .Finalize() .value(), {1, 4}})); } TEST(PropagateIndexTransformDownsamplingTest, Rank3IndexArrayConstantNoDownsampling) { EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(2, 3) .input_shape({3, 4}) .output_index_array(0, 0, 1, MakeArray<Index>({{4}, {7}, {3}})) .output_single_input_dimension(1, 1) .output_constant(2, 42) .Finalize() .value(), BoxView({30, 50, 55}), span<const Index>({1, 2, 1})), Optional(PropagatedIndexTransformDownsampling{ IndexTransformBuilder(2, 3) .input_shape({3, 8}) .output_index_array(0, 0, 1, MakeArray<Index>({{4}, {7}, {3}})) .output_single_input_dimension(1, 1) .output_constant(2, 42) .Finalize() .value(), {1, 2}})); } TEST(PropagateIndexTransformDownsamplingTest, Rank2IndexArray) { EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(2, 1) .input_shape({2, 3}) .output_index_array(0, 0, 1, MakeArray<Index>({{1, 2, 3}, {4, 5, 6}})) .Finalize() .value(), BoxView<1>({50}), span<const Index>({4})), Optional(PropagatedIndexTransformDownsampling{ IndexTransformBuilder(3, 1) .input_shape({2, 3, 4}) .output_index_array( 0, 0, 1, MakeArray<Index>( {{{4, 5, 6, 7}, {8, 9, 10, 11}, {12, 13, 14, 15}}, {{16, 17, 18, 19}, {20, 21, 22, 23}, {24, 25, 26, 27}}}), IndexInterval::Sized(0, 50)) .Finalize() .value(), {1, 1, 4}})); } TEST(PropagateIndexTransformDownsamplingTest, Rank1SingleInputDimensionStrided) { EXPECT_THAT(PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_shape({3}) .output_single_input_dimension(0, 1, 5, 0) .Finalize() .value(), BoxView<1>({50}), span<const Index>({4})), Optional(PropagatedIndexTransformDownsampling{ IndexTransformBuilder(2, 1) .input_shape({3, 4}) .output_index_array(0, 0, 1, MakeArray<Index>({{4, 5, 6, 7}, {24, 25, 26, 27}, {44, 45, 46, 47}}), IndexInterval::Sized(0, 50)) .Finalize() .value(), {1, 4}})); } TEST(PropagateIndexTransformDownsamplingTest, ErrorRank1ConstantOverflow) { EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(0, 1) .output_constant(0, tensorstore::kMaxFiniteIndex) .Finalize() .value(), BoxView<1>({0}, {kInfIndex}), span<const Index>({1000})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Integer overflow.*")); } TEST(PropagateIndexTransformDownsamplingTest, ErrorRank1ConstantOutOfBounds) { TENSORSTORE_EXPECT_OK(PropagateIndexTransformDownsampling( IndexTransformBuilder(0, 1).output_constant(0, 4).Finalize().value(), BoxView<1>({0}, {15}), span<const Index>({3}))); TENSORSTORE_EXPECT_OK(PropagateIndexTransformDownsampling( IndexTransformBuilder(0, 1).output_constant(0, 4).Finalize().value(), BoxView<1>({0}, {14}), span<const Index>({3}))); TENSORSTORE_EXPECT_OK(PropagateIndexTransformDownsampling( IndexTransformBuilder(0, 1).output_constant(0, 4).Finalize().value(), BoxView<1>({0}, {13}), span<const Index>({3}))); TENSORSTORE_EXPECT_OK(PropagateIndexTransformDownsampling( IndexTransformBuilder(0, 1).output_constant(0, 0).Finalize().value(), BoxView<1>({1}, {13}), span<const Index>({3}))); TENSORSTORE_EXPECT_OK(PropagateIndexTransformDownsampling( IndexTransformBuilder(0, 1).output_constant(0, 0).Finalize().value(), BoxView<1>({2}, {13}), span<const Index>({3}))); EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(0, 1).output_constant(0, 5).Finalize().value(), BoxView<1>({0}, {15}), span<const Index>({3})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Propagated bounds interval .* does not contain .*")); EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(0, 1).output_constant(0, 0).Finalize().value(), BoxView<1>({3}, {15}), span<const Index>({3})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Propagated bounds interval .* does not contain .*")); } TEST(PropagateIndexTransformDownsamplingTest, ErrorSingleInputDimensionStridedNonFiniteDomain) { EXPECT_THAT(PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_origin({0}) .output_single_input_dimension(0, 0, 2, 0) .Finalize() .value(), BoxView<1>({0}, {kInfIndex}), span<const Index>({1000})), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Input domain .* is not finite")); } TEST(PropagateIndexTransformDownsamplingTest, ErrorSingleInputDimensionSize1StridedOverflow) { EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_origin({100}) .input_shape({1}) .output_single_input_dimension( 0, std::numeric_limits<Index>::max(), 2, 0) .Finalize() .value(), BoxView<1>({0}, {kInfIndex}), span<const Index>({1000})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Integer overflow.*")); EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_origin({100}) .input_shape({1}) .output_single_input_dimension( 0, 0, std::numeric_limits<Index>::max(), 0) .Finalize() .value(), BoxView<1>({0}, {kInfIndex}), span<const Index>({1000})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Integer overflow.*")); } TEST(PropagateIndexTransformDownsamplingTest, ErrorSingleInputDimStridedInvalidDownsampleFactor) { EXPECT_THAT(PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_shape({100}) .output_single_input_dimension(0, 0, 2, 0) .Finalize() .value(), BoxView<1>({0}, {1000}), span<const Index>({std::numeric_limits<Index>::max()})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Downsample factor is out of range")); } TEST(PropagateIndexTransformDownsamplingTest, ErrorSingleInputDimStridedOverflowMultiplyingStrideAndDownsampleFactor) { EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_shape({100}) .output_single_input_dimension(0, 0, 100, 0) .Finalize() .value(), BoxView<1>({0}, {1000}), span<const Index>({kInfIndex})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Integer overflow.*")); } TEST(PropagateIndexTransformDownsamplingTest, ErrorSingleInputDimStridedOverflowMultiplyingOffsetAndDownsampleFactor) { EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_shape({100}) .output_single_input_dimension( 0, std::numeric_limits<Index>::max(), 2, 0) .Finalize() .value(), BoxView<1>({0}, {1000}), span<const Index>({0xfffffffffffff})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Integer overflow.*")); } TEST(PropagateIndexTransformDownsamplingTest, ErrorSingleInputDimStridedOutOfRange) { EXPECT_THAT(PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_shape({100}) .output_single_input_dimension(0, 0, 2, 0) .Finalize() .value(), BoxView<1>({0}, {199}), span<const Index>({2})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Output bounds interval .* does not contain " "output range interval .*")); } TEST(PropagateIndexTransformDownsamplingTest, ErrorIndexArrayInvalidDownsampleFactor) { EXPECT_THAT(PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 0, 1, MakeArray<Index>({3, 4, 5})) .Finalize() .value(), BoxView<1>({0}, {100}), span<const Index>({std::numeric_limits<Index>::max()})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Downsample factor is out of range")); } TEST(PropagateIndexTransformDownsamplingTest, ErrorIndexArrayOverflowMultiplyingStrideAndDownsampleFactor) { EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 0, 100, MakeArray<Index>({3, 4, 5})) .Finalize() .value(), BoxView<1>({0}, {100}), span<const Index>({kInfIndex})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Integer overflow.*")); } TEST(PropagateIndexTransformDownsamplingTest, ErrorIndexArrayOverflowMultiplyingOffsetAndDownsampleFactor) { EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 100, 1, MakeArray<Index>({3, 4, 5})) .Finalize() .value(), BoxView<1>({0}, {100}), span<const Index>({kInfIndex})), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Integer overflow.*")); } TEST(PropagateIndexTransformDownsamplingTest, ErrorIndexArrayOutOfRange) { EXPECT_THAT( PropagateIndexTransformDownsampling( IndexTransformBuilder(1, 1) .input_shape({3}) .output_index_array(0, 0, 1, MakeArray<Index>({3, 4, 5})) .Finalize() .value(), BoxView<1>({0}, {9}), span<const Index>({2})), MatchesStatus( absl::StatusCode::kOutOfRange, "Propagating downsampling factor 2 through output dimension 0: " "Index 5 is outside valid range \\[0, 5\\)")); } TEST(CanDownsampleIndexTransformTest, Rank0) { EXPECT_TRUE( CanDownsampleIndexTransform(tensorstore::IdentityTransform(0), {}, {})); } TEST(CanDownsampleIndexTransformTest, Constant) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, tensorstore::IdentityTransform(1) | Dims(0).IndexSlice(42)); EXPECT_TRUE(CanDownsampleIndexTransform(transform, BoxView<1>({42}, {1}), span<const Index>({3}))); EXPECT_FALSE(CanDownsampleIndexTransform(transform, BoxView<1>({42}, {2}), span<const Index>({3}))); EXPECT_FALSE(CanDownsampleIndexTransform(transform, BoxView<1>({41}, {3}), span<const Index>({3}))); EXPECT_TRUE(CanDownsampleIndexTransform(transform, BoxView<1>({41}, {2}), span<const Index>({3}))); EXPECT_FALSE(CanDownsampleIndexTransform(transform, BoxView<1>({100}), span<const Index>({3}))); EXPECT_TRUE(CanDownsampleIndexTransform(transform, BoxView<1>({100}), span<const Index>({1}))); } TEST(CanDownsampleIndexTransformTest, SingleInputDimension) { EXPECT_TRUE(CanDownsampleIndexTransform( (tensorstore::IdentityTransform(1) | Dims(0).SizedInterval(9, 3)).value(), BoxView<1>({9}, {10}), span<const Index>({3}))); EXPECT_TRUE(CanDownsampleIndexTransform( (tensorstore::IdentityTransform(1) | Dims(0).SizedInterval(18, 1)) .value(), BoxView<1>({9}, {10}), span<const Index>({3}))); EXPECT_FALSE(CanDownsampleIndexTransform( (tensorstore::IdentityTransform(1) | Dims(0).SizedInterval(9, 2)).value(), BoxView<1>({9}, {10}), span<const Index>({3}))); EXPECT_FALSE(CanDownsampleIndexTransform( (tensorstore::IdentityTransform(1) | Dims(0).SizedInterval(9, 3, -1)) .value(), BoxView<1>({9}, {10}), span<const Index>({3}))); EXPECT_FALSE(CanDownsampleIndexTransform( (tensorstore::IdentityTransform(1) | Dims(0).SizedInterval(10, 2)) .value(), BoxView<1>({9}, {10}), span<const Index>({3}))); EXPECT_FALSE(CanDownsampleIndexTransform( (tensorstore::IdentityTransform(1) | Dims(0).SizedInterval(9, 3, 2)) .value(), BoxView<1>({9}, {10}), span<const Index>({3}))); } TEST(CanDownsampleIndexTransformTest, IndexArray) { EXPECT_FALSE(CanDownsampleIndexTransform( (tensorstore::IdentityTransform(1) | Dims(0).IndexArraySlice(MakeArray<Index>({2, 5, 3}))) .value(), BoxView<1>({0}, {100}), span<const Index>({2}))); } void TestPropagateIndexTransformDownsamplingInvariance(DimensionIndex rank) { std::minstd_rand gen{tensorstore::internal_testing::GetRandomSeedForTest( "TENSORSTORE_DOWNSAMPLE_PROPAGATE_INVARIANCE_SEED")}; tensorstore::internal::MakeRandomBoxParameters box_p; box_p.min_rank = box_p.max_rank = rank; auto base_bounds = tensorstore::internal::MakeRandomBox(gen, box_p); SCOPED_TRACE(tensorstore::StrCat("base_bounds=", base_bounds)); auto base_data = tensorstore::internal::MakeRandomArray( gen, base_bounds, tensorstore::dtype_v<uint8_t>); SCOPED_TRACE(tensorstore::StrCat("base_data=", base_data)); std::vector<Index> downsample_factors(rank); for (DimensionIndex i = 0; i < rank; ++i) { downsample_factors[i] = absl::Uniform<Index>(absl::IntervalClosedClosed, gen, 1, 2); } SCOPED_TRACE(tensorstore::StrCat("downsample_factors=", tensorstore::span(downsample_factors))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsampled_data, DownsampleArray(base_data, downsample_factors, DownsampleMethod::kMean)); Box<> downsampled_bounds(rank); DownsampleBounds(base_bounds, downsampled_bounds, downsample_factors, DownsampleMethod::kMean); SCOPED_TRACE(tensorstore::StrCat("downsampled_bounds=", downsampled_bounds)); auto downsampled_transform = tensorstore::internal::MakeRandomIndexTransform( gen, downsampled_bounds, rank * 2); SCOPED_TRACE( tensorstore::StrCat("downsampled_transform=", downsampled_transform)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto propagated, PropagateIndexTransformDownsampling(downsampled_transform, base_bounds, downsample_factors)); SCOPED_TRACE(tensorstore::StrCat("propagated=", propagated)); SCOPED_TRACE(tensorstore::StrCat("downsampled_data=", downsampled_data)); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto downsample_then_transform, downsampled_data | downsampled_transform | tensorstore::Materialize()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto transformed_base, base_data | propagated.transform); tensorstore::SharedOffsetArray<const void> transform_then_downsample; TENSORSTORE_ASSERT_OK_AND_ASSIGN( transform_then_downsample, DownsampleTransformedArray(transformed_base, propagated.input_downsample_factors, DownsampleMethod::kMean)); if (downsampled_transform.input_rank() < propagated.transform.input_rank()) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( transform_then_downsample, transform_then_downsample | tensorstore::DynamicDims( {tensorstore::DimRangeSpec{downsampled_transform.input_rank()}}) .IndexSlice(0) | tensorstore::Materialize()); } EXPECT_EQ(transform_then_downsample, downsample_then_transform); } constexpr size_t kNumRandomTests = 50; TEST(PropagateIndexTransformDownsamplingTest, InvarianceRank0) { for (size_t i = 0; i < kNumRandomTests; ++i) { TestPropagateIndexTransformDownsamplingInvariance(0); } } TEST(PropagateIndexTransformDownsamplingTest, InvarianceRank1) { for (size_t i = 0; i < kNumRandomTests; ++i) { TestPropagateIndexTransformDownsamplingInvariance(1); } } TEST(PropagateIndexTransformDownsamplingTest, InvarianceRank2) { for (size_t i = 0; i < kNumRandomTests; ++i) { TestPropagateIndexTransformDownsamplingInvariance(2); } } TEST(PropagateIndexTransformDownsamplingTest, InvarianceRank3) { for (size_t i = 0; i < kNumRandomTests; ++i) { TestPropagateIndexTransformDownsamplingInvariance(3); } } TEST(DownsampleIntervalTest, UnboundedLower) { EXPECT_EQ(IndexInterval::Closed(-kInfIndex, 10), DownsampleInterval(IndexInterval::UncheckedClosed(-kInfIndex, 30), 3, DownsampleMethod::kMean)); } TEST(DownsampleIntervalTest, UnboundedUpper) { EXPECT_EQ(IndexInterval::Closed(-10, kInfIndex), DownsampleInterval(IndexInterval::UncheckedClosed(-30, kInfIndex), 3, DownsampleMethod::kMean)); } }
579
cpp
google/tensorstore
grid_occupancy_map
tensorstore/driver/downsample/grid_occupancy_map.cc
tensorstore/driver/downsample/grid_occupancy_map_test.cc
#ifndef TENSORSTORE_DRIVER_DOWNSAMPLE_GRID_OCCUPANCY_MAP_H_ #define TENSORSTORE_DRIVER_DOWNSAMPLE_GRID_OCCUPANCY_MAP_H_ #include <vector> #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_downsample { class GridOccupancyTracker { public: std::vector<Index> occupied_chunks; void MarkOccupied(BoxView<> box) { occupied_chunks.insert(occupied_chunks.end(), box.origin().begin(), box.origin().end()); occupied_chunks.insert(occupied_chunks.end(), box.shape().begin(), box.shape().end()); } }; class GridOccupancyMap { public: explicit GridOccupancyMap(GridOccupancyTracker&& tracker, BoxView<> domain); DimensionIndex rank() const { return occupied_chunk_mask.rank(); } bool GetGridCellDomain(span<const Index> grid_cell, MutableBoxView<> grid_cell_domain) const; void InitializeCellIterator(span<Index> grid_cell) const; bool AdvanceCellIterator(span<Index> grid_cell) const; std::vector<std::vector<Index>> partition_points; SharedArray<bool> occupied_chunk_mask; }; } } #endif #include "tensorstore/driver/downsample/grid_occupancy_map.h" #include <vector> #include "absl/container/flat_hash_map.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_downsample { GridOccupancyMap::GridOccupancyMap(GridOccupancyTracker&& tracker, BoxView<> domain) : partition_points(domain.rank()) { const DimensionIndex rank = domain.rank(); span<Index> occupied_chunks = tracker.occupied_chunks; { absl::flat_hash_map<Index, Index> partition_map; for (DimensionIndex dim = 0; dim < rank; ++dim) { partition_map.clear(); IndexInterval bounds = domain[dim]; partition_map.emplace(bounds.inclusive_min(), 0); partition_map.emplace(bounds.exclusive_max(), 0); for (ptrdiff_t i = dim; i < occupied_chunks.size(); i += 2 * rank) { Index begin = occupied_chunks[i]; Index end = begin + occupied_chunks[i + rank]; partition_map.emplace(begin, 0); partition_map.emplace(end, 0); } auto& dim_partition_points = partition_points[dim]; dim_partition_points.reserve(partition_map.size()); for (const auto& p : partition_map) { dim_partition_points.push_back(p.first); } std::sort(dim_partition_points.begin(), dim_partition_points.end()); for (size_t i = 0, size = dim_partition_points.size(); i < size; ++i) { partition_map.at(dim_partition_points[i]) = i; } for (ptrdiff_t i = dim; i < occupied_chunks.size(); i += 2 * rank) { Index& begin = occupied_chunks[i]; Index& end = occupied_chunks[i + rank]; end = partition_map.at(begin + end); begin = partition_map.at(begin); } } } Index grid_cell[kMaxRank]; span<Index> grid_cell_span(&grid_cell[0], rank); { for (DimensionIndex dim = 0; dim < rank; ++dim) { grid_cell[dim] = partition_points[dim].size() - 1; } occupied_chunk_mask = AllocateArray<bool>(grid_cell_span, c_order, value_init); } for (ptrdiff_t i = 0; i < occupied_chunks.size(); i += 2 * rank) { std::copy_n(&occupied_chunks[i], rank, &grid_cell[0]); do { occupied_chunk_mask(grid_cell_span) = true; } while (internal::AdvanceIndices(rank, &grid_cell[0], &occupied_chunks[i], &occupied_chunks[i + rank])); } } bool GridOccupancyMap::GetGridCellDomain( span<const Index> grid_cell, MutableBoxView<> grid_cell_domain) const { assert(grid_cell.size() == grid_cell_domain.rank()); assert(grid_cell.size() == rank()); if (occupied_chunk_mask(grid_cell)) return false; for (DimensionIndex dim = 0; dim < grid_cell.size(); ++dim) { const Index partition_index = grid_cell[dim]; grid_cell_domain[dim] = IndexInterval::UncheckedHalfOpen( partition_points[dim][partition_index], partition_points[dim][partition_index + 1]); } return true; } void GridOccupancyMap::InitializeCellIterator(span<Index> grid_cell) const { std::fill(grid_cell.begin(), grid_cell.end(), 0); } bool GridOccupancyMap::AdvanceCellIterator(span<Index> grid_cell) const { assert(grid_cell.size() == occupied_chunk_mask.rank()); return internal::AdvanceIndices(grid_cell.size(), grid_cell.data(), occupied_chunk_mask.shape().data()); } } }
#include "tensorstore/driver/downsample/grid_occupancy_map.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/index.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::Index; using ::tensorstore::MakeArray; using ::tensorstore::internal_downsample::GridOccupancyMap; using ::tensorstore::internal_downsample::GridOccupancyTracker; std::vector<Box<>> GetUnoccupiedBoxes(const GridOccupancyMap& map) { std::vector<Box<>> boxes; std::vector<Index> grid_cell(map.rank()); map.InitializeCellIterator(grid_cell); Box<> box(map.rank()); do { if (map.GetGridCellDomain(grid_cell, box)) { boxes.push_back(box); } } while (map.AdvanceCellIterator(grid_cell)); return boxes; } TEST(GridOccupancyMapTest, Rank1) { GridOccupancyTracker tracker; tracker.MarkOccupied(BoxView<1>({1}, {3})); tracker.MarkOccupied(BoxView<1>({5}, {4})); GridOccupancyMap map(std::move(tracker), BoxView<1>({-1}, {11})); EXPECT_THAT( map.partition_points, ::testing::ElementsAre(::testing::ElementsAre(-1, 1, 4, 5, 9, 10))); EXPECT_EQ(map.occupied_chunk_mask, MakeArray<bool>({0, 1, 0, 1, 0})); EXPECT_THAT(GetUnoccupiedBoxes(map), ::testing::ElementsAre(Box<>({-1}, {2}), Box<>({4}, {1}), Box<>({9}, {1}))); } TEST(GridOccupancyMapTest, Rank2) { GridOccupancyTracker tracker; tracker.MarkOccupied(BoxView<2>({0, 0}, {3, 2})); tracker.MarkOccupied(BoxView<2>({3, 3}, {1, 3})); tracker.MarkOccupied(BoxView<2>({0, 5}, {2, 3})); GridOccupancyMap map(std::move(tracker), BoxView<2>({4, 10})); EXPECT_THAT( map.partition_points, ::testing::ElementsAre(::testing::ElementsAre(0, 2, 3, 4), ::testing::ElementsAre(0, 2, 3, 5, 6, 8, 10))); EXPECT_EQ(map.occupied_chunk_mask, MakeArray<bool>({ {1, 0, 0, 1, 1, 0}, {1, 0, 0, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, })); EXPECT_THAT( GetUnoccupiedBoxes(map), ::testing::ElementsAre( Box<>({0, 2}, {2, 1}), Box<>({0, 3}, {2, 2}), Box<>({0, 8}, {2, 2}), Box<>({2, 2}, {1, 1}), Box<>({2, 3}, {1, 2}), Box<>({2, 5}, {1, 1}), Box<>({2, 6}, {1, 2}), Box<>({2, 8}, {1, 2}), Box<>({3, 0}, {1, 2}), Box<>({3, 2}, {1, 1}), Box<>({3, 6}, {1, 2}), Box<>({3, 8}, {1, 2}))); } }
580
cpp
google/tensorstore
downsample_array
tensorstore/driver/downsample/downsample_array.cc
tensorstore/driver/downsample/downsample_array_test.cc
#ifndef TENSORSTORE_DRIVER_DOWNSAMPLE_DOWNSAMPLE_ARRAY_H_ #define TENSORSTORE_DRIVER_DOWNSAMPLE_DOWNSAMPLE_ARRAY_H_ #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/downsample_method.h" #include "tensorstore/index.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_downsample { absl::Status DownsampleArray(OffsetArrayView<const void> source, OffsetArrayView<void> target, span<const Index> downsample_factors, DownsampleMethod method); Result<SharedOffsetArray<void>> DownsampleArray( OffsetArrayView<const void> source, span<const Index> downsample_factors, DownsampleMethod method); absl::Status DownsampleTransformedArray(TransformedArrayView<const void> source, TransformedArrayView<void> target, span<const Index> downsample_factors, DownsampleMethod method); Result<SharedOffsetArray<void>> DownsampleTransformedArray( TransformedArrayView<const void> source, span<const Index> downsample_factors, DownsampleMethod method); } } #endif #include "tensorstore/driver/downsample/downsample_array.h" #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/downsample_method.h" #include "tensorstore/driver/downsample/downsample_nditerable.h" #include "tensorstore/driver/downsample/downsample_util.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/nditerable.h" #include "tensorstore/internal/nditerable_array.h" #include "tensorstore/internal/nditerable_copy.h" #include "tensorstore/internal/nditerable_transformed_array.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_downsample { namespace { absl::Status ValidateDownsampleDomain(BoxView<> base_domain, BoxView<> downsampled_domain, span<const Index> downsample_factors, DownsampleMethod method) { const DimensionIndex rank = base_domain.rank(); if (rank != downsampled_domain.rank()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot downsample domain ", base_domain, " to domain ", downsampled_domain, " with different rank")); } if (rank != downsample_factors.size()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot downsample domain ", base_domain, " with downsample factors ", downsample_factors, " of different rank")); } for (DimensionIndex i = 0; i < rank; ++i) { const auto expected_interval = DownsampleInterval(base_domain[i], downsample_factors[i], method); if (expected_interval != downsampled_domain[i]) { return absl::InvalidArgumentError(tensorstore::StrCat( "Cannot downsample array with domain ", base_domain, " by factors ", downsample_factors, " with method ", method, " to array with domain ", downsampled_domain, ": expected target dimension ", i, " to have domain ", expected_interval)); } } return absl::OkStatus(); } } absl::Status DownsampleArray(OffsetArrayView<const void> source, OffsetArrayView<void> target, span<const Index> downsample_factors, DownsampleMethod method) { if (source.dtype() != target.dtype()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Source data type (", source.dtype(), ") does not match target data type (", target.dtype(), ")")); } TENSORSTORE_RETURN_IF_ERROR(ValidateDownsampleMethod(source.dtype(), method)); TENSORSTORE_RETURN_IF_ERROR(ValidateDownsampleDomain( source.domain(), target.domain(), downsample_factors, method)); if (method == DownsampleMethod::kStride) { return CopyTransformedArray( source | tensorstore::AllDims().Stride(downsample_factors), target); } internal::DefaultNDIterableArena arena; auto base_iterable = GetArrayNDIterable(UnownedToShared(source), arena); auto target_iterable = GetArrayNDIterable(UnownedToShared(target), arena); auto downsampled_iterable = DownsampleNDIterable( std::move(base_iterable), source.domain(), downsample_factors, method, downsample_factors.size(), arena); internal::NDIterableCopier copier(*downsampled_iterable, *target_iterable, target.shape(), skip_repeated_elements, arena); return copier.Copy(); } Result<SharedOffsetArray<void>> DownsampleArray( OffsetArrayView<const void> source, span<const Index> downsample_factors, DownsampleMethod method) { SharedOffsetArray<void> target; target.layout().set_rank(source.rank()); DownsampleBounds(source.domain(), MutableBoxView<>(target.origin(), target.shape()), downsample_factors, method); target.element_pointer() = AllocateArrayElementsLike<void>( StridedLayoutView<dynamic_rank, offset_origin>( target.rank(), target.origin().data(), target.shape().data(), source.byte_strides().data()), target.byte_strides().data(), skip_repeated_elements, default_init, source.dtype()); TENSORSTORE_RETURN_IF_ERROR( DownsampleArray(source, target, downsample_factors, method)); return target; } absl::Status DownsampleTransformedArray(TransformedArrayView<const void> source, TransformedArrayView<void> target, span<const Index> downsample_factors, DownsampleMethod method) { if (source.dtype() != target.dtype()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Source data type (", source.dtype(), ") does not match target data type (", target.dtype(), ")")); } TENSORSTORE_RETURN_IF_ERROR(ValidateDownsampleMethod(source.dtype(), method)); TENSORSTORE_RETURN_IF_ERROR( ValidateDownsampleDomain(source.domain().box(), target.domain().box(), downsample_factors, method)); if (method == DownsampleMethod::kStride) { return CopyTransformedArray( std::move(source) | tensorstore::AllDims().Stride(downsample_factors), target); } internal::DefaultNDIterableArena arena; TENSORSTORE_ASSIGN_OR_RETURN( auto base_iterable, GetTransformedArrayNDIterable(UnownedToShared(source), arena)); TENSORSTORE_ASSIGN_OR_RETURN( auto target_iterable, GetTransformedArrayNDIterable(UnownedToShared(target), arena)); auto downsampled_iterable = DownsampleNDIterable( std::move(base_iterable), source.domain().box(), downsample_factors, method, downsample_factors.size(), arena); internal::NDIterableCopier copier(*downsampled_iterable, *target_iterable, target.shape(), skip_repeated_elements, arena); return copier.Copy(); } Result<SharedOffsetArray<void>> DownsampleTransformedArray( TransformedArrayView<const void> source, span<const Index> downsample_factors, DownsampleMethod method) { SharedOffsetArray<void> target; target.layout().set_rank(source.rank()); DownsampleBounds(source.domain().box(), MutableBoxView<>(target.origin(), target.shape()), downsample_factors, method); target = AllocateArray(target.domain(), c_order, default_init, source.dtype()); TENSORSTORE_RETURN_IF_ERROR(DownsampleTransformedArray( source, TransformedArray(target), downsample_factors, method)); return target; } } }
#include "tensorstore/driver/downsample/downsample_array.h" #include <stdint.h> #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json.hpp> #include "tensorstore/array.h" #include "tensorstore/array_testutil.h" #include "tensorstore/data_type.h" #include "tensorstore/downsample_method.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/util/span.h" namespace { using ::tensorstore::Dims; using ::tensorstore::DownsampleMethod; using ::tensorstore::Index; using ::tensorstore::kImplicit; using ::tensorstore::MakeArray; using ::tensorstore::MakeOffsetArray; using ::tensorstore::span; using ::tensorstore::internal_downsample::DownsampleArray; using ::tensorstore::internal_downsample::DownsampleTransformedArray; using ::testing::Optional; TEST(DownsampleArrayTest, MeanRank0) { EXPECT_THAT(DownsampleArray(tensorstore::MakeScalarArray<float>(42.0), span<const Index>(), DownsampleMethod::kMean), Optional(tensorstore::MakeScalarArray<float>(42.0))); } TEST(DownsampleArrayTest, MeanRank1ExactMultiple) { EXPECT_THAT(DownsampleArray(MakeArray<float>({1, 2, 5, 7}), span<const Index>({2}), DownsampleMethod::kMean), Optional(MakeArray<float>({1.5, 6}))); EXPECT_THAT(DownsampleArray(MakeArray<float>({1, 2, 3, 5, 7, 12}), span<const Index>({3}), DownsampleMethod::kMean), Optional(MakeArray<float>({2, 8}))); } TEST(DownsampleArrayTest, MeanRoundingUint8) { EXPECT_THAT(DownsampleArray(MakeArray<uint8_t>({253, 254, 254}), span<const Index>({3}), DownsampleMethod::kMean), Optional(MakeArray<uint8_t>({254}))); } TEST(DownsampleArrayTest, MeanRoundingInt16) { EXPECT_THAT(DownsampleArray(MakeArray<int16_t>({-253, -254, -254}), span<const Index>({3}), DownsampleMethod::kMean), Optional(MakeArray<int16_t>({-254}))); } TEST(DownsampleArrayTest, MeanRoundingToEvenInt16) { EXPECT_THAT(DownsampleArray(MakeArray<int16_t>({3, 3, 2, 2}), span<const Index>({4}), DownsampleMethod::kMean), Optional(MakeArray<int16_t>({2}))); EXPECT_THAT(DownsampleArray(MakeArray<int16_t>({3, 3, 4, 4}), span<const Index>({4}), DownsampleMethod::kMean), Optional(MakeArray<int16_t>({4}))); EXPECT_THAT(DownsampleArray(MakeArray<int16_t>({-3, -3, -2, -2}), span<const Index>({4}), DownsampleMethod::kMean), Optional(MakeArray<int16_t>({-2}))); EXPECT_THAT(DownsampleArray(MakeArray<int16_t>({-3, -3, -4, -4}), span<const Index>({4}), DownsampleMethod::kMean), Optional(MakeArray<int16_t>({-4}))); } TEST(DownsampleArrayTest, MeanRoundingUint64) { EXPECT_THAT(DownsampleArray(MakeArray<uint64_t>({253, 254, 254}), span<const Index>({3}), DownsampleMethod::kMean), Optional(MakeArray<uint64_t>({254}))); } TEST(DownsampleArrayTest, MeanRoundingBool) { EXPECT_THAT(DownsampleArray(MakeArray<bool>({0, 0, 1}), span<const Index>({3}), DownsampleMethod::kMean), Optional(MakeArray<bool>({0}))); EXPECT_THAT(DownsampleArray(MakeArray<bool>({0, 1, 1}), span<const Index>({3}), DownsampleMethod::kMean), Optional(MakeArray<bool>({1}))); EXPECT_THAT(DownsampleArray(MakeArray<bool>({0, 1, 1, 0}), span<const Index>({4}), DownsampleMethod::kMean), Optional(MakeArray<bool>({0}))); } TEST(DownsampleArrayTest, MeanRank1Offset) { EXPECT_THAT(DownsampleArray(MakeOffsetArray<float>({1}, {1, 2, 5, 9}), span<const Index>({2}), DownsampleMethod::kMean), Optional(MakeArray<float>({1, 3.5, 9}))); } TEST(DownsampleArrayTest, MeanRank1SingleDownsampledElement) { EXPECT_THAT(DownsampleArray(MakeArray<float>({1, 2}), span<const Index>({2}), DownsampleMethod::kMean), Optional(MakeArray<float>({1.5}))); } TEST(DownsampleArrayTest, MeanRank1NotExactMultiple) { EXPECT_THAT(DownsampleArray(MakeArray<float>({1, 2, 5, 7, 9}), span<const Index>({2}), DownsampleMethod::kMean), Optional(MakeArray<float>({1.5, 6, 9}))); EXPECT_THAT(DownsampleArray(MakeArray<float>({1, 2, 6, 7, 9}), span<const Index>({3}), DownsampleMethod::kMean), Optional(MakeArray<float>({3, 8}))); } TEST(DownsampleArrayTest, MeanRank1NoDownsampling) { EXPECT_THAT(DownsampleArray(MakeArray<float>({1, 2, 5, 7}), span<const Index>({1}), DownsampleMethod::kMean), Optional(MakeArray<float>({1, 2, 5, 7}))); } TEST(DownsampleArrayTest, MeanRank2SingleDownsampleDim1) { EXPECT_THAT( DownsampleArray(MakeArray<float>({ {1, 2, 5, 7}, {5, 6, 15, 25}, }), span<const Index>({1, 2}), DownsampleMethod::kMean), Optional(MakeArray<float>({{1.5, 6}, {5.5, 20}}))); } TEST(DownsampleArrayTest, MeanRank2SingleDownsampleDim0) { EXPECT_THAT( DownsampleArray(MakeArray<float>({ {1, 2, 5, 7}, {5, 6, 15, 25}, }), span<const Index>({2, 1}), DownsampleMethod::kMean), Optional(MakeArray<float>({{3, 4, 10, 16}}))); } TEST(DownsampleArrayTest, MeanRank2TwoDownsampleDims) { EXPECT_THAT( DownsampleArray(MakeArray<float>({ {1, 2, 5, 7}, {5, 6, 15, 25}, }), span<const Index>({2, 2}), DownsampleMethod::kMean), Optional(MakeArray<float>({{3.5, 13.0}}))); } TEST(DownsampleArrayTest, MeanRank2NotExactMultiple) { EXPECT_THAT( DownsampleArray(MakeArray<float>({ {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}, }), span<const Index>({2, 2}), DownsampleMethod::kMean), Optional(MakeArray<float>({ {4, 6, 7.5}, {11.5, 13.5, 15}, }))); } TEST(DownsampleArrayTest, MeanRank2PartialStartBlock) { EXPECT_THAT( DownsampleArray(MakeOffsetArray<float>({3, 8}, {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}}), span<const Index>({2, 3}), DownsampleMethod::kMean), Optional(MakeOffsetArray<float>({1, 2}, {{1, 3, 5}, {8.5, 10.5, 12.5}}))); } TEST(DownsampleArrayTest, MedianRank2PartialStartBlock) { EXPECT_THAT( DownsampleArray(MakeOffsetArray<float>({3, 8}, {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}}), span<const Index>({2, 3}), DownsampleMethod::kMedian), Optional(MakeOffsetArray<float>({1, 2}, {{1, 3, 5}, {6, 9, 10}}))); } TEST(DownsampleArrayTest, ModeRank2PartialStartBlock) { EXPECT_THAT( DownsampleArray(MakeOffsetArray<float>({3, 8}, { {1, 2, 3, 3, 5}, {6, 4, 5, 5, 10}, {11, 6, 6, 6, 15}, }), span<const Index>({2, 3}), DownsampleMethod::kMode), Optional(MakeOffsetArray<float>({1, 2}, {{1, 3, 5}, {6, 6, 10}}))); } TEST(DownsampleArrayTest, StrideRank2PartialEndBlock) { EXPECT_THAT( DownsampleArray(MakeOffsetArray<float>({2, 6}, { {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}, }), span<const Index>({2, 3}), DownsampleMethod::kStride), Optional(MakeOffsetArray<float>({1, 2}, { {1, 4}, {11, 14}, }))); } TEST(DownsampleArrayTest, StrideRank2PartialStartBlock) { EXPECT_THAT( DownsampleArray(MakeOffsetArray<float>({3, 8}, { {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}, }), span<const Index>({2, 3}), DownsampleMethod::kStride), Optional(MakeOffsetArray<float>({2, 3}, { {7, 10}, }))); } TEST(DownsampleArrayTest, MeanRank3ThreeDownsampleDims) { EXPECT_THAT( DownsampleArray(MakeArray<float>({{ {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, }, { {13, 14, 15, 16}, {17, 18, 19, 20}, {21, 22, 23, 24}, }, { {25, 26, 27, 28}, {29, 30, 31, 32}, {33, 34, 35, 36}, }}), span<const Index>({2, 2, 2}), DownsampleMethod::kMean), Optional(MakeArray<float>({{ {9.5, 11.5}, {15.5, 17.5}, }, { {27.5, 29.5}, {33.5, 35.5}, }}))); } TEST(DownsampleArrayTest, MeanRank1ReversedExactMultiple) { EXPECT_THAT(DownsampleTransformedArray( (MakeArray<float>({1, 2, 3, 4}) | Dims(0).TranslateSizedInterval(kImplicit, kImplicit, -1)) .value(), span<const Index>({2}), DownsampleMethod::kMean), Optional(MakeArray<float>({3.5, 1.5}))); } TEST(DownsampleArrayTest, MeanRank1ReversedNotExactMultiple) { EXPECT_THAT(DownsampleTransformedArray( (MakeArray<float>({1, 2, 3, 4, 5}) | Dims(0).TranslateSizedInterval(kImplicit, kImplicit, -1)) .value(), span<const Index>({2}), DownsampleMethod::kMean), Optional(MakeArray<float>({4.5, 2.5, 1}))); } TEST(DownsampleArrayTest, MeanRank2ReversedNotExactMultiple) { EXPECT_THAT(DownsampleTransformedArray( (MakeArray<float>({ {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}, }) | Dims(0, 1).TranslateSizedInterval(kImplicit, kImplicit, -1)) .value(), span<const Index>({2, 2}), DownsampleMethod::kMean), Optional(MakeArray<float>({ {12, 10, 8.5}, {4.5, 2.5, 1}, }))); } TEST(DownsampleArrayTest, MinRank1ExactMultiple) { EXPECT_THAT(DownsampleArray(MakeArray<float>({2, 3, 5, 1}), span<const Index>({2}), DownsampleMethod::kMin), Optional(MakeArray<float>({2, 1}))); EXPECT_THAT(DownsampleArray(MakeArray<int>({2, 3, 8, 7, 1, 5}), span<const Index>({3}), DownsampleMethod::kMin), Optional(MakeArray<int>({2, 1}))); } TEST(DownsampleArrayTest, MaxRank1ExactMultiple) { EXPECT_THAT(DownsampleArray(MakeArray<float>({2, 3, 5, 1}), span<const Index>({2}), DownsampleMethod::kMax), Optional(MakeArray<float>({3, 5}))); EXPECT_THAT(DownsampleArray(MakeArray<int>({2, 3, 8, 7, 1, 5}), span<const Index>({3}), DownsampleMethod::kMax), Optional(MakeArray<int>({8, 7}))); } TEST(DownsampleArrayTest, MedianRank1ExactMultiple) { EXPECT_THAT( DownsampleArray(MakeArray<float>({100, 3, 1, 2, 99, 98, 97, 5}), span<const Index>({4}), DownsampleMethod::kMedian), Optional(MakeArray<float>({2, 97}))); } TEST(DownsampleArrayTest, MedianRank1Partial) { EXPECT_THAT( DownsampleArray(MakeArray<float>({100, 3, 1, 2, 99, 97, 98}), span<const Index>({4}), DownsampleMethod::kMedian), Optional(MakeArray<float>({2, 98}))); } TEST(DownsampleArrayTest, ModeRank1ExactMultiple) { EXPECT_THAT(DownsampleArray(MakeArray<float>({100, 99, 99, 99, 3, 3, 2, 2}), span<const Index>({4}), DownsampleMethod::kMode), Optional(MakeArray<float>({99, 2}))); } TEST(DownsampleArrayTest, ModeRank1Partial) { EXPECT_THAT(DownsampleArray(MakeArray<float>({100, 99, 99, 99, 3, 3, 2}), span<const Index>({4}), DownsampleMethod::kMode), Optional(MakeArray<float>({99, 3}))); } TEST(DownsampleArrayTest, ModeBool) { EXPECT_THAT(DownsampleArray(MakeArray<bool>({0, 0, 1, 1}), span<const Index>({4}), DownsampleMethod::kMode), Optional(MakeArray<bool>({0}))); EXPECT_THAT(DownsampleArray(MakeArray<bool>({0, 1, 1, 1}), span<const Index>({4}), DownsampleMethod::kMode), Optional(MakeArray<bool>({1}))); EXPECT_THAT(DownsampleArray(MakeArray<bool>({0, 0, 1, 1, 1}), span<const Index>({5}), DownsampleMethod::kMode), Optional(MakeArray<bool>({1}))); } TEST(DownsampleArrayTest, MeanBool) { EXPECT_THAT(DownsampleArray(MakeArray<bool>({0, 0, 1, 1}), span<const Index>({4}), DownsampleMethod::kMean), Optional(MakeArray<bool>({0}))); EXPECT_THAT(DownsampleArray(MakeArray<bool>({0, 1, 1, 1}), span<const Index>({4}), DownsampleMethod::kMean), Optional(MakeArray<bool>({1}))); EXPECT_THAT(DownsampleArray(MakeArray<bool>({0, 0, 1, 1, 1}), span<const Index>({5}), DownsampleMethod::kMean), Optional(MakeArray<bool>({1}))); } TEST(DownsampleArrayTest, MedianBool) { EXPECT_THAT( DownsampleArray(MakeArray<bool>({0, 0, 1, 1}), span<const Index>({4}), DownsampleMethod::kMedian), Optional(MakeArray<bool>({0}))); EXPECT_THAT( DownsampleArray(MakeArray<bool>({0, 1, 1, 1}), span<const Index>({4}), DownsampleMethod::kMedian), Optional(MakeArray<bool>({1}))); EXPECT_THAT( DownsampleArray(MakeArray<bool>({0, 0, 1, 1, 1}), span<const Index>({5}), DownsampleMethod::kMedian), Optional(MakeArray<bool>({1}))); } TEST(DownsampleArrayTest, ModeJson) { using ::tensorstore::dtypes::json_t; EXPECT_THAT(DownsampleArray(MakeArray<json_t>({"a", "a", 3.0, 3, 3u}), span<const Index>({5}), DownsampleMethod::kMode), Optional(MakeArray<::nlohmann::json>({json_t(3)}))); } TEST(DownsampleArrayTest, MultipleBlocks) { auto source_array = tensorstore::AllocateArray<uint8_t>({128, 128}); auto expected_downsampled = tensorstore::AllocateArray<uint8_t>({64, 64}); for (int i = 0; i < 128; ++i) { for (int j = 0; j < 128; ++j) { source_array(i, j) = static_cast<uint8_t>(i); } } for (int i = 0; i < 64; ++i) { for (int j = 0; j < 64; ++j) { expected_downsampled(i, j) = static_cast<uint8_t>(i * 2); } } EXPECT_THAT(DownsampleArray(source_array, {{2, 2}}, DownsampleMethod::kMean), Optional(tensorstore::MatchesArray(expected_downsampled))); } }
581
cpp
google/tensorstore
xz_compressor
tensorstore/driver/n5/xz_compressor.cc
tensorstore/driver/n5/xz_compressor_test.cc
