Code
stringlengths 131
28.2k
| Unit Test
stringlengths 40
32.1k
| __index_level_0__
int64 0
2.63k
|
---|---|---|
#ifndef AROLLA_UTIL_TEXT_H_
#define AROLLA_UTIL_TEXT_H_
#include <ostream>
#include <string>
#include <utility>
#include "absl/strings/cord.h"
#include "absl/strings/string_view.h"
#include "arolla/util/fingerprint.h"
#include "arolla/util/repr.h"
namespace arolla {
class Text {
public:
Text() = default;
explicit Text(const char* s) : data_(s) {}
explicit Text(absl::string_view view) : data_(view) {}
explicit Text(const std::string& s) : data_(s) {}
explicit Text(std::string&& s) : data_(std::move(s)) {}
explicit Text(const absl::Cord& cord) : data_(std::move(cord)) {}
Text& operator=(const char* s) {
data_ = s;
return *this;
}
Text& operator=(absl::string_view s) {
data_.assign(s.data(), s.size());
return *this;
}
Text& operator=(const std::string& s) {
data_ = s;
return *this;
}
Text& operator=(std::string&& s) {
data_ = std::move(s);
return *this;
}
Text& operator=(const absl::Cord& cord) {
data_ = std::string(cord);
return *this;
}
absl::string_view view() const { return data_; }
operator absl::string_view() const {
return data_;
}
friend bool operator==(const Text& lhs, const Text& rhs) {
return lhs.data_ == rhs.data_;
}
friend bool operator==(const char* lhs, const Text& rhs) {
return lhs == rhs.data_;
}
friend bool operator==(const Text& lhs, const char* rhs) {
return lhs.data_ == rhs;
}
friend bool operator!=(const Text& lhs, const Text& rhs) {
return !(lhs == rhs);
}
friend bool operator<(const Text& lhs, const Text& rhs) {
return lhs.data_ < rhs.data_;
}
friend bool operator<=(const Text& lhs, const Text& rhs) {
return lhs.data_ <= rhs.data_;
}
friend bool operator>(const Text& lhs, const Text& rhs) {
return lhs.data_ > rhs.data_;
}
friend bool operator>=(const Text& lhs, const Text& rhs) {
return lhs.data_ >= rhs.data_;
}
private:
std::string data_;
};
inline std::ostream& operator<<(std::ostream& stream, const Text& value) {
return stream << "Text{" << value.view() << "}";
}
AROLLA_DECLARE_REPR(Text);
AROLLA_DECLARE_FINGERPRINT_HASHER_TRAITS(Text);
}
#endif
#include "arolla/util/text.h"
#include <cstddef>
#include <string>
#include "absl/strings/escaping.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "arolla/util/fingerprint.h"
#include "arolla/util/repr.h"
namespace arolla {
namespace {
absl::string_view Utf8CopyFirstNCodePoints(size_t n, absl::string_view data) {
size_t offset = 0;
for (; n > 0 && offset < data.size(); --n) {
const auto byte = data[offset];
if ((byte & 0x80) == 0) {
offset += 1;
} else if ((byte & 0xe0) == 0xc0) {
offset += 2;
} else if ((byte & 0xf0) == 0xe0) {
offset += 3;
} else if ((byte & 0xf8) == 0xf0) {
offset += 4;
} else {
offset += 1;
}
}
return data.substr(0, offset);
}
}
ReprToken ReprTraits<Text>::operator()(const Text& value) const {
constexpr size_t kTextAbbrevLimit = 120;
ReprToken result;
auto text = value.view();
auto prefix = Utf8CopyFirstNCodePoints(kTextAbbrevLimit, text);
if (prefix.size() == text.size()) {
result.str = absl::StrCat("'", absl::Utf8SafeCHexEscape(text), "'");
} else {
result.str = absl::StrCat("'", absl::Utf8SafeCHexEscape(prefix),
"... (TEXT of ", text.size(), " bytes total)'");
}
return result;
}
void FingerprintHasherTraits<Text>::operator()(FingerprintHasher* hasher,
const Text& value) const {
hasher->Combine(value.view());
}
} | #include "arolla/util/text.h"
#include <string>
#include <type_traits>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/cord.h"
#include "absl/strings/string_view.h"
#include "arolla/util/repr.h"
#include "arolla/util/testing/repr_token_eq.h"
namespace arolla {
namespace {
using ::arolla::testing::ReprTokenEq;
using ::testing::Eq;
using ::testing::MatchesRegex;
TEST(TextTest, Constructor) {
EXPECT_THAT(Text("Hello").view(), Eq("Hello"));
std::string hello = "Hello";
EXPECT_THAT(Text(hello).view(), Eq("Hello"));
absl::string_view hello_view = hello;
EXPECT_THAT(Text(hello_view).view(), Eq("Hello"));
absl::Cord hello_cord(hello);
EXPECT_THAT(Text(hello_cord).view(), Eq("Hello"));
}
TEST(TextTest, CopyAndMoveConstructors) {
static_assert(std::is_nothrow_move_constructible<Text>::value);
Text src("Google");
Text copied(src);
EXPECT_THAT(copied, Eq(src));
Text moved(std::move(src));
EXPECT_THAT(moved, Eq(copied));
}
TEST(TextTest, CopyAndMoveAssignment) {
static_assert(std::is_nothrow_move_assignable<Text>::value);
Text src("Google");
Text copied = src;
EXPECT_THAT(copied, Eq(src));
Text moved = std::move(src);
EXPECT_THAT(moved, Eq(copied));
}
TEST(TextTest, AssignmentFromString) {
std::string google = "Google";
{
Text val("x");
val = "Google";
EXPECT_THAT(val.view(), Eq(google));
}
{
Text val("x");
val = google;
EXPECT_THAT(val.view(), Eq(google));
}
{
absl::string_view google_view = google;
Text val("x");
val = google_view;
EXPECT_THAT(val.view(), Eq("Google"));
}
{
absl::Cord google_cord(google);
Text val("x");
val = google_cord;
EXPECT_THAT(val.view(), Eq("Google"));
}
{
Text val("x");
val = std::move(google);
EXPECT_THAT(val.view(), Eq("Google"));
}
}
TEST(TextTest, Repr) {
EXPECT_THAT(
GenReprToken(
Text("\"\xe8\xb0\xb7\xe6\xad\x8c\" is Google\'s Chinese name\n")),
ReprTokenEq(
"'\\\"\xe8\xb0\xb7\xe6\xad\x8c\\\" is Google\\'s Chinese name\\n'"));
const std::string pattern =
"A"
"\xc3\x86"
"\xe0\xa0\x80"
"\xf0\x90\x80\x80";
std::string data = pattern;
for (int i = 0; i < 8; ++i) {
data += data;
}
EXPECT_THAT(Repr(Text(data)),
MatchesRegex("'(" + pattern +
"){30}[.]{3} \\(TEXT of 2560 bytes total\\)'"));
}
}
} | 2,487 |
#ifndef AROLLA_UTIL_PREALLOCATED_BUFFERS_H_
#define AROLLA_UTIL_PREALLOCATED_BUFFERS_H_
#include <cstddef>
namespace arolla {
constexpr size_t kZeroInitializedBufferAlignment = 32;
constexpr size_t kZeroInitializedBufferSize = 16 * 1024;
const void* GetZeroInitializedBuffer();
}
#endif
#include "arolla/util/preallocated_buffers.h"
#include <cstring>
#include "arolla/util/memory.h"
namespace arolla {
namespace {
const void* CreateBuffer() {
auto alloc = AlignedAlloc(Alignment{kZeroInitializedBufferAlignment},
kZeroInitializedBufferSize);
std::memset(alloc.get(), 0, kZeroInitializedBufferSize);
return alloc.release();
}
}
const void* GetZeroInitializedBuffer() {
static const void* const kBuffer = CreateBuffer();
return kBuffer;
}
} | #include "arolla/util/preallocated_buffers.h"
#include <cstddef>
#include <cstdint>
#include "gtest/gtest.h"
#include "absl/types/span.h"
namespace arolla {
namespace {
template <typename T>
class ZeroInitializedBufferTest : public ::testing::Test {
public:
typedef T value_type;
};
using Types = testing::Types<char, int, float, int64_t, double, uint64_t>;
TYPED_TEST_SUITE(ZeroInitializedBufferTest, Types);
TYPED_TEST(ZeroInitializedBufferTest, TestAccess) {
using T = typename TestFixture::value_type;
static_assert(alignof(T) <= kZeroInitializedBufferAlignment);
size_t size = kZeroInitializedBufferSize / sizeof(T);
absl::Span<const T> data(static_cast<const T*>(GetZeroInitializedBuffer()),
size);
for (const T& v : data) {
ASSERT_EQ(v, 0);
}
}
}
} | 2,488 |
#ifndef AROLLA_UTIL_BINARY_SEARCH_H_
#define AROLLA_UTIL_BINARY_SEARCH_H_
#include <cstddef>
#include <cstdint>
#include <optional>
#include "absl/base/attributes.h"
#include "absl/types/span.h"
namespace arolla {
size_t LowerBound(float value, absl::Span<const float> array);
size_t LowerBound(double value, absl::Span<const double> array);
size_t LowerBound(int32_t value, absl::Span<const int32_t> array);
size_t LowerBound(int64_t value, absl::Span<const int64_t> array);
size_t UpperBound(float value, absl::Span<const float> array);
size_t UpperBound(double value, absl::Span<const double> array);
size_t UpperBound(int32_t value, absl::Span<const int32_t> array);
size_t UpperBound(int64_t value, absl::Span<const int64_t> array);
template <typename T, typename Iter>
Iter GallopingLowerBound(Iter begin, Iter end, const T& value);
}
namespace arolla::binary_search_details {
constexpr size_t kSupremacySizeThreshold = 1'000'000;
template <typename T>
size_t LowerBound(T value, absl::Span<const T> array);
template <typename T>
size_t UpperBound(T value, absl::Span<const T> array);
template <typename T, typename Predicate>
inline ABSL_ATTRIBUTE_ALWAYS_INLINE std::optional<size_t> SmallLinearSearch(
absl::Span<const T> array, Predicate predicate) {
if (array.size() <= 2) {
if (array.empty() || predicate(array[0])) {
return 0;
} else if (array.size() == 1 || predicate(array[1])) {
return 1;
}
return 2;
}
return std::nullopt;
}
size_t UpperBoundImpl(float value, absl::Span<const float> array);
size_t UpperBoundImpl(double value, absl::Span<const double> array);
size_t UpperBoundImpl(int32_t value, absl::Span<const int32_t> array);
size_t UpperBoundImpl(int64_t value, absl::Span<const int64_t> array);
size_t LowerBoundImpl(float value, absl::Span<const float> array);
size_t LowerBoundImpl(double value, absl::Span<const double> array);
size_t LowerBoundImpl(int32_t value, absl::Span<const int32_t> array);
size_t LowerBoundImpl(int64_t value, absl::Span<const int64_t> array);
template <typename T>
inline ABSL_ATTRIBUTE_ALWAYS_INLINE size_t
LowerBound(T value, absl::Span<const T> array) {
if (auto result =
SmallLinearSearch(array, [value](T arg) { return !(arg < value); })) {
return *result;
}
return LowerBoundImpl(value, array);
}
template <typename T>
inline ABSL_ATTRIBUTE_ALWAYS_INLINE size_t
UpperBound(T value, absl::Span<const T> array) {
if (auto result =
SmallLinearSearch(array, [value](T arg) { return value < arg; })) {
return *result;
}
return UpperBoundImpl(value, array);
}
}
namespace arolla {
inline size_t LowerBound(float value, absl::Span<const float> array) {
return binary_search_details::LowerBound<float>(value, array);
}
inline size_t LowerBound(double value, absl::Span<const double> array) {
return binary_search_details::LowerBound<double>(value, array);
}
inline size_t LowerBound(int32_t value, absl::Span<const int32_t> array) {
return binary_search_details::LowerBound<int32_t>(value, array);
}
inline size_t LowerBound(int64_t value, absl::Span<const int64_t> array) {
return binary_search_details::LowerBound<int64_t>(value, array);
}
inline size_t UpperBound(float value, absl::Span<const float> array) {
return binary_search_details::UpperBound<float>(value, array);
}
inline size_t UpperBound(double value, absl::Span<const double> array) {
return binary_search_details::UpperBound<double>(value, array);
}
inline size_t UpperBound(int32_t value, absl::Span<const int32_t> array) {
return binary_search_details::UpperBound<int32_t>(value, array);
}
inline size_t UpperBound(int64_t value, absl::Span<const int64_t> array) {
return binary_search_details::UpperBound<int64_t>(value, array);
}
template <typename T, typename Iter>
Iter GallopingLowerBound(Iter begin, Iter end, const T& value) {
size_t i = 0;
size_t size = end - begin;
if (begin >= end || !(*begin < value)) {
return std::min<Iter>(begin, end);
}
size_t d = 1;
while (i + d < size && begin[i + d] < value) {
i += d;
d <<= 1;
}
while (d > 1) {
d >>= 1;
if (i + d < size && begin[i + d] < value) {
i += d;
}
}
return begin + i + 1;
}
}
#endif
#include "arolla/util/binary_search.h"
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include "absl/types/span.h"
#include "arolla/util/bits.h"
#include "arolla/util/switch_index.h"
namespace arolla::binary_search_details {
namespace {
template <size_t kArraySize, typename T, class Predicate>
size_t FastBinarySearchT(const T* const array, Predicate predicate) {
static_assert((kArraySize & (kArraySize + 1)) == 0);
size_t offset = 0;
for (size_t k = kArraySize; k > 0;) {
k >>= 1;
offset = (!predicate(array[offset + k]) ? offset + k + 1 : offset);
}
return offset;
}
template <typename T, typename Predicate>
size_t BinarySearchT(absl::Span<const T> array, Predicate predicate) {
assert(!array.empty());
const int log2_size = BitScanReverse(array.size());
return switch_index<8 * sizeof(size_t)>(
log2_size, [array, predicate](auto constexpr_log2_size) {
constexpr size_t size =
(1ULL << static_cast<int>(constexpr_log2_size)) - 1;
size_t offset = 0;
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
offset = (!predicate(array[size]) ? array.size() - size : offset);
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
return offset +
FastBinarySearchT<size>(array.begin() + offset, predicate);
});
}
}
size_t LowerBoundImpl(float value, absl::Span<const float> array) {
return BinarySearchT(array, [value](auto arg) { return !(arg < value); });
}
size_t LowerBoundImpl(double value, absl::Span<const double> array) {
return BinarySearchT(array, [value](auto arg) { return !(arg < value); });
}
size_t LowerBoundImpl(int32_t value, absl::Span<const int32_t> array) {
return BinarySearchT(array, [value](auto arg) { return arg >= value; });
}
size_t LowerBoundImpl(int64_t value, absl::Span<const int64_t> array) {
return BinarySearchT(array, [value](auto arg) { return arg >= value; });
}
size_t UpperBoundImpl(float value, absl::Span<const float> array) {
if (std::isnan(value)) {
return array.size();
}
return BinarySearchT(array, [value](auto arg) { return !(arg <= value); });
}
size_t UpperBoundImpl(double value, absl::Span<const double> array) {
if (std::isnan(value)) {
return array.size();
}
return BinarySearchT(array, [value](auto arg) { return !(arg <= value); });
}
size_t UpperBoundImpl(int32_t value, absl::Span<const int32_t> array) {
return BinarySearchT(array, [value](auto arg) { return arg > value; });
}
size_t UpperBoundImpl(int64_t value, absl::Span<const int64_t> array) {
return BinarySearchT(array, [value](auto arg) { return arg > value; });
}
} | #include "arolla/util/binary_search.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <limits>
#include <random>
#include <vector>
#include "gtest/gtest.h"
#include "absl/types/span.h"
namespace arolla {
namespace {
size_t StdLowerBound(float value, absl::Span<const float> array) {
return std::lower_bound(array.begin(), array.end(), value) - array.begin();
}
size_t StdLowerBound(double value, absl::Span<const double> array) {
return std::lower_bound(array.begin(), array.end(), value) - array.begin();
}
size_t StdLowerBound(int32_t value, absl::Span<const int32_t> array) {
return std::lower_bound(array.begin(), array.end(), value) - array.begin();
}
size_t StdLowerBound(int64_t value, absl::Span<const int64_t> array) {
return std::lower_bound(array.begin(), array.end(), value) - array.begin();
}
size_t RlGallopingLowerBound(float value, absl::Span<const float> array) {
return GallopingLowerBound(array.begin(), array.end(), value) - array.begin();
}
TEST(Algorithms, LowerBound_General) {
for (int n : {0, 1, 5, 7, 100, 1000}) {
std::vector<float> thresholds(n);
for (int i = 0; i < n; ++i) {
thresholds[i] = 2 * i + 1;
}
for (int i = 0; i < static_cast<int>(2 * thresholds.size()); ++i) {
size_t expected = StdLowerBound(i, thresholds);
ASSERT_EQ(LowerBound(i, thresholds), expected);
ASSERT_EQ(RlGallopingLowerBound(i, thresholds), expected);
}
ASSERT_EQ(LowerBound(-10 * n, thresholds),
StdLowerBound(-10 * n, thresholds));
ASSERT_EQ(LowerBound(10 * n, thresholds),
StdLowerBound(10 * n, thresholds));
}
}
TEST(Algorithms, LowerBound_Duplicates) {
for (int n : {2, 140}) {
std::vector<float> thresholds(n, 0.);
ASSERT_EQ(LowerBound(-1, thresholds), 0);
ASSERT_EQ(LowerBound(0., thresholds), 0);
ASSERT_EQ(LowerBound(1., thresholds), n);
ASSERT_EQ(RlGallopingLowerBound(-1, thresholds), 0);
ASSERT_EQ(RlGallopingLowerBound(0., thresholds), 0);
ASSERT_EQ(RlGallopingLowerBound(1., thresholds), n);
}
}
TEST(Algorithms, LowerBound_Infs) {
const auto kInf = std::numeric_limits<float>::infinity();
for (int n : {2, 140}) {
std::vector<float> thresholds(n);
for (int i = 0; i < n; ++i) {
thresholds.push_back(i);
}
thresholds.front() = -kInf;
thresholds.back() = kInf;
ASSERT_EQ(LowerBound(-kInf, thresholds), StdLowerBound(-kInf, thresholds));
ASSERT_EQ(LowerBound(kInf, thresholds), StdLowerBound(kInf, thresholds));
ASSERT_EQ(RlGallopingLowerBound(kInf, thresholds),
StdLowerBound(kInf, thresholds));
}
}
TEST(Algorithms, LowerBound_Nan) {
const auto kNan = std::numeric_limits<float>::quiet_NaN();
const auto kInf = std::numeric_limits<float>::infinity();
for (int n : {2, 140}) {
std::vector<float> thresholds;
for (int i = 0; i < n; ++i) {
thresholds.push_back(i);
}
thresholds.front() = -kInf;
thresholds.back() = kInf;
ASSERT_EQ(LowerBound(kNan, thresholds), StdLowerBound(kNan, thresholds));
ASSERT_EQ(RlGallopingLowerBound(kNan, thresholds),
StdLowerBound(kNan, thresholds));
}
}
size_t StdUpperBound(float value, absl::Span<const float> array) {
return std::upper_bound(array.begin(), array.end(), value) - array.begin();
}
size_t StdUpperBound(double value, absl::Span<const double> array) {
return std::upper_bound(array.begin(), array.end(), value) - array.begin();
}
size_t StdUpperBound(int32_t value, absl::Span<const int32_t> array) {
return std::upper_bound(array.begin(), array.end(), value) - array.begin();
}
size_t StdUpperBound(int64_t value, absl::Span<const int64_t> array) {
return std::upper_bound(array.begin(), array.end(), value) - array.begin();
}
TEST(Algorithms, UpperBound_General) {
for (int n : {0, 1, 5, 7, 100, 1000}) {
std::vector<float> thresholds(n);
for (int i = 0; i < n; ++i) {
thresholds[i] = 2 * i + 1;
}
for (int i = 0; i < static_cast<int>(2 * thresholds.size()); ++i) {
ASSERT_EQ(UpperBound(i, thresholds), StdUpperBound(i, thresholds));
}
ASSERT_EQ(UpperBound(-10 * n, thresholds),
StdUpperBound(-10 * n, thresholds));
ASSERT_EQ(UpperBound(10 * n, thresholds),
StdUpperBound(10 * n, thresholds));
}
}
TEST(Algorithms, UpperBound_Duplicates) {
for (int n : {2, 140}) {
std::vector<float> thresholds(n, 0.);
ASSERT_EQ(UpperBound(-1, thresholds), StdUpperBound(-1., thresholds));
ASSERT_EQ(UpperBound(0., thresholds), StdUpperBound(0., thresholds));
}
}
TEST(Algorithms, UpperBound_Infs) {
const auto kInf = std::numeric_limits<float>::infinity();
for (int n : {2, 140}) {
std::vector<float> thresholds(n);
for (int i = 0; i < n; ++i) {
thresholds.push_back(i);
}
thresholds.front() = -kInf;
thresholds.back() = kInf;
ASSERT_EQ(UpperBound(-kInf, thresholds), StdUpperBound(-kInf, thresholds));
ASSERT_EQ(UpperBound(kInf, thresholds), StdUpperBound(kInf, thresholds));
}
}
TEST(Algorithms, UpperBound_Nan) {
const auto kNan = std::numeric_limits<float>::quiet_NaN();
const auto kInf = std::numeric_limits<float>::infinity();
for (int n : {2, 140}) {
std::vector<float> thresholds;
for (int i = 0; i < n; ++i) {
thresholds.push_back(i);
}
thresholds.front() = -kInf;
thresholds.back() = kInf;
ASSERT_EQ(UpperBound(kNan, thresholds), StdUpperBound(kNan, thresholds));
}
}
template <typename T>
std::vector<T> RandomVector(size_t seed, size_t size) {
std::mt19937 gen(seed);
std::vector<T> result(size);
if constexpr (std::is_integral_v<T>) {
std::uniform_int_distribution<T> uniform(0, 1 << 30);
for (auto& x : result) {
x = uniform(gen);
}
} else {
std::uniform_real_distribution<T> uniform01;
for (auto& x : result) {
x = uniform01(gen);
}
}
return result;
}
template <typename T>
std::vector<T> Sorted(std::vector<T> vec) {
std::sort(vec.begin(), vec.end());
return vec;
}
template <typename T>
using AlgoFn = std::function<size_t(T, const std::vector<T>&)>;
template <typename T>
void BinarySearchStressTest(size_t size, AlgoFn<T> algoFn,
AlgoFn<T> referenceAlgoFn) {
const auto seed = 34 + size;
const auto array = Sorted(RandomVector<T>(seed, size));
for (auto value : RandomVector<T>(seed, 2 * size)) {
const auto actual_value = algoFn(value, array);
const auto expected_value = referenceAlgoFn(value, array);
if (actual_value != expected_value) {
ADD_FAILURE() << "Actual value: " << actual_value << '\n'
<< "Expected value: " << expected_value << '\n'
<< "size: " << size;
return;
}
}
}
TEST(Algorithms, LowerBound_Stress) {
for (int size : {10, 100, 1000, 100000}) {
BinarySearchStressTest<float>(
size,
[](float value, absl::Span<const float> array) {
return LowerBound(value, array);
},
[](float value, absl::Span<const float> array) {
return StdLowerBound(value, array);
});
BinarySearchStressTest<float>(
size,
[](float value, absl::Span<const float> array) {
return RlGallopingLowerBound(value, array);
},
[](float value, absl::Span<const float> array) {
return StdLowerBound(value, array);
});
BinarySearchStressTest<double>(
size,
[](double value, absl::Span<const double> array) {
return LowerBound(value, array);
},
[](double value, absl::Span<const double> array) {
return StdLowerBound(value, array);
});
BinarySearchStressTest<int32_t>(
size,
[](int32_t value, absl::Span<const int32_t> array) {
return LowerBound(value, array);
},
[](int32_t value, absl::Span<const int32_t> array) {
return StdLowerBound(value, array);
});
BinarySearchStressTest<int64_t>(
size,
[](int64_t value, absl::Span<const int64_t> array) {
return LowerBound(value, array);
},
[](int64_t value, absl::Span<const int64_t> array) {
return StdLowerBound(value, array);
});
}
}
TEST(Algorithms, UpperBound_Stress) {
for (int size : {10, 100, 1000, 100000}) {
BinarySearchStressTest<float>(
size,
[](float value, absl::Span<const float> array) {
return UpperBound(value, array);
},
[](float value, absl::Span<const float> array) {
return StdUpperBound(value, array);
});
BinarySearchStressTest<double>(
size,
[](double value, absl::Span<const double> array) {
return UpperBound(value, array);
},
[](double value, absl::Span<const double> array) {
return StdUpperBound(value, array);
});
BinarySearchStressTest<int32_t>(
size,
[](int32_t value, absl::Span<const int32_t> array) {
return UpperBound(value, array);
},
[](int32_t value, absl::Span<const int32_t> array) {
return StdUpperBound(value, array);
});
BinarySearchStressTest<int64_t>(
size,
[](int64_t value, absl::Span<const int64_t> array) {
return UpperBound(value, array);
},
[](int64_t value, absl::Span<const int64_t> array) {
return StdUpperBound(value, array);
});
}
}
}
} | 2,489 |
#ifndef AROLLA_UTIL_ALGORITHMS_H_
#define AROLLA_UTIL_ALGORITHMS_H_
#include <algorithm>
#include <cstddef>
#include <iterator>
#include <limits>
#include <type_traits>
#include "absl/log/check.h"
namespace arolla {
template <class FwdIter, class T, class Compare>
inline FwdIter exp_lower_bound(FwdIter first, FwdIter last, const T& val,
Compare comp) {
typename std::iterator_traits<FwdIter>::difference_type count, step;
count = std::distance(first, last);
step = 1;
FwdIter it = first;
while (step < count) {
if (comp(*it, val)) {
first = ++it;
count -= step;
std::advance(it, step);
step *= 2;
} else {
last = it;
break;
}
}
return std::lower_bound(first, last, val, comp);
}
template <class FwdIter, class T>
inline FwdIter exp_lower_bound(FwdIter first, FwdIter last, const T& val) {
using T1 = typename std::iterator_traits<FwdIter>::value_type;
return exp_lower_bound(first, last, val,
[](const T1& a, const T& b) { return a < b; });
}
template <typename Word>
inline void LogicalAnd(const Word* src1, const Word* src2, Word* result,
size_t word_count) {
const size_t e = (word_count / 8) * 8;
for (size_t i = 0; i < e; i += 8) {
result[i] = src1[i] & src2[i];
result[i + 1] = src1[i + 1] & src2[i + 1];
result[i + 2] = src1[i + 2] & src2[i + 2];
result[i + 3] = src1[i + 3] & src2[i + 3];
result[i + 4] = src1[i + 4] & src2[i + 4];
result[i + 5] = src1[i + 5] & src2[i + 5];
result[i + 6] = src1[i + 6] & src2[i + 6];
result[i + 7] = src1[i + 7] & src2[i + 7];
}
switch (word_count - e) {
case 7:
result[e + 6] = src1[e + 6] & src2[e + 6];
[[fallthrough]];
case 6:
result[e + 5] = src1[e + 5] & src2[e + 5];
[[fallthrough]];
case 5:
result[e + 4] = src1[e + 4] & src2[e + 4];
[[fallthrough]];
case 4:
result[e + 3] = src1[e + 3] & src2[e + 3];
[[fallthrough]];
case 3:
result[e + 2] = src1[e + 2] & src2[e + 2];
[[fallthrough]];
case 2:
result[e + 1] = src1[e + 1] & src2[e + 1];
[[fallthrough]];
case 1:
result[e] = src1[e] & src2[e];
}
}
template <typename Word>
inline void InPlaceLogicalAnd(const Word* src, Word* dest, size_t word_count) {
const size_t e = (word_count / 8) * 8;
for (size_t i = 0; i < e; i += 8) {
dest[i] &= src[i];
dest[i + 1] &= src[i + 1];
dest[i + 2] &= src[i + 2];
dest[i + 3] &= src[i + 3];
dest[i + 4] &= src[i + 4];
dest[i + 5] &= src[i + 5];
dest[i + 6] &= src[i + 6];
dest[i + 7] &= src[i + 7];
}
switch (word_count - e) {
case 7:
dest[e + 6] &= src[e + 6];
[[fallthrough]];
case 6:
dest[e + 5] &= src[e + 5];
[[fallthrough]];
case 5:
dest[e + 4] &= src[e + 4];
[[fallthrough]];
case 4:
dest[e + 3] &= src[e + 3];
[[fallthrough]];
case 3:
dest[e + 2] &= src[e + 2];
[[fallthrough]];
case 2:
dest[e + 1] &= src[e + 1];
[[fallthrough]];
case 1:
dest[e] &= src[e];
}
}
template <typename Word>
void InplaceLogicalAndWithOffsets(
size_t bitmaps_size,
const Word* rhs,
int rhs_skip,
Word* lhs,
int lhs_skip)
{
static_assert(std::is_unsigned<Word>::value);
static constexpr int bits_per_word = std::numeric_limits<Word>::digits;
DCHECK_LT(lhs_skip, bits_per_word);
DCHECK_GE(lhs_skip, 0);
DCHECK_LT(rhs_skip, bits_per_word);
DCHECK_GE(rhs_skip, 0);
size_t rhs_words =
(bitmaps_size + rhs_skip + bits_per_word - 1) / bits_per_word;
size_t lhs_words =
(bitmaps_size + lhs_skip + bits_per_word - 1) / bits_per_word;
if (lhs_skip == rhs_skip) {
InPlaceLogicalAnd(rhs, lhs, rhs_words);
} else if (lhs_skip < rhs_skip) {
int a = rhs_skip - lhs_skip;
int b = bits_per_word - a;
size_t i = 0;
for (; i < rhs_words - 1; ++i) {
lhs[i] &= (rhs[i] >> a) | (rhs[i + 1] << b);
}
if (i < lhs_words) {
lhs[i] &= (rhs[i] >> a);
}
} else {
int a = lhs_skip - rhs_skip;
int b = bits_per_word - a;
lhs[0] &= rhs[0] << a;
size_t i;
for (i = 1; i < rhs_words; ++i) {
lhs[i] &= (rhs[i - 1] >> b) | (rhs[i] << a);
}
if (i < lhs_words) {
lhs[i] &= rhs[i - 1] >> b;
}
}
}
template <typename Word>
void CopyBits(size_t bitmaps_size, const Word* rhs, int rhs_skip, Word* lhs,
int lhs_skip) {
static_assert(std::is_unsigned<Word>::value);
static constexpr int bits_per_word = std::numeric_limits<Word>::digits;
DCHECK_LT(lhs_skip, bits_per_word);
DCHECK_GE(lhs_skip, 0);
DCHECK_LT(rhs_skip, bits_per_word);
DCHECK_GE(rhs_skip, 0);
if (bitmaps_size == 0) {
return;
}
size_t rhs_words =
(bitmaps_size + rhs_skip + bits_per_word - 1) / bits_per_word;
size_t lhs_words =
(bitmaps_size + lhs_skip + bits_per_word - 1) / bits_per_word;
int lhs_tail = lhs_words * bits_per_word - (bitmaps_size + lhs_skip);
DCHECK_LT(lhs_tail, bits_per_word);
if (lhs_skip != 0) {
Word rhs_val;
if (lhs_skip == rhs_skip) {
rhs_val = *rhs;
} else if (lhs_skip < rhs_skip) {
int a = rhs_skip - lhs_skip;
rhs_val = rhs[0] >> a;
if (rhs_words > 1) {
rhs_val |= rhs[1] << (bits_per_word - a);
}
} else {
rhs_val = rhs[0] << (lhs_skip - rhs_skip);
}
if (lhs_words == 1) {
Word output_mask = (~Word{0} << lhs_skip) & (~Word{0} >> lhs_tail);
*lhs = (*lhs & ~output_mask) | (rhs_val & output_mask);
return;
} else {
Word output_mask = (~Word{0} << lhs_skip);
*lhs = (*lhs & ~output_mask) | (rhs_val & output_mask);
if (lhs_skip > rhs_skip) {
rhs_skip += bits_per_word - lhs_skip;
} else {
++rhs;
--rhs_words;
rhs_skip -= lhs_skip;
}
lhs_skip = 0;
++lhs;
--lhs_words;
}
}
DCHECK_EQ(lhs_skip, 0);
size_t full_lhs_words = (lhs_tail == 0) ? lhs_words : lhs_words - 1;
if (full_lhs_words > 0) {
if (rhs_skip == 0) {
for (size_t i = 0; i < full_lhs_words; ++i) {
lhs[i] = rhs[i];
}
} else {
size_t i = 0;
for (; i < std::min(rhs_words - 1, full_lhs_words); ++i) {
lhs[i] =
(rhs[i] >> rhs_skip) | (rhs[i + 1] << (bits_per_word - rhs_skip));
}
if (i < full_lhs_words) {
lhs[i] = (rhs[i] >> rhs_skip);
}
}
lhs += full_lhs_words;
lhs_words -= full_lhs_words;
rhs += full_lhs_words;
rhs_words -= full_lhs_words;
}
if (lhs_tail) {
Word rhs_val = rhs[0] >> rhs_skip;
if (rhs_words == 2) {
rhs_val |= rhs[1] << (bits_per_word - rhs_skip);
}
Word output_mask = (~Word{0} >> lhs_tail);
*lhs = (*lhs & ~output_mask) | (rhs_val & output_mask);
}
}
template <typename Integer>
Integer RoundUp(Integer value, Integer divisor) {
return (value + divisor - 1) / divisor * divisor;
}
}
#endif | #include "arolla/util/algorithms.h"
#include <array>
#include <cstdint>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace arolla {
namespace {
using ::testing::ElementsAre;
using ::testing::Eq;
TEST(Algorithms, ExponentialLowerBound) {
std::vector<int> v{2, 4, 5, 6};
auto i1 = exp_lower_bound(v.begin(), v.end(), 4);
EXPECT_THAT(i1, Eq(v.begin() + 1));
}
TEST(Algorithms, InplaceLogicalAndWithOffsets) {
const std::array<uint32_t, 3> a = {0xf0ff0000, 0xff0fffff, 0x0000fff0};
int a_bit_offset = 16;
const std::array<uint32_t, 2> b = {0x87654321, 0x0fedcba9};
int b_bit_offset = 0;
const std::array<uint32_t, 3> c = {0x43210000, 0xcba98765, 0x00000fed};
int c_bit_offset = 16;
auto a_copy = a;
InplaceLogicalAndWithOffsets(64, b.data(), b_bit_offset, a_copy.data(),
a_bit_offset);
EXPECT_THAT(a_copy, ElementsAre(0x40210000, 0xcb098765, 0x00000fe0));
auto b_copy = b;
InplaceLogicalAndWithOffsets(64, a.data(), a_bit_offset, b_copy.data(),
b_bit_offset);
EXPECT_THAT(b_copy, ElementsAre(0x87654021, 0x0fe0cb09));
auto c_copy = c;
InplaceLogicalAndWithOffsets(64, a.data(), a_bit_offset, c_copy.data(),
c_bit_offset);
EXPECT_THAT(a_copy, ElementsAre(0x40210000, 0xcb098765, 0x00000fe0));
}
TEST(Algorithms, CopyBits) {
const std::array<uint32_t, 3> src = {0x3210dead, 0xba987654, 0xbeeffedc};
const std::array<uint32_t, 3> empty = {0x5a5a5a5a, 0x5a5a5a5a, 0x5a5a5a5a};
auto dest1 = empty;
CopyBits(64, src.data(), 16, dest1.data(), 16);
EXPECT_THAT(dest1, ElementsAre(0x32105a5a, 0xba987654, 0x5a5afedc));
auto dest2 = empty;
CopyBits(64, src.data(), 16, dest2.data(), 8);
EXPECT_THAT(dest2, ElementsAre(0x5432105a, 0xdcba9876, 0x5a5a5afe));
auto dest3 = empty;
CopyBits(64, src.data(), 16, dest3.data(), 24);
EXPECT_THAT(dest3, ElementsAre(0x105a5a5a, 0x98765432, 0x5afedcba));
uint32_t dest4 = 0xffffffff;
CopyBits(16, src.data(), 16, &dest4, 8);
EXPECT_THAT(dest4, Eq(0xff3210ff));
uint32_t src5 = 0xdcba;
std::array<uint32_t, 2> dest5 = {0xffffffff, 0xffffffff};
CopyBits(16, &src5, 0, dest5.data(), 24);
EXPECT_THAT(dest5, ElementsAre(0xbaffffff, 0xffffffdc));
}
}
} | 2,490 |
#ifndef AROLLA_UTIL_INIT_AROLLA_H_
#define AROLLA_UTIL_INIT_AROLLA_H_
#include "absl/status/status.h"
namespace arolla {
absl::Status InitArolla();
enum class ArollaInitializerPriority {
kHighest = 0,
kRegisterQExprOperators,
kRegisterIndividualQExprOperators,
kRegisterSerializationCodecs,
kRegisterExprOperatorsBootstrap,
kRegisterExprOperatorsStandard,
kRegisterExprOperatorsStandardCpp,
kRegisterExprOperatorsExtraLazy,
kRegisterExprOperatorsExtraJagged,
kRegisterExprOperatorsLowest,
kLowest,
};
static_assert(static_cast<int>(ArollaInitializerPriority::kLowest) < 32,
"Re-evaluate design when exceeding the threshold.");
#define AROLLA_REGISTER_INITIALIZER(priority, name, ...) \
extern "C" { \
static ::arolla::init_arolla_internal::ArollaInitializer \
AROLLA_REGISTER_INITIALIZER_IMPL_CONCAT(arolla_initializer_, \
__COUNTER__)( \
(::arolla::ArollaInitializerPriority::priority), (#name), \
(__VA_ARGS__)); \
}
#define AROLLA_REGISTER_ANONYMOUS_INITIALIZER(priority, ...) \
extern "C" { \
static ::arolla::init_arolla_internal::ArollaInitializer \
AROLLA_REGISTER_INITIALIZER_IMPL_CONCAT(arolla_initializer_, \
__COUNTER__)( \
(::arolla::ArollaInitializerPriority::priority), nullptr, \
(__VA_ARGS__)); \
}
#define AROLLA_REGISTER_INITIALIZER_IMPL_CONCAT_INNER(x, y) x##y
#define AROLLA_REGISTER_INITIALIZER_IMPL_CONCAT(x, y) \
AROLLA_REGISTER_INITIALIZER_IMPL_CONCAT_INNER(x, y)
namespace init_arolla_internal {
class ArollaInitializer {
public:
using VoidInitFn = void (*)();
using StatusInitFn = absl::Status (*)();
static absl::Status ExecuteAll();
ArollaInitializer(ArollaInitializerPriority priority, const char* name,
VoidInitFn init_fn);
ArollaInitializer(ArollaInitializerPriority priority, const char* name,
StatusInitFn init_fn);
private:
static bool execution_flag_;
static const ArollaInitializer* head_;
const ArollaInitializer* const next_;
const ArollaInitializerPriority priority_;
const char* const name_;
const VoidInitFn void_init_fn_ = nullptr;
const StatusInitFn status_init_fn_ = nullptr;
};
}
}
#endif
#include "arolla/util/init_arolla.h"
#include <algorithm>
#include <cstddef>
#include <cstring>
#include <utility>
#include <vector>
#include "absl/log/log.h"
#include "absl/status/status.h"
#include "absl/strings/str_cat.h"
#include "arolla/util/indestructible.h"
namespace arolla {
absl::Status InitArolla() {
return init_arolla_internal::ArollaInitializer::ExecuteAll();
}
namespace init_arolla_internal {
bool ArollaInitializer::execution_flag_ = false;
const ArollaInitializer* ArollaInitializer::head_ = nullptr;
absl::Status ArollaInitializer::ExecuteAll() {
static const Indestructible<absl::Status> result([]() -> absl::Status {
execution_flag_ = true;
std::vector<const ArollaInitializer*> list;
for (auto* it = head_; it != nullptr; it = it->next_) {
list.push_back(it);
}
std::stable_sort(list.begin(), list.end(), [](auto* it, auto* jt) {
return (it->name_ != nullptr &&
(jt->name_ == nullptr || std::strcmp(it->name_, jt->name_) < 0));
});
for (size_t i = 1; i < list.size() && list[i]->name_ != nullptr; ++i) {
if (std::strcmp(list[i - 1]->name_, list[i]->name_) == 0) {
return absl::InternalError(absl::StrCat(
"name collision in arolla initializers: ", list[i]->name_));
}
}
std::stable_sort(list.begin(), list.end(), [](auto* it, auto* jt) {
return it->priority_ < jt->priority_;
});
for (auto* it : list) {
if (it->void_init_fn_ != nullptr) {
it->void_init_fn_();
} else if (auto status = it->status_init_fn_(); !status.ok()) {
return status;
}
}
return absl::OkStatus();
}());
return *result;
}
ArollaInitializer::ArollaInitializer(ArollaInitializerPriority priority,
const char* name, VoidInitFn init_fn)
: next_(std::exchange(head_, this)),
priority_(priority),
name_(name),
void_init_fn_(init_fn) {
if (init_fn == nullptr) {
LOG(FATAL) << "init_fn == nullptr";
}
if (execution_flag_) {
LOG(FATAL) << "A new initializer has been registered after calling "
"::arolla::InitArolla()";
}
}
ArollaInitializer::ArollaInitializer(ArollaInitializerPriority priority,
const char* name, StatusInitFn init_fn)
: next_(std::exchange(head_, this)),
priority_(priority),
name_(name),
status_init_fn_(init_fn) {
if (init_fn == nullptr) {
LOG(FATAL) << "init_fn == nullptr";
}
if (execution_flag_) {
LOG(FATAL) << "A new initializer has been registered after calling "
"::arolla::InitArolla()";
}
}
}
} | #include "arolla/util/init_arolla.h"
#include <string>
#include <tuple>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/status/status.h"
#include "arolla/util/indestructible.h"
#include "arolla/util/testing/status_matchers_backport.h"
namespace arolla {
namespace {
using ::arolla::testing::IsOk;
std::string& GetBuffer() {
static Indestructible<std::string> result;
return *result;
}
AROLLA_REGISTER_INITIALIZER(kHighest, Foo, [] { GetBuffer() += "Hello"; })
AROLLA_REGISTER_INITIALIZER(kLowest, Bar, []() -> absl::Status {
GetBuffer() += "World";
return absl::OkStatus();
})
AROLLA_REGISTER_ANONYMOUS_INITIALIZER(kLowest, [] { GetBuffer() += "!"; })
AROLLA_REGISTER_INITIALIZER(kLowest, Baz, []() -> absl::Status {
std::tuple<int, int>();
return absl::OkStatus();
})
TEST(InitArollaTest, Complex) {
{
EXPECT_EQ(GetBuffer(), "");
}
{
ASSERT_THAT(InitArolla(), IsOk());
EXPECT_EQ(GetBuffer(), "HelloWorld!");
}
{
ASSERT_THAT(InitArolla(), IsOk());
EXPECT_EQ(GetBuffer(), "HelloWorld!");
}
}
}
} | 2,491 |
#ifndef AROLLA_UTIL_FINGERPRINT_H_
#define AROLLA_UTIL_FINGERPRINT_H_
#include <cstddef>
#include <cstdint>
#include <iosfwd>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include "absl/numeric/int128.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "arolla/util/meta.h"
#include "arolla/util/struct_field.h"
#include "arolla/util/types.h"
namespace arolla {
struct Fingerprint {
absl::uint128 value;
std::string AsString() const;
signed_size_t PythonHash() const;
};
Fingerprint RandomFingerprint();
class FingerprintHasher {
public:
explicit FingerprintHasher(absl::string_view salt);
Fingerprint Finish() &&;
template <typename... Args>
FingerprintHasher& Combine(const Args&... args) &;
template <typename... Args>
FingerprintHasher&& Combine(const Args&... args) &&;
template <typename SpanT>
FingerprintHasher& CombineSpan(SpanT&& values) &;
template <typename SpanT>
FingerprintHasher&& CombineSpan(SpanT&& values) &&;
void CombineRawBytes(const void* data, size_t size);
private:
std::pair<uint64_t, uint64_t> state_;
};
namespace fingerprint_impl {
template <typename T, class = void>
struct HasArollaFingerprintMethod : std::false_type {};
template <class T>
struct HasArollaFingerprintMethod<
T, std::void_t<decltype(static_cast<void (T::*)(FingerprintHasher*) const>(
&T::ArollaFingerprint))>> : std::true_type {};
}
template <typename T>
struct FingerprintHasherTraits {
FingerprintHasherTraits() = delete;
};
inline bool operator==(const Fingerprint& lhs, const Fingerprint& rhs) {
return lhs.value == rhs.value;
}
inline bool operator!=(const Fingerprint& lhs, const Fingerprint& rhs) {
return !(lhs == rhs);
}
inline bool operator<(const Fingerprint& lhs, const Fingerprint& rhs) {
return lhs.value < rhs.value;
}
std::ostream& operator<<(std::ostream& ostream, const Fingerprint& fingerprint);
template <typename H>
H AbslHashValue(H state, const Fingerprint& fingerprint) {
return H::combine(std::move(state), fingerprint.value);
}
template <typename... Args>
FingerprintHasher& FingerprintHasher::Combine(const Args&... args) & {
auto combine = [this](const auto& arg) {
using Arg = std::decay_t<decltype(arg)>;
if constexpr (fingerprint_impl::HasArollaFingerprintMethod<Arg>::value) {
arg.ArollaFingerprint(this);
} else if constexpr (std::is_default_constructible_v<
FingerprintHasherTraits<Arg>>) {
FingerprintHasherTraits<Arg>()(this, arg);
} else if constexpr (std::is_arithmetic_v<Arg> || std::is_enum_v<Arg>) {
CombineRawBytes(&arg, sizeof(arg));
} else {
static_assert(sizeof(Arg) == 0,
"Please, define `void "
"T::ArollaFingerprint(FingerprintHasher* hasher) const` "
"or specialise FingerprintHasherTraits for your type.");
}
};
(combine(args), ...);
return *this;
}
template <typename... Args>
FingerprintHasher&& FingerprintHasher::Combine(const Args&... args) && {
Combine(args...);
return std::move(*this);
}
template <typename SpanT>
FingerprintHasher& FingerprintHasher::CombineSpan(SpanT&& values) & {
const auto span = absl::MakeConstSpan(values);
using T = typename decltype(span)::value_type;
Combine(values.size());
if constexpr (std::is_default_constructible_v<FingerprintHasherTraits<T>>) {
constexpr FingerprintHasherTraits<T> traits;
for (const auto& x : values) {
traits(this, x);
}
} else if constexpr (std::is_arithmetic_v<T> || std::is_enum_v<T>) {
CombineRawBytes(values.data(), values.size() * sizeof(values[0]));
} else {
static_assert(sizeof(T) == 0,
"Please specialise FingerprintHasherTraits for your type.");
}
return *this;
}
template <typename SpanT>
FingerprintHasher&& FingerprintHasher::CombineSpan(SpanT&& values) && {
CombineSpan(std::forward<SpanT>(values));
return std::move(*this);
}
template <>
struct FingerprintHasherTraits<Fingerprint> {
void operator()(FingerprintHasher* hasher, const Fingerprint& value) const {
hasher->CombineRawBytes(&value.value, sizeof(value.value));
}
};
template <>
struct FingerprintHasherTraits<std::string> {
void operator()(FingerprintHasher* hasher, const std::string& value) const {
hasher->Combine(value.size()).CombineRawBytes(value.data(), value.size());
}
};
template <>
struct FingerprintHasherTraits<absl::string_view> {
void operator()(FingerprintHasher* hasher, absl::string_view value) const {
hasher->Combine(value.size()).CombineRawBytes(value.data(), value.size());
}
};
template <class Struct>
void CombineStructFields(FingerprintHasher* hasher, const Struct& value) {
static_assert(HasStructFields<Struct>(), "no struct fields found");
meta::foreach_tuple_element(
GetStructFields<Struct>(), [&](const auto& struct_field) {
hasher->Combine(*UnsafeGetStructFieldPtr(struct_field, &value));
});
}
template <typename T>
struct FingerprintHasherTraits<T*> {
static_assert(sizeof(T*) == 0,
"Pointer values are runtime specific and not fingerprintable.");
};
template <typename T>
struct FingerprintHasherTraits<std::unique_ptr<T>> {
static_assert(
sizeof(std::unique_ptr<T>) == 0,
"Unique pointer values are runtime specific and not fingerprintable.");
};
template <typename T>
struct FingerprintHasherTraits<std::shared_ptr<T>> {
static_assert(
sizeof(std::shared_ptr<T>) == 0,
"Shared pointer values are runtime specific and not fingerprintable.");
};
#define AROLLA_DECLARE_FINGERPRINT_HASHER_TRAITS(CPP_TYPE) \
template <> \
struct FingerprintHasherTraits<CPP_TYPE> { \
void operator()(FingerprintHasher* hasher, const CPP_TYPE& value) const; \
}
}
#endif
#include "arolla/util/fingerprint.h"
#include <cstddef>
#include <cstdint>
#include <ostream>
#include <string>
#include "absl/hash/hash.h"
#include "absl/numeric/int128.h"
#include "absl/random/random.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "cityhash/city.h"
#include "arolla/util/types.h"
namespace arolla {
namespace {
uint32_t RuntimeSeed() {
static uint32_t result = absl::Hash<int>{}(501816262);
return result;
}
}
std::string Fingerprint::AsString() const {
return absl::StrFormat("%032x", value);
}
signed_size_t Fingerprint::PythonHash() const {
return absl::Hash<Fingerprint>()(*this);