#ifndef TENSORSTORE_INTERNAL_COMPRESSION_XZ_COMPRESSOR_H_ #define TENSORSTORE_INTERNAL_COMPRESSION_XZ_COMPRESSOR_H_ #include <cstddef> #include <lzma.h> #include "tensorstore/internal/compression/json_specified_compressor.h" namespace tensorstore { namespace internal { struct XzOptions { int level = 6; bool extreme = false; ::lzma_check check = LZMA_CHECK_CRC64; }; class XzCompressor : public JsonSpecifiedCompressor, public XzOptions { public: std::unique_ptr<riegeli::Writer> GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const override; std::unique_ptr<riegeli::Reader> GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const override; }; } } #endif #include "tensorstore/internal/compression/xz_compressor.h" #include "riegeli/bytes/cord_reader.h" #include "riegeli/bytes/cord_writer.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "riegeli/xz/xz_reader.h" #include "riegeli/xz/xz_writer.h" namespace tensorstore { namespace internal { std::unique_ptr<riegeli::Writer> XzCompressor::GetWriter( std::unique_ptr<riegeli::Writer> base_writer, size_t element_bytes) const { using Writer = riegeli::XzWriter<std::unique_ptr<riegeli::Writer>>; Writer::Options options; options.set_container(Writer::Container::kXz); options.set_check(static_cast<Writer::Check>(check)); options.set_compression_level(level); options.set_extreme(extreme); return std::make_unique<Writer>(std::move(base_writer), options); } std::unique_ptr<riegeli::Reader> XzCompressor::GetReader( std::unique_ptr<riegeli::Reader> base_reader, size_t element_bytes) const { using Reader = riegeli::XzReader<std::unique_ptr<riegeli::Reader>>; Reader::Options options; options.set_container(Reader::Container::kXzOrLzma); options.set_concatenate(true); return std::make_unique<Reader>(std::move(base_reader), options); } } }
#include "tensorstore/internal/compression/xz_compressor.h" #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/cord.h" #include "absl/strings/cord_test_helpers.h" #include <lzma.h> #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; using ::tensorstore::internal::XzCompressor; TEST(XzCompressorTest, SmallRoundtrip) { XzCompressor compressor; const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result("abc"), decode_result("def"); TENSORSTORE_ASSERT_OK(compressor.Encode(input, &encode_result, 0)); ASSERT_GE(encode_result.size(), 3); EXPECT_EQ("abc", encode_result.Subcord(0, 3)); TENSORSTORE_ASSERT_OK(compressor.Decode( encode_result.Subcord(3, encode_result.size() - 3), &decode_result, 0)); EXPECT_EQ("def" + std::string(input), decode_result); } TEST(XzCompressorTest, SmallRoundtripFragmented) { XzCompressor compressor; const absl::Cord input = absl::MakeFragmentedCord( {"The quick", " brown fox", " jumped over", " ", "the lazy dog."}); absl::Cord encode_result("abc"), decode_result("def"); TENSORSTORE_ASSERT_OK(compressor.Encode(input, &encode_result, 0)); ASSERT_GE(encode_result.size(), 3); EXPECT_EQ("abc", encode_result.Subcord(0, 3)); std::vector<std::string> encode_result_fragments; for (size_t i = 3; i < encode_result.size(); ++i) { encode_result_fragments.push_back(std::string(encode_result.Subcord(i, 1))); } TENSORSTORE_ASSERT_OK(compressor.Decode( absl::MakeFragmentedCord(encode_result_fragments), &decode_result, 0)); EXPECT_EQ("def" + std::string(input), decode_result); } TEST(XzCompressorTest, LargeRoundtrip) { std::string input(100000, '\0'); unsigned char x = 0; for (auto& v : input) { v = x; x += 7; } XzCompressor compressor; absl::Cord encode_result, decode_result; TENSORSTORE_ASSERT_OK( compressor.Encode(absl::Cord(input), &encode_result, 0)); TENSORSTORE_ASSERT_OK(compressor.Decode(encode_result, &decode_result, 0)); EXPECT_EQ(input, decode_result); } TEST(XzCompressorTest, NonDefaultLevel) { XzCompressor compressor; XzCompressor compressor2; compressor2.level = 9; const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result1, encode_result2; TENSORSTORE_ASSERT_OK(compressor.Encode(input, &encode_result1, 0)); TENSORSTORE_ASSERT_OK(compressor2.Encode(input, &encode_result2, 0)); EXPECT_NE(encode_result1, encode_result2); absl::Cord decode_result; TENSORSTORE_ASSERT_OK(compressor.Decode(encode_result2, &decode_result, 0)); EXPECT_EQ(input, decode_result); } TEST(XzCompressorTest, NonDefaultCheck) { XzCompressor compressor; XzCompressor compressor2; compressor2.check = LZMA_CHECK_CRC32; const absl::Cord input("The quick brown fox jumped over the lazy dog."); absl::Cord encode_result1, encode_result2; TENSORSTORE_ASSERT_OK(compressor.Encode(input, &encode_result1, 0)); TENSORSTORE_ASSERT_OK(compressor2.Encode(input, &encode_result2, 0)); EXPECT_NE(encode_result1, encode_result2); absl::Cord decode_result; TENSORSTORE_ASSERT_OK(compressor.Decode(encode_result2, &decode_result, 0)); EXPECT_EQ(input, decode_result); } TEST(XzCompressorTest, DecodeCorruptData) { XzCompressor compressor; const absl::Cord input("The quick brown fox jumped over the lazy dog."); { absl::Cord encode_result, decode_result; TENSORSTORE_ASSERT_OK(compressor.Encode(input, &encode_result, 0)); ASSERT_GE(encode_result.size(), 1); std::string corrupted(encode_result); corrupted[0] = 0; EXPECT_THAT(compressor.Decode(absl::Cord(corrupted), &decode_result, 0), MatchesStatus(absl::StatusCode::kInvalidArgument)); } { absl::Cord encode_result, decode_result; TENSORSTORE_ASSERT_OK(compressor.Encode(input, &encode_result, 0)); ASSERT_GE(encode_result.size(), 1); EXPECT_THAT( compressor.Decode(encode_result.Subcord(0, encode_result.size() - 1), &decode_result, 0), MatchesStatus(absl::StatusCode::kInvalidArgument)); } } }
582
cpp
google/tensorstore
chunk_cache
tensorstore/driver/zarr3/chunk_cache.cc
tensorstore/internal/cache/chunk_cache_test.cc
#ifndef TENSORSTORE_INTERNAL_CACHE_CHUNK_CACHE_H_ #define TENSORSTORE_INTERNAL_CACHE_CHUNK_CACHE_H_ #include <stddef.h> #include <atomic> #include <memory> #include <string_view> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/chunk.h" #include "tensorstore/driver/read_request.h" #include "tensorstore/driver/write_request.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/async_write_array.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/chunk_grid_specification.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/staleness_bound.h" #include "tensorstore/transaction.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/sender.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal { class ChunkCache : public AsyncCache { public: using ReadData = SharedArray<const void>; static SharedArrayView<const void> GetReadComponent( const ChunkCache::ReadData* components, size_t component_index) { if (!components) return {}; return components[component_index]; } class Entry : public AsyncCache::Entry { public: using OwningCache = ChunkCache; span<const Index> cell_indices() { return {reinterpret_cast<const Index*>(key().data()), static_cast<ptrdiff_t>(key().size() / sizeof(Index))}; } span<const ChunkGridSpecification::Component> component_specs() { return GetOwningCache(*this).grid().components; } Future<const void> Delete(internal::OpenTransactionPtr transaction); size_t ComputeReadDataSizeInBytes(const void* read_data) override; }; class TransactionNode : public AsyncCache::TransactionNode { public: using OwningCache = ChunkCache; explicit TransactionNode(Entry& entry); using Component = AsyncWriteArray; span<Component> components() { return components_; } absl::Status Delete(); size_t ComputeWriteStateSizeInBytes() override; span<const ChunkGridSpecification::Component> component_specs() { return GetOwningCache(*this).grid().components; } bool IsUnconditional() const { return unconditional_.load(std::memory_order_relaxed); } void SetUnconditional() { unconditional_.store(true, std::memory_order_relaxed); } virtual absl::Status OnModified(); void DoApply(ApplyOptions options, ApplyReceiver receiver) override; void InvalidateReadState() override; virtual absl::Status RequireRepeatableRead( const StorageGeneration& generation) { return absl::OkStatus(); } private: friend class ChunkCache; absl::InlinedVector<Component, 1> components_; std::atomic<bool> unconditional_{false}; public: bool is_modified{false}; }; class WritebackSnapshot { public: explicit WritebackSnapshot(TransactionNode& node, AsyncCache::ReadView<ReadData> read_state); bool equals_fill_value() const { return !new_read_data_; } const std::shared_ptr<ReadData>& new_read_data() const { return new_read_data_; } std::shared_ptr<ReadData>& new_read_data() { return new_read_data_; } private: std::shared_ptr<ReadData> new_read_data_; }; virtual const ChunkGridSpecification& grid() const = 0; virtual const Executor& executor() const = 0; struct ReadRequest : public internal::DriverReadRequest { size_t component_index; absl::Time staleness_bound; }; virtual void Read( ReadRequest request, AnyFlowReceiver<absl::Status, ReadChunk, IndexTransform<>> receiver); struct WriteRequest : public internal::DriverWriteRequest { size_t component_index; }; virtual void Write( WriteRequest request, AnyFlowReceiver<absl::Status, WriteChunk, IndexTransform<>> receiver); Future<const void> DeleteCell(span<const Index> grid_cell_indices, internal::OpenTransactionPtr transaction); }; class ConcreteChunkCache : public ChunkCache { public: explicit ConcreteChunkCache(ChunkGridSpecification grid, Executor executor) : grid_(std::move(grid)), executor_(std::move(executor)) {} const ChunkGridSpecification& grid() const override { return grid_; } const Executor& executor() const override { return executor_; } private: internal::ChunkGridSpecification grid_; Executor executor_; }; } } #endif #include "tensorstore/internal/cache/chunk_cache.h" #include <stddef.h> #include <algorithm> #include <atomic> #include <cassert> #include <memory> #include <mutex> #include <numeric> #include <string_view> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/chunk.h" #include "tensorstore/driver/chunk_receiver_utils.h" #include "tensorstore/index.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/async_write_array.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/grid_partition.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/memory.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/internal/nditerable.h" #include "tensorstore/rank.h" #include "tensorstore/read_write_options.h" #include "tensorstore/staleness_bound.h" #include "tensorstore/strided_layout.h" #include "tensorstore/transaction.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/future.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal { auto& num_writes = internal_metrics::Counter<int64_t>::New( "/tensorstore/cache/chunk_cache/writes", "Number of writes to ChunkCache."); auto& num_reads = internal_metrics::Counter<int64_t>::New( "/tensorstore/cache/chunk_cache/reads", "Number of reads from ChunkCache."); namespace { bool IsFullyOverwritten(ChunkCache::TransactionNode& node) { auto& entry = GetOwningEntry(node); const auto& grid = GetOwningCache(entry).grid(); const auto& component_specs = grid.components; const span<const Index> cell_indices = entry.cell_indices(); for (size_t component_index = 0, num_components = component_specs.size(); component_index != num_components; ++component_index) { if (!node.components()[component_index].write_state.IsFullyOverwritten( component_specs[component_index].array_spec, grid.GetCellDomain(component_index, cell_indices))) { return false; } } return true; } struct ReadChunkImpl { size_t component_index; PinnedCacheEntry<ChunkCache> entry; absl::Status operator()(internal::LockCollection& lock_collection) const { return absl::OkStatus(); } Result<NDIterable::Ptr> operator()(ReadChunk::BeginRead, IndexTransform<> chunk_transform, Arena* arena) const { auto& grid = GetOwningCache(*entry).grid(); auto domain = grid.GetCellDomain(component_index, entry->cell_indices()); SharedArray<const void, dynamic_rank(kMaxRank)> read_array{ ChunkCache::GetReadComponent( AsyncCache::ReadLock<ChunkCache::ReadData>(*entry).data(), component_index)}; return grid.components[component_index].array_spec.GetReadNDIterable( std::move(read_array), domain, std::move(chunk_transform), arena); } }; struct ReadChunkTransactionImpl { size_t component_index; OpenTransactionNodePtr<ChunkCache::TransactionNode> node; absl::Status operator()(internal::LockCollection& lock_collection) const { constexpr auto lock_chunk = [](void* data, bool lock) ABSL_NO_THREAD_SAFETY_ANALYSIS -> bool { auto& node = *static_cast<ChunkCache::TransactionNode*>(data); if (lock) { node.WriterLock(); } else { node.WriterUnlock(); } return true; }; lock_collection.Register(node.get(), +lock_chunk, true); return absl::OkStatus(); } Result<NDIterable::Ptr> operator()(ReadChunk::BeginRead, IndexTransform<> chunk_transform, Arena* arena) const { auto& entry = GetOwningEntry(*node); auto& grid = GetOwningCache(entry).grid(); const auto& component_spec = grid.components[component_index]; auto& component = node->components()[component_index]; auto domain = grid.GetCellDomain(component_index, entry.cell_indices()); SharedArray<const void, dynamic_rank(kMaxRank)> read_array; StorageGeneration read_generation; { AsyncCache::ReadLock<ChunkCache::ReadData> read_lock(*node); read_array = ChunkCache::GetReadComponent(read_lock.data(), component_index); read_generation = read_lock.stamp().generation; if (!node->IsUnconditional() && (node->transaction()->mode() & repeatable_read)) { TENSORSTORE_RETURN_IF_ERROR( node->RequireRepeatableRead(read_generation)); } } return component.GetReadNDIterable(component_spec.array_spec, domain, std::move(read_array), read_generation, std::move(chunk_transform), arena); } }; struct WriteChunkImpl { size_t component_index; OpenTransactionNodePtr<ChunkCache::TransactionNode> node; absl::Status operator()(internal::LockCollection& lock_collection) { constexpr auto lock_chunk = [](void* data, bool lock) ABSL_NO_THREAD_SAFETY_ANALYSIS -> bool { auto& node = *static_cast<ChunkCache::TransactionNode*>(data); if (lock) { return node.try_lock(); } else { node.WriterUnlock(); return true; } }; if (node->IsRevoked()) { OpenTransactionPtr transaction(node->transaction()); TENSORSTORE_ASSIGN_OR_RETURN( node, GetTransactionNode(GetOwningEntry(*node), transaction)); } lock_collection.Register(node.get(), +lock_chunk, false); return absl::OkStatus(); } Result<NDIterable::Ptr> operator()(WriteChunk::BeginWrite, IndexTransform<> chunk_transform, Arena* arena) const { auto& entry = GetOwningEntry(*node); auto& grid = GetOwningCache(entry).grid(); const auto& component_spec = grid.components[component_index]; auto domain = grid.GetCellDomain(component_index, entry.cell_indices()); node->MarkSizeUpdated(); return node->components()[component_index].BeginWrite( component_spec.array_spec, domain, std::move(chunk_transform), arena); } WriteChunk::EndWriteResult operator()(WriteChunk::EndWrite, IndexTransformView<> chunk_transform, bool success, Arena* arena) const { auto& entry = GetOwningEntry(*node); auto& grid = GetOwningCache(entry).grid(); const auto& component_spec = grid.components[component_index]; auto domain = grid.GetCellDomain(component_index, entry.cell_indices()); node->components()[component_index].EndWrite( component_spec.array_spec, domain, chunk_transform, success, arena); node->is_modified = true; if (IsFullyOverwritten(*node)) { node->SetUnconditional(); } return {node->OnModified(), node->transaction()->future()}; } bool operator()(WriteChunk::WriteArray, IndexTransformView<> chunk_transform, WriteChunk::GetWriteSourceArrayFunction get_source_array, Arena* arena, WriteChunk::EndWriteResult& end_write_result) const { auto& entry = GetOwningEntry(*node); auto& grid = GetOwningCache(entry).grid(); const auto& component_spec = grid.components[component_index]; auto domain = grid.GetCellDomain(component_index, entry.cell_indices()); using WriteArraySourceCapabilities = AsyncWriteArray::WriteArraySourceCapabilities; auto status = node->components()[component_index].WriteArray( component_spec.array_spec, domain, chunk_transform, [&]() -> Result<std::pair<TransformedSharedArray<const void>, WriteArraySourceCapabilities>> { TENSORSTORE_ASSIGN_OR_RETURN(auto info, get_source_array()); auto source_restriction = std::get<1>(info); WriteArraySourceCapabilities source_capabilities; switch (source_restriction) { case cannot_reference_source_data: source_capabilities = WriteArraySourceCapabilities::kCannotRetain; break; case can_reference_source_data_indefinitely: source_capabilities = WriteArraySourceCapabilities:: kImmutableAndCanRetainIndefinitely; break; } return {std::in_place, std::move(std::get<0>(info)), source_capabilities}; }); if (!status.ok()) { if (absl::IsCancelled(status)) return false; end_write_result = {status}; return true; } node->is_modified = true; node->SetUnconditional(); end_write_result = {node->OnModified(), node->transaction()->future()}; return true; } }; } void ChunkCache::Read( ReadRequest request, AnyFlowReceiver<absl::Status, ReadChunk, IndexTransform<>> receiver) { assert(request.component_index >= 0 && request.component_index < grid().components.size()); const auto& component_spec = grid().components[request.component_index]; using ReadOperationState = ChunkOperationState<ReadChunk>; auto state = MakeIntrusivePtr<ReadOperationState>(std::move(receiver)); auto status = PartitionIndexTransformOverRegularGrid( component_spec.chunked_to_cell_dimensions, grid().chunk_shape, request.transform, [&](span<const Index> grid_cell_indices, IndexTransformView<> cell_transform) { if (state->cancelled()) { return absl::CancelledError(""); } num_reads.Increment(); TENSORSTORE_ASSIGN_OR_RETURN( auto cell_to_source, ComposeTransforms(request.transform, cell_transform)); auto entry = GetEntryForGridCell(*this, grid_cell_indices); ReadChunk chunk; chunk.transform = std::move(cell_to_source); Future<const void> read_future; const auto get_cache_read_request = [&] { AsyncCache::AsyncCacheReadRequest cache_request; cache_request.staleness_bound = request.staleness_bound; cache_request.batch = request.batch; return cache_request; }; if (request.transaction) { TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetTransactionNode(*entry, request.transaction)); read_future = node->IsUnconditional() ? MakeReadyFuture() : node->Read(get_cache_read_request()); chunk.impl = ReadChunkTransactionImpl{request.component_index, std::move(node)}; } else { read_future = entry->Read(get_cache_read_request()); chunk.impl = ReadChunkImpl{request.component_index, std::move(entry)}; } LinkValue( [state, chunk = std::move(chunk), cell_transform = IndexTransform<>(cell_transform)]( Promise<void> promise, ReadyFuture<const void> future) mutable { execution::set_value(state->shared_receiver->receiver, std::move(chunk), std::move(cell_transform)); }, state->promise, std::move(read_future)); return absl::OkStatus(); }); if (!status.ok()) { state->SetError(std::move(status)); } } void ChunkCache::Write( WriteRequest request, AnyFlowReceiver<absl::Status, WriteChunk, IndexTransform<>> receiver) { assert(request.component_index >= 0 && request.component_index < grid().components.size()); const auto& component_spec = grid().components[request.component_index]; std::atomic<bool> cancelled{false}; execution::set_starting(receiver, [&cancelled] { cancelled = true; }); absl::Status status = PartitionIndexTransformOverRegularGrid( component_spec.chunked_to_cell_dimensions, grid().chunk_shape, request.transform, [&](span<const Index> grid_cell_indices, IndexTransformView<> cell_transform) { if (cancelled) return absl::CancelledError(""); num_writes.Increment(); TENSORSTORE_ASSIGN_OR_RETURN( auto cell_to_dest, ComposeTransforms(request.transform, cell_transform)); auto entry = GetEntryForGridCell(*this, grid_cell_indices); auto transaction_copy = request.transaction; TENSORSTORE_ASSIGN_OR_RETURN( auto node, GetTransactionNode(*entry, transaction_copy)); execution::set_value( receiver, WriteChunk{WriteChunkImpl{request.component_index, std::move(node)}, std::move(cell_to_dest)}, IndexTransform<>(cell_transform)); return absl::OkStatus(); }); if (!status.ok()) { execution::set_error(receiver, status); } else { execution::set_done(receiver); } execution::set_stopping(receiver); } Future<const void> ChunkCache::DeleteCell( span<const Index> grid_cell_indices, internal::OpenTransactionPtr transaction) { return GetEntryForGridCell(*this, grid_cell_indices)->Delete(transaction); } absl::Status ChunkCache::TransactionNode::Delete() { Un
#include "tensorstore/internal/cache/chunk_cache.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <array> #include <cmath> #include <functional> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/inlined_vector.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/strings/numbers.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/time/time.h" #include "riegeli/bytes/cord_reader.h" #include "riegeli/bytes/cord_writer.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/context.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/chunk.h" #include "tensorstore/driver/chunk_cache_driver.h" #include "tensorstore/driver/driver.h" #include "tensorstore/driver/driver_handle.h" #include "tensorstore/driver/driver_testutil.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/internal/async_write_array.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/kvs_backed_cache.h" #include "tensorstore/internal/chunk_grid_specification.h" #include "tensorstore/internal/element_copy_function.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/memory.h" #include "tensorstore/internal/queue_testutil.h" #include "tensorstore/internal/riegeli/array_endian_codec.h" #include "tensorstore/internal/thread/thread_pool.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/memory/memory_key_value_store.h" #include "tensorstore/kvstore/mock_kvstore.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/open_mode.h" #include "tensorstore/progress.h" #include "tensorstore/read_write_options.h" #include "tensorstore/staleness_bound.h" #include "tensorstore/strided_layout.h" #include "tensorstore/tensorstore.h" #include "tensorstore/transaction.h" #include "tensorstore/util/constant_vector.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { namespace kvstore = tensorstore::kvstore; using ::tensorstore::ArrayView; using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::DimensionIndex; using ::tensorstore::Executor; using ::tensorstore::Future; using ::tensorstore::Index; using ::tensorstore::IndexTransform; using ::tensorstore::MakeArray; using ::tensorstore::MakeCopy; using ::tensorstore::MatchesStatus; using ::tensorstore::no_transaction; using ::tensorstore::ReadProgressFunction; using ::tensorstore::Result; using ::tensorstore::SharedArray; using ::tensorstore::span; using ::tensorstore::StalenessBound; using ::tensorstore::StorageGeneration; using ::tensorstore::TensorStore; using ::tensorstore::Transaction; using ::tensorstore::WriteProgressFunction; using ::tensorstore::internal::AsyncCache; using ::tensorstore::internal::AsyncWriteArray; using ::tensorstore::internal::CachePool; using ::tensorstore::internal::CachePtr; using ::tensorstore::internal::ChunkCache; using ::tensorstore::internal::ChunkGridSpecification; using ::tensorstore::internal::ConcreteChunkCache; using ::tensorstore::internal::ElementCopyFunction; using ::tensorstore::internal::GetCache; using ::tensorstore::internal::GetEntryForGridCell; using ::tensorstore::internal::MakeReadWritePtr; using ::tensorstore::internal::MockKeyValueStore; using ::tensorstore::internal::PinnedCacheEntry; using ::tensorstore::internal::ReadWritePtr; using ::tensorstore::internal::SimpleElementwiseFunction; using ::testing::ElementsAre; Result<std::shared_ptr<const ChunkCache::ReadData>> DecodeRaw( const ChunkGridSpecification& grid, const absl::Cord* value) { const auto& component_specs = grid.components; std::shared_ptr<ChunkCache::ReadData> read_data; if (value) { read_data = tensorstore::internal::make_shared_for_overwrite< ChunkCache::ReadData[]>(component_specs.size()); riegeli::CordReader<const absl::Cord*> reader{value}; for (size_t component_i = 0; component_i < component_specs.size(); ++component_i) { const auto& spec = component_specs[component_i]; TENSORSTORE_ASSIGN_OR_RETURN( read_data.get()[component_i], tensorstore::internal::DecodeArrayEndian( reader, spec.dtype(), spec.shape(), tensorstore::endian::native, tensorstore::c_order)); } if (!reader.VerifyEndAndClose()) return reader.status(); } return std::static_pointer_cast<ChunkCache::ReadData>(std::move(read_data)); } template <typename ComponentArrays = std::vector<SharedArray<const void>>> absl::Cord EncodeRaw(const ChunkGridSpecification& grid, const ComponentArrays& component_arrays) { absl::Cord value; riegeli::CordWriter<absl::Cord*> writer{&value}; const auto& component_specs = grid.components; for (size_t component_i = 0; component_i < component_specs.size(); ++component_i) { const auto& spec = component_specs[component_i]; auto& array = component_arrays[component_i]; ABSL_CHECK(tensorstore::internal::RangesEqual(array.shape(), spec.shape())); ABSL_CHECK(array.dtype() == spec.dtype()); ABSL_CHECK(tensorstore::internal::EncodeArrayEndian( array, tensorstore::endian::native, tensorstore::c_order, writer)); } ABSL_CHECK(writer.Close()); return value; } std::string EncodeKey(span<const Index> indices) { return absl::StrJoin(indices, ","); } class TestCache : public tensorstore::internal::KvsBackedCache<TestCache, ConcreteChunkCache> { using Base = tensorstore::internal::KvsBackedCache<TestCache, ConcreteChunkCache>; public: using Base::Base; class Entry : public Base::Entry { public: using OwningCache = TestCache; void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override { GetOwningCache(*this).executor()([this, value = std::move(value), receiver = std::move(receiver)]() mutable { TENSORSTORE_ASSIGN_OR_RETURN( auto read_data, DecodeRaw(GetOwningCache(*this).grid(), value ? &*value : nullptr), tensorstore::execution::set_error(receiver, _)); tensorstore::execution::set_value(receiver, std::move(read_data)); }); } void DoEncode(std::shared_ptr<const ReadData> data, EncodeReceiver receiver) override { std::optional<absl::Cord> encoded; if (data) { encoded = EncodeRaw(GetOwningCache(*this).grid(), data.get()); } tensorstore::execution::set_value(receiver, std::move(encoded)); } std::string GetKeyValueStoreKey() override { return EncodeKey(this->cell_indices()); } }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { return new TransactionNode(static_cast<Entry&>(entry)); } }; class TestDriver : public tensorstore::internal::ChunkCacheDriver { public: using ::tensorstore::internal::ChunkCacheDriver::ChunkCacheDriver; void GarbageCollectionVisit( tensorstore::garbage_collection::GarbageCollectionVisitor& visitor) const final { } }; template <typename T> ElementCopyFunction GetCopyFunction() { [[maybe_unused]] const auto copy_func = [](const T* source, T* dest, absl::Status* status) { *dest = *source; }; return SimpleElementwiseFunction<decltype(copy_func), const T, T>(); } TEST(ChunkGridSpecificationTest, Basic) { ChunkGridSpecification grid({ChunkGridSpecification::Component{ AsyncWriteArray::Spec{SharedArray<const void>(MakeArray<int>({1, 2})), Box<>(1)}, {2}}}); EXPECT_EQ(1, grid.components[0].rank()); EXPECT_EQ(1, grid.components[0].chunked_to_cell_dimensions.size()); EXPECT_EQ(1, grid.chunk_shape.size()); absl::InlinedVector<Index, 1> origin; origin.resize(grid.components[0].rank()); grid.GetComponentOrigin(0, span<const Index>({0}), origin); EXPECT_THAT(origin, testing::ElementsAre(0)); grid.GetComponentOrigin(0, span<const Index>({1}), origin); EXPECT_THAT(origin, testing::ElementsAre(2)); } TEST(ChunkGridSpecificationTest, MoreComplicated) { std::vector<Index> shape = {1, 2, 3, 4}; SharedArray<const void> fill_value( tensorstore::internal::AllocateAndConstructSharedElements( 1, tensorstore::value_init, tensorstore::dtype_v<int>), tensorstore::StridedLayout<>( shape, tensorstore::GetConstantVector<Index, 0, 4>())); ChunkGridSpecification grid({ChunkGridSpecification::Component{ AsyncWriteArray::Spec{fill_value, Box<>(shape)}, shape, {3, 2, 1}}}); EXPECT_EQ(3, grid.chunk_shape.size()); EXPECT_THAT(grid.chunk_shape, testing::ElementsAre(4, 3, 2)); EXPECT_EQ(4, grid.components[0].array_spec.overall_fill_value.rank()); EXPECT_EQ(4, grid.components[0].rank()); EXPECT_EQ(3, grid.components[0].chunked_to_cell_dimensions.size()); EXPECT_THAT(grid.components[0].chunked_to_cell_dimensions, testing::ElementsAre(3, 2, 1)); absl::InlinedVector<Index, 4> origin; origin.resize(grid.components[0].rank()); grid.GetComponentOrigin(0, span<const Index>({0, 0, 0}), origin); EXPECT_THAT(origin, testing::ElementsAre(0, 0, 0, 0)); grid.GetComponentOrigin(0, span<const Index>({1, 1, 1}), origin); EXPECT_THAT(origin, testing::ElementsAre(0, 2, 3, 4)); grid.GetComponentOrigin(0, span<const Index>({3, 2, 1}), origin); EXPECT_THAT(origin, testing::ElementsAre(0, 2, 6, 12)); } std::vector<Index> ParseKey(std::string_view key) { std::vector<Index> result; for (auto s : absl::StrSplit(key, ',')) { Index i = 0; ABSL_CHECK(absl::SimpleAtoi(s, &i)); result.push_back(i); } return result; } ReadWritePtr<TestDriver> MakeDriver(CachePtr<ChunkCache> cache, size_t component_index = 0, StalenessBound data_staleness = {}) { return MakeReadWritePtr<TestDriver>( tensorstore::ReadWriteMode::read_write, TestDriver::Initializer{std::move(cache), component_index, data_staleness}); } class ChunkCacheTest : public ::testing::Test { public: Executor thread_pool = tensorstore::internal::DetachedThreadPool(1); std::optional<ChunkGridSpecification> grid; kvstore::DriverPtr memory_store = tensorstore::GetMemoryKeyValueStore(); MockKeyValueStore::MockPtr mock_store = MockKeyValueStore::Make(); std::vector<ChunkCache::ReadData> GetChunk( const std::vector<Index>& indices) { auto read_result = memory_store->Read(EncodeKey(indices)).value(); const size_t num_components = grid->components.size(); std::vector<ChunkCache::ReadData> components(num_components); if (auto read_data = DecodeRaw(*grid, read_result.has_value() ? &read_result.value : nullptr) .value()) { for (size_t i = 0; i < num_components; ++i) { components[i] = read_data.get()[i]; } } return components; } bool HasChunk(const std::vector<Index>& indices) { auto read_result = memory_store->Read(EncodeKey(indices)).value(); return read_result.has_value(); } void SetChunk( const std::vector<Index>& indices, std::vector<tensorstore::SharedArrayView<const void>> components) { TENSORSTORE_CHECK_OK( memory_store->Write(EncodeKey(indices), EncodeRaw(*grid, components))); } CachePtr<ChunkCache> MakeChunkCache( std::string_view cache_identifier = {}, std::optional<CachePool::StrongPtr> pool = {}) { if (!pool) { pool = CachePool::Make(CachePool::Limits{10000000}); } return GetCache<TestCache>(pool->get(), cache_identifier, [&] { return std::make_unique<TestCache>(mock_store, *grid, thread_pool); }); } TensorStore<> GetTensorStore(CachePtr<ChunkCache> cache = {}, StalenessBound data_staleness = {}, size_t component_index = 0, Transaction transaction = no_transaction) { if (!cache) cache = MakeChunkCache(); return tensorstore::internal::TensorStoreAccess::Construct<TensorStore<>>( tensorstore::internal::Driver::Handle{ MakeDriver(cache, component_index, data_staleness), tensorstore::IdentityTransform( grid->components[component_index].rank()), transaction}); } }; template <typename T> tensorstore::SharedOffsetArray<T> MakeSequentialArray(BoxView<> domain) { auto array = tensorstore::AllocateArray<T>(domain); T value = T{}; IterateOverArrays( [&](T* ptr) { *ptr = value; ++value; }, tensorstore::c_order, array); return array; } ChunkGridSpecification GetSimple1DGrid() { return ChunkGridSpecification({ChunkGridSpecification::Component{ AsyncWriteArray::Spec{MakeSequentialArray<int>(BoxView<>{{0}, {10}}), Box<>(1)}, {2}}}); } TEST_F(ChunkCacheTest, ReadSingleComponentOneDimensionalFill) { grid = GetSimple1DGrid(); auto cache = MakeChunkCache(); { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfinitePast()) | tensorstore::Dims(0).TranslateSizedInterval(3, 3)); { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(1)); EXPECT_EQ(StorageGeneration::Unknown(), r.options.generation_conditions.if_not_equal); r(memory_store); } { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(2)); EXPECT_EQ(StorageGeneration::Unknown(), r.options.generation_conditions.if_not_equal); r(memory_store); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeArray({3, 4, 5}))); } { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfinitePast()) | tensorstore::Dims(0).TranslateSizedInterval(3, 3)); EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeArray({3, 4, 5}))); } { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfiniteFuture()) | tensorstore::Dims(0).TranslateSizedInterval(3, 3)); { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(1)); EXPECT_EQ(StorageGeneration::NoValue(), r.options.generation_conditions.if_not_equal); r(memory_store); } { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(2)); EXPECT_EQ(StorageGeneration::NoValue(), r.options.generation_conditions.if_not_equal); r(memory_store); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeArray({3, 4, 5}))); } } TEST_F(ChunkCacheTest, CancelRead) { grid = GetSimple1DGrid(); auto cache = MakeChunkCache(); mock_store->forward_to = memory_store; { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfinitePast()) | tensorstore::Dims(0).TranslateSizedInterval(3, 3)); } } struct CancelWriteReceiver { friend void set_starting(CancelWriteReceiver& receiver, tensorstore::AnyCancelReceiver cancel) { receiver.cancel = std::move(cancel); } friend void set_value(CancelWriteReceiver& receiver, tensorstore::internal::WriteChunk chunk, tensorstore::IndexTransform<> cell_transform) { EXPECT_FALSE(receiver.set_value_called); receiver.set_value_called = true; EXPECT_EQ(tensorstore::IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({1}) .output_single_input_dimension(0, 3, 1, 0) .Finalize() .value(), chunk.transform); EXPECT_EQ(tensorstore::IndexTransformBuilder<>(1, 1) .input_origin({0}) .input_shape({1}) .output_single_input_dimension(0, 0) .Finalize() .value(), cell_transform); receiver.cancel(); } friend void set_done(CancelWriteReceiver& receiver) {} friend void set_error(CancelWriteReceiver& receiver, absl::Status status) {} friend void set_stopping(CancelWriteReceiver& receiver) { receiver.cancel = nullptr; } bool set_value_called = false; tensorstore::AnyCancelReceiver cancel; }; TEST_F(ChunkCacheTest, CancelWrite) { grid = GetSimple1DGrid(); CancelWriteReceiver receiver; auto cache = MakeChunkCache(); cache->Write( ChunkCache::WriteRequest{ {{}, (tensorstore::IdentityTransform(1) | tensorstore::Dims(0).TranslateSizedInterval(3, 3)) .value()}, 0}, std::ref(receiver)); EXPECT_TRUE(receiver.set_value_called); } TEST_F(ChunkCacheTest, DriverDataType) { grid = ChunkGridSpecification({ ChunkGridSpecification::Component{ AsyncWriteArray::Spec{SharedArray<const void>(MakeArray<int>({1, 2})), Box<>(1)}, {2}}, ChunkGridSpecification::Component{ AsyncWriteArray::Spec{ SharedArray<const void>(MakeArray<float>({{1, 2}, {3, 4}})), Box<>(2)}, {2, 2}, {1}}, }); auto cache = MakeChunkCache(); EXPECT_EQ(tensorstore::dtype_v<int>, MakeDriver(cache, 0)->dtype()); EXPECT_EQ(tensorstore::dtype_v<float>, MakeDriver(cache, 1)->dtype()); } TEST_F(ChunkCacheTest, ReadSingleComponentOneDimensionalExisting) { grid = GetSimple1DGrid(); SetChunk({1}, {MakeArray<int>({42, 43})}); auto cache = MakeChunkCache(); { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfinitePast()) | tensorstore::Dims(0).TranslateSizedInterval(3, 3)); { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(1)); r(memory_store); } { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(2)); r(memory_store); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeArray({43, 4, 5}))); } SetChunk({2}, {MakeArray<int>({44, 45})}); { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfinitePast()) | tensorstore::Dims(0).TranslateSizedInterval(3, 3)); EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeArray({43, 4, 5}))); } { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfiniteFuture()) | tensorstore::Dims(0).TranslateSizedInterval(3, 3)); { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(1)); r(memory_store); } { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(2)); r(memory_store); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeArray({43, 44, 45}))); } } TEST_F(ChunkCacheTest, TwoDimensional) { grid = ChunkGridSpecification({ChunkGridSpecification::Component{ AsyncWriteArray::Spec{ MakeSequentialArray<int>(BoxView<>({0, 0}, {10, 100})), Box<>(2)}, {2, 3}, {1, 0}}}); auto cache = MakeChunkCache(); auto read_future = tensorstore::Read( GetTensorStore(cache, absl::InfinitePast()) | tensorstore::Dims(0, 1).TranslateSizedInterval({1, 5}, {6, 5})); for (auto cell_indices : std::vector<std::vector<Index>>{{1, 0}, {1, 1}, {1, 2}, {1, 3}, {2, 0}, {2, 1}, {2, 2}, {2, 3}, {3, 0}, {3, 1}, {3, 2}, {3, 3}}) { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ::testing::ElementsAreArray(cell_indices)); r(memory_store); } EXPECT_THAT(read_future.result(), ::testing::Optional(MakeArray<int>({ {105, 106, 107, 108, 109}, {205, 206, 207, 208, 209}, {305, 306, 307, 308, 309}, {405, 406, 407, 408, 409}, {505, 506, 507, 508, 509}, {605, 606, 607, 608, 609}, }))); } TEST_F(ChunkCacheTest, ReadRequestErrorBasic) { grid = GetSimple1DGrid(); auto cache = MakeChunkCache(); { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfinitePast()) | tensorstore::Dims(0).TranslateSizedInterval(3, 3)); { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(1)); r(memory_store); } { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(2)); r.promise.SetResult(absl::UnknownError("Test read error")); } EXPECT_THAT(read_future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading .*: Test read error")); } { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfinitePast()) | tensorstore::Dims(0).TranslateSizedInterval(3, 3)); { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(2)); r.promise.SetResult(absl::UnknownError("Test read error 2")); } EXPECT_THAT(read_future.result(), MatchesStatus(absl::StatusCode::kUnknown, "Error reading .*: Test read error 2")); } { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfiniteFuture()) | tensorstore::Dims(0).TranslateSizedInterval(3, 3)); { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(1)); r(memory_store); } { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(2)); r(memory_store); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeArray({3, 4, 5}))); } } TEST_F(ChunkCacheTest, WriteSingleComponentOneDimensional) { grid = GetSimple1DGrid(); auto cache = MakeChunkCache(); { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfinitePast()) | tensorstore::Dims(0).TranslateSizedInterval(6, 2)); { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(3)); r(memory_store); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeArray({6, 7}))); } auto write_future = tensorstore::Write(MakeArray<int>({13, 14, 15, 16}), GetTensorStore(cache) | tensorstore::Dims(0).TranslateSizedInterval(3, 4)); write_future.Force(); { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(1)); EXPECT_EQ(StorageGeneration::Unknown(), r.options.generation_conditions.if_equal); r(memory_store); } std::vector<std::pair<std::vector<Index>, StorageGeneration>> write_requests; for (size_t i = 0; i < 3; ++i) { auto r = mock_store->write_requests.pop(); write_requests.emplace_back(ParseKey(r.key), r.options.generation_conditions.if_equal); r(memory_store); } EXPECT_THAT( write_requests, ::testing::UnorderedElementsAre( ::testing::Pair(ElementsAre(2), StorageGeneration::Unknown()), ::testing::Pair(ElementsAre(3), StorageGeneration::NoValue()), ::testing::Pair(ElementsAre(1), StorageGeneration::NoValue()))); EXPECT_THAT(GetChunk({1}), ElementsAre(MakeArray<int>({2, 13}))); EXPECT_THAT(GetChunk({2}), ElementsAre(MakeArray<int>({14, 15}))); EXPECT_THAT(GetChunk({3}), ElementsAre(MakeArray<int>({16, 7}))); TENSORSTORE_EXPECT_OK(write_future); } TEST_F(ChunkCacheTest, WriteSingleComponentOneDimensionalCacheDisabled) { grid = GetSimple1DGrid(); auto cache = MakeChunkCache("", CachePool::StrongPtr{}); { auto read_future = tensorstore::Read(GetTensorStore(cache, absl::InfinitePast()) | tensorstore::Dims(0).TranslateSizedInterval(6, 2)); { auto r = mock_store->read_requests.pop(); EXPECT_THAT(ParseKey(r.key), ElementsAre(3)); r(memory_store); } EXPECT_THAT(read_future.result(), ::testing::Optional(tensorstore::MakeArray({6, 7}))); } auto write_future = tensorstore::Write(MakeArray<int>({13, 14, 15, 16}), GetTensorStore(cache) | tensorstore::Dims(0).TranslateSizedInterval(3, 4)); write_future.Force(); { std::vector<std::vector<Index>> read_requests; for (size_t i = 0; i < 2; ++i) { auto r = mock_store->read_requests.pop(); read_requests.emplace_back(ParseKey(r.key)); EXPECT_EQ(StorageGeneration::Unknown(), r.options.generation_conditions.if_equal); r(memory_store); } EXPECT_THAT(read_requests, ::testing::UnorderedElementsAre(ElementsAre(1), ElementsAre(3))); } { std::vector<std::pair<std::vector<Index>, StorageGeneration>> write_requests; for (size_t i = 0; i < 3; ++i) { auto r = mock_store->write_requests.pop(); write_requests.emplace_back(ParseKey(r.key), r.options.generation_conditions.if_equal); r(memory_store); } EXPECT_THAT( write_requests, ::testing::UnorderedElementsAre( ::testing::Pair(ElementsAre(2), StorageGeneration::Unknown()),
583
cpp
google/tensorstore
blosc
tensorstore/driver/zarr3/codec/blosc.cc
tensorstore/driver/zarr3/codec/blosc_test.cc
#ifndef TENSORSTORE_INTERNAL_COMPRESSION_BLOSC_H_ #define TENSORSTORE_INTERNAL_COMPRESSION_BLOSC_H_ #include <cstddef> #include <string> #include <string_view> #include "tensorstore/util/result.h" namespace tensorstore { namespace blosc { struct Options { const char* compressor; int clevel; int shuffle; size_t blocksize; size_t element_size; }; Result<std::string> Encode(std::string_view input, const Options& options); Result<std::string> Decode(std::string_view input); } } #endif #include "tensorstore/internal/compression/blosc.h" #include <cstddef> #include <string> #include <string_view> #include "absl/status/status.h" #include <blosc.h> #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace blosc { Result<std::string> Encode(std::string_view input, const Options& options) { if (input.size() > BLOSC_MAX_BUFFERSIZE) { return absl::InvalidArgumentError(tensorstore::StrCat( "Blosc compression input of ", input.size(), " bytes exceeds maximum size of ", BLOSC_MAX_BUFFERSIZE)); } std::string output(input.size() + BLOSC_MAX_OVERHEAD, '\0'); int shuffle = options.shuffle; if (shuffle == -1) { shuffle = options.element_size == 1 ? BLOSC_BITSHUFFLE : BLOSC_SHUFFLE; } const int n = blosc_compress_ctx( options.clevel, shuffle, options.element_size, input.size(), input.data(), output.data(), output.size(), options.compressor, options.blocksize, 1); if (n < 0) { return absl::InternalError( tensorstore::StrCat("Internal blosc error: ", n)); } output.erase(n); return output; } Result<std::string> Decode(std::string_view input) { size_t nbytes; if (blosc_cbuffer_validate(input.data(), input.size(), &nbytes) != 0) { return absl::InvalidArgumentError("Invalid blosc-compressed data"); } std::string output(nbytes, '\0'); if (nbytes > 0) { const int n = blosc_decompress_ctx(input.data(), output.data(), output.size(), 1); if (n <= 0) { return absl::InvalidArgumentError( tensorstore::StrCat("Blosc error: ", n)); } } return output; } } }
#include "tensorstore/internal/compression/blosc.h" #include <cstddef> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <blosc.h> #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; namespace blosc = tensorstore::blosc; std::vector<blosc::Options> GetTestOptions() { return { blosc::Options{"lz4", 5, -1, 0}, blosc::Options{"lz4", 5, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4", 0, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4hc", 5, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4", 5, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4", 1, BLOSC_NOSHUFFLE, 0}, blosc::Options{"lz4", 5, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4", 9, BLOSC_BITSHUFFLE, 0}, blosc::Options{"zlib", 1, BLOSC_NOSHUFFLE, 0}, blosc::Options{"zstd", 1, BLOSC_SHUFFLE, 0}, blosc::Options{"blosclz", 1, BLOSC_BITSHUFFLE, 0}, blosc::Options{"snappy", 1, BLOSC_NOSHUFFLE, 0}, blosc::Options{"lz4", 5, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4", 5, BLOSC_SHUFFLE, 256}, blosc::Options{"lz4", 1, BLOSC_NOSHUFFLE, 256}, }; } std::vector<std::string> GetTestArrays() { std::vector<std::string> arrays; arrays.emplace_back(); { std::string arr(100, '\0'); unsigned char v = 0; for (auto& x : arr) { x = (v += 7); } arrays.push_back(std::move(arr)); } arrays.push_back("The quick brown fox jumped over the lazy dog."); return arrays; } TEST(BloscTest, EncodeDecode) { for (blosc::Options options : GetTestOptions()) { for (const auto& array : GetTestArrays()) { for (const size_t element_size : {1, 2, 10}) { options.element_size = element_size; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, blosc::Encode(array, options)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto decoded, blosc::Decode(encoded)); EXPECT_EQ(array, decoded); } } } } TEST(BloscTest, CheckComplib) { const std::string_view array = "The quick brown fox jumped over the lazy dog."; const std::vector<std::pair<std::string, std::string>> cnames_and_complib_names{{BLOSC_BLOSCLZ_COMPNAME, BLOSC_BLOSCLZ_LIBNAME}, {BLOSC_LZ4_COMPNAME, BLOSC_LZ4_LIBNAME}, {BLOSC_LZ4HC_COMPNAME, BLOSC_LZ4_LIBNAME}, {BLOSC_SNAPPY_COMPNAME, BLOSC_SNAPPY_LIBNAME}, {BLOSC_ZLIB_COMPNAME, BLOSC_ZLIB_LIBNAME}, {BLOSC_ZSTD_COMPNAME, BLOSC_ZSTD_LIBNAME}}; for (const auto& pair : cnames_and_complib_names) { blosc::Options options{pair.first.c_str(), 5, -1, 0, 1}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, blosc::Encode(array, options)); ASSERT_GE(encoded.size(), BLOSC_MIN_HEADER_LENGTH); const char* complib = blosc_cbuffer_complib(encoded.data()); EXPECT_EQ(pair.second, complib); } } TEST(BloscTest, CheckShuffleAndElementSize) { const std::string_view array = "The quick brown fox jumped over the lazy dog."; for (int shuffle = -1; shuffle <= 2; ++shuffle) { for (const size_t element_size : {1, 2, 10}) { blosc::Options options{"lz4", 5, shuffle, 0, element_size}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, blosc::Encode(array, options)); ASSERT_GE(encoded.size(), BLOSC_MIN_HEADER_LENGTH); size_t typesize; int flags; blosc_cbuffer_metainfo(encoded.data(), &typesize, &flags); EXPECT_EQ(element_size, typesize); const bool expected_byte_shuffle = shuffle == 1 || (shuffle == -1 && element_size != 1); const bool expected_bit_shuffle = shuffle == 2 || (shuffle == -1 && element_size == 1); EXPECT_EQ(expected_byte_shuffle, static_cast<bool>(flags & BLOSC_DOSHUFFLE)); EXPECT_EQ(expected_bit_shuffle, static_cast<bool>(flags & BLOSC_DOBITSHUFFLE)); } } } TEST(BloscTest, CheckBlocksize) { const std::string array(100000, '\0'); for (size_t blocksize : {256, 512, 1024}) { blosc::Options options{"lz4", 0, 0, blocksize, 1}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, blosc::Encode(array, options)); ASSERT_GE(encoded.size(), BLOSC_MIN_HEADER_LENGTH); size_t nbytes, cbytes, bsize; blosc_cbuffer_sizes(encoded.data(), &nbytes, &cbytes, &bsize); EXPECT_EQ(blocksize, bsize); } } TEST(BloscTest, TooLong) { blosc::Options options{"lz4", 5, -1, 0, 1}; EXPECT_THAT( blosc::Encode(std::string(BLOSC_MAX_BUFFERSIZE + 1, '\0'), options), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(BloscTest, DecodeHeaderCorrupted) { const std::string_view input = "The quick brown fox jumped over the lazy dog."; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto encoded, blosc::Encode(input, blosc::Options{"lz4", 1, -1, 0, 1})); ASSERT_GE(encoded.size(), 1); std::string corrupted = std::move(encoded); corrupted[0] = 0; EXPECT_THAT(blosc::Decode(corrupted), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(BloscCompressorTest, DecodeHeaderTruncated) { const std::string_view input = "The quick brown fox jumped over the lazy dog."; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto encoded, blosc::Encode(input, blosc::Options{"lz4", 1, -1, 0, 1})); ASSERT_GE(encoded.size(), 5); EXPECT_THAT(blosc::Decode(std::string_view(encoded).substr(0, 5)), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(BloscCompressorTest, DecodeDataTruncated) { const std::string_view input = "The quick brown fox jumped over the lazy dog."; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto encoded, blosc::Encode(input, blosc::Options{"lz4", 1, -1, 0, 1})); EXPECT_THAT(blosc::Decode( std::string_view(encoded).substr(0, BLOSC_MIN_HEADER_LENGTH)), MatchesStatus(absl::StatusCode::kInvalidArgument)); } }
584
cpp
google/tensorstore
codec_chain_spec
tensorstore/driver/zarr3/codec/codec_chain_spec.cc
tensorstore/driver/zarr3/codec/codec_chain_spec_test.cc
#ifndef TENSORSTORE_DRIVER_ZARR3_CODEC_CODEC_CHAIN_SPEC_H_ #define TENSORSTORE_DRIVER_ZARR3_CODEC_CODEC_CHAIN_SPEC_H_ #include <stddef.h> #include <optional> #include <string> #include <type_traits> #include <vector> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/codec_spec.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/cache_key/fwd.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_zarr3 { struct ZarrCodecChainSpec { std::vector<ZarrArrayToArrayCodecSpec::Ptr> array_to_array; ZarrArrayToBytesCodecSpec::Ptr array_to_bytes; std::vector<ZarrBytesToBytesCodecSpec::Ptr> bytes_to_bytes; size_t sharding_height() const; absl::Status MergeFrom(const ZarrCodecChainSpec& other, bool strict); absl::Status GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& array_info, ArrayCodecChunkLayoutInfo& decoded) const; Result<internal::IntrusivePtr<const ZarrCodecChain>> Resolve( ArrayCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrCodecChainSpec* resolved_spec = nullptr) const; using FromJsonOptions = ZarrCodecSpec::FromJsonOptions; using ToJsonOptions = ZarrCodecSpec::ToJsonOptions; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(ZarrCodecChainSpec, FromJsonOptions, ToJsonOptions); }; class ZarrShardingCodecSpec : public ZarrArrayToBytesCodecSpec { public: bool SupportsInnerOrder( const ArrayCodecResolveParameters& decoded, span<DimensionIndex> preferred_inner_order) const override; virtual absl::Status MergeSubChunkCodecsFrom(const ZarrCodecChainSpec& other, bool strict) = 0; virtual const ZarrCodecChainSpec* GetSubChunkCodecs() const = 0; size_t sharding_height() const override; }; template <bool Constraints> constexpr auto ZarrCodecChainJsonBinder = [](auto is_loading, const auto& orig_options, auto* obj, auto* j) { using CodecOptions = std::conditional_t<decltype(is_loading)::value, ZarrCodecSpec::FromJsonOptions, ZarrCodecSpec::ToJsonOptions>; CodecOptions codec_options; codec_options.constraints = Constraints; if constexpr (!is_loading) { static_cast<IncludeDefaults&>(codec_options) = orig_options; } return ZarrCodecChainSpec::default_json_binder(is_loading, codec_options, obj, j); }; absl::Status MergeZarrCodecSpecs( std::optional<ZarrCodecChainSpec>& target, const std::optional<ZarrCodecChainSpec>& source, bool strict); class TensorStoreCodecSpec : public internal::CodecDriverSpec { public: constexpr static char id[] = "zarr3"; CodecSpec Clone() const final; absl::Status DoMergeFrom(const internal::CodecDriverSpec& other_base) final; std::optional<ZarrCodecChainSpec> codecs; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(TensorStoreCodecSpec, FromJsonOptions, ToJsonOptions, ::nlohmann::json::object_t) }; } namespace internal { template <> struct CacheKeyEncoder<internal_zarr3::ZarrCodecChainSpec> { static void Encode(std::string* out, const internal_zarr3::ZarrCodecChainSpec& value); }; } } TENSORSTORE_DECLARE_SERIALIZER_SPECIALIZATION( tensorstore::internal_zarr3::ZarrCodecChainSpec) TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED( tensorstore::internal_zarr3::ZarrCodecChainSpec) #endif #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include <stddef.h> #include <cassert> #include <optional> #include <string> #include <string_view> #include <type_traits> #include <utility> #include <vector> #include "absl/container/fixed_array.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include <nlohmann/json.hpp> #include "tensorstore/codec_spec.h" #include "tensorstore/codec_spec_registry.h" #include "tensorstore/driver/zarr3/codec/bytes.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/driver/zarr3/codec/registry.h" #include "tensorstore/driver/zarr3/codec/transpose.h" #include "tensorstore/driver/zarr3/name_configuration_json_binder.h" #include "tensorstore/index.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/json_binding/std_optional.h" #include "tensorstore/internal/unaligned_data_type_functions.h" #include "tensorstore/rank.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/serialization/json_bindable.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_zarr3 { namespace jb = ::tensorstore::internal_json_binding; namespace { struct ZarrCodecJsonBinderImpl { static absl::Status FromJson(const ZarrCodecSpec::FromJsonOptions& options, ZarrCodecSpec::Ptr* obj, ::nlohmann::json* j); static absl::Status ToJson(const ZarrCodecSpec::ToJsonOptions& options, const ZarrCodecSpec* const* obj, ::nlohmann::json* j); absl::Status operator()(std::true_type is_loading, const ZarrCodecSpec::FromJsonOptions& options, ZarrCodecSpec::Ptr* obj, ::nlohmann::json* j) const { return FromJson(options, obj, j); } template <typename T> absl::Status operator()(std::false_type is_loading, const ZarrCodecSpec::ToJsonOptions& options, T* obj, ::nlohmann::json* j) const { static_assert( std::is_convertible_v<decltype(&**obj), const ZarrCodecSpec*>); const ZarrCodecSpec* ptr = &**obj; return ToJson(options, &ptr, j); } }; constexpr inline ZarrCodecJsonBinderImpl ZarrCodecJsonBinder{}; constexpr auto ZarrCodecJsonBinderImplBase = [](auto is_loading, const auto& options, auto* obj, auto* j) { const auto& registry = GetCodecRegistry(); if constexpr (is_loading) { if (options.constraints && j->is_string()) { ::nlohmann::json::object_t j_obj; j_obj.emplace("name", std::move(*j)); *j = std::move(j_obj); } } return jb::Object(NameConfigurationJsonBinder( registry.KeyBinder(), registry.RegisteredObjectBinder())) (is_loading, options, obj, j); }; absl::Status ZarrCodecJsonBinderImpl::FromJson( const ZarrCodecSpec::FromJsonOptions& options, ZarrCodecSpec::Ptr* obj, ::nlohmann::json* j) { return ZarrCodecJsonBinderImplBase(std::true_type{}, options, obj, j); } absl::Status ZarrCodecJsonBinderImpl::ToJson( const ZarrCodecSpec::ToJsonOptions& options, const ZarrCodecSpec* const* obj, ::nlohmann::json* j) { return ZarrCodecJsonBinderImplBase(std::false_type{}, options, obj, j); } constexpr auto ZarrCodecChainSpecJsonBinderImpl = jb::Compose< std::vector<ZarrCodecSpec::Ptr>>( [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { auto it = j->begin(), end = j->end(); for (; it != end && (*it)->kind() == ZarrCodecKind::kArrayToArray; ++it) { obj->array_to_array.push_back( internal::static_pointer_cast<const ZarrArrayToArrayCodecSpec>( std::move(*it))); } if (it != end && (*it)->kind() == ZarrCodecKind::kArrayToBytes) { obj->array_to_bytes = internal::static_pointer_cast<const ZarrArrayToBytesCodecSpec>( std::move(*it)); ++it; } else if (!options.constraints) { return absl::InvalidArgumentError( "array -> bytes codec must be specified"); } for (; it != end; ++it) { if ((*it)->kind() != ZarrCodecKind::kBytesToBytes) { return absl::InvalidArgumentError(tensorstore::StrCat( "Expected bytes -> bytes codec, but received: ", jb::ToJson(*it, ZarrCodecJsonBinder).value().dump())); } obj->bytes_to_bytes.push_back( internal::static_pointer_cast<const ZarrBytesToBytesCodecSpec>( std::move(*it))); } } else { j->insert(j->end(), obj->array_to_array.begin(), obj->array_to_array.end()); if (obj->array_to_bytes) { j->push_back(obj->array_to_bytes); } j->insert(j->end(), obj->bytes_to_bytes.begin(), obj->bytes_to_bytes.end()); } return absl::OkStatus(); }, jb::Array(ZarrCodecJsonBinder)); } TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(ZarrCodecChainSpec, ZarrCodecChainSpecJsonBinderImpl); namespace { Result<ZarrArrayToBytesCodecSpec::Ptr> GetDefaultArrayToBytesCodecSpec( const ArrayCodecResolveParameters& decoded) { if (internal::IsTrivialDataType(decoded.dtype)) { return DefaultBytesCodec(); } return absl::InternalError(tensorstore::StrCat( "No default codec defined for data type ", decoded.dtype)); } absl::Status CodecResolveError(const ZarrCodecSpec& codec_spec, std::string_view message, const absl::Status& status) { return tensorstore::MaybeAnnotateStatus( status, tensorstore::StrCat( "Error ", message, " through ", jb::ToJson(&codec_spec, ZarrCodecJsonBinder).value().dump())); } } size_t ZarrCodecChainSpec::sharding_height() const { return array_to_bytes ? array_to_bytes->sharding_height() : 0; } absl::Status ZarrCodecChainSpec::GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& array_info, ArrayCodecChunkLayoutInfo& decoded) const { absl::FixedArray<ArrayDataTypeAndShapeInfo, 2> array_infos( array_to_array.size()); const ArrayDataTypeAndShapeInfo* decoded_array_info = &array_info; for (size_t i = 0; i < array_to_array.size(); ++i) { const auto& codec_spec = *array_to_array[i]; auto& encoded_array_info = array_infos[i]; TENSORSTORE_RETURN_IF_ERROR( codec_spec.PropagateDataTypeAndShape(*decoded_array_info, encoded_array_info), CodecResolveError(codec_spec, "propagating data type and shape", _)); decoded_array_info = &encoded_array_info; } std::optional<ArrayCodecChunkLayoutInfo> temp_info[2]; const ArrayCodecChunkLayoutInfo* encoded_info; if (array_to_bytes) { auto& decoded_info = array_infos.empty() ? decoded : temp_info[0].emplace(); TENSORSTORE_RETURN_IF_ERROR( array_to_bytes->GetDecodedChunkLayout( array_infos.empty() ? array_info : array_infos.back(), decoded_info), CodecResolveError(*array_to_bytes, "propagating chunk layout", _)); encoded_info = &decoded_info; } else if (!array_to_array.empty()) { encoded_info = &temp_info[0].emplace(); } for (size_t i = array_to_array.size(); i--;) { auto& decoded_info = i == 0 ? decoded : temp_info[(array_to_array.size() - i) % 2].emplace(); const auto& codec_spec = *array_to_array[i]; TENSORSTORE_RETURN_IF_ERROR( codec_spec.GetDecodedChunkLayout( array_infos[i], *encoded_info, i == 0 ? array_info : array_infos[i - 1], decoded_info), CodecResolveError(codec_spec, "propagating chunk layout", _)); encoded_info = &decoded_info; } return absl::OkStatus(); } Result<internal::IntrusivePtr<const ZarrCodecChain>> ZarrCodecChainSpec::Resolve(ArrayCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrCodecChainSpec* resolved_spec) const { auto chain = internal::MakeIntrusivePtr<ZarrCodecChain>(); std::optional<ArrayCodecResolveParameters> temp_array_resolve_params[2]; chain->array_to_array.reserve(array_to_array.size()); chain->bytes_to_bytes.reserve(bytes_to_bytes.size()); if (resolved_spec) { assert(resolved_spec != this); assert(resolved_spec->array_to_array.empty()); resolved_spec->array_to_array.reserve(array_to_array.size()); assert(!resolved_spec->array_to_bytes); assert(resolved_spec->bytes_to_bytes.empty()); resolved_spec->bytes_to_bytes.reserve(bytes_to_bytes.size()); } ArrayCodecResolveParameters* decoded_params = &decoded; size_t temp_i = 0; const auto resolve_array_to_array = [&](const ZarrArrayToArrayCodecSpec& codec_spec) -> absl::Status { auto& encoded_params = temp_array_resolve_params[(temp_i++) % 2].emplace(); TENSORSTORE_ASSIGN_OR_RETURN( auto codec, codec_spec.Resolve(std::move(*decoded_params), encoded_params, resolved_spec ? &resolved_spec->array_to_array.emplace_back() : nullptr), CodecResolveError(codec_spec, "resolving codec spec", _)); chain->array_to_array.push_back(std::move(codec)); decoded_params = &encoded_params; return absl::OkStatus(); }; for (size_t i = 0; i < array_to_array.size(); ++i) { TENSORSTORE_RETURN_IF_ERROR(resolve_array_to_array(*array_to_array[i])); } std::optional<BytesCodecResolveParameters> temp_bytes_resolve_params[2]; auto* bytes_decoded_params = &temp_bytes_resolve_params[0].emplace(); ZarrArrayToBytesCodecSpec::Ptr temp_array_to_bytes_codec; auto* array_to_bytes_codec_ptr = this->array_to_bytes.get(); if (!array_to_bytes_codec_ptr) { TENSORSTORE_ASSIGN_OR_RETURN( temp_array_to_bytes_codec, GetDefaultArrayToBytesCodecSpec(*decoded_params)); array_to_bytes_codec_ptr = temp_array_to_bytes_codec.get(); } DimensionIndex preferred_order[kMaxRank]; if (DimensionIndex rank = decoded_params->rank; decoded_params->inner_order && !array_to_bytes_codec_ptr->SupportsInnerOrder( *decoded_params, span<DimensionIndex>(&preferred_order[0], rank))) { const auto& existing_inner_order = *decoded_params->inner_order; std::vector<DimensionIndex> new_order(rank); for (DimensionIndex i = 0; i < rank; ++i) { new_order[preferred_order[i]] = existing_inner_order[i]; } TENSORSTORE_RETURN_IF_ERROR( resolve_array_to_array(*internal::MakeIntrusivePtr<TransposeCodecSpec>( TransposeCodecSpec::Options{std::move(new_order)}))); } TENSORSTORE_ASSIGN_OR_RETURN( chain->array_to_bytes, array_to_bytes_codec_ptr->Resolve( std::move(*decoded_params), *bytes_decoded_params, resolved_spec ? &resolved_spec->array_to_bytes : nullptr), CodecResolveError(*array_to_bytes, "resolving codec spec", _)); if (chain->array_to_bytes->is_sharding_codec() && !bytes_to_bytes.empty()) { return absl::InvalidArgumentError(absl::StrFormat( "Sharding codec %s is not compatible with subsequent bytes -> " "bytes codecs %s that apply to the entire shard. Instead, " "bytes -> bytes codecs may be specified as inner codecs that apply " "to each sub-chunk individually.", jb::ToJson(array_to_bytes_codec_ptr, ZarrCodecJsonBinder) .value() .dump(), jb::ToJson(bytes_to_bytes, jb::Array(ZarrCodecJsonBinder)) .value() .dump())); } for (size_t i = 0; i < bytes_to_bytes.size(); ++i) { auto& encoded_params = temp_bytes_resolve_params[(i + 1) % 2].emplace(); const auto& codec_spec = *bytes_to_bytes[i]; TENSORSTORE_ASSIGN_OR_RETURN( auto codec, codec_spec.Resolve(std::move(*bytes_decoded_params), encoded_params, resolved_spec ? &resolved_spec->bytes_to_bytes.emplace_back() : nullptr), CodecResolveError(codec_spec, "resolving codec spec", _)); bytes_decoded_params = &encoded_params; chain->bytes_to_bytes.push_back(std::move(codec)); } encoded = std::move(*bytes_decoded_params); return chain; } namespace { template <typename T, typename Binder> std::string MergeErrorMessage(const T& a, const T& b, const Binder& binder) { return absl::StrFormat("Cannot merge zarr codec constraints %s and %s", jb::ToJson(a, binder).value().dump(), jb::ToJson(b, binder).value().dump()); } std::string MergeErrorMessage(const ZarrCodecSpec& a, const ZarrCodecSpec& b) { return MergeErrorMessage(ZarrCodecSpec::Ptr(&a), ZarrCodecSpec::Ptr(&b), ZarrCodecJsonBinder); } template <typename T> void EnsureMutableCodecSpec(internal::IntrusivePtr<const T>& ptr) { static_assert(std::is_base_of_v<ZarrCodecSpec, T>); assert(ptr); if (ptr->use_count() > 1) { ptr = internal::static_pointer_cast<const T>(ptr->Clone()); } } absl::Status MergeZarrCodecSpecs(ZarrCodecSpec::Ptr& target, const ZarrCodecSpec* source, bool strict) { if (!source) { return absl::OkStatus(); } if (!target) { target.reset(source); return absl::OkStatus(); } absl::Status status; const auto& target_ref = *target; const auto& source_ref = *source; if (typeid(target_ref) != typeid(source_ref)) { status = absl::FailedPreconditionError(""); } else { EnsureMutableCodecSpec(target); status = const_cast<ZarrCodecSpec&>(*target).MergeFrom(*source, strict); } if (status.ok()) return absl::OkStatus(); return tensorstore::MaybeAnnotateStatus(status, MergeErrorMessage(*target, *source)); } template <typename T> absl::Status MergeZarrCodecSpecs(typename T::Ptr& target, const T* source, bool strict) { static_assert(std::is_base_of_v<ZarrCodecSpec, T>); ZarrCodecSpec::Ptr target_base = std::move(target); auto status = MergeZarrCodecSpecs(target_base, source, strict); target = internal::static_pointer_cast<const T>(std::move(target_base)); TENSORSTORE_RETURN_IF_ERROR(status); return absl::OkStatus(); } template <typename T> absl::Status MergeZarrCodecSpecs(std::vector<T>& targets, const std::vector<T>& sources, bool strict) { constexpr bool kIsArrayToArray = std::is_same_v<ZarrArrayToArrayCodecSpec::Ptr, T>; size_t merge_count = targets.size(); bool size_mismatch = targets.size() != sources.size(); if constexpr (kIsArrayToArray) { if (!strict) { if (sources.size() == targets.size() + 1 && typeid(*sources.back()) == typeid(TransposeCodecSpec)) { targets.push_back(sources.back()); size_mismatch = false; } else if (sources.size() + 1 == targets.size() && typeid(*targets.back()) == typeid(TransposeCodecSpec)) { --merge_count; size_mismatch = false; } } } if (size_mismatch) { return tensorstore::MaybeAnnotateStatus( absl::FailedPreconditionError(absl::StrFormat( "Mismatch in number of %s codecs (%d vs %d)", kIsArrayToArray ? "array -> array" : "bytes -> bytes", targets.size(), sources.size())), MergeErrorMessage(targets, sources, jb::Array(ZarrCodecJsonBinder))); } for (size_t i = 0; i < merge_count; ++i) { TENSORSTORE_RETURN_IF_ERROR( MergeZarrCodecSpecs(targets[i], sources[i].get(), strict)); } return absl::OkStatus(); } } absl::Status ZarrCodecChainSpec::MergeFrom(const ZarrCodecChainSpec& other, bool strict) { if (!strict) { size_t self_sharding_height = sharding_height(); size_t other_sharding_height = other.sharding_height(); if (self_sharding_height > other_sharding_height && array_to_array.empty() && bytes_to_bytes.empty()) { EnsureMutableCodecSpec(array_to_bytes); return static_cast<ZarrShardingCodecSpec&>( const_cast<ZarrArrayToBytesCodecSpec&>(*array_to_bytes)) .MergeSubChunkCodecsFrom(other, strict); } if (self_sharding_height < other_sharding_height && other.array_to_array.empty() && other.bytes_to_bytes.empty()) { auto new_array_to_bytes_codec = internal::static_pointer_cast<const ZarrShardingCodecSpec>( other.array_to_bytes->Clone()); TENSORSTORE_RETURN_IF_ERROR( const_cast<ZarrShardingCodecSpec&>(*new_array_to_bytes_codec) .MergeSubChunkCodecsFrom(*this, strict)); array_to_array.clear(); bytes_to_bytes.clear(); array_to_bytes = std::move(new_array_to_bytes_codec); return absl::OkStatus(); } } TENSORSTORE_RETURN_IF_ERROR( MergeZarrCodecSpecs(array_to_array, other.array_to_array, strict)); TENSORSTORE_RETURN_IF_ERROR( MergeZarrCodecSpecs(array_to_bytes, other.array_to_bytes.get(), strict)); TENSORSTORE_RETURN_IF_ERROR( MergeZarrCodecSpecs(bytes_to_bytes, other.bytes_to_bytes, strict)); return absl::OkStatus(); } absl::Status MergeZarrCodecSpecs( std::optional<ZarrCodecChainSpec>& target, const std::optional<ZarrCodecChainSpec>& source, bool strict) { if (!target) { if (source) { target = *source; } return absl::OkStatus(); } if (!source) { return absl::OkStatus(); } return target->MergeFrom(*source, strict); } bool ZarrShardingCodecSpec::SupportsInnerOrder( const ArrayCodecResolveParameters& decoded, span<DimensionIndex> preferred_inner_order) const { return true; } size_t ZarrShardingCodecSpec::sharding_height() const { auto* sub_chunk_codecs = this->GetSubChunkCodecs(); return 1 + (sub_chunk_codecs ? sub_chunk_codecs->sharding_height() : 0); } CodecSpec TensorStoreCodecSpec::Clone() const { return internal::CodecDriverSpec::Make<TensorStoreCodecSpec>(*this); } absl::Status TensorStoreCodecSpec::DoMergeFrom( const internal::CodecDriverSpec& other_base) { if (typeid(other_base) != typeid(TensorStoreCodecSpec)) { return absl::InvalidArgumentError(""); } auto& other = static_cast<const TensorStoreCodecSpec&>(other_base); return MergeZarrCodecSpecs(codecs, other.codecs, false); } TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( TensorStoreCodecSpec, jb::Sequence( jb::Member("codecs", jb::Projection<&TensorStoreCodecSpec::codecs>(jb::Optional( ZarrCodecChainJsonBinder<true>))) )) namespace { const internal::CodecSpecRegistration<TensorStoreCodecSpec> encoding_registration; } } namespace internal { void CacheKeyEncoder<internal_zarr3::ZarrCodecChainSpec>::Encode( std::string* out, const internal_zarr3::ZarrCodecChainSpec& value) { internal::EncodeCacheKey(out, value.ToJson().value().dump()); } } } TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::internal_zarr3::ZarrCodecChainSpec, tensorstore::serialization::JsonBindableSerializer< tensorstore::internal_zarr3::ZarrCodecChainSpec>())
#include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/codec_spec.h" #include "tensorstore/driver/zarr3/codec/codec_test_util.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::CodecSpec; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_zarr3::GetDefaultBytesCodecJson; using ::tensorstore::internal_zarr3::TestCodecMerge; using ::tensorstore::internal_zarr3::ZarrCodecChainSpec; TEST(CodecMergeTest, Basic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto a, CodecSpec::FromJson({ {"driver", "zarr3"}, {"codecs", {{ {"name", "sharding_indexed"}, {"configuration", { {"chunk_shape", {30, 40, 50}}, {"index_codecs", {GetDefaultBytesCodecJson(), {{"name", "crc32c"}}}}, {"codecs", { {{"name", "transpose"}, {"configuration", {{"order", {2, 0, 1}}}}}, GetDefaultBytesCodecJson(), {{"name", "gzip"}, {"configuration", {{"level", 6}}}}, }}, }}, }}}, })); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto b, CodecSpec::FromJson( {{"driver", "zarr3"}, {"codecs", {{{"name", "gzip"}, {"configuration", {{"level", 5}}}}}}})); EXPECT_THAT(a.MergeFrom(b), MatchesStatus(absl::StatusCode::kFailedPrecondition, ".*: Incompatible \"level\": 6 vs 5")); } TEST(CodecChainSpecTest, MissingArrayToBytes) { EXPECT_THAT(ZarrCodecChainSpec::FromJson(::nlohmann::json::array_t()), MatchesStatus(absl::StatusCode::kInvalidArgument, "array -> bytes codec must be specified")); } TEST(CodecChainSpecTest, MergeCodecNameMismatch) { EXPECT_THAT( TestCodecMerge({"gzip"}, {"crc32c"}, true), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Cannot merge .*")); } TEST(CodecChainSpecTest, MergeArrayToBytes) { EXPECT_THAT( TestCodecMerge( {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}}, ::nlohmann::json::array_t(), true), ::testing::Optional(MatchesJson( {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}}))); } TEST(CodecChainSpecTest, ExtraTranspose) { ::nlohmann::json a = { {{"name", "transpose"}, {"configuration", {{"order", {0, 2, 1}}}}}, {{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}, }; ::nlohmann::json b = { {{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}, }; EXPECT_THAT(TestCodecMerge(a, b, false), ::testing::Optional(MatchesJson(a))); EXPECT_THAT( TestCodecMerge(a, b, true), MatchesStatus(absl::StatusCode::kFailedPrecondition, ".*: Mismatch in number of array -> array codecs.*")); } TEST(CodecChainSpecTest, ExtraSharding) { ::nlohmann::json a = {{ {"name", "sharding_indexed"}, {"configuration", { {"chunk_shape", {30, 40, 50}}, {"index_codecs", {GetDefaultBytesCodecJson(), {{"name", "crc32c"}}}}, {"codecs", { {{"name", "transpose"}, {"configuration", {{"order", {2, 0, 1}}}}}, GetDefaultBytesCodecJson(), {{"name", "gzip"}, {"configuration", {{"level", 6}}}}, }}, }}, }}; ::nlohmann::json b = { {{"name", "transpose"}, {"configuration", {{"order", {2, 0, 1}}}}}, GetDefaultBytesCodecJson(), {{"name", "gzip"}, {"configuration", {{"level", 6}}}}, }; ::nlohmann::json c = { GetDefaultBytesCodecJson(), {{"name", "gzip"}, {"configuration", {{"level", 6}}}}, }; EXPECT_THAT(TestCodecMerge(a, b, false), ::testing::Optional(MatchesJson(a))); EXPECT_THAT(TestCodecMerge(a, c, false), ::testing::Optional(MatchesJson(a))); EXPECT_THAT( TestCodecMerge(a, b, true), MatchesStatus(absl::StatusCode::kFailedPrecondition, ".*: Mismatch in number of array -> array codecs.*")); EXPECT_THAT(TestCodecMerge(a, c, true), MatchesStatus(absl::StatusCode::kFailedPrecondition, "Cannot merge zarr codec constraints .*")); } }
585
cpp
google/tensorstore
sharding_indexed
tensorstore/driver/zarr3/codec/sharding_indexed.cc
tensorstore/driver/zarr3/codec/sharding_indexed_test.cc