}
std::ostream& operator<<(std::ostream& ostream,
const Fingerprint& fingerprint) {
return ostream << absl::StreamFormat("%032x", fingerprint.value);
}
Fingerprint RandomFingerprint() {
absl::BitGen bitgen;
return Fingerprint{absl::MakeUint128(absl::Uniform<uint64_t>(bitgen),
absl::Uniform<uint64_t>(bitgen))};
}
FingerprintHasher::FingerprintHasher(absl::string_view salt)
: state_{3102879407, 2758948377}
{
Combine(RuntimeSeed(), salt);
}
Fingerprint FingerprintHasher::Finish() && {
return Fingerprint{absl::MakeUint128(state_.second, state_.first)};
}
void FingerprintHasher::CombineRawBytes(const void* data, size_t size) {
state_ = cityhash::CityHash128WithSeed(
static_cast<const char*>(data), size, state_);
}
} | #include "arolla/util/fingerprint.h"
#include <limits>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include "gtest/gtest.h"
#include "absl/container/flat_hash_set.h"
#include "arolla/util/struct_field.h"
namespace arolla {
namespace {
static_assert(
std::is_trivially_constructible_v<Fingerprint>,
"Make sure that fingerprint is trivially constructed, so that adding it to "
"a struct does not slow down the struct's initialization time.");
struct A {};
static_assert(!std::is_default_constructible_v<FingerprintHasherTraits<A>>);
struct AWithFingerPrintMethod {
void ArollaFingerprint(FingerprintHasher* hasher) const {
hasher->Combine(19);
}
};
struct AWithStructFields {
int a;
double b;
constexpr static auto ArollaStructFields() {
using CppType = AWithStructFields;
return std::tuple{
AROLLA_DECLARE_STRUCT_FIELD(a),
AROLLA_DECLARE_STRUCT_FIELD(b),
};
}
void ArollaFingerprint(FingerprintHasher* hasher) const {
CombineStructFields(hasher, *this);
}
};
template <typename... Ts>
Fingerprint MakeDummyFingerprint(const Ts&... values) {
return FingerprintHasher("dummy-salt").Combine(values...).Finish();
}
TEST(FingerprintTest, Empty) {
Fingerprint fgpt{};
EXPECT_EQ(fgpt.AsString(), "00000000000000000000000000000000");
}
TEST(FingerprintTest, RandomFingerprint) {
constexpr int N = 1024;
absl::flat_hash_set<Fingerprint> set;
set.reserve(N);
for (int i = 0; i < N; ++i) {
set.insert(RandomFingerprint());
}
EXPECT_EQ(set.size(), N);
}
TEST(FingerprintTest, AWithFingerPrintMethod) {
EXPECT_EQ(MakeDummyFingerprint(AWithFingerPrintMethod()),
MakeDummyFingerprint(19));
}
TEST(FingerprintTest, AWithStructFields) {
EXPECT_EQ(MakeDummyFingerprint(AWithStructFields{.a = 5, .b = 7.}),
MakeDummyFingerprint(5, 7.));
}
TEST(FingerprintTest, TestPrimitives) {
EXPECT_NE(MakeDummyFingerprint(5), MakeDummyFingerprint(6));
EXPECT_NE(MakeDummyFingerprint<std::string>("5"),
MakeDummyFingerprint<std::string>("6"));
}
TEST(FingerprintTest, FloatingPointZero) {
EXPECT_NE(MakeDummyFingerprint(0.0).PythonHash(),
MakeDummyFingerprint(-0.0).PythonHash());
EXPECT_NE(MakeDummyFingerprint(0.f).PythonHash(),
MakeDummyFingerprint(-0.f).PythonHash());
}
TEST(FingerprintTest, FloatingPointNAN) {
EXPECT_NE(MakeDummyFingerprint(std::numeric_limits<float>::quiet_NaN())
.PythonHash(),
MakeDummyFingerprint(-std::numeric_limits<float>::quiet_NaN())
.PythonHash());
EXPECT_NE(MakeDummyFingerprint(std::numeric_limits<double>::quiet_NaN())
.PythonHash(),
MakeDummyFingerprint(-std::numeric_limits<double>::quiet_NaN())
.PythonHash());
}
TEST(FingerprintTest, PythonHash) {
EXPECT_EQ(MakeDummyFingerprint(4).PythonHash(),
MakeDummyFingerprint(4).PythonHash());
EXPECT_NE(MakeDummyFingerprint(5).PythonHash(),
MakeDummyFingerprint(6).PythonHash());
}
TEST(FingerprintTest, Less) {
EXPECT_LT(Fingerprint{27}, Fingerprint{37});
EXPECT_FALSE(Fingerprint{27} < Fingerprint{27});
}
TEST(FingerprintTest, CombineRawBytes) {
{
FingerprintHasher h1("dummy-salt");
FingerprintHasher h2("dummy-salt");
h1.CombineRawBytes("foobar", 6);
h2.CombineRawBytes("foobar", 6);
EXPECT_EQ(std::move(h1).Finish(), std::move(h2).Finish());
}
{
FingerprintHasher h1("dummy-salt");
FingerprintHasher h2("dummy-salt");
h1.CombineRawBytes("foobar", 6);
h2.CombineRawBytes("barfoo", 6);
EXPECT_NE(std::move(h1).Finish(), std::move(h2).Finish());
}
}
class Circle {
public:
Circle(int x, int y, int r) : center_(x, y), radius_(r) {
FingerprintHasher hasher("arolla::TestCircle");
hasher.Combine(center_.first, center_.second, radius_);
fingerprint_ = std::move(hasher).Finish();
}
const Fingerprint& fingerprint() { return fingerprint_; }
private:
std::pair<int, int> center_;
int radius_;
Fingerprint fingerprint_;
};
TEST(FingerprintTest, UserDefined) {
EXPECT_NE(Circle(0, 0, 1).fingerprint(), Circle(0, 0, 2).fingerprint());
EXPECT_NE(Circle(1, 1, 1).fingerprint(), Circle(0, 0, 1).fingerprint());
}
TEST(FingerprintTest, HasArollaFingerprintMethodRegression) {
struct OverloadedType {
int ArollaFingerprint() const { return 0; }
void ArollaFingerprint(FingerprintHasher*) const {}
};
EXPECT_TRUE(
fingerprint_impl::HasArollaFingerprintMethod<OverloadedType>::value);
struct WrongType {
int ArollaFingerprint() const { return 0; }
};
EXPECT_FALSE(fingerprint_impl::HasArollaFingerprintMethod<WrongType>::value);
}
}
} | 2,492 |
#ifndef AROLLA_UTIL_BYTES_H_
#define AROLLA_UTIL_BYTES_H_
#include <string>
#include "arolla/util/repr.h"
namespace arolla {
using Bytes = std::string;
AROLLA_DECLARE_REPR(Bytes);
}
#endif
#include "arolla/util/bytes.h"
#include <cstddef>
#include <string>
#include "absl/strings/escaping.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "arolla/util/repr.h"
namespace arolla {
ReprToken ReprTraits<Bytes>::operator()(const Bytes& value) const {
constexpr size_t kBytesAbbrevLimit = 120;
ReprToken result;
absl::string_view bytes = value;
if (bytes.size() <= kBytesAbbrevLimit) {
result.str = absl::StrCat("b'", absl::CHexEscape(bytes), "'");
} else {
result.str =
absl::StrCat("b'", absl::CHexEscape(bytes.substr(0, kBytesAbbrevLimit)),
"... (", bytes.size(), " bytes total)'");
}
return result;
}
} | #include "arolla/util/bytes.h"
#include <string>
#include <type_traits>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/string_view.h"
#include "arolla/util/repr.h"
#include "arolla/util/testing/repr_token_eq.h"
namespace arolla {
namespace {
using ::arolla::testing::ReprTokenEq;
using ::testing::Eq;
using ::testing::MatchesRegex;
TEST(BytesTest, Constructor) {
EXPECT_THAT(Bytes("Hello"), Eq("Hello"));
std::string hello = "Hello";
EXPECT_THAT(Bytes(hello), Eq("Hello"));
absl::string_view hello_view = hello;
EXPECT_THAT(Bytes(hello_view), Eq("Hello"));
}
TEST(BytesTest, CopyAndMoveConstructors) {
static_assert(std::is_nothrow_move_constructible<Bytes>::value);
Bytes src("Google");
Bytes copied(src);
EXPECT_THAT(copied, Eq(src));
Bytes moved(std::move(src));
EXPECT_THAT(moved, Eq(copied));
}
TEST(BytesTest, CopyAndMoveAssignment) {
static_assert(std::is_nothrow_move_assignable<Bytes>::value);
Bytes src("Google");
Bytes copied = src;
EXPECT_THAT(copied, Eq(src));
Bytes moved = std::move(src);
EXPECT_THAT(moved, Eq(copied));
}
TEST(BytesTest, AssignmentFromString) {
std::string google = "Google";
{
Bytes val("x");
val = "Google";
EXPECT_THAT(val, Eq(google));
}
{
Bytes val("x");
val = google;
EXPECT_THAT(val, Eq(google));
}
{
absl::string_view google_view = google;
Bytes val("x");
val = google_view;
EXPECT_THAT(val, Eq("Google"));
}
{
Bytes val("x");
val = std::move(google);
EXPECT_THAT(val, Eq("Google"));
}
}
TEST(BytesTest, Repr) {
EXPECT_THAT(GenReprToken(Bytes("G'\"\t\xff")),
ReprTokenEq(R"(b'G\'\"\t\xff')"));
EXPECT_THAT(Repr(Bytes(std::string(1024, 'x'))),
MatchesRegex(R"(b'x{120}[.]{3} \(1024 bytes total\)')"));
}
}
} | 2,493 |
#ifndef AROLLA_UTIL_STATUS_H_
#define AROLLA_UTIL_STATUS_H_
#include <array>
#include <cstdint>
#include <initializer_list>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/types/span.h"
#include "arolla/util/meta.h"
#include "arolla/util/status_macros_backport.h"
namespace arolla {
absl::Status SizeMismatchError(std::initializer_list<int64_t> sizes);
template <class T>
absl::Status GetStatusOrOk(const T&) {
return absl::OkStatus();
}
template <class T>
absl::Status GetStatusOrOk(const absl::StatusOr<T>& v_or) {
return v_or.status();
}
inline absl::Status GetStatusOrOk(const absl::Status& status) { return status; }
template <class T>
bool IsOkStatus(const T&) {
return true;
}
template <class T>
bool IsOkStatus(const absl::StatusOr<T>& v_or) {
return v_or.ok();
}
inline bool IsOkStatus(const absl::Status& status) { return status.ok(); }
template <class... Ts>
absl::Status CheckInputStatus(const Ts&... status_or_ts) {
if ((IsOkStatus(status_or_ts) && ...)) {
return absl::OkStatus();
}
for (auto& status : std::array<absl::Status, sizeof...(Ts)>{
GetStatusOrOk(status_or_ts)...}) {
RETURN_IF_ERROR(std::move(status));
}
return absl::OkStatus();
}
template <typename T>
struct IsStatusOrT : std::false_type {};
template <typename T>
struct IsStatusOrT<absl::StatusOr<T>> : std::true_type {};
template <typename T>
using strip_statusor_t = meta::strip_template_t<absl::StatusOr, T>;
template <class T>
decltype(auto) UnStatus(T&& t) {
if constexpr (IsStatusOrT<std::decay_t<T>>()) {
return *std::forward<T>(t);
} else {
return std::forward<T>(t);
}
}
template <class Fn>
struct UnStatusCaller {
template <class... Ts>
auto operator()(const Ts&... status_or_ts) const
-> absl::StatusOr<strip_statusor_t<
decltype(std::declval<Fn>()(UnStatus(status_or_ts)...))>> {
if ((IsOkStatus(status_or_ts) && ...)) {
return fn(UnStatus(status_or_ts)...);
}
return CheckInputStatus(status_or_ts...);
}
Fn fn;
};
template <class Fn>
UnStatusCaller<Fn> MakeUnStatusCaller(Fn&& fn) {
return UnStatusCaller<Fn>{std::forward<Fn>(fn)};
}
template <class... Ts>
static absl::StatusOr<std::tuple<Ts...>> LiftStatusUp(
absl::StatusOr<Ts>... status_or_ts) {
RETURN_IF_ERROR(CheckInputStatus(status_or_ts...));
return std::make_tuple(*std::move(status_or_ts)...);
}
template <class T>
absl::StatusOr<std::vector<T>> LiftStatusUp(
std::vector<absl::StatusOr<T>>&& status_or_ts) {
std::vector<T> result;
result.reserve(status_or_ts.size());
for (auto& status_or_t : status_or_ts) {
if (!status_or_t.ok()) {
return std::move(status_or_t).status();
}
result.push_back(*std::move(status_or_t));
}
return result;
}
template <class T>
absl::StatusOr<std::vector<T>> LiftStatusUp(
absl::Span<const absl::StatusOr<T>> status_or_ts) {
std::vector<T> result;
result.reserve(status_or_ts.size());
for (const auto& status_or_t : status_or_ts) {
if (!status_or_t.ok()) {
return status_or_t.status();
}
result.push_back(*status_or_t);
}
return result;
}
template <class K, class V>
absl::StatusOr<absl::flat_hash_map<K, V>> LiftStatusUp(
absl::flat_hash_map<K, absl::StatusOr<V>> status_or_kvs) {
absl::flat_hash_map<K, V> result;
result.reserve(status_or_kvs.size());
for (const auto& [key, status_or_v] : status_or_kvs) {
if (!status_or_v.ok()) {
return status_or_v.status();
}
result.emplace(key, *status_or_v);
}
return result;
}
template <class K, class V>
absl::StatusOr<absl::flat_hash_map<K, V>> LiftStatusUp(
std::initializer_list<std::pair<K, absl::StatusOr<V>>> status_or_kvs) {
return LiftStatusUp(absl::flat_hash_map<K, absl::StatusOr<V>>{status_or_kvs});
}
template <class K, class V>
absl::StatusOr<absl::flat_hash_map<K, V>> LiftStatusUp(
std::initializer_list<std::pair<absl::StatusOr<K>, absl::StatusOr<V>>>
status_or_kvs) {
absl::flat_hash_map<K, V> result;
result.reserve(status_or_kvs.size());
for (const auto& [status_or_k, status_or_v] : status_or_kvs) {
if (!status_or_k.ok()) {
return status_or_k.status();
}
if (!status_or_v.ok()) {
return status_or_v.status();
}
result.emplace(*status_or_k, *status_or_v);
}
return result;
}
inline absl::Status FirstErrorStatus(
std::initializer_list<absl::Status> statuses) {
for (const absl::Status& status : statuses) {
RETURN_IF_ERROR(status);
}
return absl::OkStatus();
}
}
#endif
#include "absl/status/status.h"
#include <cstdint>
#include <initializer_list>
#include "absl/strings/str_cat.h"
#include "absl/strings/str_join.h"
namespace arolla {
absl::Status SizeMismatchError(std::initializer_list<int64_t> sizes) {
return absl::InvalidArgumentError(absl::StrCat(
"argument sizes mismatch: (", absl::StrJoin(sizes, ", "), ")"));
}
} | #include "arolla/util/status.h"
#include <initializer_list>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/container/flat_hash_map.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/types/span.h"
#include "arolla/util/testing/status_matchers_backport.h"
namespace arolla {
namespace {
using ::arolla::testing::IsOkAndHolds;
using ::testing::AnyOf;
using ::testing::Eq;
using ::testing::Test;
TEST(StatusTest, CheckInputStatus) {
EXPECT_OK(CheckInputStatus());
EXPECT_OK(CheckInputStatus(13));
EXPECT_OK(CheckInputStatus(13, "a"));
EXPECT_OK(CheckInputStatus(absl::StatusOr<int>(13), "a"));
EXPECT_OK(CheckInputStatus(13, absl::StatusOr<std::string>("a")));
EXPECT_OK(CheckInputStatus(absl::StatusOr<int>(13),
absl::StatusOr<std::string>("a")));
absl::Status bad_status1{absl::StatusCode::kInvalidArgument, "bad 1"};
absl::Status bad_status2{absl::StatusCode::kDataLoss, "bad 2"};
EXPECT_EQ(CheckInputStatus(absl::StatusOr<int>(bad_status1)), bad_status1);
EXPECT_EQ(CheckInputStatus(13, absl::StatusOr<int>(bad_status1)),
bad_status1);
EXPECT_EQ(CheckInputStatus(absl::StatusOr<int>(13),
absl::StatusOr<int>(bad_status1)),
bad_status1);
EXPECT_EQ(CheckInputStatus(absl::StatusOr<int>(bad_status1),
absl::StatusOr<int>(bad_status2)),
bad_status1);
}
TEST(StatusTest, LiftStatusUpSuccess) {
std::tuple<> empty = LiftStatusUp().value();
EXPECT_THAT(empty, Eq(std::make_tuple()));
std::tuple<int> one = LiftStatusUp(absl::StatusOr<int>(1)).value();
EXPECT_THAT(one, Eq(std::make_tuple(1)));
std::tuple<std::string, int> two =
LiftStatusUp(absl::StatusOr<std::string>("one"), absl::StatusOr<int>(2))
.value();
EXPECT_THAT(two, Eq(std::make_tuple(std::string("one"), 2)));
ASSERT_OK_AND_ASSIGN(
std::vector<int> vec,
LiftStatusUp(absl::Span<const absl::StatusOr<int>>{1, 2}));
EXPECT_THAT(vec, ::testing::ElementsAre(1, 2));
absl::flat_hash_map<int, int> fhm =
LiftStatusUp(std::initializer_list<std::pair<int, absl::StatusOr<int>>>{
{1, 2}, {3, 4}})
.value();
EXPECT_THAT(fhm, Eq(absl::flat_hash_map<int, int>{{1, 2}, {3, 4}}));
absl::flat_hash_map<int, int> fhm1 =
LiftStatusUp(std::initializer_list<
std::pair<absl::StatusOr<int>, absl::StatusOr<int>>>{
{1, 2}, {3, 4}})
.value();
EXPECT_THAT(fhm, Eq(absl::flat_hash_map<int, int>{{1, 2}, {3, 4}}));
}
TEST(StatusTest, LiftStatusUpErrors) {
absl::Status bad_status1{absl::StatusCode::kInvalidArgument, "bad 1"};
absl::Status bad_status2{absl::StatusCode::kDataLoss, "bad 2"};
EXPECT_EQ(LiftStatusUp(absl::StatusOr<int>(bad_status1)).status(),
bad_status1);
EXPECT_EQ(LiftStatusUp(absl::StatusOr<std::string>("one"),
absl::StatusOr<int>(bad_status2))
.status(),
bad_status2);
EXPECT_EQ(LiftStatusUp(absl::StatusOr<std::string>("one"),
absl::StatusOr<int>(bad_status1),
absl::StatusOr<float>(bad_status2))
.status(),
bad_status1);
EXPECT_EQ(LiftStatusUp(absl::StatusOr<float>(bad_status2),
absl::StatusOr<std::string>("one"),
absl::StatusOr<int>(bad_status1))
.status(),
bad_status2);
EXPECT_THAT(LiftStatusUp(absl::Span<const absl::StatusOr<int>>{bad_status1,
bad_status2})
.status(),
bad_status1);
EXPECT_THAT(
LiftStatusUp(std::initializer_list<std::pair<int, absl::StatusOr<int>>>{
{1, bad_status1}, {2, 3}, {4, bad_status2}})
.status(),
AnyOf(bad_status1, bad_status2));
EXPECT_THAT(
LiftStatusUp(std::initializer_list<
std::pair<absl::StatusOr<int>, absl::StatusOr<int>>>{
{bad_status1, 1}, {2, 3}, {4, bad_status2}})
.status(),
AnyOf(bad_status1, bad_status2));
EXPECT_THAT(
LiftStatusUp(std::initializer_list<
std::pair<absl::StatusOr<int>, absl::StatusOr<int>>>{
{1, bad_status1}, {2, 3}, {4, bad_status2}})
.status(),
AnyOf(bad_status1, bad_status2));
}
TEST(StatusTest, UnStatus) {
using T = std::unique_ptr<int>;
using StatusOrT = absl::StatusOr<T>;
{
StatusOrT status_or_t = std::make_unique<int>(1);
const T& value = UnStatus(status_or_t);
EXPECT_EQ(*value, 1);
EXPECT_EQ(value.get(), status_or_t.value().get());
}
{
StatusOrT status_or_t = std::make_unique<int>(1);
T value = UnStatus(std::move(status_or_t));
EXPECT_EQ(*value, 1);
}
{
T original_value = std::make_unique<int>(1);
const T& value = UnStatus(original_value);
EXPECT_EQ(*value, 1);
EXPECT_EQ(value.get(), original_value.get());
}
{
T original_value = std::make_unique<int>(1);
T value = UnStatus(std::move(original_value));
EXPECT_EQ(*value, 1);
}
}
TEST(StatusTest, FirstErrorStatus) {
absl::Status ok_status = absl::OkStatus();
absl::Status failed_precondition = absl::FailedPreconditionError("msg1");
absl::Status internal_error = absl::InternalError("msg2");
EXPECT_OK(FirstErrorStatus({}));
EXPECT_OK(FirstErrorStatus({ok_status, ok_status}));
EXPECT_EQ(FirstErrorStatus({failed_precondition}), failed_precondition);
EXPECT_EQ(FirstErrorStatus({ok_status, failed_precondition}),
failed_precondition);
EXPECT_EQ(FirstErrorStatus({failed_precondition, ok_status}),
failed_precondition);
EXPECT_EQ(FirstErrorStatus({failed_precondition, internal_error}),
failed_precondition);
EXPECT_EQ(FirstErrorStatus({internal_error, failed_precondition}),
internal_error);
}
TEST(StatusTest, GetStatusOrOk) {
absl::Status ok_status = absl::OkStatus();
EXPECT_OK(GetStatusOrOk(5));
EXPECT_OK(GetStatusOrOk(ok_status));
EXPECT_OK(GetStatusOrOk(absl::StatusOr<int>(5)));
absl::Status failed_precondition = absl::FailedPreconditionError("msg1");
EXPECT_EQ(GetStatusOrOk(failed_precondition), failed_precondition);
EXPECT_EQ(GetStatusOrOk(absl::StatusOr<int>(failed_precondition)),
failed_precondition);
}
TEST(StatusTest, IsOkStatus) {
absl::Status ok_status = absl::OkStatus();
EXPECT_TRUE(IsOkStatus(5));
EXPECT_TRUE(IsOkStatus(ok_status));
EXPECT_TRUE(IsOkStatus(absl::StatusOr<int>(5)));
absl::Status failed_precondition = absl::FailedPreconditionError("msg1");
EXPECT_FALSE(IsOkStatus(failed_precondition));
EXPECT_FALSE(IsOkStatus(absl::StatusOr<int>(failed_precondition)));
}
TEST(StatusTest, UnStatusCaller) {
absl::Status failed_precondition = absl::FailedPreconditionError("msg1");
absl::Status failed_precondition2 = absl::FailedPreconditionError("msg2");
auto add_op = [](int a, int b) { return a + b; };
UnStatusCaller<decltype(add_op)> add_op_wrap{add_op};
auto add_op_with_status = [](int a, int b) -> absl::StatusOr<int> {
return a + b;
};
auto add_op_with_status_wrap = MakeUnStatusCaller(add_op_with_status);
auto add_op_always_error = [&](int a, int b) -> absl::StatusOr<int> {
return failed_precondition;
};
auto add_op_always_error_wrap = MakeUnStatusCaller(add_op_always_error);
EXPECT_THAT(add_op_wrap(5, 7), IsOkAndHolds(12));
EXPECT_THAT(add_op_with_status_wrap(5, 7), IsOkAndHolds(12));
EXPECT_EQ(add_op_always_error_wrap(5, 7).status(), failed_precondition);
EXPECT_EQ(add_op_wrap(5, absl::StatusOr<int>(failed_precondition)).status(),
failed_precondition);
EXPECT_EQ(add_op_wrap(absl::StatusOr<int>(failed_precondition),
absl::StatusOr<int>(failed_precondition2))
.status(),
failed_precondition);
EXPECT_EQ(
add_op_always_error_wrap(5, absl::StatusOr<int>(failed_precondition2))
.status(),
failed_precondition2);
}
}
} | 2,494 |
#ifndef AROLLA_MEMORY_STRINGS_BUFFER_H_
#define AROLLA_MEMORY_STRINGS_BUFFER_H_
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <string>
#include <tuple>
#include <utility>
#include "absl/log/check.h"
#include "absl/strings/cord.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "arolla/memory/optional_value.h"
#include "arolla/memory/raw_buffer_factory.h"
#include "arolla/memory/simple_buffer.h"
#include "arolla/util/fingerprint.h"
#include "arolla/util/iterator.h"
#include "arolla/util/preallocated_buffers.h"
namespace arolla {
class StringsBuffer {
public:
using value_type = absl::string_view;
using size_type = int64_t;
using difference_type = int64_t;
using const_iterator = ConstArrayIterator<StringsBuffer>;
using offset_type = int64_t;
struct Offsets {
offset_type start;
offset_type end;
};
StringsBuffer() = default;
StringsBuffer(SimpleBuffer<Offsets> offsets, SimpleBuffer<char> characters,
offset_type base_offset = 0);
class Builder;
class Inserter {
public:
void Add(absl::string_view v) { builder_->Set(offset_++, v); }
void Add(const absl::Cord& v) { builder_->Set(offset_++, std::string(v)); }
void SkipN(int64_t count) {
offset_ += count;
DCHECK_LE(offset_, builder_->offsets_.size());
}
private:
friend class Builder;
explicit Inserter(Builder* builder, int64_t offset)
: builder_(builder), offset_(offset) {}
Builder* builder_;
int64_t offset_;
};
class Builder {
public:
Builder() = default;
Builder(Builder&&) = default;
Builder& operator=(Builder&&) = default;
explicit Builder(int64_t max_size,
RawBufferFactory* factory = GetHeapBufferFactory());
Inserter GetInserter(int64_t offset = 0) { return Inserter(this, offset); }
void Set(int64_t offset, absl::string_view v) {
DCHECK_GE(offset, 0);
DCHECK_LT(offset, offsets_.size());
if (v.size() + num_chars_ > characters_.size()) {
size_t new_size = characters_.size() * 2;
while (v.size() + num_chars_ > new_size) {
new_size *= 2;
}
ResizeCharacters(new_size);
}
std::copy(v.begin(), v.end(), characters_.data() + num_chars_);
offsets_[offset].start = num_chars_;
num_chars_ += v.size();
offsets_[offset].end = num_chars_;
}
void Set(int64_t offset, const absl::Cord& v) {
Set(offset, std::string(v));
}
void Copy(int64_t offset_from, int64_t offset_to) {
offsets_[offset_to] = offsets_[offset_from];
}
template <typename NextValueFn>
void SetN(int64_t first_offset, int64_t count, NextValueFn fn) {
for (int64_t i = first_offset; i < first_offset + count; ++i) {
Set(i, fn());
}
}
void SetNConst(int64_t first_offset, int64_t count, absl::string_view v) {
DCHECK_GE(count, 0);
DCHECK_GE(first_offset, 0);
DCHECK_LE(first_offset + count, offsets_.size());
if (count <= 0) return;
Set(first_offset, v);
auto d = offsets_[first_offset];
std::fill(offsets_.data() + first_offset + 1,
offsets_.data() + first_offset + count, d);
}
StringsBuffer Build(Inserter ins) && {
if (!ins.builder_) return StringsBuffer();
DCHECK_EQ(ins.builder_, this);
return std::move(*this).Build(ins.offset_);
}
StringsBuffer Build(int64_t size) &&;
StringsBuffer Build() && { return std::move(*this).Build(offsets_.size()); }
private:
friend class Inserter;
void ResizeCharacters(size_t new_size);
void InitDataPointers(std::tuple<RawBufferPtr, void*>&& buf,
int64_t offsets_count, int64_t characters_size);
RawBufferFactory* factory_;
RawBufferPtr buf_;
absl::Span<Offsets> offsets_;
absl::Span<char> characters_;
offset_type num_chars_ = 0;
};
class ReshuffleBuilder {
public:
explicit ReshuffleBuilder(
int64_t max_size, const StringsBuffer& buffer,
const OptionalValue<absl::string_view>& default_value,
RawBufferFactory* buf_factory = GetHeapBufferFactory());
void CopyValue(int64_t new_index, int64_t old_index) {
offsets_bldr_.Set(new_index, old_offsets_[old_index]);
}
void CopyValueToRange(int64_t new_index_from, int64_t new_index_to,
int64_t old_index) {
auto* new_offsets = offsets_bldr_.GetMutableSpan().begin();
std::fill(new_offsets + new_index_from, new_offsets + new_index_to,
old_offsets_[old_index]);
}
StringsBuffer Build(int64_t size) && {
return StringsBuffer(std::move(offsets_bldr_).Build(size),
std::move(characters_), base_offset_);
}
StringsBuffer Build() && {
return StringsBuffer(std::move(offsets_bldr_).Build(),
std::move(characters_), base_offset_);
}
private:
SimpleBuffer<Offsets>::Builder offsets_bldr_;
SimpleBuffer<Offsets> old_offsets_;
SimpleBuffer<char> characters_;
offset_type base_offset_;
};
static StringsBuffer CreateUninitialized(
size_t size, RawBufferFactory* factory = GetHeapBufferFactory()) {
if (size <= kZeroInitializedBufferSize / sizeof(Offsets)) {
return StringsBuffer(
SimpleBuffer<Offsets>(nullptr, absl::Span<const Offsets>(
static_cast<const Offsets*>(
GetZeroInitializedBuffer()),
size)),
SimpleBuffer<char>{nullptr, absl::Span<const char>()});
}
SimpleBuffer<Offsets>::Builder builder(size, factory);
std::memset(builder.GetMutableSpan().data(), 0, size * sizeof(Offsets));
return StringsBuffer(std::move(builder).Build(),
SimpleBuffer<char>{nullptr, absl::Span<const char>()});
}
template <class InputIt>
static StringsBuffer Create(
InputIt begin, InputIt end,
RawBufferFactory* factory = GetHeapBufferFactory()) {
auto size = std::distance(begin, end);
if (size > 0) {
Builder builder(size, factory);
for (int64_t offset = 0; offset < size; begin++, offset++) {
builder.Set(offset, *begin);
}
return std::move(builder).Build(size);
} else {
return StringsBuffer();
}
}
bool empty() const { return offsets_.empty(); }
bool is_owner() const {
return offsets_.is_owner() && characters_.is_owner();
}
size_type size() const { return offsets_.size(); }
size_t memory_usage() const {
return offsets().memory_usage() + characters().memory_usage();
}
absl::string_view operator[](size_type i) const {
DCHECK_LE(0, i);
DCHECK_LT(i, size());
auto start = offsets_[i].start;
auto end = offsets_[i].end;
return absl::string_view(characters_.begin() + start - base_offset_,
end - start);
}
bool operator==(const StringsBuffer& other) const;
bool operator!=(const StringsBuffer& other) const {
return !(*this == other);
}
StringsBuffer ShallowCopy() const;
StringsBuffer DeepCopy(RawBufferFactory* = GetHeapBufferFactory()) const;
const_iterator begin() const { return const_iterator{this, 0}; }
const_iterator end() const { return const_iterator{this, size()}; }
absl::string_view front() const { return (*this)[0]; }
absl::string_view back() const { return (*this)[size() - 1]; }
StringsBuffer Slice(size_type offset) const& {
return Slice(offset, size() - offset);
}
StringsBuffer Slice(size_type offset, size_type count) const&;
StringsBuffer Slice(size_type offset) && {
return std::move(*this).Slice(offset, size() - offset);
}
StringsBuffer Slice(size_type offset, size_type count) &&;
const SimpleBuffer<Offsets>& offsets() const { return offsets_; }
const SimpleBuffer<char>& characters() const { return characters_; }
offset_type base_offset() const { return base_offset_; }
template <typename H>
friend H AbslHashValue(H h, const StringsBuffer& buffer) {
h = H::combine(std::move(h), buffer.size());
if (!buffer.empty()) {
auto* start = reinterpret_cast<const char*>(&*buffer.offsets().begin());
const size_t size = buffer.size() * sizeof(Offsets);
h = H::combine_contiguous(std::move(h), start, size);
h = H::combine(std::move(h), buffer.characters());
}
return h;
}
private:
SimpleBuffer<Offsets> offsets_;
SimpleBuffer<char> characters_;
offset_type base_offset_ = 0;
};
template <>
struct ArenaTraits<StringsBuffer> {
static StringsBuffer MakeOwned(StringsBuffer&& v,
RawBufferFactory* buf_factory) {
return v.DeepCopy(buf_factory);
}
};
AROLLA_DECLARE_FINGERPRINT_HASHER_TRAITS(StringsBuffer);
}
#endif
#include "arolla/memory/strings_buffer.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <limits>
#include <tuple>
#include <utility>
#include "absl/log/check.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "arolla/memory/optional_value.h"
#include "arolla/memory/raw_buffer_factory.h"
#include "arolla/memory/simple_buffer.h"
#include "arolla/util/fingerprint.h"
namespace arolla {
StringsBuffer::Builder::Builder(int64_t max_size, RawBufferFactory* factory)
: factory_(factory) {
size_t initial_char_buffer_size = max_size * 16;
DCHECK_LT(initial_char_buffer_size, std::numeric_limits<offset_type>::max());
size_t offsets_size = max_size * sizeof(Offsets);
InitDataPointers(
factory->CreateRawBuffer(offsets_size + initial_char_buffer_size),
max_size, initial_char_buffer_size);
std::memset(offsets_.data(), 0, offsets_size);
}
StringsBuffer::ReshuffleBuilder::ReshuffleBuilder(
int64_t max_size, const StringsBuffer& buffer,
const OptionalValue<absl::string_view>& default_value,
RawBufferFactory* buf_factory)
: offsets_bldr_(max_size, buf_factory),
old_offsets_(buffer.offsets()),
characters_(buffer.characters()),
base_offset_(buffer.base_offset()) {
if (default_value.present && !default_value.value.empty()) {
int64_t def_value_size = default_value.value.size();
offsets_bldr_.SetNConst(
0, max_size, {characters_.size(), def_value_size + characters_.size()});
SimpleBuffer<char>::Builder chars_bldr(characters_.size() + def_value_size,
buf_factory);
char* data = chars_bldr.GetMutableSpan().data();
std::memcpy(data, characters_.begin(), characters_.size());
std::memcpy(data + characters_.size(), default_value.value.begin(),
def_value_size);
characters_ = std::move(chars_bldr).Build();
} else {
std::memset(offsets_bldr_.GetMutableSpan().begin(), 0,
max_size * sizeof(Offsets));
}
}
StringsBuffer StringsBuffer::Builder::Build(int64_t size) && {
DCHECK_LE(size, offsets_.size());
if (num_chars_ != characters_.size()) {
ResizeCharacters(num_chars_);
}
SimpleBuffer<Offsets> offsets(buf_, offsets_.subspan(0, size));
SimpleBuffer<char> characters(std::move(buf_),
characters_.subspan(0, num_chars_));
return StringsBuffer(std::move(offsets), std::move(characters));
}
void StringsBuffer::Builder::ResizeCharacters(size_t new_size) {
DCHECK_LT(new_size, std::numeric_limits<offset_type>::max());
size_t offsets_size = offsets_.size() * sizeof(Offsets);
InitDataPointers(factory_->ReallocRawBuffer(std::move(buf_), offsets_.begin(),
offsets_size + characters_.size(),
offsets_size + new_size),
offsets_.size(), new_size);
}
void StringsBuffer::Builder::InitDataPointers(
std::tuple<RawBufferPtr, void*>&& buf, int64_t offsets_count,
int64_t characters_size) {
buf_ = std::move(std::get<0>(buf));
void* data = std::get<1>(buf);
offsets_ =
absl::Span<Offsets>(reinterpret_cast<Offsets*>(data), offsets_count);
characters_ = absl::Span<char>(
reinterpret_cast<char*>(data) + offsets_count * sizeof(Offsets),
characters_size);
}
StringsBuffer::StringsBuffer(SimpleBuffer<StringsBuffer::Offsets> offsets,
SimpleBuffer<char> characters,
offset_type base_offset)
: offsets_(std::move(offsets)),
characters_(std::move(characters)),
base_offset_(base_offset) {
for (int64_t i = 0; i < offsets_.size(); ++i) {
DCHECK_LE(base_offset_, offsets_[i].start);
DCHECK_LE(offsets_[i].start, offsets_[i].end);
DCHECK_LE(offsets_[i].end, base_offset_ + characters_.size());
}
}
bool StringsBuffer::operator==(const StringsBuffer& other) const {
if (this == &other) {
return true;
}
if (size() != other.size()) {
return false;
}
return std::equal(begin(), end(), other.begin());
}
StringsBuffer StringsBuffer::Slice(int64_t offset, int64_t count) const& {
if (count == 0) {
return StringsBuffer{};
}
return StringsBuffer{offsets_.Slice(offset, count), characters_,
base_offset_};
}
StringsBuffer StringsBuffer::Slice(int64_t offset, int64_t count) && {
if (count == 0) {
return StringsBuffer{};
}
return StringsBuffer{std::move(offsets_).Slice(offset, count),
std::move(characters_), base_offset_};
}
StringsBuffer StringsBuffer::ShallowCopy() const {
return StringsBuffer(offsets_.ShallowCopy(), characters_.ShallowCopy(),
base_offset_);
}
StringsBuffer StringsBuffer::DeepCopy(RawBufferFactory* buffer_factory) const {
if (size() == 0) {
return StringsBuffer{};
}
offset_type min_offset = offsets_[0].start;
offset_type max_offset = offsets_[0].end;
for (int64_t i = 1; i < size(); ++i) {
min_offset = std::min(min_offset, offsets_[i].start);
max_offset = std::max(max_offset, offsets_[i].end);
}
auto characters_slice =
characters_.Slice(min_offset - base_offset_, max_offset - min_offset);
return StringsBuffer(offsets_.DeepCopy(buffer_factory),
characters_slice.DeepCopy(buffer_factory), min_offset);
}
void FingerprintHasherTraits<StringsBuffer>::operator()(
FingerprintHasher* hasher, const StringsBuffer& value) const {
hasher->Combine(value.size());
if (!value.empty()) {
auto offsets_span = value.offsets().span();
hasher->CombineRawBytes(offsets_span.data(),
offsets_span.size() * sizeof(offsets_span[0]));
hasher->CombineSpan(value.characters().span());
}
}
} | #include <array>
#include <cstddef>
#include <initializer_list>
#include <optional>
#include <string>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/hash/hash_testing.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "arolla/memory/buffer.h"
#include "arolla/util/fingerprint.h"
namespace arolla {
namespace {
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::IsEmpty;
using ::testing::Not;
class StringsBufferTest : public ::testing::Test {
public:
Buffer<std::string> CreateTestBuffer(int num_rows) {
std::vector<std::string> values(num_rows);
for (int i = 0; i < num_rows; i++) {
values[i] = absl::StrFormat("str%d", i);
}
return Buffer<std::string>::Create(values.begin(), values.end());
}
template <typename T>
Buffer<std::string> CreateTestBuffer(std::initializer_list<T> values) {
return Buffer<std::string>::Create(values.begin(), values.end());
}
};
TEST_F(StringsBufferTest, Simple) {
Buffer<std::string> buffer = CreateTestBuffer(4);
EXPECT_TRUE(buffer.is_owner());
EXPECT_THAT(buffer, ElementsAre("str0", "str1", "str2", "str3"));
EXPECT_EQ(buffer[0], "str0");
EXPECT_EQ(buffer[3], "str3");
}
TEST_F(StringsBufferTest, Empty) {
Buffer<std::string> buffer1 = CreateTestBuffer(0);
EXPECT_THAT(buffer1, IsEmpty());
Buffer<std::string> buffer2 = buffer1.DeepCopy();
EXPECT_THAT(buffer2, IsEmpty());
Buffer<std::string> buffer3;
EXPECT_THAT(buffer3, IsEmpty());
}
TEST_F(StringsBufferTest, Move) {
size_t num_rows = 4;
Buffer<std::string> buffer = CreateTestBuffer(num_rows);
EXPECT_TRUE(buffer.is_owner());
Buffer<std::string> buffer2 = std::move(buffer);
EXPECT_TRUE(buffer2.is_owner());
EXPECT_FALSE(buffer.is_owner());
EXPECT_THAT(buffer2, ElementsAre("str0", "str1", "str2", "str3"));
Buffer<std::string> buffer3;
EXPECT_TRUE(buffer3.is_owner());
buffer3 = std::move(buffer2);
EXPECT_TRUE(buffer3.is_owner());
EXPECT_FALSE(buffer2.is_owner());
EXPECT_THAT(buffer3, ElementsAre("str0", "str1", "str2", "str3"));
}
TEST_F(StringsBufferTest, MemoryUsage) {
EXPECT_EQ(sizeof(Buffer<StringsBuffer::Offsets>), 4 * sizeof(void*));
EXPECT_EQ(sizeof(Buffer<char>), 4 * sizeof(void*));
EXPECT_EQ(sizeof(Buffer<std::string>),
sizeof(Buffer<StringsBuffer::Offsets>) + sizeof(Buffer<char>) + 8);
for (size_t sz = 0; sz < 10; sz += 1) {
const size_t chars = sz * 4;
const size_t offsets = sz * sizeof(StringsBuffer::Offsets);
Buffer<std::string> buffer = CreateTestBuffer(sz);
EXPECT_EQ(chars + offsets, buffer.memory_usage());
}
}
TEST_F(StringsBufferTest, MoveSlice) {
size_t num_rows = 10;
Buffer<std::string> buffer = CreateTestBuffer(num_rows);
EXPECT_TRUE(buffer.is_owner());
buffer = std::move(buffer).Slice(0, 5);
EXPECT_TRUE(buffer.is_owner());
EXPECT_THAT(buffer, ElementsAre("str0", "str1", "str2", "str3", "str4"));
Buffer<std::string> buffer2 = std::move(buffer).Slice(2, 3);
EXPECT_TRUE(buffer2.is_owner());
EXPECT_FALSE(buffer.is_owner());
EXPECT_THAT(buffer2, ElementsAre("str2", "str3", "str4"));
}
TEST_F(StringsBufferTest, ShallowCopy) {
size_t num_rows = 10;
Buffer<std::string> buffer = CreateTestBuffer(num_rows);
Buffer<std::string> buffer_copy1 = buffer.ShallowCopy();
EXPECT_FALSE(buffer_copy1.is_owner());
EXPECT_EQ(buffer.begin(), buffer_copy1.begin());
EXPECT_EQ(buffer.end(), buffer_copy1.end());
EXPECT_THAT(buffer, ElementsAreArray(buffer_copy1));
Buffer<std::string> buffer_copy2 = buffer.Slice(5, 5);
EXPECT_THAT(buffer, Not(ElementsAreArray(buffer_copy2)));
EXPECT_TRUE(buffer_copy2.is_owner());
EXPECT_EQ(buffer[5], buffer_copy2[0]);
}
TEST_F(StringsBufferTest, DeepCopy) {
size_t num_rows = 5;
Buffer<std::string> buffer = CreateTestBuffer(num_rows);
Buffer<std::string> buffer_copy = buffer.DeepCopy();
Buffer<std::string> buffer_slice_copy = buffer.Slice(1, 3).DeepCopy();
buffer = Buffer<std::string>();
EXPECT_TRUE(buffer_copy.is_owner());
EXPECT_THAT(buffer_copy, ElementsAre("str0", "str1", "str2", "str3", "str4"));
EXPECT_TRUE(buffer_slice_copy.is_owner());
EXPECT_THAT(buffer_slice_copy, ElementsAre("str1", "str2", "str3"));
buffer_copy = buffer.DeepCopy();
EXPECT_THAT(buffer_copy, IsEmpty());
}
TEST_F(StringsBufferTest, EmptySlice) {
size_t num_rows = 10;
Buffer<std::string> buffer = CreateTestBuffer(num_rows);
Buffer<std::string> copy = buffer.Slice(3, 0);
EXPECT_THAT(copy, IsEmpty());
buffer = std::move(buffer).Slice(3, 0);
EXPECT_THAT(buffer, IsEmpty());
copy = buffer.Slice(0, 0);
EXPECT_THAT(copy, IsEmpty());
}
TEST_F(StringsBufferTest, HugeString) {
StringsBuffer::Builder builder(2);
builder.Set(0, "small string");
std::string huge_string;
for (int i = 0; i < 1000; ++i) huge_string.append("huge string; ");
builder.Set(1, huge_string);
StringsBuffer buffer = std::move(builder).Build(2);
EXPECT_EQ(buffer.size(), 2);
EXPECT_EQ(buffer[0], "small string");
EXPECT_EQ(buffer[1], huge_string);
}
TEST_F(StringsBufferTest, SupportsAbslHash) {
StringsBuffer empty;
std::array<absl::string_view, 5> values = {"one", "two", "three", "four",
"five"};
StringsBuffer test1 = StringsBuffer::Create(values.begin(), values.end());
StringsBuffer test2 = StringsBuffer::Create(values.rbegin(), values.rend());
EXPECT_TRUE(
absl::VerifyTypeImplementsAbslHashCorrectly({empty, test1, test2}));
}
TEST_F(StringsBufferTest, Fingerprint) {
std::array<absl::string_view, 5> values = {"one", "two", "three", "four",
"five"};
StringsBuffer test1 = StringsBuffer::Create(values.begin(), values.end());
StringsBuffer test2 = StringsBuffer::Create(values.begin(), values.end());
StringsBuffer test3 = StringsBuffer::Create(values.rbegin(), values.rend());
Fingerprint f1 = FingerprintHasher("salt").Combine(test1).Finish();
Fingerprint f2 = FingerprintHasher("salt").Combine(test2).Finish();
Fingerprint f3 = FingerprintHasher("salt").Combine(test3).Finish();
EXPECT_EQ(f1, f2);
EXPECT_NE(f1, f3);
}
TEST(StringsBufferBuilder, Inserter) {
Buffer<std::string>::Builder builder(10);
auto inserter = builder.GetInserter(1);
for (int i = 0; i < 4; ++i) inserter.Add(absl::StrFormat("str%d", i));
builder.Set(0, "aba");
auto buffer = std::move(builder).Build(inserter);
EXPECT_THAT(buffer, ElementsAre("aba", "str0", "str1", "str2", "str3"));
}
TEST(StringsBufferBuilder, InserterCord) {
Buffer<std::string>::Builder builder(10);
auto inserter = builder.GetInserter(1);
for (int i = 0; i < 4; ++i) {
inserter.Add(absl::Cord(absl::StrFormat("str%d", i)));
}
builder.Set(0, "aba");
auto buffer = std::move(builder).Build(inserter);
EXPECT_THAT(buffer, ElementsAre("aba", "str0", "str1", "str2", "str3"));
}
TEST(StringsBufferBuilder, Generator) {
Buffer<std::string>::Builder builder(10);
builder.SetNConst(0, 10, "default");
int i = 0;
builder.SetN(2, 3, [&]() { return absl::StrFormat("str%d", ++i); });
auto buffer = std::move(builder).Build(6);
EXPECT_THAT(buffer, ElementsAre("default", "default", "str1", "str2", "str3",
"default"));
}
TEST(StringsBufferBuilder, RandomAccess) {
Buffer<std::string>::Builder builder(10);
builder.Set(4, "s1");
builder.Set(2, "s2");
builder.Set(1, "s3");
builder.Set(0, "s4");
builder.Set(3, "s5");
builder.Set(1, "s6");
auto buffer = std::move(builder).Build(5);
EXPECT_THAT(buffer, ElementsAre("s4", "s6", "s2", "s5", "s1"));
}
TEST(StringsBufferBuilder, RandomAccessCord) {
Buffer<std::string>::Builder builder(10);
builder.Set(4, absl::Cord("s1"));
builder.Set(2, absl::Cord("s2"));
builder.Set(1, absl::Cord("s3"));
builder.Set(0, absl::Cord("s4"));
builder.Set(3, absl::Cord("s5"));
builder.Set(1, absl::Cord("s6"));
auto buffer = std::move(builder).Build(5);
EXPECT_THAT(buffer, ElementsAre("s4", "s6", "s2", "s5", "s1"));
}
TEST(StringsBufferBuilder, ReshuffleBuilder) {
auto buf = CreateBuffer<std::string>({"5v", "4ab", "3", "2", "1"});
{
Buffer<std::string>::ReshuffleBuilder bldr(7, buf, std::nullopt);
bldr.CopyValue(3, 1);
bldr.CopyValue(1, 2);
bldr.CopyValue(2, 0);
bldr.CopyValueToRange(4, 7, 0);
auto res = std::move(bldr).Build();
EXPECT_THAT(res, ElementsAre("", "3", "5v", "4ab", "5v", "5v", "5v"));
EXPECT_EQ(res.characters().begin(), buf.characters().begin());
}
{
Buffer<std::string>::ReshuffleBuilder bldr(4, buf, {true, ""});
bldr.CopyValue(3, 1);
bldr.CopyValue(1, 2);
bldr.CopyValue(2, 0);
auto res = std::move(bldr).Build();
EXPECT_THAT(res, ElementsAre("", "3", "5v", "4ab"));
EXPECT_EQ(res.characters().begin(), buf.characters().begin());
}
{
Buffer<std::string>::ReshuffleBuilder bldr(4, buf, {true, "0abc"});
bldr.CopyValue(3, 1);
bldr.CopyValue(1, 2);
bldr.CopyValue(2, 0);
auto res = std::move(bldr).Build();
EXPECT_THAT(res, ElementsAre("0abc", "3", "5v", "4ab"));
}
}
}
} | 2,495 |
#ifndef AROLLA_MEMORY_FRAME_H_
#define AROLLA_MEMORY_FRAME_H_
#include <algorithm>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <initializer_list>
#include <ostream>
#include <tuple>
#include <type_traits>
#include <typeindex>
#include <typeinfo>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/log/check.h"
#include "absl/status/status.h"
#include "absl/types/span.h"
#include "arolla/memory/frame.h"
#include "arolla/util/algorithms.h"
#include "arolla/util/demangle.h"
#include "arolla/util/is_bzero_constructible.h"
#include "arolla/util/memory.h"
#include "arolla/util/struct_field.h"
namespace arolla {
class FrameLayout {
public:
class Builder;
template <typename T>
class Slot;
FrameLayout() = default;
size_t AllocSize() const { return alloc_size_; }
Alignment AllocAlignment() const { return alloc_alignment_; }
void InitializeAlignedAlloc(void* alloc) const;
void DestroyAlloc(void* alloc) const;
void InitializeAlignedAllocN(void* alloc, size_t n) const;
void DestroyAllocN(void* alloc, size_t n) const;
bool HasField(size_t offset, const std::type_info& type) const;
private:
explicit FrameLayout(Builder&& builder);