#ifndef TENSORSTORE_DRIVER_ZARR3_CODEC_SHARDING_INDEXED_H_ #define TENSORSTORE_DRIVER_ZARR3_CODEC_SHARDING_INDEXED_H_ #include <optional> #include <utility> #include <vector> #include "absl/status/status.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/index.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/shard_format.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_zarr3 { using ::tensorstore::zarr3_sharding_indexed::ShardIndexLocation; class ShardingIndexedCodecSpec : public ZarrShardingCodecSpec { public: struct Options { std::optional<std::vector<Index>> sub_chunk_shape; std::optional<ZarrCodecChainSpec> index_codecs; std::optional<ZarrCodecChainSpec> sub_chunk_codecs; std::optional<ShardIndexLocation> index_location; }; ShardingIndexedCodecSpec() = default; explicit ShardingIndexedCodecSpec(Options&& options) : options(std::move(options)) {} absl::Status MergeFrom(const ZarrCodecSpec& other, bool strict) override; ZarrCodecSpec::Ptr Clone() const override; absl::Status MergeSubChunkCodecsFrom(const ZarrCodecChainSpec& other, bool strict) override; const ZarrCodecChainSpec* GetSubChunkCodecs() const override; absl::Status GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& array_info, ArrayCodecChunkLayoutInfo& decoded) const override; Result<ZarrArrayToBytesCodec::Ptr> Resolve( ArrayCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrArrayToBytesCodecSpec::Ptr* resolved_spec) const override; Options options; }; } } #endif #include "tensorstore/driver/zarr3/codec/sharding_indexed.h" #include <stdint.h> #include <algorithm> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/status/status.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr3/codec/bytes.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/driver/zarr3/codec/crc32c.h" #include "tensorstore/driver/zarr3/codec/registry.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/internal/async_write_array.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/chunk_grid_specification.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/lexicographical_grid_index_key.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/shard_format.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.h" #include "tensorstore/rank.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_zarr3 { absl::Status SubChunkRankMismatch(span<const Index> sub_chunk_shape, DimensionIndex outer_rank) { return absl::InvalidArgumentError(tensorstore::StrCat( "sharding_indexed sub-chunk shape of ", sub_chunk_shape, " is not compatible with array of rank ", outer_rank)); } absl::Status SubChunkShapeMismatch(span<const Index> sub_chunk_shape, span<const Index> chunk_shape) { return absl::InvalidArgumentError(tensorstore::StrCat( "sharding_indexed sub-chunk shape of ", sub_chunk_shape, " does not evenly divide chunk shape of ", chunk_shape)); } namespace { class ShardingIndexedCodec : public ZarrShardingCodec { public: explicit ShardingIndexedCodec( internal::ChunkGridSpecification&& sub_chunk_grid) : sub_chunk_grid_(std::move(sub_chunk_grid)) {} class State : public ZarrShardingCodec::PreparedState, public internal::LexicographicalGridIndexKeyParser { public: absl::Status EncodeArray(SharedArrayView<const void> decoded, riegeli::Writer& writer) const final { return absl::InternalError(""); } Result<SharedArray<const void>> DecodeArray( span<const Index> decoded_shape, riegeli::Reader& reader) const final { return absl::InternalError(""); } kvstore::DriverPtr GetSubChunkKvstore( kvstore::DriverPtr parent, std::string parent_key, const Executor& executor, internal::CachePool::WeakPtr cache_pool) const override { zarr3_sharding_indexed::ShardedKeyValueStoreParameters params; params.base_kvstore = std::move(parent); params.base_kvstore_path = std::move(parent_key); params.executor = executor; params.cache_pool = std::move(cache_pool); params.index_params = shard_index_params_; return zarr3_sharding_indexed::GetShardedKeyValueStore(std::move(params)); } const LexicographicalGridIndexKeyParser& GetSubChunkStorageKeyParser() const final { return *this; } std::string FormatKey(span<const Index> grid_indices) const final { return zarr3_sharding_indexed::IndicesToKey(grid_indices); } bool ParseKey(std::string_view key, span<Index> grid_indices) const final { return zarr3_sharding_indexed::KeyToIndices(key, grid_indices); } Index MinGridIndexForLexicographicalOrder( DimensionIndex dim, IndexInterval grid_interval) const final { return 0; } internal::IntrusivePtr<const ZarrShardingCodec> parent_codec_; std::vector<Index> sub_chunk_grid_shape_; ZarrCodecChain::PreparedState::Ptr codec_state_; zarr3_sharding_indexed::ShardIndexParameters shard_index_params_; }; Result<ZarrArrayToBytesCodec::PreparedState::Ptr> Prepare( span<const Index> decoded_shape) const final { span<const Index> sub_chunk_shape = sub_chunk_grid_.components[0].shape(); if (decoded_shape.size() != sub_chunk_shape.size()) { return SubChunkRankMismatch(sub_chunk_shape, decoded_shape.size()); } auto state = internal::MakeIntrusivePtr<State>(); state->parent_codec_.reset(this); auto& sub_chunk_grid_shape = state->sub_chunk_grid_shape_; sub_chunk_grid_shape.resize(decoded_shape.size()); for (DimensionIndex i = 0; i < sub_chunk_shape.size(); ++i) { if (decoded_shape[i] % sub_chunk_shape[i] != 0) { return SubChunkShapeMismatch(sub_chunk_shape, decoded_shape); } const int64_t grid_size = decoded_shape[i] / sub_chunk_shape[i]; sub_chunk_grid_shape[i] = grid_size; } TENSORSTORE_ASSIGN_OR_RETURN( state->codec_state_, sub_chunk_codec_chain_->Prepare(sub_chunk_shape)); state->sub_chunk_grid = &sub_chunk_grid_; state->sub_chunk_codec_chain = sub_chunk_codec_chain_.get(); state->sub_chunk_codec_state = state->codec_state_.get(); state->shard_index_params_.index_location = index_location_; TENSORSTORE_RETURN_IF_ERROR(state->shard_index_params_.Initialize( *index_codec_chain_, sub_chunk_grid_shape)); return {std::in_place, std::move(state)}; } internal::ChunkGridSpecification sub_chunk_grid_; ZarrCodecChain::Ptr sub_chunk_codec_chain_; ZarrCodecChain::Ptr index_codec_chain_; ShardIndexLocation index_location_; }; } absl::Status ShardingIndexedCodecSpec::MergeFrom(const ZarrCodecSpec& other, bool strict) { using Self = ShardingIndexedCodecSpec; const auto& other_options = static_cast<const Self&>(other).options; TENSORSTORE_RETURN_IF_ERROR(MergeConstraint<&Options::sub_chunk_shape>( "chunk_shape", options, other_options)); TENSORSTORE_RETURN_IF_ERROR( internal_zarr3::MergeZarrCodecSpecs(options.index_codecs, other_options.index_codecs, strict), tensorstore::MaybeAnnotateStatus(_, "Incompatible \"index_codecs\"")); TENSORSTORE_RETURN_IF_ERROR( internal_zarr3::MergeZarrCodecSpecs( options.sub_chunk_codecs, other_options.sub_chunk_codecs, strict), tensorstore::MaybeAnnotateStatus(_, "Incompatible sub-chunk \"codecs\"")); TENSORSTORE_RETURN_IF_ERROR(MergeConstraint<&Options::index_location>( "index_location", options, other_options)); return absl::OkStatus(); } absl::Status ShardingIndexedCodecSpec::MergeSubChunkCodecsFrom( const ZarrCodecChainSpec& other, bool strict) { if (!options.sub_chunk_codecs) { options.sub_chunk_codecs = other; return absl::OkStatus(); } return options.sub_chunk_codecs->MergeFrom(other, strict); } ZarrCodecSpec::Ptr ShardingIndexedCodecSpec::Clone() const { return internal::MakeIntrusivePtr<ShardingIndexedCodecSpec>(*this); } const ZarrCodecChainSpec* ShardingIndexedCodecSpec::GetSubChunkCodecs() const { return options.sub_chunk_codecs ? &*options.sub_chunk_codecs : nullptr; } absl::Status ShardingIndexedCodecSpec::GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& array_info, ArrayCodecChunkLayoutInfo& decoded) const { ArrayDataTypeAndShapeInfo sub_chunk_info; if (options.sub_chunk_shape && !RankConstraint::Implies(options.sub_chunk_shape->size(), array_info.rank)) { return SubChunkRankMismatch(*options.sub_chunk_shape, array_info.rank); } sub_chunk_info.dtype = array_info.dtype; sub_chunk_info.rank = array_info.rank; if (options.sub_chunk_shape) { std::copy(options.sub_chunk_shape->begin(), options.sub_chunk_shape->end(), sub_chunk_info.shape.emplace().begin()); } if (options.sub_chunk_codecs) { TENSORSTORE_RETURN_IF_ERROR(options.sub_chunk_codecs->GetDecodedChunkLayout( sub_chunk_info, decoded)); } return absl::OkStatus(); } namespace { ZarrCodecChainSpec DefaultIndexCodecChainSpec() { ZarrCodecChainSpec codecs; codecs.array_to_bytes = DefaultBytesCodec(); codecs.bytes_to_bytes.push_back( internal::MakeIntrusivePtr<const Crc32cCodecSpec>()); return codecs; } } Result<ZarrArrayToBytesCodec::Ptr> ShardingIndexedCodecSpec::Resolve( ArrayCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrArrayToBytesCodecSpec::Ptr* resolved_spec) const { ShardingIndexedCodecSpec::Options* resolved_options = nullptr; if (resolved_spec) { auto* resolved_spec_ptr = new ShardingIndexedCodecSpec; resolved_options = &resolved_spec_ptr->options; resolved_spec->reset(resolved_spec_ptr); } span<const Index> sub_chunk_shape; if (options.sub_chunk_shape) { sub_chunk_shape = *options.sub_chunk_shape; } else if (decoded.read_chunk_shape) { sub_chunk_shape = span<const Index>(decoded.read_chunk_shape->data(), decoded.rank); } else { return absl::InvalidArgumentError("\"chunk_shape\" must be specified"); } if (sub_chunk_shape.size() != decoded.rank) { return SubChunkRankMismatch(sub_chunk_shape, decoded.rank); } internal::ChunkGridSpecification::ComponentList components; TENSORSTORE_ASSIGN_OR_RETURN( auto broadcast_fill_value, BroadcastArray(decoded.fill_value, BoxView<>(sub_chunk_shape.size()))); components.emplace_back( internal::AsyncWriteArray::Spec{std::move(broadcast_fill_value), Box<>(sub_chunk_shape.size())}, std::vector<Index>(sub_chunk_shape.begin(), sub_chunk_shape.end())); components.back().array_spec.fill_value_comparison_kind = EqualityComparisonKind::identical; auto codec = internal::MakeIntrusivePtr<ShardingIndexedCodec>( internal::ChunkGridSpecification(std::move(components))); codec->index_location_ = options.index_location.value_or(ShardIndexLocation::kEnd); if (resolved_options) { resolved_options->sub_chunk_shape = codec->sub_chunk_grid_.chunk_shape; resolved_options->index_location = codec->index_location_; } auto set_up_codecs = [&](const ZarrCodecChainSpec& sub_chunk_codecs) -> absl::Status { ArrayCodecResolveParameters sub_chunk_decoded; sub_chunk_decoded.dtype = decoded.dtype; sub_chunk_decoded.rank = decoded.rank; sub_chunk_decoded.fill_value = std::move(decoded.fill_value); if (decoded.read_chunk_shape) { std::copy_n(decoded.read_chunk_shape->begin(), decoded.rank, sub_chunk_decoded.read_chunk_shape.emplace().begin()); } if (decoded.codec_chunk_shape) { std::copy_n(decoded.codec_chunk_shape->begin(), decoded.rank, sub_chunk_decoded.codec_chunk_shape.emplace().begin()); } if (decoded.inner_order) { std::copy_n(decoded.inner_order->begin(), decoded.rank, sub_chunk_decoded.inner_order.emplace().begin()); } TENSORSTORE_ASSIGN_OR_RETURN( codec->sub_chunk_codec_chain_, sub_chunk_codecs.Resolve( std::move(sub_chunk_decoded), encoded, resolved_options ? &resolved_options->sub_chunk_codecs.emplace() : nullptr)); return absl::OkStatus(); }; TENSORSTORE_RETURN_IF_ERROR( set_up_codecs(options.sub_chunk_codecs ? *options.sub_chunk_codecs : ZarrCodecChainSpec{}), tensorstore::MaybeAnnotateStatus(_, "Error resolving sub-chunk codecs")); auto set_up_index_codecs = [&](const ZarrCodecChainSpec& index_codecs) -> absl::Status { TENSORSTORE_ASSIGN_OR_RETURN( codec->index_codec_chain_, zarr3_sharding_indexed::InitializeIndexCodecChain( index_codecs, sub_chunk_shape.size(), resolved_options ? &resolved_options->index_codecs.emplace() : nullptr)); return absl::OkStatus(); }; TENSORSTORE_RETURN_IF_ERROR( set_up_index_codecs(options.index_codecs ? *options.index_codecs : DefaultIndexCodecChainSpec()), tensorstore::MaybeAnnotateStatus(_, "Error resolving index_codecs")); return {std::in_place, std::move(codec)}; } TENSORSTORE_GLOBAL_INITIALIZER { using Self = ShardingIndexedCodecSpec; using Options = Self::Options; namespace jb = ::tensorstore::internal_json_binding; RegisterCodec<Self>( "sharding_indexed", jb::Projection<&Self::options>(jb::Sequence( jb::Member("chunk_shape", jb::Projection<&Options::sub_chunk_shape>( OptionalIfConstraintsBinder( jb::Array(jb::Integer<Index>(1))))), jb::Member("index_codecs", jb::Projection<&Options::index_codecs>( OptionalIfConstraintsBinder())), jb::Member("codecs", jb::Projection<&Options::sub_chunk_codecs>( OptionalIfConstraintsBinder())), jb::Member( "index_location", jb::Projection<&Options::index_location>( [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (!is_loading) { if (!options.constraints && *obj == ShardIndexLocation::kEnd) { return absl::OkStatus(); } } return jb::Validate([](const auto& options, auto* obj) { if (!options.constraints) { if (!obj->has_value()) *obj = ShardIndexLocation::kEnd; } return absl::OkStatus(); })(is_loading, options, obj, j); })) ))); } } }
#include <stdint.h> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/driver/zarr3/codec/codec_test_util.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_zarr3::ArrayCodecResolveParameters; using ::tensorstore::internal_zarr3::BytesCodecResolveParameters; using ::tensorstore::internal_zarr3::CodecSpecRoundTripTestParams; using ::tensorstore::internal_zarr3::TestCodecSpecRoundTrip; using ::tensorstore::internal_zarr3::ZarrCodecChainSpec; TEST(ShardingIndexedTest, Basic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto codec, ZarrCodecChainSpec::FromJson( {{{"name", "sharding_indexed"}, {"configuration", { {"chunk_shape", {2, 3}}, {"codecs", {{ {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }}}, {"index_codecs", { { {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }, { {"name", "crc32c"}, }, }}, }}}})); } TEST(ShardingIndexedTest, InvalidBytesToBytes) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto spec, ZarrCodecChainSpec::FromJson({ {{"name", "sharding_indexed"}, {"configuration", { {"chunk_shape", {2, 3}}, {"codecs", {{ {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }}}, {"index_codecs", { { {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }, { {"name", "crc32c"}, }, }}, }}}, { {"name", "gzip"}, {"configuration", {{"level", 5}}}, }, })); ArrayCodecResolveParameters decoded_params; decoded_params.dtype = tensorstore::dtype_v<uint32_t>; decoded_params.rank = 2; decoded_params.fill_value = tensorstore::MakeScalarArray<uint32_t>(42); BytesCodecResolveParameters encoded_params; EXPECT_THAT( spec.Resolve(std::move(decoded_params), encoded_params, nullptr), MatchesStatus(absl::StatusCode::kInvalidArgument, "Sharding codec .* is not compatible with subsequent bytes " "-> bytes .*")); } TEST(ShardingIndexedTest, DefaultIndexLocation) { CodecSpecRoundTripTestParams p; p.resolve_params.rank = 2; p.orig_spec = { {{"name", "sharding_indexed"}, {"configuration", { {"chunk_shape", {2, 3}}, {"codecs", {{ {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }}}, {"index_codecs", { { {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }, { {"name", "crc32c"}, }, }}, }}}, }; p.expected_spec = { {{"name", "sharding_indexed"}, {"configuration", { {"chunk_shape", {2, 3}}, {"codecs", {{ {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }}}, {"index_location", "end"}, {"index_codecs", { { {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }, { {"name", "crc32c"}, }, }}, }}}, }; p.to_json_options.constraints = true; TestCodecSpecRoundTrip(p); p.expected_spec = { {{"name", "sharding_indexed"}, {"configuration", { {"chunk_shape", {2, 3}}, {"codecs", {{ {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }}}, {"index_codecs", { { {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }, { {"name", "crc32c"}, }, }}, }}}, }; p.to_json_options.constraints = false; TestCodecSpecRoundTrip(p); } TEST(ShardingIndexedTest, IndexLocationEndNotStored) { ArrayCodecResolveParameters p; p.dtype = tensorstore::dtype_v<uint16_t>; p.rank = 2; EXPECT_THAT(TestCodecSpecResolve( ::nlohmann::json::array_t{ {{"name", "sharding_indexed"}, {"configuration", { {"chunk_shape", {2, 3}}, {"codecs", {{ {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }}}, {"index_codecs", { { {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }, { {"name", "crc32c"}, }, }}, {"index_location", "end"}, }}}}, p, false), ::testing::Optional(MatchesJson(::nlohmann::json::array_t{ {{"name", "sharding_indexed"}, {"configuration", { {"chunk_shape", {2, 3}}, {"codecs", {{ {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }}}, {"index_codecs", { { {"name", "bytes"}, {"configuration", {{"endian", "little"}}}, }, { {"name", "crc32c"}, }, }}, }}}}))); } }
586
cpp
google/tensorstore
gzip
tensorstore/driver/zarr3/codec/gzip.cc
tensorstore/driver/zarr3/codec/gzip_test.cc
#ifndef TENSORSTORE_DRIVER_ZARR3_CODEC_GZIP_H_ #define TENSORSTORE_DRIVER_ZARR3_CODEC_GZIP_H_ #include <optional> #include "absl/status/status.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_zarr3 { class GzipCodecSpec : public ZarrBytesToBytesCodecSpec { public: struct Options { std::optional<int> level; }; GzipCodecSpec() = default; explicit GzipCodecSpec(const Options& options) : options(options) {} absl::Status MergeFrom(const ZarrCodecSpec& other, bool strict) override; ZarrCodecSpec::Ptr Clone() const override; Result<ZarrBytesToBytesCodec::Ptr> Resolve( BytesCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrBytesToBytesCodecSpec::Ptr* resolved_spec) const final; Options options; }; } } #endif #include "tensorstore/driver/zarr3/codec/gzip.h" #include <stdint.h> #include <memory> #include "absl/status/status.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "riegeli/zlib/zlib_reader.h" #include "riegeli/zlib/zlib_writer.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/driver/zarr3/codec/registry.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_zarr3 { namespace { constexpr int kDefaultLevel = 6; class GzipCodec : public ZarrBytesToBytesCodec { public: explicit GzipCodec(int level) : level_(level) {} class State : public ZarrBytesToBytesCodec::PreparedState { public: Result<std::unique_ptr<riegeli::Writer>> GetEncodeWriter( riegeli::Writer& encoded_writer) const final { using Writer = riegeli::ZlibWriter<riegeli::Writer*>; Writer::Options options; options.set_compression_level(level_); options.set_header(Writer::Header::kGzip); return std::make_unique<Writer>(&encoded_writer, options); } Result<std::unique_ptr<riegeli::Reader>> GetDecodeReader( riegeli::Reader& encoded_reader) const final { using Reader = riegeli::ZlibReader<riegeli::Reader*>; Reader::Options options; options.set_header(Reader::Header::kGzip); return std::make_unique<Reader>(&encoded_reader, options); } int level_; }; Result<PreparedState::Ptr> Prepare(int64_t decoded_size) const final { auto state = internal::MakeIntrusivePtr<State>(); state->level_ = level_; return state; } private: int level_; }; } absl::Status GzipCodecSpec::MergeFrom(const ZarrCodecSpec& other, bool strict) { using Self = GzipCodecSpec; const auto& other_options = static_cast<const Self&>(other).options; TENSORSTORE_RETURN_IF_ERROR( MergeConstraint<&Options::level>("level", options, other_options)); return absl::OkStatus(); } ZarrCodecSpec::Ptr GzipCodecSpec::Clone() const { return internal::MakeIntrusivePtr<GzipCodecSpec>(*this); } Result<ZarrBytesToBytesCodec::Ptr> GzipCodecSpec::Resolve( BytesCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrBytesToBytesCodecSpec::Ptr* resolved_spec) const { auto resolved_level = options.level.value_or(kDefaultLevel); if (resolved_spec) { resolved_spec->reset( options.level ? this : new GzipCodecSpec(Options{resolved_level})); } return internal::MakeIntrusivePtr<GzipCodec>(resolved_level); } TENSORSTORE_GLOBAL_INITIALIZER { using Self = GzipCodecSpec; using Options = Self::Options; namespace jb = ::tensorstore::internal_json_binding; RegisterCodec<Self>( "gzip", jb::Projection<&Self::options>(jb::Sequence( jb::Member("level", jb::Projection<&Options::level>( OptionalIfConstraintsBinder( jb::Integer<int>(0, 9)))) ))); } } }
#include <gtest/gtest.h> #include "tensorstore/driver/zarr3/codec/codec_test_util.h" namespace { using ::tensorstore::internal_zarr3::CodecRoundTripTestParams; using ::tensorstore::internal_zarr3::CodecSpecRoundTripTestParams; using ::tensorstore::internal_zarr3::GetDefaultBytesCodecJson; using ::tensorstore::internal_zarr3::TestCodecRoundTrip; using ::tensorstore::internal_zarr3::TestCodecSpecRoundTrip; TEST(GzipTest, EndianInferred) { CodecSpecRoundTripTestParams p; p.orig_spec = { {{"name", "gzip"}, {"configuration", {{"level", 7}}}}, }; p.expected_spec = { GetDefaultBytesCodecJson(), {{"name", "gzip"}, {"configuration", {{"level", 7}}}}, }; TestCodecSpecRoundTrip(p); } TEST(GzipTest, DefaultLevel) { CodecSpecRoundTripTestParams p; p.orig_spec = { {{"name", "gzip"}}, }; p.expected_spec = { GetDefaultBytesCodecJson(), {{"name", "gzip"}, {"configuration", {{"level", 6}}}}, }; TestCodecSpecRoundTrip(p); } TEST(GzipTest, RoundTrip) { CodecRoundTripTestParams p; p.spec = {"gzip"}; TestCodecRoundTrip(p); } }
587
cpp
google/tensorstore
bytes
tensorstore/driver/zarr3/codec/bytes.cc
tensorstore/driver/zarr3/codec/bytes_test.cc
#ifndef TENSORSTORE_DRIVER_ZARR3_CODEC_BYTES_H_ #define TENSORSTORE_DRIVER_ZARR3_CODEC_BYTES_H_ #include <optional> #include "absl/status/status.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_zarr3 { class BytesCodecSpec : public ZarrArrayToBytesCodecSpec { public: struct Options { std::optional<endian> endianness; bool constraints = false; }; BytesCodecSpec() = default; explicit BytesCodecSpec(const Options& options) : options(options) {} absl::Status MergeFrom(const ZarrCodecSpec& other, bool strict) override; ZarrCodecSpec::Ptr Clone() const override; absl::Status GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& array_info, ArrayCodecChunkLayoutInfo& decoded) const override; bool SupportsInnerOrder( const ArrayCodecResolveParameters& decoded, span<DimensionIndex> preferred_inner_order) const override; Result<ZarrArrayToBytesCodec::Ptr> Resolve( ArrayCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrArrayToBytesCodecSpec::Ptr* resolved_spec) const override; Options options; }; internal::IntrusivePtr<const BytesCodecSpec> DefaultBytesCodec(); } } #endif #include "tensorstore/driver/zarr3/codec/bytes.h" #include <assert.h> #include <stdint.h> #include <optional> #include <string_view> #include <utility> #include "absl/status/status.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/driver/zarr3/codec/registry.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dimension_permutation.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_optional.h" #include "tensorstore/internal/riegeli/array_endian_codec.h" #include "tensorstore/internal/unaligned_data_type_functions.h" #include "tensorstore/rank.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_zarr3 { namespace { absl::Status InvalidDataTypeError(DataType dtype) { return absl::InvalidArgumentError(tensorstore::StrCat( "Data type ", dtype, " not compatible with \"bytes\" codec")); } class BytesCodec : public ZarrArrayToBytesCodec { public: explicit BytesCodec(DataType decoded_dtype, endian endianness) : dtype_(decoded_dtype), endianness_(endianness) {} Result<PreparedState::Ptr> Prepare( span<const Index> decoded_shape) const final; private: DataType dtype_; endian endianness_; }; } absl::Status BytesCodecSpec::GetDecodedChunkLayout( const ArrayDataTypeAndShapeInfo& array_info, ArrayCodecChunkLayoutInfo& decoded) const { if (array_info.dtype.valid() && !internal::IsTrivialDataType(array_info.dtype)) { return InvalidDataTypeError(array_info.dtype); } const DimensionIndex rank = array_info.rank; if (rank != dynamic_rank) { auto& inner_order = decoded.inner_order.emplace(); for (DimensionIndex i = 0; i < rank; ++i) { inner_order[i] = i; } } if (array_info.shape) { auto& shape = *array_info.shape; auto& read_chunk_shape = decoded.read_chunk_shape.emplace(); for (DimensionIndex i = 0; i < rank; ++i) { read_chunk_shape[i] = shape[i]; } } return absl::OkStatus(); } bool BytesCodecSpec::SupportsInnerOrder( const ArrayCodecResolveParameters& decoded, span<DimensionIndex> preferred_inner_order) const { if (!decoded.inner_order) return true; if (PermutationMatchesOrder(span(decoded.inner_order->data(), decoded.rank), c_order)) { return true; } SetPermutation(c_order, preferred_inner_order); return false; } Result<ZarrArrayToBytesCodec::Ptr> BytesCodecSpec::Resolve( ArrayCodecResolveParameters&& decoded, BytesCodecResolveParameters& encoded, ZarrArrayToBytesCodecSpec::Ptr* resolved_spec) const { assert(decoded.dtype.valid()); if (!internal::IsTrivialDataType(decoded.dtype)) { return InvalidDataTypeError(decoded.dtype); } const bool is_endian_invariant = internal::IsEndianInvariantDataType(decoded.dtype); if (!options.constraints && !is_endian_invariant && !options.endianness) { return absl::InvalidArgumentError( tensorstore::StrCat("\"bytes\" codec requires that \"endian\" option " "is specified for data type ", decoded.dtype)); } encoded.item_bits = decoded.dtype.size() * 8; DimensionIndex rank = decoded.rank; if (decoded.codec_chunk_shape) { return absl::InvalidArgumentError(tensorstore::StrCat( "\"bytes\" codec does not support codec_chunk_shape (", span<const Index>(decoded.codec_chunk_shape->data(), rank), " was specified")); } if (decoded.inner_order) { auto& decoded_inner_order = *decoded.inner_order; for (DimensionIndex i = 0; i < rank; ++i) { if (decoded_inner_order[i] != i) { return absl::InvalidArgumentError(tensorstore::StrCat( "\"bytes\" codec does not support inner_order of ", span<const DimensionIndex>(decoded_inner_order.data(), rank))); } } } endian resolved_endianness = options.endianness.value_or(endian::native); if (resolved_spec) { resolved_spec->reset(new BytesCodecSpec(Options{ is_endian_invariant ? std::optional<endian>() : std::optional<endian>(resolved_endianness)})); } return internal::MakeIntrusivePtr<BytesCodec>(decoded.dtype, resolved_endianness); } namespace { namespace jb = ::tensorstore::internal_json_binding; constexpr auto EndiannessBinder() { return jb::Enum<endian, std::string_view>({ {endian::little, "little"}, {endian::big, "big"}, }); } } absl::Status BytesCodecSpec::MergeFrom(const ZarrCodecSpec& other, bool strict) { using Self = BytesCodecSpec; const auto& other_options = static_cast<const Self&>(other).options; TENSORSTORE_RETURN_IF_ERROR(MergeConstraint<&Options::endianness>( "endian", options, other_options, EndiannessBinder())); return absl::OkStatus(); } ZarrCodecSpec::Ptr BytesCodecSpec::Clone() const { return internal::MakeIntrusivePtr<BytesCodecSpec>(*this); } namespace { class BytesCodecPreparedState : public ZarrArrayToBytesCodec::PreparedState { public: int64_t encoded_size() const final { return encoded_size_; } absl::Status EncodeArray(SharedArrayView<const void> decoded, riegeli::Writer& writer) const final { if (internal::EncodeArrayEndian(std::move(decoded), endianness_, c_order, writer)) { return absl::OkStatus(); } assert(!writer.ok()); return writer.status(); } Result<SharedArray<const void>> DecodeArray( span<const Index> decoded_shape, riegeli::Reader& reader) const final { return internal::DecodeArrayEndian(reader, dtype_, decoded_shape, endianness_, c_order); } DataType dtype_; endian endianness_; int64_t encoded_size_; }; } Result<ZarrArrayToBytesCodec::PreparedState::Ptr> BytesCodec::Prepare( span<const Index> decoded_shape) const { int64_t bytes = dtype_.size(); for (auto size : decoded_shape) { if (internal::MulOverflow(size, bytes, &bytes)) { return absl::OutOfRangeError(tensorstore::StrCat( "Integer overflow computing encoded size of array of shape ", decoded_shape)); } } auto state = internal::MakeIntrusivePtr<BytesCodecPreparedState>(); state->dtype_ = dtype_; state->endianness_ = endianness_; state->encoded_size_ = bytes; return state; } internal::IntrusivePtr<const BytesCodecSpec> DefaultBytesCodec() { return internal::MakeIntrusivePtr<BytesCodecSpec>( BytesCodecSpec::Options{endian::native}); } TENSORSTORE_GLOBAL_INITIALIZER { using Self = BytesCodecSpec; using Options = Self::Options; RegisterCodec<Self>( "bytes", jb::Projection<&Self::options>(jb::Sequence( [](auto is_loading, const auto& options, auto* obj, auto* j) { if constexpr (is_loading) { obj->constraints = options.constraints; } return absl::OkStatus(); }, jb::Member("endian", jb::Projection<&Options::endianness>( jb::Optional(EndiannessBinder()))) ))); } } }
#include <stdint.h> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/driver/zarr3/codec/codec_test_util.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::dtype_v; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_zarr3::ArrayCodecResolveParameters; using ::tensorstore::internal_zarr3::CodecRoundTripTestParams; using ::tensorstore::internal_zarr3::CodecSpecRoundTripTestParams; using ::tensorstore::internal_zarr3::GetDefaultBytesCodecJson; using ::tensorstore::internal_zarr3::TestCodecRoundTrip; using ::tensorstore::internal_zarr3::TestCodecSpecRoundTrip; using ::tensorstore::internal_zarr3::ZarrCodecChainSpec; TEST(BytesTest, SpecRoundTrip) { CodecSpecRoundTripTestParams p; p.orig_spec = {"bytes"}; p.expected_spec = ::nlohmann::json::array_t{GetDefaultBytesCodecJson()}; TestCodecSpecRoundTrip(p); } TEST(BytesTest, DuplicateArrayToBytes) { EXPECT_THAT( ZarrCodecChainSpec::FromJson({ {{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}, {{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}, }), MatchesStatus(absl::StatusCode::kInvalidArgument, "Expected bytes -> bytes codec, but received: .*")); } TEST(BytesTest, RoundTrip) { CodecRoundTripTestParams p; p.spec = {"bytes"}; TestCodecRoundTrip(p); } TEST(BytesTest, AutomaticTranspose) { ArrayCodecResolveParameters p; p.dtype = dtype_v<uint16_t>; p.rank = 2; auto& inner_order = p.inner_order.emplace(); inner_order[0] = 1; inner_order[1] = 0; EXPECT_THAT( TestCodecSpecResolve( ::nlohmann::json::array_t{GetDefaultBytesCodecJson()}, p), ::testing::Optional(MatchesJson({ {{"name", "transpose"}, {"configuration", {{"order", {1, 0}}}}}, GetDefaultBytesCodecJson(), }))); } TEST(BytesTest, EndianInvariantDataType) { ArrayCodecResolveParameters p; p.dtype = dtype_v<uint8_t>; p.rank = 2; EXPECT_THAT( TestCodecSpecResolve(::nlohmann::json::array_t{{{"name", "bytes"}}}, p, false), ::testing::Optional( MatchesJson(::nlohmann::json::array_t{{{"name", "bytes"}}}))); } TEST(BytesTest, MissingEndianEndianInvariantDataType) { ArrayCodecResolveParameters p; p.dtype = dtype_v<uint16_t>; p.rank = 2; EXPECT_THAT( TestCodecSpecResolve(::nlohmann::json::array_t{{{"name", "bytes"}}}, p, false), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: \"bytes\" codec requires that \"endian\" option is " "specified for data type uint16")); } }
588
cpp
google/tensorstore
chunk_encoding
tensorstore/driver/neuroglancer_precomputed/chunk_encoding.cc
tensorstore/driver/neuroglancer_precomputed/chunk_encoding_test.cc
#ifndef TENSORSTORE_DRIVER_NEUROGLANCER_PRECOMPUTED_CHUNK_ENCODING_H_ #define TENSORSTORE_DRIVER_NEUROGLANCER_PRECOMPUTED_CHUNK_ENCODING_H_ #include <stddef.h> #include "absl/strings/cord.h" #include "tensorstore/array.h" #include "tensorstore/driver/neuroglancer_precomputed/metadata.h" #include "tensorstore/index.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_neuroglancer_precomputed { Result<SharedArray<const void>> DecodeChunk(span<const Index> chunk_indices, const MultiscaleMetadata& metadata, size_t scale_index, StridedLayoutView<4> chunk_layout, absl::Cord buffer); Result<absl::Cord> EncodeChunk(span<const Index> chunk_indices, const MultiscaleMetadata& metadata, size_t scale_index, const SharedArrayView<const void>& array); } } #endif #include "tensorstore/driver/neuroglancer_precomputed/chunk_encoding.h" #include <algorithm> #include <array> #include <cstddef> #include <cstdint> #include <limits> #include <string> #include <utility> #include "absl/algorithm/container.h" #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "riegeli/bytes/cord_reader.h" #include "riegeli/bytes/cord_writer.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/neuroglancer_precomputed/metadata.h" #include "tensorstore/index.h" #include "tensorstore/internal/compression/neuroglancer_compressed_segmentation.h" #include "tensorstore/internal/data_type_endian_conversion.h" #include "tensorstore/internal/flat_cord_builder.h" #include "tensorstore/internal/image/image_info.h" #include "tensorstore/internal/image/jpeg_reader.h" #include "tensorstore/internal/image/jpeg_writer.h" #include "tensorstore/internal/image/png_reader.h" #include "tensorstore/internal/image/png_writer.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/endian.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_neuroglancer_precomputed { using ::tensorstore::internal_image::ImageInfo; using ::tensorstore::internal_image::JpegWriterOptions; using ::tensorstore::internal_image::PngWriterOptions; Result<SharedArray<const void>> DecodeRawChunk( DataType dtype, span<const Index, 4> shape, StridedLayoutView<4> chunk_layout, absl::Cord buffer) { const Index expected_bytes = ProductOfExtents(shape) * dtype.size(); if (expected_bytes != static_cast<Index>(buffer.size())) { return absl::InvalidArgumentError( tensorstore::StrCat("Expected chunk length to be ", expected_bytes, ", but received ", buffer.size(), " bytes")); } auto flat_buffer = buffer.Flatten(); if (absl::c_equal(shape, chunk_layout.shape())) { auto decoded_array = internal::TryViewCordAsArray( buffer, 0, dtype, endian::little, chunk_layout); if (decoded_array.valid()) return {std::in_place, decoded_array}; } Array<const void, 4> source( {static_cast<const void*>(flat_buffer.data()), dtype}, shape); SharedArray<void> full_decoded_array( internal::AllocateAndConstructSharedElements(chunk_layout.num_elements(), value_init, dtype), chunk_layout); ArrayView<void> partial_decoded_array( full_decoded_array.element_pointer(), StridedLayoutView<>{shape, chunk_layout.byte_strides()}); internal::DecodeArray(source, endian::little, partial_decoded_array); return full_decoded_array; } template <typename ImageReader> Result<SharedArray<const void>> DecodeImageChunk( DataType dtype, span<const Index, 4> partial_shape, StridedLayoutView<4> chunk_layout, absl::Cord encoded_input) { auto array = AllocateArray( {partial_shape[1], partial_shape[2], partial_shape[3], partial_shape[0]}, c_order, default_init, dtype); { riegeli::CordReader<> cord_reader(&encoded_input); ImageReader reader; TENSORSTORE_RETURN_IF_ERROR(reader.Initialize(&cord_reader)); auto info = reader.GetImageInfo(); const Index num_elements = ProductOfExtents(partial_shape.subspan<1>()); size_t total_pixels; if (internal::MulOverflow(static_cast<size_t>(info.width), static_cast<size_t>(info.height), &total_pixels) || num_elements == std::numeric_limits<Index>::max() || static_cast<Index>(total_pixels) != num_elements || static_cast<Index>(info.num_components) != partial_shape[0]) { return absl::InvalidArgumentError(tensorstore::StrCat( "Image dimensions (", info.width, ", ", info.height, ", ", info.num_components, ") are not compatible with expected chunk shape ", partial_shape)); } TENSORSTORE_RETURN_IF_ERROR(reader.Decode( tensorstore::span(reinterpret_cast<unsigned char*>(array.data()), ImageRequiredBytes(info)))); if (!cord_reader.Close()) { return cord_reader.status(); } } if (partial_shape[0] == 1 && absl::c_equal(partial_shape, chunk_layout.shape())) { return SharedArray<const void>(array.element_pointer(), chunk_layout); } SharedArray<void> full_decoded_array( internal::AllocateAndConstructSharedElements(chunk_layout.num_elements(), default_init, dtype), chunk_layout); Array<void, 4> partial_decoded_array( full_decoded_array.element_pointer(), StridedLayout<4>( {partial_shape[1], partial_shape[2], partial_shape[3], partial_shape[0]}, {chunk_layout.byte_strides()[1], chunk_layout.byte_strides()[2], chunk_layout.byte_strides()[3], chunk_layout.byte_strides()[0]})); CopyArray(array, partial_decoded_array); return full_decoded_array; } Result<SharedArray<const void>> DecodeJpegChunk( DataType dtype, span<const Index, 4> partial_shape, StridedLayoutView<4> chunk_layout, absl::Cord encoded_input) { return DecodeImageChunk<internal_image::JpegReader>( dtype, partial_shape, chunk_layout, std::move(encoded_input)); } Result<SharedArray<const void>> DecodePngChunk( DataType dtype, span<const Index, 4> partial_shape, StridedLayoutView<4> chunk_layout, absl::Cord encoded_input) { return DecodeImageChunk<internal_image::PngReader>( dtype, partial_shape, chunk_layout, std::move(encoded_input)); } Result<SharedArray<const void>> DecodeCompressedSegmentationChunk( DataType dtype, span<const Index, 4> shape, StridedLayoutView<4> chunk_layout, std::array<Index, 3> block_size, absl::Cord buffer) { auto flat_buffer = buffer.Flatten(); SharedArray<void> full_decoded_array( internal::AllocateAndConstructSharedElements(chunk_layout.num_elements(), default_init, dtype), chunk_layout); std::ptrdiff_t output_shape_ptrdiff_t[4] = {shape[0], shape[1], shape[2], shape[3]}; std::ptrdiff_t block_shape_ptrdiff_t[3] = {block_size[2], block_size[1], block_size[0]}; std::ptrdiff_t output_byte_strides[4] = { chunk_layout.byte_strides()[0], chunk_layout.byte_strides()[1], chunk_layout.byte_strides()[2], chunk_layout.byte_strides()[3]}; bool success = false; switch (dtype.id()) { case DataTypeId::uint32_t: success = neuroglancer_compressed_segmentation::DecodeChannels( flat_buffer, block_shape_ptrdiff_t, output_shape_ptrdiff_t, output_byte_strides, static_cast<uint32_t*>(full_decoded_array.data())); break; case DataTypeId::uint64_t: success = neuroglancer_compressed_segmentation::DecodeChannels( flat_buffer, block_shape_ptrdiff_t, output_shape_ptrdiff_t, output_byte_strides, static_cast<uint64_t*>(full_decoded_array.data())); break; default: ABSL_UNREACHABLE(); } if (!success) { return absl::InvalidArgumentError( "Corrupted Neuroglancer compressed segmentation"); } return full_decoded_array; } void GetChunkShape(span<const Index> chunk_indices, const MultiscaleMetadata& metadata, size_t scale_index, span<const Index, 4> full_chunk_shape, span<Index, 4> partial_chunk_shape) { const auto& scale = metadata.scales[scale_index]; partial_chunk_shape[0] = full_chunk_shape[0]; for (int i = 0; i < 3; ++i) { const Index full_size = full_chunk_shape[3 - i]; partial_chunk_shape[3 - i] = std::min( scale.box.shape()[i] - chunk_indices[i] * full_size, full_size); } } Result<SharedArray<const void>> DecodeChunk(span<const Index> chunk_indices, const MultiscaleMetadata& metadata, size_t scale_index, StridedLayoutView<4> chunk_layout, absl::Cord buffer) { const auto& scale_metadata = metadata.scales[scale_index]; std::array<Index, 4> chunk_shape; GetChunkShape(chunk_indices, metadata, scale_index, chunk_layout.shape(), chunk_shape); switch (scale_metadata.encoding) { case ScaleMetadata::Encoding::raw: return DecodeRawChunk(metadata.dtype, chunk_shape, chunk_layout, std::move(buffer)); case ScaleMetadata::Encoding::png: return DecodePngChunk(metadata.dtype, chunk_shape, chunk_layout, std::move(buffer)); case ScaleMetadata::Encoding::jpeg: return DecodeJpegChunk(metadata.dtype, chunk_shape, chunk_layout, std::move(buffer)); case ScaleMetadata::Encoding::compressed_segmentation: return DecodeCompressedSegmentationChunk( metadata.dtype, chunk_shape, chunk_layout, scale_metadata.compressed_segmentation_block_size, std::move(buffer)); } ABSL_UNREACHABLE(); } absl::Cord EncodeRawChunk(DataType dtype, span<const Index, 4> shape, const SharedArrayView<const void>& array) { ArrayView<const void> partial_source( array.element_pointer(), StridedLayoutView<>(shape, array.byte_strides())); internal::FlatCordBuilder buffer(ProductOfExtents(shape) * dtype.size()); Array<void, 4> encoded_array({static_cast<void*>(buffer.data()), dtype}, shape); internal::EncodeArray(partial_source, encoded_array, endian::little); return std::move(buffer).Build(); } template <typename ImageWriter, typename Options> Result<absl::Cord> EncodeImageChunk(Options options, DataType dtype, span<const Index, 4> shape, ArrayView<const void> array) { Array<const void, 4> partial_source( array.element_pointer(), StridedLayout<4>({shape[1], shape[2], shape[3], shape[0]}, {array.byte_strides()[1], array.byte_strides()[2], array.byte_strides()[3], array.byte_strides()[0]})); auto contiguous_array = MakeCopy(partial_source, c_order); absl::Cord buffer; { ImageWriter writer; riegeli::CordWriter<> cord_writer(&buffer); TENSORSTORE_RETURN_IF_ERROR(writer.Initialize(&cord_writer, options)); ImageInfo info{static_cast<int32_t>(shape[3]), static_cast<int32_t>(shape[1] * shape[2]), static_cast<int32_t>(shape[0]), dtype}; TENSORSTORE_RETURN_IF_ERROR(writer.Encode( info, tensorstore::span(reinterpret_cast<const unsigned char*>( contiguous_array.data()), contiguous_array.num_elements() * contiguous_array.dtype().size()))); TENSORSTORE_RETURN_IF_ERROR(writer.Done()); } return buffer; } Result<absl::Cord> EncodeJpegChunk(DataType dtype, int quality, span<const Index, 4> shape, ArrayView<const void> array) { internal_image::JpegWriterOptions options; options.quality = quality; return EncodeImageChunk<internal_image::JpegWriter>(options, dtype, shape, array); } Result<absl::Cord> EncodePngChunk(DataType dtype, int compression_level, span<const Index, 4> shape, ArrayView<const void> array) { internal_image::PngWriterOptions options; options.compression_level = compression_level; return EncodeImageChunk<internal_image::PngWriter>(options, dtype, shape, array); } Result<absl::Cord> EncodeCompressedSegmentationChunk( DataType dtype, span<const Index, 4> shape, ArrayView<const void> array, std::array<Index, 3> block_size) { std::ptrdiff_t input_shape_ptrdiff_t[4] = {shape[0], shape[1], shape[2], shape[3]}; std::ptrdiff_t block_shape_ptrdiff_t[3] = {block_size[2], block_size[1], block_size[0]}; std::string out; std::ptrdiff_t input_byte_strides[4] = { array.byte_strides()[0], array.byte_strides()[1], array.byte_strides()[2], array.byte_strides()[3]}; switch (dtype.id()) { case DataTypeId::uint32_t: neuroglancer_compressed_segmentation::EncodeChannels( static_cast<const uint32_t*>(array.data()), input_shape_ptrdiff_t, input_byte_strides, block_shape_ptrdiff_t, &out); break; case DataTypeId::uint64_t: neuroglancer_compressed_segmentation::EncodeChannels( static_cast<const uint64_t*>(array.data()), input_shape_ptrdiff_t, input_byte_strides, block_shape_ptrdiff_t, &out); break; default: ABSL_UNREACHABLE(); } return absl::Cord(std::move(out)); } Result<absl::Cord> EncodeChunk(span<const Index> chunk_indices, const MultiscaleMetadata& metadata, size_t scale_index, const SharedArrayView<const void>& array) { const auto& scale_metadata = metadata.scales[scale_index]; std::array<Index, 4> partial_chunk_shape; GetChunkShape(chunk_indices, metadata, scale_index, span<const Index, 4>(array.shape().data(), 4), partial_chunk_shape); switch (scale_metadata.encoding) { case ScaleMetadata::Encoding::raw: return EncodeRawChunk(metadata.dtype, partial_chunk_shape, array); case ScaleMetadata::Encoding::jpeg: return EncodeJpegChunk(metadata.dtype, scale_metadata.jpeg_quality, partial_chunk_shape, array); case ScaleMetadata::Encoding::png: return EncodePngChunk(metadata.dtype, scale_metadata.png_level, partial_chunk_shape, array); case ScaleMetadata::Encoding::compressed_segmentation: return EncodeCompressedSegmentationChunk( metadata.dtype, partial_chunk_shape, array, scale_metadata.compressed_segmentation_block_size); } ABSL_UNREACHABLE(); } } }
#include "tensorstore/driver/neuroglancer_precomputed/chunk_encoding.h" #include <cstddef> #include <cstdint> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include <nlohmann/json_fwd.hpp> #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/neuroglancer_precomputed/metadata.h" #include "tensorstore/index.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::Index; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_neuroglancer_precomputed::DecodeChunk; using ::tensorstore::internal_neuroglancer_precomputed::EncodeChunk; using ::tensorstore::internal_neuroglancer_precomputed::MultiscaleMetadata; struct P { ::nlohmann::json metadata_json; tensorstore::DataType dtype; bool compare = true; bool truncate = true; }; class ChunkEncodingTest : public testing::TestWithParam<P> { public: template <typename T> tensorstore::SharedArray<void> AllocateArrayImpl(Index num_channels) { auto array = tensorstore::AllocateArray<T>({num_channels, 5, 4, 3}); for (Index i = 0, n = array.num_elements(); i < n; ++i) { array.data()[i] = static_cast<T>(i); } return array; } tensorstore::SharedArray<void> GetArrayForDType(tensorstore::DataTypeId id, Index num_channels) { switch (id) { case tensorstore::DataTypeId::uint8_t: return AllocateArrayImpl<uint8_t>(num_channels); case tensorstore::DataTypeId::uint16_t: return AllocateArrayImpl<uint16_t>(num_channels); case tensorstore::DataTypeId::uint32_t: return AllocateArrayImpl<uint32_t>(num_channels); case tensorstore::DataTypeId::uint64_t: return AllocateArrayImpl<uint64_t>(num_channels); default: ABSL_UNREACHABLE(); } } }; TEST_P(ChunkEncodingTest, Roundtrip) { auto metadata_json = GetParam().metadata_json; auto dtype = GetParam().dtype; metadata_json["data_type"] = dtype.name(); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto metadata, MultiscaleMetadata::FromJson(metadata_json)); auto array = GetArrayForDType(dtype.id(), metadata.num_channels); std::vector<Index> chunk_indices{0, 0, 0}; const size_t scale_index = 0; TENSORSTORE_ASSERT_OK_AND_ASSIGN( absl::Cord out, EncodeChunk(chunk_indices, metadata, scale_index, array)); tensorstore::StridedLayout chunk_layout(tensorstore::c_order, dtype.size(), {metadata.num_channels, 5, 4, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto decode_result, DecodeChunk(chunk_indices, metadata, scale_index, chunk_layout, out)); if (!out.empty() && GetParam().truncate) { auto corrupt = out.Subcord(0, out.size() - 1); EXPECT_THAT( DecodeChunk(chunk_indices, metadata, scale_index, chunk_layout, corrupt), testing::AnyOf(MatchesStatus(absl::StatusCode::kDataLoss), MatchesStatus(absl::StatusCode::kInvalidArgument))); } if (GetParam().compare) { EXPECT_THAT(decode_result, array); } } std::vector<P> GenerateParams() { std::vector<P> result; for (const int num_channels : {1, 2, 3, 4}) { P param; param.metadata_json = ::nlohmann::json{{"@type", "neuroglancer_multiscale_volume"}, {"num_channels", num_channels}, {"scales", {{{"chunk_sizes", {{3, 4, 5}}}, {"encoding", "raw"}, {"key", "k"}, {"resolution", {5, 6, 7}}, {"size", {10, 11, 12}}}}}, {"type", "image"}}; param.dtype = tensorstore::dtype_v<uint16_t>; result.push_back(param); param.truncate = false; if (num_channels >= 1 && num_channels <= 4) { param.metadata_json["scales"][0]["encoding"] = "png"; param.dtype = tensorstore::dtype_v<uint8_t>; result.push_back(param); if (num_channels == 1) { param.dtype = tensorstore::dtype_v<uint16_t>; result.push_back(param); } } param.truncate = true; param.compare = false; if (num_channels == 1 || num_channels == 3) { param.metadata_json["scales"][0]["encoding"] = "jpeg"; param.dtype = tensorstore::dtype_v<uint8_t>; result.push_back(param); } param.compare = true; param.metadata_json["scales"][0]["encoding"] = "compressed_segmentation"; param.metadata_json["scales"][0]["compressed_segmentation_block_size"] = { 2, 3, 4}; param.dtype = tensorstore::dtype_v<uint32_t>; result.push_back(param); param.dtype = tensorstore::dtype_v<uint64_t>; result.push_back(param); } return result; } INSTANTIATE_TEST_SUITE_P( All, ChunkEncodingTest, testing::ValuesIn(GenerateParams()), [](const testing::TestParamInfo<P>& info) { const auto& p = info.param; auto encoding = p.metadata_json["scales"][0]["encoding"].get<std::string>(); return tensorstore::StrCat(encoding, "_", p.metadata_json["num_channels"], "_", p.dtype.name()); }); }
589
cpp
google/tensorstore
json_change_map
tensorstore/driver/json/json_change_map.cc
tensorstore/driver/json/json_change_map_test.cc
#ifndef TENSORSTORE_DRIVER_JSON_JSON_CHANGE_MAP_H_ #define TENSORSTORE_DRIVER_JSON_JSON_CHANGE_MAP_H_ #include <string> #include <string_view> #include "absl/container/btree_map.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_pointer.h" namespace tensorstore { namespace internal_json_driver { class JsonChangeMap { private: struct MapCompare { using is_transparent = void; bool operator()(std::string_view a, std::string_view b) const { return json_pointer::Compare(a, b) < json_pointer::kEqual; } }; public: using Map = absl::btree_map<std::string, ::nlohmann::json, MapCompare>; Result<::nlohmann::json> Apply(const ::nlohmann::json& existing, std::string_view sub_value_pointer = {}) const; bool CanApplyUnconditionally(std::string_view sub_value_pointer) const; absl::Status AddChange(std::string_view sub_value_pointer, ::nlohmann::json sub_value); const Map& underlying_map() const { return map_; } private: Map map_; }; } } #endif #include "tensorstore/driver/json/json_change_map.h" #include <string> #include <string_view> #include <utility> #include "absl/container/btree_map.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_pointer.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_json_driver { Result<::nlohmann::json> JsonChangeMap::Apply( const ::nlohmann::json& existing, std::string_view sub_value_pointer) const { Map::const_iterator changes_it = map_.lower_bound(sub_value_pointer), changes_end = map_.end(); if (changes_it != changes_end && changes_it->first == sub_value_pointer) { TENSORSTORE_RETURN_IF_ERROR( json_pointer::Dereference(existing, sub_value_pointer, json_pointer::kSimulateCreate), internal::ConvertInvalidArgumentToFailedPrecondition(_)); return {std::in_place, changes_it->second}; } if (changes_it != map_.begin()) { auto prev_it = std::prev(changes_it); if (json_pointer::Compare(prev_it->first, sub_value_pointer) == json_pointer::kContains) { TENSORSTORE_ASSIGN_OR_RETURN( auto* modified_value, json_pointer::Dereference( prev_it->second, sub_value_pointer.substr(prev_it->first.size()), json_pointer::kMustExist)); TENSORSTORE_RETURN_IF_ERROR( json_pointer::Dereference(existing, prev_it->first, json_pointer::kSimulateCreate), internal::ConvertInvalidArgumentToFailedPrecondition(_)); return {std::in_place, *modified_value}; } } ::nlohmann::json new_value; { TENSORSTORE_ASSIGN_OR_RETURN( const ::nlohmann::json* restricted_existing, json_pointer::Dereference(existing, sub_value_pointer, json_pointer::kSimulateCreate)); if (restricted_existing) { new_value = *restricted_existing; } else { new_value = ::nlohmann::json(::nlohmann::json::value_t::discarded); } } for (; changes_it != changes_end && json_pointer::Compare(changes_it->first, sub_value_pointer) == json_pointer::kContainedIn; ++changes_it) { TENSORSTORE_RETURN_IF_ERROR( json_pointer::Replace(new_value, std::string_view(changes_it->first) .substr(sub_value_pointer.size()), changes_it->second), internal::ConvertInvalidArgumentToFailedPrecondition(_)); } return new_value; } bool JsonChangeMap::CanApplyUnconditionally( std::string_view sub_value_pointer) const { Map::const_iterator changes_it; if (sub_value_pointer.empty()) { changes_it = map_.begin(); } else { changes_it = map_.lower_bound(sub_value_pointer); } if (changes_it != map_.end()) { if (changes_it->first == sub_value_pointer) { return true; } } if (changes_it != map_.begin()) { auto prev_it = std::prev(changes_it); return json_pointer::Compare(prev_it->first, sub_value_pointer) == json_pointer::kContains; } return false; } absl::Status JsonChangeMap::AddChange(std::string_view sub_value_pointer, ::nlohmann::json sub_value) { auto it = map_.lower_bound(sub_value_pointer); if (it != map_.end()) { auto compare_result = json_pointer::Compare(sub_value_pointer, it->first); assert(compare_result <= json_pointer::kEqual); if (compare_result == json_pointer::kEqual) { it->second = std::move(sub_value); return absl::OkStatus(); } while (compare_result == json_pointer::kContains) { it = map_.erase(it); if (it == map_.end()) break; compare_result = json_pointer::Compare(sub_value_pointer, it->first); } } if (it != map_.begin()) { auto prev_it = std::prev(it); if (json_pointer::Compare(prev_it->first, sub_value_pointer) == json_pointer::kContains) { return json_pointer::Replace( prev_it->second, sub_value_pointer.substr(prev_it->first.size()), std::move(sub_value)); } } map_.try_emplace(it, std::string(sub_value_pointer), std::move(sub_value)); return absl::OkStatus(); } } }
#include "tensorstore/driver/json/json_change_map.h" #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::internal_json_driver::JsonChangeMap; using ::testing::ElementsAre; using ::testing::Optional; using ::testing::Pair; TEST(JsonChangeMapTest, AddChangeValid) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/c", 42)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b/c", MatchesJson(42)))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", false)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b/a", MatchesJson(false)), Pair("/a/b/c", MatchesJson(42)))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", true)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b/a", MatchesJson(true)), Pair("/a/b/c", MatchesJson(42)))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", {{"d", "xyz"}})); EXPECT_THAT( changes.underlying_map(), ElementsAre(Pair("/a/b", MatchesJson(::nlohmann::json{{"d", "xyz"}})))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/c", 42)); EXPECT_THAT(changes.underlying_map(), ElementsAre(Pair("/a/b", MatchesJson(::nlohmann::json{ {"d", "xyz"}, {"c", 42}})))); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", false)); EXPECT_THAT( changes.underlying_map(), ElementsAre(Pair("/a/b", MatchesJson(::nlohmann::json{ {"d", "xyz"}, {"c", 42}, {"a", false}})))); } TEST(JsonChangeMapTest, AddChangeValidIndependent) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/c", 42)); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/e", "xx")); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/a", "yy")); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b/a", false)); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", {{"d", "xyz"}})); EXPECT_THAT( changes.underlying_map(), ElementsAre(Pair("/a/a", MatchesJson("yy")), Pair("/a/b", MatchesJson(::nlohmann::json{{"d", "xyz"}})), Pair("/a/e", MatchesJson("xx")))); } TEST(JsonChangeMapTest, AddChangeInvalid) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", 42)); EXPECT_THAT(changes.AddChange("/a/b", 43), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyEmptyChangeMap) { JsonChangeMap changes; EXPECT_THAT(changes.Apply({{"x", "y"}, {"z", "w"}}), Optional(MatchesJson(::nlohmann::json{{"x", "y"}, {"z", "w"}}))); EXPECT_THAT(changes.Apply({{"x", "y"}, {"z", "w"}}, "/x"), Optional(MatchesJson(::nlohmann::json("y")))); } TEST(JsonChangeMapTest, ApplyContainingChangeMap1) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("", {{"a", {{"b", {{"c", 42}}}}}})); EXPECT_THAT(changes.Apply("old", "/a/b/c"), Optional(MatchesJson(42))); } TEST(JsonChangeMapTest, ApplyInvalidContainingChangeMap) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", {{"b", {{"c", 42}}}})); EXPECT_THAT(changes.Apply(false, "/a/b/c"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyChangeMapPriorNonContaining) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", 10)); EXPECT_THAT(changes.Apply({{"b", 42}}, "/b"), Optional(MatchesJson(42))); } TEST(JsonChangeMapTest, ApplyContainingChangeMap2) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", {{"b", {{"c", 42}}}})); EXPECT_THAT(changes.Apply({{"e", "f"}}, "/a/b/c"), Optional(MatchesJson(42))); } TEST(JsonChangeMapTest, ApplyChangeMap) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", {{"b", {{"c", 42}}}})); TENSORSTORE_EXPECT_OK(changes.AddChange("/e", 42)); EXPECT_THAT(changes.Apply({{"x", "y"}, {"e", "f"}}), Optional(MatchesJson(::nlohmann::json{ {"a", {{"b", {{"c", 42}}}}}, {"e", 42}, {"x", "y"}}))); } TEST(JsonChangeMapTest, ApplyInvalidChangeMap1) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/e", 42)); EXPECT_THAT(changes.Apply(42), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyInvalidChangeMap2) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/4", 42)); EXPECT_THAT(changes.Apply({1, 2, 3}), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyRequestInvalidJsonPointer) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", 42)); EXPECT_THAT(changes.Apply(false, "/a"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyRequestInvalidJsonPointerNoChanges) { JsonChangeMap changes; EXPECT_THAT(changes.Apply(false, "/a"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, ApplyRequestNewMember) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", 42)); EXPECT_THAT(changes.Apply(::nlohmann::json::object_t{}, "/a"), Optional(MatchesJson(::nlohmann::json{{"b", 42}}))); } TEST(JsonChangeMapTest, ApplyIncompatibleChangeExactRequest) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("/a", 42)); EXPECT_THAT(changes.Apply(false, "/a"), MatchesStatus(absl::StatusCode::kFailedPrecondition)); } TEST(JsonChangeMapTest, AddIncompatibleChanges) { JsonChangeMap changes; TENSORSTORE_EXPECT_OK(changes.AddChange("", 42)); EXPECT_THAT(changes.AddChange("/a", 50), MatchesStatus(absl::StatusCode::kFailedPrecondition, "JSON Pointer reference \"/a\" cannot be applied " "to number value: 42")); } TEST(JsonChangeMapTest, CanApplyUnconditionally) { JsonChangeMap changes; EXPECT_FALSE(changes.CanApplyUnconditionally("")); EXPECT_FALSE(changes.CanApplyUnconditionally("/a/b/c")); TENSORSTORE_EXPECT_OK(changes.AddChange("/a/b", {{"c", 42}})); EXPECT_TRUE(changes.CanApplyUnconditionally("/a/b/c")); EXPECT_TRUE(changes.CanApplyUnconditionally("/a/b")); EXPECT_TRUE(changes.CanApplyUnconditionally("/a/b/d")); EXPECT_FALSE(changes.CanApplyUnconditionally("/a")); EXPECT_FALSE(changes.CanApplyUnconditionally("/a/x")); EXPECT_FALSE(changes.CanApplyUnconditionally("")); TENSORSTORE_EXPECT_OK(changes.AddChange("", {{"a", false}})); EXPECT_TRUE(changes.CanApplyUnconditionally("")); EXPECT_TRUE(changes.CanApplyUnconditionally("/a")); } }
590
cpp
google/tensorstore
byte_range
tensorstore/kvstore/byte_range.cc
tensorstore/kvstore/byte_range_test.cc
#ifndef TENSORSTORE_KVSTORE_BYTE_RANGE_REQUEST_H_ #define TENSORSTORE_KVSTORE_BYTE_RANGE_REQUEST_H_ #include <stddef.h> #include <stdint.h> #include <cassert> #include <ostream> #include "absl/strings/cord.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/util/result.h" namespace tensorstore { struct ByteRange { int64_t inclusive_min; int64_t exclusive_max; constexpr bool SatisfiesInvariants() const { return inclusive_min >= 0 && exclusive_max >= 0 && exclusive_max >= inclusive_min; } int64_t size() const { assert(SatisfiesInvariants()); return exclusive_max - inclusive_min; } friend bool operator==(const ByteRange& a, const ByteRange& b) { return a.inclusive_min == b.inclusive_min && a.exclusive_max == b.exclusive_max; } friend bool operator!=(const ByteRange& a, const ByteRange& b) { return !(a == b); } friend std::ostream& operator<<(std::ostream& os, const ByteRange& r); constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.inclusive_min, x.exclusive_max); }; }; struct OptionalByteRangeRequest { constexpr OptionalByteRangeRequest() : inclusive_min(0), exclusive_max(-1) {} explicit constexpr OptionalByteRangeRequest(int64_t inclusive_min, int64_t exclusive_max = -1) : inclusive_min(inclusive_min), exclusive_max(exclusive_max) {} constexpr OptionalByteRangeRequest(ByteRange r) : inclusive_min(r.inclusive_min), exclusive_max(r.exclusive_max) {} bool IsFull() const { return inclusive_min == 0 && exclusive_max == -1; } bool IsRange() const { return exclusive_max != -1; } bool IsSuffixLength() const { return inclusive_min < 0; } bool IsSuffix() const { return exclusive_max == -1 && inclusive_min > 0; } static OptionalByteRangeRequest Range(int64_t inclusive_min, int64_t exclusive_max) { assert(inclusive_min >= 0); assert(exclusive_max >= 0); return OptionalByteRangeRequest{inclusive_min, exclusive_max}; } static OptionalByteRangeRequest SuffixLength(int64_t length) { assert(length >= 0); return OptionalByteRangeRequest{-length, -1}; } static OptionalByteRangeRequest Suffix(int64_t inclusive_min) { assert(inclusive_min >= 0); return OptionalByteRangeRequest{inclusive_min, -1}; } int64_t inclusive_min = 0; int64_t exclusive_max = -1; int64_t size() const { assert(SatisfiesInvariants()); if (inclusive_min < 0) return -inclusive_min; if (exclusive_max != -1) return exclusive_max - inclusive_min; return -1; } friend bool operator==(const OptionalByteRangeRequest& a, const OptionalByteRangeRequest& b) { return a.inclusive_min == b.inclusive_min && a.exclusive_max == b.exclusive_max; } friend bool operator!=(const OptionalByteRangeRequest& a, const OptionalByteRangeRequest& b) { return !(a == b); } ByteRange AsByteRange() const { assert(IsRange()); return {inclusive_min, exclusive_max}; } friend std::ostream& operator<<(std::ostream& os, const OptionalByteRangeRequest& r); constexpr bool SatisfiesInvariants() const { return (exclusive_max == -1 || (exclusive_max >= inclusive_min && inclusive_min >= 0)); } Result<ByteRange> Validate(int64_t size) const; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.inclusive_min, x.exclusive_max); }; }; namespace internal { inline absl::Cord GetSubCord(const absl::Cord& s, ByteRange r) { assert(r.SatisfiesInvariants()); const size_t size = s.size(); assert(r.exclusive_max <= size); if (r.inclusive_min == 0 && r.size() == size) return s; return s.Subcord(r.inclusive_min, r.size()); } } } TENSORSTORE_DECLARE_SERIALIZER_SPECIALIZATION(tensorstore::ByteRange) TENSORSTORE_DECLARE_SERIALIZER_SPECIALIZATION( tensorstore::OptionalByteRangeRequest) #endif #include "tensorstore/kvstore/byte_range.h" #include <cassert> #include <optional> #include <ostream> #include <string> #include "absl/status/status.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/std_optional.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { std::ostream& operator<<(std::ostream& os, const OptionalByteRangeRequest& r) { os << "[" << r.inclusive_min << ", "; if (r.exclusive_max != -1) { os << r.exclusive_max; } else { os << "?"; } os << ")"; return os; } std::ostream& operator<<(std::ostream& os, const ByteRange& r) { return os << "[" << r.inclusive_min << ", " << r.exclusive_max << ")"; } Result<ByteRange> OptionalByteRangeRequest::Validate(int64_t size) const { assert(SatisfiesInvariants()); int64_t inclusive_min = this->inclusive_min; int64_t exclusive_max = this->exclusive_max; if (exclusive_max == -1) exclusive_max = size; if (inclusive_min < 0) { inclusive_min += size; } if (inclusive_min < 0 || exclusive_max > size || inclusive_min > exclusive_max) { return absl::OutOfRangeError( tensorstore::StrCat("Requested byte range ", *this, " is not valid for value of size ", size)); } return ByteRange{inclusive_min, exclusive_max}; } } TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::ByteRange, tensorstore::serialization::ApplyMembersSerializer< tensorstore::ByteRange>()) TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::OptionalByteRangeRequest, tensorstore::serialization::ApplyMembersSerializer< tensorstore::OptionalByteRangeRequest>())
#include "tensorstore/kvstore/byte_range.h" #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::ByteRange; using ::tensorstore::MatchesStatus; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::StrCat; using ::tensorstore::internal::GetSubCord; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(ByteRangeTest, SatisfiesInvariants) { EXPECT_TRUE((ByteRange{0, 0}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{0, 1}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{0, 100}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{10, 100}).SatisfiesInvariants()); EXPECT_TRUE((ByteRange{100, 100}).SatisfiesInvariants()); EXPECT_FALSE((ByteRange{100, 99}).SatisfiesInvariants()); EXPECT_FALSE((ByteRange{100, 0}).SatisfiesInvariants()); EXPECT_FALSE((ByteRange{-100, 0}).SatisfiesInvariants()); } TEST(ByteRangeTest, Size) { EXPECT_EQ(5, (ByteRange{2, 7}.size())); EXPECT_EQ(0, (ByteRange{2, 2}.size())); } TEST(ByteRangeTest, Comparison) { ByteRange a{1, 2}; ByteRange b{1, 3}; ByteRange c{2, 3}; EXPECT_TRUE(a == a); EXPECT_TRUE(b == b); EXPECT_TRUE(c == c); EXPECT_FALSE(a != a); EXPECT_FALSE(b != b); EXPECT_FALSE(c != c); EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_NE(a, c); EXPECT_NE(b, c); } TEST(ByteRangeTest, Ostream) { EXPECT_EQ("[1, 10)", tensorstore::StrCat(ByteRange{1, 10})); } TEST(OptionalByteRangeRequestTest, DefaultConstruct) { OptionalByteRangeRequest r; EXPECT_EQ(0, r.inclusive_min); EXPECT_EQ(-1, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, ConstructInclusiveMin) { OptionalByteRangeRequest r(5); EXPECT_EQ(5, r.inclusive_min); EXPECT_EQ(-1, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, ConstructInclusiveMinExclusiveMax) { OptionalByteRangeRequest r(5, 10); EXPECT_EQ(5, r.inclusive_min); EXPECT_EQ(10, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, ConstructByteRange) { OptionalByteRangeRequest r(ByteRange{5, 10}); EXPECT_EQ(5, r.inclusive_min); EXPECT_EQ(10, r.exclusive_max); } TEST(OptionalByteRangeRequestTest, Comparison) { OptionalByteRangeRequest a{1, 2}; OptionalByteRangeRequest b{1, 3}; OptionalByteRangeRequest c{2, 3}; OptionalByteRangeRequest d{1, -1}; EXPECT_TRUE(a == a); EXPECT_TRUE(b == b); EXPECT_TRUE(c == c); EXPECT_TRUE(d == d); EXPECT_FALSE(a != a); EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_TRUE(a != c); EXPECT_TRUE(a != d); EXPECT_TRUE(b != d); EXPECT_TRUE(c != d); } TEST(OptionalByteRangeRequestTest, SatisfiesInvariants) { EXPECT_TRUE(OptionalByteRangeRequest().SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(10).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(0, 1).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(0, 0).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(0, 100).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(10, 100).SatisfiesInvariants()); EXPECT_TRUE(OptionalByteRangeRequest(100, 100).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(100, 99).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(100, 0).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(-5, 0).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(-5, 3).SatisfiesInvariants()); EXPECT_FALSE(OptionalByteRangeRequest(3, -2).SatisfiesInvariants()); } TEST(OptionalByteRangeRequestTest, Ostream) { EXPECT_EQ("[5, 10)", StrCat(OptionalByteRangeRequest(5, 10))); EXPECT_EQ("[5, ?)", StrCat(OptionalByteRangeRequest(5))); } TEST(OptionalByteRangeRequestTest, Validate) { EXPECT_THAT(OptionalByteRangeRequest().Validate(0), ::testing::Optional(ByteRange{0, 0})); EXPECT_THAT(OptionalByteRangeRequest().Validate(1), ::testing::Optional(ByteRange{0, 1})); EXPECT_THAT(OptionalByteRangeRequest(5, 10).Validate(20), ::testing::Optional(ByteRange{5, 10})); EXPECT_THAT(OptionalByteRangeRequest(5, 10).Validate(10), ::testing::Optional(ByteRange{5, 10})); EXPECT_THAT(OptionalByteRangeRequest(5).Validate(10), ::testing::Optional(ByteRange{5, 10})); EXPECT_THAT(OptionalByteRangeRequest(-3).Validate(10), ::testing::Optional(ByteRange{7, 10})); EXPECT_THAT(OptionalByteRangeRequest(-10).Validate(10), ::testing::Optional(ByteRange{0, 10})); EXPECT_THAT(OptionalByteRangeRequest(5, 10).Validate(9), MatchesStatus(absl::StatusCode::kOutOfRange, "Requested byte range \\[5, 10\\) is not valid for " "value of size 9")); EXPECT_THAT( OptionalByteRangeRequest(10, 15).Validate(9), MatchesStatus(absl::StatusCode::kOutOfRange, "Requested byte range \\[10, 15\\) is not valid for " "value of size 9")); EXPECT_THAT( OptionalByteRangeRequest(-10).Validate(9), MatchesStatus(absl::StatusCode::kOutOfRange, "Requested byte range \\[-10, \\?\\) is not valid for " "value of size 9")); } TEST(GetSubStringTest, Basic) { EXPECT_EQ("bcd", GetSubCord(absl::Cord("abcde"), {1, 4})); EXPECT_EQ("bcd", GetSubCord(absl::Cord("abcde"), {1, 4})); EXPECT_EQ("abcde", GetSubCord(absl::Cord("abcde"), {0, 5})); } TEST(ByteRangeSerializationTest, Basic) { TestSerializationRoundTrip(ByteRange{1, 5}); } TEST(OptionalByteRangeRequestSerializationTest, Basic) { TestSerializationRoundTrip(OptionalByteRangeRequest{1, 5}); TestSerializationRoundTrip(OptionalByteRangeRequest{1}); } }
591
cpp
google/tensorstore
generation
tensorstore/kvstore/generation.cc
tensorstore/kvstore/generation_test.cc
#ifndef TENSORSTORE_KVSTORE_GENERATION_H_ #define TENSORSTORE_KVSTORE_GENERATION_H_ #include <cstring> #include <iosfwd> #include <string> #include <string_view> #include <utility> #include "absl/time/time.h" #include "tensorstore/serialization/fwd.h" namespace tensorstore { struct StorageGeneration { std::string value; explicit operator bool() const { return !value.empty(); } constexpr static char kBaseGeneration = 1; constexpr static char kDirty = 2; constexpr static char kNewlyDirty = 16; constexpr static char kNoValue = 4; constexpr static char kInvalid = 8; static StorageGeneration Unknown() { return {}; } static StorageGeneration NoValue() { return StorageGeneration{std::string(1, kBaseGeneration | kNoValue)}; } static StorageGeneration Invalid() { return StorageGeneration{std::string(1, kInvalid)}; } static StorageGeneration FromUint64(uint64_t n); static bool IsUint64(const StorageGeneration& generation) { return generation.value.size() == 9 && generation.value.back() == kBaseGeneration; } static uint64_t ToUint64(const StorageGeneration& generation) { uint64_t n = 0; if (IsUint64(generation)) { std::memcpy(&n, generation.value.data(), 8); } return n; } void MarkDirty(); static bool IsNewlyDirty(const StorageGeneration& generation) { return !generation.value.empty() && (generation.value.back() & kNewlyDirty); } bool ClearNewlyDirty() { bool is_newly_dirty = IsNewlyDirty(*this); if (is_newly_dirty) { value.back() &= ~kNewlyDirty; } return is_newly_dirty; } static StorageGeneration FromString(std::string_view s); static bool IsCleanValidValue(const StorageGeneration& generation) { return !generation.value.empty() && generation.value.back() == kBaseGeneration; } static std::string_view DecodeString(const StorageGeneration& generation); template <typename... T> static StorageGeneration FromValues(const T&... value) { constexpr auto as_string_view = [](const auto& value) -> std::string_view { using value_type = std::decay_t<decltype(value)>; if constexpr (std::is_same_v<std::string_view, value_type> || std::is_same_v<std::string, value_type>) { return value; } else { static_assert(std::is_trivial_v<value_type>); return std::string_view(reinterpret_cast<const char*>(&value), sizeof(value)); } }; const size_t n = (as_string_view(value).size() + ...); StorageGeneration gen; gen.value.resize(n + 1); size_t offset = 0; const auto copy_value = [&](const auto& value) { auto s = as_string_view(value); std::memcpy(&gen.value[offset], s.data(), s.size()); offset += s.size(); }; (copy_value(value), ...); gen.value[n] = kBaseGeneration; return gen; } static StorageGeneration Dirty(StorageGeneration generation); static StorageGeneration Clean(StorageGeneration generation); static bool Equivalent(std::string_view a, std::string_view b); static bool IsDirty(const StorageGeneration& generation); static bool IsInnerLayerDirty(const StorageGeneration& generation); static StorageGeneration Condition(const StorageGeneration& generation, StorageGeneration condition); static StorageGeneration AddLayer(StorageGeneration generation); static bool IsConditional(const StorageGeneration& generation); static bool IsConditionalOn(const StorageGeneration& generation, const StorageGeneration& condition); static bool EqualOrUnspecified(const StorageGeneration& generation, const StorageGeneration& if_equal) { return StorageGeneration::IsUnknown(if_equal) || generation.value == if_equal.value; } static bool NotEqualOrUnspecified(const StorageGeneration& generation, const StorageGeneration& if_not_equal) { return StorageGeneration::IsUnknown(if_not_equal) || generation.value != if_not_equal.value; } static bool IsUnknown(const StorageGeneration& generation) { return generation.value.empty(); } static bool IsClean(const StorageGeneration& generation) { return !generation.value.empty() && (generation.value.back() & (kBaseGeneration | kDirty)) == kBaseGeneration; } static bool IsNoValue(const StorageGeneration& generation) { return generation.value.size() == 1 && generation.value[0] == (kNoValue | kBaseGeneration); } friend inline bool operator==(const StorageGeneration& a, const StorageGeneration& b) { return Equivalent(a.value, b.value); } friend inline bool operator==(std::string_view a, const StorageGeneration& b) { return Equivalent(a, b.value); } friend inline bool operator==(const StorageGeneration& a, std::string_view b) { return Equivalent(a.value, b); } friend inline bool operator!=(const StorageGeneration& a, const StorageGeneration& b) { return !(a == b); } friend inline bool operator!=(const StorageGeneration& a, std::string_view b) { return !(a == b); } friend inline bool operator!=(std::string_view a, const StorageGeneration& b) { return !(a == b); } friend std::ostream& operator<<(std::ostream& os, const StorageGeneration& g); constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.value); }; template <typename H> friend H AbslHashValue(H h, const StorageGeneration& x) { return H::combine(std::move(h), x.value); } }; struct TimestampedStorageGeneration { TimestampedStorageGeneration() = default; TimestampedStorageGeneration(StorageGeneration generation, absl::Time time) : generation(std::move(generation)), time(std::move(time)) {} StorageGeneration generation; absl::Time time = absl::InfinitePast(); bool unconditional() const { return time == absl::InfiniteFuture(); } static TimestampedStorageGeneration Unconditional() { return {StorageGeneration::Unknown(), absl::InfiniteFuture()}; } friend bool operator==(const TimestampedStorageGeneration& a, const TimestampedStorageGeneration& b) { return a.generation == b.generation && a.time == b.time; } friend bool operator!=(const TimestampedStorageGeneration& a, const TimestampedStorageGeneration& b) { return !(a == b); } friend std::ostream& operator<<(std::ostream& os, const TimestampedStorageGeneration& x); constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.generation, x.time); }; }; } TENSORSTORE_DECLARE_SERIALIZER_SPECIALIZATION(tensorstore::StorageGeneration) TENSORSTORE_DECLARE_SERIALIZER_SPECIALIZATION( tensorstore::TimestampedStorageGeneration) #endif #include "tensorstore/kvstore/generation.h" #include <stddef.h> #include <stdint.h> #include <cstring> #include <ostream> #include <string_view> #include <utility> #include "absl/time/time.h" #include "tensorstore/serialization/absl_time.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/util/quote_string.h" namespace tensorstore { namespace { std::string_view CanonicalGeneration(std::string_view generation) { size_t new_size = generation.size(); while (new_size && generation[new_size - 1] == 0) { --new_size; } return generation.substr(0, new_size); } } std::ostream& operator<<(std::ostream& os, const StorageGeneration& g) { return os << QuoteString(g.value); } std::ostream& operator<<(std::ostream& os, const TimestampedStorageGeneration& x) { return os << "{generation=" << x.generation << ", time=" << x.time << "}"; } bool StorageGeneration::Equivalent(std::string_view a, std::string_view b) { return CanonicalGeneration(a) == CanonicalGeneration(b); } StorageGeneration StorageGeneration::Clean(StorageGeneration generation) { size_t new_size = generation.value.size(); while (new_size) { if (generation.value[new_size - 1] & kBaseGeneration) { generation.value[new_size - 1] &= ~(kDirty | kNewlyDirty); break; } --new_size; } generation.value.resize(new_size); return generation; } void StorageGeneration::MarkDirty() { if (value.empty()) { value = (kDirty | kNewlyDirty); } else { value.back() |= (kDirty | kNewlyDirty); } } StorageGeneration StorageGeneration::Dirty(StorageGeneration generation) { if (generation.value.empty()) { return StorageGeneration{std::string(1, kDirty)}; } generation.value.back() |= kDirty; return generation; } StorageGeneration StorageGeneration::FromUint64(uint64_t n) { StorageGeneration generation; generation.value.resize(9); std::memcpy(generation.value.data(), &n, 8); generation.value[8] = kBaseGeneration; return generation; } StorageGeneration StorageGeneration::FromString(std::string_view s) { StorageGeneration generation; generation.value.reserve(s.size() + 1); generation.value += s; generation.value += kBaseGeneration; return generation; } StorageGeneration StorageGeneration::Condition( const StorageGeneration& generation, StorageGeneration condition) { if (IsDirty(generation)) { return Dirty(Clean(std::move(condition))); } return Clean(std::move(condition)); } bool StorageGeneration::IsDirty(const StorageGeneration& generation) { auto canonical = CanonicalGeneration(generation.value); return !canonical.empty() && (canonical.back() & kDirty); } bool StorageGeneration::IsInnerLayerDirty(const StorageGeneration& generation) { return !generation.value.empty() && (generation.value.back() & kDirty); } StorageGeneration StorageGeneration::AddLayer(StorageGeneration generation) { generation.value.resize(generation.value.size() + 1); return generation; } bool StorageGeneration::IsConditional(const StorageGeneration& generation) { size_t new_size = generation.value.size(); while (new_size && !(generation.value[new_size - 1] & kBaseGeneration)) { --new_size; } return (new_size != 0); } bool StorageGeneration::IsConditionalOn(const StorageGeneration& generation, const StorageGeneration& condition) { size_t size = generation.value.size(); return size != 0 && condition.value.size() == size && std::memcmp(generation.value.data(), condition.value.data(), size - 1) == 0 && (generation.value[size] | kDirty | kNewlyDirty) == (condition.value[size] | kDirty | kNewlyDirty); } std::string_view StorageGeneration::DecodeString( const StorageGeneration& generation) { std::string_view s = generation.value; if (s.empty()) return {}; while (true) { bool start_of_tags = static_cast<bool>(s.back() & kBaseGeneration); s.remove_suffix(1); if (start_of_tags || s.empty()) break; } return s; } } TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::StorageGeneration, tensorstore::serialization::ApplyMembersSerializer< tensorstore::StorageGeneration>()) TENSORSTORE_DEFINE_SERIALIZER_SPECIALIZATION( tensorstore::TimestampedStorageGeneration, tensorstore::serialization::ApplyMembersSerializer< tensorstore::TimestampedStorageGeneration>())
#include "tensorstore/kvstore/generation.h" #include <gtest/gtest.h> #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" namespace { using ::tensorstore::StorageGeneration; using ::tensorstore::TimestampedStorageGeneration; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(StorageGenerationTest, Basic) { EXPECT_TRUE(StorageGeneration::IsUnknown(StorageGeneration::Unknown())); EXPECT_FALSE(StorageGeneration::IsUnknown(StorageGeneration::NoValue())); EXPECT_FALSE(StorageGeneration::IsNoValue(StorageGeneration::Unknown())); EXPECT_TRUE(StorageGeneration::IsNoValue(StorageGeneration::NoValue())); EXPECT_EQ(StorageGeneration{std::string{StorageGeneration::kDirty}}, StorageGeneration::Dirty(StorageGeneration::Unknown())); StorageGeneration gen{ std::string{1, 2, 3, 4, 5, StorageGeneration::kBaseGeneration}}; StorageGeneration local_gen{std::string{ 1, 2, 3, 4, 5, StorageGeneration::kBaseGeneration | StorageGeneration::kDirty}}; EXPECT_FALSE(StorageGeneration::IsUnknown(gen)); EXPECT_FALSE(StorageGeneration::IsUnknown(local_gen)); EXPECT_TRUE(StorageGeneration::IsClean(gen)); EXPECT_FALSE(StorageGeneration::IsClean(local_gen)); EXPECT_FALSE(StorageGeneration::IsDirty(gen)); EXPECT_TRUE(StorageGeneration::IsDirty(local_gen)); EXPECT_EQ(local_gen, StorageGeneration::Dirty(gen)); EXPECT_EQ(gen, StorageGeneration::Clean(local_gen)); EXPECT_TRUE(StorageGeneration::IsClean(StorageGeneration::NoValue())); EXPECT_FALSE(StorageGeneration::IsClean(StorageGeneration::Unknown())); EXPECT_EQ(StorageGeneration::NoValue(), StorageGeneration::Clean(StorageGeneration::NoValue())); } TEST(StorageGenerationTest, Uint64) { auto g = StorageGeneration::FromUint64(12345); EXPECT_TRUE(StorageGeneration::IsUint64(g)); EXPECT_EQ(12345, StorageGeneration::ToUint64(g)); EXPECT_FALSE(StorageGeneration::IsUint64(StorageGeneration::Unknown())); EXPECT_FALSE(StorageGeneration::IsUint64(StorageGeneration::NoValue())); EXPECT_FALSE(StorageGeneration::IsUint64(StorageGeneration::Invalid())); } TEST(StorageGenerationSerializationTest, Basic) { TestSerializationRoundTrip(StorageGeneration::Unknown()); TestSerializationRoundTrip(StorageGeneration::FromUint64(12345)); } TEST(TimestampedStorageGenerationSerializationTest, Basic) { TestSerializationRoundTrip(TimestampedStorageGeneration( StorageGeneration::FromUint64(12345), absl::InfinitePast())); TestSerializationRoundTrip(TimestampedStorageGeneration( StorageGeneration::FromUint64(12345), absl::InfiniteFuture())); } TEST(StorageGenerationTest, IsCleanValidValue) { EXPECT_FALSE( StorageGeneration::IsCleanValidValue(StorageGeneration::Unknown())); EXPECT_FALSE( StorageGeneration::IsCleanValidValue(StorageGeneration::NoValue())); EXPECT_FALSE( StorageGeneration::IsCleanValidValue(StorageGeneration::Invalid())); EXPECT_TRUE(StorageGeneration::IsCleanValidValue( StorageGeneration::FromString("abc"))); EXPECT_TRUE( StorageGeneration::IsCleanValidValue(StorageGeneration::FromUint64(42))); } TEST(StorageGenerationTest, DecodeString) { EXPECT_EQ("abc", StorageGeneration::DecodeString( StorageGeneration::FromString("abc"))); } }
592
cpp
google/tensorstore
key_range
tensorstore/kvstore/key_range.cc
tensorstore/kvstore/key_range_test.cc