class FieldFactory;
struct FieldInitializers {
void AddOffsetToFactory(size_t offset, FieldFactory empty_factory);
void AddDerived(size_t extra_offset,
const FieldInitializers& derived_initializers);
template <class T>
void Add(size_t offset);
std::vector<FieldFactory> factories;
absl::flat_hash_map<std::type_index, size_t> type2factory;
};
#ifndef NDEBUG
absl::flat_hash_set<std::pair<size_t, std::type_index>> registered_fields_;
#endif
FieldInitializers initializers_;
size_t alloc_size_{0};
Alignment alloc_alignment_{1};
};
template <typename T>
struct TypesToSlotTypes;
template <typename... Ts>
struct TypesToSlotTypes<std::tuple<Ts...>> {
using type = std::tuple<FrameLayout::Slot<Ts>...>;
};
template <typename T>
class FrameLayout::Slot {
static constexpr size_t kNumSubslots = StructFieldCount<T>();
static_assert(std::is_standard_layout<T>::value || (kNumSubslots == 0),
"Only standard layout classes support access to subfields.");
public:
using value_type = T;
Slot(const Slot& other) = default;
size_t byte_offset() const { return byte_offset_; }
static Slot<T> UnsafeSlotFromOffset(size_t byte_offset) {
return Slot(byte_offset);
}
static constexpr size_t kUninitializedOffset = ~static_cast<size_t>(0);
static Slot<T> UnsafeUninitializedSlot() {
return Slot(kUninitializedOffset);
}
friend std::ostream& operator<<(std::ostream& stream,
const FrameLayout::Slot<T>& slot) {
return stream << "Slot<" << TypeName<T>() << ">(" << slot.byte_offset()
<< ")";
}
static constexpr size_t NumSubslots() { return kNumSubslots; }
template <size_t I>
auto GetSubslot() {
static_assert(I < kNumSubslots, "Subslot Index out of range.");
const auto& struct_field = std::get<I>(GetStructFields<T>());
return FrameLayout::Slot<
typename std::decay_t<decltype(struct_field)>::field_type>::
UnsafeSlotFromOffset(byte_offset_ + struct_field.field_offset);
}
private:
friend class Builder;
friend class FramePtr;
friend class ConstFramePtr;
explicit Slot(size_t byte_offset) : byte_offset_(byte_offset) {}
decltype(auto) UnsafeGet(const void* alloc) const {
DCHECK_NE(byte_offset_, kUninitializedOffset);
return *reinterpret_cast<const T*>(static_cast<const char*>(alloc) +
byte_offset_);
}
T* UnsafeGetMutable(void* alloc) const {
DCHECK_NE(byte_offset_, kUninitializedOffset);
return reinterpret_cast<T*>(static_cast<char*>(alloc) + byte_offset_);
}
size_t byte_offset_;
};
class FrameLayout::FieldFactory {
public:
template <typename T>
static FieldFactory Create() {
static_assert(!is_bzero_constructible<T>() ||
!std::is_trivially_destructible<T>());
FactoryFn construct;
FactoryNFn construct_n;
if constexpr (is_bzero_constructible<T>()) {
construct = [](void*, absl::Span<const size_t>) {};
construct_n = [](void*, absl::Span<const size_t>, size_t, size_t) {};
} else {
construct = [](void* ptr, absl::Span<const size_t> offsets) {
for (size_t offset : offsets) {
void* shifted_ptr = static_cast<char*>(ptr) + offset;
new (shifted_ptr) T;
}
};
construct_n = [](void* ptr, absl::Span<const size_t> offsets,
size_t block_size, size_t n) {
for (size_t i = 0; i < n; ++i) {
for (size_t offset : offsets) {
void* shifted_ptr =
static_cast<char*>(ptr) + offset + i * block_size;
new (shifted_ptr) T;
}
}
};
}
FactoryFn destruct;
FactoryNFn destruct_n;
if constexpr (std::is_trivially_destructible<T>()) {
destruct = [](void*, absl::Span<const size_t>) {};
destruct_n = [](void*, absl::Span<const size_t>, size_t, size_t) {};
} else {
destruct = [](void* ptr, absl::Span<const size_t> offsets) {
for (size_t offset : offsets) {
void* shifted_ptr = static_cast<char*>(ptr) + offset;
static_cast<T*>(shifted_ptr)->~T();
}
};
destruct_n = [](void* ptr, absl::Span<const size_t> offsets,
size_t block_size, size_t n) {
for (size_t i = 0; i < n; ++i) {
for (size_t offset : offsets) {
void* shifted_ptr =
static_cast<char*>(ptr) + offset + i * block_size;
static_cast<T*>(shifted_ptr)->~T();
}
}
};
}
return FieldFactory(std::type_index(typeid(T)), construct, destruct,
construct_n, destruct_n);
}
std::type_index type_index() const;
void Add(size_t offset);
void AddDerived(const FieldFactory& derived_factory);
FieldFactory Derive(size_t offset) const;
void Construct(void* ptr) const { construct_(ptr, offsets_); }
void Destroy(void* ptr) const { destruct_(ptr, offsets_); }
void ConstructN(void* ptr, size_t block_size, size_t n) const {
construct_n_(ptr, offsets_, block_size, n);
}
void DestroyN(void* ptr, size_t block_size, size_t n) const {
destruct_n_(ptr, offsets_, block_size, n);
}
private:
using FactoryFn = void (*)(void*, absl::Span<const size_t>);
using FactoryNFn = void (*)(void*, absl::Span<const size_t>, size_t, size_t);
FieldFactory(std::type_index tpe, FactoryFn construct, FactoryFn destruct,
FactoryNFn construct_n, FactoryNFn destruct_n)
: type_(tpe),
construct_(construct),
destruct_(destruct),
construct_n_(construct_n),
destruct_n_(destruct_n) {}
std::type_index type_;
FactoryFn construct_;
FactoryFn destruct_;
std::vector<size_t> offsets_;
FactoryNFn construct_n_;
FactoryNFn destruct_n_;
};
template <class T>
void FrameLayout::FieldInitializers::Add(size_t offset) {
AddOffsetToFactory(offset, FieldFactory::Create<T>());
}
inline void FrameLayout::InitializeAlignedAlloc(void* alloc) const {
DCHECK(IsAlignedPtr(alloc_alignment_, alloc)) << "invalid alloc alignment";
memset(alloc, 0, alloc_size_);
for (const auto& factory : initializers_.factories) {
factory.Construct(alloc);
}
}
inline void FrameLayout::DestroyAlloc(void* alloc) const {
for (const auto& factory : initializers_.factories) {
factory.Destroy(alloc);
}
}
inline void FrameLayout::InitializeAlignedAllocN(void* alloc, size_t n) const {
DCHECK(IsAlignedPtr(alloc_alignment_, alloc)) << "invalid alloc alignment";
memset(alloc, 0, alloc_size_ * n);
for (const auto& factory : initializers_.factories) {
factory.ConstructN(alloc, alloc_size_, n);
}
}
inline void FrameLayout::DestroyAllocN(void* alloc, size_t n) const {
for (const auto& factory : initializers_.factories) {
factory.DestroyN(alloc, alloc_size_, n);
}
}
class FrameLayout::Builder {
public:
template <typename T>
ABSL_ATTRIBUTE_ALWAYS_INLINE Slot<T> AddSlot() {
static_assert(alignof(T) <= 16,
"Types with strong alignments are not supported.");
alloc_size_ = RoundUp(alloc_size_, alignof(T));
size_t offset = alloc_size_;
Slot<T> slot(offset);
alloc_size_ += sizeof(T);
alloc_alignment_ = std::max(alloc_alignment_, alignof(T));
if constexpr (!is_bzero_constructible<T>() ||
!std::is_trivially_destructible<T>()) {
initializers_.Add<T>(offset);
}
auto status = RegisterSlot(slot.byte_offset(), sizeof(T), typeid(T));
DCHECK(status.ok()) << status.message()
<< "Internal error during RegisterSlot.";
status =
RegisterSubslots(slot, std::make_index_sequence<slot.NumSubslots()>());
DCHECK(status.ok()) << status.message()
<< "Internal error during RegisterSubslots.";
return slot;
}
Slot<void> AddSubFrame(const FrameLayout& subframe);
absl::Status RegisterUnsafeSlot(size_t byte_offset, size_t byte_size,
const std::type_info& type);
template <typename T>
absl::Status RegisterUnsafeSlot(const Slot<T>& slot,
bool allow_duplicates = false) {
return RegisterSlot(slot.byte_offset(), sizeof(T), typeid(T),
allow_duplicates);
}
FrameLayout Build() && {
alloc_size_ = RoundUp(alloc_size_, alloc_alignment_);
return FrameLayout(std::move(*this));
}
private:
friend class FrameLayout;
template <typename T, size_t... Is>
absl::Status RegisterSubslots(
Slot<T> slot ABSL_ATTRIBUTE_UNUSED,
std::index_sequence<Is...>) {
ABSL_ATTRIBUTE_UNUSED auto register_slot_recursively =
[&](auto subslot) -> absl::Status {
absl::Status status = RegisterUnsafeSlot(subslot);
if constexpr (decltype(subslot)::NumSubslots() != 0) {
if (status.ok()) {
status = RegisterSubslots(
subslot,
std::make_index_sequence<decltype(subslot)::NumSubslots()>());
}
}
return status;
};
for (absl::Status status : std::initializer_list<absl::Status>{
register_slot_recursively(slot.template GetSubslot<Is>())...}) {
if (!status.ok()) return status;
}
return absl::OkStatus();
}
absl::Status RegisterSlot(size_t byte_offset, size_t byte_size,
const std::type_info& type,
bool allow_duplicates = false);
#ifndef NDEBUG
absl::flat_hash_set<std::pair<size_t, std::type_index>> registered_fields_;
#endif
FieldInitializers initializers_;
size_t alloc_size_{0};
size_t alloc_alignment_{1};
};
template <typename T>
FrameLayout MakeTypeLayout() {
FrameLayout::Builder builder;
auto slot = builder.AddSlot<T>();
DCHECK_EQ(slot.byte_offset(), size_t{0});
return std::move(builder).Build();
}
class FramePtr {
public:
FramePtr(void* base_ptr, const FrameLayout* layout);
template <typename T>
T* GetMutable(FrameLayout::Slot<T> slot) const {
DCheckFieldType(slot.byte_offset(), typeid(T));
return slot.UnsafeGetMutable(base_ptr_);
}
template <typename T, typename S = T>
void Set(FrameLayout::Slot<T> slot, S&& value) const {
DCheckFieldType(slot.byte_offset(), typeid(T));
*GetMutable(slot) = std::forward<S>(value);
}
template <typename T>
const T& Get(FrameLayout::Slot<T> slot) const {
DCheckFieldType(slot.byte_offset(), typeid(T));
return slot.UnsafeGet(base_ptr_);
}
void* GetRawPointer(size_t byte_offset) const {
return static_cast<char*>(base_ptr_) + byte_offset;
}
void DCheckFieldType(size_t offset, const std::type_info& type) const;
private:
friend class ConstFramePtr;
void* base_ptr_;
#ifndef NDEBUG
const FrameLayout* layout_;
#endif
};
class ConstFramePtr {
public:
ConstFramePtr(const void* base_ptr, const FrameLayout* layout);
ConstFramePtr(FramePtr frame_ptr);
template <typename T>
const T& Get(FrameLayout::Slot<T> slot) const {
DCheckFieldType(slot.byte_offset(), typeid(T));
return slot.UnsafeGet(base_ptr_);
}
const void* GetRawPointer(size_t byte_offset) const {
return static_cast<const char*>(base_ptr_) + byte_offset;
}
void DCheckFieldType(size_t offset, const std::type_info& type) const;
private:
const void* base_ptr_;
#ifndef NDEBUG
const FrameLayout* layout_;
#endif
};
#ifndef NDEBUG
inline bool FrameLayout::HasField(size_t offset,
const std::type_info& type) const {
return registered_fields_.contains({offset, std::type_index(type)});
}
inline FrameLayout::FrameLayout(Builder&& builder)
: registered_fields_(std::move(builder.registered_fields_)),
initializers_(std::move(builder.initializers_)),
alloc_size_(builder.alloc_size_),
alloc_alignment_{builder.alloc_alignment_} {}
inline FramePtr::FramePtr(void* base_ptr, const FrameLayout* layout)
: base_ptr_(base_ptr), layout_(layout) {}
inline void FramePtr::DCheckFieldType(size_t offset,
const std::type_info& type) const {
DCHECK(layout_->HasField(offset, type))
<< "Field with given offset and type not found: Slot<" << type.name()
<< ">(" << offset << ")";
}
inline ConstFramePtr::ConstFramePtr(const void* base_ptr,
const FrameLayout* layout)
: base_ptr_(base_ptr), layout_(layout) {}
inline ConstFramePtr::ConstFramePtr(FramePtr frame_ptr)
: base_ptr_(frame_ptr.base_ptr_), layout_(frame_ptr.layout_) {}
inline void ConstFramePtr::DCheckFieldType(size_t offset,
const std::type_info& type) const {
DCHECK(layout_->HasField(offset, type))
<< "Field with given offset and type not found: Slot<" << type.name()
<< ">(" << offset << ")";
}
#else
inline bool FrameLayout::HasField(size_t, const std::type_info&) const {
return true;
}
inline FrameLayout::FrameLayout(Builder&& builder)
: initializers_(std::move(builder.initializers_)),
alloc_size_(builder.alloc_size_),
alloc_alignment_{builder.alloc_alignment_} {}
inline FramePtr::FramePtr(void* base_ptr, const FrameLayout* )
: base_ptr_(base_ptr) {}
inline void FramePtr::DCheckFieldType(size_t ,
const std::type_info& ) const {}
inline ConstFramePtr::ConstFramePtr(const void* base_ptr,
const FrameLayout* )
: base_ptr_(base_ptr) {}
inline ConstFramePtr::ConstFramePtr(FramePtr frame_ptr)
: base_ptr_(frame_ptr.base_ptr_) {}
inline void ConstFramePtr::DCheckFieldType(
size_t , const std::type_info& ) const {}
#endif
}
#endif
#include "arolla/memory/frame.h"
#include <algorithm>
#include <cstddef>
#include <cstring>
#include <tuple>
#include <typeindex>
#include <typeinfo>
#include <utility>
#include "absl/log/check.h"
#include "absl/status/status.h"
#include "absl/strings/str_cat.h"
#include "arolla/util/algorithms.h"
#include "arolla/util/memory.h"
namespace arolla {
std::type_index FrameLayout::FieldFactory::type_index() const { return type_; }
void FrameLayout::FieldFactory::Add(size_t offset) {
offsets_.push_back(offset);
}
void FrameLayout::FieldFactory::AddDerived(
const FieldFactory& derived_factory) {
DCHECK(type_index() == derived_factory.type_index());
for (size_t cur_offset : derived_factory.offsets_) {
offsets_.push_back(cur_offset);
}
}
FrameLayout::FieldFactory FrameLayout::FieldFactory::Derive(
size_t offset) const {
FieldFactory res = *this;
for (size_t& cur_offset : res.offsets_) {
cur_offset += offset;
}
return res;
}
void FrameLayout::FieldInitializers::AddOffsetToFactory(
size_t offset, FieldFactory empty_factory) {
auto it = type2factory.find(empty_factory.type_index());
if (it == type2factory.end()) {
bool inserted;
std::tie(it, inserted) =
type2factory.emplace(empty_factory.type_index(), factories.size());
factories.push_back(std::move(empty_factory));
}
DCHECK_LT(it->second, factories.size());
if (it->second < factories.size()) {
factories[it->second].Add(offset);
}
}
void FrameLayout::FieldInitializers::AddDerived(
size_t offset, const FieldInitializers& derived_initializers) {
for (const auto& [derived_tpe, derived_id] :
derived_initializers.type2factory) {
const auto& derived_factory = derived_initializers.factories[derived_id];
if (auto it = type2factory.find(derived_tpe); it != type2factory.end()) {
factories[it->second].AddDerived(derived_factory.Derive(offset));
} else {
type2factory.emplace(derived_tpe, factories.size());
factories.push_back(derived_factory.Derive(offset));
}
}
}
FrameLayout::Slot<void> FrameLayout::Builder::AddSubFrame(
const FrameLayout& subframe) {
alloc_size_ = RoundUp(alloc_size_, subframe.AllocAlignment().value);
size_t offset = alloc_size_;
alloc_size_ += subframe.AllocSize();
alloc_alignment_ =
std::max(alloc_alignment_, subframe.AllocAlignment().value);
initializers_.AddDerived(offset, subframe.initializers_);
#ifndef NDEBUG
for (const auto& [field_offset, field_type] : subframe.registered_fields_) {
registered_fields_.emplace(offset + field_offset, field_type);
}
#endif
return FrameLayout::Slot<void>(offset);
}
absl::Status FrameLayout::Builder::RegisterUnsafeSlot(
size_t byte_offset, size_t byte_size, const std::type_info& type) {
return RegisterSlot(byte_offset, byte_size, type);
}
absl::Status FrameLayout::Builder::RegisterSlot(size_t byte_offset,
size_t byte_size,
const std::type_info& type,
bool allow_duplicates) {
if (byte_offset == FrameLayout::Slot<float>::kUninitializedOffset) {
return absl::FailedPreconditionError(
"unable to register uninitialized slot");
}
if (byte_offset > alloc_size_ || byte_size > alloc_size_ - byte_offset) {
return absl::FailedPreconditionError(absl::StrCat(
"unable to register slot after the end of alloc, offset: ", byte_offset,
", size: ", byte_size, ", alloc size: ", alloc_size_));
}
#ifndef NDEBUG
if (!registered_fields_.emplace(byte_offset, std::type_index(type)).second &&
!allow_duplicates) {
return absl::FailedPreconditionError(absl::StrCat(
"slot is already registered ", byte_offset, " ", type.name()));
}
#endif
return absl::OkStatus();
}
} | #include "arolla/memory/frame.h"
#include <array>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include <variant>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/status/status.h"
#include "arolla/memory/memory_allocation.h"
#include "arolla/util/demangle.h"
#include "arolla/util/is_bzero_constructible.h"
#include "arolla/util/memory.h"
#include "arolla/util/testing/status_matchers_backport.h"
namespace arolla::testing {
namespace {
using ::arolla::testing::IsOk;
using ::arolla::testing::StatusIs;
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::HasSubstr;
using ::testing::IsEmpty;
struct SimpleStruct {
int a;
float b;
};
struct InitializedStruct {
int a = 1;
float b = 2.0;
};
TEST(FrameLayoutTest, SlotOutput) {
FrameLayout::Builder builder;
auto slot = builder.AddSlot<int>();
std::ostringstream ss;
ss << slot;
EXPECT_EQ(ss.str(), std::string("Slot<") + TypeName<int>() + ">(0)");
}
TEST(FrameLayoutTest, SimpleFields) {
FrameLayout::Builder builder;
auto slot1 = builder.AddSlot<int>();
auto slot2 = builder.AddSlot<float>();
auto slot3 = builder.AddSlot<double>();
auto layout = std::move(builder).Build();
MemoryAllocation alloc(&layout);
FramePtr frame = alloc.frame();
EXPECT_THAT(frame.Get(slot1), Eq(0));
EXPECT_THAT(frame.Get(slot2), Eq(0.0f));
EXPECT_THAT(frame.Get(slot3), Eq(0.0));
frame.Set(slot1, 1);
frame.Set(slot2, 2.0f);
frame.Set(slot3, M_PI);
EXPECT_THAT(frame.Get(slot1), Eq(1));
EXPECT_THAT(frame.Get(slot2), Eq(2.0f));
EXPECT_THAT(frame.Get(slot3), Eq(M_PI));
}
TEST(FrameLayoutTest, SimpleArrays) {
FrameLayout::Builder builder;
auto slot1 = builder.AddSlot<std::array<int, 4>>();
auto slot2 = builder.AddSlot<std::array<float, 4>>();
auto slot3 = builder.AddSlot<std::array<char, 4>>();
auto layout = std::move(builder).Build();
MemoryAllocation alloc(&layout);
FramePtr frame = alloc.frame();
EXPECT_THAT(frame.Get(slot1), ElementsAre(0, 0, 0, 0));
EXPECT_THAT(frame.Get(slot2), ElementsAre(0.0f, 0.0f, 0.0f, 0.0f));
EXPECT_THAT(frame.Get(slot3), ElementsAre(0, 0, 0, 0));
frame.Set(slot1, std::array<int, 4>{1, 2, 3, 4});
frame.Set(slot2, std::array<float, 4>{1.0f, 2.0f, 3.0f, 4.0f});
frame.Set(slot3, std::array<char, 4>{'a', 'b', 'c', 'd'});
EXPECT_THAT(frame.Get(slot1), ElementsAre(1, 2, 3, 4));
EXPECT_THAT(frame.Get(slot2), ElementsAre(1.0f, 2.0f, 3.0f, 4.0f));
EXPECT_THAT(frame.Get(slot3), ElementsAre('a', 'b', 'c', 'd'));
}
TEST(FrameLayoutTest, SimplePointers) {
FrameLayout::Builder builder;
auto slot1 = builder.AddSlot<int*>();
auto slot2 = builder.AddSlot<char*>();
auto layout = std::move(builder).Build();
MemoryAllocation alloc(&layout);
FramePtr frame = alloc.frame();
EXPECT_THAT(frame.Get(slot1), Eq(nullptr));
EXPECT_THAT(frame.Get(slot2), Eq(nullptr));
int int_values[] = {1, 2, 3, 4};
char text[] = "It was a dark and stormy night.";
frame.Set(slot1, int_values);
frame.Set(slot2, text);
EXPECT_THAT(frame.Get(slot1), Eq(int_values));
EXPECT_THAT(frame.Get(slot2), Eq(text));
}
TEST(FrameLayoutTest, SmartPointers) {
FrameLayout::Builder builder;
auto slot1 = builder.AddSlot<std::unique_ptr<int>>();
auto slot2 = builder.AddSlot<std::unique_ptr<std::string>>();
auto layout = std::move(builder).Build();
MemoryAllocation alloc(&layout);
FramePtr frame = alloc.frame();
EXPECT_THAT(frame.Get(slot1), Eq(nullptr));
EXPECT_THAT(frame.Get(slot2), Eq(nullptr));
frame.Set(slot1, std::make_unique<int>(12));
frame.Set(slot2,
std::make_unique<std::string>("It was a dark and stormy night."));
EXPECT_THAT(*frame.Get(slot1), Eq(12));
EXPECT_THAT(*frame.Get(slot2), Eq("It was a dark and stormy night."));
}
TEST(FrameLayoutTest, Vector) {
FrameLayout::Builder builder;
auto slot1 = builder.AddSlot<std::vector<int>>();
auto slot2 = builder.AddSlot<std::vector<std::string>>();
auto layout = std::move(builder).Build();
MemoryAllocation alloc(&layout);
FramePtr frame = alloc.frame();
EXPECT_THAT(frame.Get(slot1), IsEmpty());
EXPECT_THAT(frame.Get(slot2), IsEmpty());
auto* int_vector = frame.GetMutable(slot1);
int_vector->push_back(1);
int_vector->push_back(2);
int_vector->push_back(3);
auto* string_vector = frame.GetMutable(slot2);
string_vector->push_back("How");
string_vector->push_back("now");
string_vector->push_back("brown");
string_vector->push_back("cow?");
EXPECT_THAT(frame.Get(slot1), ElementsAre(1, 2, 3));
EXPECT_THAT(frame.Get(slot2), ElementsAre("How", "now", "brown", "cow?"));
}
TEST(FrameLayoutTest, Structs) {
FrameLayout::Builder builder;
auto slot1 = builder.AddSlot<SimpleStruct>();
auto slot2 = builder.AddSlot<InitializedStruct>();
auto layout = std::move(builder).Build();
MemoryAllocation alloc(&layout);
FramePtr frame = alloc.frame();
const SimpleStruct& s1 = frame.Get(slot1);
EXPECT_THAT(s1.a, Eq(0));
EXPECT_THAT(s1.b, Eq(0.0f));
const InitializedStruct& s2 = frame.Get(slot2);
EXPECT_THAT(s2.a, Eq(1));
EXPECT_THAT(s2.b, Eq(2.0f));
}
TEST(FrameLayoutTest, AFewDifferentTypesWellInitialized) {
FrameLayout::Builder builder;
auto slot1 = builder.AddSlot<std::vector<int>>();
auto slot2 = builder.AddSlot<std::vector<std::string>>();
auto slot3 = builder.AddSlot<std::vector<int>>();
auto slot4 = builder.AddSlot<SimpleStruct>();
auto slot5 = builder.AddSlot<InitializedStruct>();
auto slot6 = builder.AddSlot<std::vector<int>>();
auto slot7 = builder.AddSlot<std::vector<std::string>>();
auto slot8 = builder.AddSlot<std::vector<double>>();
auto slot9 = builder.AddSlot<InitializedStruct>();
auto layout = std::move(builder).Build();
MemoryAllocation alloc(&layout);
FramePtr frame = alloc.frame();
EXPECT_THAT(frame.Get(slot1), IsEmpty());
EXPECT_THAT(frame.Get(slot2), IsEmpty());
EXPECT_THAT(frame.Get(slot3), IsEmpty());
EXPECT_THAT(frame.Get(slot6), IsEmpty());
EXPECT_THAT(frame.Get(slot7), IsEmpty());
EXPECT_THAT(frame.Get(slot8), IsEmpty());
const SimpleStruct& simple = frame.Get(slot4);
EXPECT_THAT(simple.a, Eq(0));
EXPECT_THAT(simple.b, Eq(0.0f));
for (const InitializedStruct& init : {frame.Get(slot5), frame.Get(slot9)}) {
EXPECT_THAT(init.a, Eq(1));
EXPECT_THAT(init.b, Eq(2.0f));
}
}
TEST(FrameLayoutTest, HasField) {
FrameLayout::Builder builder;
auto slot1 = builder.AddSlot<int>();
auto slot2 = builder.AddSlot<std::vector<int>>();
auto slot3 = builder.AddSlot<SimpleStruct>();
auto slot4 = builder.AddSlot<std::array<SimpleStruct, 4>>();
auto slot5 = builder.AddSlot<InitializedStruct>();
auto slot6 = builder.AddSlot<std::array<InitializedStruct, 4>>();
auto layout = std::move(builder).Build();
EXPECT_TRUE(layout.HasField(slot1.byte_offset(), typeid(int)));
EXPECT_TRUE(layout.HasField(slot2.byte_offset(), typeid(std::vector<int>)));
EXPECT_TRUE(layout.HasField(slot3.byte_offset(), typeid(SimpleStruct)));
EXPECT_TRUE(layout.HasField(slot4.byte_offset(),
typeid(std::array<SimpleStruct, 4>)));
EXPECT_TRUE(layout.HasField(slot5.byte_offset(), typeid(InitializedStruct)));
EXPECT_TRUE(layout.HasField(slot6.byte_offset(),
typeid(std::array<InitializedStruct, 4>)));
}
TEST(FrameLayoutTest, RegisterUnsafeSlotWithEmptyField) {
FrameLayout::Builder builder;
ASSERT_TRUE(builder.RegisterUnsafeSlot(0, 0, typeid(std::monostate())).ok());
auto layout = std::move(builder).Build();
EXPECT_TRUE(layout.HasField(0, typeid(std::monostate())));
}
TEST(FrameLayoutTest, FieldDescriptorsRegisterUnsafe) {
FrameLayout::Builder builder;
auto slot = builder.AddSlot<int32_t>();
auto slot_1part =
FrameLayout::Slot<int16_t>::UnsafeSlotFromOffset(slot.byte_offset());
auto slot_2part =
FrameLayout::Slot<int16_t>::UnsafeSlotFromOffset(slot.byte_offset() + 2);
ASSERT_THAT(builder.RegisterUnsafeSlot(slot_1part), IsOk());
ASSERT_THAT(builder.RegisterUnsafeSlot(slot_2part), IsOk());
ASSERT_THAT(builder.RegisterUnsafeSlot(slot.byte_offset() + 2, sizeof(int8_t),
typeid(int8_t)),
IsOk());
#ifndef NDEBUG
EXPECT_THAT(builder.RegisterUnsafeSlot(slot_2part),
StatusIs(absl::StatusCode::kFailedPrecondition,
HasSubstr("slot is already registered")));
EXPECT_THAT(builder.RegisterUnsafeSlot(slot_2part, true),
IsOk());
#endif
auto layout = std::move(builder).Build();
EXPECT_TRUE(layout.HasField(slot.byte_offset(), typeid(int32_t)));
EXPECT_TRUE(layout.HasField(slot.byte_offset(), typeid(int16_t)));
EXPECT_TRUE(layout.HasField(slot.byte_offset() + 2, typeid(int16_t)));
EXPECT_TRUE(layout.HasField(slot.byte_offset() + 2, typeid(int8_t)));
#ifndef NDEBUG
EXPECT_FALSE(layout.HasField(slot.byte_offset() + 2, typeid(float)));
EXPECT_FALSE(layout.HasField(slot.byte_offset() + 1, typeid(int8_t)));
#endif
}
TEST(FrameLayoutTest, FieldDescriptorsRegisterUnsafeErrors) {
FrameLayout::Builder builder;
auto slot = builder.AddSlot<int32_t>();
auto slot_1part =
FrameLayout::Slot<int16_t>::UnsafeSlotFromOffset(slot.byte_offset());
auto slot_after_end =
FrameLayout::Slot<int16_t>::UnsafeSlotFromOffset(slot.byte_offset() + 4);
auto uninitialized_slot =
FrameLayout::Slot<int16_t>::UnsafeUninitializedSlot();
auto status = builder.RegisterUnsafeSlot(slot_1part);
ASSERT_OK(status);
#ifndef NDEBUG
status = builder.RegisterUnsafeSlot(slot);
ASSERT_FALSE(status.ok());
ASSERT_EQ(status.code(), absl::StatusCode::kFailedPrecondition);
EXPECT_THAT(status.message(), HasSubstr("slot is already registered"));
status = builder.RegisterUnsafeSlot(slot_1part);
ASSERT_FALSE(status.ok());
ASSERT_EQ(status.code(), absl::StatusCode::kFailedPrecondition);
EXPECT_THAT(status.message(), HasSubstr("slot is already registered"));
#endif
status = builder.RegisterUnsafeSlot(slot_after_end);
ASSERT_FALSE(status.ok());
ASSERT_EQ(status.code(), absl::StatusCode::kFailedPrecondition);
EXPECT_THAT(status.message(),
HasSubstr("unable to register slot after the end of alloc"));
status = builder.RegisterUnsafeSlot(100, sizeof(int), typeid(int));
ASSERT_FALSE(status.ok());
ASSERT_EQ(status.code(), absl::StatusCode::kFailedPrecondition);
EXPECT_THAT(status.message(),
HasSubstr("unable to register slot after the end of alloc, "
"offset: 100, size: 4, alloc size: 4"));
status = builder.RegisterUnsafeSlot(uninitialized_slot);
ASSERT_FALSE(status.ok());
ASSERT_EQ(status.code(), absl::StatusCode::kFailedPrecondition);
EXPECT_THAT(status.message(),
HasSubstr("unable to register uninitialized slot"));
}
struct SelfReference {
const SelfReference* self;
SelfReference() : self(this) {}
SelfReference(const SelfReference&) = delete;
SelfReference& operator=(const SelfReference&) = delete;
~SelfReference() { self = nullptr; }
};
TEST(FrameLayoutTest, AddSubFrame) {
FrameLayout subframe_layout;
std::vector<FrameLayout::Slot<SelfReference>> field_slots;
{
FrameLayout::Builder builder;
for (int i = 0; i < 2; ++i) {
field_slots.push_back(builder.AddSlot<SelfReference>());
}
subframe_layout = std::move(builder).Build();
}
FrameLayout frame_layout;
std::vector<FrameLayout::Slot<void>> subframe_slots;
{
FrameLayout::Builder builder;
builder.AddSlot<float>();
for (int j = 0; j < 3; ++j) {
subframe_slots.push_back(builder.AddSubFrame(subframe_layout));
builder.AddSlot<double>();
}
frame_layout = std::move(builder).Build();
}
for (const auto& subframe_slot : subframe_slots) {
for (const auto& field_slot : field_slots) {
EXPECT_TRUE(frame_layout.HasField(
subframe_slot.byte_offset() + field_slot.byte_offset(),
typeid(SelfReference)));
}
}
const auto alloc =
AlignedAlloc(frame_layout.AllocAlignment(), frame_layout.AllocSize());
frame_layout.InitializeAlignedAlloc(alloc.get());
FramePtr frame(alloc.get(), &frame_layout);
for (const auto& subframe_slot : subframe_slots) {
for (const auto& field_slot : field_slots) {
const void* subframe_ptr =
frame.GetRawPointer(subframe_slot.byte_offset());
ConstFramePtr subframe(subframe_ptr, &subframe_layout);
const SelfReference& field = subframe.Get(field_slot);
EXPECT_TRUE(field.self == &field);
}
}
frame_layout.DestroyAlloc(alloc.get());
ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(alloc.get(), frame_layout.AllocSize());
for (const auto& subframe_slot : subframe_slots) {
for (const auto& field_slot : field_slots) {
const void* subframe_ptr =
frame.GetRawPointer(subframe_slot.byte_offset());
ConstFramePtr subframe(subframe_ptr, &subframe_layout);
const SelfReference& field = subframe.Get(field_slot);
EXPECT_TRUE(field.self == nullptr);
}
}
}
TEST(FrameLayoutTest, AddSubFrameAllocAlignment) {
FrameLayout::Builder builder;
builder.AddSubFrame(MakeTypeLayout<std::aligned_storage_t<16, 16>>());
builder.AddSubFrame(MakeTypeLayout<std::aligned_storage_t<16, 16>>());
auto frame_layout = std::move(builder).Build();
EXPECT_EQ(frame_layout.AllocSize(), 32);
EXPECT_EQ(frame_layout.AllocAlignment().value, 16);
}
TEST(FrameLayoutTest, ArrayCompatibility) {
FrameLayout::Builder builder;
builder.AddSlot<std::aligned_storage_t<16, 16>>();
builder.AddSlot<std::aligned_storage_t<1, 1>>();
auto frame_layout = std::move(builder).Build();
EXPECT_EQ(frame_layout.AllocSize(), 32);
EXPECT_EQ(frame_layout.AllocAlignment().value, 16);
}
TEST(FrameLayoutTest, InitDestroyAllocN) {
static int instance_counter = 0;
struct InstanceCounted {
InstanceCounted() { ++instance_counter; }
~InstanceCounted() { --instance_counter; }
};
struct SelfReferenced {
SelfReferenced() : self(this) {}
SelfReferenced* self;
};
FrameLayout::Builder builder;
auto int_slot = builder.AddSlot<int>();
auto self_ref_slot = builder.AddSlot<SelfReferenced>();
builder.AddSlot<InstanceCounted>();
auto layout = std::move(builder).Build();
const int n = 10;
const auto alloc =
AlignedAlloc(layout.AllocAlignment(), layout.AllocSize() * n);
layout.InitializeAlignedAllocN(alloc.get(), n);
EXPECT_EQ(instance_counter, n);
for (int i = 0; i < n; ++i) {
ConstFramePtr ith_frame(
static_cast<const std::byte*>(alloc.get()) + i * layout.AllocSize(),
&layout);
EXPECT_EQ(ith_frame.Get(int_slot), 0);
EXPECT_EQ(ith_frame.Get(self_ref_slot).self, &ith_frame.Get(self_ref_slot));
}
layout.DestroyAllocN(alloc.get(), n);
EXPECT_EQ(instance_counter, 0);
}
struct IsBZeroConstructible {
static bool ctor_called;
static bool dtor_called;
IsBZeroConstructible() { ctor_called = true; }
~IsBZeroConstructible() { dtor_called = true; }
};
bool IsBZeroConstructible::ctor_called;
bool IsBZeroConstructible::dtor_called;
}
}
namespace arolla {
template <>
struct is_bzero_constructible<::arolla::testing::IsBZeroConstructible>
: std::true_type {};
}
namespace arolla::testing {
namespace {
TEST(FrameLayoutTest, IsBZeroConstructibleHandling) {
ASSERT_FALSE(IsBZeroConstructible::ctor_called);
ASSERT_FALSE(IsBZeroConstructible::dtor_called);
{
auto layout = MakeTypeLayout<IsBZeroConstructible>();
MemoryAllocation alloc(&layout);
}
EXPECT_FALSE(IsBZeroConstructible::ctor_called);
EXPECT_TRUE(IsBZeroConstructible::dtor_called);
}
}
} | 2,496 |
#ifndef AROLLA_MEMORY_RAW_BUFFER_FACTORY_H_
#define AROLLA_MEMORY_RAW_BUFFER_FACTORY_H_
#include <cstddef>
#include <cstdint>
#include <memory>
#include <tuple>
#include "absl/container/inlined_vector.h"
#include "google/protobuf/arena.h"
#include "arolla/util/indestructible.h"
namespace arolla {
using RawBufferPtr = std::shared_ptr<const void>;
class RawBufferFactory {
public:
virtual ~RawBufferFactory() = default;
virtual std::tuple<RawBufferPtr, void*> CreateRawBuffer(size_t nbytes) = 0;
virtual std::tuple<RawBufferPtr, void*> ReallocRawBuffer(
RawBufferPtr&& old_buffer, void* data, size_t old_size,
size_t new_size) = 0;
};
class HeapBufferFactory : public RawBufferFactory {
public:
std::tuple<RawBufferPtr, void*> CreateRawBuffer(size_t nbytes) final;
std::tuple<RawBufferPtr, void*> ReallocRawBuffer(RawBufferPtr&& old_buffer,
void* old_data,
size_t old_size,
size_t new_size) final;
};
inline RawBufferFactory* GetHeapBufferFactory() {
static Indestructible<HeapBufferFactory> factory;
return factory.get();
}
class ProtobufArenaBufferFactory final : public RawBufferFactory {
public:
explicit ProtobufArenaBufferFactory(google::protobuf::Arena& arena) : arena_(arena) {}
std::tuple<RawBufferPtr, void*> CreateRawBuffer(size_t nbytes) override;
std::tuple<RawBufferPtr, void*> ReallocRawBuffer(RawBufferPtr&& old_buffer,
void* data, size_t old_size,
size_t new_size) override;
private:
google::protobuf::Arena& arena_;
};
class UnsafeArenaBufferFactory : public RawBufferFactory {
public:
UnsafeArenaBufferFactory(const UnsafeArenaBufferFactory&) = delete;
UnsafeArenaBufferFactory& operator=(const UnsafeArenaBufferFactory&) = delete;
UnsafeArenaBufferFactory(UnsafeArenaBufferFactory&&) = delete;
UnsafeArenaBufferFactory& operator=(UnsafeArenaBufferFactory&&) = delete;
explicit UnsafeArenaBufferFactory(
int64_t page_size,
RawBufferFactory& base_factory = *GetHeapBufferFactory())
: page_size_(page_size), base_factory_(base_factory) {}
std::tuple<RawBufferPtr, void*> CreateRawBuffer(size_t nbytes) override;
std::tuple<RawBufferPtr, void*> ReallocRawBuffer(RawBufferPtr&& old_buffer,
void* data, size_t old_size,
size_t new_size) override;
void Reset();
private:
using Alloc = std::tuple<RawBufferPtr, void*>;
void NextPage();
void* SlowAlloc(size_t nbytes);
int64_t page_id_ = -1;
char* current_ = reinterpret_cast<char*>(0x8);
char* end_ = reinterpret_cast<char*>(0x8);
int64_t page_size_;
RawBufferFactory& base_factory_;
absl::InlinedVector<Alloc, 16> pages_;
absl::InlinedVector<Alloc, 16> big_allocs_;
};
template <typename T>
struct ArenaTraits {
static T MakeOwned(T&& v, RawBufferFactory*) { return std::move(v); }
};
}
#endif
#include "arolla/memory/raw_buffer_factory.h"
#include <algorithm>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <memory>
#include <tuple>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/base/optimization.h"
#include "absl/log/check.h"
namespace arolla {
namespace {
void noop_free(void*) noexcept {}
void AnnotateMemoryIsInitialized(void* data, size_t size) {
ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(data, size);
}
}
std::tuple<RawBufferPtr, void*> HeapBufferFactory::CreateRawBuffer(
size_t nbytes) {
if (ABSL_PREDICT_FALSE(nbytes == 0)) return {nullptr, nullptr};
void* data = malloc(nbytes);
AnnotateMemoryIsInitialized(data, nbytes);
return {std::shared_ptr<void>(data, free), data};
}
std::tuple<RawBufferPtr, void*> HeapBufferFactory::ReallocRawBuffer(
RawBufferPtr&& old_buffer, void* old_data, size_t old_size,
size_t new_size) {
if (new_size == 0) return {nullptr, nullptr};
if (old_size == 0) return CreateRawBuffer(new_size);
DCHECK_EQ(old_buffer.use_count(), 1);
void* new_data = realloc(old_data, new_size);
if (new_size > old_size) {
AnnotateMemoryIsInitialized(static_cast<char*>(new_data) + old_size,
new_size - old_size);
}
*std::get_deleter<decltype(&free)>(old_buffer) = &noop_free;
old_buffer.reset(new_data, free);
return {std::move(old_buffer), new_data};
}
std::tuple<RawBufferPtr, void*> ProtobufArenaBufferFactory::CreateRawBuffer(
size_t nbytes) {
char* data = arena_.CreateArray<char>(&arena_, nbytes);
AnnotateMemoryIsInitialized(data, nbytes);
return {nullptr, data};
}
std::tuple<RawBufferPtr, void*> ProtobufArenaBufferFactory::ReallocRawBuffer(
RawBufferPtr&& old_buffer, void* data, size_t old_size, size_t new_size) {
if (old_size >= new_size) return {nullptr, data};
char* new_data = arena_.CreateArray<char>(&arena_, new_size);
memcpy(new_data, data, std::min(old_size, new_size));
AnnotateMemoryIsInitialized(new_data + old_size, new_size - old_size);
return {nullptr, new_data};
}
std::tuple<RawBufferPtr, void*> UnsafeArenaBufferFactory::CreateRawBuffer(
size_t nbytes) {
auto last_alloc =
reinterpret_cast<char*>(reinterpret_cast<size_t>(current_ + 7) & ~7ull);
if (ABSL_PREDICT_FALSE(last_alloc + nbytes > end_)) {
return {nullptr, SlowAlloc(nbytes)};
}
current_ = last_alloc + nbytes;
return {nullptr, last_alloc};
}
std::tuple<RawBufferPtr, void*> UnsafeArenaBufferFactory::ReallocRawBuffer(
RawBufferPtr&& old_buffer, void* data, size_t old_size, size_t new_size) {
char* last_alloc = current_ - old_size;
if ((data != last_alloc) || last_alloc + new_size > end_) {
if (old_size >= new_size) return {nullptr, data};
if (data == last_alloc) current_ = last_alloc;
void* new_data = SlowAlloc(new_size);
memcpy(new_data, data, std::min(old_size, new_size));
AnnotateMemoryIsInitialized(data, old_size);
return {nullptr, new_data};
}
current_ = last_alloc + new_size;
if (new_size < old_size) {
AnnotateMemoryIsInitialized(current_, old_size - new_size);
}
return {nullptr, last_alloc};
}
void UnsafeArenaBufferFactory::Reset() {
if (page_id_ >= 0) {
page_id_ = 0;
current_ = reinterpret_cast<char*>(std::get<1>(pages_[0]));
AnnotateMemoryIsInitialized(current_, page_size_);
end_ = current_ + page_size_;
}
big_allocs_.clear();
}
ABSL_ATTRIBUTE_NOINLINE void* UnsafeArenaBufferFactory::SlowAlloc(
size_t nbytes) {
if (ABSL_PREDICT_FALSE(nbytes > page_size_ ||
end_ - current_ >= page_size_ / 2)) {
auto [holder, memory] = base_factory_.CreateRawBuffer(nbytes);
AnnotateMemoryIsInitialized(memory, nbytes);
big_allocs_.emplace_back(std::move(holder), memory);
return memory;
}
NextPage();
auto last_alloc = current_;
current_ += nbytes;
return last_alloc;
}
void UnsafeArenaBufferFactory::NextPage() {
++page_id_;
if (ABSL_PREDICT_FALSE(page_id_ == pages_.size())) {
auto [holder, page] = base_factory_.CreateRawBuffer(page_size_);
current_ = reinterpret_cast<char*>(page);
pages_.emplace_back(std::move(holder), page);
} else {
current_ = reinterpret_cast<char*>(std::get<1>(pages_[page_id_]));
}
AnnotateMemoryIsInitialized(current_, page_size_);
end_ = current_ + page_size_;
}
} | #include "arolla/memory/raw_buffer_factory.h"
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <utility>
#include <vector>
#include "benchmark/benchmark.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "google/protobuf/arena.h"
namespace arolla {
namespace {
using ::testing::AnyOf;
using ::testing::Eq;
using ::testing::Ge;
using ::testing::Le;
void VerifyCanReadUninitialized(const void* ptr, size_t size) {
const char* char_ptr = static_cast<const char*>(ptr);
for (size_t i = 0; i != size; ++i) {
char c = *(char_ptr + i);
benchmark::DoNotOptimize(c);
}
}
TEST(HeapBufferFactory, CreateEmptyBuffer) {
auto [buf, data] = GetHeapBufferFactory()->CreateRawBuffer(0);
EXPECT_EQ(buf, nullptr);
EXPECT_EQ(data, nullptr);
}
TEST(HeapBufferFactory, CreateRawBuffer) {
const size_t size = 13;
auto [buf, data] = GetHeapBufferFactory()->CreateRawBuffer(size);
EXPECT_NE(buf, nullptr);
VerifyCanReadUninitialized(data, size);
EXPECT_EQ(reinterpret_cast<size_t>(data) & 7, 0);
memset(data, 0, size);
}
TEST(HeapBufferFactory, ReallocRawBuffer) {
size_t size = 13;
RawBufferPtr buf;
char* data;
{
auto res = GetHeapBufferFactory()->CreateRawBuffer(size);
buf = std::get<0>(res);
data = reinterpret_cast<char*>(std::get<1>(res));
VerifyCanReadUninitialized(data, size);
}
auto resize_fn = [&](size_t new_size) {
auto res = GetHeapBufferFactory()->ReallocRawBuffer(std::move(buf), data,
size, new_size);
buf = std::get<0>(res);
data = reinterpret_cast<char*>(std::get<1>(res));
size = new_size;
};
data[0] = 5;
resize_fn(4);
EXPECT_EQ(data[0], 5);
VerifyCanReadUninitialized(data + 1, size - 1);
resize_fn(145);
EXPECT_EQ(data[0], 5);
VerifyCanReadUninitialized(data + 1, 144);
}
TEST(ProtobufArenaBufferFactory, CreateAndResize) {
google::protobuf::Arena arena;
ProtobufArenaBufferFactory buf_factory(arena);
auto [buf1, data1] = buf_factory.CreateRawBuffer(2);
VerifyCanReadUninitialized(data1, 2);
char* d = reinterpret_cast<char*>(data1);
d[0] = 'A';
d[1] = 'B';
auto [buf2, data2] =
buf_factory.ReallocRawBuffer(std::move(buf1), data1, 2, 1);
EXPECT_EQ(data1, data2);
auto [buf3, data3] =
buf_factory.ReallocRawBuffer(std::move(buf2), data2, 1, 3);
EXPECT_NE(data2, data3);
d = reinterpret_cast<char*>(data3);
EXPECT_EQ(d[0], 'A');
VerifyCanReadUninitialized(d + 1, 2);
}
TEST(UnsafeArenaBufferFactory, CreateEmptyBuffer) {
UnsafeArenaBufferFactory arena(25);
auto [buf1, data1] = arena.CreateRawBuffer(0);
auto [buf2, data2] = arena.CreateRawBuffer(0);
auto [buf3, data3] = arena.CreateRawBuffer(1);
VerifyCanReadUninitialized(data3, 1);
auto [buf4, data4] = arena.CreateRawBuffer(0);
auto [buf5, data5] = arena.CreateRawBuffer(0);
EXPECT_EQ(data1, data2);
EXPECT_NE(data3, nullptr);
EXPECT_NE(data2, data4);
EXPECT_NE(data3, data4);
EXPECT_EQ(data4, data5);
}
TEST(UnsafeArenaBufferFactory, CreateRawBuffer) {
std::vector<int64_t> sizes = {17, 1, 15, 1, 10};
std::vector<RawBufferPtr> bufs;
std::vector<char*> ptrs;
bufs.reserve(sizes.size());
ptrs.reserve(sizes.size());
UnsafeArenaBufferFactory arena1(25);
google::protobuf::Arena proto_arena;
ProtobufArenaBufferFactory proto_buf_factory(proto_arena);
UnsafeArenaBufferFactory arena2(25, proto_buf_factory);
for (UnsafeArenaBufferFactory* arena_ptr : {&arena1, &arena2}) {
UnsafeArenaBufferFactory& arena = *arena_ptr;
for (size_t i = 0; i < sizes.size(); ++i) {
auto [buf, data] = arena.CreateRawBuffer(sizes[i]);
VerifyCanReadUninitialized(data, sizes[i]);
EXPECT_EQ(reinterpret_cast<size_t>(data) & 7, 0);
memset(data, i, sizes[i]);
bufs.push_back(buf);
ptrs.push_back(reinterpret_cast<char*>(data));
}
EXPECT_EQ(ptrs[0] + 24, ptrs[1]);
EXPECT_EQ(ptrs[2] + 16, ptrs[3]);
for (size_t i = 0; i < sizes.size(); ++i) {
for (int64_t j = 0; j < sizes[i]; ++j) {
EXPECT_EQ(ptrs[i][j], i);
}
}
}
}
TEST(UnsafeArenaBufferFactory, ReallocRawBuffer) {
UnsafeArenaBufferFactory arena1(25);
google::protobuf::Arena proto_arena;
ProtobufArenaBufferFactory proto_buf_factory(proto_arena);
UnsafeArenaBufferFactory arena2(25, proto_buf_factory);
for (UnsafeArenaBufferFactory* arena_ptr : {&arena1, &arena2}) {
UnsafeArenaBufferFactory& arena = *arena_ptr;
auto [buf1, data1] = arena.CreateRawBuffer(10);
VerifyCanReadUninitialized(data1, 10);
EXPECT_EQ(buf1, nullptr);
reinterpret_cast<char*>(data1)[0] = 7;
auto [buf2, data2] = arena.ReallocRawBuffer(std::move(buf1), data1, 10, 25);
reinterpret_cast<char*>(data1)[24] = -1;
EXPECT_EQ(reinterpret_cast<char*>(data2)[0], 7);
EXPECT_EQ(data1, data2);
auto [buf3, data3] = arena.ReallocRawBuffer(std::move(buf2), data2, 25, 26);
VerifyCanReadUninitialized(data2, 25);
EXPECT_NE(data1, data3);
EXPECT_EQ(reinterpret_cast<char*>(data3)[0], 7);
auto [buf4, data4] = arena.ReallocRawBuffer(std::move(buf3), data3, 26, 10);
EXPECT_NE(data1, data4);