#ifndef TENSORSTORE_KVSTORE_KEY_RANGE_H_ #define TENSORSTORE_KVSTORE_KEY_RANGE_H_ #include <stddef.h> #include <iosfwd> #include <string> #include <string_view> #include <utility> #include "absl/types/compare.h" #include "tensorstore/internal/compare.h" namespace tensorstore { class KeyRange { public: KeyRange() = default; static KeyRange EmptyRange() { return KeyRange(std::string(1, '\0'), std::string(1, '\0')); } explicit KeyRange(std::string inclusive_min, std::string exclusive_max) : inclusive_min(std::move(inclusive_min)), exclusive_max(std::move(exclusive_max)) {} static KeyRange Prefix(std::string prefix); static KeyRange AddPrefix(std::string_view prefix, KeyRange range); static KeyRange RemovePrefix(std::string_view prefix, KeyRange range); static KeyRange RemovePrefixLength(size_t n, const KeyRange& range); static std::string Successor(std::string_view key); static KeyRange Singleton(std::string key); static std::string PrefixExclusiveMax(std::string_view prefix); static absl::weak_ordering CompareKeyAndExclusiveMax(std::string_view key, std::string_view bound); static absl::weak_ordering CompareExclusiveMaxAndKey(std::string_view bound, std::string_view key) { return internal::InvertWeakOrdering(CompareKeyAndExclusiveMax(key, bound)); } static absl::weak_ordering CompareExclusiveMax(std::string_view a, std::string_view b); bool empty() const { return !exclusive_max.empty() && inclusive_min >= exclusive_max; } bool full() const { return exclusive_max.empty() && inclusive_min.empty(); } bool is_singleton() const; bool is_non_empty_prefix() const; friend bool operator==(const KeyRange& a, const KeyRange& b) { return a.inclusive_min == b.inclusive_min && a.exclusive_max == b.exclusive_max; } friend bool operator!=(const KeyRange& a, const KeyRange& b) { return !(a == b); } friend std::ostream& operator<<(std::ostream& os, const KeyRange& range); static constexpr auto ApplyMembers = [](auto&& x, auto f) { return f(x.inclusive_min, x.exclusive_max); }; std::string inclusive_min; std::string exclusive_max; }; bool Contains(const KeyRange& haystack, std::string_view needle); bool Contains(const KeyRange& haystack, const KeyRange& needle); bool ContainsPrefix(const KeyRange& haystack, std::string_view prefix); KeyRange Intersect(const KeyRange& a, const KeyRange& b); bool Intersects(const KeyRange& a, const KeyRange& b); bool IntersectsPrefix(const KeyRange& a, std::string_view prefix); std::string_view LongestPrefix(const KeyRange& range); } #endif #include "tensorstore/kvstore/key_range.h" #include <algorithm> #include <cstddef> #include <ostream> #include <string> #include <string_view> #include <utility> #include "absl/strings/match.h" #include "absl/types/compare.h" #include "tensorstore/internal/compare.h" #include "tensorstore/util/quote_string.h" namespace tensorstore { namespace { std::string_view PartialPrefix(std::string_view prefix) { while (!prefix.empty() && prefix.back() == '\xff') { prefix.remove_suffix(1); } return prefix; } std::string_view MinExclusiveMax(std::string_view a, std::string_view b) { return KeyRange::CompareExclusiveMax(a, b) < 0 ? a : b; } } KeyRange KeyRange::Prefix(std::string prefix) { KeyRange range; range.exclusive_max = PrefixExclusiveMax(prefix); range.inclusive_min = std::move(prefix); return range; } std::string KeyRange::Successor(std::string_view key) { std::string successor; successor.reserve(key.size() + 1); successor.append(key); successor += '\x00'; return successor; } KeyRange KeyRange::Singleton(std::string key) { auto exclusive_max = Successor(key); return KeyRange(std::move(key), std::move(exclusive_max)); } bool KeyRange::is_singleton() const { return exclusive_max.size() == (inclusive_min.size() + 1) && exclusive_max.back() == '\x00' && std::string_view(exclusive_max).substr(0, inclusive_min.size()) == inclusive_min; } bool KeyRange::is_non_empty_prefix() const { std::string_view prefix = PartialPrefix(inclusive_min); return !full() && exclusive_max.size() == prefix.size() && (prefix.empty() || (exclusive_max.back() == (prefix.back() + 1) && std::string_view(exclusive_max).substr(0, prefix.size() - 1) == prefix.substr(0, prefix.size() - 1))); } std::string KeyRange::PrefixExclusiveMax(std::string_view prefix) { std::string prefix_copy(PartialPrefix(prefix)); if (!prefix_copy.empty()) { auto& last_byte = prefix_copy.back(); last_byte = static_cast<unsigned char>(last_byte) + 1; } return prefix_copy; } absl::weak_ordering KeyRange::CompareKeyAndExclusiveMax( std::string_view key, std::string_view bound) { return bound.empty() ? absl::weak_ordering::less : internal::CompareResultAsWeakOrdering(key.compare(bound)); } absl::weak_ordering KeyRange::CompareExclusiveMax(std::string_view a, std::string_view b) { return a.empty() != b.empty() ? (a.empty() ? absl::weak_ordering::greater : absl::weak_ordering::less) : internal::CompareResultAsWeakOrdering(a.compare(b)); } bool Contains(const KeyRange& haystack, std::string_view needle) { return haystack.inclusive_min <= needle && KeyRange::CompareKeyAndExclusiveMax(needle, haystack.exclusive_max) < 0; } KeyRange Intersect(const KeyRange& a, const KeyRange& b) { const auto* a_ptr = &a; const auto* b_ptr = &b; if (a_ptr->inclusive_min > b_ptr->inclusive_min) { std::swap(a_ptr, b_ptr); } KeyRange result; result.inclusive_min = b_ptr->inclusive_min; result.exclusive_max = std::string(MinExclusiveMax(a_ptr->exclusive_max, b_ptr->exclusive_max)); if (result.empty()) { result.exclusive_max = result.inclusive_min; } return result; } bool Intersects(const KeyRange& a, const KeyRange& b) { return !Intersect(a, b).empty(); } bool Contains(const KeyRange& haystack, const KeyRange& needle) { return haystack.inclusive_min <= needle.inclusive_min && KeyRange::CompareExclusiveMax(needle.exclusive_max, haystack.exclusive_max) <= 0; } std::string_view LongestPrefix(const KeyRange& range) { std::string_view inclusive_min = range.inclusive_min; std::string_view exclusive_max = range.exclusive_max; size_t i = 0; if (exclusive_max.empty()) { while (i < inclusive_min.size() && inclusive_min[i] == '\xff') { ++i; } } else { size_t min_length = std::min(inclusive_min.size(), exclusive_max.size()); while (i < min_length && inclusive_min[i] == exclusive_max[i]) { ++i; } if (i + 1 == min_length && inclusive_min[i] != '\xff' && static_cast<unsigned char>(inclusive_min[i]) + 1 == static_cast<unsigned char>(exclusive_max[i])) { ++i; while (i < inclusive_min.size() && inclusive_min[i] == '\xff') { ++i; } } } return inclusive_min.substr(0, i); } bool ContainsPrefix(const KeyRange& haystack, std::string_view prefix) { return tensorstore::Contains(haystack, KeyRange::Prefix(std::string(prefix))); } bool IntersectsPrefix(const KeyRange& a, std::string_view prefix) { return tensorstore::Intersects(a, KeyRange::Prefix(std::string(prefix))); } std::ostream& operator<<(std::ostream& os, const KeyRange& range) { return os << "[" << tensorstore::QuoteString(range.inclusive_min) << ", " << tensorstore::QuoteString(range.exclusive_max) << ")"; } KeyRange KeyRange::AddPrefix(std::string_view prefix, KeyRange range) { if (prefix.empty()) return range; range.inclusive_min.insert(0, prefix); if (range.exclusive_max.empty()) { range.exclusive_max = KeyRange::PrefixExclusiveMax(std::string(prefix)); } else { range.exclusive_max.insert(0, prefix); } return range; } KeyRange KeyRange::RemovePrefix(std::string_view prefix, KeyRange range) { if (prefix.empty()) return range; if (prefix >= range.inclusive_min) { range.inclusive_min.clear(); } else { if (!absl::StartsWith(range.inclusive_min, prefix)) return EmptyRange(); range.inclusive_min.erase(0, prefix.size()); } const auto c = CompareKeyAndExclusiveMax(prefix, range.exclusive_max); if (c < 0) { if (absl::StartsWith(range.exclusive_max, prefix)) { range.exclusive_max.erase(0, prefix.size()); } else { range.exclusive_max.clear(); } } else { return EmptyRange(); } return range; } KeyRange KeyRange::RemovePrefixLength(size_t n, const KeyRange& range) { std::string_view inclusive_min(range.inclusive_min); if (n < inclusive_min.size()) { inclusive_min.remove_prefix(n); } else { inclusive_min = {}; } std::string_view exclusive_max(range.exclusive_max); if (n < exclusive_max.size()) { exclusive_max.remove_prefix(n); } else { exclusive_max = {}; } return KeyRange(std::string(inclusive_min), std::string(exclusive_max)); } }
#include "tensorstore/kvstore/key_range.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/compare.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::KeyRange; TEST(KeyRangeTest, Comparison) { KeyRange r1("a", "b"); EXPECT_EQ("a", r1.inclusive_min); EXPECT_EQ("b", r1.exclusive_max); KeyRange r2("a", "c"); KeyRange r3("", "b"); KeyRange r4("", "c"); EXPECT_EQ(r1, r1); EXPECT_EQ(r2, r2); EXPECT_EQ(r3, r3); EXPECT_EQ(r4, r4); EXPECT_NE(r1, r2); EXPECT_NE(r1, r3); EXPECT_NE(r1, r4); EXPECT_NE(r2, r3); EXPECT_NE(r2, r4); EXPECT_NE(r3, r4); } TEST(KeyRangeTest, Full) { KeyRange full; EXPECT_TRUE(full.full()); EXPECT_EQ(std::string(), full.inclusive_min); EXPECT_EQ(std::string(), full.exclusive_max); EXPECT_EQ(full, KeyRange({}, {})); EXPECT_NE(full, KeyRange("a", "b")); EXPECT_NE(full, KeyRange("", "b")); EXPECT_NE(full, KeyRange("a", "")); EXPECT_FALSE(full.empty()); EXPECT_EQ("", tensorstore::LongestPrefix(full)); EXPECT_TRUE(tensorstore::Contains(full, "abc")); EXPECT_EQ(KeyRange::Prefix(""), full); } TEST(KeyRangeTest, Empty) { EXPECT_FALSE(KeyRange("a", "b").empty()); EXPECT_FALSE(KeyRange("a", "").empty()); EXPECT_TRUE(KeyRange("b", "a").empty()); EXPECT_TRUE(KeyRange("b", "b").empty()); } TEST(KeyRangeTest, Prefix) { EXPECT_EQ(KeyRange(), KeyRange::Prefix("")); EXPECT_EQ(KeyRange("abc", "abd"), KeyRange::Prefix("abc")); EXPECT_EQ(KeyRange("ab\xff", "ac"), KeyRange::Prefix("ab\xff")); EXPECT_EQ(KeyRange("ab\xff\xff\xff", "ac"), KeyRange::Prefix("ab\xff\xff\xff")); EXPECT_EQ(KeyRange("\xff", ""), KeyRange::Prefix("\xff")); EXPECT_EQ(KeyRange("\xff\xff\xff", ""), KeyRange::Prefix("\xff\xff\xff")); EXPECT_FALSE(KeyRange::Prefix("").is_non_empty_prefix()); EXPECT_TRUE(KeyRange::Prefix("abc").is_non_empty_prefix()); EXPECT_TRUE(KeyRange::Prefix("ab\xff").is_non_empty_prefix()); EXPECT_TRUE(KeyRange::Prefix("ab\xff\xff\xff").is_non_empty_prefix()); EXPECT_TRUE(KeyRange::Prefix("\xff").is_non_empty_prefix()); EXPECT_TRUE(KeyRange::Prefix("\xff\xff\xff").is_non_empty_prefix()); EXPECT_FALSE(KeyRange::Prefix("ab\xff").full()); EXPECT_FALSE(KeyRange::Prefix("ab\xff").is_singleton()); } TEST(KeyRangeTest, Successor) { EXPECT_EQ(std::string({'a', 'b', 'c', '\x00'}), KeyRange::Successor("abc")); EXPECT_EQ(std::string({'\x00'}), KeyRange::Successor("")); } TEST(KeyRangeTest, ContainsKey) { EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), "a")); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), "ab")); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), "abc")); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), "b")); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), "ba")); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), "c")); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), "ca")); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), "d")); } TEST(KeyRangeTest, ContainsRange) { EXPECT_TRUE(tensorstore::Contains(KeyRange(), KeyRange("ab", "cd"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("a", "c"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("ab", "c"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("ab", "ba"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("b", "ba"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange::Prefix("a"))); EXPECT_TRUE( tensorstore::Contains(KeyRange("a", "c"), KeyRange::Prefix("ab"))); EXPECT_TRUE(tensorstore::Contains(KeyRange("a", "c"), KeyRange::Prefix("b"))); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("a", "ca"))); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), KeyRange("0", "a"))); EXPECT_FALSE(tensorstore::Contains(KeyRange("a", "c"), KeyRange())); } TEST(KeyRangeTest, Intersect) { EXPECT_EQ(KeyRange("b", "b"), tensorstore::Intersect(KeyRange("a", "b"), KeyRange("b", "c"))); EXPECT_EQ(KeyRange("c", "c"), tensorstore::Intersect(KeyRange("a", "b"), KeyRange("c", "d"))); EXPECT_EQ(KeyRange("b", "b"), tensorstore::Intersect(KeyRange("", "b"), KeyRange("b", ""))); EXPECT_EQ(KeyRange("a", "b"), tensorstore::Intersect(KeyRange(), KeyRange("a", "b"))); EXPECT_EQ(KeyRange("a", "b"), tensorstore::Intersect(KeyRange("a", "b"), KeyRange())); EXPECT_EQ(KeyRange("a", "b"), tensorstore::Intersect(KeyRange("a", "b"), KeyRange("a", "c"))); EXPECT_EQ(KeyRange("a", "b"), tensorstore::Intersect(KeyRange("a", "c"), KeyRange("a", "b"))); EXPECT_EQ(KeyRange("b", "c"), tensorstore::Intersect(KeyRange("a", "c"), KeyRange("b", "c"))); EXPECT_EQ(KeyRange("aa", "b"), tensorstore::Intersect(KeyRange("aa", "c"), KeyRange("a", "b"))); EXPECT_EQ(KeyRange("aa", "b"), tensorstore::Intersect(KeyRange("aa", ""), KeyRange("a", "b"))); } TEST(KeyRangeTest, LongestPrefix) { EXPECT_EQ("", tensorstore::LongestPrefix(KeyRange("a", "c"))); EXPECT_EQ("a", tensorstore::LongestPrefix(KeyRange("a", "b"))); EXPECT_EQ("a", tensorstore::LongestPrefix(KeyRange("aa", "b"))); EXPECT_EQ("abc", tensorstore::LongestPrefix(KeyRange("abc", "abcd"))); EXPECT_EQ("abc", tensorstore::LongestPrefix(KeyRange("abc", "abd"))); EXPECT_EQ("ab", tensorstore::LongestPrefix(KeyRange("abc", "abe"))); EXPECT_EQ("ab\xff", tensorstore::LongestPrefix(KeyRange("ab\xff", "ac"))); EXPECT_EQ("ab\xff\xff", tensorstore::LongestPrefix(KeyRange("ab\xff\xff", "ac"))); EXPECT_EQ("\xff", tensorstore::LongestPrefix(KeyRange("\xff", ""))); EXPECT_EQ("\xff\xff", tensorstore::LongestPrefix(KeyRange("\xff\xff", ""))); } TEST(KeyRangeTest, Ostream) { EXPECT_EQ("[\"a\", \"b\")", tensorstore::StrCat(KeyRange("a", "b"))); EXPECT_EQ("[\"a\", \"ba\")", tensorstore::StrCat(KeyRange("a", "ba"))); } TEST(KeyRangeTest, CompareKeyAndExclusiveMax) { EXPECT_THAT(KeyRange::CompareKeyAndExclusiveMax("a", "a"), ::testing::Eq(absl::weak_ordering::equivalent)); EXPECT_THAT(KeyRange::CompareKeyAndExclusiveMax("a", "b"), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareKeyAndExclusiveMax("b", "a"), ::testing::Eq(absl::weak_ordering::greater)); EXPECT_THAT(KeyRange::CompareKeyAndExclusiveMax("", ""), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareKeyAndExclusiveMax("a", ""), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareExclusiveMaxAndKey("a", "a"), ::testing::Eq(absl::weak_ordering::equivalent)); EXPECT_THAT(KeyRange::CompareExclusiveMaxAndKey("a", "b"), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareExclusiveMaxAndKey("b", "a"), ::testing::Eq(absl::weak_ordering::greater)); EXPECT_THAT(KeyRange::CompareExclusiveMaxAndKey("", ""), ::testing::Eq(absl::weak_ordering::greater)); EXPECT_THAT(KeyRange::CompareExclusiveMaxAndKey("", "a"), ::testing::Eq(absl::weak_ordering::greater)); } TEST(KeyRangeTest, CompareExclusiveMax) { EXPECT_THAT(KeyRange::CompareExclusiveMax("", ""), ::testing::Eq(absl::weak_ordering::equivalent)); EXPECT_THAT(KeyRange::CompareExclusiveMax("a", "a"), ::testing::Eq(absl::weak_ordering::equivalent)); EXPECT_THAT(KeyRange::CompareExclusiveMax("a", "b"), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareExclusiveMax("b", "a"), ::testing::Eq(absl::weak_ordering::greater)); EXPECT_THAT(KeyRange::CompareExclusiveMax("a", ""), ::testing::Eq(absl::weak_ordering::less)); EXPECT_THAT(KeyRange::CompareExclusiveMax("", "a"), ::testing::Eq(absl::weak_ordering::greater)); } TEST(KeyRangeTest, AddPrefix) { EXPECT_THAT(KeyRange::AddPrefix("", KeyRange("a", "b")), ::testing::Eq(KeyRange("a", "b"))); EXPECT_THAT(KeyRange::AddPrefix("x", KeyRange("a", "b")), ::testing::Eq(KeyRange("xa", "xb"))); EXPECT_THAT(KeyRange::AddPrefix("x", KeyRange("a", "")), ::testing::Eq(KeyRange("xa", "y"))); } TEST(KeyRangeTest, EmptyRange) { auto range = KeyRange::EmptyRange(); EXPECT_TRUE(range.empty()); EXPECT_EQ(range.inclusive_min, range.exclusive_max); } TEST(KeyRangeTest, RemovePrefix) { EXPECT_THAT(KeyRange::RemovePrefix("", KeyRange("a", "b")), ::testing::Eq(KeyRange("a", "b"))); EXPECT_THAT(KeyRange::RemovePrefix("a/", KeyRange("a/b", "a/d")), ::testing::Eq(KeyRange("b", "d"))); EXPECT_THAT(KeyRange::RemovePrefix("a/b", KeyRange("a/b", "a/d")), ::testing::Eq(KeyRange())); EXPECT_THAT(KeyRange::RemovePrefix("a/d", KeyRange("a/b", "a/d")), ::testing::Eq(KeyRange::EmptyRange())); EXPECT_THAT(KeyRange::RemovePrefix("a/bc", KeyRange("a/b", "a/bcb")), ::testing::Eq(KeyRange("", "b"))); EXPECT_THAT(KeyRange::RemovePrefix("x", KeyRange("xa", "y")), ::testing::Eq(KeyRange("a", ""))); EXPECT_THAT(KeyRange::RemovePrefix("ab", KeyRange::Prefix("ab")), ::testing::Eq(KeyRange())); EXPECT_THAT(KeyRange::RemovePrefix("ab", KeyRange::Prefix("ab\xff")), ::testing::Eq(KeyRange("\xff", ""))); } TEST(KeyRangeTest, RemovePrefixLength) { EXPECT_THAT(KeyRange::RemovePrefixLength(0, KeyRange("a", "b")), ::testing::Eq(KeyRange("a", "b"))); EXPECT_THAT(KeyRange::RemovePrefixLength(2, KeyRange("a/b", "a/d")), ::testing::Eq(KeyRange("b", "d"))); EXPECT_THAT(KeyRange::RemovePrefixLength(3, KeyRange("a/b", "a/d")), ::testing::Eq(KeyRange())); EXPECT_THAT(KeyRange::RemovePrefixLength(4, KeyRange("a/b", "a/bcb")), ::testing::Eq(KeyRange("", "b"))); EXPECT_THAT(KeyRange::RemovePrefixLength(1, KeyRange("xa", "y")), ::testing::Eq(KeyRange("a", ""))); EXPECT_THAT(KeyRange::RemovePrefixLength(2, KeyRange::Prefix("ab")), ::testing::Eq(KeyRange())); EXPECT_THAT(KeyRange::RemovePrefixLength(2, KeyRange::Prefix("ab\xff")), ::testing::Eq(KeyRange("\xff", ""))); } TEST(KeyRangeTest, Singleton) { auto r = KeyRange::Singleton("x"); EXPECT_TRUE(Contains(r, "x")); EXPECT_FALSE(Contains(r, KeyRange::Successor("x"))); EXPECT_EQ(KeyRange("x", KeyRange::Successor("x")), r); EXPECT_TRUE(KeyRange::Singleton("x").is_singleton()); EXPECT_FALSE(KeyRange::Singleton("y").full()); EXPECT_FALSE(KeyRange::Singleton("x").is_non_empty_prefix()); } }
593
cpp
google/tensorstore
object_metadata
tensorstore/kvstore/gcs_http/object_metadata.cc
tensorstore/kvstore/gcs_http/object_metadata_test.cc
#ifndef TENSORSTORE_KVSTORE_GCS_HTTP_OBJECT_METADATA_H_ #define TENSORSTORE_KVSTORE_GCS_HTTP_OBJECT_METADATA_H_ #include <stdint.h> #include <string> #include <string_view> #include "absl/container/btree_map.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_kvstore_gcs_http { struct ObjectMetadata { std::string name; std::string md5_hash; std::string crc32c; uint64_t size = 0; int64_t generation = 0; int64_t metageneration = 0; absl::Time time_created = absl::InfinitePast(); absl::Time updated = absl::InfinitePast(); absl::Time time_deleted = absl::InfinitePast(); using ToJsonOptions = IncludeDefaults; using FromJsonOptions = internal_json_binding::NoOptions; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER( ObjectMetadata, internal_kvstore_gcs_http::ObjectMetadata::FromJsonOptions, internal_kvstore_gcs_http::ObjectMetadata::ToJsonOptions) }; Result<ObjectMetadata> ParseObjectMetadata(std::string_view source); void SetObjectMetadataFromHeaders( const absl::btree_multimap<std::string, std::string>& headers, ObjectMetadata* result); } } #endif #include "tensorstore/kvstore/gcs_http/object_metadata.h" #include <stdint.h> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/container/btree_map.h" #include "absl/status/status.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/internal/http/http_header.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json_binding/absl_time.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_kvstore_gcs_http { using ::tensorstore::internal_http::TryParseIntHeader; using ::tensorstore::internal_json_binding::DefaultInitializedValue; namespace jb = tensorstore::internal_json_binding; inline constexpr auto ObjectMetadataBinder = jb::Object( jb::Member("name", jb::Projection(&ObjectMetadata::name)), jb::Member("md5Hash", jb::Projection(&ObjectMetadata::md5_hash, DefaultInitializedValue())), jb::Member("crc32c", jb::Projection(&ObjectMetadata::crc32c, DefaultInitializedValue())), jb::Member("size", jb::Projection(&ObjectMetadata::size, jb::DefaultInitializedValue( jb::LooseValueAsBinder))), jb::Member("generation", jb::Projection(&ObjectMetadata::generation, jb::DefaultInitializedValue( jb::LooseValueAsBinder))), jb::Member("metageneration", jb::Projection(&ObjectMetadata::metageneration, jb::DefaultInitializedValue( jb::LooseValueAsBinder))), jb::Member("timeCreated", jb::Projection(&ObjectMetadata::time_created, jb::DefaultValue([](auto* x) { *x = absl::InfinitePast(); }))), jb::Member("updated", jb::Projection(&ObjectMetadata::updated, jb::DefaultValue([](auto* x) { *x = absl::InfinitePast(); }))), jb::Member("timeDeleted", jb::Projection(&ObjectMetadata::time_deleted, jb::DefaultValue([](auto* x) { *x = absl::InfinitePast(); }))), jb::DiscardExtraMembers); TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER(ObjectMetadata, [](auto is_loading, const auto& options, auto* obj, ::nlohmann::json* j) { return ObjectMetadataBinder( is_loading, options, obj, j); }) void SetObjectMetadataFromHeaders( const absl::btree_multimap<std::string, std::string>& headers, ObjectMetadata* result) { result->size = TryParseIntHeader<uint64_t>(headers, "content-length").value_or(0); result->generation = TryParseIntHeader<int64_t>(headers, "x-goog-generation").value_or(0); result->metageneration = TryParseIntHeader<uint64_t>(headers, "x-goog-metageneration").value_or(0); auto it = headers.find("x-goog-hash"); if (it != headers.end()) { for (std::string_view kv : absl::StrSplit(it->second, absl::ByChar(','))) { std::pair<std::string_view, std::string_view> split = absl::StrSplit(kv, absl::MaxSplits('=', 1)); if (split.first == "crc32c") { result->crc32c = std::string(split.second); } else if (split.first == "md5") { result->md5_hash = std::string(split.second); } } } } Result<ObjectMetadata> ParseObjectMetadata(std::string_view source) { auto json = internal::ParseJson(source); if (json.is_discarded()) { return absl::InvalidArgumentError( tensorstore::StrCat("Failed to parse object metadata: ", source)); } return jb::FromJson<ObjectMetadata>(std::move(json)); } } }
#include "tensorstore/kvstore/gcs_http/object_metadata.h" #include <string> #include <gtest/gtest.h> #include "absl/time/time.h" #include "tensorstore/util/result.h" namespace { using ::tensorstore::internal_kvstore_gcs_http::ParseObjectMetadata; const char kObjectMetadata[] = R"""({ "acl": [{ "kind": "storage#objectAccessControl", "id": "acl-id-0", "selfLink": "https: "bucket": "foo-bar", "object": "foo", "generation": 12345, "entity": "user-qux", "role": "OWNER", "email": "[email protected]", "entityId": "user-qux-id-123", "domain": "example.com", "projectTeam": { "projectNumber": "4567", "team": "owners" }, "etag": "AYX=" }, { "kind": "storage#objectAccessControl", "id": "acl-id-1", "selfLink": "https: "bucket": "foo-bar", "object": "foo", "generation": 12345, "entity": "user-quux", "role": "READER", "email": "[email protected]", "entityId": "user-quux-id-123", "domain": "example.com", "projectTeam": { "projectNumber": "4567", "team": "viewers" }, "etag": "AYX=" } ], "bucket": "foo-bar", "cacheControl": "no-cache", "componentCount": 7, "contentDisposition": "a-disposition", "contentEncoding": "an-encoding", "contentLanguage": "a-language", "contentType": "application/octet-stream", "crc32c": "deadbeef", "customerEncryption": { "encryptionAlgorithm": "some-algo", "keySha256": "abc123" }, "etag": "XYZ=", "eventBasedHold": true, "generation": "12345", "id": "foo-bar/baz/12345", "kind": "storage#object", "kmsKeyName": "/foo/bar/baz/key", "md5Hash": "deaderBeef=", "mediaLink": "https: "metadata": { "foo": "bar", "baz": "qux" }, "metageneration": "4", "name": "baz", "owner": { "entity": "user-qux", "entityId": "user-qux-id-123" }, "retentionExpirationTime": "2019-01-01T00:00:00Z", "selfLink": "https: "size": 102400, "storageClass": "STANDARD", "temporaryHold": true, "timeCreated": "2018-05-19T19:31:14Z", "timeDeleted": "2018-05-19T19:32:24Z", "timeStorageClassUpdated": "2018-05-19T19:31:34Z", "updated": "2018-05-19T19:31:24Z" })"""; absl::Time AsTime(const std::string& time) { absl::Time result; if (absl::ParseTime(absl::RFC3339_full, time, &result, nullptr)) { return result; } return absl::InfinitePast(); } TEST(ParseObjectMetadata, Basic) { EXPECT_FALSE(ParseObjectMetadata("").ok()); auto result = ParseObjectMetadata(kObjectMetadata); ASSERT_TRUE(result.ok()) << result.status(); EXPECT_EQ("baz", result->name); EXPECT_EQ("deaderBeef=", result->md5_hash); EXPECT_EQ(102400u, result->size); EXPECT_EQ(12345, result->generation); EXPECT_EQ(4, result->metageneration); EXPECT_EQ(AsTime("2018-05-19T12:31:14-07:00"), result->time_created); EXPECT_EQ(AsTime("2018-05-19T12:31:24-07:00"), result->updated); EXPECT_EQ(AsTime("2018-05-19T12:32:24-07:00"), result->time_deleted); } const char kObjectMetadata2[] = R"""({ "name": "fafb_v14/fafb_v14_clahe/128_128_160/0-64_1408-1472_896-960", "kind": "storage#object", "id": "neuroglancer-fafb-data/fafb_v14/fafb_v14_clahe/128_128_160/0-64_1408-1472_896-960/1540426531840872", "bucket": "neuroglancer-fafb-data", "generation": "1540426531840872", "contentType": "image/jpeg", "timeCreated": "2018-10-25T00:15:31.840Z", "updated": "2018-10-25T00:15:31.840Z", "timeStorageClassUpdated": "2018-10-25T00:15:31.840Z", "size": "3404" })"""; TEST(ParseObjectMetadata, Example2) { EXPECT_FALSE(ParseObjectMetadata("").ok()); auto result = ParseObjectMetadata(kObjectMetadata2); ASSERT_TRUE(result.ok()) << result.status(); EXPECT_EQ("fafb_v14/fafb_v14_clahe/128_128_160/0-64_1408-1472_896-960", result->name); EXPECT_EQ(3404u, result->size); EXPECT_EQ(1540426531840872, result->generation); EXPECT_EQ(AsTime("2018-10-24T17:15:31.84-07:00"), result->time_created); EXPECT_EQ(AsTime("2018-10-24T17:15:31.84-07:00"), result->updated); EXPECT_EQ(0, result->metageneration); } }
594
cpp
google/tensorstore
key
tensorstore/kvstore/zarr3_sharding_indexed/key.cc
tensorstore/kvstore/zarr3_sharding_indexed/key_test.cc
#ifndef TENSORSTORE_KVSTORE_ZARR_SHARDING_INDEXED_KEY_H_ #define TENSORSTORE_KVSTORE_ZARR_SHARDING_INDEXED_KEY_H_ #include <stdint.h> #include <optional> #include <string> #include <string_view> #include "tensorstore/index.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace zarr3_sharding_indexed { using EntryId = uint32_t; std::string IndicesToKey(span<const Index> grid_cell_indices); bool KeyToIndices(std::string_view key, span<Index> grid_cell_indices); std::optional<EntryId> KeyToEntryId(std::string_view key, span<const Index> grid_shape); Result<EntryId> KeyToEntryIdOrError(std::string_view key, span<const Index> grid_shape); std::string EntryIdToKey(EntryId entry_id, span<const Index> grid_shape); EntryId LowerBoundToEntryId(std::string_view key, span<const Index> grid_shape); std::pair<EntryId, EntryId> KeyRangeToEntryRange(std::string_view inclusive_min, std::string_view exclusive_max, span<const Index> grid_shape); std::string EntryIdToInternalKey(EntryId entry_id); EntryId InternalKeyToEntryId(std::string_view key); EntryId InternalKeyLowerBoundToEntryId(std::string_view key, int64_t num_entries_per_shard); std::pair<EntryId, EntryId> InternalKeyRangeToEntryRange( std::string_view inclusive_min, std::string_view exclusive_max, int64_t num_entries_per_shard); KeyRange KeyRangeToInternalKeyRange(const KeyRange& range, span<const Index> grid_shape); std::string DescribeEntryId(EntryId entry_id, span<const Index> grid_shape); std::string DescribeKey(std::string_view key, span<const Index> grid_shape); std::string DescribeInternalKey(std::string_view key, span<const Index> grid_shape); } } #endif #include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <cstring> #include <optional> #include <string> #include <string_view> #include <utility> #include "absl/base/internal/endian.h" #include "absl/status/status.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/rank.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace zarr3_sharding_indexed { std::string IndicesToKey(span<const Index> grid_cell_indices) { std::string key; key.resize(grid_cell_indices.size() * 4); for (DimensionIndex i = 0; i < grid_cell_indices.size(); ++i) { absl::big_endian::Store32(key.data() + i * 4, grid_cell_indices[i]); } return key; } bool KeyToIndices(std::string_view key, span<Index> grid_cell_indices) { if (key.size() != grid_cell_indices.size() * 4) { return false; } for (DimensionIndex i = 0; i < grid_cell_indices.size(); ++i) { grid_cell_indices[i] = absl::big_endian::Load32(key.data() + i * 4); } return true; } std::optional<EntryId> KeyToEntryId(std::string_view key, span<const Index> grid_shape) { const DimensionIndex rank = grid_shape.size(); if (rank * sizeof(uint32_t) != key.size()) return {}; EntryId id = 0; for (DimensionIndex i = 0; i < rank; ++i) { auto index = absl::big_endian::Load32(key.data() + i * 4); if (index >= grid_shape[i]) return {}; id *= grid_shape[i]; id += index; } return id; } Result<EntryId> KeyToEntryIdOrError(std::string_view key, span<const Index> grid_shape) { if (auto entry_id = KeyToEntryId(key, grid_shape)) { return *entry_id; } return absl::InvalidArgumentError( tensorstore::StrCat("Invalid key (grid_shape=", grid_shape, "): ", tensorstore::QuoteString(key))); } std::string EntryIdToKey(EntryId entry_id, span<const Index> grid_shape) { std::string key; key.resize(grid_shape.size() * 4); for (DimensionIndex i = grid_shape.size(); i--;) { const Index size = grid_shape[i]; absl::big_endian::Store32(key.data() + i * 4, entry_id % size); entry_id /= size; } return key; } EntryId LowerBoundToEntryId(std::string_view key, span<const Index> grid_shape) { char key_padded[kMaxRank * 4]; const size_t full_key_size = grid_shape.size() * 4; const size_t key_bytes_to_copy = std::min(full_key_size, key.size()); std::memcpy(key_padded, key.data(), key_bytes_to_copy); std::memset(key_padded + key_bytes_to_copy, 0, full_key_size - key_bytes_to_copy); EntryId entry_id = 0; EntryId remaining_indices_mask = ~static_cast<EntryId>(0); EntryId max_entry_id = 1; for (DimensionIndex i = 0; i < grid_shape.size(); ++i) { const EntryId size = grid_shape[i]; max_entry_id *= size; EntryId index = absl::big_endian::Load32(&key_padded[i * 4]); entry_id *= size; if (index >= size) { entry_id += (size & remaining_indices_mask); remaining_indices_mask = 0; } else { entry_id += (index & remaining_indices_mask); } } assert(entry_id <= max_entry_id); if (key.size() > full_key_size) { if (entry_id < max_entry_id) { ++entry_id; } } return entry_id; } std::pair<EntryId, EntryId> KeyRangeToEntryRange(std::string_view inclusive_min, std::string_view exclusive_max, span<const Index> grid_shape) { EntryId lower_bound = LowerBoundToEntryId(inclusive_min, grid_shape); EntryId upper_bound; if (exclusive_max.empty()) { upper_bound = static_cast<EntryId>(ProductOfExtents(grid_shape)); } else { upper_bound = LowerBoundToEntryId(exclusive_max, grid_shape); } return {lower_bound, upper_bound}; } EntryId InternalKeyLowerBoundToEntryId(std::string_view key, int64_t num_entries_per_shard) { char key_bytes[4] = {}; std::memcpy(key_bytes, key.data(), std::min(static_cast<size_t>(4), key.size())); EntryId entry_id = absl::big_endian::Load32(key_bytes); if (entry_id > num_entries_per_shard) { entry_id = num_entries_per_shard; } if (key.size() > 4 && entry_id < num_entries_per_shard) { ++entry_id; } return entry_id; } std::pair<EntryId, EntryId> InternalKeyRangeToEntryRange( std::string_view inclusive_min, std::string_view exclusive_max, int64_t num_entries_per_shard) { return {InternalKeyLowerBoundToEntryId(inclusive_min, num_entries_per_shard), exclusive_max.empty() ? EntryId(num_entries_per_shard) : InternalKeyLowerBoundToEntryId( exclusive_max, num_entries_per_shard)}; } std::string EntryIdToInternalKey(EntryId entry_id) { std::string key; key.resize(4); absl::big_endian::Store32(key.data(), entry_id); return key; } EntryId InternalKeyToEntryId(std::string_view key) { assert(key.size() == 4); return static_cast<EntryId>(absl::big_endian::Load32(key.data())); } KeyRange KeyRangeToInternalKeyRange(const KeyRange& range, span<const Index> grid_shape) { auto [inclusive_min_entry, exclusive_max_entry] = KeyRangeToEntryRange( range.inclusive_min, range.exclusive_max, grid_shape); return KeyRange{EntryIdToInternalKey(inclusive_min_entry), EntryIdToInternalKey(exclusive_max_entry)}; } std::string DescribeEntryId(EntryId entry_id, span<const Index> grid_shape) { Index indices[kMaxRank]; span<Index> indices_span(&indices[0], grid_shape.size()); GetContiguousIndices<c_order, Index>(entry_id, grid_shape, indices_span); return tensorstore::StrCat("shard entry ", indices_span, "/", grid_shape); } std::string DescribeKey(std::string_view key, span<const Index> grid_shape) { if (auto entry_id = KeyToEntryId(key, grid_shape)) { return DescribeEntryId(*entry_id, grid_shape); } return tensorstore::StrCat("invalid shard entry ", tensorstore::QuoteString(key), "/", grid_shape); } std::string DescribeInternalKey(std::string_view key, span<const Index> grid_shape) { return DescribeEntryId(InternalKeyToEntryId(key), grid_shape); } } }
#include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include <optional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index.h" #include "tensorstore/kvstore/key_range.h" namespace { using ::tensorstore::Index; using ::tensorstore::KeyRange; using ::tensorstore::zarr3_sharding_indexed::EntryId; using ::tensorstore::zarr3_sharding_indexed::EntryIdToInternalKey; using ::tensorstore::zarr3_sharding_indexed::EntryIdToKey; using ::tensorstore::zarr3_sharding_indexed::IndicesToKey; using ::tensorstore::zarr3_sharding_indexed::InternalKeyLowerBoundToEntryId; using ::tensorstore::zarr3_sharding_indexed::InternalKeyRangeToEntryRange; using ::tensorstore::zarr3_sharding_indexed::InternalKeyToEntryId; using ::tensorstore::zarr3_sharding_indexed::KeyRangeToEntryRange; using ::tensorstore::zarr3_sharding_indexed::KeyRangeToInternalKeyRange; using ::tensorstore::zarr3_sharding_indexed::KeyToEntryId; using ::tensorstore::zarr3_sharding_indexed::KeyToIndices; using ::tensorstore::zarr3_sharding_indexed::LowerBoundToEntryId; TEST(KeyToEntryIdTest, Basic) { EntryId entry_id = 1 * 5 * 6 + 2 * 6 + 3; std::string key{0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3}; Index grid_shape[] = {4, 5, 6}; EXPECT_THAT(KeyToEntryId(key, grid_shape), ::testing::Optional(entry_id)); EXPECT_THAT(EntryIdToKey(entry_id, grid_shape), ::testing::Eq(key)); } TEST(KeyToEntryIdTest, OutOfRange) { EXPECT_THAT(KeyToEntryId(std::string{0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 3}, {{4, 5, 6}}), ::testing::Eq(std::nullopt)); } TEST(KeyToEntryIdTest, Invalid) { EXPECT_THAT( KeyToEntryId(std::string{0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0}, {{4, 5, 6}}), ::testing::Eq(std::nullopt)); } TEST(IndicesToKeyTest, Basic) { const Index indices[] = {1, 2, 3}; std::string key{0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3}; EXPECT_THAT(IndicesToKey(indices), ::testing::Eq(key)); Index decoded_indices[3]; EXPECT_TRUE(KeyToIndices(key, decoded_indices)); EXPECT_THAT(decoded_indices, ::testing::ElementsAreArray(indices)); EXPECT_FALSE(KeyToIndices(key.substr(1), decoded_indices)); } TEST(LowerBoundToEntryId, Exact) { Index grid_shape[] = {4, 5, 6}; EXPECT_THAT(LowerBoundToEntryId( std::string{0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3}, grid_shape), ::testing::Eq(1 * 5 * 6 + 2 * 6 + 3)); } TEST(LowerBoundToEntryId, Longer) { Index grid_shape[] = {4, 5, 6}; EXPECT_THAT( LowerBoundToEntryId(std::string{0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0}, grid_shape), ::testing::Eq(1 * 5 * 6 + 2 * 6 + 4)); } TEST(KeyRangeToEntryRange, Full) { Index grid_shape[] = {4, 5, 6}; EXPECT_THAT(KeyRangeToEntryRange("", "", grid_shape), ::testing::Pair(0, 4 * 5 * 6)); } TEST(KeyRangeToEntryRange, Partial) { Index grid_shape[] = {4, 5, 6}; EXPECT_THAT( KeyRangeToEntryRange( std::string{ 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, }, std::string{ 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 5, }, grid_shape), ::testing::Pair(2 * (5 * 6) + 3 * 6 + 4, 2 * (5 * 6) + 4 * 6 + 5)); EXPECT_THAT(KeyRangeToInternalKeyRange(KeyRange{std::string{ 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, }, std::string{ 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 5, }}, grid_shape), KeyRange(EntryIdToInternalKey(2 * (5 * 6) + 3 * 6 + 4), EntryIdToInternalKey(2 * (5 * 6) + 4 * 6 + 5))); } TEST(EntryIdToInternalKeyTest, Basic) { EntryId entry_id = 0x01020304; std::string internal_key{0x01, 0x02, 0x03, 0x04}; EXPECT_THAT(EntryIdToInternalKey(entry_id), ::testing::Eq(internal_key)); EXPECT_THAT(InternalKeyToEntryId(internal_key), ::testing::Eq(entry_id)); } TEST(InternalKeyLowerBoundToEntryIdTest, Basic) { EXPECT_THAT(InternalKeyLowerBoundToEntryId( std::string{0x01, 0x02, 0x03, 0x04}, 0x88888888), ::testing::Eq(0x01020304)); EXPECT_THAT(InternalKeyLowerBoundToEntryId( std::string{0x01, 0x02, 0x03, 0x04, 0x0}, 0x88888888), ::testing::Eq(0x01020304 + 1)); EXPECT_THAT( InternalKeyLowerBoundToEntryId(std::string{0x01, 0x02, 0x03}, 0x88888888), ::testing::Eq(0x01020300)); EXPECT_THAT(InternalKeyLowerBoundToEntryId( std::string{0x01, 0x02, 0x03, 0x04}, 0x01020302), ::testing::Eq(0x01020302)); } TEST(InternalKeyRangeToEntryRange, Basic) { EXPECT_THAT(InternalKeyRangeToEntryRange(std::string{0x01, 0x02, 0x03, 0x04}, std::string{0x01, 0x02, 0x03, 0x07}, 0x88888888), ::testing::Pair(0x01020304, 0x01020307)); EXPECT_THAT(InternalKeyRangeToEntryRange(std::string{0x01, 0x02, 0x03, 0x04}, {}, 0x88888888), ::testing::Pair(0x01020304, 0x88888888)); } }
595
cpp
google/tensorstore
shard_format
tensorstore/kvstore/zarr3_sharding_indexed/shard_format.cc
tensorstore/kvstore/zarr3_sharding_indexed/shard_format_test.cc