EXPECT_EQ(reinterpret_cast<char*>(data4)[0], 7);
auto [buf5, data5] = arena.CreateRawBuffer(20);
VerifyCanReadUninitialized(data5, 20);
auto [buf6, data6] = arena.ReallocRawBuffer(std::move(buf5), data5, 20, 15);
VerifyCanReadUninitialized(static_cast<const char*>(data6) + 15, 5);
EXPECT_EQ(data1, data5);
EXPECT_EQ(data1, data6);
auto [buf7, data7] = arena.CreateRawBuffer(8);
VerifyCanReadUninitialized(data7, 8);
EXPECT_EQ(reinterpret_cast<char*>(data1) + 16,
reinterpret_cast<char*>(data7));
reinterpret_cast<char*>(data7)[0] = 3;
auto [buf8, data8] = arena.ReallocRawBuffer(std::move(buf7), data7, 8, 20);
EXPECT_EQ(reinterpret_cast<char*>(data8)[0], 3);
auto [buf9, data9] = arena.CreateRawBuffer(1);
VerifyCanReadUninitialized(data9, 1);
EXPECT_EQ(reinterpret_cast<char*>(data8) + 24,
reinterpret_cast<char*>(data9));
}
}
TEST(UnsafeArenaBufferFactory, BigAlloc) {
UnsafeArenaBufferFactory arena1(32);
google::protobuf::Arena proto_arena;
ProtobufArenaBufferFactory proto_buf_factory(proto_arena);
UnsafeArenaBufferFactory arena2(32, proto_buf_factory);
for (UnsafeArenaBufferFactory* arena_ptr : {&arena1, &arena2}) {
UnsafeArenaBufferFactory& arena = *arena_ptr;
auto [buf1, data1] = arena.CreateRawBuffer(16);
VerifyCanReadUninitialized(data1, 16);
auto [buf2, data2] = arena.CreateRawBuffer(64);
VerifyCanReadUninitialized(data2, 64);
auto [buf3, data3] = arena.CreateRawBuffer(16);
VerifyCanReadUninitialized(data3, 16);
EXPECT_THAT(reinterpret_cast<char*>(data3),
Eq(reinterpret_cast<char*>(data1) + 16));
EXPECT_THAT(reinterpret_cast<char*>(data2) - reinterpret_cast<char*>(data1),
AnyOf(Le(-64), Ge(32)));
memset(data2, 0, 64);
EXPECT_THAT(reinterpret_cast<int64_t*>(data2)[0], Eq(0));
}
}
TEST(UnsafeArenaBufferFactory, Reset) {
UnsafeArenaBufferFactory arena1(32);
google::protobuf::Arena proto_arena;
ProtobufArenaBufferFactory proto_buf_factory(proto_arena);
UnsafeArenaBufferFactory arena2(32, proto_buf_factory);
for (UnsafeArenaBufferFactory* arena_ptr : {&arena1, &arena2}) {
UnsafeArenaBufferFactory& arena = *arena_ptr;
arena.Reset();
auto [buf1, data1] = arena.CreateRawBuffer(16);
VerifyCanReadUninitialized(data1, 16);
auto [buf2, data2] = arena.CreateRawBuffer(16);
VerifyCanReadUninitialized(data2, 16);
auto [buf3, data3] = arena.CreateRawBuffer(16);
VerifyCanReadUninitialized(data3, 16);
std::memset(data1, 255, 16);
std::memset(data2, 255, 16);
std::memset(data3, 255, 16);
arena.Reset();
auto [buf4, data4] = arena.CreateRawBuffer(8);
VerifyCanReadUninitialized(data4, 16);
auto [buf5, data5] = arena.CreateRawBuffer(16);
VerifyCanReadUninitialized(data5, 16);
auto [buf6, data6] = arena.CreateRawBuffer(24);
VerifyCanReadUninitialized(data6, 16);
EXPECT_EQ(data1, data4);
EXPECT_EQ(reinterpret_cast<char*>(data2),
reinterpret_cast<char*>(data5) + 8);
EXPECT_EQ(data3, data6);
}
}
TEST(UnsafeArenaBufferFactory, BaseFactory) {
UnsafeArenaBufferFactory arena1(1024);
auto [buf_before, ptr_before] = arena1.CreateRawBuffer(1);
UnsafeArenaBufferFactory arena2(32, arena1);
auto [buf_small, ptr_small] = arena2.CreateRawBuffer(8);
auto [buf_big, ptr_big] = arena2.CreateRawBuffer(128);
auto [buf_after, ptr_after] = arena1.CreateRawBuffer(1);
EXPECT_LT(ptr_before, ptr_small);
EXPECT_LT(ptr_before, ptr_big);
EXPECT_GT(ptr_after, ptr_small);
EXPECT_GT(ptr_after, ptr_big);
}
}
} | 2,497 |
#ifndef AROLLA_MEMORY_OPTIONAL_VALUE_H_
#define AROLLA_MEMORY_OPTIONAL_VALUE_H_
#include <cstdint>
#include <optional>
#include <ostream>
#include <tuple>
#include <type_traits>
#include "absl/base/attributes.h"
#include "absl/status/statusor.h"
#include "absl/strings/string_view.h"
#include "arolla/util/bytes.h"
#include "arolla/util/fingerprint.h"
#include "arolla/util/is_bzero_constructible.h"
#include "arolla/util/meta.h"
#include "arolla/util/repr.h"
#include "arolla/util/status.h"
#include "arolla/util/struct_field.h"
#include "arolla/util/text.h"
#include "arolla/util/unit.h"
#include "arolla/util/view_types.h"
#include "arolla/util/status_macros_backport.h"
namespace arolla {
template <typename T>
struct OptionalValue {
static_assert(std::is_default_constructible<T>(),
"OptionalValue<T> T must be default constructible.");
static_assert(std::is_standard_layout<T>(),
"OptionalValue<T> T must have standard layout.");
using value_type = T;
constexpr OptionalValue() : present(false), value() {}
constexpr OptionalValue(T v) : present(true), value(std::move(v)) {}
constexpr OptionalValue(std::nullopt_t) : present(false), value() {}
constexpr OptionalValue(bool present, T value)
: present(present), value(std::move(value)) {}
template <typename X = T,
typename = std::enable_if_t<
std::is_same_v<X, T> && !std::is_same_v<X, view_type_t<X>>, X>>
explicit OptionalValue(view_type_t<X> value) : present(true), value(value) {}
template <typename X = T,
typename = std::enable_if_t<
std::is_same_v<X, T> && !std::is_same_v<X, view_type_t<X>>, X>>
explicit OptionalValue(OptionalValue<view_type_t<X>> v) : present(v.present) {
if (v.present) value = T(v.value);
}
template <typename X = T,
typename = std::enable_if_t<std::is_same_v<X, T>>>
constexpr OptionalValue(std::optional<X> opt)
: present(opt.has_value()), value(std::move(opt).value_or(T{})) {}
operator OptionalValue<view_type_t<T>>() const {
return {present, value};
}
OptionalValue<T>& operator=(const OptionalValue<T>&) & = default;
OptionalValue<T>& operator=(const OptionalValue<T>&) && = delete;
OptionalValue<T>& operator=(T value) & {
this->present = true;
this->value = std::move(value);
return *this;
}
OptionalValue<T>& operator=(T) && = delete;
explicit operator bool() const { return present; }
constexpr std::optional<T> AsOptional() const& {
if (present) {
return value;
}
return {};
}
constexpr std::optional<T> AsOptional() && {
if (present) {
return std::move(value);
}
return {};
}
bool present;
value_type value = {};
void ArollaFingerprint(FingerprintHasher* hasher) const {
if (present) {
hasher->Combine(true, value);
} else {
hasher->Combine(false);
}
}
constexpr static auto ArollaStructFields() {
using CppType = OptionalValue;
return std::tuple{
AROLLA_DECLARE_STRUCT_FIELD(present),
AROLLA_DECLARE_STRUCT_FIELD(value),
};
}
};
template <typename T>
using strip_optional_t = meta::strip_template_t<OptionalValue, T>;
template <typename T>
using wrap_with_optional_t = OptionalValue<strip_optional_t<T>>;
template <typename T>
constexpr bool is_optional_v = meta::is_wrapped_with_v<OptionalValue, T>;
template <typename T>
struct view_type<OptionalValue<T>> {
using type = OptionalValue<view_type_t<T>>;
};
template <>
struct OptionalValue<Unit> {
using value_type = Unit;
constexpr OptionalValue() : present(false) {}
constexpr OptionalValue(Unit v)
: present(true) {}
constexpr OptionalValue(
std::nullopt_t)
: present(false) {}
constexpr OptionalValue(bool present, Unit value) : present(present) {}
constexpr explicit OptionalValue(bool present) : present(present) {}
constexpr OptionalValue(
std::optional<Unit> opt)
: present(opt.has_value()) {}
OptionalValue<Unit>& operator=(const OptionalValue<Unit>&) & = default;
OptionalValue<Unit>& operator=(const OptionalValue<Unit>&) && = delete;
explicit operator bool() const { return present; }
constexpr std::optional<Unit> AsOptional() const {
if (present) {
return Unit{};
}
return {};
}
template <typename H>
friend H AbslHashValue(H h, const OptionalValue& v) {
return H::combine(std::move(h), v.present);
}
bool present;
static constexpr Unit value = {};
constexpr static auto ArollaStructFields() {
using CppType = OptionalValue;
return std::tuple{
AROLLA_DECLARE_STRUCT_FIELD(present),
};
}
void ArollaFingerprint(FingerprintHasher* hasher) const {
CombineStructFields(hasher, *this);
}
};
using OptionalUnit = OptionalValue<Unit>;
constexpr OptionalUnit kPresent{Unit{}};
constexpr OptionalUnit kMissing{};
template <class T>
constexpr OptionalValue<T> MakeOptionalValue(T v) {
return {std::move(v)};
}
template <class T>
absl::StatusOr<OptionalValue<T>> MakeStatusOrOptionalValue(
absl::StatusOr<T> v) {
using ResultT = absl::StatusOr<OptionalValue<T>>;
return v.ok() ? ResultT{OptionalValue<T>{*std::move(v)}}
: ResultT{v.status()};
}
AROLLA_DECLARE_REPR(OptionalValue<bool>);
AROLLA_DECLARE_REPR(OptionalValue<int32_t>);
AROLLA_DECLARE_REPR(OptionalValue<int64_t>);
AROLLA_DECLARE_REPR(OptionalValue<uint64_t>);
AROLLA_DECLARE_REPR(OptionalValue<float>);
AROLLA_DECLARE_REPR(OptionalValue<double>);
AROLLA_DECLARE_REPR(OptionalValue<Bytes>);
AROLLA_DECLARE_REPR(OptionalValue<Text>);
AROLLA_DECLARE_REPR(OptionalUnit);
template <class T, typename = std::enable_if_t<
std::is_invocable_v<ReprTraits<OptionalValue<T>>, T>>>
std::ostream& operator<<(std::ostream& stream, const OptionalValue<T>& value) {
return stream << Repr(value);
}
template <typename T>
struct is_bzero_constructible<OptionalValue<T>> : is_bzero_constructible<T> {};
template <typename T>
constexpr bool operator==(const OptionalValue<T>& a,
const OptionalValue<T>& b) {
if (a.present && b.present) {
return a.value == b.value;
}
return (a.present == b.present);
}
template <typename T>
constexpr bool operator==(const OptionalValue<T>& a, const T& b) {
return a.present && a.value == b;
}
template <typename T>
constexpr bool operator==(const T& a, const OptionalValue<T>& b) {
return b.present && a == b.value;
}
template <typename T>
constexpr bool operator==(const OptionalValue<T>& a, std::nullopt_t) {
return !a.present;
}
template <typename T>
constexpr bool operator==(std::nullopt_t, const OptionalValue<T>& a) {
return !a.present;
}
template <typename T>
constexpr bool operator!=(const OptionalValue<T>& a,
const OptionalValue<T>& b) {
return !(a == b);
}
template <typename T>
constexpr bool operator!=(const OptionalValue<T>& a, const T& b) {
return !(a == b);
}
template <typename T>
constexpr bool operator!=(const T& a, const OptionalValue<T>& b) {
return !(a == b);
}
template <typename T>
constexpr bool operator!=(const OptionalValue<T>& a, std::nullopt_t) {
return a.present;
}
template <typename T>
constexpr bool operator!=(std::nullopt_t, const OptionalValue<T>& a) {
return a.present;
}
constexpr bool operator==(const OptionalUnit& a, const OptionalUnit& b) {
return a.present == b.present;
}
constexpr bool operator==(const OptionalUnit& a, const Unit& b) {
return a.present;
}
constexpr bool operator==(const Unit& a, const OptionalUnit& b) {
return b.present;
}
constexpr bool operator==(const OptionalValue<absl::string_view>& a,
absl::string_view b) {
return a.present && a.value == b;
}
template <typename T>
OptionalValue(T value) -> OptionalValue<T>;
namespace optional_value_impl {
template <class Fn, class ArgList>
class OptionalFn;
template <class To, class From>
ABSL_ATTRIBUTE_ALWAYS_INLINE inline bool is_available(const From& v) {
if constexpr (!is_optional_v<To>) {
return v.present;
} else {
return true;
}
}
template <class To, class From>
ABSL_ATTRIBUTE_ALWAYS_INLINE inline const To& value(const From& v) {
if constexpr (!is_optional_v<To>) {
return v.value;
} else {
return v;
}
}
template <class Fn, class... Args>
class OptionalFn<Fn, meta::type_list<Args...>> {
private:
using FnResT = std::decay_t<typename meta::function_traits<Fn>::return_type>;
static constexpr bool kHasStatus = IsStatusOrT<FnResT>::value;
using OptResT = wrap_with_optional_t<strip_statusor_t<FnResT>>;
using ResT = std::conditional_t<kHasStatus, absl::StatusOr<OptResT>, OptResT>;
public:
explicit constexpr OptionalFn(Fn fn) : fn_(std::move(fn)) {}
ResT operator()(
const wrap_with_optional_t<std::decay_t<Args>>&... args) const {
if ((is_available<std::decay_t<Args>>(args) && ...)) {
if constexpr (kHasStatus && !std::is_same_v<FnResT, ResT>) {
ASSIGN_OR_RETURN(auto res, fn_(value<std::decay_t<Args>>(args)...));
return OptResT(res);
} else {
return fn_(value<std::decay_t<Args>>(args)...);
}
} else {
return OptResT(std::nullopt);
}
}
private:
Fn fn_;
};
}
template <class Fn>
constexpr auto WrapFnToAcceptOptionalArgs(Fn fn) {
return optional_value_impl::OptionalFn<
Fn, typename meta::function_traits<Fn>::arg_types>(fn);
}
}
#endif
#include "arolla/memory/optional_value.h"
#include <cstdint>
#include "absl/strings/str_cat.h"
#include "arolla/util/bytes.h"
#include "arolla/util/repr.h"
#include "arolla/util/text.h"
namespace arolla {
ReprToken ReprTraits<OptionalValue<bool>>::operator()(
const OptionalValue<bool>& value) const {
return ReprToken{
value.present ? absl::StrCat("optional_boolean{", Repr(value.value), "}")
: "optional_boolean{NA}"};
}
ReprToken ReprTraits<OptionalValue<int32_t>>::operator()(
const OptionalValue<int32_t>& value) const {
return ReprToken{value.present
? absl::StrCat("optional_int32{", Repr(value.value), "}")
: "optional_int32{NA}"};
}
ReprToken ReprTraits<OptionalValue<int64_t>>::operator()(
const OptionalValue<int64_t>& value) const {
return ReprToken{value.present ? absl::StrCat("optional_", Repr(value.value))
: "optional_int64{NA}"};
}
ReprToken ReprTraits<OptionalValue<uint64_t>>::operator()(
const OptionalValue<uint64_t>& value) const {
return ReprToken{value.present ? absl::StrCat("optional_", Repr(value.value))
: "optional_uint64{NA}"};
}
ReprToken ReprTraits<OptionalValue<float>>::operator()(
const OptionalValue<float>& value) const {
return ReprToken{
value.present ? absl::StrCat("optional_float32{", Repr(value.value), "}")
: "optional_float32{NA}"};
}
ReprToken ReprTraits<OptionalValue<double>>::operator()(
const OptionalValue<double>& value) const {
return ReprToken{value.present ? absl::StrCat("optional_", Repr(value.value))
: "optional_float64{NA}"};
}
ReprToken ReprTraits<OptionalValue<Bytes>>::operator()(
const OptionalValue<Bytes>& value) const {
return ReprToken{value.present
? absl::StrCat("optional_bytes{", Repr(value.value), "}")
: "optional_bytes{NA}"};
}
ReprToken ReprTraits<OptionalValue<Text>>::operator()(
const OptionalValue<Text>& value) const {
return ReprToken{value.present
? absl::StrCat("optional_text{", Repr(value.value), "}")
: "optional_text{NA}"};
}
ReprToken ReprTraits<OptionalUnit>::operator()(
const OptionalUnit& value) const {
return ReprToken{value.present ? "present" : "missing"};
}
} | #include "arolla/memory/optional_value.h"
#include <cstdint>
#include <cstring>
#include <memory>
#include <new>
#include <optional>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/string_view.h"
#include "arolla/memory/frame.h"
#include "arolla/memory/memory_allocation.h"
#include "arolla/util/bytes.h"
#include "arolla/util/repr.h"
#include "arolla/util/testing/status_matchers_backport.h"
#include "arolla/util/text.h"
#include "arolla/util/view_types.h"
namespace arolla {
namespace testing {
namespace {
using ::testing::HasSubstr;
using ::testing::Test;
TEST(OptionalValueTest, TestEmptyValues) {
OptionalValue<float> v1;
EXPECT_FALSE(v1.present);
OptionalValue<float> v2(std::optional<float>{});
EXPECT_FALSE(v2.present);
OptionalValue<float> v3(std::nullopt);
EXPECT_FALSE(v3.present);
EXPECT_EQ(v1, v2);
EXPECT_EQ(v1, v3);
v1.value = 1.0f;
v2.value = 2.0f;
EXPECT_EQ(v1, v2);
auto absl_v = v2.AsOptional();
EXPECT_FALSE(absl_v.has_value());
}
TEST(OptionalValueTest, TestConstExpr) {
static_assert(!OptionalValue<int>().present);
static_assert(OptionalValue<int>(5).present);
static_assert(OptionalValue<int>(5).value == 5);
static_assert(MakeOptionalValue(5).present);
static_assert(MakeOptionalValue(5).value == 5);
}
TEST(OptionalValueTest, TestPresentValues) {
OptionalValue<float> v1(1.0f);
EXPECT_TRUE(v1.present);
EXPECT_EQ(1.0f, v1.value);
EXPECT_EQ(Repr(v1), "optional_float32{1.}");
auto v_auto = MakeOptionalValue(1.0f);
EXPECT_TRUE(v_auto.present);
EXPECT_EQ(1.0f, v_auto.value);
EXPECT_EQ(Repr(v_auto), "optional_float32{1.}");
OptionalValue<float> v2(std::optional<float>{2.0f});
EXPECT_TRUE(v2.present);
EXPECT_EQ(2.0f, v2.value);
EXPECT_EQ(Repr(v2), "optional_float32{2.}");
EXPECT_NE(v1, v2);
v1.value = 2.0f;
EXPECT_EQ(v1, v2);
}
TEST(OptionalValueTest, TestAssignment) {
OptionalValue<float> v1;
v1 = 1.0f;
EXPECT_TRUE(v1.present);
EXPECT_EQ(v1.value, 1.0f);
v1 = std::nullopt;
EXPECT_FALSE(v1.present);
}
TEST(OptionalValueTest, MakeStatusOrOptionalValue) {
absl::StatusOr<OptionalValue<float>> v =
MakeStatusOrOptionalValue(absl::StatusOr<float>(1.0f));
ASSERT_OK(v.status());
EXPECT_TRUE(v.value().present);
EXPECT_EQ(v.value().value, 1.0f);
absl::StatusOr<OptionalValue<float>> v_error = MakeStatusOrOptionalValue(
absl::StatusOr<float>(absl::InternalError("fake")));
EXPECT_THAT(v_error.status(),
StatusIs(absl::StatusCode::kInternal, HasSubstr("fake")));
}
TEST(OptionalValueTest, OptionalUnit) {
EXPECT_EQ(OptionalUnit(), kMissing);
EXPECT_EQ(OptionalUnit(false), kMissing);
EXPECT_FALSE(kMissing);
EXPECT_FALSE(kMissing.present);
EXPECT_EQ(Repr(kMissing), "missing");
EXPECT_EQ(OptionalUnit(true), kPresent);
EXPECT_TRUE(kPresent);
EXPECT_TRUE(kPresent.present);
EXPECT_EQ(Repr(kPresent), "present");
}
TEST(OptionalValueTest, Comparison) {
OptionalValue<float> v0;
v0.value = 1.0f;
OptionalValue<float> v1(1.0f);
OptionalValue<float> v2(2.0f);
{
EXPECT_TRUE(v1 == v1);
EXPECT_TRUE(v0 == v0);
EXPECT_FALSE(v1 == v2);
EXPECT_FALSE(v1 == v0);
EXPECT_FALSE(v1 != v1);
EXPECT_FALSE(v0 != v0);
EXPECT_TRUE(v1 != v2);
EXPECT_TRUE(v1 != v0);
OptionalValue<float> v0_2;
v0_2.value = 2.0f;
EXPECT_TRUE(v0 == v0_2);
EXPECT_FALSE(v0 != v0_2);
}
{
EXPECT_TRUE(v1 == 1.0f);
EXPECT_TRUE(1.0f == v1);
EXPECT_FALSE(v1 != 1.0f);
EXPECT_FALSE(1.0f != v1);
EXPECT_FALSE(v1 == 2.0f);
EXPECT_FALSE(2.0f == v1);
EXPECT_TRUE(v1 != 2.0f);
EXPECT_TRUE(2.0f != v1);
}
{
EXPECT_FALSE(v1 == std::nullopt);
EXPECT_FALSE(std::nullopt == v1);
EXPECT_TRUE(v0 == std::nullopt);
EXPECT_TRUE(std::nullopt == v0);
EXPECT_TRUE(v1 != std::nullopt);
EXPECT_TRUE(std::nullopt != v1);
EXPECT_FALSE(v0 != std::nullopt);
EXPECT_FALSE(std::nullopt != v0);
}
}
TEST(OptionalValueTest, TestImplicitConstructors) {
OptionalValue<float> v = {};
EXPECT_EQ(v, OptionalValue<float>());
v = 3.5;
EXPECT_EQ(v, OptionalValue<float>(3.5));
v = std::optional<float>(2.5);
EXPECT_EQ(v, OptionalValue<float>(2.5));
}
TEST(OptionalValueTest, TestMoves) {
auto ptr = std::make_unique<std::string>("Hello!");
OptionalValue<std::unique_ptr<std::string>> v1(std::move(ptr));
EXPECT_TRUE(v1.present);
EXPECT_EQ("Hello!", *(v1.value));
std::optional<std::unique_ptr<std::string>> v2(std::move(v1).AsOptional());
EXPECT_TRUE(v2.has_value());
EXPECT_EQ("Hello!", **v2);
}
template <typename T>
using Slot = FrameLayout::Slot<T>;
TEST(OptionalValueTest, TestFrameLayout) {
FrameLayout::Builder builder;
builder.AddSlot<double>();
builder.AddSlot<int32_t>();
auto optional_slot = builder.AddSlot<OptionalValue<float>>();
Slot<bool> presence_slot = optional_slot.GetSubslot<0>();
Slot<float> value_slot = optional_slot.GetSubslot<1>();
FrameLayout layout = std::move(builder).Build();
MemoryAllocation alloc(&layout);
FramePtr frame = alloc.frame();
frame.Set(optional_slot, OptionalValue<float>{1.0f});
EXPECT_EQ(true, frame.Get(presence_slot));
EXPECT_EQ(1.0f, frame.Get(value_slot));
frame.Set(value_slot, 2.0f);
EXPECT_EQ(2.0, frame.Get(optional_slot).value);
}
TEST(OptionalValue, IsBZeroConstructible) {
EXPECT_TRUE(is_bzero_constructible<OptionalValue<float>>());
EXPECT_TRUE(is_bzero_constructible<OptionalValue<int>>());
EXPECT_FALSE(is_bzero_constructible<OptionalValue<std::string>>());
}
TEST(OptionalValue, BZeroStateIsEmptyValue) {
using T = OptionalValue<float>;
std::aligned_storage_t<sizeof(T), alignof(T)> storage;
memset(&storage, 0, sizeof(storage));
EXPECT_FALSE(std::launder(reinterpret_cast<const T*>(&storage))->present);
}
TEST(OptionalValue, StructuredBindings) {
{
OptionalValue<float> f;
auto [present, value] = f;
EXPECT_FALSE(present);
}
{
OptionalValue<float> f = 17.0;
auto [present, value] = f;
EXPECT_TRUE(present);
EXPECT_EQ(value, 17.0);
}
}
TEST(OptionalValue, ViewType) {
static_assert(std::is_same_v<view_type_t<OptionalValue<int64_t>>,
OptionalValue<int64_t>>);
static_assert(std::is_same_v<view_type_t<OptionalValue<Bytes>>,
OptionalValue<absl::string_view>>);
auto fn = [](OptionalValue<absl::string_view> v) -> char {
return (v.present && !v.value.empty()) ? v.value[0] : 'X';
};
EXPECT_EQ(fn(OptionalValue<Text>(Text("Hello"))), 'H');
EXPECT_EQ(fn(std::nullopt), 'X');
}
TEST(OptionalValue, WrapFnToAcceptOptionalArgs) {
{
auto fn = [](int a, OptionalValue<int64_t> b, int64_t c) -> int {
return a + c + (b.present ? b.value : 10);
};
auto opt_fn = WrapFnToAcceptOptionalArgs(fn);
EXPECT_EQ(opt_fn(1, 2, 3), OptionalValue<int>(6));
EXPECT_EQ(opt_fn(std::nullopt, 2, 3), OptionalValue<int>());
EXPECT_EQ(opt_fn(1, std::nullopt, 3), OptionalValue<int>(14));
EXPECT_EQ(opt_fn(1, 2, std::nullopt), OptionalValue<int>());
}
{
auto fn = [](const Bytes& v) -> const Bytes& { return v; };
auto opt_fn = WrapFnToAcceptOptionalArgs(fn);
EXPECT_EQ(opt_fn(Bytes("123")), OptionalValue<Bytes>("123"));
}
{
auto fn = [](absl::string_view v) { return v; };
auto opt_fn = WrapFnToAcceptOptionalArgs(fn);
EXPECT_EQ(opt_fn(MakeOptionalValue(Bytes("123"))),
MakeOptionalValue(absl::string_view("123")));
}
{
auto fn = [](int a, OptionalValue<int64_t> b,
int64_t c) -> absl::StatusOr<int> {
if (c < 0) {
return absl::InvalidArgumentError("c < 0");
} else {
return a + c + (b.present ? b.value : 10);
}
};
auto opt_fn = WrapFnToAcceptOptionalArgs(fn);
EXPECT_THAT(opt_fn(1, 2, 3), IsOkAndHolds(OptionalValue<int>(6)));
EXPECT_THAT(opt_fn(1, 2, -3),
StatusIs(absl::StatusCode::kInvalidArgument, "c < 0"));
EXPECT_THAT(opt_fn(std::nullopt, 2, -3),
IsOkAndHolds(OptionalValue<int>()));
}
}
TEST(OptionalValueReprTest, bool) {
EXPECT_EQ(Repr(OptionalValue<bool>(true)), "optional_boolean{true}");
EXPECT_EQ(Repr(OptionalValue<bool>()), "optional_boolean{NA}");
}
TEST(OptionalValueReprTest, int32_t) {
EXPECT_EQ(Repr(OptionalValue<int32_t>(1)), "optional_int32{1}");
EXPECT_EQ(Repr(OptionalValue<int32_t>()), "optional_int32{NA}");
}
TEST(OptionalValueReprTest, int64_t) {
EXPECT_EQ(Repr(OptionalValue<int64_t>(1)), "optional_int64{1}");
EXPECT_EQ(Repr(OptionalValue<int64_t>()), "optional_int64{NA}");
}
TEST(OptionalValueReprTest, uint64_t) {
EXPECT_EQ(Repr(OptionalValue<uint64_t>(1)), "optional_uint64{1}");
EXPECT_EQ(Repr(OptionalValue<uint64_t>()), "optional_uint64{NA}");
}
TEST(OptionalValueReprTest, float) {
EXPECT_EQ(Repr(OptionalValue<float>(1.5)), "optional_float32{1.5}");
EXPECT_EQ(Repr(OptionalValue<float>()), "optional_float32{NA}");
}
TEST(OptionalValueReprTest, double) {
EXPECT_EQ(Repr(OptionalValue<double>(1.5)), "optional_float64{1.5}");
EXPECT_EQ(Repr(OptionalValue<double>()), "optional_float64{NA}");
}
TEST(OptionalValueReprTest, Bytes) {
EXPECT_EQ(Repr(OptionalValue<Bytes>("abc")), "optional_bytes{b'abc'}");
EXPECT_EQ(Repr(OptionalValue<Bytes>()), "optional_bytes{NA}");
}
TEST(OptionalValueReprTest, Text) {
EXPECT_EQ(Repr(OptionalValue<Text>("abc")), "optional_text{'abc'}");
EXPECT_EQ(Repr(OptionalValue<Text>()), "optional_text{NA}");
}
TEST(OptionalValueReprTest, StreamOp) {
{
std::ostringstream oss;
oss << OptionalValue<float>(1.5);
EXPECT_EQ(oss.str(), "optional_float32{1.5}");
}
{
std::ostringstream oss;
oss << OptionalValue<float>();
EXPECT_EQ(oss.str(), "optional_float32{NA}");
}
}
}
}
} | 2,498 |
#ifndef AROLLA_OPTOOLS_OPTOOLS_H_
#define AROLLA_OPTOOLS_OPTOOLS_H_
#include <cstddef>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/string_view.h"
#include "arolla/expr/expr_operator_signature.h"
#include "arolla/qexpr/operator_factory.h"
#include "arolla/qexpr/operators.h"
#include "arolla/util/status_macros_backport.h"
namespace arolla::optools {
namespace optools_impl {
absl::Status RegisterFunctionAsOperatorImpl(
std::vector<OperatorPtr> qexpr_ops, expr::ExprOperatorSignature signature,
absl::string_view description);
template <typename Fn>
struct MakeQExprOps {
absl::StatusOr<std::vector<OperatorPtr>> operator()(absl::string_view name,
Fn fn) {
ASSIGN_OR_RETURN(OperatorPtr op, OperatorFactory()
.WithName(std::string(name))
.BuildFromFunction(std::move(fn)));
return std::vector<OperatorPtr>{op};
}
};
template <typename... FNs>
struct MakeQExprOps<std::tuple<FNs...>> {
absl::StatusOr<std::vector<OperatorPtr>> operator()(absl::string_view name,
std::tuple<FNs...> fns) {
return impl(name, std::move(fns), std::index_sequence_for<FNs...>{});
}
template <size_t... Is>
absl::StatusOr<std::vector<OperatorPtr>> impl(absl::string_view name,
std::tuple<FNs...> fns,
std::index_sequence<Is...>) {
std::vector<OperatorPtr> res;
res.reserve(sizeof...(FNs));
auto factory = OperatorFactory().WithName(std::string(name));
for (auto status_or_op :
{factory.BuildFromFunction(std::move(std::get<Is>(fns)))...}) {
RETURN_IF_ERROR(status_or_op.status());
res.push_back(*status_or_op);
}
return res;
}
};
}
template <typename Fn>
absl::Status RegisterFunctionAsOperator(
Fn&& fns, absl::string_view name,
absl::StatusOr<expr::ExprOperatorSignature> signature =
expr::ExprOperatorSignature(),
absl::string_view doc = "") {
RETURN_IF_ERROR(signature.status());
ASSIGN_OR_RETURN(std::vector<OperatorPtr> ops,
optools_impl::MakeQExprOps<Fn>()(name, fns));
return optools_impl::RegisterFunctionAsOperatorImpl(
std::move(ops), *std::move(signature), doc);
}
}
#endif
#include "arolla/optools/optools.h"
#include <cstddef>
#include <string>
#include <utility>
#include <vector>
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "arolla/expr/basic_expr_operator.h"
#include "arolla/expr/expr_operator.h"
#include "arolla/expr/expr_operator_signature.h"
#include "arolla/expr/registered_expr_operator.h"
#include "arolla/qexpr/operators.h"
#include "arolla/qtype/qtype.h"
#include "arolla/util/fingerprint.h"
#include "arolla/util/string.h"
#include "arolla/util/status_macros_backport.h"
namespace arolla::optools::optools_impl {
namespace {
class QExprWrappingOperator final : public expr::BackendExprOperatorTag,
public expr::BasicExprOperator {
public:
QExprWrappingOperator(absl::string_view name,
std::vector<OperatorPtr> qexpr_ops,
expr::ExprOperatorSignature signature,
absl::string_view description)
: expr::BasicExprOperator(
name, signature, description,
FingerprintHasher("arolla::optools_impl::QExprWrappingOperator")
.Combine(name, signature)
.Finish()),
qexpr_ops_(std::move(qexpr_ops)) {}
absl::StatusOr<QTypePtr> GetOutputQType(
absl::Span<const QTypePtr> input_qtypes) const override {
for (const OperatorPtr& op : qexpr_ops_) {
absl::Span<const QTypePtr> required_qtypes =
op->signature()->input_types();
bool match = true;
for (size_t i = 0; i < input_qtypes.size(); ++i) {
if (input_qtypes[i] != required_qtypes[i]) {
match = false;
break;
}
}
if (match) {
return op->signature()->output_type();
}
}
std::string msg = "no such overload; available signatures: ";
bool is_first = true;
for (const auto& op : qexpr_ops_) {
absl::StrAppend(&msg, op->signature(), NonFirstComma(is_first, ", "));
}
return absl::InvalidArgumentError(msg);
}
private:
std::vector<OperatorPtr> qexpr_ops_;
};
}
absl::Status RegisterFunctionAsOperatorImpl(
std::vector<OperatorPtr> qexpr_ops, expr::ExprOperatorSignature signature,
absl::string_view description) {
RETURN_IF_ERROR(expr::ValidateSignature(signature));
if (expr::HasVariadicParameter(signature)) {
return absl::InvalidArgumentError(
"incorrect operator signature: RegisterFunctionAsOperator doesn't "
"support variadic args");
}
if (qexpr_ops.empty()) {
return absl::InvalidArgumentError(
"at least one qexpr operator is required");
}
size_t arg_count = qexpr_ops[0]->signature()->input_types().size();
absl::string_view name = qexpr_ops[0]->name();
for (const OperatorPtr& op : qexpr_ops) {
if (op->signature()->input_types().size() != arg_count) {
return absl::InvalidArgumentError(
"arg count must be the same for all overloads");
}
if (op->name() != name) {
return absl::InvalidArgumentError(
"all overloads must have the same name");
}
RETURN_IF_ERROR(
::arolla::OperatorRegistry::GetInstance()->RegisterOperator(op));
}
if (signature.parameters.empty()) {
signature = expr::ExprOperatorSignature::MakeArgsN(arg_count);
} else if (signature.parameters.size() != arg_count) {
return absl::InvalidArgumentError(
"operator signature doesn't match the function");
}
return expr::RegisterOperator<QExprWrappingOperator>(
name, name, std::move(qexpr_ops), signature, description)
.status();
}
} | #include "arolla/optools/optools.h"
#include <tuple>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/status/status.h"
#include "arolla/expr/expr_operator_signature.h"
#include "arolla/expr/testing/testing.h"
#include "arolla/qtype/typed_value.h"
#include "arolla/util/testing/status_matchers_backport.h"
namespace arolla::testing {
namespace {
using ::testing::HasSubstr;
int Add(int a, int b) { return a + b; }
template <typename T>
T Mul(T a, T b) {
return a * b;
}
TEST(OpTools, RegisterFunctionAsOperator) {
ASSERT_OK(optools::RegisterFunctionAsOperator(Add, "optools_test.add"));
ASSERT_OK(optools::RegisterFunctionAsOperator(
std::make_tuple(Mul<float>, Mul<int>), "optools_test.mul"));
{
ASSERT_OK_AND_ASSIGN(TypedValue res,
InvokeExprOperator("optools_test.add",
{TypedValue::FromValue<int>(3),
TypedValue::FromValue<int>(4)}));
ASSERT_OK_AND_ASSIGN(int r, res.As<int>());
EXPECT_EQ(r, 7);
}
{
ASSERT_OK_AND_ASSIGN(TypedValue res,
InvokeExprOperator("optools_test.mul",
{TypedValue::FromValue<int>(3),
TypedValue::FromValue<int>(4)}));
ASSERT_OK_AND_ASSIGN(int r, res.As<int>());
EXPECT_EQ(r, 12);
}
{
ASSERT_OK_AND_ASSIGN(TypedValue res,
InvokeExprOperator("optools_test.mul",
{TypedValue::FromValue<float>(3),
TypedValue::FromValue<float>(2)}));
ASSERT_OK_AND_ASSIGN(float r, res.As<float>());
EXPECT_FLOAT_EQ(r, 6.0);
}
EXPECT_THAT(
InvokeExprOperator("optools_test.add", {TypedValue::FromValue<float>(3),
TypedValue::FromValue<int>(4)}),
StatusIs(absl::StatusCode::kInvalidArgument,
HasSubstr("no such overload")));
EXPECT_THAT(
InvokeExprOperator("optools_test.mul", {TypedValue::FromValue<float>(3),
TypedValue::FromValue<int>(4)}),
StatusIs(absl::StatusCode::kInvalidArgument,
HasSubstr("no such overload")));
EXPECT_OK(optools::RegisterFunctionAsOperator(
Add, "optools_test.add_with_description",
expr::ExprOperatorSignature::Make("a, b"), "Sum A and B"));
EXPECT_THAT(optools::RegisterFunctionAsOperator(
Add, "optools_test.add_with_wrong_signature",
expr::ExprOperatorSignature::Make("a, b, c"), "Sum A and B"),
StatusIs(absl::StatusCode::kInvalidArgument,
"operator signature doesn't match the function"));
}
}
} | 2,499 |
#ifndef ABSL_FLAGS_USAGE_CONFIG_H_
#define ABSL_FLAGS_USAGE_CONFIG_H_
#include <functional>
#include <string>
#include "absl/base/config.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
using FlagKindFilter = std::function<bool (absl::string_view)>;
}
struct FlagsUsageConfig {
flags_internal::FlagKindFilter contains_helpshort_flags;
flags_internal::FlagKindFilter contains_help_flags;
flags_internal::FlagKindFilter contains_helppackage_flags;
std::function<std::string()> version_string;
std::function<std::string(absl::string_view)> normalize_filename;
};
void SetFlagsUsageConfig(FlagsUsageConfig usage_config);
namespace flags_internal {
FlagsUsageConfig GetUsageConfig();
void ReportUsageError(absl::string_view msg, bool is_fatal);
}
ABSL_NAMESPACE_END
}
extern "C" {
void ABSL_INTERNAL_C_SYMBOL(AbslInternalReportFatalUsageError)(
absl::string_view);
}
#endif
#include "absl/flags/usage_config.h"
#include <functional>
#include <iostream>
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/const_init.h"
#include "absl/base/thread_annotations.h"
#include "absl/flags/internal/path_util.h"
#include "absl/flags/internal/program_name.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
#include "absl/strings/strip.h"
#include "absl/synchronization/mutex.h"
extern "C" {
ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(
AbslInternalReportFatalUsageError)(absl::string_view) {}
}
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
namespace {
bool ContainsHelpshortFlags(absl::string_view filename) {
auto suffix = flags_internal::Basename(filename);
auto program_name = flags_internal::ShortProgramInvocationName();
absl::string_view program_name_ref = program_name;
#if defined(_WIN32)
absl::ConsumeSuffix(&program_name_ref, ".exe");
#endif
if (!absl::ConsumePrefix(&suffix, program_name_ref))
return false;
return absl::StartsWith(suffix, ".") || absl::StartsWith(suffix, "-main.") ||
absl::StartsWith(suffix, "_main.");
}
bool ContainsHelppackageFlags(absl::string_view filename) {
return ContainsHelpshortFlags(filename);
}
std::string VersionString() {
std::string version_str(flags_internal::ShortProgramInvocationName());
version_str += "\n";
#if !defined(NDEBUG)
version_str += "Debug build (NDEBUG not #defined)\n";
#endif
return version_str;
}
std::string NormalizeFilename(absl::string_view filename) {
auto pos = filename.find_first_not_of("\\/");
if (pos == absl::string_view::npos) return "";
filename.remove_prefix(pos);
return std::string(filename);
}
ABSL_CONST_INIT absl::Mutex custom_usage_config_guard(absl::kConstInit);
ABSL_CONST_INIT FlagsUsageConfig* custom_usage_config
ABSL_GUARDED_BY(custom_usage_config_guard) = nullptr;
}
FlagsUsageConfig GetUsageConfig() {
absl::MutexLock l(&custom_usage_config_guard);
if (custom_usage_config) return *custom_usage_config;
FlagsUsageConfig default_config;
default_config.contains_helpshort_flags = &ContainsHelpshortFlags;
default_config.contains_help_flags = &ContainsHelppackageFlags;
default_config.contains_helppackage_flags = &ContainsHelppackageFlags;
default_config.version_string = &VersionString;
default_config.normalize_filename = &NormalizeFilename;
return default_config;
}
void ReportUsageError(absl::string_view msg, bool is_fatal) {
std::cerr << "ERROR: " << msg << std::endl;
if (is_fatal) {
ABSL_INTERNAL_C_SYMBOL(AbslInternalReportFatalUsageError)(msg);
}
}
}
void SetFlagsUsageConfig(FlagsUsageConfig usage_config) {
absl::MutexLock l(&flags_internal::custom_usage_config_guard);
if (!usage_config.contains_helpshort_flags)
usage_config.contains_helpshort_flags =
flags_internal::ContainsHelpshortFlags;
if (!usage_config.contains_help_flags)
usage_config.contains_help_flags = flags_internal::ContainsHelppackageFlags;
if (!usage_config.contains_helppackage_flags)
usage_config.contains_helppackage_flags =
flags_internal::ContainsHelppackageFlags;
if (!usage_config.version_string)
usage_config.version_string = flags_internal::VersionString;
if (!usage_config.normalize_filename)
usage_config.normalize_filename = flags_internal::NormalizeFilename;
if (flags_internal::custom_usage_config)
*flags_internal::custom_usage_config = usage_config;
else
flags_internal::custom_usage_config = new FlagsUsageConfig(usage_config);
}
ABSL_NAMESPACE_END
} | #include "absl/flags/usage_config.h"
#include <string>
#include "gtest/gtest.h"
#include "absl/flags/internal/path_util.h"
#include "absl/flags/internal/program_name.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
namespace {
class FlagsUsageConfigTest : public testing::Test {
protected:
void SetUp() override {
absl::FlagsUsageConfig default_config;
absl::SetFlagsUsageConfig(default_config);
}
};
namespace flags = absl::flags_internal;
bool TstContainsHelpshortFlags(absl::string_view f) {
return absl::StartsWith(flags::Basename(f), "progname.");
}
bool TstContainsHelppackageFlags(absl::string_view f) {
return absl::EndsWith(flags::Package(f), "aaa/");
}
bool TstContainsHelpFlags(absl::string_view f) {
return absl::EndsWith(flags::Package(f), "zzz/");
}
std::string TstVersionString() { return "program 1.0.0"; }
std::string TstNormalizeFilename(absl::string_view filename) {
return std::string(filename.substr(2));
}
void TstReportUsageMessage(absl::string_view msg) {}
TEST_F(FlagsUsageConfigTest, TestGetSetFlagsUsageConfig) {
EXPECT_TRUE(flags::GetUsageConfig().contains_helpshort_flags);
EXPECT_TRUE(flags::GetUsageConfig().contains_help_flags);
EXPECT_TRUE(flags::GetUsageConfig().contains_helppackage_flags);
EXPECT_TRUE(flags::GetUsageConfig().version_string);
EXPECT_TRUE(flags::GetUsageConfig().normalize_filename);
absl::FlagsUsageConfig empty_config;
empty_config.contains_helpshort_flags = &TstContainsHelpshortFlags;
empty_config.contains_help_flags = &TstContainsHelpFlags;
empty_config.contains_helppackage_flags = &TstContainsHelppackageFlags;
empty_config.version_string = &TstVersionString;
empty_config.normalize_filename = &TstNormalizeFilename;
absl::SetFlagsUsageConfig(empty_config);
EXPECT_TRUE(flags::GetUsageConfig().contains_helpshort_flags);
EXPECT_TRUE(flags::GetUsageConfig().contains_help_flags);
EXPECT_TRUE(flags::GetUsageConfig().contains_helppackage_flags);
EXPECT_TRUE(flags::GetUsageConfig().version_string);
EXPECT_TRUE(flags::GetUsageConfig().normalize_filename);
}
TEST_F(FlagsUsageConfigTest, TestContainsHelpshortFlags) {
#if defined(_WIN32)
flags::SetProgramInvocationName("usage_config_test.exe");
#else
flags::SetProgramInvocationName("usage_config_test");
#endif
auto config = flags::GetUsageConfig();
EXPECT_TRUE(config.contains_helpshort_flags("adir/cd/usage_config_test.cc"));
EXPECT_TRUE(
config.contains_helpshort_flags("aaaa/usage_config_test-main.cc"));
EXPECT_TRUE(config.contains_helpshort_flags("abc/usage_config_test_main.cc"));
EXPECT_FALSE(config.contains_helpshort_flags("usage_config_main.cc"));
absl::FlagsUsageConfig empty_config;
empty_config.contains_helpshort_flags = &TstContainsHelpshortFlags;
absl::SetFlagsUsageConfig(empty_config);
EXPECT_TRUE(
flags::GetUsageConfig().contains_helpshort_flags("aaa/progname.cpp"));
EXPECT_FALSE(
flags::GetUsageConfig().contains_helpshort_flags("aaa/progmane.cpp"));
}
TEST_F(FlagsUsageConfigTest, TestContainsHelpFlags) {
flags::SetProgramInvocationName("usage_config_test");
auto config = flags::GetUsageConfig();
EXPECT_TRUE(config.contains_help_flags("zzz/usage_config_test.cc"));
EXPECT_TRUE(
config.contains_help_flags("bdir/a/zzz/usage_config_test-main.cc"));
EXPECT_TRUE(
config.contains_help_flags("
EXPECT_FALSE(config.contains_help_flags("zzz/aa/usage_config_main.cc"));
absl::FlagsUsageConfig empty_config;
empty_config.contains_help_flags = &TstContainsHelpFlags;
absl::SetFlagsUsageConfig(empty_config);
EXPECT_TRUE(flags::GetUsageConfig().contains_help_flags("zzz/main-body.c"));
EXPECT_FALSE(
flags::GetUsageConfig().contains_help_flags("zzz/dir/main-body.c"));
}
TEST_F(FlagsUsageConfigTest, TestContainsHelppackageFlags) {
flags::SetProgramInvocationName("usage_config_test");
auto config = flags::GetUsageConfig();
EXPECT_TRUE(config.contains_helppackage_flags("aaa/usage_config_test.cc"));
EXPECT_TRUE(
config.contains_helppackage_flags("bbdir/aaa/usage_config_test-main.cc"));
EXPECT_TRUE(config.contains_helppackage_flags(
"
EXPECT_FALSE(config.contains_helppackage_flags("aadir/usage_config_main.cc"));
absl::FlagsUsageConfig empty_config;
empty_config.contains_helppackage_flags = &TstContainsHelppackageFlags;
absl::SetFlagsUsageConfig(empty_config);
EXPECT_TRUE(
flags::GetUsageConfig().contains_helppackage_flags("aaa/main-body.c"));
EXPECT_FALSE(
flags::GetUsageConfig().contains_helppackage_flags("aadir/main-body.c"));
}
TEST_F(FlagsUsageConfigTest, TestVersionString) {
flags::SetProgramInvocationName("usage_config_test");
#ifdef NDEBUG
std::string expected_output = "usage_config_test\n";
#else
std::string expected_output =
"usage_config_test\nDebug build (NDEBUG not #defined)\n";
#endif
EXPECT_EQ(flags::GetUsageConfig().version_string(), expected_output);
absl::FlagsUsageConfig empty_config;
empty_config.version_string = &TstVersionString;
absl::SetFlagsUsageConfig(empty_config);
EXPECT_EQ(flags::GetUsageConfig().version_string(), "program 1.0.0");
}
TEST_F(FlagsUsageConfigTest, TestNormalizeFilename) {
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("a/a.cc"), "a/a.cc");
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("/a/a.cc"), "a/a.cc");
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("/"), "");
absl::FlagsUsageConfig empty_config;
empty_config.normalize_filename = &TstNormalizeFilename;
absl::SetFlagsUsageConfig(empty_config);
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("a/a.cc"), "a.cc");
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("aaa/a.cc"), "a/a.cc");
empty_config.normalize_filename = nullptr;
absl::SetFlagsUsageConfig(empty_config);
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("a/a.cc"), "a/a.cc");
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("/a/a.cc"), "a/a.cc");
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("\\a\\a.cc"), "a\\a.cc");
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("
EXPECT_EQ(flags::GetUsageConfig().normalize_filename("\\\\"), "");
}
} | 2,500 |
#ifndef ABSL_FLAGS_INTERNAL_PARSE_H_
#define ABSL_FLAGS_INTERNAL_PARSE_H_
#include <iostream>
#include <ostream>
#include <string>
#include <vector>
#include "absl/base/config.h"
#include "absl/flags/declare.h"
#include "absl/flags/internal/usage.h"
#include "absl/strings/string_view.h"
ABSL_DECLARE_FLAG(std::vector<std::string>, flagfile);
ABSL_DECLARE_FLAG(std::vector<std::string>, fromenv);
ABSL_DECLARE_FLAG(std::vector<std::string>, tryfromenv);
ABSL_DECLARE_FLAG(std::vector<std::string>, undefok);
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
enum class UsageFlagsAction { kHandleUsage, kIgnoreUsage };
enum class OnUndefinedFlag {
kIgnoreUndefined,
kReportUndefined,
kAbortIfUndefined
};
std::vector<char*> ParseCommandLineImpl(
int argc, char* argv[], UsageFlagsAction usage_flag_action,
OnUndefinedFlag undef_flag_action,
std::ostream& error_help_output = std::cout);