#ifndef TENSORSTORE_KVSTORE_ZARR_SHARDING_INDEXED_SHARD_FORMAT_H_ #define TENSORSTORE_KVSTORE_ZARR_SHARDING_INDEXED_SHARD_FORMAT_H_ #include <stddef.h> #include <stdint.h> #include <cassert> #include <limits> #include <optional> #include <vector> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "tensorstore/array.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace zarr3_sharding_indexed { using internal_zarr3::ZarrCodecChain; using internal_zarr3::ZarrCodecChainSpec; constexpr int64_t kMaxNumEntries = 1024 * 1024 * 1024; enum ShardIndexLocation { kStart, kEnd, }; TENSORSTORE_DECLARE_JSON_BINDER(ShardIndexLocationJsonBinder, ShardIndexLocation, internal_json_binding::NoOptions, internal_json_binding::NoOptions); struct ShardIndexEntry { uint64_t offset = std::numeric_limits<uint64_t>::max(); uint64_t length = std::numeric_limits<uint64_t>::max(); static constexpr ShardIndexEntry Missing() { return ShardIndexEntry{}; } bool IsMissing() const { return offset == std::numeric_limits<uint64_t>::max() && length == std::numeric_limits<uint64_t>::max(); } absl::Status Validate(EntryId entry_id) const; absl::Status Validate(EntryId entry_id, int64_t total_size) const; ByteRange AsByteRange() const { return ByteRange{static_cast<int64_t>(offset), static_cast<int64_t>(offset + length)}; } }; struct ShardIndex { ShardIndexEntry operator[](int64_t i) const { assert(0 <= i && i < ProductOfExtents(entries.shape().first(entries.rank() - 1))); return ShardIndexEntry{entries.data()[i * 2], entries.data()[i * 2 + 1]}; } constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.entries); }; SharedArray<const uint64_t> entries; }; absl::Status ValidateGridShape(span<const Index> grid_shape); Result<ZarrCodecChain::Ptr> InitializeIndexCodecChain( const ZarrCodecChainSpec& codec_chain_spec, DimensionIndex grid_rank, ZarrCodecChainSpec* resolved_codec_chain_spec = nullptr); struct ShardIndexParameters { span<const Index> grid_shape() const { assert(index_shape.size() >= 0); return {index_shape.data(), static_cast<ptrdiff_t>(index_shape.size() - 1)}; } absl::Status InitializeIndexShape(span<const Index> grid_shape); absl::Status Initialize(const ZarrCodecChain& codec_chain, span<const Index> grid_shape); absl::Status Initialize( const ZarrCodecChainSpec& codec_chain_spec, span<const Index> grid_shape, ZarrCodecChainSpec* resolved_codec_chain_spec = nullptr); ShardIndexLocation index_location; int64_t num_entries; std::vector<Index> index_shape; ZarrCodecChain::Ptr index_codec_chain; ZarrCodecChain::PreparedState::Ptr index_codec_state; }; Result<ShardIndex> DecodeShardIndex(const absl::Cord& input, const ShardIndexParameters& parameters); Result<ShardIndex> DecodeShardIndexFromFullShard( const absl::Cord& shard_data, const ShardIndexParameters& shard_index_parameters); using ShardEntry = std::optional<absl::Cord>; struct ShardEntries { std::vector<ShardEntry> entries; constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.entries); }; }; Result<ShardEntries> DecodeShard( const absl::Cord& shard_data, const ShardIndexParameters& shard_index_parameters); Result<std::optional<absl::Cord>> EncodeShard( const ShardEntries& entries, const ShardIndexParameters& shard_index_parameters); } namespace internal_json_binding { template <> constexpr inline auto DefaultBinder<zarr3_sharding_indexed::ShardIndexLocation> = zarr3_sharding_indexed::ShardIndexLocationJsonBinder; } } #endif #include "tensorstore/kvstore/zarr3_sharding_indexed/shard_format.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cassert> #include <limits> #include <optional> #include <utility> #include <vector> #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "riegeli/bytes/cord_writer.h" #include "riegeli/bytes/wrapping_writer.h" #include "riegeli/bytes/writer.h" #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/driver/zarr3/codec/codec.h" #include "tensorstore/driver/zarr3/codec/codec_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/enum.h" #include "tensorstore/internal/unowned_to_shared.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include "tensorstore/rank.h" #include "tensorstore/static_cast.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace zarr3_sharding_indexed { namespace jb = ::tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_BINDER(ShardIndexLocationJsonBinder, jb::Enum<ShardIndexLocation, const char*>({ {ShardIndexLocation::kStart, "start"}, {ShardIndexLocation::kEnd, "end"}, })); absl::Status ShardIndexEntry::Validate(EntryId entry_id) const { if (!IsMissing()) { uint64_t exclusive_max; if (internal::AddOverflow(offset, length, &exclusive_max) || exclusive_max > std::numeric_limits<int64_t>::max()) { return absl::DataLossError(absl::StrFormat( "Invalid shard index entry %d with offset=%d, length=%d", entry_id, offset, length)); } } return absl::OkStatus(); } absl::Status ShardIndexEntry::Validate(EntryId entry_id, int64_t total_size) const { if (auto status = Validate(entry_id); !status.ok()) return status; auto byte_range = AsByteRange(); if (byte_range.exclusive_max > total_size) { return absl::DataLossError(tensorstore::StrCat( "Shard index entry ", entry_id, " with byte range ", byte_range, " is invalid for shard of size ", total_size)); } return absl::OkStatus(); } Result<ShardIndex> DecodeShardIndex(const absl::Cord& input, const ShardIndexParameters& parameters) { assert(parameters.index_shape.back() == 2); SharedArray<const void> entries; TENSORSTORE_ASSIGN_OR_RETURN( entries, parameters.index_codec_state->DecodeArray(parameters.index_shape, input)); if (!IsContiguousLayout(entries, c_order)) { entries = MakeCopy(entries); } return ShardIndex{ StaticDataTypeCast<const uint64_t, unchecked>(std::move(entries))}; } Result<ShardIndex> DecodeShardIndexFromFullShard( const absl::Cord& shard_data, const ShardIndexParameters& shard_index_parameters) { int64_t shard_index_size = shard_index_parameters.index_codec_state->encoded_size(); if (shard_index_size > shard_data.size()) { return absl::DataLossError(absl::StrFormat( "Existing shard has size of %d bytes, but expected at least %d bytes", shard_data.size(), shard_index_size)); } absl::Cord encoded_shard_index; switch (shard_index_parameters.index_location) { case ShardIndexLocation::kStart: encoded_shard_index = shard_data.Subcord(0, shard_index_size); break; case ShardIndexLocation::kEnd: encoded_shard_index = shard_data.Subcord( shard_data.size() - shard_index_size, shard_index_size); break; } TENSORSTORE_ASSIGN_OR_RETURN( auto shard_index, DecodeShardIndex(encoded_shard_index, shard_index_parameters), tensorstore::MaybeAnnotateStatus(_, "Error decoding shard index")); return shard_index; } absl::Status EncodeShardIndex(riegeli::Writer& writer, const ShardIndex& shard_index, const ShardIndexParameters& parameters) { riegeli::WrappingWriter wrapping_writer{&writer}; return parameters.index_codec_state->EncodeArray(shard_index.entries, wrapping_writer); } absl::Status ValidateGridShape(span<const Index> grid_shape) { if (grid_shape.size() > kMaxRank - 1) { return absl::InvalidArgumentError( absl::StrFormat("grid rank of %d exceeds maximum of %d", grid_shape.size(), kMaxRank - 1)); } if (ProductOfExtents(grid_shape) > kMaxNumEntries) { return absl::InvalidArgumentError( tensorstore::StrCat("grid shape of ", grid_shape, " has more than ", kMaxNumEntries, " entries")); } return absl::OkStatus(); } Result<ZarrCodecChain::Ptr> InitializeIndexCodecChain( const ZarrCodecChainSpec& codec_chain_spec, DimensionIndex grid_rank, ZarrCodecChainSpec* resolved_codec_chain_spec) { if (grid_rank > kMaxRank - 1) { return absl::InvalidArgumentError(absl::StrFormat( "Rank of %d exceeds maximum ran of %d supported for sharding_indexed", grid_rank, kMaxRank - 1)); } static const uint64_t fill_value{std::numeric_limits<uint64_t>::max()}; internal_zarr3::ArrayCodecResolveParameters array_params; array_params.dtype = dtype_v<uint64_t>; array_params.rank = grid_rank + 1; array_params.fill_value = SharedArray<const void>(internal::UnownedToShared(&fill_value)); internal_zarr3::BytesCodecResolveParameters bytes_params; return codec_chain_spec.Resolve(std::move(array_params), bytes_params, resolved_codec_chain_spec); } absl::Status ShardIndexParameters::InitializeIndexShape( span<const Index> grid_shape) { TENSORSTORE_RETURN_IF_ERROR(ValidateGridShape(grid_shape)); num_entries = ProductOfExtents(grid_shape); index_shape.resize(grid_shape.size() + 1); std::copy(grid_shape.begin(), grid_shape.end(), index_shape.begin()); index_shape.back() = 2; return absl::OkStatus(); } absl::Status ShardIndexParameters::Initialize( const ZarrCodecChainSpec& codec_chain_spec, span<const Index> grid_shape, ZarrCodecChainSpec* resolved_codec_chain_spec) { TENSORSTORE_ASSIGN_OR_RETURN( index_codec_chain, InitializeIndexCodecChain(codec_chain_spec, grid_shape.size(), resolved_codec_chain_spec)); return Initialize(*index_codec_chain, grid_shape); return absl::OkStatus(); } absl::Status ShardIndexParameters::Initialize(const ZarrCodecChain& codec_chain, span<const Index> grid_shape) { if (index_codec_chain.get() != &codec_chain) { index_codec_chain.reset(&codec_chain); } TENSORSTORE_RETURN_IF_ERROR(InitializeIndexShape(grid_shape)); TENSORSTORE_ASSIGN_OR_RETURN(index_codec_state, index_codec_chain->Prepare(index_shape)); if (index_codec_state->encoded_size() == -1) { return absl::InvalidArgumentError( "Invalid index_codecs specified: only fixed-size encodings are " "supported"); } return absl::OkStatus(); } Result<ShardEntries> DecodeShard( const absl::Cord& shard_data, const ShardIndexParameters& shard_index_parameters) { const int64_t num_entries = shard_index_parameters.num_entries; ShardEntries entries; entries.entries.resize(num_entries); TENSORSTORE_ASSIGN_OR_RETURN( auto shard_index, DecodeShardIndexFromFullShard(shard_data, shard_index_parameters)); for (int64_t i = 0; i < num_entries; ++i) { const auto entry_index = shard_index[i]; if (entry_index.IsMissing()) continue; TENSORSTORE_RETURN_IF_ERROR(entry_index.Validate(i, shard_data.size())); entries.entries[i] = internal::GetSubCord(shard_data, entry_index.AsByteRange()); } return entries; } Result<std::optional<absl::Cord>> EncodeShard( const ShardEntries& entries, const ShardIndexParameters& shard_index_parameters) { int64_t shard_index_size = shard_index_parameters.index_codec_state->encoded_size(); absl::Cord shard_data; riegeli::CordWriter writer{&shard_data}; auto shard_index_array = AllocateArray<uint64_t>( shard_index_parameters.index_shape, c_order, default_init); bool has_entry = false; uint64_t offset = shard_index_parameters.index_location == ShardIndexLocation::kStart ? shard_index_size : 0; for (size_t i = 0; i < entries.entries.size(); ++i) { const auto& entry = entries.entries[i]; uint64_t entry_offset; uint64_t length; if (entry) { has_entry = true; length = entry->size(); entry_offset = offset; offset += length; ABSL_CHECK(writer.Write(*entry)); } else { entry_offset = std::numeric_limits<uint64_t>::max(); length = std::numeric_limits<uint64_t>::max(); } shard_index_array.data()[i * 2] = entry_offset; shard_index_array.data()[i * 2 + 1] = length; } if (!has_entry) return std::nullopt; switch (shard_index_parameters.index_location) { case ShardIndexLocation::kStart: { ABSL_CHECK(writer.Close()); absl::Cord encoded_shard_index; riegeli::CordWriter index_writer{&encoded_shard_index}; TENSORSTORE_RETURN_IF_ERROR(EncodeShardIndex( index_writer, ShardIndex{std::move(shard_index_array)}, shard_index_parameters)); ABSL_CHECK(index_writer.Close()); encoded_shard_index.Append(std::move(shard_data)); shard_data = std::move(encoded_shard_index); break; } case ShardIndexLocation::kEnd: { TENSORSTORE_RETURN_IF_ERROR( EncodeShardIndex(writer, ShardIndex{std::move(shard_index_array)}, shard_index_parameters)); ABSL_CHECK(writer.Close()); break; } } return shard_data; } } }
#include "tensorstore/kvstore/zarr3_sharding_indexed/shard_format.h" #include <optional> #include <string_view> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include <nlohmann/json.hpp> #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/driver/zarr3/codec/codec_test_util.h" #include "tensorstore/index.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Index; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::internal_zarr3::GetDefaultBytesCodecJson; using ::tensorstore::internal_zarr3::ZarrCodecChainSpec; using ::tensorstore::zarr3_sharding_indexed::DecodeShard; using ::tensorstore::zarr3_sharding_indexed::EncodeShard; using ::tensorstore::zarr3_sharding_indexed::ShardEntries; using ::tensorstore::zarr3_sharding_indexed::ShardIndexLocation; using ::tensorstore::zarr3_sharding_indexed::ShardIndexParameters; Result<ShardIndexParameters> GetParams( ShardIndexLocation index_location, std::vector<Index> grid_shape, ::nlohmann::json::array_t index_codecs_json = {GetDefaultBytesCodecJson(), {{"name", "crc32c"}}}) { TENSORSTORE_ASSIGN_OR_RETURN(auto index_codecs, ZarrCodecChainSpec::FromJson(index_codecs_json)); ShardIndexParameters p; p.index_location = index_location; TENSORSTORE_RETURN_IF_ERROR(p.Initialize(index_codecs, grid_shape)); return p; } TEST(InitializeTest, Success) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto p, GetParams(ShardIndexLocation::kEnd, {2, 3})); EXPECT_EQ(6, p.num_entries); EXPECT_THAT(p.index_shape, ::testing::ElementsAre(2, 3, 2)); } TEST(InitializeTest, InvalidIndexCodecs) { EXPECT_THAT( GetParams(ShardIndexLocation::kEnd, {2, 3}, {GetDefaultBytesCodecJson(), {{"name", "gzip"}, {"configuration", {{"level", 5}}}}}), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: only fixed-size encodings are supported")); } TEST(InitializeTest, InvalidGridShape) { EXPECT_THAT( GetParams(ShardIndexLocation::kEnd, {1024 * 1024 * 1024 + 1}), MatchesStatus(absl::StatusCode::kInvalidArgument, "grid shape of .* has more than 1073741824 entries")); } TEST(EncodeShardTest, RoundTrip) { for (auto index_location : {ShardIndexLocation::kStart, ShardIndexLocation::kEnd}) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto p, GetParams(index_location, {2, 3})); ShardEntries entries; entries.entries = { absl::Cord("(0, 0)"), absl::Cord("(0, 1)"), std::nullopt, std::nullopt, absl::Cord("(1, 1)"), std::nullopt }; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, EncodeShard(entries, p)); ASSERT_TRUE(encoded.has_value()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto decoded_entries, DecodeShard(*encoded, p)); EXPECT_THAT(decoded_entries.entries, ::testing::ElementsAreArray(entries.entries)); } } TEST(EncodeShardTest, RoundTripEmpty) { for (auto index_location : {ShardIndexLocation::kStart, ShardIndexLocation::kEnd}) { TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto p, GetParams(index_location, {2, 3})); ShardEntries entries; entries.entries.resize(6); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, EncodeShard(entries, p)); ASSERT_FALSE(encoded.has_value()); } } TEST(DecodeShardTest, TooShort) { absl::Cord encoded(std::string{1, 2, 3}); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto p, GetParams(ShardIndexLocation::kEnd, {2})); EXPECT_THAT(DecodeShard(encoded, p), MatchesStatus(absl::StatusCode::kDataLoss, "Existing shard has size of 3 bytes, but expected " "at least .* bytes")); } TEST(DecodeShardTest, ByteRangeOutOfRange) { absl::Cord encoded(std::string{ 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 0, 0, 0, 0, }); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto p, GetParams(ShardIndexLocation::kEnd, {1}, {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}})); EXPECT_THAT( DecodeShard(encoded, p), MatchesStatus(absl::StatusCode::kDataLoss, "Shard index entry 0 with byte range .* is invalid .*")); } TEST(DecodeShardTest, ByteRangeInvalid) { unsigned char data[] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 1, 0, 0, 0, 0, 0, 0, 0, }; absl::Cord encoded( std::string_view(reinterpret_cast<const char*>(data), sizeof(data))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto p, GetParams(ShardIndexLocation::kEnd, {1}, {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}})); EXPECT_THAT(DecodeShard(encoded, p), MatchesStatus(absl::StatusCode::kDataLoss, "Invalid shard index entry 0 with .*")); } }
596
cpp
google/tensorstore
zarr3_sharding_indexed
tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.cc
tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed_test.cc
#ifndef TENSORSTORE_KVSTORE_ZARR_SHARDING_INDEXED_ZARR_SHARDING_INDEXED_H_ #define TENSORSTORE_KVSTORE_ZARR_SHARDING_INDEXED_ZARR_SHARDING_INDEXED_H_ #include <stdint.h> #include <string> #include <string_view> #include "tensorstore/internal/cache/cache.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/shard_format.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace zarr3_sharding_indexed { struct ShardedKeyValueStoreParameters { kvstore::DriverPtr base_kvstore; std::string base_kvstore_path; Executor executor; internal::CachePool::WeakPtr cache_pool; ShardIndexParameters index_params; }; kvstore::DriverPtr GetShardedKeyValueStore( ShardedKeyValueStoreParameters&& parameters); } } #endif #include "tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.h" #include <stddef.h> #include <stdint.h> #include <cassert> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/batch.h" #include "tensorstore/context.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/cache/async_cache.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/cache_pool_resource.h" #include "tensorstore/internal/cache/kvs_backed_cache.h" #include "tensorstore/internal/cache_key/cache_key.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/estimate_heap_usage/estimate_heap_usage.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/dimension_indexed.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_modify_write.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/transaction.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/shard_format.h" #include "tensorstore/transaction.h" #include "tensorstore/util/bit_vec.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/flow_sender_operation_state.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/garbage_collection/garbage_collection.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/str_cat.h" #include "tensorstore/internal/cache_key/std_vector.h" #include "tensorstore/internal/estimate_heap_usage/std_optional.h" #include "tensorstore/internal/estimate_heap_usage/std_vector.h" #include "tensorstore/serialization/std_vector.h" #include "tensorstore/util/execution/result_sender.h" #include "tensorstore/util/garbage_collection/std_vector.h" namespace tensorstore { namespace zarr3_sharding_indexed { namespace { using ::tensorstore::internal_kvstore::DeleteRangeEntry; using ::tensorstore::internal_kvstore::kReadModifyWrite; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListReceiver; class ShardIndexKeyValueStore : public kvstore::Driver { public: explicit ShardIndexKeyValueStore(kvstore::DriverPtr base, ShardIndexLocation index_location, int64_t index_size_in_bytes) : base_(std::move(base)), index_location_(index_location), index_size_in_bytes_(index_size_in_bytes) {} Future<kvstore::ReadResult> Read(kvstore::Key key, kvstore::ReadOptions options) override { assert(options.byte_range == OptionalByteRangeRequest{}); switch (index_location_) { case ShardIndexLocation::kStart: options.byte_range = OptionalByteRangeRequest::Range(0, index_size_in_bytes_); break; case ShardIndexLocation::kEnd: options.byte_range = OptionalByteRangeRequest::SuffixLength(index_size_in_bytes_); break; } return MapFutureError( InlineExecutor{}, [](const absl::Status& status) { return internal::ConvertInvalidArgumentToFailedPrecondition(status); }, base_->Read(std::move(key), std::move(options))); } std::string DescribeKey(std::string_view key) override { return tensorstore::StrCat("shard index in ", base_->DescribeKey(key)); } void GarbageCollectionVisit( garbage_collection::GarbageCollectionVisitor& visitor) const final { } kvstore::Driver* base() { return base_.get(); } private: kvstore::DriverPtr base_; ShardIndexLocation index_location_; int64_t index_size_in_bytes_; }; class ShardIndexCache : public internal::KvsBackedCache<ShardIndexCache, internal::AsyncCache> { using Base = internal::KvsBackedCache<ShardIndexCache, internal::AsyncCache>; public: using ReadData = ShardIndex; class Entry : public Base::Entry { public: using OwningCache = ShardIndexCache; size_t ComputeReadDataSizeInBytes(const void* read_data) override { const auto& cache = GetOwningCache(*this); return read_data ? cache.shard_index_params().num_entries * sizeof(uint64_t) * 2 : 0; } std::string GetKeyValueStoreKey() override { return GetOwningCache(*this).base_kvstore_path_; } void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override { GetOwningCache(*this).executor()( [this, value = std::move(value), receiver = std::move(receiver)]() mutable { std::shared_ptr<ReadData> read_data; if (value) { TENSORSTORE_ASSIGN_OR_RETURN( auto shard_index, DecodeShardIndex(*value, GetOwningCache(*this).shard_index_params()), static_cast<void>(execution::set_error(receiver, _))); read_data = std::make_shared<ReadData>(std::move(shard_index)); } execution::set_value(receiver, std::move(read_data)); }); } }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { ABSL_UNREACHABLE(); } explicit ShardIndexCache(kvstore::DriverPtr base_kvstore, std::string base_kvstore_path, Executor executor, ShardIndexParameters&& params) : Base(kvstore::DriverPtr(new ShardIndexKeyValueStore( std::move(base_kvstore), params.index_location, params.index_codec_state->encoded_size()))), base_kvstore_path_(std::move(base_kvstore_path)), executor_(std::move(executor)), shard_index_params_(std::move(params)) {} ShardIndexKeyValueStore* shard_index_kvstore_driver() { return static_cast<ShardIndexKeyValueStore*>(this->Base::kvstore_driver()); } kvstore::Driver* base_kvstore_driver() { return shard_index_kvstore_driver()->base(); } const std::string& base_kvstore_path() const { return base_kvstore_path_; } const Executor& executor() { return executor_; } span<const Index> grid_shape() const { return span<const Index>(shard_index_params_.index_shape.data(), shard_index_params_.index_shape.size() - 1); } const ShardIndexParameters& shard_index_params() const { return shard_index_params_; } std::string base_kvstore_path_; Executor executor_; ShardIndexParameters shard_index_params_; }; class ShardedKeyValueStoreWriteCache : public internal::KvsBackedCache<ShardedKeyValueStoreWriteCache, internal::AsyncCache> { using Base = internal::KvsBackedCache<ShardedKeyValueStoreWriteCache, internal::AsyncCache>; public: using ReadData = ShardEntries; explicit ShardedKeyValueStoreWriteCache( internal::CachePtr<ShardIndexCache> shard_index_cache) : Base(kvstore::DriverPtr(shard_index_cache->base_kvstore_driver())), shard_index_cache_(std::move(shard_index_cache)) {} class Entry : public Base::Entry { public: using OwningCache = ShardedKeyValueStoreWriteCache; size_t ComputeReadDataSizeInBytes(const void* data) override { return internal::EstimateHeapUsage(*static_cast<const ReadData*>(data)); } void DoDecode(std::optional<absl::Cord> value, DecodeReceiver receiver) override { GetOwningCache(*this).executor()( [this, value = std::move(value), receiver = std::move(receiver)]() mutable { ShardEntries entries; const auto& shard_index_params = GetOwningCache(*this).shard_index_params(); if (value) { TENSORSTORE_ASSIGN_OR_RETURN( entries, DecodeShard(*value, shard_index_params), static_cast<void>(execution::set_error(receiver, _))); } else { entries.entries.resize(shard_index_params.num_entries); } execution::set_value( receiver, std::make_shared<ShardEntries>(std::move(entries))); }); } void DoEncode(std::shared_ptr<const ShardEntries> data, EncodeReceiver receiver) override { TENSORSTORE_ASSIGN_OR_RETURN( auto encoded_shard, EncodeShard(*data, GetOwningCache(*this).shard_index_params()), static_cast<void>(execution::set_error(receiver, _))); execution::set_value(receiver, std::move(encoded_shard)); } std::string GetKeyValueStoreKey() override { return GetOwningCache(*this).base_kvstore_path(); } }; class TransactionNode : public Base::TransactionNode, public internal_kvstore::AtomicMultiPhaseMutation { public: using OwningCache = ShardedKeyValueStoreWriteCache; using Base::TransactionNode::TransactionNode; absl::Mutex& mutex() override { return this->mutex_; } void PhaseCommitDone(size_t next_phase) override {} internal::TransactionState::Node& GetTransactionNode() override { return *this; } void Abort() override { this->AbortRemainingPhases(); Base::TransactionNode::Abort(); } std::string DescribeKey(std::string_view key) override { auto& cache = GetOwningCache(*this); return tensorstore::StrCat( DescribeInternalKey(key, cache.shard_index_params().grid_shape()), " in ", cache.kvstore_driver()->DescribeKey(cache.base_kvstore_path())); } void DoApply(ApplyOptions options, ApplyReceiver receiver) override; void StartApply(); void AllEntriesDone( internal_kvstore::SinglePhaseMutation& single_phase_mutation) override; void MergeForWriteback(bool conditional); void RecordEntryWritebackError( internal_kvstore::ReadModifyWriteEntry& entry, absl::Status error) override { absl::MutexLock lock(&mutex_); if (apply_status_.ok()) { apply_status_ = std::move(error); } } void Revoke() override { Base::TransactionNode::Revoke(); { UniqueWriterLock(*this); } this->RevokeAllEntries(); } void WritebackSuccess(ReadState&& read_state) override; void WritebackError() override; void InvalidateReadState() override; bool MultiPhaseReadsCommitted() override { return this->reads_committed_; } void Read( internal_kvstore::ReadModifyWriteEntry& entry, kvstore::ReadModifyWriteTarget::TransactionalReadOptions&& options, kvstore::ReadModifyWriteTarget::ReadReceiver&& receiver) override { this->AsyncCache::TransactionNode::Read({options.staleness_bound}) .ExecuteWhenReady(WithExecutor( GetOwningCache(*this).executor(), [&entry, if_not_equal = std::move(options.generation_conditions.if_not_equal), receiver = std::move(receiver)]( ReadyFuture<const void> future) mutable { if (!future.result().ok()) { execution::set_error(receiver, future.result().status()); return; } execution::submit(HandleShardReadSuccess(entry, if_not_equal), receiver); })); } static Result<kvstore::ReadResult> HandleShardReadSuccess( internal_kvstore::ReadModifyWriteEntry& entry, const StorageGeneration& if_not_equal) { auto& self = static_cast<TransactionNode&>(entry.multi_phase()); TimestampedStorageGeneration stamp; std::shared_ptr<const ShardEntries> entries; { AsyncCache::ReadLock<ShardEntries> lock{self}; stamp = lock.stamp(); entries = lock.shared_data(); } if (!StorageGeneration::IsUnknown(stamp.generation) && stamp.generation == if_not_equal) { return kvstore::ReadResult::Unspecified(std::move(stamp)); } if (StorageGeneration::IsDirty(stamp.generation)) { stamp.generation = StorageGeneration::AddLayer(std::move(stamp.generation)); } auto entry_id = InternalKeyToEntryId(entry.key_); const auto& shard_entry = entries->entries[entry_id]; if (!shard_entry) { return kvstore::ReadResult::Missing(std::move(stamp)); } else { return kvstore::ReadResult::Value(*shard_entry, std::move(stamp)); } } ApplyReceiver apply_receiver_; ApplyOptions apply_options_; absl::Status apply_status_; }; Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { return new TransactionNode(static_cast<Entry&>(entry)); } const internal::CachePtr<ShardIndexCache>& shard_index_cache() const { return shard_index_cache_; } const Executor& executor() { return shard_index_cache()->executor(); } const ShardIndexParameters& shard_index_params() const { return shard_index_cache_->shard_index_params(); } int64_t num_entries_per_shard() const { return shard_index_cache_->shard_index_params().num_entries; } const std::string& base_kvstore_path() const { return shard_index_cache_->base_kvstore_path(); } internal::CachePtr<ShardIndexCache> shard_index_cache_; }; void ShardedKeyValueStoreWriteCache::TransactionNode::InvalidateReadState() { Base::TransactionNode::InvalidateReadState(); internal_kvstore::InvalidateReadState(phases_); } void ShardedKeyValueStoreWriteCache::TransactionNode::DoApply( ApplyOptions options, ApplyReceiver receiver) { apply_receiver_ = std::move(receiver); apply_options_ = options; apply_status_ = absl::OkStatus(); GetOwningCache(*this).executor()([this] { this->StartApply(); }); } void ShardedKeyValueStoreWriteCache::TransactionNode::StartApply() { RetryAtomicWriteback(apply_options_.staleness_bound); } void ShardedKeyValueStoreWriteCache::TransactionNode::AllEntriesDone( internal_kvstore::SinglePhaseMutation& single_phase_mutation) { if (!apply_status_.ok()) { execution::set_error(std::exchange(apply_receiver_, {}), std::exchange(apply_status_, {})); return; } auto& self = *this; GetOwningCache(*this).executor()([&self] { TimestampedStorageGeneration stamp; bool mismatch = false; bool modified = false; int64_t num_entries = 0; auto& cache = GetOwningCache(self); const int64_t num_entries_per_shard = cache.num_entries_per_shard(); for (auto& entry : self.phases_.entries_) { if (entry.entry_type() != kReadModifyWrite) { auto& dr_entry = static_cast<DeleteRangeEntry&>(entry); auto [begin_id, end_id] = InternalKeyRangeToEntryRange( dr_entry.key_, dr_entry.exclusive_max_, num_entries_per_shard); modified = true; num_entries += end_id - begin_id; continue; } auto& buffered_entry = static_cast<AtomicMultiPhaseMutation::BufferedReadModifyWriteEntry&>( entry); if (buffered_entry.value_state_ != kvstore::ReadResult::kUnspecified) { modified = true; ++num_entries; } auto& entry_stamp = buffered_entry.stamp(); if (StorageGeneration::IsConditional(entry_stamp.generation)) { if (!StorageGeneration::IsUnknown(stamp.generation) && StorageGeneration::Clean(stamp.generation) != StorageGeneration::Clean(entry_stamp.generation)) { mismatch = true; break; } else { stamp = entry_stamp; } } } if (mismatch) { self.apply_options_.staleness_bound = absl::Now(); self.StartApply(); return; } if (!modified && StorageGeneration::IsUnknown(stamp.generation) && self.apply_options_.apply_mode != ApplyOptions::ApplyMode::kSpecifyUnchanged) { internal::AsyncCache::ReadState update; update.stamp = TimestampedStorageGeneration::Unconditional(); execution::set_value(std::exchange(self.apply_receiver_, {}), std::move(update)); return; } if (!StorageGeneration::IsUnknown(stamp.generation) || num_entries != num_entries_per_shard) { self.internal::AsyncCache::TransactionNode::Read( {self.apply_options_.staleness_bound}) .ExecuteWhenReady([&self](ReadyFuture<const void> future) { if (!future.result().ok()) { execution::set_error(std::exchange(self.apply_receiver_, {}), future.result().status()); return; } GetOwningCache(self).executor()( [&self] { self.MergeForWriteback(true); }); }); return; } self.MergeForWriteback(false); }); } void ShardedKeyValueStoreWriteCache::TransactionNode::MergeForWriteback( bool conditional) { TimestampedStorageGeneration stamp; ShardEntries new_entries; if (conditional) { auto lock = internal::AsyncCache::ReadLock<ShardEntries>{*this}; stamp = lock.stamp(); new_entries = *lock.shared_data(); } else { stamp = TimestampedStorageGeneration::Unconditional(); } auto& cache = GetOwningCache(*this); const int64_t num_entries_per_shard = cache.num_entries_per_shard(); const bool has_existing_entries = !new_entries.entries.empty(); new_entries.entries.resize(num_entries_per_shard); bool mismatch = false; bool changed = false; for (auto& entry : phases_.entries_) { if (entry.entry_type() != kReadModifyWrite) { auto& dr_entry = static_cast<DeleteRangeEntry&>(entry); auto [begin_id, end_id] = InternalKeyRangeToEntryRange( dr_entry.key_, dr_entry.exclusive_max_, num_entries_per_shard); if (has_existing_entries) { for (EntryId id = begin_id; id < end_id; ++id) { new_entries.entries[id] = std::nullopt; } } changed = true; continue; } auto& buffered_entry = static_cast<internal_kvstore::AtomicMultiPhaseMutation:: BufferedReadModifyWriteEntry&>(entry); auto& entry_stamp = buffered_entry.stamp(); if (StorageGeneration::IsConditional(entry_stamp.generation) && StorageGeneration::Clean(entry_stamp.generation) != StorageGeneration::Clean(stamp.generation)) { mismatch = true; break; } if (buffered_entry.value_state_ == kvstore::ReadResult::kUnspecified || !StorageGeneration::IsInnerLayerDirty(entry_stamp.generation)) { continue; } auto entry_id = InternalKeyToEntryId(buffered_entry.key_); auto& new_entry = new_entries.entries[entry_id]; if (buffered_entry.value_state_ == kvstore::ReadResult::kValue) { new_entry = buffered_entry.value_; changed = true; } else if (new_entry) { new_entry = std::nullopt; changed = true; } else if (!conditional) { changed = true; } } if (mismatch) { apply_options_.staleness_bound = absl::Now(); this->StartApply(); return; } internal::AsyncCache::ReadState update; update.stamp = std::move(stamp); if (changed) { update.stamp.generation.MarkDirty(); } update.data = std::make_shared<ShardEntries>(std::move(new_entries)); execution::set_value(std::exchange(apply_receiver_, {}), std::move(update)); } void ShardedKeyValueStoreWriteCache::TransactionNode::WritebackSuccess( ReadState&& read_state) { for (auto& entry : phases_.entries_) { if (entry.entry_type() != kReadModifyWrite) { internal_kvstore::WritebackSuccess(static_cast<DeleteRangeEntry&>(entry)); } else { internal_kvstore::WritebackSuccess( static_cast<internal_kvstore::ReadModifyWriteEntry&>(entry), read_state.stamp); } } internal_kvstore::DestroyPhaseEntries(phases_); Base::TransactionNode::WritebackSuccess(std::move(read_state)); } void ShardedKeyValueStoreWriteCache::TransactionNode::WritebackError() { internal_kvstore::WritebackError(phases_); internal_kvstore::DestroyPhaseEntries(phases_); Base::TransactionNode::WritebackError(); } struct ShardedKeyValueStoreSpecData { Context::Resource<internal::CachePoolResource> cache_pool; Context::Resource<internal::DataCopyConcurrencyResource> data_copy_concurrency; kvstore::Spec base; std::vector<Index> grid_shape; internal_zarr3::ZarrCodecChainSpec index_codecs; ShardIndexLocation index_location; TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(ShardedKeyValueStoreSpecData, internal_json_binding::NoOptions, IncludeDefaults, ::nlohmann::json::object_t) constexpr static auto ApplyMembers = [](auto&& x, auto f) { return f(x.cache_pool, x.data_copy_concurrency, x.base, x.grid_shape, x.index_codecs, x.index_location); }; }; namespace jb = ::tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( ShardedKeyValueStoreSpecData, jb::Object( jb::Member(
#include "tensorstore/kvstore/zarr3_sharding_indexed/zarr3_sharding_indexed.h" #include <stddef.h> #include <stdint.h> #include <functional> #include <initializer_list> #include <map> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "absl/log/absl_check.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "re2/re2.h" #include "riegeli/bytes/cord_writer.h" #include "riegeli/bytes/write.h" #include "riegeli/digests/crc32c_digester.h" #include "tensorstore/batch.h" #include "tensorstore/context.h" #include "tensorstore/driver/zarr3/codec/codec_chain_spec.h" #include "tensorstore/index.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/cache/kvs_backed_cache_testutil.h" #include "tensorstore/internal/global_initializer.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/riegeli/digest_suffixed_writer.h" #include "tensorstore/internal/testing/scoped_directory.h" #include "tensorstore/internal/thread/thread_pool.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/memory/memory_key_value_store.h" #include "tensorstore/kvstore/mock_kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/kvstore/zarr3_sharding_indexed/key.h" #include "tensorstore/transaction.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/extents.