bool WasPresentOnCommandLine(absl::string_view flag_name);
std::vector<std::string> GetMisspellingHints(absl::string_view flag);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/flags/parse.h"
#include <stdlib.h>
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <ostream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#ifdef _WIN32
#include <windows.h>
#endif
#include "absl/algorithm/container.h"
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/const_init.h"
#include "absl/base/thread_annotations.h"
#include "absl/flags/commandlineflag.h"
#include "absl/flags/config.h"
#include "absl/flags/flag.h"
#include "absl/flags/internal/commandlineflag.h"
#include "absl/flags/internal/flag.h"
#include "absl/flags/internal/parse.h"
#include "absl/flags/internal/private_handle_accessor.h"
#include "absl/flags/internal/program_name.h"
#include "absl/flags/internal/usage.h"
#include "absl/flags/reflection.h"
#include "absl/flags/usage.h"
#include "absl/flags/usage_config.h"
#include "absl/strings/ascii.h"
#include "absl/strings/internal/damerau_levenshtein_distance.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_join.h"
#include "absl/strings/string_view.h"
#include "absl/strings/strip.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
namespace {
ABSL_CONST_INIT absl::Mutex processing_checks_guard(absl::kConstInit);
ABSL_CONST_INIT bool flagfile_needs_processing
ABSL_GUARDED_BY(processing_checks_guard) = false;
ABSL_CONST_INIT bool fromenv_needs_processing
ABSL_GUARDED_BY(processing_checks_guard) = false;
ABSL_CONST_INIT bool tryfromenv_needs_processing
ABSL_GUARDED_BY(processing_checks_guard) = false;
ABSL_CONST_INIT absl::Mutex specified_flags_guard(absl::kConstInit);
ABSL_CONST_INIT std::vector<const CommandLineFlag*>* specified_flags
ABSL_GUARDED_BY(specified_flags_guard) = nullptr;
ABSL_CONST_INIT const size_t kMaxHints = 100;
ABSL_CONST_INIT const size_t kMaxDistance = 3;
struct SpecifiedFlagsCompare {
bool operator()(const CommandLineFlag* a, const CommandLineFlag* b) const {
return a->Name() < b->Name();
}
bool operator()(const CommandLineFlag* a, absl::string_view b) const {
return a->Name() < b;
}
bool operator()(absl::string_view a, const CommandLineFlag* b) const {
return a < b->Name();
}
};
}
}
ABSL_NAMESPACE_END
}
ABSL_FLAG(std::vector<std::string>, flagfile, {},
"comma-separated list of files to load flags from")
.OnUpdate([]() {
if (absl::GetFlag(FLAGS_flagfile).empty()) return;
absl::MutexLock l(&absl::flags_internal::processing_checks_guard);
if (absl::flags_internal::flagfile_needs_processing) {
ABSL_INTERNAL_LOG(WARNING, "flagfile set twice before it is handled");
}
absl::flags_internal::flagfile_needs_processing = true;
});
ABSL_FLAG(std::vector<std::string>, fromenv, {},
"comma-separated list of flags to set from the environment"
" [use 'export FLAGS_flag1=value']")
.OnUpdate([]() {
if (absl::GetFlag(FLAGS_fromenv).empty()) return;
absl::MutexLock l(&absl::flags_internal::processing_checks_guard);
if (absl::flags_internal::fromenv_needs_processing) {
ABSL_INTERNAL_LOG(WARNING, "fromenv set twice before it is handled.");
}
absl::flags_internal::fromenv_needs_processing = true;
});
ABSL_FLAG(std::vector<std::string>, tryfromenv, {},
"comma-separated list of flags to try to set from the environment if "
"present")
.OnUpdate([]() {
if (absl::GetFlag(FLAGS_tryfromenv).empty()) return;
absl::MutexLock l(&absl::flags_internal::processing_checks_guard);
if (absl::flags_internal::tryfromenv_needs_processing) {
ABSL_INTERNAL_LOG(WARNING,
"tryfromenv set twice before it is handled.");
}
absl::flags_internal::tryfromenv_needs_processing = true;
});
ABSL_FLAG(std::vector<std::string>, undefok, {},
"comma-separated list of flag names that it is okay to specify "
"on the command line even if the program does not define a flag "
"with that name");
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
namespace {
class ArgsList {
public:
ArgsList() : next_arg_(0) {}
ArgsList(int argc, char* argv[]) : args_(argv, argv + argc), next_arg_(0) {}
explicit ArgsList(const std::vector<std::string>& args)
: args_(args), next_arg_(0) {}
bool ReadFromFlagfile(const std::string& flag_file_name);
size_t Size() const { return args_.size() - next_arg_; }
size_t FrontIndex() const { return next_arg_; }
absl::string_view Front() const { return args_[next_arg_]; }
void PopFront() { next_arg_++; }
private:
std::vector<std::string> args_;
size_t next_arg_;
};
bool ArgsList::ReadFromFlagfile(const std::string& flag_file_name) {
std::ifstream flag_file(flag_file_name);
if (!flag_file) {
flags_internal::ReportUsageError(
absl::StrCat("Can't open flagfile ", flag_file_name), true);
return false;
}
args_.emplace_back("");
std::string line;
bool success = true;
while (std::getline(flag_file, line)) {
absl::string_view stripped = absl::StripLeadingAsciiWhitespace(line);
if (stripped.empty() || stripped[0] == '#') {
continue;
}
if (stripped[0] == '-') {
if (stripped == "--") {
flags_internal::ReportUsageError(
"Flagfile can't contain position arguments or --", true);
success = false;
break;
}
args_.emplace_back(stripped);
continue;
}
flags_internal::ReportUsageError(
absl::StrCat("Unexpected line in the flagfile ", flag_file_name, ": ",
line),
true);
success = false;
}
return success;
}
bool GetEnvVar(const char* var_name, std::string& var_value) {
#ifdef _WIN32
char buf[1024];
auto get_res = GetEnvironmentVariableA(var_name, buf, sizeof(buf));
if (get_res >= sizeof(buf)) {
return false;
}
if (get_res == 0) {
return false;
}
var_value = std::string(buf, get_res);
#else
const char* val = ::getenv(var_name);
if (val == nullptr) {
return false;
}
var_value = val;
#endif
return true;
}
std::tuple<absl::string_view, absl::string_view, bool> SplitNameAndValue(
absl::string_view arg) {
absl::ConsumePrefix(&arg, "-");
if (arg.empty()) {
return std::make_tuple("", "", false);
}
auto equal_sign_pos = arg.find('=');
absl::string_view flag_name = arg.substr(0, equal_sign_pos);
absl::string_view value;
bool is_empty_value = false;
if (equal_sign_pos != absl::string_view::npos) {
value = arg.substr(equal_sign_pos + 1);
is_empty_value = value.empty();
}
return std::make_tuple(flag_name, value, is_empty_value);
}
std::tuple<CommandLineFlag*, bool> LocateFlag(absl::string_view flag_name) {
CommandLineFlag* flag = absl::FindCommandLineFlag(flag_name);
bool is_negative = false;
if (!flag && absl::ConsumePrefix(&flag_name, "no")) {
flag = absl::FindCommandLineFlag(flag_name);
is_negative = true;
}
return std::make_tuple(flag, is_negative);
}
void CheckDefaultValuesParsingRoundtrip() {
#ifndef NDEBUG
flags_internal::ForEachFlag([&](CommandLineFlag& flag) {
if (flag.IsRetired()) return;
#define ABSL_FLAGS_INTERNAL_IGNORE_TYPE(T, _) \
if (flag.IsOfType<T>()) return;
ABSL_FLAGS_INTERNAL_SUPPORTED_TYPES(ABSL_FLAGS_INTERNAL_IGNORE_TYPE)
#undef ABSL_FLAGS_INTERNAL_IGNORE_TYPE
flags_internal::PrivateHandleAccessor::CheckDefaultValueParsingRoundtrip(
flag);
});
#endif
}
bool ReadFlagfiles(const std::vector<std::string>& flagfiles,
std::vector<ArgsList>& input_args) {
bool success = true;
for (auto it = flagfiles.rbegin(); it != flagfiles.rend(); ++it) {
ArgsList al;
if (al.ReadFromFlagfile(*it)) {
input_args.push_back(al);
} else {
success = false;
}
}
return success;
}
bool ReadFlagsFromEnv(const std::vector<std::string>& flag_names,
std::vector<ArgsList>& input_args,
bool fail_on_absent_in_env) {
bool success = true;
std::vector<std::string> args;
args.emplace_back("");
for (const auto& flag_name : flag_names) {
if (flag_name == "fromenv" || flag_name == "tryfromenv") {
flags_internal::ReportUsageError(
absl::StrCat("Infinite recursion on flag ", flag_name), true);
success = false;
continue;
}
const std::string envname = absl::StrCat("FLAGS_", flag_name);
std::string envval;
if (!GetEnvVar(envname.c_str(), envval)) {
if (fail_on_absent_in_env) {
flags_internal::ReportUsageError(
absl::StrCat(envname, " not found in environment"), true);
success = false;
}
continue;
}
args.push_back(absl::StrCat("--", flag_name, "=", envval));
}
if (success) {
input_args.emplace_back(args);
}
return success;
}
bool HandleGeneratorFlags(std::vector<ArgsList>& input_args,
std::vector<std::string>& flagfile_value) {
bool success = true;
absl::MutexLock l(&flags_internal::processing_checks_guard);
if (flags_internal::flagfile_needs_processing) {
auto flagfiles = absl::GetFlag(FLAGS_flagfile);
if (input_args.size() == 1) {
flagfile_value.insert(flagfile_value.end(), flagfiles.begin(),
flagfiles.end());
}
success &= ReadFlagfiles(flagfiles, input_args);
flags_internal::flagfile_needs_processing = false;
}
if (flags_internal::fromenv_needs_processing) {
auto flags_list = absl::GetFlag(FLAGS_fromenv);
success &= ReadFlagsFromEnv(flags_list, input_args, true);
flags_internal::fromenv_needs_processing = false;
}
if (flags_internal::tryfromenv_needs_processing) {
auto flags_list = absl::GetFlag(FLAGS_tryfromenv);
success &= ReadFlagsFromEnv(flags_list, input_args, false);
flags_internal::tryfromenv_needs_processing = false;
}
return success;
}
void ResetGeneratorFlags(const std::vector<std::string>& flagfile_value) {
if (!flagfile_value.empty()) {
absl::SetFlag(&FLAGS_flagfile, flagfile_value);
absl::MutexLock l(&flags_internal::processing_checks_guard);
flags_internal::flagfile_needs_processing = false;
}
if (!absl::GetFlag(FLAGS_fromenv).empty()) {
absl::SetFlag(&FLAGS_fromenv, {});
}
if (!absl::GetFlag(FLAGS_tryfromenv).empty()) {
absl::SetFlag(&FLAGS_tryfromenv, {});
}
absl::MutexLock l(&flags_internal::processing_checks_guard);
flags_internal::fromenv_needs_processing = false;
flags_internal::tryfromenv_needs_processing = false;
}
std::tuple<bool, absl::string_view> DeduceFlagValue(const CommandLineFlag& flag,
absl::string_view value,
bool is_negative,
bool is_empty_value,
ArgsList* curr_list) {
if (flag.IsOfType<bool>()) {
if (value.empty()) {
if (is_empty_value) {
flags_internal::ReportUsageError(
absl::StrCat(
"Missing the value after assignment for the boolean flag '",
flag.Name(), "'"),
true);
return std::make_tuple(false, "");
}
value = is_negative ? "0" : "1";
} else if (is_negative) {
flags_internal::ReportUsageError(
absl::StrCat("Negative form with assignment is not valid for the "
"boolean flag '",
flag.Name(), "'"),
true);
return std::make_tuple(false, "");
}
} else if (is_negative) {
flags_internal::ReportUsageError(
absl::StrCat("Negative form is not valid for the flag '", flag.Name(),
"'"),
true);
return std::make_tuple(false, "");
} else if (value.empty() && (!is_empty_value)) {
if (curr_list->Size() == 1) {
flags_internal::ReportUsageError(
absl::StrCat("Missing the value for the flag '", flag.Name(), "'"),
true);
return std::make_tuple(false, "");
}
curr_list->PopFront();
value = curr_list->Front();
if (!value.empty() && value[0] == '-' && flag.IsOfType<std::string>()) {
auto maybe_flag_name = std::get<0>(SplitNameAndValue(value.substr(1)));
if (maybe_flag_name.empty() ||
std::get<0>(LocateFlag(maybe_flag_name)) != nullptr) {
ABSL_INTERNAL_LOG(
WARNING,
absl::StrCat("Did you really mean to set flag '", flag.Name(),
"' to the value '", value, "'?"));
}
}
}
return std::make_tuple(true, value);
}
bool CanIgnoreUndefinedFlag(absl::string_view flag_name) {
auto undefok = absl::GetFlag(FLAGS_undefok);
if (std::find(undefok.begin(), undefok.end(), flag_name) != undefok.end()) {
return true;
}
if (absl::ConsumePrefix(&flag_name, "no") &&
std::find(undefok.begin(), undefok.end(), flag_name) != undefok.end()) {
return true;
}
return false;
}
void ReportUnrecognizedFlags(
const std::vector<UnrecognizedFlag>& unrecognized_flags,
bool report_as_fatal_error) {
for (const auto& unrecognized : unrecognized_flags) {
std::vector<std::string> misspelling_hints;
if (unrecognized.source == UnrecognizedFlag::kFromArgv) {
misspelling_hints =
flags_internal::GetMisspellingHints(unrecognized.flag_name);
}
if (misspelling_hints.empty()) {
flags_internal::ReportUsageError(
absl::StrCat("Unknown command line flag '", unrecognized.flag_name,
"'"),
report_as_fatal_error);
} else {
flags_internal::ReportUsageError(
absl::StrCat("Unknown command line flag '", unrecognized.flag_name,
"'. Did you mean: ",
absl::StrJoin(misspelling_hints, ", "), " ?"),
report_as_fatal_error);
}
}
}
}
bool WasPresentOnCommandLine(absl::string_view flag_name) {
absl::ReaderMutexLock l(&specified_flags_guard);
ABSL_INTERNAL_CHECK(specified_flags != nullptr,
"ParseCommandLine is not invoked yet");
return std::binary_search(specified_flags->begin(), specified_flags->end(),
flag_name, SpecifiedFlagsCompare{});
}
struct BestHints {
explicit BestHints(uint8_t _max) : best_distance(_max + 1) {}
bool AddHint(absl::string_view hint, uint8_t distance) {
if (hints.size() >= kMaxHints) return false;
if (distance == best_distance) {
hints.emplace_back(hint);
}
if (distance < best_distance) {
best_distance = distance;
hints = std::vector<std::string>{std::string(hint)};
}
return true;
}
uint8_t best_distance;
std::vector<std::string> hints;
};
std::vector<std::string> GetMisspellingHints(const absl::string_view flag) {
const size_t maxCutoff = std::min(flag.size() / 2 + 1, kMaxDistance);
auto undefok = absl::GetFlag(FLAGS_undefok);
BestHints best_hints(static_cast<uint8_t>(maxCutoff));
flags_internal::ForEachFlag([&](const CommandLineFlag& f) {
if (best_hints.hints.size() >= kMaxHints) return;
uint8_t distance = strings_internal::CappedDamerauLevenshteinDistance(
flag, f.Name(), best_hints.best_distance);
best_hints.AddHint(f.Name(), distance);
if (f.IsOfType<bool>()) {
const std::string negated_flag = absl::StrCat("no", f.Name());
distance = strings_internal::CappedDamerauLevenshteinDistance(
flag, negated_flag, best_hints.best_distance);
best_hints.AddHint(negated_flag, distance);
}
});
absl::c_for_each(undefok, [&](const absl::string_view f) {
if (best_hints.hints.size() >= kMaxHints) return;
uint8_t distance = strings_internal::CappedDamerauLevenshteinDistance(
flag, f, best_hints.best_distance);
best_hints.AddHint(absl::StrCat(f, " (undefok)"), distance);
});
return best_hints.hints;
}
std::vector<char*> ParseCommandLineImpl(int argc, char* argv[],
UsageFlagsAction usage_flag_action,
OnUndefinedFlag undef_flag_action,
std::ostream& error_help_output) {
std::vector<char*> positional_args;
std::vector<UnrecognizedFlag> unrecognized_flags;
auto help_mode = flags_internal::ParseAbseilFlagsOnlyImpl(
argc, argv, positional_args, unrecognized_flags, usage_flag_action);
if (undef_flag_action != OnUndefinedFlag::kIgnoreUndefined) {
flags_internal::ReportUnrecognizedFlags(
unrecognized_flags,
(undef_flag_action == OnUndefinedFlag::kAbortIfUndefined));
if (undef_flag_action == OnUndefinedFlag::kAbortIfUndefined) {
if (!unrecognized_flags.empty()) {
flags_internal::HandleUsageFlags(error_help_output,
ProgramUsageMessage()); std::exit(1);
}
}
}
flags_internal::MaybeExit(help_mode);
return positional_args;
}
HelpMode ParseAbseilFlagsOnlyImpl(
int argc, char* argv[], std::vector<char*>& positional_args,
std::vector<UnrecognizedFlag>& unrecognized_flags,
UsageFlagsAction usage_flag_action) {
ABSL_INTERNAL_CHECK(argc > 0, "Missing argv[0]");
using flags_internal::ArgsList;
using flags_internal::specified_flags;
std::vector<std::string> flagfile_value;
std::vector<ArgsList> input_args;
flags_internal::FinalizeRegistry();
flags_internal::CheckDefaultValuesParsingRoundtrip();
input_args.push_back(ArgsList(argc, argv));
if (flags_internal::ProgramInvocationName() == "UNKNOWN") {
flags_internal::SetProgramInvocationName(argv[0]);
}
positional_args.push_back(argv[0]);
absl::MutexLock l(&flags_internal::specified_flags_guard);
if (specified_flags == nullptr) {
specified_flags = new std::vector<const CommandLineFlag*>;
} else {
specified_flags->clear();
}
bool success = true;
while (!input_args.empty()) {
success &= flags_internal::HandleGeneratorFlags(input_args, flagfile_value);
ArgsList& curr_list = input_args.back();
curr_list.PopFront();
if (curr_list.Size() == 0) {
input_args.pop_back();
continue;
}
absl::string_view arg(curr_list.Front());
bool arg_from_argv = input_args.size() == 1;
if (!absl::ConsumePrefix(&arg, "-") || arg.empty()) {
ABSL_INTERNAL_CHECK(arg_from_argv,
"Flagfile cannot contain positional argument");
positional_args.push_back(argv[curr_list.FrontIndex()]);
continue;
}
absl::string_view flag_name;
absl::string_view value;
bool is_empty_value = false;
std::tie(flag_name, value, is_empty_value) =
flags_internal::SplitNameAndValue(arg);
if (flag_name.empty()) {
ABSL_INTERNAL_CHECK(arg_from_argv,
"Flagfile cannot contain positional argument");
curr_list.PopFront();
break;
}
CommandLineFlag* flag = nullptr;
bool is_negative = false;
std::tie(flag, is_negative) = flags_internal::LocateFlag(flag_name);
if (flag == nullptr) {
if (flags_internal::DeduceUsageFlags(flag_name, value)) {
continue;
}
unrecognized_flags.emplace_back(arg_from_argv
? UnrecognizedFlag::kFromArgv
: UnrecognizedFlag::kFromFlagfile,
flag_name);
continue;
}
bool value_success = true;
std::tie(value_success, value) = flags_internal::DeduceFlagValue(
*flag, value, is_negative, is_empty_value, &curr_list);
success &= value_success;
std::string error;
if (!flags_internal::PrivateHandleAccessor::ParseFrom(
*flag, value, flags_internal::SET_FLAGS_VALUE,
flags_internal::kCommandLine, error)) {
if (flag->IsRetired()) continue;
flags_internal::ReportUsageError(error, true);
success = false;
} else {
specified_flags->push_back(flag);
}
}
flags_internal::ResetGeneratorFlags(flagfile_value);
if (!input_args.empty()) {
for (size_t arg_index = i | #include "absl/flags/parse.h"
#include <stdlib.h>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/scoped_set_env.h"
#include "absl/flags/config.h"
#include "absl/flags/flag.h"
#include "absl/flags/internal/parse.h"
#include "absl/flags/internal/usage.h"
#include "absl/flags/reflection.h"
#include "absl/log/log.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/strings/substitute.h"
#include "absl/types/span.h"
#ifdef _WIN32
#include <windows.h>
#endif
#define FLAG_MULT(x) F3(x)
#define TEST_FLAG_HEADER FLAG_HEADER_
#define F(name) ABSL_FLAG(int, name, 0, "")
#define F1(name) \
F(name##1); \
F(name##2); \
F(name##3); \
F(name##4); \
F(name##5)
#define F2(name) \
F1(name##1); \
F1(name##2); \
F1(name##3); \
F1(name##4); \
F1(name##5)
#define F3(name) \
F2(name##1); \
F2(name##2); \
F2(name##3); \
F2(name##4); \
F2(name##5)
FLAG_MULT(TEST_FLAG_HEADER);
namespace {
using absl::base_internal::ScopedSetEnv;
struct UDT {
UDT() = default;
UDT(const UDT&) = default;
UDT& operator=(const UDT&) = default;
UDT(int v) : value(v) {}
int value;
};
bool AbslParseFlag(absl::string_view in, UDT* udt, std::string* err) {
if (in == "A") {
udt->value = 1;
return true;
}
if (in == "AAA") {
udt->value = 10;
return true;
}
*err = "Use values A, AAA instead";
return false;
}
std::string AbslUnparseFlag(const UDT& udt) {
return udt.value == 1 ? "A" : "AAA";
}
std::string GetTestTmpDirEnvVar(const char* const env_var_name) {
#ifdef _WIN32
char buf[MAX_PATH];
auto get_res = GetEnvironmentVariableA(env_var_name, buf, sizeof(buf));
if (get_res >= sizeof(buf) || get_res == 0) {
return "";
}
return std::string(buf, get_res);
#else
const char* val = ::getenv(env_var_name);
if (val == nullptr) {
return "";
}
return val;
#endif
}
const std::string& GetTestTempDir() {
static std::string* temp_dir_name = []() -> std::string* {
std::string* res = new std::string(GetTestTmpDirEnvVar("TEST_TMPDIR"));
if (res->empty()) {
*res = GetTestTmpDirEnvVar("TMPDIR");
}
if (res->empty()) {
#ifdef _WIN32
char temp_path_buffer[MAX_PATH];
auto len = GetTempPathA(MAX_PATH, temp_path_buffer);
if (len < MAX_PATH && len != 0) {
std::string temp_dir_name = temp_path_buffer;
if (!absl::EndsWith(temp_dir_name, "\\")) {
temp_dir_name.push_back('\\');
}
absl::StrAppend(&temp_dir_name, "parse_test.", GetCurrentProcessId());
if (CreateDirectoryA(temp_dir_name.c_str(), nullptr)) {
*res = temp_dir_name;
}
}
#else
char temp_dir_template[] = "/tmp/parse_test.XXXXXX";
if (auto* unique_name = ::mkdtemp(temp_dir_template)) {
*res = unique_name;
}
#endif
}
if (res->empty()) {
LOG(FATAL) << "Failed to make temporary directory for data files";
}
#ifdef _WIN32
*res += "\\";
#else
*res += "/";
#endif
return res;
}();
return *temp_dir_name;
}
struct FlagfileData {
const absl::string_view file_name;
const absl::Span<const char* const> file_lines;
};
constexpr const char* const ff1_data[] = {
"# comment ",
" # comment ",
"",
" ",
"--int_flag=-1",
" --string_flag=q2w2 ",
" ## ",
" --double_flag=0.1",
"--bool_flag=Y "
};
constexpr const char* const ff2_data[] = {
"# Setting legacy flag",
"--legacy_int=1111",
"--legacy_bool",
"--nobool_flag",
"--legacy_str=aqsw",
"--int_flag=100",
" ## ============="
};
const char* GetFlagfileFlag(const std::vector<FlagfileData>& ffd,
std::string& flagfile_flag) {
flagfile_flag = "--flagfile=";
absl::string_view separator;
for (const auto& flagfile_data : ffd) {
std::string flagfile_name =
absl::StrCat(GetTestTempDir(), flagfile_data.file_name);
std::ofstream flagfile_out(flagfile_name);
for (auto line : flagfile_data.file_lines) {
flagfile_out << absl::Substitute(line, GetTestTempDir()) << "\n";
}
absl::StrAppend(&flagfile_flag, separator, flagfile_name);
separator = ",";
}
return flagfile_flag.c_str();
}
}
ABSL_FLAG(int, int_flag, 1, "");
ABSL_FLAG(double, double_flag, 1.1, "");
ABSL_FLAG(std::string, string_flag, "a", "");
ABSL_FLAG(bool, bool_flag, false, "");
ABSL_FLAG(UDT, udt_flag, -1, "");
ABSL_RETIRED_FLAG(int, legacy_int, 1, "");
ABSL_RETIRED_FLAG(bool, legacy_bool, false, "");
ABSL_RETIRED_FLAG(std::string, legacy_str, "l", "");
namespace {
namespace flags = absl::flags_internal;
using testing::AllOf;
using testing::ElementsAreArray;
using testing::HasSubstr;
class ParseTest : public testing::Test {
public:
~ParseTest() override { flags::SetFlagsHelpMode(flags::HelpMode::kNone); }
void SetUp() override {
#if ABSL_FLAGS_STRIP_NAMES
GTEST_SKIP() << "This test requires flag names to be present";
#endif
}
private:
absl::FlagSaver flag_saver_;
};
template <int N>
flags::HelpMode InvokeParseAbslOnlyImpl(const char* (&in_argv)[N]) {
std::vector<char*> positional_args;
std::vector<absl::UnrecognizedFlag> unrecognized_flags;
return flags::ParseAbseilFlagsOnlyImpl(N, const_cast<char**>(in_argv),
positional_args, unrecognized_flags,
flags::UsageFlagsAction::kHandleUsage);
}
template <int N>
void InvokeParseAbslOnly(const char* (&in_argv)[N]) {
std::vector<char*> positional_args;
std::vector<absl::UnrecognizedFlag> unrecognized_flags;
absl::ParseAbseilFlagsOnly(2, const_cast<char**>(in_argv), positional_args,
unrecognized_flags);
}
template <int N>
std::vector<char*> InvokeParseCommandLineImpl(const char* (&in_argv)[N]) {
return flags::ParseCommandLineImpl(
N, const_cast<char**>(in_argv), flags::UsageFlagsAction::kHandleUsage,
flags::OnUndefinedFlag::kAbortIfUndefined, std::cerr);
}
template <int N>
std::vector<char*> InvokeParse(const char* (&in_argv)[N]) {
return absl::ParseCommandLine(N, const_cast<char**>(in_argv));
}
template <int N>
void TestParse(const char* (&in_argv)[N], int int_flag_value,
double double_flag_val, absl::string_view string_flag_val,
bool bool_flag_val, int exp_position_args = 0) {
auto out_args = InvokeParse(in_argv);
EXPECT_EQ(out_args.size(), 1 + exp_position_args);
EXPECT_STREQ(out_args[0], "testbin");
EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), int_flag_value);
EXPECT_NEAR(absl::GetFlag(FLAGS_double_flag), double_flag_val, 0.0001);
EXPECT_EQ(absl::GetFlag(FLAGS_string_flag), string_flag_val);
EXPECT_EQ(absl::GetFlag(FLAGS_bool_flag), bool_flag_val);
}
TEST_F(ParseTest, TestEmptyArgv) {
const char* in_argv[] = {"testbin"};
auto out_args = InvokeParse(in_argv);
EXPECT_EQ(out_args.size(), 1);
EXPECT_STREQ(out_args[0], "testbin");
}
TEST_F(ParseTest, TestValidIntArg) {
const char* in_args1[] = {
"testbin",
"--int_flag=10",
};
TestParse(in_args1, 10, 1.1, "a", false);
const char* in_args2[] = {
"testbin",
"-int_flag=020",
};
TestParse(in_args2, 20, 1.1, "a", false);
const char* in_args3[] = {
"testbin",
"--int_flag",
"-30",
};
TestParse(in_args3, -30, 1.1, "a", false);
const char* in_args4[] = {
"testbin",
"-int_flag",
"0x21",
};
TestParse(in_args4, 33, 1.1, "a", false);
}
TEST_F(ParseTest, TestValidDoubleArg) {
const char* in_args1[] = {
"testbin",
"--double_flag=2.3",
};
TestParse(in_args1, 1, 2.3, "a", false);
const char* in_args2[] = {
"testbin",
"--double_flag=0x1.2",
};
TestParse(in_args2, 1, 1.125, "a", false);
const char* in_args3[] = {
"testbin",
"--double_flag",
"99.7",
};
TestParse(in_args3, 1, 99.7, "a", false);
const char* in_args4[] = {
"testbin",
"--double_flag",
"0x20.1",
};
TestParse(in_args4, 1, 32.0625, "a", false);
}
TEST_F(ParseTest, TestValidStringArg) {
const char* in_args1[] = {
"testbin",
"--string_flag=aqswde",
};
TestParse(in_args1, 1, 1.1, "aqswde", false);
const char* in_args2[] = {
"testbin",
"-string_flag=a=b=c",
};
TestParse(in_args2, 1, 1.1, "a=b=c", false);
const char* in_args3[] = {
"testbin",
"--string_flag",
"zaxscd",
};
TestParse(in_args3, 1, 1.1, "zaxscd", false);
const char* in_args4[] = {
"testbin",
"-string_flag",
"--int_flag",
};
TestParse(in_args4, 1, 1.1, "--int_flag", false);
const char* in_args5[] = {
"testbin",
"--string_flag",
"--no_a_flag=11",
};
TestParse(in_args5, 1, 1.1, "--no_a_flag=11", false);
}
TEST_F(ParseTest, TestValidBoolArg) {
const char* in_args1[] = {
"testbin",
"--bool_flag",
};
TestParse(in_args1, 1, 1.1, "a", true);
const char* in_args2[] = {
"testbin",
"--nobool_flag",
};
TestParse(in_args2, 1, 1.1, "a", false);
const char* in_args3[] = {
"testbin",
"--bool_flag=true",
};
TestParse(in_args3, 1, 1.1, "a", true);
const char* in_args4[] = {
"testbin",
"-bool_flag=false",
};
TestParse(in_args4, 1, 1.1, "a", false);
}
TEST_F(ParseTest, TestValidUDTArg) {
const char* in_args1[] = {
"testbin",
"--udt_flag=A",
};
InvokeParse(in_args1);
EXPECT_EQ(absl::GetFlag(FLAGS_udt_flag).value, 1);
const char* in_args2[] = {"testbin", "--udt_flag", "AAA"};
InvokeParse(in_args2);
EXPECT_EQ(absl::GetFlag(FLAGS_udt_flag).value, 10);
}
TEST_F(ParseTest, TestValidMultipleArg) {
const char* in_args1[] = {
"testbin", "--bool_flag", "--int_flag=2",
"--double_flag=0.1", "--string_flag=asd",
};
TestParse(in_args1, 2, 0.1, "asd", true);
const char* in_args2[] = {
"testbin", "--string_flag=", "--nobool_flag", "--int_flag",
"-011", "--double_flag", "-1e-2",
};
TestParse(in_args2, -11, -0.01, "", false);
const char* in_args3[] = {
"testbin", "--int_flag", "-0", "--string_flag", "\"\"",
"--bool_flag=true", "--double_flag=1e18",
};
TestParse(in_args3, 0, 1e18, "\"\"", true);
}
TEST_F(ParseTest, TestPositionalArgs) {
const char* in_args1[] = {
"testbin",
"p1",
"p2",
};
TestParse(in_args1, 1, 1.1, "a", false, 2);
auto out_args1 = InvokeParse(in_args1);
EXPECT_STREQ(out_args1[1], "p1");
EXPECT_STREQ(out_args1[2], "p2");
const char* in_args2[] = {
"testbin",
"--int_flag=2",
"p1",
};
TestParse(in_args2, 2, 1.1, "a", false, 1);
auto out_args2 = InvokeParse(in_args2);
EXPECT_STREQ(out_args2[1], "p1");
const char* in_args3[] = {"testbin", "p1", "--int_flag=3",
"p2", "--bool_flag", "true"};
TestParse(in_args3, 3, 1.1, "a", true, 3);
auto out_args3 = InvokeParse(in_args3);
EXPECT_STREQ(out_args3[1], "p1");
EXPECT_STREQ(out_args3[2], "p2");
EXPECT_STREQ(out_args3[3], "true");
const char* in_args4[] = {
"testbin",
"--",
"p1",
"p2",
};
TestParse(in_args4, 3, 1.1, "a", true, 2);
auto out_args4 = InvokeParse(in_args4);
EXPECT_STREQ(out_args4[1], "p1");
EXPECT_STREQ(out_args4[2], "p2");
const char* in_args5[] = {
"testbin", "p1", "--int_flag=4", "--", "--bool_flag", "false", "p2",
};
TestParse(in_args5, 4, 1.1, "a", true, 4);
auto out_args5 = InvokeParse(in_args5);
EXPECT_STREQ(out_args5[1], "p1");
EXPECT_STREQ(out_args5[2], "--bool_flag");
EXPECT_STREQ(out_args5[3], "false");
EXPECT_STREQ(out_args5[4], "p2");
}
using ParseDeathTest = ParseTest;
TEST_F(ParseDeathTest, TestUndefinedArg) {
const char* in_args1[] = {
"testbin",
"--undefined_flag",
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1),
"Unknown command line flag 'undefined_flag'");
const char* in_args2[] = {
"testbin",
"--noprefixed_flag",
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args2),
"Unknown command line flag 'noprefixed_flag'");
const char* in_args3[] = {
"testbin",
"--Int_flag=1",
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args3),
"Unknown command line flag 'Int_flag'");
}
TEST_F(ParseDeathTest, TestInvalidBoolFlagFormat) {
const char* in_args1[] = {
"testbin",
"--bool_flag=",
};
EXPECT_DEATH_IF_SUPPORTED(
InvokeParse(in_args1),
"Missing the value after assignment for the boolean flag 'bool_flag'");
const char* in_args2[] = {
"testbin",
"--nobool_flag=true",
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args2),
"Negative form with assignment is not valid for the boolean "
"flag 'bool_flag'");
}
TEST_F(ParseDeathTest, TestInvalidNonBoolFlagFormat) {
const char* in_args1[] = {
"testbin",
"--nostring_flag",
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1),
"Negative form is not valid for the flag 'string_flag'");
const char* in_args2[] = {
"testbin",
"--int_flag",
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args2),
"Missing the value for the flag 'int_flag'");
}
TEST_F(ParseDeathTest, TestInvalidUDTFlagFormat) {
const char* in_args1[] = {
"testbin",
"--udt_flag=1",
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1),
"Illegal value '1' specified for flag 'udt_flag'; Use values A, "
"AAA instead");
const char* in_args2[] = {
"testbin",
"--udt_flag",
"AA",
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args2),
"Illegal value 'AA' specified for flag 'udt_flag'; Use values "
"A, AAA instead");
}
TEST_F(ParseDeathTest, TestFlagSuggestions) {
const char* in_args1[] = {
"testbin",
"--legacy_boo",
};
EXPECT_DEATH_IF_SUPPORTED(
InvokeParse(in_args1),
"Unknown command line flag 'legacy_boo'. Did you mean: legacy_bool ?");
const char* in_args2[] = {"testbin", "--foo", "--undefok=foo1"};
EXPECT_DEATH_IF_SUPPORTED(
InvokeParse(in_args2),
"Unknown command line flag 'foo'. Did you mean: foo1 \\(undefok\\)?");
const char* in_args3[] = {
"testbin",
"--nolegacy_ino",
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args3),
"Unknown command line flag 'nolegacy_ino'. Did "
"you mean: nolegacy_bool, legacy_int ?");
}
TEST_F(ParseTest, GetHints) {
EXPECT_THAT(absl::flags_internal::GetMisspellingHints("legacy_boo"),
testing::ContainerEq(std::vector<std::string>{"legacy_bool"}));
EXPECT_THAT(absl::flags_internal::GetMisspellingHints("nolegacy_itn"),
testing::ContainerEq(std::vector<std::string>{"legacy_int"}));
EXPECT_THAT(absl::flags_internal::GetMisspellingHints("nolegacy_int1"),
testing::ContainerEq(std::vector<std::string>{"legacy_int"}));
EXPECT_THAT(absl::flags_internal::GetMisspellingHints("nolegacy_int"),
testing::ContainerEq(std::vector<std::string>{"legacy_int"}));
EXPECT_THAT(absl::flags_internal::GetMisspellingHints("nolegacy_ino"),
testing::ContainerEq(
std::vector<std::string>{"nolegacy_bool", "legacy_int"}));
EXPECT_THAT(
absl::flags_internal::GetMisspellingHints("FLAG_HEADER_000").size(), 100);
}
TEST_F(ParseTest, TestLegacyFlags) {
const char* in_args1[] = {
"testbin",
"--legacy_int=11",
};
TestParse(in_args1, 1, 1.1, "a", false);
const char* in_args2[] = {
"testbin",
"--legacy_bool",
};
TestParse(in_args2, 1, 1.1, "a", false);
const char* in_args3[] = {
"testbin", "--legacy_int", "22", "--int_flag=2",
"--legacy_bool", "true", "--legacy_str", "--string_flag=qwe",
};
TestParse(in_args3, 2, 1.1, "a", false, 1);
}
TEST_F(ParseTest, TestSimpleValidFlagfile) {
std::string flagfile_flag;
const char* in_args1[] = {
"testbin",
GetFlagfileFlag({{"parse_test.ff1", absl::MakeConstSpan(ff1_data)}},
flagfile_flag),
};
TestParse(in_args1, -1, 0.1, "q2w2 ", true);
const char* in_args2[] = {
"testbin",
GetFlagfileFlag({{"parse_test.ff2", absl::MakeConstSpan(ff2_data)}},
flagfile_flag),
};
TestParse(in_args2, 100, 0.1, "q2w2 ", false);
}
TEST_F(ParseTest, TestValidMultiFlagfile) {
std::string flagfile_flag;
const char* in_args1[] = {
"testbin",
GetFlagfileFlag({{"parse_test.ff2", absl::MakeConstSpan(ff2_data)},
{"parse_test.ff1", absl::MakeConstSpan(ff1_data)}},
flagfile_flag),
};
TestParse(in_args1, -1, 0.1, "q2w2 ", true);
}
TEST_F(ParseTest, TestFlagfileMixedWithRegularFlags) {
std::string flagfile_flag;
const char* in_args1[] = {
"testbin", "--int_flag=3",
GetFlagfileFlag({{"parse_test.ff1", absl::MakeConstSpan(ff1_data)}},
flagfile_flag),
"-double_flag=0.2"};
TestParse(in_args1, -1, 0.2, "q2w2 ", true);
}
TEST_F(ParseTest, TestFlagfileInFlagfile) {
std::string flagfile_flag;
constexpr const char* const ff3_data[] = {
"--flagfile=$0/parse_test.ff1",
"--flagfile=$0/parse_test.ff2",
};
GetFlagfileFlag({{"parse_test.ff2", absl::MakeConstSpan(ff2_data)},
{"parse_test.ff1", absl::MakeConstSpan(ff1_data)}},
flagfile_flag);
const char* in_args1[] = {
"testbin",
GetFlagfileFlag({{"parse_test.ff3", absl::MakeConstSpan(ff3_data)}},
flagfile_flag),
};
TestParse(in_args1, 100, 0.1, "q2w2 ", false);
}
TEST_F(ParseDeathTest, TestInvalidFlagfiles) {
std::string flagfile_flag;
constexpr const char* const ff4_data[] = {
"--unknown_flag=10"
};
const char* in_args1[] = {
"testbin",
GetFlagfileFlag({{"parse_test.ff4",
absl::MakeConstSpan(ff4_data)}}, flagfile_flag),
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1),
"Unknown command line flag 'unknown_flag'");
constexpr const char* const ff5_data[] = {
"--int_flag 10",
};
const char* in_args2[] = {
"testbin",
GetFlagfileFlag({{"parse_test.ff5",
absl::MakeConstSpan(ff5_data)}}, flagfile_flag),
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args2),
"Unknown command line flag 'int_flag 10'");
constexpr const char* const ff6_data[] = {
"--int_flag=10", "--", "arg1", "arg2", "arg3",
};
const char* in_args3[] = {
"testbin",
GetFlagfileFlag({{"parse_test.ff6", absl::MakeConstSpan(ff6_data)}},
flagfile_flag),
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args3),
"Flagfile can't contain position arguments or --");
const char* in_args4[] = {
"testbin",
"--flagfile=invalid_flag_file",
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args4),
"Can't open flagfile invalid_flag_file");
constexpr const char* const ff7_data[] = {
"--int_flag=10",
"*bin*",
"--str_flag=aqsw",
};
const char* in_args5[] = {
"testbin",
GetFlagfileFlag({{"parse_test.ff7", absl::MakeConstSpan(ff7_data)}},
flagfile_flag),
};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args5),
"Unexpected line in the flagfile .*: \\*bin\\*");
}
TEST_F(ParseTest, TestReadingRequiredFlagsFromEnv) {
const char* in_args1[] = {"testbin",
"--fromenv=int_flag,bool_flag,string_flag"};
ScopedSetEnv set_int_flag("FLAGS_int_flag", "33");
ScopedSetEnv set_bool_flag("FLAGS_bool_flag", "True");
ScopedSetEnv set_string_flag("FLAGS_string_flag", "AQ12");
TestParse(in_args1, 33, 1.1, "AQ12", true);
}
TEST_F(ParseDeathTest, TestReadingUnsetRequiredFlagsFromEnv) {
const char* in_args1[] = {"testbin", "--fromenv=int_flag"};
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1),
"FLAGS_int_flag not found in environment");
}
TEST_F(ParseDeathTest, TestRecursiveFlagsFromEnv) {
const char* in_args1[] = {"testbin", "--fromenv=tryfromenv"};
ScopedSetEnv set_tryfromenv("FLAGS_tryfromenv", "int_flag");
EXPECT_DEATH_IF_SUPPORTED(InvokeParse(in_args1),
"Infinite recursion on flag tryfromenv");
}
TEST_F(ParseTest, TestReadingOptionalFlagsFromEnv) {
const char* in_args1[] = {
"testbin", "--tryfromenv=int_flag,bool_flag,string_flag,other_flag"};
ScopedSetEnv set_int_flag("FLAGS_int_flag", "17");
ScopedSetEnv set_bool_flag("FLAGS_bool_flag", "Y");
TestParse(in_args1, 17, 1.1, "a", true);
}
TEST_F(ParseTest, TestReadingFlagsFromEnvMoxedWithRegularFlags) {
const char* in_args1[] = {
"testbin",
"--bool_flag=T",
"--tryfromenv=int_flag,bool_flag",
"--int_flag=-21",
};
ScopedSetEnv set_int_flag("FLAGS_int_flag", "-15");
ScopedSetEnv set_bool_flag("FLAGS_bool_flag", "F");
TestParse(in_args1, -21, 1.1, "a", false);
}
TEST_F(ParseDeathTest, TestSimpleHelpFlagHandling) {
const char* in_args1[] = {
"testbin",
"--help",
};
EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args1), flags::HelpMode::kImportant);
EXPECT_EXIT(InvokeParse(in_args1), testing::ExitedWithCode(1), "");
const char* in_args2[] = {
"testbin",
"--help",
"--int_flag=3",
};
EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args2), flags::HelpMode::kImportant);
EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 3);
const char* in_args3[] = {"testbin", "--help", "some_positional_arg"};
EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args3), flags::HelpMode::kImportant);
}
TEST_F(ParseTest, TestSubstringHelpFlagHandling) {
const char* in_args1[] = {
"testbin",
"--help=abcd",
};
EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args1), flags::HelpMode::kMatch);
EXPECT_EQ(flags::GetFlagsHelpMatchSubstr(), "abcd");
}
TEST_F(ParseDeathTest, TestVersionHandling) {
const char* in_args1[] = {
"testbin",
"--version",
};
EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args1), flags::HelpMode::kVersion);
}
TEST_F(ParseTest, TestCheckArgsHandling) {
const char* in_args1[] = {"testbin", "--only_check_args", "--int_flag=211"};
EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args1), flags::HelpMode::kOnlyCheckArgs);
EXPECT_EXIT(InvokeParseAbslOnly(in_args1), testing::ExitedWithCode(0), "");
EXPECT_EXIT(InvokeParse(in_args1), testing::ExitedWithCode(0), "");
const char* in_args2[] = {"testbin", "--only_check_args", "--unknown_flag=a"};
EXPECT_EQ(InvokeParseAbslOnlyImpl(in_args2), flags::HelpMode::kOnlyCheckArgs);
EXPECT_EXIT(InvokeParseAbslOnly(in_args2), testing::ExitedWithCode(0), "");
EXPECT_EXIT(InvokeParse(in_args2), testing::ExitedWithCode(1), "");
}
TEST_F(ParseTest, WasPresentOnCommandLine) {
const char* in_args1[] = {
"testbin", "arg1", "--bool_flag",
"--int_flag=211", "arg2", "--double_flag=1.1",
"--string_flag", "asd", "--",
"--some_flag", "arg4",
};
InvokeParse(in_args1);
EXPECT_TRUE(flags::WasPresentOnCommandLine("bool_flag"));
EXPECT_TRUE(flags::WasPresentOnCommandLine("int_flag"));
EXPECT_TRUE(flags::WasPresentOnCommandLine("double_flag"));
EXPECT_TRUE(flags::WasPresentOnCommandLine("string_flag"));
EXPECT_FALSE(flags::WasPresentOnCommandLine("some_flag"));
EXPECT_FALSE(flags::WasPresentOnCommandLine("another_flag"));
}
TEST_F(ParseTest, ParseAbseilFlagsOnlySuccess) {
const char* in_args[] = {
"testbin",
"arg1",
"--bool_flag",
"--int_flag=211",
"arg2",
"--double_flag=1.1",
"--undef_flag1",
"--undef_flag2=123",
"--string_flag",
"asd",
"--",
"--some_flag",
"arg4",
};
std::vector<char*> positional_args;
std::vector<absl::UnrecognizedFlag> unrecognized_flags;
absl::ParseAbseilFlagsOnly(13, const_cast<char**>(in_args), positional_args,
unrecognized_flags);
EXPECT_THAT(positional_args,
ElementsAreArray(
{absl::string_view("testbin"), absl::string_view("arg1"),
absl::string_view("arg2"), absl::string_view("--some_flag"),
absl::string_view("arg4")}));
EXPECT_THAT(unrecognized_flags,
ElementsAreArray(
{absl::UnrecognizedFlag(absl::UnrecognizedFlag::kFromArgv,
"undef_flag1"),
absl::UnrecognizedFlag(absl::UnrecognizedFlag::kFromArgv,
"undef_flag2")}));
}
TEST_F(ParseDeathTest, ParseAbseilFlagsOnlyFailure) {
const char* in_args[] = {
"testbin",
"--int_flag=21.1",
};
EXPECT_DEATH_IF_SUPPORTED(
InvokeParseAbslOnly(in_args),
"Illegal value '21.1' specified for flag 'int_flag'");
}
TEST_F(ParseTest, UndefOkFlagsAreIgnored) {
const char* in_args[] = {
"testbin", "--undef_flag1",
"--undef_flag2=123", "--undefok=undef_flag2",
"--undef_flag3", "value",
};
std::vector<char*> positional_args;
std::vector<absl::UnrecognizedFlag> unrecognized_flags;
absl::ParseAbseilFlagsOnly(6, const_cast<char**>(in_args), positional_args,
unrecognized_flags);
EXPECT_THAT(positional_args, ElementsAreArray({absl::string_view("testbin"),
absl::string_view("value")}));
EXPECT_THAT(unrecognized_flags,
ElementsAreArray(
{absl::UnrecognizedFlag(absl::UnrecognizedFlag::kFromArgv,
"undef_flag1"),
absl::UnrecognizedFlag(absl::UnrecognizedFlag::kFromArgv,
"undef_flag3")}));
}
TEST_F(ParseTest, AllUndefOkFlagsAreIgnored) {
const char* in_args[] = {
"testbin",
"--undef_flag1",
"--undef_flag2=123",
"--undefok=undef_flag2,undef_flag1,undef_flag3",
"--undef_flag3",
"value",
"--",
"--undef_flag4",
};
std::vector<char*> positional_args;
std::vector<absl::UnrecognizedFlag> unrecognized_flags;
absl::ParseAbseilFlagsOnly(8, const_cast<char**>(in_args), positional_args,
unrecognized_flags);
EXPECT_THAT(positional_args,
ElementsAreArray({absl::string_view("testbin"),
absl::string_view("value"),
absl::string_view("--undef_flag4")}));
EXPECT_THAT(unrecognized_flags, testing::IsEmpty());
}
TEST_F(ParseDeathTest, ExitOnUnrecognizedFlagPrintsHelp) {
const char* in_args[] = {
"testbin",
"--undef_flag1",
"--help=int_flag",
};
EXPECT_EXIT(InvokeParseCommandLineImpl(in_args), testing::ExitedWithCode(1),
AllOf(HasSubstr("Unknown command line flag 'undef_flag1'"),
HasSubstr("Try --helpfull to get a list of all flags")));
}
} | 2,501 |
#ifndef ABSL_FLAGS_INTERNAL_COMMANDLINEFLAG_H_
#define ABSL_FLAGS_INTERNAL_COMMANDLINEFLAG_H_
#include "absl/base/config.h"
#include "absl/base/internal/fast_type_id.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
using FlagFastTypeId = absl::base_internal::FastTypeIdType;
enum FlagSettingMode {
SET_FLAGS_VALUE,
SET_FLAG_IF_DEFAULT,
SET_FLAGS_DEFAULT
};