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::Batch; using ::tensorstore::Executor; using ::tensorstore::Future; using ::tensorstore::Index; using ::tensorstore::KvStore; using ::tensorstore::MatchesStatus; using ::tensorstore::OptionalByteRangeRequest; using ::tensorstore::Result; using ::tensorstore::span; using ::tensorstore::StorageGeneration; using ::tensorstore::TimestampedStorageGeneration; using ::tensorstore::Transaction; using ::tensorstore::internal::CachePool; using ::tensorstore::internal::GetCache; using ::tensorstore::internal::KvsBackedTestCache; using ::tensorstore::internal::MatchesKvsReadResult; using ::tensorstore::internal::MatchesKvsReadResultNotFound; using ::tensorstore::internal::MatchesTimestampedStorageGeneration; using ::tensorstore::internal::MockKeyValueStore; using ::tensorstore::internal::UniqueNow; using ::tensorstore::internal_zarr3::ZarrCodecChainSpec; using ::tensorstore::kvstore::ReadResult; using ::tensorstore::zarr3_sharding_indexed::EntryId; using ::tensorstore::zarr3_sharding_indexed::EntryIdToKey; using ::tensorstore::zarr3_sharding_indexed::GetShardedKeyValueStore; using ::tensorstore::zarr3_sharding_indexed::ShardedKeyValueStoreParameters; using ::tensorstore::zarr3_sharding_indexed::ShardIndexLocation; constexpr CachePool::Limits kSmallCacheLimits{10000000}; absl::Cord Bytes(std::initializer_list<unsigned char> x) { return absl::Cord(std::string(x.begin(), x.end())); } absl::Cord WithCrc32c(absl::Cord input) { absl::Cord output; riegeli::CordWriter writer{&output}; TENSORSTORE_CHECK_OK(riegeli::Write( input, tensorstore::internal::DigestSuffixedWriter< riegeli::Crc32cDigester, tensorstore::internal::LittleEndianDigestWriter>{&writer})); ABSL_CHECK(writer.Close()); return output; } class GetKey { public: GetKey(bool sequential, std::vector<Index> grid_shape) : sequential_(sequential), grid_shape_(std::move(grid_shape)), num_entries_( tensorstore::ProductOfExtents(span<const Index>(grid_shape_))) {} std::string operator()(std::string key) const { auto it = key_to_entry_id_.find(key); if (it == key_to_entry_id_.end()) { ABSL_CHECK_LT(entry_id_to_key_.size(), num_entries_); while (true) { auto x = sequential_ ? next_entry_id_++ : absl::Uniform<EntryId>(gen_); x = x % num_entries_; if (entry_id_to_key_.emplace(x, key).second) { it = key_to_entry_id_.emplace(key, x).first; break; } } } return EntryIdToKey(it->second, grid_shape_); } private: bool sequential_; std::vector<Index> grid_shape_; EntryId num_entries_; mutable EntryId next_entry_id_ = 0; mutable absl::BitGen gen_; mutable absl::flat_hash_map<std::string, EntryId> key_to_entry_id_; mutable absl::flat_hash_map<EntryId, std::string> entry_id_to_key_; }; kvstore::DriverPtr GetDefaultStore(kvstore::DriverPtr base_kvstore, std::string base_kvstore_path, Executor executor, CachePool::StrongPtr cache_pool, const std::vector<Index>& grid_shape) { ShardedKeyValueStoreParameters params; params.base_kvstore = base_kvstore; params.base_kvstore_path = base_kvstore_path; params.executor = executor; params.cache_pool = CachePool::WeakPtr(cache_pool); TENSORSTORE_CHECK_OK_AND_ASSIGN( auto index_codecs, ZarrCodecChainSpec::FromJson( {{{"name", "bytes"}, {"configuration", {{"endian", "little"}}}}, {{"name", "crc32c"}}})); params.index_params.index_location = ShardIndexLocation::kEnd; TENSORSTORE_CHECK_OK( params.index_params.Initialize(index_codecs, grid_shape)); return GetShardedKeyValueStore(std::move(params)); } TEST(ShardedKeyValueStoreTest, BasicFunctionality) { std::vector<std::pair<std::string, tensorstore::Executor>> executors{ {"inline", tensorstore::InlineExecutor{}}, {"thread_pool", tensorstore::internal::DetachedThreadPool(2)}}; for (const auto& [executor_name, executor] : executors) { for (const auto sequential_ids : {true, false}) { auto cache_pool = CachePool::Make(kSmallCacheLimits); auto base_kv_store = tensorstore::GetMemoryKeyValueStore(); const int64_t num_entries = 100; SCOPED_TRACE(executor_name); auto store = GetDefaultStore(base_kv_store, "shard_path", executor, cache_pool, {num_entries}); GetKey get_key_fn(sequential_ids, {num_entries}); tensorstore::internal::TestKeyValueReadWriteOps(store, get_key_fn); } } } TEST(ShardedKeyValueStoreTest, DescribeKey) { CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); int64_t num_entries = 100; std::vector<Index> grid_shape{num_entries}; kvstore::DriverPtr store = GetDefaultStore(base_kv_store, "shard_path", tensorstore::InlineExecutor{}, cache_pool, grid_shape); for (const auto& [key, description] : std::vector<std::pair<uint32_t, std::string>>{ {0, "shard entry {0}/{100} in \"shard_path\""}, {1, "shard entry {1}/{100} in \"shard_path\""}, }) { EXPECT_EQ(description, store->DescribeKey(EntryIdToKey(key, grid_shape))); } } class RawEncodingTest : public ::testing::Test { protected: CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); kvstore::DriverPtr base_kv_store = tensorstore::GetMemoryKeyValueStore(); kvstore::DriverPtr GetStore(const std::vector<Index>& grid_shape) { return GetDefaultStore(base_kv_store, "shard_path", tensorstore::InlineExecutor{}, cache_pool, grid_shape); } }; TEST_F(RawEncodingTest, MultipleUnconditionalWrites) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); std::vector<absl::Cord> values{absl::Cord("abc"), absl::Cord("aaaaa"), absl::Cord("efgh")}; std::vector<Future<TimestampedStorageGeneration>> futures; auto key = EntryIdToKey(10, grid_shape); tensorstore::Transaction txn(tensorstore::isolated); for (auto value : values) { futures.push_back(kvstore::WriteCommitted(KvStore{store, txn}, key, value)); } txn.CommitAsync().IgnoreFuture(); std::vector<Result<TimestampedStorageGeneration>> results; for (const auto& future : futures) { results.push_back(future.result()); } TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto shard_read, base_kv_store->Read("shard_path").result()); EXPECT_THAT( results, ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(shard_read.stamp.generation))); for (size_t i = 0; i < results.size(); ++i) { if (results[i] && results[i]->generation == shard_read.stamp.generation) { EXPECT_THAT(store->Read(key).result(), MatchesKvsReadResult(values[i], results[i]->generation)); } } } TEST_F(RawEncodingTest, List) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); std::map<std::string, absl::Cord> values{ {EntryIdToKey(1, grid_shape), absl::Cord("a")}, {EntryIdToKey(2, grid_shape), absl::Cord("bc")}, {EntryIdToKey(3, grid_shape), absl::Cord("def")}, {EntryIdToKey(10, grid_shape), absl::Cord("xyz")}}; for (auto [key, value] : values) { TENSORSTORE_EXPECT_OK(store->Write(key, value)); } EXPECT_THAT(tensorstore::internal::GetMap(store), ::testing::Optional(::testing::ElementsAreArray(values))); } TEST_F(RawEncodingTest, WritesAndDeletes) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); StorageGeneration gen1, gen2, gen3; { tensorstore::Transaction txn(tensorstore::isolated); auto init_future1 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(1, grid_shape), absl::Cord("a")); auto init_future2 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(2, grid_shape), absl::Cord("bc")); auto init_future3 = kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(3, grid_shape), absl::Cord("def")); txn.CommitAsync().IgnoreFuture(); gen1 = init_future1.value().generation; gen2 = init_future2.value().generation; gen3 = init_future3.value().generation; } tensorstore::Transaction txn(tensorstore::isolated); auto future1 = kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()}); auto future2 = kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(2, grid_shape), absl::Cord("ww"), {gen2}); auto future3 = kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(2, grid_shape), absl::Cord("xx"), {gen2}); auto future4 = kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(4, grid_shape), absl::Cord("zz"), {StorageGeneration::NoValue()}); auto future5 = kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(3, grid_shape), {gen3}); txn.CommitAsync().IgnoreFuture(); EXPECT_THAT(future1.result(), MatchesTimestampedStorageGeneration( StorageGeneration::Unknown())); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto shard_read, base_kv_store->Read("shard_path").result()); EXPECT_THAT( std::vector({future2.result(), future3.result()}), ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Unknown()), MatchesTimestampedStorageGeneration(shard_read.stamp.generation))); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesKvsReadResult(absl::Cord("a"))); EXPECT_THAT(store->Read(EntryIdToKey(2, grid_shape)).result(), MatchesKvsReadResult( !StorageGeneration::IsUnknown(future2.result()->generation) ? absl::Cord("ww") : absl::Cord("xx"))); EXPECT_THAT(store->Read(EntryIdToKey(3, grid_shape)).result(), MatchesKvsReadResultNotFound()); EXPECT_THAT(store->Read(EntryIdToKey(4, grid_shape)).result(), MatchesKvsReadResult(absl::Cord("zz"))); } std::vector<std::vector<Result<TimestampedStorageGeneration>>> TestOrderDependentWrites( std::function<void()> init, std::function<Future<TimestampedStorageGeneration>()> op0, std::function<Future<TimestampedStorageGeneration>()> op1, std::function<void()> finalize) { std::vector<std::vector<Result<TimestampedStorageGeneration>>> all_results; for (int i = 0; i < 2; ++i) { std::vector<Future<TimestampedStorageGeneration>> futures(2); init(); if (i == 0) { futures[0] = op0(); futures[1] = op1(); } else { futures[1] = op1(); futures[0] = op0(); } finalize(); all_results.push_back({futures[0].result(), futures[1].result()}); } return all_results; } TEST_F(RawEncodingTest, WriteThenDelete) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); TENSORSTORE_ASSERT_OK( store->Write(EntryIdToKey(1, grid_shape), absl::Cord("a")).result()); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesKvsReadResult(absl::Cord("a"))); TENSORSTORE_ASSERT_OK(store->Delete(EntryIdToKey(1, grid_shape)).result()); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesKvsReadResultNotFound()); } TEST_F(RawEncodingTest, MultipleDeleteExisting) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); StorageGeneration gen; tensorstore::Transaction txn{tensorstore::no_transaction}; EXPECT_THAT( TestOrderDependentWrites( [&] { gen = store->Write(EntryIdToKey(1, grid_shape), absl::Cord("a")) .value() .generation; txn = tensorstore::Transaction(tensorstore::isolated); }, [&] { return kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {gen}); }, [&] { return kvstore::DeleteCommitted( KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()}); }, [&] { txn.CommitAsync().IgnoreFuture(); }), ::testing::UnorderedElementsAre( ::testing::ElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration( StorageGeneration::NoValue())), ::testing::ElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::NoValue()), MatchesTimestampedStorageGeneration( StorageGeneration::Unknown())))); } TEST_F(RawEncodingTest, WriteWithUnmatchedConditionAfterDelete) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); tensorstore::Transaction txn{tensorstore::no_transaction}; EXPECT_THAT( TestOrderDependentWrites( [&] { store->Delete(EntryIdToKey(0, grid_shape)).value(); txn = tensorstore::Transaction(tensorstore::isolated); }, [&] { return kvstore::WriteCommitted(KvStore{store, txn}, EntryIdToKey(0, grid_shape), absl::Cord("a")); }, [&] { return kvstore::WriteCommitted( KvStore{store, txn}, EntryIdToKey(0, grid_shape), absl::Cord("b"), {StorageGeneration::FromString("g")}); }, [&] { txn.CommitAsync().IgnoreFuture(); }), ::testing::Each(::testing::ElementsAre( MatchesTimestampedStorageGeneration( ::testing::AllOf(::testing::Not(StorageGeneration::NoValue()), ::testing::Not(StorageGeneration::Invalid()))), MatchesTimestampedStorageGeneration(StorageGeneration::Unknown())))); } TEST_F(RawEncodingTest, MultipleDeleteNonExisting) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); tensorstore::Transaction txn(tensorstore::isolated); std::vector futures{ kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()}), kvstore::DeleteCommitted(KvStore{store, txn}, EntryIdToKey(1, grid_shape), {StorageGeneration::NoValue()})}; txn.CommitAsync().IgnoreFuture(); std::vector results{futures[0].result(), futures[1].result()}; EXPECT_THAT( results, ::testing::UnorderedElementsAre( MatchesTimestampedStorageGeneration(StorageGeneration::Invalid()), MatchesTimestampedStorageGeneration(StorageGeneration::NoValue()))); } TEST_F(RawEncodingTest, ShardIndexTooShort) { std::vector<Index> grid_shape{100}; kvstore::DriverPtr store = GetStore(grid_shape); base_kv_store->Write("shard_path", Bytes({1, 2, 3})).value(); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesStatus( absl::StatusCode::kFailedPrecondition, RE2::QuoteMeta("Error reading shard index in \"shard_path\": " "Requested byte range [-1604, ?) is not valid " "for value of size 3"))); EXPECT_THAT( store->Write(EntryIdToKey(10, grid_shape), absl::Cord("abc")).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading \"shard_path\": " "Existing shard has size of 3 bytes, but expected at least " "1604 bytes")); } TEST_F(RawEncodingTest, ShardIndexByteRangeOverflow) { std::vector<Index> grid_shape{2}; kvstore::DriverPtr store = GetStore(grid_shape); auto content = WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })); TENSORSTORE_ASSERT_OK(base_kv_store->Write("shard_path", content)); EXPECT_THAT( store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading shard index in \"shard_path\": " "Invalid shard index entry 1 with offset=.*, length=.*")); } TEST_F(RawEncodingTest, ShardIndexEntryByteRangeOutOfRange) { std::vector<Index> grid_shape{2}; kvstore::DriverPtr store = GetStore(grid_shape); auto content = WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 37, 0, 0, 0, 0, 0, 0, 0, })); TENSORSTORE_ASSERT_OK(base_kv_store->Write("shard_path", content)); EXPECT_THAT( store->Write(EntryIdToKey(1, grid_shape), absl::Cord("x")).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading \"shard_path\": " "Shard index entry 1 with byte range .* is invalid " "for shard of size .*")); } TEST_F(RawEncodingTest, ShardIndexInvalidChecksum) { std::vector<Index> grid_shape{2}; kvstore::DriverPtr store = GetStore(grid_shape); auto content = Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, }); content.Append("abcd"); TENSORSTORE_ASSERT_OK(base_kv_store->Write("shard_path", content)); EXPECT_THAT(store->Read(EntryIdToKey(1, grid_shape)).result(), MatchesStatus(absl::StatusCode::kDataLoss, "Error reading shard index in \"shard_path\": " "Digest mismatch.*")); } class UnderlyingKeyValueStoreTest : public ::testing::Test { protected: CachePool::StrongPtr cache_pool = CachePool::Make(kSmallCacheLimits); MockKeyValueStore::MockPtr mock_store = MockKeyValueStore::Make(); kvstore::DriverPtr GetStore(std::vector<Index> grid_shape) { return GetDefaultStore(mock_store, "shard_path", tensorstore::InlineExecutor{}, cache_pool, grid_shape); } std::vector<Index> grid_shape{5}; kvstore::DriverPtr store = GetStore(grid_shape); }; TEST_F(UnderlyingKeyValueStoreTest, Read) { absl::Time init_time = UniqueNow(); absl::Time shard_index_time; { auto future = store->Read(EntryIdToKey(2, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(init_time)); shard_index_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 10, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, })), {StorageGeneration::FromString("g0"), shard_index_time}}); } ASSERT_FALSE(future.ready()) << future.status(); absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); read_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, Bytes({5, 6, 7, 8, 9}), {StorageGeneration::FromString("g0"), read_time}}); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({5, 6, 7, 8, 9}), StorageGeneration::FromString("g0"), read_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(EntryIdToKey(3, grid_shape), options); ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(shard_index_time)); } { auto req_time = UniqueNow(); auto future = store->Read(EntryIdToKey(3, grid_shape), {}); { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Gt(req_time)); shard_index_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g0"), shard_index_time})); } ASSERT_TRUE(future.ready()); EXPECT_THAT(future.result(), MatchesKvsReadResultNotFound(shard_index_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(EntryIdToKey(2, grid_shape), options); absl::Time read_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); EXPECT_EQ(init_time, req.options.staleness_bound); read_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, Bytes({5, 6, 7, 8, 9}), {StorageGeneration::FromString("g0"), read_time}}); } ASSERT_EQ(0, mock_store->read_requests.size()); ASSERT_TRUE(future.ready()); EXPECT_THAT( future.result(), MatchesKvsReadResult(Bytes({5, 6, 7, 8, 9}), StorageGeneration::FromString("g0"), read_time)); } { kvstore::ReadOptions options; options.staleness_bound = init_time; auto future = store->Read(EntryIdToKey(2, grid_shape), options); absl::Time abort_time; { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_not_equal); EXPECT_EQ(init_time, req.options.staleness_bound); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest(10, 15), req.options.byte_range); abort_time = absl::Now(); req.promise.SetResult(ReadResult::Unspecified( {StorageGeneration::FromString("g0"), abort_time})); } { auto req = mock_store->read_requests.pop_nonblock().value(); ASSERT_EQ(0, mock_store->read_requests.size()); EXPECT_EQ("shard_path", req.key); EXPECT_EQ(StorageGeneration::FromString("g0"), req.options.generation_conditions.if_not_equal); EXPECT_EQ(StorageGeneration::Unknown(), req.options.generation_conditions.if_equal); EXPECT_EQ(OptionalByteRangeRequest::SuffixLength(5 * 16 + 4), req.options.byte_range); EXPECT_THAT(req.options.staleness_bound, ::testing::Ge(abort_time)); shard_index_time = absl::Now(); req.promise.SetResult( ReadResult{ReadResult::kValue, WithCrc32c(Bytes({ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 10, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
597
cpp
google/tensorstore
util
tensorstore/kvstore/file/util.cc
tensorstore/kvstore/file/util_test.cc
#ifndef TENSORSTORE_KVSTORE_FILE_UTIL_H_ #define TENSORSTORE_KVSTORE_FILE_UTIL_H_ #include <string_view> #include "tensorstore/kvstore/key_range.h" namespace tensorstore { namespace internal_file_util { bool IsKeyValid(std::string_view key, std::string_view lock_suffix); std::string_view LongestDirectoryPrefix(const KeyRange& range); } } #endif #include "tensorstore/kvstore/file/util.h" #include <stddef.h> #include <string_view> #include "absl/strings/match.h" #include "tensorstore/kvstore/key_range.h" namespace tensorstore { namespace internal_file_util { bool IsKeyValid(std::string_view key, std::string_view lock_suffix) { if (key.find('\0') != std::string_view::npos) return false; if (key.empty()) return false; if (key.back() == '/') return false; while (true) { size_t next_delimiter = key.find('/'); std::string_view component = next_delimiter == std::string_view::npos ? key : key.substr(0, next_delimiter); if (component == ".") return false; if (component == "..") return false; if (!lock_suffix.empty() && component.size() >= lock_suffix.size() && absl::EndsWith(component, lock_suffix)) { return false; } if (next_delimiter == std::string_view::npos) return true; key.remove_prefix(next_delimiter + 1); } } std::string_view LongestDirectoryPrefix(const KeyRange& range) { std::string_view prefix = tensorstore::LongestPrefix(range); const size_t i = prefix.rfind('/'); if (i == std::string_view::npos) return {}; return prefix.substr(0, i); } } }
#include "tensorstore/kvstore/file/util.h" #include <gtest/gtest.h> #include "tensorstore/kvstore/key_range.h" namespace { using ::tensorstore::KeyRange; using ::tensorstore::internal_file_util::IsKeyValid; using ::tensorstore::internal_file_util::LongestDirectoryPrefix; TEST(IsKeyValid, Basic) { EXPECT_TRUE(IsKeyValid("tmp/root", "")); EXPECT_TRUE(IsKeyValid("a", "")); EXPECT_TRUE(IsKeyValid("a/b", "")); EXPECT_FALSE(IsKeyValid("", "")); EXPECT_FALSE(IsKeyValid("/", "")); EXPECT_TRUE(IsKeyValid("/tmp/root", "")); EXPECT_FALSE(IsKeyValid("/tmp/root/", "")); EXPECT_TRUE(IsKeyValid("tmp EXPECT_FALSE(IsKeyValid("tmp/./root", "")); EXPECT_FALSE(IsKeyValid("tmp/../root", "")); EXPECT_FALSE(IsKeyValid("tmp/root/", "")); EXPECT_FALSE(IsKeyValid("tmp/.lock/a", ".lock")); EXPECT_FALSE(IsKeyValid("tmp/foo.lock/a", ".lock")); EXPECT_FALSE(IsKeyValid(std::string_view("tmp/\0bar", 8), "")); } TEST(LongestDirectoryPrefix, Basic) { EXPECT_EQ("", LongestDirectoryPrefix(KeyRange{"a", "b"})); EXPECT_EQ("", LongestDirectoryPrefix(KeyRange{"/a", "/b"})); EXPECT_EQ("/a", LongestDirectoryPrefix(KeyRange{"/a/a", "/a/b"})); } }
598
cpp
google/tensorstore
coordinator_server
tensorstore/kvstore/ocdbt/distributed/coordinator_server.cc
tensorstore/kvstore/ocdbt/distributed/coordinator_server_test.cc
#ifndef TENSORSTORE_KVSTORE_OCDBT_DISTRIBUTED_COORDINATOR_SERVER_H_ #define TENSORSTORE_KVSTORE_OCDBT_DISTRIBUTED_COORDINATOR_SERVER_H_ #include <functional> #include <memory> #include <string> #include <vector> #include "absl/time/time.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/json_serialization_options.h" #include "tensorstore/kvstore/ocdbt/distributed/rpc_security.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace ocdbt { class CoordinatorServer { public: struct Spec { TENSORSTORE_DECLARE_JSON_DEFAULT_BINDER(Spec, JsonSerializationOptions, JsonSerializationOptions); internal_ocdbt::RpcSecurityMethod::Ptr security; std::vector<std::string> bind_addresses; }; using Clock = std::function<absl::Time()>; struct Options { Spec spec; Clock clock; }; CoordinatorServer(); static Result<CoordinatorServer> Start(Options options); CoordinatorServer(CoordinatorServer&&); CoordinatorServer& operator=(CoordinatorServer&&); ~CoordinatorServer(); int port() const; span<const int> ports() const; private: class Impl; std::unique_ptr<Impl> impl_; }; } } #endif #include "tensorstore/kvstore/ocdbt/distributed/coordinator_server.h" #include <stddef.h> #include <stdint.h> #include <functional> #include <iterator> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/absl_log.h" #include "absl/meta/type_traits.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/compare.h" #include "grpcpp/security/server_credentials.h" #include "grpcpp/server.h" #include "grpcpp/server_builder.h" #include "grpcpp/server_context.h" #include "grpcpp/support/server_callback.h" #include "tensorstore/internal/container/heterogeneous_container.h" #include "tensorstore/internal/container/intrusive_red_black_tree.h" #include "tensorstore/internal/grpc/peer_address.h" #include "tensorstore/internal/grpc/utils.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/kvstore/ocdbt/distributed/coordinator.grpc.pb.h" #include "tensorstore/kvstore/ocdbt/distributed/coordinator.pb.h" #include "tensorstore/kvstore/ocdbt/distributed/rpc_security.h" #include "tensorstore/kvstore/ocdbt/distributed/rpc_security_registry.h" #include "tensorstore/proto/encode_time.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace ocdbt { namespace { ABSL_CONST_INIT internal_log::VerboseFlag ocdbt_logging("ocdbt"); struct LeaseNode; using LeaseTree = internal::intrusive_red_black_tree::Tree<LeaseNode>; struct LeaseNode : public LeaseTree::NodeBase { std::string key; std::string owner; absl::Time expiration_time; uint64_t lease_id; }; } namespace jb = ::tensorstore::internal_json_binding; TENSORSTORE_DEFINE_JSON_DEFAULT_BINDER( CoordinatorServer::Spec, jb::Object( jb::Member("security", jb::Projection<&CoordinatorServer::Spec::security>( internal_ocdbt::RpcSecurityMethodJsonBinder)), jb::Member("bind_addresses", jb::Projection<&CoordinatorServer::Spec::bind_addresses>( jb::DefaultInitializedValue())))); CoordinatorServer::CoordinatorServer() = default; CoordinatorServer::~CoordinatorServer() = default; CoordinatorServer::CoordinatorServer(CoordinatorServer&&) = default; CoordinatorServer& CoordinatorServer::operator=(CoordinatorServer&&) = default; class CoordinatorServer::Impl : public internal_ocdbt::grpc_gen::Coordinator::CallbackService { public: std::vector<int> listening_ports_; std::unique_ptr<grpc::Server> server_; internal_ocdbt::RpcSecurityMethod::Ptr security_; Clock clock_; grpc::ServerUnaryReactor* RequestLease( grpc::CallbackServerContext* context, const internal_ocdbt::grpc_gen::LeaseRequest* request, internal_ocdbt::grpc_gen::LeaseResponse* response) override; void PurgeExpiredLeases() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mutex_); absl::Mutex mutex_; LeaseTree leases_by_expiration_time_ ABSL_GUARDED_BY(mutex_); using LeaseSet = internal::HeterogeneousHashSet<std::unique_ptr<LeaseNode>, std::string_view, &LeaseNode::key>; LeaseSet leases_by_key_ ABSL_GUARDED_BY(mutex_); }; span<const int> CoordinatorServer::ports() const { return impl_->listening_ports_; } int CoordinatorServer::port() const { return impl_->listening_ports_.front(); } void CoordinatorServer::Impl::PurgeExpiredLeases() { auto now = clock_(); for (LeaseTree::iterator it = leases_by_expiration_time_.begin(), next; it != leases_by_expiration_time_.end() && it->expiration_time < now; it = next) { next = std::next(it); LeaseNode& node = *it; leases_by_expiration_time_.Remove(node); leases_by_key_.erase(node.key); } } grpc::ServerUnaryReactor* CoordinatorServer::Impl::RequestLease( grpc::CallbackServerContext* context, const internal_ocdbt::grpc_gen::LeaseRequest* request, internal_ocdbt::grpc_gen::LeaseResponse* response) { auto* reactor = context->DefaultReactor(); if (auto status = security_->ValidateServerRequest(context); !status.ok()) { reactor->Finish(internal::AbslStatusToGrpcStatus(status)); return reactor; } auto peer_address = internal::GetGrpcPeerAddressAndPort(context); if (!peer_address.ok()) { reactor->Finish(grpc::Status(grpc::StatusCode::INTERNAL, std::string(peer_address.status().message()))); ABSL_LOG_IF(INFO, ocdbt_logging) << "Coordinator: internal error: request=" << *request; return reactor; } TENSORSTORE_ASSIGN_OR_RETURN( auto lease_duration, internal::ProtoToAbslDuration(request->lease_duration()), (reactor->Finish(grpc::Status( grpc::StatusCode::INVALID_ARGUMENT, tensorstore::StrCat("Invalid lease duration: ", _.message()))), reactor)); { absl::MutexLock lock(&mutex_); PurgeExpiredLeases(); LeaseNode* node; bool assign_new_lease = false; bool renew_lease = false; if (auto it = leases_by_key_.find(request->key()); it != leases_by_key_.end()) { node = it->get(); if (request->has_renew_lease_id() && request->renew_lease_id() == node->lease_id) { leases_by_expiration_time_.Remove(*node); renew_lease = true; } else if (request->has_uncooperative_lease_id() && request->uncooperative_lease_id() == node->lease_id) { leases_by_expiration_time_.Remove(*node); assign_new_lease = true; } } else { auto new_node = std::make_unique<LeaseNode>(); new_node->key = request->key(); node = new_node.get(); leases_by_key_.insert(std::move(new_node)); assign_new_lease = true; } if (assign_new_lease || renew_lease) { auto cur_time = clock_(); node->expiration_time = cur_time + lease_duration; if (assign_new_lease) { node->lease_id = static_cast<uint64_t>( absl::ToInt64Nanoseconds(cur_time - absl::UnixEpoch())); node->owner = tensorstore::StrCat(peer_address->first, ":", request->cooperator_port()); } response->set_is_owner(true); leases_by_expiration_time_.FindOrInsert( [&](LeaseNode& other) { return node->expiration_time > other.expiration_time ? absl::weak_ordering::greater : absl::weak_ordering::less; }, [&] { return node; }); } response->set_owner(node->owner); internal::AbslTimeToProto(node->expiration_time, response->mutable_expiration_time()); response->set_lease_id(node->lease_id); } ABSL_LOG_IF(INFO, ocdbt_logging) << "Coordinator: request=" << *request << ", response=" << *response; reactor->Finish(grpc::Status()); return reactor; } Result<CoordinatorServer> CoordinatorServer::Start(Options options) { auto impl = std::make_unique<Impl>(); if (options.clock) { impl->clock_ = std::move(options.clock); } else { impl->clock_ = [] { return absl::Now(); }; } impl->security_ = options.spec.security; if (!impl->security_) { impl->security_ = internal_ocdbt::GetInsecureRpcSecurityMethod(); } grpc::ServerBuilder builder; builder.RegisterService(impl.get()); auto creds = impl->security_->GetServerCredentials(); if (options.spec.bind_addresses.empty()) { options.spec.bind_addresses.push_back("[::]:0"); } impl->listening_ports_.resize(options.spec.bind_addresses.size()); for (size_t i = 0; i < options.spec.bind_addresses.size(); ++i) { builder.AddListeningPort(options.spec.bind_addresses[i], creds, &impl->listening_ports_[i]); } impl->server_ = builder.BuildAndStart(); CoordinatorServer server; server.impl_ = std::move(impl); return server; } } }
#include "tensorstore/kvstore/ocdbt/distributed/coordinator_server.h" #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/absl_log.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "grpcpp/create_channel.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/ocdbt/distributed/btree_node_identifier.h" #include "tensorstore/kvstore/ocdbt/distributed/coordinator.grpc.pb.h" #include "tensorstore/kvstore/ocdbt/distributed/lease_cache_for_cooperator.h" #include "tensorstore/kvstore/ocdbt/distributed/rpc_security.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::KeyRange; using ::tensorstore::internal_ocdbt::BtreeNodeIdentifier; using ::tensorstore::internal_ocdbt_cooperator::LeaseCacheForCooperator; using ::tensorstore::ocdbt::CoordinatorServer; class CoordinatorServerTest : public ::testing::Test { protected: absl::Time cur_time; CoordinatorServer server_; LeaseCacheForCooperator lease_cache; void SetUp() override { auto security = ::tensorstore::internal_ocdbt::GetInsecureRpcSecurityMethod(); CoordinatorServer::Options options; options.spec.security = security; options.spec.bind_addresses.push_back("localhost:0"); options.clock = [this] { return cur_time; }; TENSORSTORE_CHECK_OK_AND_ASSIGN( server_, CoordinatorServer::Start(std::move(options))); std::string address = tensorstore::StrCat("localhost:", server_.port()); auto channel = ::grpc::CreateChannel(address, security->GetClientCredentials()); if (!channel->WaitForConnected( absl::ToChronoTime(absl::Now() + absl::Milliseconds(100)))) { ABSL_LOG(WARNING) << "Failed to connect to coordinator after 100ms: " << address; } LeaseCacheForCooperator::Options lease_cache_options; lease_cache_options.clock = {}; lease_cache_options.cooperator_port = 42; lease_cache_options.coordinator_stub = tensorstore::internal_ocdbt::grpc_gen::Coordinator::NewStub( std::move(channel)); lease_cache_options.security = security; lease_cache = LeaseCacheForCooperator(std::move(lease_cache_options)); } }; TEST_F(CoordinatorServerTest, Basic) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto lease_info, lease_cache .GetLease("key", BtreeNodeIdentifier{1, KeyRange{"abc", "def"}}) .result()); EXPECT_FALSE(lease_info->peer_stub); EXPECT_THAT(lease_info->peer_address, ::testing::MatchesRegex(".*:42")); } }
599
cpp
google/tensorstore
read_version
tensorstore/kvstore/ocdbt/non_distributed/read_version.cc
tensorstore/kvstore/ocdbt/read_version_test.cc
#ifndef TENSORSTORE_KVSTORE_OCDBT_NON_DISTRIBUTED_READ_VERSION_H_ #define TENSORSTORE_KVSTORE_OCDBT_NON_DISTRIBUTED_READ_VERSION_H_ #include <variant> #include "absl/time/time.h" #include "tensorstore/kvstore/ocdbt/format/version_tree.h" #include "tensorstore/kvstore/ocdbt/io_handle.h" #include "tensorstore/util/future.h" namespace tensorstore { namespace internal_ocdbt { Future<BtreeGenerationReference> ReadVersion( ReadonlyIoHandle::Ptr io_handle, VersionSpec version_spec, absl::Time staleness_bound = absl::Now()); } } #endif #include "tensorstore/kvstore/ocdbt/non_distributed/read_version.h" #include <cassert> #include <memory> #include <utility> #include <variant> #include "absl/base/attributes.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/str_format.h" #include "absl/time/time.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/kvstore/ocdbt/format/indirect_data_reference.h" #include "tensorstore/kvstore/ocdbt/format/manifest.h" #include "tensorstore/kvstore/ocdbt/format/version_tree.h" #include "tensorstore/kvstore/ocdbt/io_handle.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_ocdbt { namespace { ABSL_CONST_INIT internal_log::VerboseFlag ocdbt_logging("ocdbt"); struct ReadVersionOperation : public internal::AtomicReferenceCount<ReadVersionOperation> { using Ptr = internal::IntrusivePtr<ReadVersionOperation>; using PromiseType = Promise<BtreeGenerationReference>; ReadonlyIoHandle::Ptr io_handle; VersionSpec version_spec; absl::Time staleness_bound; static Future<BtreeGenerationReference> Start(ReadonlyIoHandle::Ptr io_handle, VersionSpec version_spec, absl::Time staleness_bound) { auto op = internal::MakeIntrusivePtr<ReadVersionOperation>(); op->io_handle = std::move(io_handle); op->version_spec = version_spec; op->staleness_bound = staleness_bound; auto [promise, future] = PromiseFuturePair<BtreeGenerationReference>::Make(); RequestManifest(std::move(op), std::move(promise), absl::InfinitePast()); return std::move(future); } static void RequestManifest(ReadVersionOperation::Ptr op, PromiseType promise, absl::Time staleness_bound) { auto* op_ptr = op.get(); LinkValue( WithExecutor(op_ptr->io_handle->executor, [op = std::move(op)]( PromiseType promise, ReadyFuture<const ManifestWithTime> future) mutable { ManifestReady(std::move(op), std::move(promise), future.value()); }), std::move(promise), op_ptr->io_handle->GetManifest(staleness_bound)); } static void ManifestReady(ReadVersionOperation::Ptr op, PromiseType promise, const ManifestWithTime& manifest_with_time) { if (!manifest_with_time.manifest || CompareVersionSpecToVersion( op->version_spec, manifest_with_time.manifest->latest_version()) > 0) { if (manifest_with_time.time < op->staleness_bound) { auto staleness_bound = op->staleness_bound; RequestManifest(std::move(op), std::move(promise), staleness_bound); return; } if (!manifest_with_time.manifest || IsVersionSpecExact(op->version_spec)) { op->VersionNotPresent(promise); return; } } const auto& manifest = *manifest_with_time.manifest; if (CompareVersionSpecToVersion(op->version_spec, manifest.versions.front()) >= 0) { if (auto* ref = internal_ocdbt::FindVersion(manifest.versions, op->version_spec)) { promise.SetResult(*ref); return; } op->VersionNotPresent(promise); return; } auto* ref = internal_ocdbt::FindVersion( manifest.config.version_tree_arity_log2, manifest.version_tree_nodes, op->version_spec); if (!ref) { op->VersionNotPresent(promise); return; } LookupNodeReference(std::move(op), std::move(promise), *ref); } void VersionNotPresent(const PromiseType& promise) { promise.SetResult(absl::NotFoundError(absl::StrFormat( "Version where %s not present", FormatVersionSpec(version_spec)))); } static void LookupNodeReference(ReadVersionOperation::Ptr op, PromiseType promise, const VersionNodeReference& node_ref) { ABSL_LOG_IF(INFO, ocdbt_logging) << "ReadVersion: " << FormatVersionSpec(op->version_spec) << ", node_ref=" << node_ref; auto read_future = op->io_handle->GetVersionTreeNode(node_ref.location); auto executor = op->io_handle->executor; LinkValue(WithExecutor(std::move(executor), NodeReadyCallback{std::move(op), node_ref}), std::move(promise), std::move(read_future)); } struct NodeReadyCallback { ReadVersionOperation::Ptr op; VersionNodeReference node_ref; void operator()( PromiseType promise, ReadyFuture<const std::shared_ptr<const VersionTreeNode>> read_future) { auto node = read_future.value(); auto* config = op->io_handle->config_state->GetExistingConfig(); assert(config); TENSORSTORE_RETURN_IF_ERROR( ValidateVersionTreeNodeReference( *node, *config, node_ref.generation_number, node_ref.height), static_cast<void>(promise.SetResult(_))); if (node->height > 0) { VisitInteriorNode(std::move(op), *node, std::move(promise)); } else { VisitLeafNode(std::move(op), *node, std::move(promise)); } } }; static void VisitInteriorNode(ReadVersionOperation::Ptr op, const VersionTreeNode& node, PromiseType promise) { auto& entries = std::get<VersionTreeNode::InteriorNodeEntries>(node.entries); auto* config = op->io_handle->config_state->GetExistingConfig(); assert(config); auto* node_ref = internal_ocdbt::FindVersion( config->version_tree_arity_log2, entries, op->version_spec); if (!node_ref) { op->VersionNotPresent(std::move(promise)); return; } LookupNodeReference(std::move(op), std::move(promise), *node_ref); } static void VisitLeafNode(ReadVersionOperation::Ptr op, const VersionTreeNode& node, PromiseType promise) { auto& entries = std::get<VersionTreeNode::LeafNodeEntries>(node.entries); auto* ref = internal_ocdbt::FindVersion(entries, op->version_spec); if (!ref) { op->VersionNotPresent(std::move(promise)); return; } promise.SetResult(*ref); } }; } Future<BtreeGenerationReference> ReadVersion(ReadonlyIoHandle::Ptr io_handle, VersionSpec version_spec, absl::Time staleness_bound) { if (const GenerationNumber* generation_number = std::get_if<GenerationNumber>(&version_spec)) { if (*generation_number == 0) { return absl::InvalidArgumentError("Generation number must be positive"); } } return ReadVersionOperation::Start(std::move(io_handle), version_spec, std::move(staleness_bound)); } } }
#include "tensorstore/kvstore/ocdbt/non_distributed/read_version.h" #include <stddef.h> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_format.h" #include <nlohmann/json.hpp> #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/ocdbt/driver.h" #include "tensorstore/kvstore/ocdbt/format/version_tree.h" #include "tensorstore/kvstore/ocdbt/non_distributed/create_new_manifest.h" #include "tensorstore/kvstore/ocdbt/non_distributed/list_versions.h" #include "tensorstore/kvstore/ocdbt/test_util.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::MatchesStatus; using ::tensorstore::span; using ::tensorstore::internal::UniqueNow; using ::tensorstore::internal_ocdbt::BtreeGenerationReference; using ::tensorstore::internal_ocdbt::CommitTime; using ::tensorstore::internal_ocdbt::CommitTimeUpperBound; using ::tensorstore::internal_ocdbt::EnsureExistingManifest; using ::tensorstore::internal_ocdbt::GenerationNumber; using ::tensorstore::internal_ocdbt::GetOcdbtIoHandle; using ::tensorstore::internal_ocdbt::ListVersionsFuture; using ::tensorstore::internal_ocdbt::ListVersionsOptions; using ::tensorstore::internal_ocdbt::OcdbtDriver; using ::tensorstore::internal_ocdbt::ReadManifest; using ::tensorstore::internal_ocdbt::ReadVersion; void TestVersioning(::nlohmann::json config_json, size_t num_writes) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto ocdbt_store, kvstore::Open( {{"driver", "ocdbt"}, {"config", config_json}, {"base", "memory: .result()); auto io_handle = GetOcdbtIoHandle(*ocdbt_store.driver); std::vector<BtreeGenerationReference> generations; TENSORSTORE_ASSERT_OK(EnsureExistingManifest(io_handle)); { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto manifest, ReadManifest(static_cast<OcdbtDriver&>(*ocdbt_store.driver))); ASSERT_TRUE(manifest); ASSERT_EQ(1, manifest->latest_generation()); generations.push_back(manifest->latest_version()); } for (int i = 0; i < num_writes; ++i) { UniqueNow(absl::Nanoseconds(2)); TENSORSTORE_ASSERT_OK( kvstore::Write(ocdbt_store, "a", absl::Cord(tensorstore::StrCat(i)))); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto manifest, ReadManifest(static_cast<OcdbtDriver&>(*ocdbt_store.driver))); ASSERT_TRUE(manifest); ASSERT_EQ(i + 2, manifest->latest_generation()); generations.push_back(manifest->latest_version()); } TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto manifest, ReadManifest(static_cast<OcdbtDriver&>(*ocdbt_store.driver))); ASSERT_TRUE(manifest); SCOPED_TRACE(tensorstore::StrCat(*manifest)); { ListVersionsOptions list_versions_options; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto final_generations, ListVersionsFuture(io_handle, list_versions_options).result()); EXPECT_EQ(generations, final_generations); } for (size_t version_i = 0; version_i < generations.size(); ++version_i) { const auto& version = generations[version_i]; EXPECT_THAT(ReadVersion(io_handle, version.generation_number).result(), ::testing::Optional(version)); EXPECT_THAT(ReadVersion(io_handle, version.commit_time).result(), ::testing::Optional(version)); EXPECT_THAT( ReadVersion(io_handle, CommitTimeUpperBound{version.commit_time}) .result(), ::testing::Optional(version)); { CommitTime newer_commit_time = version.commit_time; newer_commit_time.value++; EXPECT_THAT( ReadVersion(io_handle, CommitTimeUpperBound{newer_commit_time}) .result(), ::testing::Optional(version)); } } EXPECT_THAT(ReadVersion(io_handle, GenerationNumber(0)).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( ReadVersion(io_handle, generations.back().generation_number + 1).result(), MatchesStatus(absl::StatusCode::kNotFound)); { CommitTime newer_commit_time = generations.back().commit_time; newer_commit_time.value++; EXPECT_THAT(ReadVersion(io_handle, newer_commit_time).result(), MatchesStatus(absl::StatusCode::kNotFound)); } { CommitTime older_commit_time = generations.front().commit_time; older_commit_time.value--; EXPECT_THAT(ReadVersion(io_handle, older_commit_time).result(), MatchesStatus(absl::StatusCode::kNotFound)); EXPECT_THAT(ReadVersion(io_handle, CommitTimeUpperBound{older_commit_time}) .result(), MatchesStatus(absl::StatusCode::kNotFound)); } for (ptrdiff_t version_i = -1; version_i <= generations.size(); ++version_i) { SCOPED_TRACE(absl::StrFormat("version_i=%d", version_i)); GenerationNumber generation_number = static_cast<GenerationNumber>(version_i + 1); CommitTime intermediate_commit_time, exact_commit_time; if (version_i == -1) { exact_commit_time = generations[0].commit_time; --exact_commit_time.value; intermediate_commit_time = exact_commit_time; } else if (version_i < generations.size()) { exact_commit_time = generations[0].commit_time; intermediate_commit_time = exact_commit_time; intermediate_commit_time.value--; } else { exact_commit_time = generations.back().commit_time; exact_commit_time.value++; intermediate_commit_time = exact_commit_time; } { auto expected_generations = span(generations).subspan(std::max(ptrdiff_t(0), version_i)); { ListVersionsOptions list_versions_options; list_versions_options.min_generation_number = generation_number; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } { ListVersionsOptions list_versions_options; list_versions_options.min_commit_time = exact_commit_time; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } { ListVersionsOptions list_versions_options; list_versions_options.min_commit_time = intermediate_commit_time; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } } { auto expected_generations = span(generations) .subspan(0, std::min(ptrdiff_t(generations.size()), version_i + 1)); { ListVersionsOptions list_versions_options; list_versions_options.max_generation_number = generation_number; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } { ListVersionsOptions list_versions_options; list_versions_options.max_commit_time = exact_commit_time; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } { auto expected_generations = span(generations).subspan(0, std::max(ptrdiff_t(0), version_i)); ListVersionsOptions list_versions_options; list_versions_options.max_commit_time = intermediate_commit_time; EXPECT_THAT( ListVersionsFuture(io_handle, list_versions_options).result(), ::testing::Optional( ::testing::ElementsAreArray(expected_generations))); } } } } TEST(ReadVersionTest, VersionTreeArityLog2_1) { TestVersioning({{"version_tree_arity_log2", 1}}, 10); } TEST(ReadVersionTest, VersionTreeArityLog2_2) { TestVersioning({{"version_tree_arity_log2", 2}}, 10); } }