enum ValueSource {
kCommandLine,
kProgrammaticChange,
};
class FlagStateInterface {
public:
virtual ~FlagStateInterface();
virtual void Restore() const = 0;
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/flags/internal/commandlineflag.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
FlagStateInterface::~FlagStateInterface() = default;
}
ABSL_NAMESPACE_END
} | #include "absl/flags/commandlineflag.h"
#include <memory>
#include <string>
#include "gtest/gtest.h"
#include "absl/flags/config.h"
#include "absl/flags/flag.h"
#include "absl/flags/internal/private_handle_accessor.h"
#include "absl/flags/reflection.h"
#include "absl/flags/usage_config.h"
#include "absl/memory/memory.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
ABSL_FLAG(int, int_flag, 201, "int_flag help");
ABSL_FLAG(std::string, string_flag, "dflt",
absl::StrCat("string_flag", " help"));
ABSL_RETIRED_FLAG(bool, bool_retired_flag, false, "bool_retired_flag help");
ABSL_FLAG(int, int_flag2, 201, "");
ABSL_FLAG(std::string, string_flag2, "dflt", "");
namespace {
namespace flags = absl::flags_internal;
class CommandLineFlagTest : public testing::Test {
protected:
static void SetUpTestSuite() {
absl::FlagsUsageConfig default_config;
default_config.normalize_filename = &CommandLineFlagTest::NormalizeFileName;
absl::SetFlagsUsageConfig(default_config);
}
void SetUp() override {
#if ABSL_FLAGS_STRIP_NAMES
GTEST_SKIP() << "This test requires flag names to be present";
#endif
flag_saver_ = absl::make_unique<absl::FlagSaver>();
}
void TearDown() override { flag_saver_.reset(); }
private:
static std::string NormalizeFileName(absl::string_view fname) {
#ifdef _WIN32
std::string normalized(fname);
std::replace(normalized.begin(), normalized.end(), '\\', '/');
fname = normalized;
#endif
return std::string(fname);
}
std::unique_ptr<absl::FlagSaver> flag_saver_;
};
TEST_F(CommandLineFlagTest, TestAttributesAccessMethods) {
auto* flag_01 = absl::FindCommandLineFlag("int_flag");
ASSERT_TRUE(flag_01);
EXPECT_EQ(flag_01->Name(), "int_flag");
EXPECT_EQ(flag_01->Help(), "int_flag help");
EXPECT_TRUE(!flag_01->IsRetired());
EXPECT_TRUE(flag_01->IsOfType<int>());
EXPECT_TRUE(!flag_01->IsOfType<bool>());
EXPECT_TRUE(!flag_01->IsOfType<std::string>());
EXPECT_TRUE(absl::EndsWith(flag_01->Filename(),
"absl/flags/commandlineflag_test.cc"))
<< flag_01->Filename();
auto* flag_02 = absl::FindCommandLineFlag("string_flag");
ASSERT_TRUE(flag_02);
EXPECT_EQ(flag_02->Name(), "string_flag");
EXPECT_EQ(flag_02->Help(), "string_flag help");
EXPECT_TRUE(!flag_02->IsRetired());
EXPECT_TRUE(flag_02->IsOfType<std::string>());
EXPECT_TRUE(!flag_02->IsOfType<bool>());
EXPECT_TRUE(!flag_02->IsOfType<int>());
EXPECT_TRUE(absl::EndsWith(flag_02->Filename(),
"absl/flags/commandlineflag_test.cc"))
<< flag_02->Filename();
}
TEST_F(CommandLineFlagTest, TestValueAccessMethods) {
absl::SetFlag(&FLAGS_int_flag2, 301);
auto* flag_01 = absl::FindCommandLineFlag("int_flag2");
ASSERT_TRUE(flag_01);
EXPECT_EQ(flag_01->CurrentValue(), "301");
EXPECT_EQ(flag_01->DefaultValue(), "201");
absl::SetFlag(&FLAGS_string_flag2, "new_str_value");
auto* flag_02 = absl::FindCommandLineFlag("string_flag2");
ASSERT_TRUE(flag_02);
EXPECT_EQ(flag_02->CurrentValue(), "new_str_value");
EXPECT_EQ(flag_02->DefaultValue(), "dflt");
}
TEST_F(CommandLineFlagTest, TestParseFromCurrentValue) {
std::string err;
auto* flag_01 = absl::FindCommandLineFlag("int_flag");
EXPECT_FALSE(
flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01));
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "11", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err));
EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 11);
EXPECT_FALSE(
flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01));
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "-123", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange,
err));
EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), -123);
EXPECT_FALSE(
flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01));
EXPECT_TRUE(!flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "xyz", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange,
err));
EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), -123);
EXPECT_EQ(err, "Illegal value 'xyz' specified for flag 'int_flag'");
EXPECT_FALSE(
flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01));
EXPECT_TRUE(!flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "A1", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err));
EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), -123);
EXPECT_EQ(err, "Illegal value 'A1' specified for flag 'int_flag'");
EXPECT_FALSE(
flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01));
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "0x10", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange,
err));
EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 16);
EXPECT_FALSE(
flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01));
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "011", flags::SET_FLAGS_VALUE, flags::kCommandLine, err));
EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 11);
EXPECT_TRUE(flags::PrivateHandleAccessor::IsSpecifiedOnCommandLine(*flag_01));
EXPECT_TRUE(!flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err));
EXPECT_EQ(err, "Illegal value '' specified for flag 'int_flag'");
auto* flag_02 = absl::FindCommandLineFlag("string_flag");
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_02, "xyz", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange,
err));
EXPECT_EQ(absl::GetFlag(FLAGS_string_flag), "xyz");
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_02, "", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange, err));
EXPECT_EQ(absl::GetFlag(FLAGS_string_flag), "");
}
TEST_F(CommandLineFlagTest, TestParseFromDefaultValue) {
std::string err;
auto* flag_01 = absl::FindCommandLineFlag("int_flag");
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "111", flags::SET_FLAGS_DEFAULT, flags::kProgrammaticChange,
err));
EXPECT_EQ(flag_01->DefaultValue(), "111");
auto* flag_02 = absl::FindCommandLineFlag("string_flag");
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_02, "abc", flags::SET_FLAGS_DEFAULT, flags::kProgrammaticChange,
err));
EXPECT_EQ(flag_02->DefaultValue(), "abc");
}
TEST_F(CommandLineFlagTest, TestParseFromIfDefault) {
std::string err;
auto* flag_01 = absl::FindCommandLineFlag("int_flag");
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "22", flags::SET_FLAG_IF_DEFAULT, flags::kProgrammaticChange,
err))
<< err;
EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 22);
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "33", flags::SET_FLAG_IF_DEFAULT, flags::kProgrammaticChange,
err));
EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 22);
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "201", flags::SET_FLAGS_VALUE, flags::kProgrammaticChange,
err));
EXPECT_TRUE(flags::PrivateHandleAccessor::ParseFrom(
*flag_01, "33", flags::SET_FLAG_IF_DEFAULT, flags::kProgrammaticChange,
err));
EXPECT_EQ(absl::GetFlag(FLAGS_int_flag), 201);
}
} | 2,502 |
#ifndef ABSL_FLAGS_REFLECTION_H_
#define ABSL_FLAGS_REFLECTION_H_
#include <string>
#include "absl/base/config.h"
#include "absl/container/flat_hash_map.h"
#include "absl/flags/commandlineflag.h"
#include "absl/flags/internal/commandlineflag.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
class FlagSaverImpl;
}
absl::CommandLineFlag* FindCommandLineFlag(absl::string_view name);
absl::flat_hash_map<absl::string_view, absl::CommandLineFlag*> GetAllFlags();
class FlagSaver {
public:
FlagSaver();
~FlagSaver();
FlagSaver(const FlagSaver&) = delete;
void operator=(const FlagSaver&) = delete;
private:
flags_internal::FlagSaverImpl* impl_;
};
ABSL_NAMESPACE_END
}
#endif
#include "absl/flags/reflection.h"
#include <assert.h>
#include <atomic>
#include <string>
#include "absl/base/config.h"
#include "absl/base/no_destructor.h"
#include "absl/base/thread_annotations.h"
#include "absl/container/flat_hash_map.h"
#include "absl/flags/commandlineflag.h"
#include "absl/flags/internal/private_handle_accessor.h"
#include "absl/flags/internal/registry.h"
#include "absl/flags/usage_config.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
class FlagRegistry {
public:
FlagRegistry() = default;
~FlagRegistry() = default;
void RegisterFlag(CommandLineFlag& flag, const char* filename);
void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION(lock_) { lock_.Lock(); }
void Unlock() ABSL_UNLOCK_FUNCTION(lock_) { lock_.Unlock(); }
CommandLineFlag* FindFlag(absl::string_view name);
static FlagRegistry& GlobalRegistry();
private:
friend class flags_internal::FlagSaverImpl;
friend void ForEachFlag(std::function<void(CommandLineFlag&)> visitor);
friend void FinalizeRegistry();
using FlagMap = absl::flat_hash_map<absl::string_view, CommandLineFlag*>;
using FlagIterator = FlagMap::iterator;
using FlagConstIterator = FlagMap::const_iterator;
FlagMap flags_;
std::vector<CommandLineFlag*> flat_flags_;
std::atomic<bool> finalized_flags_{false};
absl::Mutex lock_;
FlagRegistry(const FlagRegistry&);
FlagRegistry& operator=(const FlagRegistry&);
};
namespace {
class FlagRegistryLock {
public:
explicit FlagRegistryLock(FlagRegistry& fr) : fr_(fr) { fr_.Lock(); }
~FlagRegistryLock() { fr_.Unlock(); }
private:
FlagRegistry& fr_;
};
}
CommandLineFlag* FlagRegistry::FindFlag(absl::string_view name) {
if (finalized_flags_.load(std::memory_order_acquire)) {
auto it = std::partition_point(
flat_flags_.begin(), flat_flags_.end(),
[=](CommandLineFlag* f) { return f->Name() < name; });
if (it != flat_flags_.end() && (*it)->Name() == name) return *it;
}
FlagRegistryLock frl(*this);
auto it = flags_.find(name);
return it != flags_.end() ? it->second : nullptr;
}
void FlagRegistry::RegisterFlag(CommandLineFlag& flag, const char* filename) {
if (filename != nullptr &&
flag.Filename() != GetUsageConfig().normalize_filename(filename)) {
flags_internal::ReportUsageError(
absl::StrCat(
"Inconsistency between flag object and registration for flag '",
flag.Name(),
"', likely due to duplicate flags or an ODR violation. Relevant "
"files: ",
flag.Filename(), " and ", filename),
true);
std::exit(1);
}
FlagRegistryLock registry_lock(*this);
std::pair<FlagIterator, bool> ins =
flags_.insert(FlagMap::value_type(flag.Name(), &flag));
if (ins.second == false) {
CommandLineFlag& old_flag = *ins.first->second;
if (flag.IsRetired() != old_flag.IsRetired()) {
flags_internal::ReportUsageError(
absl::StrCat(
"Retired flag '", flag.Name(), "' was defined normally in file '",
(flag.IsRetired() ? old_flag.Filename() : flag.Filename()), "'."),
true);
} else if (flags_internal::PrivateHandleAccessor::TypeId(flag) !=
flags_internal::PrivateHandleAccessor::TypeId(old_flag)) {
flags_internal::ReportUsageError(
absl::StrCat("Flag '", flag.Name(),
"' was defined more than once but with "
"differing types. Defined in files '",
old_flag.Filename(), "' and '", flag.Filename(), "'."),
true);
} else if (old_flag.IsRetired()) {
return;
} else if (old_flag.Filename() != flag.Filename()) {
flags_internal::ReportUsageError(
absl::StrCat("Flag '", flag.Name(),
"' was defined more than once (in files '",
old_flag.Filename(), "' and '", flag.Filename(), "')."),
true);
} else {
flags_internal::ReportUsageError(
absl::StrCat(
"Something is wrong with flag '", flag.Name(), "' in file '",
flag.Filename(), "'. One possibility: file '", flag.Filename(),
"' is being linked both statically and dynamically into this "
"executable. e.g. some files listed as srcs to a test and also "
"listed as srcs of some shared lib deps of the same test."),
true);
}
std::exit(1);
}
}
FlagRegistry& FlagRegistry::GlobalRegistry() {
static absl::NoDestructor<FlagRegistry> global_registry;
return *global_registry;
}
void ForEachFlag(std::function<void(CommandLineFlag&)> visitor) {
FlagRegistry& registry = FlagRegistry::GlobalRegistry();
if (registry.finalized_flags_.load(std::memory_order_acquire)) {
for (const auto& i : registry.flat_flags_) visitor(*i);
}
FlagRegistryLock frl(registry);
for (const auto& i : registry.flags_) visitor(*i.second);
}
bool RegisterCommandLineFlag(CommandLineFlag& flag, const char* filename) {
FlagRegistry::GlobalRegistry().RegisterFlag(flag, filename);
return true;
}
void FinalizeRegistry() {
auto& registry = FlagRegistry::GlobalRegistry();
FlagRegistryLock frl(registry);
if (registry.finalized_flags_.load(std::memory_order_relaxed)) {
return;
}
registry.flat_flags_.reserve(registry.flags_.size());
for (const auto& f : registry.flags_) {
registry.flat_flags_.push_back(f.second);
}
std::sort(std::begin(registry.flat_flags_), std::end(registry.flat_flags_),
[](const CommandLineFlag* lhs, const CommandLineFlag* rhs) {
return lhs->Name() < rhs->Name();
});
registry.flags_.clear();
registry.finalized_flags_.store(true, std::memory_order_release);
}
namespace {
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
#endif
class RetiredFlagObj final : public CommandLineFlag {
public:
constexpr RetiredFlagObj(const char* name, FlagFastTypeId type_id)
: name_(name), type_id_(type_id) {}
private:
absl::string_view Name() const override { return name_; }
std::string Filename() const override {
OnAccess();
return "RETIRED";
}
FlagFastTypeId TypeId() const override { return type_id_; }
std::string Help() const override {
OnAccess();
return "";
}
bool IsRetired() const override { return true; }
bool IsSpecifiedOnCommandLine() const override {
OnAccess();
return false;
}
std::string DefaultValue() const override {
OnAccess();
return "";
}
std::string CurrentValue() const override {
OnAccess();
return "";
}
bool ValidateInputValue(absl::string_view) const override {
OnAccess();
return true;
}
std::unique_ptr<flags_internal::FlagStateInterface> SaveState() override {
return nullptr;
}
bool ParseFrom(absl::string_view, flags_internal::FlagSettingMode,
flags_internal::ValueSource, std::string&) override {
OnAccess();
return false;
}
void CheckDefaultValueParsingRoundtrip() const override { OnAccess(); }
void Read(void*) const override { OnAccess(); }
void OnAccess() const {
flags_internal::ReportUsageError(
absl::StrCat("Accessing retired flag '", name_, "'"), false);
}
const char* const name_;
const FlagFastTypeId type_id_;
};
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif
}
void Retire(const char* name, FlagFastTypeId type_id, char* buf) {
static_assert(sizeof(RetiredFlagObj) == kRetiredFlagObjSize, "");
static_assert(alignof(RetiredFlagObj) == kRetiredFlagObjAlignment, "");
auto* flag = ::new (static_cast<void*>(buf))
flags_internal::RetiredFlagObj(name, type_id);
FlagRegistry::GlobalRegistry().RegisterFlag(*flag, nullptr);
}
class FlagSaverImpl {
public:
FlagSaverImpl() = default;
FlagSaverImpl(const FlagSaverImpl&) = delete;
void operator=(const FlagSaverImpl&) = delete;
void SaveFromRegistry() {
assert(backup_registry_.empty());
flags_internal::ForEachFlag([&](CommandLineFlag& flag) {
if (auto flag_state =
flags_internal::PrivateHandleAccessor::SaveState(flag)) {
backup_registry_.emplace_back(std::move(flag_state));
}
});
}
void RestoreToRegistry() {
for (const auto& flag_state : backup_registry_) {
flag_state->Restore();
}
}
private:
std::vector<std::unique_ptr<flags_internal::FlagStateInterface>>
backup_registry_;
};
}
FlagSaver::FlagSaver() : impl_(new flags_internal::FlagSaverImpl) {
impl_->SaveFromRegistry();
}
FlagSaver::~FlagSaver() {
if (!impl_) return;
impl_->RestoreToRegistry();
delete impl_;
}
CommandLineFlag* FindCommandLineFlag(absl::string_view name) {
if (name.empty()) return nullptr;
flags_internal::FlagRegistry& registry =
flags_internal::FlagRegistry::GlobalRegistry();
return registry.FindFlag(name);
}
absl::flat_hash_map<absl::string_view, absl::CommandLineFlag*> GetAllFlags() {
absl::flat_hash_map<absl::string_view, absl::CommandLineFlag*> res;
flags_internal::ForEachFlag([&](CommandLineFlag& flag) {
if (!flag.IsRetired()) res.insert({flag.Name(), &flag});
});
return res;
}
ABSL_NAMESPACE_END
} | #include "absl/flags/reflection.h"
#include <memory>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/flags/config.h"
#include "absl/flags/flag.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_split.h"
ABSL_FLAG(int, int_flag, 1, "int_flag help");
ABSL_FLAG(std::string, string_flag, "dflt", "string_flag help");
ABSL_RETIRED_FLAG(bool, bool_retired_flag, false, "bool_retired_flag help");
namespace {
class ReflectionTest : public testing::Test {
protected:
void SetUp() override {
#if ABSL_FLAGS_STRIP_NAMES
GTEST_SKIP() << "This test requires flag names to be present";
#endif
flag_saver_ = absl::make_unique<absl::FlagSaver>();
}
void TearDown() override { flag_saver_.reset(); }
private:
std::unique_ptr<absl::FlagSaver> flag_saver_;
};
TEST_F(ReflectionTest, TestFindCommandLineFlag) {
auto* handle = absl::FindCommandLineFlag("some_flag");
EXPECT_EQ(handle, nullptr);
handle = absl::FindCommandLineFlag("int_flag");
EXPECT_NE(handle, nullptr);
handle = absl::FindCommandLineFlag("string_flag");
EXPECT_NE(handle, nullptr);
handle = absl::FindCommandLineFlag("bool_retired_flag");
EXPECT_NE(handle, nullptr);
}
TEST_F(ReflectionTest, TestGetAllFlags) {
auto all_flags = absl::GetAllFlags();
EXPECT_NE(all_flags.find("int_flag"), all_flags.end());
EXPECT_EQ(all_flags.find("bool_retired_flag"), all_flags.end());
EXPECT_EQ(all_flags.find("some_undefined_flag"), all_flags.end());
std::vector<absl::string_view> flag_names_first_attempt;
auto all_flags_1 = absl::GetAllFlags();
for (auto f : all_flags_1) {
flag_names_first_attempt.push_back(f.first);
}
std::vector<absl::string_view> flag_names_second_attempt;
auto all_flags_2 = absl::GetAllFlags();
for (auto f : all_flags_2) {
flag_names_second_attempt.push_back(f.first);
}
EXPECT_THAT(flag_names_first_attempt,
::testing::UnorderedElementsAreArray(flag_names_second_attempt));
}
struct CustomUDT {
CustomUDT() : a(1), b(1) {}
CustomUDT(int a_, int b_) : a(a_), b(b_) {}
friend bool operator==(const CustomUDT& f1, const CustomUDT& f2) {
return f1.a == f2.a && f1.b == f2.b;
}
int a;
int b;
};
bool AbslParseFlag(absl::string_view in, CustomUDT* f, std::string*) {
std::vector<absl::string_view> parts =
absl::StrSplit(in, ':', absl::SkipWhitespace());
if (parts.size() != 2) return false;
if (!absl::SimpleAtoi(parts[0], &f->a)) return false;
if (!absl::SimpleAtoi(parts[1], &f->b)) return false;
return true;
}
std::string AbslUnparseFlag(const CustomUDT& f) {
return absl::StrCat(f.a, ":", f.b);
}
}
ABSL_FLAG(bool, test_flag_01, true, "");
ABSL_FLAG(int, test_flag_02, 1234, "");
ABSL_FLAG(int16_t, test_flag_03, -34, "");
ABSL_FLAG(uint16_t, test_flag_04, 189, "");
ABSL_FLAG(int32_t, test_flag_05, 10765, "");
ABSL_FLAG(uint32_t, test_flag_06, 40000, "");
ABSL_FLAG(int64_t, test_flag_07, -1234567, "");
ABSL_FLAG(uint64_t, test_flag_08, 9876543, "");
ABSL_FLAG(double, test_flag_09, -9.876e-50, "");
ABSL_FLAG(float, test_flag_10, 1.234e12f, "");
ABSL_FLAG(std::string, test_flag_11, "", "");
ABSL_FLAG(absl::Duration, test_flag_12, absl::Minutes(10), "");
static int counter = 0;
ABSL_FLAG(int, test_flag_13, 200, "").OnUpdate([]() { counter++; });
ABSL_FLAG(CustomUDT, test_flag_14, {}, "");
namespace {
TEST_F(ReflectionTest, TestFlagSaverInScope) {
{
absl::FlagSaver s;
counter = 0;
absl::SetFlag(&FLAGS_test_flag_01, false);
absl::SetFlag(&FLAGS_test_flag_02, -1021);
absl::SetFlag(&FLAGS_test_flag_03, 6009);
absl::SetFlag(&FLAGS_test_flag_04, 44);
absl::SetFlag(&FLAGS_test_flag_05, +800);
absl::SetFlag(&FLAGS_test_flag_06, -40978756);
absl::SetFlag(&FLAGS_test_flag_07, 23405);
absl::SetFlag(&FLAGS_test_flag_08, 975310);
absl::SetFlag(&FLAGS_test_flag_09, 1.00001);
absl::SetFlag(&FLAGS_test_flag_10, -3.54f);
absl::SetFlag(&FLAGS_test_flag_11, "asdf");
absl::SetFlag(&FLAGS_test_flag_12, absl::Hours(20));
absl::SetFlag(&FLAGS_test_flag_13, 4);
absl::SetFlag(&FLAGS_test_flag_14, CustomUDT{-1, -2});
}
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_01), true);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_02), 1234);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_03), -34);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_04), 189);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_05), 10765);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_06), 40000);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_07), -1234567);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 9876543);
EXPECT_NEAR(absl::GetFlag(FLAGS_test_flag_09), -9.876e-50, 1e-55);
EXPECT_NEAR(absl::GetFlag(FLAGS_test_flag_10), 1.234e12f, 1e5f);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_11), "");
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_12), absl::Minutes(10));
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_13), 200);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_14), CustomUDT{});
EXPECT_EQ(counter, 2);
}
TEST_F(ReflectionTest, TestFlagSaverVsUpdateViaReflection) {
{
absl::FlagSaver s;
counter = 0;
std::string error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_01")->ParseFrom("false", &error))
<< error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_02")->ParseFrom("-4536", &error))
<< error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_03")->ParseFrom("111", &error))
<< error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_04")->ParseFrom("909", &error))
<< error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_05")->ParseFrom("-2004", &error))
<< error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_06")->ParseFrom("1000023", &error))
<< error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_07")->ParseFrom("69305", &error))
<< error;
EXPECT_TRUE(absl::FindCommandLineFlag("test_flag_08")
->ParseFrom("1000000001", &error))
<< error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_09")->ParseFrom("2.09021", &error))
<< error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_10")->ParseFrom("-33.1", &error))
<< error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_11")->ParseFrom("ADD_FOO", &error))
<< error;
EXPECT_TRUE(absl::FindCommandLineFlag("test_flag_12")
->ParseFrom("3h11m16s", &error))
<< error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_13")->ParseFrom("0", &error))
<< error;
EXPECT_TRUE(
absl::FindCommandLineFlag("test_flag_14")->ParseFrom("10:1", &error))
<< error;
}
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_01), true);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_02), 1234);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_03), -34);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_04), 189);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_05), 10765);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_06), 40000);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_07), -1234567);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 9876543);
EXPECT_NEAR(absl::GetFlag(FLAGS_test_flag_09), -9.876e-50, 1e-55);
EXPECT_NEAR(absl::GetFlag(FLAGS_test_flag_10), 1.234e12f, 1e5f);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_11), "");
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_12), absl::Minutes(10));
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_13), 200);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_14), CustomUDT{});
EXPECT_EQ(counter, 2);
}
TEST_F(ReflectionTest, TestMultipleFlagSaversInEnclosedScopes) {
{
absl::FlagSaver s;
absl::SetFlag(&FLAGS_test_flag_08, 10);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 10);
{
absl::FlagSaver s;
absl::SetFlag(&FLAGS_test_flag_08, 20);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 20);
{
absl::FlagSaver s;
absl::SetFlag(&FLAGS_test_flag_08, -200);
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), -200);
}
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 20);
}
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 10);
}
EXPECT_EQ(absl::GetFlag(FLAGS_test_flag_08), 9876543);
}
} | 2,503 |
#ifndef ABSL_FLAGS_INTERNAL_USAGE_H_
#define ABSL_FLAGS_INTERNAL_USAGE_H_
#include <iosfwd>
#include <ostream>
#include <string>
#include "absl/base/config.h"
#include "absl/flags/commandlineflag.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
enum class HelpFormat {
kHumanReadable,
};
enum class HelpMode {
kNone,
kImportant,
kShort,
kFull,
kPackage,
kMatch,
kVersion,
kOnlyCheckArgs
};
void FlagHelp(std::ostream& out, const CommandLineFlag& flag,
HelpFormat format = HelpFormat::kHumanReadable);
void FlagsHelp(std::ostream& out, absl::string_view filter,
HelpFormat format, absl::string_view program_usage_message);
HelpMode HandleUsageFlags(std::ostream& out,
absl::string_view program_usage_message);
void MaybeExit(HelpMode mode);
std::string GetFlagsHelpMatchSubstr();
HelpMode GetFlagsHelpMode();
HelpFormat GetFlagsHelpFormat();
void SetFlagsHelpMatchSubstr(absl::string_view);
void SetFlagsHelpMode(HelpMode);
void SetFlagsHelpFormat(HelpFormat);
bool DeduceUsageFlags(absl::string_view name, absl::string_view value);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/flags/internal/usage.h"
#include <stdint.h>
#include <algorithm>
#include <cstdlib>
#include <functional>
#include <iterator>
#include <map>
#include <ostream>
#include <string>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/const_init.h"
#include "absl/base/thread_annotations.h"
#include "absl/flags/commandlineflag.h"
#include "absl/flags/flag.h"
#include "absl/flags/internal/flag.h"
#include "absl/flags/internal/path_util.h"
#include "absl/flags/internal/private_handle_accessor.h"
#include "absl/flags/internal/program_name.h"
#include "absl/flags/internal/registry.h"
#include "absl/flags/usage_config.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "absl/strings/strip.h"
#include "absl/synchronization/mutex.h"
bool FLAGS_help = false;
bool FLAGS_helpfull = false;
bool FLAGS_helpshort = false;
bool FLAGS_helppackage = false;
bool FLAGS_version = false;
bool FLAGS_only_check_args = false;
bool FLAGS_helpon = false;
bool FLAGS_helpmatch = false;
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
namespace {
using PerFlagFilter = std::function<bool(const absl::CommandLineFlag&)>;
constexpr size_t kHrfMaxLineLength = 80;
class XMLElement {
public:
XMLElement(absl::string_view tag, absl::string_view txt)
: tag_(tag), txt_(txt) {}
friend std::ostream& operator<<(std::ostream& out,
const XMLElement& xml_elem) {
out << "<" << xml_elem.tag_ << ">";
for (auto c : xml_elem.txt_) {
switch (c) {
case '"':
out << """;
break;
case '\'':
out << "'";
break;
case '&':
out << "&";
break;
case '<':
out << "<";
break;
case '>':
out << ">";
break;
case '\n':
case '\v':
case '\f':
case '\t':
out << " ";
break;
default:
if (IsValidXmlCharacter(static_cast<unsigned char>(c))) {
out << c;
}
break;
}
}
return out << "</" << xml_elem.tag_ << ">";
}
private:
static bool IsValidXmlCharacter(unsigned char c) { return c >= 0x20; }
absl::string_view tag_;
absl::string_view txt_;
};
class FlagHelpPrettyPrinter {
public:
FlagHelpPrettyPrinter(size_t max_line_len, size_t min_line_len,
size_t wrapped_line_indent, std::ostream& out)
: out_(out),
max_line_len_(max_line_len),
min_line_len_(min_line_len),
wrapped_line_indent_(wrapped_line_indent),
line_len_(0),
first_line_(true) {}
void Write(absl::string_view str, bool wrap_line = false) {
if (str.empty()) return;
std::vector<absl::string_view> tokens;
if (wrap_line) {
for (auto line : absl::StrSplit(str, absl::ByAnyChar("\n\r"))) {
if (!tokens.empty()) {
tokens.emplace_back("\n");
}
for (auto token :
absl::StrSplit(line, absl::ByAnyChar(" \t"), absl::SkipEmpty())) {
tokens.push_back(token);
}
}
} else {
tokens.push_back(str);
}
for (auto token : tokens) {
bool new_line = (line_len_ == 0);
if (token == "\n") {
EndLine();
continue;
}
if (!new_line && (line_len_ + token.size() >= max_line_len_)) {
EndLine();
new_line = true;
}
if (new_line) {
StartLine();
} else {
out_ << ' ';
++line_len_;
}
out_ << token;
line_len_ += token.size();
}
}
void StartLine() {
if (first_line_) {
line_len_ = min_line_len_;
first_line_ = false;
} else {
line_len_ = min_line_len_ + wrapped_line_indent_;
}
out_ << std::string(line_len_, ' ');
}
void EndLine() {
out_ << '\n';
line_len_ = 0;
}
private:
std::ostream& out_;
const size_t max_line_len_;
const size_t min_line_len_;
const size_t wrapped_line_indent_;
size_t line_len_;
bool first_line_;
};
void FlagHelpHumanReadable(const CommandLineFlag& flag, std::ostream& out) {
FlagHelpPrettyPrinter printer(kHrfMaxLineLength, 4, 2, out);
printer.Write(absl::StrCat("--", flag.Name()));
printer.Write(absl::StrCat("(", flag.Help(), ");"), true);
std::string dflt_val = flag.DefaultValue();
std::string curr_val = flag.CurrentValue();
bool is_modified = curr_val != dflt_val;
if (flag.IsOfType<std::string>()) {
dflt_val = absl::StrCat("\"", dflt_val, "\"");
}
printer.Write(absl::StrCat("default: ", dflt_val, ";"));
if (is_modified) {
if (flag.IsOfType<std::string>()) {
curr_val = absl::StrCat("\"", curr_val, "\"");
}
printer.Write(absl::StrCat("currently: ", curr_val, ";"));
}
printer.EndLine();
}
void FlagsHelpImpl(std::ostream& out, PerFlagFilter filter_cb,
HelpFormat format, absl::string_view program_usage_message) {
if (format == HelpFormat::kHumanReadable) {
out << flags_internal::ShortProgramInvocationName() << ": "
<< program_usage_message << "\n\n";
} else {
out << "<?xml version=\"1.0\"?>\n"
<< "<!-- This output should be used with care. We do not report type "
"names for flags with user defined types -->\n"
<< "<!-- Prefer flag only_check_args for validating flag inputs -->\n"
<< "<AllFlags>\n"
<< XMLElement("program", flags_internal::ShortProgramInvocationName())
<< '\n'
<< XMLElement("usage", program_usage_message) << '\n';
}
std::map<std::string,
std::map<std::string, std::vector<const absl::CommandLineFlag*>>>
matching_flags;
flags_internal::ForEachFlag([&](absl::CommandLineFlag& flag) {
if (flag.IsRetired()) return;
if (flag.Help() == flags_internal::kStrippedFlagHelp) return;
if (!filter_cb(flag)) return;
std::string flag_filename = flag.Filename();
matching_flags[std::string(flags_internal::Package(flag_filename))]
[flag_filename]
.push_back(&flag);
});
absl::string_view package_separator;
absl::string_view file_separator;
for (auto& package : matching_flags) {
if (format == HelpFormat::kHumanReadable) {
out << package_separator;
package_separator = "\n\n";
}
file_separator = "";
for (auto& flags_in_file : package.second) {
if (format == HelpFormat::kHumanReadable) {
out << file_separator << " Flags from " << flags_in_file.first
<< ":\n";
file_separator = "\n";
}
std::sort(std::begin(flags_in_file.second),
std::end(flags_in_file.second),
[](const CommandLineFlag* lhs, const CommandLineFlag* rhs) {
return lhs->Name() < rhs->Name();
});
for (const auto* flag : flags_in_file.second) {
flags_internal::FlagHelp(out, *flag, format);
}
}
}
if (format == HelpFormat::kHumanReadable) {
FlagHelpPrettyPrinter printer(kHrfMaxLineLength, 0, 0, out);
if (filter_cb && matching_flags.empty()) {
printer.Write("No flags matched.\n", true);
}
printer.EndLine();
printer.Write(
"Try --helpfull to get a list of all flags or --help=substring "
"shows help for flags which include specified substring in either "
"in the name, or description or path.\n",
true);
} else {
out << "</AllFlags>\n";
}
}
void FlagsHelpImpl(std::ostream& out,
flags_internal::FlagKindFilter filename_filter_cb,
HelpFormat format, absl::string_view program_usage_message) {
FlagsHelpImpl(
out,
[&](const absl::CommandLineFlag& flag) {
return filename_filter_cb && filename_filter_cb(flag.Filename());
},
format, program_usage_message);
}
}
void FlagHelp(std::ostream& out, const CommandLineFlag& flag,
HelpFormat format) {
if (format == HelpFormat::kHumanReadable)
flags_internal::FlagHelpHumanReadable(flag, out);
}
void FlagsHelp(std::ostream& out, absl::string_view filter, HelpFormat format,
absl::string_view program_usage_message) {
flags_internal::FlagKindFilter filter_cb = [&](absl::string_view filename) {
return filter.empty() || absl::StrContains(filename, filter);
};
flags_internal::FlagsHelpImpl(out, filter_cb, format, program_usage_message);
}
HelpMode HandleUsageFlags(std::ostream& out,
absl::string_view program_usage_message) {
switch (GetFlagsHelpMode()) {
case HelpMode::kNone:
break;
case HelpMode::kImportant:
flags_internal::FlagsHelpImpl(
out, flags_internal::GetUsageConfig().contains_help_flags,
GetFlagsHelpFormat(), program_usage_message);
break;
case HelpMode::kShort:
flags_internal::FlagsHelpImpl(
out, flags_internal::GetUsageConfig().contains_helpshort_flags,
GetFlagsHelpFormat(), program_usage_message);
break;
case HelpMode::kFull:
flags_internal::FlagsHelp(out, "", GetFlagsHelpFormat(),
program_usage_message);
break;
case HelpMode::kPackage:
flags_internal::FlagsHelpImpl(
out, flags_internal::GetUsageConfig().contains_helppackage_flags,
GetFlagsHelpFormat(), program_usage_message);
break;
case HelpMode::kMatch: {
std::string substr = GetFlagsHelpMatchSubstr();
if (substr.empty()) {
flags_internal::FlagsHelp(out, substr, GetFlagsHelpFormat(),
program_usage_message);
} else {
auto filter_cb = [&substr](const absl::CommandLineFlag& flag) {
if (absl::StrContains(flag.Name(), substr)) return true;
if (absl::StrContains(flag.Filename(), substr)) return true;
if (absl::StrContains(flag.Help(), substr)) return true;
return false;
};
flags_internal::FlagsHelpImpl(
out, filter_cb, HelpFormat::kHumanReadable, program_usage_message);
}
break;
}
case HelpMode::kVersion:
if (flags_internal::GetUsageConfig().version_string)
out << flags_internal::GetUsageConfig().version_string();
break;
case HelpMode::kOnlyCheckArgs:
break;
}
return GetFlagsHelpMode();
}
namespace {
ABSL_CONST_INIT absl::Mutex help_attributes_guard(absl::kConstInit);
ABSL_CONST_INIT std::string* match_substr
ABSL_GUARDED_BY(help_attributes_guard) = nullptr;
ABSL_CONST_INIT HelpMode help_mode ABSL_GUARDED_BY(help_attributes_guard) =
HelpMode::kNone;
ABSL_CONST_INIT HelpFormat help_format ABSL_GUARDED_BY(help_attributes_guard) =
HelpFormat::kHumanReadable;
}
std::string GetFlagsHelpMatchSubstr() {
absl::MutexLock l(&help_attributes_guard);
if (match_substr == nullptr) return "";
return *match_substr;
}
void SetFlagsHelpMatchSubstr(absl::string_view substr) {
absl::MutexLock l(&help_attributes_guard);
if (match_substr == nullptr) match_substr = new std::string;
match_substr->assign(substr.data(), substr.size());
}
HelpMode GetFlagsHelpMode() {
absl::MutexLock l(&help_attributes_guard);
return help_mode;
}
void SetFlagsHelpMode(HelpMode mode) {
absl::MutexLock l(&help_attributes_guard);
help_mode = mode;
}
HelpFormat GetFlagsHelpFormat() {
absl::MutexLock l(&help_attributes_guard);
return help_format;
}
void SetFlagsHelpFormat(HelpFormat format) {
absl::MutexLock l(&help_attributes_guard);
help_format = format;
}
bool DeduceUsageFlags(absl::string_view name, absl::string_view value) {
if (absl::ConsumePrefix(&name, "help")) {
if (name.empty()) {
if (value.empty()) {
SetFlagsHelpMode(HelpMode::kImportant);
} else {
SetFlagsHelpMode(HelpMode::kMatch);
SetFlagsHelpMatchSubstr(value);
}
return true;
}
if (name == "match") {
SetFlagsHelpMode(HelpMode::kMatch);
SetFlagsHelpMatchSubstr(value);
return true;
}
if (name == "on") {
SetFlagsHelpMode(HelpMode::kMatch);
SetFlagsHelpMatchSubstr(absl::StrCat("/", value, "."));
return true;
}
if (name == "full") {
SetFlagsHelpMode(HelpMode::kFull);
return true;
}
if (name == "short") {
SetFlagsHelpMode(HelpMode::kShort);
return true;
}
if (name == "package") {
SetFlagsHelpMode(HelpMode::kPackage);
return true;
}
return false;
}
if (name == "version") {
SetFlagsHelpMode(HelpMode::kVersion);
return true;
}
if (name == "only_check_args") {
SetFlagsHelpMode(HelpMode::kOnlyCheckArgs);
return true;
}
return false;
}
void MaybeExit(HelpMode mode) {
switch (mode) {
case flags_internal::HelpMode::kNone:
return;
case flags_internal::HelpMode::kOnlyCheckArgs:
case flags_internal::HelpMode::kVersion:
std::exit(0);
default:
std::exit(1);
}
}
}
ABSL_NAMESPACE_END
} | #include "absl/flags/internal/usage.h"
#include <stdint.h>
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/flags/config.h"
#include "absl/flags/flag.h"
#include "absl/flags/internal/parse.h"
#include "absl/flags/internal/program_name.h"
#include "absl/flags/reflection.h"
#include "absl/flags/usage.h"
#include "absl/flags/usage_config.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
ABSL_FLAG(int, usage_reporting_test_flag_01, 101,
"usage_reporting_test_flag_01 help message");
ABSL_FLAG(bool, usage_reporting_test_flag_02, false,
"usage_reporting_test_flag_02 help message");
ABSL_FLAG(double, usage_reporting_test_flag_03, 1.03,
"usage_reporting_test_flag_03 help message");
ABSL_FLAG(int64_t, usage_reporting_test_flag_04, 1000000000000004L,
"usage_reporting_test_flag_04 help message");
ABSL_FLAG(std::string, usage_reporting_test_flag_07, "\r\n\f\v\a\b\t ",
"usage_reporting_test_flag_07 help \r\n\f\v\a\b\t ");
static const char kTestUsageMessage[] = "Custom usage message";
struct UDT {
UDT() = default;
UDT(const UDT&) = default;
UDT& operator=(const UDT&) = default;
};
static bool AbslParseFlag(absl::string_view, UDT*, std::string*) {
return true;
}
static std::string AbslUnparseFlag(const UDT&) { return "UDT{}"; }
ABSL_FLAG(UDT, usage_reporting_test_flag_05, {},
"usage_reporting_test_flag_05 help message");
ABSL_FLAG(
std::string, usage_reporting_test_flag_06, {},
"usage_reporting_test_flag_06 help message.\n"
"\n"
"Some more help.\n"
"Even more long long long long long long long long long long long long "
"help message.");
namespace {
namespace flags = absl::flags_internal;
static std::string NormalizeFileName(absl::string_view fname) {
#ifdef _WIN32
std::string normalized(fname);
std::replace(normalized.begin(), normalized.end(), '\\', '/');
fname = normalized;
#endif
auto absl_pos = fname.rfind("absl/");
if (absl_pos != absl::string_view::npos) {
fname = fname.substr(absl_pos);
}
return std::string(fname);
}
class UsageReportingTest : public testing::Test {
protected:
UsageReportingTest() {
absl::FlagsUsageConfig default_config;
default_config.normalize_filename = &NormalizeFileName;
absl::SetFlagsUsageConfig(default_config);
}
~UsageReportingTest() override {
flags::SetFlagsHelpMode(flags::HelpMode::kNone);
flags::SetFlagsHelpMatchSubstr("");
flags::SetFlagsHelpFormat(flags::HelpFormat::kHumanReadable);
}
void SetUp() override {
#if ABSL_FLAGS_STRIP_NAMES
GTEST_SKIP() << "This test requires flag names to be present";
#endif
}
private:
absl::FlagSaver flag_saver_;
};
using UsageReportingDeathTest = UsageReportingTest;
TEST_F(UsageReportingDeathTest, TestSetProgramUsageMessage) {
#if !defined(GTEST_HAS_ABSL) || !GTEST_HAS_ABSL
EXPECT_EQ(absl::ProgramUsageMessage(), kTestUsageMessage);
#else
EXPECT_THAT(absl::ProgramUsageMessage(),
::testing::HasSubstr(
"This program contains tests written using Google Test"));
#endif
EXPECT_DEATH_IF_SUPPORTED(
absl::SetProgramUsageMessage("custom usage message"),
::testing::HasSubstr("SetProgramUsageMessage() called twice"));
}
TEST_F(UsageReportingTest, TestFlagHelpHRF_on_flag_01) {
const auto* flag = absl::FindCommandLineFlag("usage_reporting_test_flag_01");
std::stringstream test_buf;
flags::FlagHelp(test_buf, *flag, flags::HelpFormat::kHumanReadable);
EXPECT_EQ(
test_buf.str(),
R"( --usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message);
default: 101;
)");
}
TEST_F(UsageReportingTest, TestFlagHelpHRF_on_flag_02) {
const auto* flag = absl::FindCommandLineFlag("usage_reporting_test_flag_02");
std::stringstream test_buf;
flags::FlagHelp(test_buf, *flag, flags::HelpFormat::kHumanReadable);
EXPECT_EQ(
test_buf.str(),
R"( --usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message);
default: false;
)");
}
TEST_F(UsageReportingTest, TestFlagHelpHRF_on_flag_03) {
const auto* flag = absl::FindCommandLineFlag("usage_reporting_test_flag_03");
std::stringstream test_buf;
flags::FlagHelp(test_buf, *flag, flags::HelpFormat::kHumanReadable);
EXPECT_EQ(
test_buf.str(),
R"( --usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message);
default: 1.03;
)");
}
TEST_F(UsageReportingTest, TestFlagHelpHRF_on_flag_04) {
const auto* flag = absl::FindCommandLineFlag("usage_reporting_test_flag_04");
std::stringstream test_buf;
flags::FlagHelp(test_buf, *flag, flags::HelpFormat::kHumanReadable);
EXPECT_EQ(
test_buf.str(),
R"( --usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message);
default: 1000000000000004;
)");
}
TEST_F(UsageReportingTest, TestFlagHelpHRF_on_flag_05) {
const auto* flag = absl::FindCommandLineFlag("usage_reporting_test_flag_05");
std::stringstream test_buf;
flags::FlagHelp(test_buf, *flag, flags::HelpFormat::kHumanReadable);
EXPECT_EQ(
test_buf.str(),
R"( --usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message);
default: UDT{};
)");
}
TEST_F(UsageReportingTest, TestFlagsHelpHRF) {
std::string usage_test_flags_out =
R"(usage_test: Custom usage message
Flags from absl/flags/internal/usage_test.cc:
--usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message);
default: 101;
--usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message);
default: false;
--usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message);
default: 1.03;
--usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message);
default: 1000000000000004;
--usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message);
default: UDT{};
--usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message.
Some more help.
Even more long long long long long long long long long long long long help
message.); default: "";)"
"\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 "
"help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n"
R"(
Try --helpfull to get a list of all flags or --help=substring shows help for
flags which include specified substring in either in the name, or description or
path.
)";
std::stringstream test_buf_01;
flags::FlagsHelp(test_buf_01, "usage_test.cc",
flags::HelpFormat::kHumanReadable, kTestUsageMessage);
EXPECT_EQ(test_buf_01.str(), usage_test_flags_out);
std::stringstream test_buf_02;
flags::FlagsHelp(test_buf_02, "flags/internal/usage_test.cc",
flags::HelpFormat::kHumanReadable, kTestUsageMessage);
EXPECT_EQ(test_buf_02.str(), usage_test_flags_out);
std::stringstream test_buf_03;
flags::FlagsHelp(test_buf_03, "usage_test", flags::HelpFormat::kHumanReadable,
kTestUsageMessage);
EXPECT_EQ(test_buf_03.str(), usage_test_flags_out);
std::stringstream test_buf_04;
flags::FlagsHelp(test_buf_04, "flags/invalid_file_name.cc",
flags::HelpFormat::kHumanReadable, kTestUsageMessage);
EXPECT_EQ(test_buf_04.str(),
R"(usage_test: Custom usage message
No flags matched.
Try --helpfull to get a list of all flags or --help=substring shows help for
flags which include specified substring in either in the name, or description or
path.
)");
std::stringstream test_buf_05;
flags::FlagsHelp(test_buf_05, "", flags::HelpFormat::kHumanReadable,
kTestUsageMessage);
std::string test_out = test_buf_05.str();
absl::string_view test_out_str(test_out);
EXPECT_TRUE(
absl::StartsWith(test_out_str, "usage_test: Custom usage message"));
EXPECT_TRUE(absl::StrContains(
test_out_str, "Flags from absl/flags/internal/usage_test.cc:"));
EXPECT_TRUE(
absl::StrContains(test_out_str, "-usage_reporting_test_flag_01 "));
}
TEST_F(UsageReportingTest, TestNoUsageFlags) {
std::stringstream test_buf;
EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage),
flags::HelpMode::kNone);
}
TEST_F(UsageReportingTest, TestUsageFlag_helpshort) {
flags::SetFlagsHelpMode(flags::HelpMode::kShort);
std::stringstream test_buf;
EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage),
flags::HelpMode::kShort);
EXPECT_EQ(
test_buf.str(),
R"(usage_test: Custom usage message
Flags from absl/flags/internal/usage_test.cc:
--usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message);
default: 101;
--usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message);
default: false;
--usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message);
default: 1.03;
--usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message);
default: 1000000000000004;
--usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message);
default: UDT{};
--usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message.
Some more help.
Even more long long long long long long long long long long long long help
message.); default: "";)"
"\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 "
"help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n"
R"(
Try --helpfull to get a list of all flags or --help=substring shows help for
flags which include specified substring in either in the name, or description or
path.
)");
}
TEST_F(UsageReportingTest, TestUsageFlag_help_simple) {
flags::SetFlagsHelpMode(flags::HelpMode::kImportant);
std::stringstream test_buf;
EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage),
flags::HelpMode::kImportant);
EXPECT_EQ(
test_buf.str(),
R"(usage_test: Custom usage message
Flags from absl/flags/internal/usage_test.cc:
--usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message);
default: 101;
--usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message);
default: false;
--usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message);
default: 1.03;
--usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message);
default: 1000000000000004;
--usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message);
default: UDT{};
--usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message.
Some more help.
Even more long long long long long long long long long long long long help
message.); default: "";)"
"\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 "
"help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n"
R"(
Try --helpfull to get a list of all flags or --help=substring shows help for
flags which include specified substring in either in the name, or description or
path.
)");
}
TEST_F(UsageReportingTest, TestUsageFlag_help_one_flag) {
flags::SetFlagsHelpMode(flags::HelpMode::kMatch);
flags::SetFlagsHelpMatchSubstr("usage_reporting_test_flag_06");
std::stringstream test_buf;
EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage),
flags::HelpMode::kMatch);
EXPECT_EQ(test_buf.str(),
R"(usage_test: Custom usage message
Flags from absl/flags/internal/usage_test.cc:
--usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message.
Some more help.
Even more long long long long long long long long long long long long help
message.); default: "";
Try --helpfull to get a list of all flags or --help=substring shows help for
flags which include specified substring in either in the name, or description or
path.
)");
}
TEST_F(UsageReportingTest, TestUsageFlag_help_multiple_flag) {
flags::SetFlagsHelpMode(flags::HelpMode::kMatch);
flags::SetFlagsHelpMatchSubstr("test_flag");
std::stringstream test_buf;
EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage),
flags::HelpMode::kMatch);
EXPECT_EQ(
test_buf.str(),
R"(usage_test: Custom usage message
Flags from absl/flags/internal/usage_test.cc:
--usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message);
default: 101;
--usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message);
default: false;
--usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message);
default: 1.03;
--usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message);
default: 1000000000000004;
--usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message);
default: UDT{};
--usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message.
Some more help.
Even more long long long long long long long long long long long long help
message.); default: "";)"
"\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 "
"help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n"
R"(
Try --helpfull to get a list of all flags or --help=substring shows help for
flags which include specified substring in either in the name, or description or
path.
)");
}
TEST_F(UsageReportingTest, TestUsageFlag_helppackage) {
flags::SetFlagsHelpMode(flags::HelpMode::kPackage);
std::stringstream test_buf;
EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage),
flags::HelpMode::kPackage);
EXPECT_EQ(
test_buf.str(),
R"(usage_test: Custom usage message
Flags from absl/flags/internal/usage_test.cc:
--usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message);
default: 101;
--usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message);
default: false;
--usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message);
default: 1.03;
--usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message);
default: 1000000000000004;
--usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message);
default: UDT{};
--usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message.
Some more help.
Even more long long long long long long long long long long long long help
message.); default: "";)"
"\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 "
"help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n"
R"(
Try --helpfull to get a list of all flags or --help=substring shows help for
flags which include specified substring in either in the name, or description or
path.
)");
}
TEST_F(UsageReportingTest, TestUsageFlag_version) {
flags::SetFlagsHelpMode(flags::HelpMode::kVersion);
std::stringstream test_buf;
EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage),
flags::HelpMode::kVersion);
#ifndef NDEBUG
EXPECT_EQ(test_buf.str(), "usage_test\nDebug build (NDEBUG not #defined)\n");
#else
EXPECT_EQ(test_buf.str(), "usage_test\n");
#endif
}
TEST_F(UsageReportingTest, TestUsageFlag_only_check_args) {
flags::SetFlagsHelpMode(flags::HelpMode::kOnlyCheckArgs);
std::stringstream test_buf;
EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage),
flags::HelpMode::kOnlyCheckArgs);
EXPECT_EQ(test_buf.str(), "");
}
TEST_F(UsageReportingTest, TestUsageFlag_helpon) {
flags::SetFlagsHelpMode(flags::HelpMode::kMatch);
flags::SetFlagsHelpMatchSubstr("/bla-bla.");
std::stringstream test_buf_01;
EXPECT_EQ(flags::HandleUsageFlags(test_buf_01, kTestUsageMessage),
flags::HelpMode::kMatch);
EXPECT_EQ(test_buf_01.str(),
R"(usage_test: Custom usage message
No flags matched.
Try --helpfull to get a list of all flags or --help=substring shows help for
flags which include specified substring in either in the name, or description or
path.
)");
flags::SetFlagsHelpMatchSubstr("/usage_test.");
std::stringstream test_buf_02;
EXPECT_EQ(flags::HandleUsageFlags(test_buf_02, kTestUsageMessage),
flags::HelpMode::kMatch);
EXPECT_EQ(
test_buf_02.str(),
R"(usage_test: Custom usage message
Flags from absl/flags/internal/usage_test.cc:
--usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message);
default: 101;
--usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message);
default: false;
--usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message);
default: 1.03;
--usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message);
default: 1000000000000004;
--usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message);
default: UDT{};
--usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message.
Some more help.
Even more long long long long long long long long long long long long help
message.); default: "";)"
"\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 "
"help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n"
R"(
Try --helpfull to get a list of all flags or --help=substring shows help for
flags which include specified substring in either in the name, or description or
path.
)");
}
}
int main(int argc, char* argv[]) {
(void)absl::GetFlag(FLAGS_undefok);
flags::SetProgramInvocationName("usage_test");
#if !defined(GTEST_HAS_ABSL) || !GTEST_HAS_ABSL
absl::SetProgramUsageMessage(kTestUsageMessage);
#endif
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
} | 2,504 |
#ifndef ABSL_FLAGS_MARSHALLING_H_
#define ABSL_FLAGS_MARSHALLING_H_
#include "absl/base/config.h"
#include "absl/numeric/int128.h"
#if defined(ABSL_HAVE_STD_OPTIONAL) && !defined(ABSL_USES_STD_OPTIONAL)
#include <optional>
#endif
#include <string>
#include <vector>
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
template <typename T>
inline bool ParseFlag(absl::string_view input, T* dst, std::string* error);
template <typename T>
inline std::string UnparseFlag(const T& v);
namespace flags_internal {
bool AbslParseFlag(absl::string_view, bool*, std::string*);
bool AbslParseFlag(absl::string_view, short*, std::string*);
bool AbslParseFlag(absl::string_view, unsigned short*, std::string*);
bool AbslParseFlag(absl::string_view, int*, std::string*);
bool AbslParseFlag(absl::string_view, unsigned int*, std::string*);
bool AbslParseFlag(absl::string_view, long*, std::string*);
bool AbslParseFlag(absl::string_view, unsigned long*, std::string*);
bool AbslParseFlag(absl::string_view, long long*, std::string*);
bool AbslParseFlag(absl::string_view, unsigned long long*,
std::string*);
bool AbslParseFlag(absl::string_view, absl::int128*, std::string*);
bool AbslParseFlag(absl::string_view, absl::uint128*, std::string*);
bool AbslParseFlag(absl::string_view, float*, std::string*);
bool AbslParseFlag(absl::string_view, double*, std::string*);
bool AbslParseFlag(absl::string_view, std::string*, std::string*);
bool AbslParseFlag(absl::string_view, std::vector<std::string>*, std::string*);
template <typename T>
bool AbslParseFlag(absl::string_view text, absl::optional<T>* f,
std::string* err) {
if (text.empty()) {
*f = absl::nullopt;
return true;
}
T value;
if (!absl::ParseFlag(text, &value, err)) return false;
*f = std::move(value);
return true;
}
#if defined(ABSL_HAVE_STD_OPTIONAL) && !defined(ABSL_USES_STD_OPTIONAL)
template <typename T>
bool AbslParseFlag(absl::string_view text, std::optional<T>* f,
std::string* err) {
if (text.empty()) {
*f = std::nullopt;
return true;
}
T value;
if (!absl::ParseFlag(text, &value, err)) return false;
*f = std::move(value);
return true;
}
#endif
template <typename T>
bool InvokeParseFlag(absl::string_view input, T* dst, std::string* err) {
return AbslParseFlag(input, dst, err);
}
std::string AbslUnparseFlag(absl::string_view v);
std::string AbslUnparseFlag(const std::vector<std::string>&);
template <typename T>
std::string AbslUnparseFlag(const absl::optional<T>& f) {
return f.has_value() ? absl::UnparseFlag(*f) : "";
}
#if defined(ABSL_HAVE_STD_OPTIONAL) && !defined(ABSL_USES_STD_OPTIONAL)
template <typename T>
std::string AbslUnparseFlag(const std::optional<T>& f) {
return f.has_value() ? absl::UnparseFlag(*f) : "";
}
#endif
template <typename T>
std::string Unparse(const T& v) {
return AbslUnparseFlag(v);
}
std::string Unparse(bool v);
std::string Unparse(short v);
std::string Unparse(unsigned short v);
std::string Unparse(int v);
std::string Unparse(unsigned int v);
std::string Unparse(long v);
std::string Unparse(unsigned long v);
std::string Unparse(long long v);
std::string Unparse(unsigned long long v);
std::string Unparse(absl::int128 v);
std::string Unparse(absl::uint128 v);
std::string Unparse(float v);
std::string Unparse(double v);
}
template <typename T>
inline bool ParseFlag(absl::string_view input, T* dst, std::string* error) {
return flags_internal::InvokeParseFlag(input, dst, error);
}
template <typename T>
inline std::string UnparseFlag(const T& v) {
return flags_internal::Unparse(v);
}
enum class LogSeverity : int;
bool AbslParseFlag(absl::string_view, absl::LogSeverity*, std::string*);
std::string AbslUnparseFlag(absl::LogSeverity);
ABSL_NAMESPACE_END
}
#endif
#include "absl/flags/marshalling.h"
#include <stddef.h>
#include <cmath>
#include <limits>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>
#include "absl/base/config.h"
#include "absl/base/log_severity.h"
#include "absl/base/macros.h"
#include "absl/numeric/int128.h"
#include "absl/strings/ascii.h"
#include "absl/strings/match.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
bool AbslParseFlag(absl::string_view text, bool* dst, std::string*) {
const char* kTrue[] = {"1", "t", "true", "y", "yes"};
const char* kFalse[] = {"0", "f", "false", "n", "no"};
static_assert(sizeof(kTrue) == sizeof(kFalse), "true_false_equal");
text = absl::StripAsciiWhitespace(text);
for (size_t i = 0; i < ABSL_ARRAYSIZE(kTrue); ++i) {
if (absl::EqualsIgnoreCase(text, kTrue[i])) {
*dst = true;
return true;
} else if (absl::EqualsIgnoreCase(text, kFalse[i])) {
*dst = false;
return true;
}
}
return false;
}
static int NumericBase(absl::string_view text) {
if (text.empty()) return 0;
size_t num_start = (text[0] == '-' || text[0] == '+') ? 1 : 0;
const bool hex = (text.size() >= num_start + 2 && text[num_start] == '0' &&
(text[num_start + 1] == 'x' || text[num_start + 1] == 'X'));
return hex ? 16 : 10;
}
template <typename IntType>
inline bool ParseFlagImpl(absl::string_view text, IntType& dst) {
text = absl::StripAsciiWhitespace(text);
return absl::numbers_internal::safe_strtoi_base(text, &dst,
NumericBase(text));
}
bool AbslParseFlag(absl::string_view text, short* dst, std::string*) {
int val;
if (!ParseFlagImpl(text, val)) return false;
if (static_cast<short>(val) != val)
return false;
*dst = static_cast<short>(val);
return true;
}
bool AbslParseFlag(absl::string_view text, unsigned short* dst, std::string*) {
unsigned int val;
if (!ParseFlagImpl(text, val)) return false;
if (static_cast<unsigned short>(val) !=
val)
return false;
*dst = static_cast<unsigned short>(val);
return true;
}
bool AbslParseFlag(absl::string_view text, int* dst, std::string*) {
return ParseFlagImpl(text, *dst);
}
bool AbslParseFlag(absl::string_view text, unsigned int* dst, std::string*) {
return ParseFlagImpl(text, *dst);
}
bool AbslParseFlag(absl::string_view text, long* dst, std::string*) {
return ParseFlagImpl(text, *dst);
}
bool AbslParseFlag(absl::string_view text, unsigned long* dst, std::string*) {
return ParseFlagImpl(text, *dst);
}
bool AbslParseFlag(absl::string_view text, long long* dst, std::string*) {
return ParseFlagImpl(text, *dst);
}
bool AbslParseFlag(absl::string_view text, unsigned long long* dst,
std::string*) {
return ParseFlagImpl(text, *dst);
}
bool AbslParseFlag(absl::string_view text, absl::int128* dst, std::string*) {
text = absl::StripAsciiWhitespace(text);
int base = NumericBase(text);
if (!absl::numbers_internal::safe_strto128_base(text, dst, base)) {
return false;
}
return base == 16 ? absl::SimpleHexAtoi(text, dst)
: absl::SimpleAtoi(text, dst);
}
bool AbslParseFlag(absl::string_view text, absl::uint128* dst, std::string*) {
text = absl::StripAsciiWhitespace(text);
int base = NumericBase(text);
if (!absl::numbers_internal::safe_strtou128_base(text, dst, base)) {
return false;
}
return base == 16 ? absl::SimpleHexAtoi(text, dst)
: absl::SimpleAtoi(text, dst);
}
bool AbslParseFlag(absl::string_view text, float* dst, std::string*) {
return absl::SimpleAtof(text, dst);
}
bool AbslParseFlag(absl::string_view text, double* dst, std::string*) {
return absl::SimpleAtod(text, dst);
}
bool AbslParseFlag(absl::string_view text, std::string* dst, std::string*) {
dst->assign(text.data(), text.size());
return true;
}
bool AbslParseFlag(absl::string_view text, std::vector<std::string>* dst,
std::string*) {
if (text.empty()) {
dst->clear();
return true;
}
*dst = absl::StrSplit(text, ',', absl::AllowEmpty());
return true;
}
std::string Unparse(bool v) { return v ? "true" : "false"; }
std::string Unparse(short v) { return absl::StrCat(v); }
std::string Unparse(unsigned short v) { return absl::StrCat(v); }
std::string Unparse(int v) { return absl::StrCat(v); }
std::string Unparse(unsigned int v) { return absl::StrCat(v); }
std::string Unparse(long v) { return absl::StrCat(v); }
std::string Unparse(unsigned long v) { return absl::StrCat(v); }
std::string Unparse(long long v) { return absl::StrCat(v); }
std::string Unparse(unsigned long long v) { return absl::StrCat(v); }
std::string Unparse(absl::int128 v) {
std::stringstream ss;
ss << v;
return ss.str();
}
std::string Unparse(absl::uint128 v) {
std::stringstream ss;
ss << v;
return ss.str();
}
template <typename T>
std::string UnparseFloatingPointVal(T v) {
std::string digit10_str =
absl::StrFormat("%.*g", std::numeric_limits<T>::digits10, v);
if (std::isnan(v) || std::isinf(v)) return digit10_str;
T roundtrip_val = 0;
std::string err;
if (absl::ParseFlag(digit10_str, &roundtrip_val, &err) &&
roundtrip_val == v) {
return digit10_str;
}
return absl::StrFormat("%.*g", std::numeric_limits<T>::max_digits10, v);
}
std::string Unparse(float v) { return UnparseFloatingPointVal(v); }
std::string Unparse(double v) { return UnparseFloatingPointVal(v); }
std::string AbslUnparseFlag(absl::string_view v) { return std::string(v); }
std::string AbslUnparseFlag(const std::vector<std::string>& v) {
return absl::StrJoin(v, ",");
}
}
bool AbslParseFlag(absl::string_view text, absl::LogSeverity* dst,
std::string* err) {
text = absl::StripAsciiWhitespace(text);
if (text.empty()) {
*err = "no value provided";
return false;
}
if (absl::EqualsIgnoreCase(text, "dfatal")) {
*dst = absl::kLogDebugFatal;
return true;
}
if (absl::EqualsIgnoreCase(text, "klogdebugfatal")) {
*dst = absl::kLogDebugFatal;
return true;
}
if (text.front() == 'k' || text.front() == 'K') text.remove_prefix(1);
if (absl::EqualsIgnoreCase(text, "info")) {
*dst = absl::LogSeverity::kInfo;
return true;
}
if (absl::EqualsIgnoreCase(text, "warning")) {
*dst = absl::LogSeverity::kWarning;
return true;
}
if (absl::EqualsIgnoreCase(text, "error")) {
*dst = absl::LogSeverity::kError;
return true;
}
if (absl::EqualsIgnoreCase(text, "fatal")) {
*dst = absl::LogSeverity::kFatal;
return true;
}
std::underlying_type<absl::LogSeverity>::type numeric_value;
if (absl::ParseFlag(text, &numeric_value, err)) {
*dst = static_cast<absl::LogSeverity>(numeric_value);
return true;
}
*err =
"only integers, absl::LogSeverity enumerators, and DFATAL are accepted";
return false;
}
std::string AbslUnparseFlag(absl::LogSeverity v) {
if (v == absl::NormalizeLogSeverity(v)) return absl::LogSeverityName(v);
return absl::UnparseFlag(static_cast<int>(v));
}
ABSL_NAMESPACE_END
} | #include "absl/flags/marshalling.h"
#include <stdint.h>
#include <cmath>
#include <limits>
#include <string>
#include <vector>
#include "gtest/gtest.h"
namespace {
TEST(MarshallingTest, TestBoolParsing) {
std::string err;
bool value;
EXPECT_TRUE(absl::ParseFlag("True", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("true", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("TRUE", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("Yes", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("yes", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("YES", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("t", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("T", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("y", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("Y", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("1", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("False", &value, &err));
EXPECT_FALSE(value);
EXPECT_TRUE(absl::ParseFlag("false", &value, &err));
EXPECT_FALSE(value);
EXPECT_TRUE(absl::ParseFlag("FALSE", &value, &err));
EXPECT_FALSE(value);
EXPECT_TRUE(absl::ParseFlag("No", &value, &err));
EXPECT_FALSE(value);
EXPECT_TRUE(absl::ParseFlag("no", &value, &err));
EXPECT_FALSE(value);
EXPECT_TRUE(absl::ParseFlag("NO", &value, &err));
EXPECT_FALSE(value);
EXPECT_TRUE(absl::ParseFlag("f", &value, &err));
EXPECT_FALSE(value);
EXPECT_TRUE(absl::ParseFlag("F", &value, &err));
EXPECT_FALSE(value);
EXPECT_TRUE(absl::ParseFlag("n", &value, &err));
EXPECT_FALSE(value);
EXPECT_TRUE(absl::ParseFlag("N", &value, &err));
EXPECT_FALSE(value);
EXPECT_TRUE(absl::ParseFlag("0", &value, &err));
EXPECT_FALSE(value);
EXPECT_TRUE(absl::ParseFlag(" true", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag("true ", &value, &err));
EXPECT_TRUE(value);
EXPECT_TRUE(absl::ParseFlag(" true ", &value, &err));
EXPECT_TRUE(value);
EXPECT_FALSE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\n", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\t", &value, &err));
EXPECT_FALSE(absl::ParseFlag("2", &value, &err));
EXPECT_FALSE(absl::ParseFlag("11", &value, &err));
EXPECT_FALSE(absl::ParseFlag("tt", &value, &err));
}
TEST(MarshallingTest, TestInt16Parsing) {
std::string err;
int16_t value;
EXPECT_TRUE(absl::ParseFlag("1", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0", &value, &err));
EXPECT_EQ(value, 0);
EXPECT_TRUE(absl::ParseFlag("-1", &value, &err));
EXPECT_EQ(value, -1);
EXPECT_TRUE(absl::ParseFlag("123", &value, &err));
EXPECT_EQ(value, 123);
EXPECT_TRUE(absl::ParseFlag("-18765", &value, &err));
EXPECT_EQ(value, -18765);
EXPECT_TRUE(absl::ParseFlag("+3", &value, &err));
EXPECT_EQ(value, 3);
EXPECT_TRUE(absl::ParseFlag("01", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("-001", &value, &err));
EXPECT_EQ(value, -1);
EXPECT_TRUE(absl::ParseFlag("0000100", &value, &err));
EXPECT_EQ(value, 100);
EXPECT_TRUE(absl::ParseFlag("0x10", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag("0X234", &value, &err));
EXPECT_EQ(value, 564);
EXPECT_TRUE(absl::ParseFlag("-0x7FFD", &value, &err));
EXPECT_EQ(value, -32765);
EXPECT_TRUE(absl::ParseFlag("+0x31", &value, &err));
EXPECT_EQ(value, 49);
EXPECT_TRUE(absl::ParseFlag("10 ", &value, &err));
EXPECT_EQ(value, 10);
EXPECT_TRUE(absl::ParseFlag(" 11", &value, &err));
EXPECT_EQ(value, 11);
EXPECT_TRUE(absl::ParseFlag(" 012 ", &value, &err));
EXPECT_EQ(value, 12);
EXPECT_TRUE(absl::ParseFlag(" 0x22 ", &value, &err));
EXPECT_EQ(value, 34);
EXPECT_FALSE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag("40000", &value, &err));
EXPECT_FALSE(absl::ParseFlag("--1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\n", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\t", &value, &err));
EXPECT_FALSE(absl::ParseFlag("2U", &value, &err));
EXPECT_FALSE(absl::ParseFlag("FFF", &value, &err));
}
TEST(MarshallingTest, TestUint16Parsing) {
std::string err;
uint16_t value;
EXPECT_TRUE(absl::ParseFlag("1", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0", &value, &err));
EXPECT_EQ(value, 0);
EXPECT_TRUE(absl::ParseFlag("123", &value, &err));
EXPECT_EQ(value, 123);
EXPECT_TRUE(absl::ParseFlag("+3", &value, &err));
EXPECT_EQ(value, 3);
EXPECT_TRUE(absl::ParseFlag("01", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("001", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0000100", &value, &err));
EXPECT_EQ(value, 100);
EXPECT_TRUE(absl::ParseFlag("0x10", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag("0X234", &value, &err));
EXPECT_EQ(value, 564);
EXPECT_TRUE(absl::ParseFlag("+0x31", &value, &err));
EXPECT_EQ(value, 49);
EXPECT_TRUE(absl::ParseFlag("10 ", &value, &err));
EXPECT_EQ(value, 10);
EXPECT_TRUE(absl::ParseFlag(" 11", &value, &err));
EXPECT_EQ(value, 11);
EXPECT_TRUE(absl::ParseFlag(" 012 ", &value, &err));
EXPECT_EQ(value, 12);
EXPECT_TRUE(absl::ParseFlag(" 0x22 ", &value, &err));
EXPECT_EQ(value, 34);
EXPECT_FALSE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag("70000", &value, &err));
EXPECT_FALSE(absl::ParseFlag("-1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("--1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\n", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\t", &value, &err));
EXPECT_FALSE(absl::ParseFlag("2U", &value, &err));
EXPECT_FALSE(absl::ParseFlag("FFF", &value, &err));
}
TEST(MarshallingTest, TestInt32Parsing) {
std::string err;
int32_t value;
EXPECT_TRUE(absl::ParseFlag("1", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0", &value, &err));
EXPECT_EQ(value, 0);
EXPECT_TRUE(absl::ParseFlag("-1", &value, &err));
EXPECT_EQ(value, -1);
EXPECT_TRUE(absl::ParseFlag("123", &value, &err));
EXPECT_EQ(value, 123);
EXPECT_TRUE(absl::ParseFlag("-98765", &value, &err));
EXPECT_EQ(value, -98765);
EXPECT_TRUE(absl::ParseFlag("+3", &value, &err));
EXPECT_EQ(value, 3);
EXPECT_TRUE(absl::ParseFlag("01", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("-001", &value, &err));
EXPECT_EQ(value, -1);
EXPECT_TRUE(absl::ParseFlag("0000100", &value, &err));
EXPECT_EQ(value, 100);
EXPECT_TRUE(absl::ParseFlag("0x10", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag("0X234", &value, &err));
EXPECT_EQ(value, 564);
EXPECT_TRUE(absl::ParseFlag("-0x7FFFFFFD", &value, &err));
EXPECT_EQ(value, -2147483645);
EXPECT_TRUE(absl::ParseFlag("+0x31", &value, &err));
EXPECT_EQ(value, 49);
EXPECT_TRUE(absl::ParseFlag("10 ", &value, &err));
EXPECT_EQ(value, 10);
EXPECT_TRUE(absl::ParseFlag(" 11", &value, &err));
EXPECT_EQ(value, 11);
EXPECT_TRUE(absl::ParseFlag(" 012 ", &value, &err));
EXPECT_EQ(value, 12);
EXPECT_TRUE(absl::ParseFlag(" 0x22 ", &value, &err));
EXPECT_EQ(value, 34);
EXPECT_FALSE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag("70000000000", &value, &err));
EXPECT_FALSE(absl::ParseFlag("--1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\n", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\t", &value, &err));
EXPECT_FALSE(absl::ParseFlag("2U", &value, &err));
EXPECT_FALSE(absl::ParseFlag("FFF", &value, &err));
}
TEST(MarshallingTest, TestUint32Parsing) {
std::string err;
uint32_t value;
EXPECT_TRUE(absl::ParseFlag("1", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0", &value, &err));
EXPECT_EQ(value, 0);
EXPECT_TRUE(absl::ParseFlag("123", &value, &err));
EXPECT_EQ(value, 123);
EXPECT_TRUE(absl::ParseFlag("+3", &value, &err));
EXPECT_EQ(value, 3);
EXPECT_TRUE(absl::ParseFlag("01", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0000100", &value, &err));
EXPECT_EQ(value, 100);
EXPECT_TRUE(absl::ParseFlag("0x10", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag("0X234", &value, &err));
EXPECT_EQ(value, 564);
EXPECT_TRUE(absl::ParseFlag("0xFFFFFFFD", &value, &err));
EXPECT_EQ(value, 4294967293);
EXPECT_TRUE(absl::ParseFlag("+0x31", &value, &err));
EXPECT_EQ(value, 49);
EXPECT_TRUE(absl::ParseFlag("10 ", &value, &err));
EXPECT_EQ(value, 10);
EXPECT_TRUE(absl::ParseFlag(" 11", &value, &err));
EXPECT_EQ(value, 11);
EXPECT_TRUE(absl::ParseFlag(" 012 ", &value, &err));
EXPECT_EQ(value, 12);
EXPECT_TRUE(absl::ParseFlag(" 0x22 ", &value, &err));
EXPECT_EQ(value, 34);
EXPECT_FALSE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag("140000000000", &value, &err));
EXPECT_FALSE(absl::ParseFlag("-1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("--1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\n", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\t", &value, &err));
EXPECT_FALSE(absl::ParseFlag("2U", &value, &err));
EXPECT_FALSE(absl::ParseFlag("FFF", &value, &err));
}
TEST(MarshallingTest, TestInt64Parsing) {
std::string err;
int64_t value;
EXPECT_TRUE(absl::ParseFlag("1", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0", &value, &err));
EXPECT_EQ(value, 0);
EXPECT_TRUE(absl::ParseFlag("-1", &value, &err));
EXPECT_EQ(value, -1);
EXPECT_TRUE(absl::ParseFlag("123", &value, &err));
EXPECT_EQ(value, 123);
EXPECT_TRUE(absl::ParseFlag("-98765", &value, &err));
EXPECT_EQ(value, -98765);
EXPECT_TRUE(absl::ParseFlag("+3", &value, &err));
EXPECT_EQ(value, 3);
EXPECT_TRUE(absl::ParseFlag("01", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("001", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0000100", &value, &err));
EXPECT_EQ(value, 100);
EXPECT_TRUE(absl::ParseFlag("0x10", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag("0XFFFAAABBBCCCDDD", &value, &err));
EXPECT_EQ(value, 1152827684197027293);
EXPECT_TRUE(absl::ParseFlag("-0x7FFFFFFFFFFFFFFE", &value, &err));
EXPECT_EQ(value, -9223372036854775806);
EXPECT_TRUE(absl::ParseFlag("-0x02", &value, &err));
EXPECT_EQ(value, -2);
EXPECT_TRUE(absl::ParseFlag("+0x31", &value, &err));
EXPECT_EQ(value, 49);
EXPECT_TRUE(absl::ParseFlag("10 ", &value, &err));
EXPECT_EQ(value, 10);
EXPECT_TRUE(absl::ParseFlag(" 11", &value, &err));
EXPECT_EQ(value, 11);
EXPECT_TRUE(absl::ParseFlag(" 012 ", &value, &err));
EXPECT_EQ(value, 12);
EXPECT_TRUE(absl::ParseFlag(" 0x7F ", &value, &err));
EXPECT_EQ(value, 127);
EXPECT_FALSE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag("0xFFFFFFFFFFFFFFFFFF", &value, &err));
EXPECT_FALSE(absl::ParseFlag("--1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\n", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\t", &value, &err));
EXPECT_FALSE(absl::ParseFlag("2U", &value, &err));
EXPECT_FALSE(absl::ParseFlag("FFF", &value, &err));
}
TEST(MarshallingTest, TestUInt64Parsing) {
std::string err;
uint64_t value;
EXPECT_TRUE(absl::ParseFlag("1", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0", &value, &err));
EXPECT_EQ(value, 0);
EXPECT_TRUE(absl::ParseFlag("123", &value, &err));
EXPECT_EQ(value, 123);
EXPECT_TRUE(absl::ParseFlag("+13", &value, &err));
EXPECT_EQ(value, 13);
EXPECT_TRUE(absl::ParseFlag("01", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("001", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0000300", &value, &err));
EXPECT_EQ(value, 300);
EXPECT_TRUE(absl::ParseFlag("0x10", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag("0XFFFF", &value, &err));
EXPECT_EQ(value, 65535);
EXPECT_TRUE(absl::ParseFlag("+0x31", &value, &err));
EXPECT_EQ(value, 49);
EXPECT_TRUE(absl::ParseFlag("10 ", &value, &err));
EXPECT_EQ(value, 10);
EXPECT_TRUE(absl::ParseFlag(" 11", &value, &err));
EXPECT_EQ(value, 11);
EXPECT_TRUE(absl::ParseFlag(" 012 ", &value, &err));
EXPECT_EQ(value, 12);
EXPECT_FALSE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag("0xFFFFFFFFFFFFFFFFFF", &value, &err));
EXPECT_FALSE(absl::ParseFlag("-1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("--1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\n", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\t", &value, &err));
EXPECT_FALSE(absl::ParseFlag("2U", &value, &err));
EXPECT_FALSE(absl::ParseFlag("FFF", &value, &err));
}
TEST(MarshallingTest, TestInt128Parsing) {
std::string err;
absl::int128 value;
EXPECT_TRUE(absl::ParseFlag("0", &value, &err));
EXPECT_EQ(value, 0);
EXPECT_TRUE(absl::ParseFlag("1", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("-1", &value, &err));
EXPECT_EQ(value, -1);
EXPECT_TRUE(absl::ParseFlag("123", &value, &err));
EXPECT_EQ(value, 123);
EXPECT_TRUE(absl::ParseFlag("-98765", &value, &err));
EXPECT_EQ(value, -98765);
EXPECT_TRUE(absl::ParseFlag("+3", &value, &err));
EXPECT_EQ(value, 3);
EXPECT_TRUE(absl::ParseFlag("01", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("001", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0000100", &value, &err));
EXPECT_EQ(value, 100);
EXPECT_TRUE(absl::ParseFlag("0x10", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag("0xFFFAAABBBCCCDDD", &value, &err));
EXPECT_EQ(value, 1152827684197027293);
EXPECT_TRUE(absl::ParseFlag("0xFFF0FFFFFFFFFFFFFFF", &value, &err));
EXPECT_EQ(value, absl::MakeInt128(0x000000000000fff, 0xFFFFFFFFFFFFFFF));
EXPECT_TRUE(absl::ParseFlag("-0x10000000000000000", &value, &err));
EXPECT_EQ(value, absl::MakeInt128(-1, 0));
EXPECT_TRUE(absl::ParseFlag("+0x31", &value, &err));
EXPECT_EQ(value, 49);
EXPECT_TRUE(absl::ParseFlag("16 ", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag(" 16", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag(" 0100 ", &value, &err));
EXPECT_EQ(value, 100);
EXPECT_TRUE(absl::ParseFlag(" 0x7B ", &value, &err));
EXPECT_EQ(value, 123);
EXPECT_FALSE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag("--1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\n", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\t", &value, &err));
EXPECT_FALSE(absl::ParseFlag("2U", &value, &err));
EXPECT_FALSE(absl::ParseFlag("FFF", &value, &err));
}
TEST(MarshallingTest, TestUint128Parsing) {
std::string err;
absl::uint128 value;
EXPECT_TRUE(absl::ParseFlag("0", &value, &err));
EXPECT_EQ(value, 0);
EXPECT_TRUE(absl::ParseFlag("1", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("123", &value, &err));
EXPECT_EQ(value, 123);
EXPECT_TRUE(absl::ParseFlag("+3", &value, &err));
EXPECT_EQ(value, 3);
EXPECT_TRUE(absl::ParseFlag("01", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("001", &value, &err));
EXPECT_EQ(value, 1);
EXPECT_TRUE(absl::ParseFlag("0000100", &value, &err));
EXPECT_EQ(value, 100);
EXPECT_TRUE(absl::ParseFlag("0x10", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag("0xFFFAAABBBCCCDDD", &value, &err));
EXPECT_EQ(value, 1152827684197027293);
EXPECT_TRUE(absl::ParseFlag("0xFFF0FFFFFFFFFFFFFFF", &value, &err));
EXPECT_EQ(value, absl::MakeInt128(0x000000000000fff, 0xFFFFFFFFFFFFFFF));
EXPECT_TRUE(absl::ParseFlag("+0x31", &value, &err));
EXPECT_EQ(value, 49);
EXPECT_TRUE(absl::ParseFlag("16 ", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag(" 16", &value, &err));
EXPECT_EQ(value, 16);
EXPECT_TRUE(absl::ParseFlag(" 0100 ", &value, &err));
EXPECT_EQ(value, 100);
EXPECT_TRUE(absl::ParseFlag(" 0x7B ", &value, &err));
EXPECT_EQ(value, 123);
EXPECT_FALSE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag("-1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("--1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\n", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\t", &value, &err));
EXPECT_FALSE(absl::ParseFlag("2U", &value, &err));
EXPECT_FALSE(absl::ParseFlag("FFF", &value, &err));
EXPECT_FALSE(absl::ParseFlag("-0x10000000000000000", &value, &err));
}
TEST(MarshallingTest, TestFloatParsing) {
std::string err;
float value;
EXPECT_TRUE(absl::ParseFlag("1.3", &value, &err));
EXPECT_FLOAT_EQ(value, 1.3f);
EXPECT_TRUE(absl::ParseFlag("-0.1", &value, &err));
EXPECT_DOUBLE_EQ(value, -0.1f);
EXPECT_TRUE(absl::ParseFlag("+0.01", &value, &err));
EXPECT_DOUBLE_EQ(value, 0.01f);
EXPECT_TRUE(absl::ParseFlag("1.2e3", &value, &err));
EXPECT_DOUBLE_EQ(value, 1.2e3f);
EXPECT_TRUE(absl::ParseFlag("9.8765402e-37", &value, &err));
EXPECT_DOUBLE_EQ(value, 9.8765402e-37f);
EXPECT_TRUE(absl::ParseFlag("0.11e+3", &value, &err));
EXPECT_DOUBLE_EQ(value, 0.11e+3f);
EXPECT_TRUE(absl::ParseFlag("1.e-2300", &value, &err));
EXPECT_DOUBLE_EQ(value, 0.f);
EXPECT_TRUE(absl::ParseFlag("1.e+2300", &value, &err));
EXPECT_TRUE(std::isinf(value));
EXPECT_TRUE(absl::ParseFlag("01.6", &value, &err));
EXPECT_DOUBLE_EQ(value, 1.6f);
EXPECT_TRUE(absl::ParseFlag("000.0001", &value, &err));
EXPECT_DOUBLE_EQ(value, 0.0001f);
EXPECT_TRUE(absl::ParseFlag("-5.1000", &value, &err));
EXPECT_DOUBLE_EQ(value, -5.1f);
EXPECT_TRUE(absl::ParseFlag("NaN", &value, &err));
EXPECT_TRUE(std::isnan(value));
EXPECT_TRUE(absl::ParseFlag("Inf", &value, &err));
EXPECT_TRUE(std::isinf(value));
EXPECT_TRUE(absl::ParseFlag("0x10.23p12", &value, &err));
EXPECT_DOUBLE_EQ(value, 66096.f);
EXPECT_TRUE(absl::ParseFlag("-0xF1.A3p-2", &value, &err));
EXPECT_NEAR(value, -60.4092f, 5e-5f);
EXPECT_TRUE(absl::ParseFlag("+0x0.0AAp-12", &value, &err));
EXPECT_NEAR(value, 1.01328e-05f, 5e-11f);
EXPECT_TRUE(absl::ParseFlag("0x.01p1", &value, &err));
EXPECT_NEAR(value, 0.0078125f, 5e-8f);
EXPECT_TRUE(absl::ParseFlag("10.1 ", &value, &err));
EXPECT_DOUBLE_EQ(value, 10.1f);
EXPECT_TRUE(absl::ParseFlag(" 2.34", &value, &err));
EXPECT_DOUBLE_EQ(value, 2.34f);
EXPECT_TRUE(absl::ParseFlag(" 5.7 ", &value, &err));
EXPECT_DOUBLE_EQ(value, 5.7f);
EXPECT_TRUE(absl::ParseFlag(" -0xE0.F3p01 ", &value, &err));
EXPECT_NEAR(value, -449.8984375f, 5e-8f);
EXPECT_FALSE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag("--1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\n", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\t", &value, &err));
EXPECT_FALSE(absl::ParseFlag("2.3xxx", &value, &err));
EXPECT_FALSE(absl::ParseFlag("0x0.1pAA", &value, &err));
EXPECT_TRUE(absl::ParseFlag("0x0.1", &value, &err));
}
TEST(MarshallingTest, TestDoubleParsing) {
std::string err;
double value;
EXPECT_TRUE(absl::ParseFlag("1.3", &value, &err));
EXPECT_DOUBLE_EQ(value, 1.3);
EXPECT_TRUE(absl::ParseFlag("-0.1", &value, &err));
EXPECT_DOUBLE_EQ(value, -0.1);
EXPECT_TRUE(absl::ParseFlag("+0.01", &value, &err));
EXPECT_DOUBLE_EQ(value, 0.01);
EXPECT_TRUE(absl::ParseFlag("1.2e3", &value, &err));
EXPECT_DOUBLE_EQ(value, 1.2e3);
EXPECT_TRUE(absl::ParseFlag("9.00000002e-123", &value, &err));
EXPECT_DOUBLE_EQ(value, 9.00000002e-123);
EXPECT_TRUE(absl::ParseFlag("0.11e+3", &value, &err));
EXPECT_DOUBLE_EQ(value, 0.11e+3);
EXPECT_TRUE(absl::ParseFlag("1.e-2300", &value, &err));
EXPECT_DOUBLE_EQ(value, 0);
EXPECT_TRUE(absl::ParseFlag("1.e+2300", &value, &err));
EXPECT_TRUE(std::isinf(value));
EXPECT_TRUE(absl::ParseFlag("01.6", &value, &err));
EXPECT_DOUBLE_EQ(value, 1.6);
EXPECT_TRUE(absl::ParseFlag("000.0001", &value, &err));
EXPECT_DOUBLE_EQ(value, 0.0001);
EXPECT_TRUE(absl::ParseFlag("-5.1000", &value, &err));
EXPECT_DOUBLE_EQ(value, -5.1);
EXPECT_TRUE(absl::ParseFlag("NaN", &value, &err));
EXPECT_TRUE(std::isnan(value));
EXPECT_TRUE(absl::ParseFlag("nan", &value, &err));
EXPECT_TRUE(std::isnan(value));
EXPECT_TRUE(absl::ParseFlag("Inf", &value, &err));
EXPECT_TRUE(std::isinf(value));
EXPECT_TRUE(absl::ParseFlag("inf", &value, &err));
EXPECT_TRUE(std::isinf(value));
EXPECT_TRUE(absl::ParseFlag("0x10.23p12", &value, &err));
EXPECT_DOUBLE_EQ(value, 66096);
EXPECT_TRUE(absl::ParseFlag("-0xF1.A3p-2", &value, &err));
EXPECT_NEAR(value, -60.4092, 5e-5);
EXPECT_TRUE(absl::ParseFlag("+0x0.0AAp-12", &value, &err));
EXPECT_NEAR(value, 1.01328e-05, 5e-11);
EXPECT_TRUE(absl::ParseFlag("0x.01p1", &value, &err));
EXPECT_NEAR(value, 0.0078125, 5e-8);
EXPECT_TRUE(absl::ParseFlag("10.1 ", &value, &err));
EXPECT_DOUBLE_EQ(value, 10.1);
EXPECT_TRUE(absl::ParseFlag(" 2.34", &value, &err));
EXPECT_DOUBLE_EQ(value, 2.34);
EXPECT_TRUE(absl::ParseFlag(" 5.7 ", &value, &err));
EXPECT_DOUBLE_EQ(value, 5.7);
EXPECT_TRUE(absl::ParseFlag(" -0xE0.F3p01 ", &value, &err));
EXPECT_NEAR(value, -449.8984375, 5e-8);
EXPECT_FALSE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag(" ", &value, &err));
EXPECT_FALSE(absl::ParseFlag("--1", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\n", &value, &err));
EXPECT_FALSE(absl::ParseFlag("\t", &value, &err));
EXPECT_FALSE(absl::ParseFlag("2.3xxx", &value, &err));
EXPECT_FALSE(absl::ParseFlag("0x0.1pAA", &value, &err));
EXPECT_TRUE(absl::ParseFlag("0x0.1", &value, &err));
}
TEST(MarshallingTest, TestStringParsing) {
std::string err;
std::string value;
EXPECT_TRUE(absl::ParseFlag("", &value, &err));
EXPECT_EQ(value, "");
EXPECT_TRUE(absl::ParseFlag(" ", &value, &err));
EXPECT_EQ(value, " ");
EXPECT_TRUE(absl::ParseFlag(" ", &value, &err));
EXPECT_EQ(value, " ");
EXPECT_TRUE(absl::ParseFlag("\n", &value, &err));
EXPECT_EQ(value, "\n");
EXPECT_TRUE(absl::ParseFlag("\t", &value, &err));
EXPECT_EQ(value, "\t");
EXPECT_TRUE(absl::ParseFlag("asdfg", &value, &err));
EXPECT_EQ(value, "asdfg");
EXPECT_TRUE(absl::ParseFlag("asdf ghjk", &value, &err));
EXPECT_EQ(value, "asdf ghjk");
EXPECT_TRUE(absl::ParseFlag("a\nb\nc", &value, &err));
EXPECT_EQ(value, "a\nb\nc");
EXPECT_TRUE(absl::ParseFlag("asd\0fgh", &value, &err));
EXPECT_EQ(value, "asd");
EXPECT_TRUE(absl::ParseFlag("\\\\", &value, &err));
EXPECT_EQ(value, "\\\\");
}
TEST(MarshallingTest, TestVectorOfStringParsing) {
std::string err;
std::vector<std::string> value;
EXPECT_TRUE(absl::ParseFlag("", &value, &err));
EXPECT_EQ(value, std::vector<std::string>{});
EXPECT_TRUE(absl::ParseFlag("1", &value, &err));
EXPECT_EQ(value, std::vector<std::string>({"1"}));
EXPECT_TRUE(absl::ParseFlag("a,b", &value, &err));
EXPECT_EQ(value, std::vector<std::string>({"a", "b"}));
EXPECT_TRUE(absl::ParseFlag("a,b,c,", &value, &err));
EXPECT_EQ(value, std::vector<std::string>({"a", "b", "c", ""}));
EXPECT_TRUE(absl::ParseFlag("a,,", &value, &err));
EXPECT_EQ(value, std::vector<std::string>({"a", "", ""}));
EXPECT_TRUE(absl::ParseFlag(",", &value, &err));
EXPECT_EQ(value, std::vector<std::string>({"", ""}));
EXPECT_TRUE(absl::ParseFlag("a, b,c ", &value, &err));
EXPECT_EQ(value, std::vector<std::string>({"a", " b", "c "}));
}
TEST(MarshallingTest, TestOptionalBoolParsing) {
std::string err;
absl::optional<bool> value;
EXPECT_TRUE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(value.has_value());
EXPECT_TRUE(absl::ParseFlag("true", &value, &err));
EXPECT_TRUE(value.has_value());
EXPECT_TRUE(*value);
EXPECT_TRUE(absl::ParseFlag("false", &value, &err));
EXPECT_TRUE(value.has_value());
EXPECT_FALSE(*value);
EXPECT_FALSE(absl::ParseFlag("nullopt", &value, &err));
}
TEST(MarshallingTest, TestOptionalIntParsing) {
std::string err;
absl::optional<int> value;
EXPECT_TRUE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(value.has_value());
EXPECT_TRUE(absl::ParseFlag("10", &value, &err));
EXPECT_TRUE(value.has_value());
EXPECT_EQ(*value, 10);
EXPECT_TRUE(absl::ParseFlag("0x1F", &value, &err));
EXPECT_TRUE(value.has_value());
EXPECT_EQ(*value, 31);
EXPECT_FALSE(absl::ParseFlag("nullopt", &value, &err));
}
TEST(MarshallingTest, TestOptionalDoubleParsing) {
std::string err;
absl::optional<double> value;
EXPECT_TRUE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(value.has_value());
EXPECT_TRUE(absl::ParseFlag("1.11", &value, &err));
EXPECT_TRUE(value.has_value());
EXPECT_EQ(*value, 1.11);
EXPECT_TRUE(absl::ParseFlag("-0.12", &value, &err));
EXPECT_TRUE(value.has_value());
EXPECT_EQ(*value, -0.12);
EXPECT_FALSE(absl::ParseFlag("nullopt", &value, &err));
}
TEST(MarshallingTest, TestOptionalStringParsing) {
std::string err;
absl::optional<std::string> value;
EXPECT_TRUE(absl::ParseFlag("", &value, &err));
EXPECT_FALSE(value.has_value());
EXPECT_TRUE(absl::ParseFlag(" ", &value, &err));
EXPECT_TRUE(value.has_value());
EXPECT_EQ(*value, " ");
EXPECT_TRUE(absl::ParseFlag("aqswde", &value, &err));
EXPECT_TRUE(value.has_value());
EXPECT_EQ(*value, "aqswde");
EXPECT_TRUE(absl::ParseFlag("nullopt", &value, &err));
EXPECT_TRUE(value.has_value());
EXPECT_EQ(*value, "nullopt");
}
TEST(MarshallingTest, TestBoolUnparsing) {
EXPECT_EQ(absl::UnparseFlag(true), "true");
EXPECT_EQ(absl::UnparseFlag(false), "false");
}
TEST(MarshallingTest, TestInt16Unparsing) {
int16_t value;
value = 1;
EXPECT_EQ(absl::UnparseFlag(value), "1");
value = 0;
EXPECT_EQ(absl::UnparseFlag(value), "0");
value = -1;
EXPECT_EQ(absl::UnparseFlag(value), "-1");
value = 9876;
EXPECT_EQ(absl::UnparseFlag(value), "9876");
value = -987;
EXPECT_EQ(absl::UnparseFlag(value), "-987");
}
TEST(MarshallingTest, TestUint16Unparsing) {
uint16_t value;
value = 1;
EXPECT_EQ(absl::UnparseFlag(value), "1");
value = 0;
EXPECT_EQ(absl::UnparseFlag(value), "0");
value = 19876;
EXPECT_EQ(absl::UnparseFlag(value), "19876");
}
TEST(MarshallingTest, TestInt32Unparsing) {
int32_t value;
value = 1;
EXPECT_EQ(absl::UnparseFlag(value), "1");
value = 0;
EXPECT_EQ(absl::UnparseFlag(value), "0");
value = -1;
EXPECT_EQ(absl::UnparseFlag(value), "-1");
value = 12345;
EXPECT_EQ(absl::UnparseFlag(value), "12345");
value = -987;
EXPECT_EQ(absl::UnparseFlag(value), "-987");
}
TEST(MarshallingTest, TestUint32Unparsing) {
uint32_t value;
value = 1;
EXPECT_EQ(absl::UnparseFlag(value), "1");
value = 0;
EXPECT_EQ(absl::UnparseFlag(value), "0");
value = 1234500;
EXPECT_EQ(absl::UnparseFlag(value), "1234500");
}
TEST(MarshallingTest, TestInt64Unparsing) {
int64_t value;
value = 1;
EXPECT_EQ(absl::UnparseFlag(value), "1");
value = 0;
EXPECT_EQ(absl::UnparseFlag(value), "0");
value = -1;
EXPECT_EQ(absl::UnparseFlag(value), "-1");
value = 123456789L;
EXPECT_EQ(absl::UnparseFlag(value), "123456789");
value = -987654321L;
EXPECT_EQ(absl::UnparseFlag(value), "-987654321");
value = 0x7FFFFFFFFFFFFFFF;
EXPECT_EQ(absl::UnparseFlag(value), "9223372036854775807");
value = 0xFFFFFFFFFFFFFFFF;
EXPECT_EQ(absl::UnparseFlag(value), "-1");
}
TEST(MarshallingTest, TestUint64Unparsing) {
uint64_t value;
value = 1;
EXPECT_EQ(absl::UnparseFlag(value), "1");
value = 0;
EXPECT_EQ(absl::UnparseFlag(value), "0");
value = 123456789L;
EXPECT_EQ(absl::UnparseFlag(value), "123456789");
value = 0xFFFFFFFFFFFFFFFF;
EXPECT_EQ(absl::UnparseFlag(value), "18446744073709551615");
}
TEST(MarshallingTest, TestInt128Unparsing) {
absl::int128 value;
value = 1;
EXPECT_EQ(absl::UnparseFlag(value), "1");
value = 0;
EXPECT_EQ(absl::UnparseFlag(value), "0");
value = -1;
EXPECT_EQ(absl::UnparseFlag(value), "-1");
value = 123456789L;
EXPECT | 2,505 |
#ifndef ABSL_FLAGS_INTERNAL_PROGRAM_NAME_H_
#define ABSL_FLAGS_INTERNAL_PROGRAM_NAME_H_
#include <string>
#include "absl/base/config.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
std::string ProgramInvocationName();
std::string ShortProgramInvocationName();
void SetProgramInvocationName(absl::string_view prog_name_str);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/flags/internal/program_name.h"
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/const_init.h"
#include "absl/base/thread_annotations.h"
#include "absl/flags/internal/path_util.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
ABSL_CONST_INIT static absl::Mutex program_name_guard(absl::kConstInit);
ABSL_CONST_INIT static std::string* program_name
ABSL_GUARDED_BY(program_name_guard) = nullptr;
std::string ProgramInvocationName() {
absl::MutexLock l(&program_name_guard);
return program_name ? *program_name : "UNKNOWN";
}
std::string ShortProgramInvocationName() {
absl::MutexLock l(&program_name_guard);
return program_name ? std::string(flags_internal::Basename(*program_name))
: "UNKNOWN";
}
void SetProgramInvocationName(absl::string_view prog_name_str) {
absl::MutexLock l(&program_name_guard);
if (!program_name)
program_name = new std::string(prog_name_str);
else
program_name->assign(prog_name_str.data(), prog_name_str.size());
}
}
ABSL_NAMESPACE_END
} | #include "absl/flags/internal/program_name.h"
#include <string>
#include "gtest/gtest.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
namespace {
namespace flags = absl::flags_internal;
TEST(FlagsPathUtilTest, TestProgamNameInterfaces) {
flags::SetProgramInvocationName("absl/flags/program_name_test");
std::string program_name = flags::ProgramInvocationName();
for (char& c : program_name)
if (c == '\\') c = '/';
#if !defined(__wasm__) && !defined(__asmjs__)
const std::string expect_name = "absl/flags/program_name_test";
const std::string expect_basename = "program_name_test";
#else
const std::string expect_name = "this.program";
const std::string expect_basename = "this.program";
#endif
EXPECT_TRUE(absl::EndsWith(program_name, expect_name)) << program_name;
EXPECT_EQ(flags::ShortProgramInvocationName(), expect_basename);
flags::SetProgramInvocationName("a/my_test");
EXPECT_EQ(flags::ProgramInvocationName(), "a/my_test");
EXPECT_EQ(flags::ShortProgramInvocationName(), "my_test");
absl::string_view not_null_terminated("absl/aaa/bbb");
not_null_terminated = not_null_terminated.substr(1, 10);
flags::SetProgramInvocationName(not_null_terminated);
EXPECT_EQ(flags::ProgramInvocationName(), "bsl/aaa/bb");
EXPECT_EQ(flags::ShortProgramInvocationName(), "bb");
}
} | 2,506 |
#ifndef ABSL_FLAGS_INTERNAL_FLAG_H_
#define ABSL_FLAGS_INTERNAL_FLAG_H_
#include <stddef.h>
#include <stdint.h>
#include <atomic>
#include <cstring>
#include <memory>
#include <string>
#include <type_traits>
#include <typeinfo>
#include "absl/base/attributes.h"
#include "absl/base/call_once.h"
#include "absl/base/casts.h"
#include "absl/base/config.h"
#include "absl/base/optimization.h"
#include "absl/base/thread_annotations.h"
#include "absl/flags/commandlineflag.h"
#include "absl/flags/config.h"
#include "absl/flags/internal/commandlineflag.h"
#include "absl/flags/internal/registry.h"
#include "absl/flags/internal/sequence_lock.h"
#include "absl/flags/marshalling.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/mutex.h"
#include "absl/utility/utility.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
template <typename T>
class Flag;
}
template <typename T>
using Flag = flags_internal::Flag<T>;
template <typename T>
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag);
template <typename T>
void SetFlag(absl::Flag<T>* flag, const T& v);
template <typename T, typename V>
void SetFlag(absl::Flag<T>* flag, const V& v);
template <typename U>
const CommandLineFlag& GetFlagReflectionHandle(const absl::Flag<U>& f);
namespace flags_internal {
enum class FlagOp {
kAlloc,
kDelete,
kCopy,
kCopyConstruct,
kSizeof,
kFastTypeId,
kRuntimeTypeId,
kParse,
kUnparse,
kValueOffset,
};
using FlagOpFn = void* (*)(FlagOp, const void*, void*, void*);
template <typename T>
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3);
inline void* Alloc(FlagOpFn op) {
return op(FlagOp::kAlloc, nullptr, nullptr, nullptr);
}
inline void Delete(FlagOpFn op, void* obj) {
op(FlagOp::kDelete, nullptr, obj, nullptr);
}
inline void Copy(FlagOpFn op, const void* src, void* dst) {
op(FlagOp::kCopy, src, dst, nullptr);
}
inline void CopyConstruct(FlagOpFn op, const void* src, void* dst) {
op(FlagOp::kCopyConstruct, src, dst, nullptr);
}
inline void* Clone(FlagOpFn op, const void* obj) {
void* res = flags_internal::Alloc(op);
flags_internal::CopyConstruct(op, obj, res);
return res;
}
inline bool Parse(FlagOpFn op, absl::string_view text, void* dst,
std::string* error) {
return op(FlagOp::kParse, &text, dst, error) != nullptr;
}
inline std::string Unparse(FlagOpFn op, const void* val) {
std::string result;
op(FlagOp::kUnparse, val, &result, nullptr);
return result;
}
inline size_t Sizeof(FlagOpFn op) {
return static_cast<size_t>(reinterpret_cast<intptr_t>(
op(FlagOp::kSizeof, nullptr, nullptr, nullptr)));
}
inline FlagFastTypeId FastTypeId(FlagOpFn op) {
return reinterpret_cast<FlagFastTypeId>(
op(FlagOp::kFastTypeId, nullptr, nullptr, nullptr));
}
inline const std::type_info* RuntimeTypeId(FlagOpFn op) {
return reinterpret_cast<const std::type_info*>(
op(FlagOp::kRuntimeTypeId, nullptr, nullptr, nullptr));
}
inline ptrdiff_t ValueOffset(FlagOpFn op) {
return static_cast<ptrdiff_t>(reinterpret_cast<intptr_t>(
op(FlagOp::kValueOffset, nullptr, nullptr, nullptr)));
}
template <typename T>
inline const std::type_info* GenRuntimeTypeId() {
#ifdef ABSL_INTERNAL_HAS_RTTI
return &typeid(T);
#else
return nullptr;
#endif
}
using HelpGenFunc = std::string (*)();
template <size_t N>
struct FixedCharArray {
char value[N];
template <size_t... I>
static constexpr FixedCharArray<N> FromLiteralString(
absl::string_view str, absl::index_sequence<I...>) {
return (void)str, FixedCharArray<N>({{str[I]..., '\0'}});
}
};
template <typename Gen, size_t N = Gen::Value().size()>
constexpr FixedCharArray<N + 1> HelpStringAsArray(int) {
return FixedCharArray<N + 1>::FromLiteralString(
Gen::Value(), absl::make_index_sequence<N>{});
}
template <typename Gen>
constexpr std::false_type HelpStringAsArray(char) {
return std::false_type{};
}
union FlagHelpMsg {
constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {}
constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {}
const char* literal;
HelpGenFunc gen_func;
};
enum class FlagHelpKind : uint8_t { kLiteral = 0, kGenFunc = 1 };
struct FlagHelpArg {
FlagHelpMsg source;
FlagHelpKind kind;
};
extern const char kStrippedFlagHelp[];
template <typename Gen, size_t N>
constexpr FlagHelpArg HelpArg(const FixedCharArray<N>& value) {
return {FlagHelpMsg(value.value), FlagHelpKind::kLiteral};
}
template <typename Gen>
constexpr FlagHelpArg HelpArg(std::false_type) {
return {FlagHelpMsg(&Gen::NonConst), FlagHelpKind::kGenFunc};
}
using FlagDfltGenFunc = void (*)(void*);
union FlagDefaultSrc {
constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)
: gen_func(gen_func_arg) {}
#define ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE(T, name) \
T name##_value; \
constexpr explicit FlagDefaultSrc(T value) : name##_value(value) {}
ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE)
#undef ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE
void* dynamic_value;
FlagDfltGenFunc gen_func;
};
enum class FlagDefaultKind : uint8_t {
kDynamicValue = 0,
kGenFunc = 1,
kOneWord = 2
};
struct FlagDefaultArg {
FlagDefaultSrc source;
FlagDefaultKind kind;
};
struct EmptyBraces {};
template <typename T>
constexpr T InitDefaultValue(T t) {
return t;
}
template <typename T>
constexpr T InitDefaultValue(EmptyBraces) {
return T{};
}
template <typename ValueT, typename GenT,
typename std::enable_if<std::is_integral<ValueT>::value, int>::type =
((void)GenT{}, 0)>
constexpr FlagDefaultArg DefaultArg(int) {
return {FlagDefaultSrc(GenT{}.value), FlagDefaultKind::kOneWord};
}
template <typename ValueT, typename GenT>
constexpr FlagDefaultArg DefaultArg(char) {
return {FlagDefaultSrc(&GenT::Gen), FlagDefaultKind::kGenFunc};
}
constexpr int64_t UninitializedFlagValue() {
return static_cast<int64_t>(0xababababababababll);
}
template <typename T>
using FlagUseValueAndInitBitStorage =
std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
std::is_default_constructible<T>::value &&
(sizeof(T) < 8)>;
template <typename T>
using FlagUseOneWordStorage =
std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
(sizeof(T) <= 8)>;
template <class T>
using FlagUseSequenceLockStorage =
std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
(sizeof(T) > 8)>;
enum class FlagValueStorageKind : uint8_t {
kValueAndInitBit = 0,
kOneWordAtomic = 1,
kSequenceLocked = 2,
kAlignedBuffer = 3,
};
template <typename T>
static constexpr FlagValueStorageKind StorageKind() {
return FlagUseValueAndInitBitStorage<T>::value
? FlagValueStorageKind::kValueAndInitBit
: FlagUseOneWordStorage<T>::value
? FlagValueStorageKind::kOneWordAtomic
: FlagUseSequenceLockStorage<T>::value
? FlagValueStorageKind::kSequenceLocked
: FlagValueStorageKind::kAlignedBuffer;
}
struct FlagOneWordValue {
constexpr explicit FlagOneWordValue(int64_t v) : value(v) {}
std::atomic<int64_t> value;
};
template <typename T>
struct alignas(8) FlagValueAndInitBit {
T value;
uint8_t init;
};
template <typename T,
FlagValueStorageKind Kind = flags_internal::StorageKind<T>()>
struct FlagValue;
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kValueAndInitBit> : FlagOneWordValue {
constexpr FlagValue() : FlagOneWordValue(0) {}
bool Get(const SequenceLock&, T& dst) const {
int64_t storage = value.load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(storage == 0)) {
return false;
}
dst = absl::bit_cast<FlagValueAndInitBit<T>>(storage).value;
return true;
}
};
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kOneWordAtomic> : FlagOneWordValue {
constexpr FlagValue() : FlagOneWordValue(UninitializedFlagValue()) {}
bool Get(const SequenceLock&, T& dst) const {
int64_t one_word_val = value.load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(one_word_val == UninitializedFlagValue())) {
return false;
}
std::memcpy(&dst, static_cast<const void*>(&one_word_val), sizeof(T));
return true;
}
};
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kSequenceLocked> {
bool Get(const SequenceLock& lock, T& dst) const {
return lock.TryRead(&dst, value_words, sizeof(T));
}
static constexpr int kNumWords =
flags_internal::AlignUp(sizeof(T), sizeof(uint64_t)) / sizeof(uint64_t);
alignas(T) alignas(
std::atomic<uint64_t>) std::atomic<uint64_t> value_words[kNumWords];
};
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kAlignedBuffer> {
bool Get(const SequenceLock&, T&) const { return false; }
alignas(T) char value[sizeof(T)];
};
using FlagCallbackFunc = void (*)();
struct FlagCallback {
FlagCallbackFunc func;
absl::Mutex guard;
};
struct DynValueDeleter {
explicit DynValueDeleter(FlagOpFn op_arg = nullptr);
void operator()(void* ptr) const;
FlagOpFn op;
};
class FlagState;
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
#endif
class FlagImpl final : public CommandLineFlag {
public:
constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op,
FlagHelpArg help, FlagValueStorageKind value_kind,
FlagDefaultArg default_arg)
: name_(name),
filename_(filename),
op_(op),
help_(help.source),
help_source_kind_(static_cast<uint8_t>(help.kind)),
value_storage_kind_(static_cast<uint8_t>(value_kind)),
def_kind_(static_cast<uint8_t>(default_arg.kind)),
modified_(false),
on_command_line_(false),
callback_(nullptr),
default_value_(default_arg.source),
data_guard_{} {}
int64_t ReadOneWord() const ABSL_LOCKS_EXCLUDED(*DataGuard());
bool ReadOneBool() const ABSL_LOCKS_EXCLUDED(*DataGuard());
void Read(void* dst) const override ABSL_LOCKS_EXCLUDED(*DataGuard());
void Read(bool* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
*value = ReadOneBool();
}
template <typename T,
absl::enable_if_t<flags_internal::StorageKind<T>() ==
FlagValueStorageKind::kOneWordAtomic,
int> = 0>
void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
int64_t v = ReadOneWord();
std::memcpy(value, static_cast<const void*>(&v), sizeof(T));
}
template <typename T,
typename std::enable_if<flags_internal::StorageKind<T>() ==
FlagValueStorageKind::kValueAndInitBit,
int>::type = 0>
void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
*value = absl::bit_cast<FlagValueAndInitBit<T>>(ReadOneWord()).value;
}
void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard());
void SetCallback(const FlagCallbackFunc mutation_callback)
ABSL_LOCKS_EXCLUDED(*DataGuard());
void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
void AssertValidType(FlagFastTypeId type_id,
const std::type_info* (*gen_rtti)()) const;
private:
template <typename T>
friend class Flag;
friend class FlagState;
absl::Mutex* DataGuard() const
ABSL_LOCK_RETURNED(reinterpret_cast<absl::Mutex*>(data_guard_));
std::unique_ptr<void, DynValueDeleter> MakeInitValue() const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
void Init();
template <typename StorageT>
StorageT* OffsetValue() const;
void* AlignedBufferValue() const;
std::atomic<uint64_t>* AtomicBufferValue() const;
std::atomic<int64_t>& OneWordValue() const;
std::unique_ptr<void, DynValueDeleter> TryParse(absl::string_view value,
std::string& err) const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
void StoreValue(const void* src) ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
void ReadSequenceLockedData(void* dst) const
ABSL_LOCKS_EXCLUDED(*DataGuard());
FlagHelpKind HelpSourceKind() const {
return static_cast<FlagHelpKind>(help_source_kind_);
}
FlagValueStorageKind ValueStorageKind() const {
return static_cast<FlagValueStorageKind>(value_storage_kind_);
}
FlagDefaultKind DefaultKind() const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) {
return static_cast<FlagDefaultKind>(def_kind_);
}
absl::string_view Name() const override;
std::string Filename() const override;
std::string Help() const override;
FlagFastTypeId TypeId() const override;
bool IsSpecifiedOnCommandLine() const override
ABSL_LOCKS_EXCLUDED(*DataGuard());
std::string DefaultValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
std::string CurrentValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
bool ValidateInputValue(absl::string_view value) const override
ABSL_LOCKS_EXCLUDED(*DataGuard());
void CheckDefaultValueParsingRoundtrip() const override
ABSL_LOCKS_EXCLUDED(*DataGuard());
int64_t ModificationCount() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
std::unique_ptr<FlagStateInterface> SaveState() override
ABSL_LOCKS_EXCLUDED(*DataGuard());
bool RestoreState(const FlagState& flag_state)
ABSL_LOCKS_EXCLUDED(*DataGuard());
bool ParseFrom(absl::string_view value, FlagSettingMode set_mode,
ValueSource source, std::string& error) override
ABSL_LOCKS_EXCLUDED(*DataGuard());
const char* const name_;
const char* const filename_;
const FlagOpFn op_;
const FlagHelpMsg help_;
const uint8_t help_source_kind_ : 1;
const uint8_t value_storage_kind_ : 2;
uint8_t : 0;
uint8_t def_kind_ : 2;
bool modified_ : 1 ABSL_GUARDED_BY(*DataGuard());
bool on_command_line_ : 1 ABSL_GUARDED_BY(*DataGuard());
absl::once_flag init_control_;
flags_internal::SequenceLock seq_lock_;
FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard());
FlagDefaultSrc default_value_;
alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)];
};
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif
template <typename T>
class Flag {
public:
constexpr Flag(const char* name, const char* filename, FlagHelpArg help,
const FlagDefaultArg default_arg)
: impl_(name, filename, &FlagOps<T>, help,
flags_internal::StorageKind<T>(), default_arg),
value_() {}
absl::string_view Name() const { return impl_.Name(); }
std::string Filename() const { return impl_.Filename(); }
std::string Help() const { return impl_.Help(); }
bool IsSpecifiedOnCommandLine() const {
return impl_.IsSpecifiedOnCommandLine();
}
std::string DefaultValue() const { return impl_.DefaultValue(); }
std::string CurrentValue() const { return impl_.CurrentValue(); }
private:
template <typename, bool>
friend class FlagRegistrar;
friend class FlagImplPeer;
T Get() const {
union U {
T value;
U() {}
~U() { value.~T(); }
};
U u;
#if !defined(NDEBUG)
impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
#endif
if (ABSL_PREDICT_FALSE(!value_.Get(impl_.seq_lock_, u.value))) {
impl_.Read(&u.value);
}
return std::move(u.value);
}
void Set(const T& v) {
impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
impl_.Write(&v);
}
const CommandLineFlag& Reflect() const { return impl_; }
FlagImpl impl_;
FlagValue<T> value_;
};
class FlagImplPeer {
public:
template <typename T, typename FlagType>
static T InvokeGet(const FlagType& flag) {
return flag.Get();
}
template <typename FlagType, typename T>
static void InvokeSet(FlagType& flag, const T& v) {
flag.Set(v);
}
template <typename FlagType>
static const CommandLineFlag& InvokeReflect(const FlagType& f) {
return f.Reflect();
}
};
template <typename T>
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) {
switch (op) {
case FlagOp::kAlloc: {
std::allocator<T> alloc;
return std::allocator_traits<std::allocator<T>>::allocate(alloc, 1);
}
case FlagOp::kDelete: {
T* p = static_cast<T*>(v2);
p->~T();
std::allocator<T> alloc;
std::allocator_traits<std::allocator<T>>::deallocate(alloc, p, 1);
return nullptr;
}
case FlagOp::kCopy:
*static_cast<T*>(v2) = *static_cast<const T*>(v1);
return nullptr;
case FlagOp::kCopyConstruct:
new (v2) T(*static_cast<const T*>(v1));
return nullptr;
case FlagOp::kSizeof:
return reinterpret_cast<void*>(static_cast<uintptr_t>(sizeof(T)));
case FlagOp::kFastTypeId:
return const_cast<void*>(base_internal::FastTypeId<T>());
case FlagOp::kRuntimeTypeId:
return const_cast<std::type_info*>(GenRuntimeTypeId<T>());
case FlagOp::kParse: {
T temp(*static_cast<T*>(v2));
if (!absl::ParseFlag<T>(*static_cast<const absl::string_view*>(v1), &temp,
static_cast<std::string*>(v3))) {
return nullptr;
}
*static_cast<T*>(v2) = std::move(temp);
return v2;
}
case FlagOp::kUnparse:
*static_cast<std::string*>(v2) =
absl::UnparseFlag<T>(*static_cast<const T*>(v1));
return nullptr;
case FlagOp::kValueOffset: {
size_t round_to = alignof(FlagValue<T>);
size_t offset = (sizeof(FlagImpl) + round_to - 1) / round_to * round_to;
return reinterpret_cast<void*>(offset);
}
}
return nullptr;
}
struct FlagRegistrarEmpty {};
template <typename T, bool do_register>
class FlagRegistrar {
public:
constexpr explicit FlagRegistrar(Flag<T>& flag, const char* filename)
: flag_(flag) {
if (do_register)
flags_internal::RegisterCommandLineFlag(flag_.impl_, filename);
}
FlagRegistrar OnUpdate(FlagCallbackFunc cb) && {
flag_.impl_.SetCallback(cb);
return *this;
}
constexpr operator FlagRegistrarEmpty() const { return {}; }
private:
Flag<T>& flag_;
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/flags/internal/flag.h"
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <array>
#include <atomic>
#include <memory>
#include <new>
#include <string>
#include <typeinfo>
#include "absl/base/call_once.h"
#include "absl/base/casts.h"
#include "absl/base/config.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/base/optimization.h"
#include "absl/flags/config.h"
#include "absl/flags/internal/commandlineflag.h"
#include "absl/flags/usage_config.h"
#include "absl/memory/memory.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
const char kStrippedFlagHelp[] = "\001\002\003\004 (unknown) \004\003\002\001";
namespace {
bool ShouldValidateFlagValue(FlagFastTypeId flag_type_id) {
#define DONT_VALIDATE(T, _) \
if (flag_type_id == base_internal::FastTypeId<T>()) return false;
ABSL_FLAGS_INTERNAL_SUPPORTED_TYPES(DONT_VALIDATE)
#undef DONT_VALIDATE
return true;
}
class MutexRelock {
public:
explicit MutexRelock(absl::Mutex& mu) : mu_(mu) { mu_.Unlock(); }
~MutexRelock() { mu_.Lock(); }
MutexRelock(const MutexRelock&) = delete;
MutexRelock& operator=(const MutexRelock&) = delete;
private:
absl::Mutex& mu_;
};
}
class FlagImpl;
class FlagState : public flags_internal::FlagStateInterface {
public:
template <typename V>
FlagState(FlagImpl& flag_impl, const V& v, bool modified,
bool on_command_line, int64_t counter)
: flag_impl_(flag_impl),
value_(v),
modified_(modified),
on_command_line_(on_command_line),
counter_(counter) {}
~FlagState() override {
if (flag_impl_.ValueStorageKind() != FlagValueStorageKind::kAlignedBuffer &&
flag_impl_.ValueStorageKind() != FlagValueStorageKind::kSequenceLocked)
return;
flags_internal::Delete(flag_impl_.op_, value_.heap_allocated);
}
private:
friend class FlagImpl;
void Restore() const override {
if (!flag_impl_.RestoreState(*this)) return;
ABSL_INTERNAL_LOG(INFO,
absl::StrCat("Restore saved value of ", flag_impl_.Name(),
" to: ", flag_impl_.CurrentValue()));
}
FlagImpl& flag_impl_;
union SavedValue {
explicit SavedValue(void* v) : heap_allocated(v) {}
explicit SavedValue(int64_t v) : one_word(v) {}
void* heap_allocated;
int64_t one_word;
} value_;
bool modified_;
bool on_command_line_;
int64_t counter_;
};
DynValu | #include "absl/flags/flag.h"
#include <string>
#include "gtest/gtest.h"
#include "absl/flags/reflection.h"
#include "absl/time/civil_time.h"
#include "absl/time/time.h"
ABSL_FLAG(absl::CivilSecond, test_flag_civil_second,
absl::CivilSecond(2015, 1, 2, 3, 4, 5), "");
ABSL_FLAG(absl::CivilMinute, test_flag_civil_minute,
absl::CivilMinute(2015, 1, 2, 3, 4), "");
ABSL_FLAG(absl::CivilHour, test_flag_civil_hour, absl::CivilHour(2015, 1, 2, 3),
"");
ABSL_FLAG(absl::CivilDay, test_flag_civil_day, absl::CivilDay(2015, 1, 2), "");
ABSL_FLAG(absl::CivilMonth, test_flag_civil_month, absl::CivilMonth(2015, 1),
"");
ABSL_FLAG(absl::CivilYear, test_flag_civil_year, absl::CivilYear(2015), "");
ABSL_FLAG(absl::Duration, test_duration_flag, absl::Seconds(5),
"For testing support for Duration flags");
ABSL_FLAG(absl::Time, test_time_flag, absl::InfinitePast(),
"For testing support for Time flags");
namespace {
bool SetFlagValue(absl::string_view flag_name, absl::string_view value) {
auto* flag = absl::FindCommandLineFlag(flag_name);
if (!flag) return false;
std::string err;
return flag->ParseFrom(value, &err);
}
bool GetFlagValue(absl::string_view flag_name, std::string& value) {
auto* flag = absl::FindCommandLineFlag(flag_name);
if (!flag) return false;
value = flag->CurrentValue();
return true;
}
TEST(CivilTime, FlagSupport) {
const absl::CivilSecond kDefaultSec(2015, 1, 2, 3, 4, 5);
EXPECT_EQ(absl::CivilSecond(kDefaultSec),
absl::GetFlag(FLAGS_test_flag_civil_second));
EXPECT_EQ(absl::CivilMinute(kDefaultSec),
absl::GetFlag(FLAGS_test_flag_civil_minute));
EXPECT_EQ(absl::CivilHour(kDefaultSec),
absl::GetFlag(FLAGS_test_flag_civil_hour));
EXPECT_EQ(absl::CivilDay(kDefaultSec),
absl::GetFlag(FLAGS_test_flag_civil_day));
EXPECT_EQ(absl::CivilMonth(kDefaultSec),
absl::GetFlag(FLAGS_test_flag_civil_month));
EXPECT_EQ(absl::CivilYear(kDefaultSec),
absl::GetFlag(FLAGS_test_flag_civil_year));
const absl::CivilSecond kNewSec(2016, 6, 7, 8, 9, 10);
absl::SetFlag(&FLAGS_test_flag_civil_second, absl::CivilSecond(kNewSec));
absl::SetFlag(&FLAGS_test_flag_civil_minute, absl::CivilMinute(kNewSec));
absl::SetFlag(&FLAGS_test_flag_civil_hour, absl::CivilHour(kNewSec));
absl::SetFlag(&FLAGS_test_flag_civil_day, absl::CivilDay(kNewSec));
absl::SetFlag(&FLAGS_test_flag_civil_month, absl::CivilMonth(kNewSec));
absl::SetFlag(&FLAGS_test_flag_civil_year, absl::CivilYear(kNewSec));
EXPECT_EQ(absl::CivilSecond(kNewSec),
absl::GetFlag(FLAGS_test_flag_civil_second));
EXPECT_EQ(absl::CivilMinute(kNewSec),
absl::GetFlag(FLAGS_test_flag_civil_minute));
EXPECT_EQ(absl::CivilHour(kNewSec),
absl::GetFlag(FLAGS_test_flag_civil_hour));
EXPECT_EQ(absl::CivilDay(kNewSec), absl::GetFlag(FLAGS_test_flag_civil_day));
EXPECT_EQ(absl::CivilMonth(kNewSec),
absl::GetFlag(FLAGS_test_flag_civil_month));
EXPECT_EQ(absl::CivilYear(kNewSec),
absl::GetFlag(FLAGS_test_flag_civil_year));
}
TEST(Duration, FlagSupport) {
EXPECT_EQ(absl::Seconds(5), absl::GetFlag(FLAGS_test_duration_flag));
absl::SetFlag(&FLAGS_test_duration_flag, absl::Seconds(10));
EXPECT_EQ(absl::Seconds(10), absl::GetFlag(FLAGS_test_duration_flag));
EXPECT_TRUE(SetFlagValue("test_duration_flag", "20s"));
EXPECT_EQ(absl::Seconds(20), absl::GetFlag(FLAGS_test_duration_flag));
std::string current_flag_value;
EXPECT_TRUE(GetFlagValue("test_duration_flag", current_flag_value));
EXPECT_EQ("20s", current_flag_value);
}
TEST(Time, FlagSupport) {
EXPECT_EQ(absl::InfinitePast(), absl::GetFlag(FLAGS_test_time_flag));
const absl::Time t = absl::FromCivil(absl::CivilSecond(2016, 1, 2, 3, 4, 5),
absl::UTCTimeZone());
absl::SetFlag(&FLAGS_test_time_flag, t);
EXPECT_EQ(t, absl::GetFlag(FLAGS_test_time_flag));
EXPECT_TRUE(SetFlagValue("test_time_flag", "2016-01-02T03:04:06Z"));
EXPECT_EQ(t + absl::Seconds(1), absl::GetFlag(FLAGS_test_time_flag));
EXPECT_TRUE(SetFlagValue("test_time_flag", "2016-01-02T03:04:07.0Z"));
EXPECT_EQ(t + absl::Seconds(2), absl::GetFlag(FLAGS_test_time_flag));
EXPECT_TRUE(SetFlagValue("test_time_flag", "2016-01-02T03:04:08.000Z"));
EXPECT_EQ(t + absl::Seconds(3), absl::GetFlag(FLAGS_test_time_flag));
EXPECT_TRUE(SetFlagValue("test_time_flag", "2016-01-02T03:04:09+00:00"));
EXPECT_EQ(t + absl::Seconds(4), absl::GetFlag(FLAGS_test_time_flag));
EXPECT_TRUE(SetFlagValue("test_time_flag", "2016-01-02T03:04:05.123+00:00"));
EXPECT_EQ(t + absl::Milliseconds(123), absl::GetFlag(FLAGS_test_time_flag));
EXPECT_TRUE(SetFlagValue("test_time_flag", "2016-01-02T03:04:05.123+08:00"));
EXPECT_EQ(t + absl::Milliseconds(123) - absl::Hours(8),
absl::GetFlag(FLAGS_test_time_flag));
EXPECT_TRUE(SetFlagValue("test_time_flag", "infinite-future"));
EXPECT_EQ(absl::InfiniteFuture(), absl::GetFlag(FLAGS_test_time_flag));
EXPECT_TRUE(SetFlagValue("test_time_flag", "infinite-past"));
EXPECT_EQ(absl::InfinitePast(), absl::GetFlag(FLAGS_test_time_flag));
EXPECT_FALSE(SetFlagValue("test_time_flag", "2016-01-02T03:04:06"));
EXPECT_FALSE(SetFlagValue("test_time_flag", "2016-01-02"));
EXPECT_FALSE(SetFlagValue("test_time_flag", "2016-01-02Z"));
EXPECT_FALSE(SetFlagValue("test_time_flag", "2016-01-02+00:00"));
EXPECT_FALSE(SetFlagValue("test_time_flag", "2016-99-99T03:04:06Z"));
EXPECT_TRUE(SetFlagValue("test_time_flag", "2016-01-02T03:04:05Z"));
std::string current_flag_value;
EXPECT_TRUE(GetFlagValue("test_time_flag", current_flag_value));
EXPECT_EQ("2016-01-02T03:04:05+00:00", current_flag_value);
}
} | 2,507 |
#ifndef ABSL_PROFILING_INTERNAL_PERIODIC_SAMPLER_H_
#define ABSL_PROFILING_INTERNAL_PERIODIC_SAMPLER_H_
#include <stdint.h>
#include <atomic>
#include "absl/base/optimization.h"
#include "absl/profiling/internal/exponential_biased.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace profiling_internal {
class PeriodicSamplerBase {
public:
PeriodicSamplerBase() = default;
PeriodicSamplerBase(PeriodicSamplerBase&&) = default;
PeriodicSamplerBase(const PeriodicSamplerBase&) = default;
inline bool Sample() noexcept;
inline bool SubtleMaybeSample() noexcept;
bool SubtleConfirmSample() noexcept;
protected:
~PeriodicSamplerBase() = default;
virtual int64_t GetExponentialBiased(int period) noexcept;
private:
virtual int period() const noexcept = 0;
uint64_t stride_ = 0;
absl::profiling_internal::ExponentialBiased rng_;
};
inline bool PeriodicSamplerBase::SubtleMaybeSample() noexcept {
if (ABSL_PREDICT_TRUE(static_cast<int64_t>(++stride_) < 0)) {
return false;
}
return true;
}
inline bool PeriodicSamplerBase::Sample() noexcept {
return ABSL_PREDICT_FALSE(SubtleMaybeSample()) ? SubtleConfirmSample()
: false;
}
template <typename Tag, int default_period = 0>
class PeriodicSampler final : public PeriodicSamplerBase {
public:
~PeriodicSampler() = default;
int period() const noexcept final {
return period_.load(std::memory_order_relaxed);
}
static void SetGlobalPeriod(int period) {
period_.store(period, std::memory_order_relaxed);
}
private:
static std::atomic<int> period_;
};
template <typename Tag, int default_period>
std::atomic<int> PeriodicSampler<Tag, default_period>::period_(default_period);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/profiling/internal/periodic_sampler.h"
#include <atomic>
#include "absl/profiling/internal/exponential_biased.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace profiling_internal {
int64_t PeriodicSamplerBase::GetExponentialBiased(int period) noexcept {
return rng_.GetStride(period);
}
bool PeriodicSamplerBase::SubtleConfirmSample() noexcept {
int current_period = period();
if (ABSL_PREDICT_FALSE(current_period < 2)) {
stride_ = 0;
return current_period == 1;
}
if (ABSL_PREDICT_FALSE(stride_ == 1)) {
stride_ = static_cast<uint64_t>(-GetExponentialBiased(current_period));
if (static_cast<int64_t>(stride_) < -1) {
++stride_;
return false;
}
}
stride_ = static_cast<uint64_t>(-GetExponentialBiased(current_period));
return true;
}
}
ABSL_NAMESPACE_END
} | #include "absl/profiling/internal/periodic_sampler.h"
#include <thread>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/macros.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace profiling_internal {
namespace {
using testing::Eq;
using testing::Return;
using testing::StrictMock;
class MockPeriodicSampler : public PeriodicSamplerBase {
public:
virtual ~MockPeriodicSampler() = default;
MOCK_METHOD(int, period, (), (const, noexcept));
MOCK_METHOD(int64_t, GetExponentialBiased, (int), (noexcept));
};
TEST(PeriodicSamplerBaseTest, Sample) {
StrictMock<MockPeriodicSampler> sampler;
EXPECT_CALL(sampler, period()).Times(3).WillRepeatedly(Return(16));
EXPECT_CALL(sampler, GetExponentialBiased(16))
.WillOnce(Return(2))
.WillOnce(Return(3))
.WillOnce(Return(4));
EXPECT_FALSE(sampler.Sample());
EXPECT_TRUE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
EXPECT_TRUE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
}
TEST(PeriodicSamplerBaseTest, ImmediatelySample) {
StrictMock<MockPeriodicSampler> sampler;
EXPECT_CALL(sampler, period()).Times(2).WillRepeatedly(Return(16));
EXPECT_CALL(sampler, GetExponentialBiased(16))
.WillOnce(Return(1))
.WillOnce(Return(2))
.WillOnce(Return(3));
EXPECT_TRUE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
EXPECT_TRUE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
}
TEST(PeriodicSamplerBaseTest, Disabled) {
StrictMock<MockPeriodicSampler> sampler;
EXPECT_CALL(sampler, period()).Times(3).WillRepeatedly(Return(0));
EXPECT_FALSE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
}
TEST(PeriodicSamplerBaseTest, AlwaysOn) {
StrictMock<MockPeriodicSampler> sampler;
EXPECT_CALL(sampler, period()).Times(3).WillRepeatedly(Return(1));
EXPECT_TRUE(sampler.Sample());
EXPECT_TRUE(sampler.Sample());
EXPECT_TRUE(sampler.Sample());
}
TEST(PeriodicSamplerBaseTest, Disable) {
StrictMock<MockPeriodicSampler> sampler;
EXPECT_CALL(sampler, period()).WillOnce(Return(16));
EXPECT_CALL(sampler, GetExponentialBiased(16)).WillOnce(Return(3));
EXPECT_FALSE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
EXPECT_CALL(sampler, period()).Times(2).WillRepeatedly(Return(0));
EXPECT_FALSE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
}
TEST(PeriodicSamplerBaseTest, Enable) {
StrictMock<MockPeriodicSampler> sampler;
EXPECT_CALL(sampler, period()).WillOnce(Return(0));
EXPECT_FALSE(sampler.Sample());
EXPECT_CALL(sampler, period()).Times(2).WillRepeatedly(Return(16));
EXPECT_CALL(sampler, GetExponentialBiased(16))
.Times(2)
.WillRepeatedly(Return(3));
EXPECT_FALSE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
EXPECT_TRUE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
EXPECT_FALSE(sampler.Sample());
}
TEST(PeriodicSamplerTest, ConstructConstInit) {
struct Tag {};
ABSL_CONST_INIT static PeriodicSampler<Tag> sampler;
(void)sampler;
}
TEST(PeriodicSamplerTest, DefaultPeriod0) {
struct Tag {};
PeriodicSampler<Tag> sampler;
EXPECT_THAT(sampler.period(), Eq(0));
}
TEST(PeriodicSamplerTest, DefaultPeriod) {
struct Tag {};
PeriodicSampler<Tag, 100> sampler;
EXPECT_THAT(sampler.period(), Eq(100));
}
TEST(PeriodicSamplerTest, SetGlobalPeriod) {
struct Tag1 {};
struct Tag2 {};
PeriodicSampler<Tag1, 25> sampler1;
PeriodicSampler<Tag2, 50> sampler2;
EXPECT_THAT(sampler1.period(), Eq(25));
EXPECT_THAT(sampler2.period(), Eq(50));
std::thread thread([] {
PeriodicSampler<Tag1, 25> sampler1;
PeriodicSampler<Tag2, 50> sampler2;
EXPECT_THAT(sampler1.period(), Eq(25));
EXPECT_THAT(sampler2.period(), Eq(50));
sampler1.SetGlobalPeriod(10);
sampler2.SetGlobalPeriod(20);
});
thread.join();
EXPECT_THAT(sampler1.period(), Eq(10));
EXPECT_THAT(sampler2.period(), Eq(20));
}
}
}
ABSL_NAMESPACE_END
} | 2,508 |
#ifndef ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_
#define ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_
#include <stdint.h>
#include "absl/base/config.h"
#include "absl/base/macros.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace profiling_internal {
class ExponentialBiased {
public:
static constexpr int kPrngNumBits = 48;
int64_t GetSkipCount(int64_t mean);
int64_t GetStride(int64_t mean);
static uint64_t NextRandom(uint64_t rnd);
private:
void Initialize();
uint64_t rng_{0};
double bias_{0};
bool initialized_{false};
};
inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) {
const uint64_t prng_mult = uint64_t{0x5DEECE66D};
const uint64_t prng_add = 0xB;
const uint64_t prng_mod_power = 48;
const uint64_t prng_mod_mask =
~((~static_cast<uint64_t>(0)) << prng_mod_power);
return (prng_mult * rnd + prng_add) & prng_mod_mask;
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/profiling/internal/exponential_biased.h"
#include <stdint.h>
#include <algorithm>
#include <atomic>
#include <cmath>
#include <limits>
#include "absl/base/attributes.h"
#include "absl/base/optimization.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace profiling_internal {
int64_t ExponentialBiased::GetSkipCount(int64_t mean) {
if (ABSL_PREDICT_FALSE(!initialized_)) {
Initialize();
}
uint64_t rng = NextRandom(rng_);
rng_ = rng;
double q = static_cast<uint32_t>(rng >> (kPrngNumBits - 26)) + 1.0;
double interval = bias_ + (std::log2(q) - 26) * (-std::log(2.0) * mean);
if (interval > static_cast<double>(std::numeric_limits<int64_t>::max() / 2)) {
return std::numeric_limits<int64_t>::max() / 2;
}
double value = std::rint(interval);
bias_ = interval - value;
return value;
}
int64_t ExponentialBiased::GetStride(int64_t mean) {
return GetSkipCount(mean - 1) + 1;
}
void ExponentialBiased::Initialize() {
ABSL_CONST_INIT static std::atomic<uint32_t> global_rand(0);
uint64_t r = reinterpret_cast<uint64_t>(this) +
global_rand.fetch_add(1, std::memory_order_relaxed);
for (int i = 0; i < 20; ++i) {
r = NextRandom(r);
}
rng_ = r;
initialized_ = true;
}
}
ABSL_NAMESPACE_END
} | #include "absl/profiling/internal/exponential_biased.h"
#include <stddef.h>
#include <cmath>
#include <cstdint>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
using ::testing::Ge;
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace profiling_internal {
namespace {
MATCHER_P2(IsBetween, a, b,
absl::StrCat(std::string(negation ? "isn't" : "is"), " between ", a,
" and ", b)) {
return a <= arg && arg <= b;
}
double AndersonDarlingInf(double z) {
if (z < 2) {
return exp(-1.2337141 / z) / sqrt(z) *
(2.00012 +
(0.247105 -
(0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * z) * z) * z) *
z) *
z);
}
return exp(
-exp(1.0776 -
(2.30695 -
(0.43424 - (0.082433 - (0.008056 - 0.0003146 * z) * z) * z) * z) *
z));
}
double AndersonDarlingErrFix(int n, double x) {
if (x > 0.8) {
return (-130.2137 +
(745.2337 -
(1705.091 - (1950.646 - (1116.360 - 255.7844 * x) * x) * x) * x) *
x) /
n;
}
double cutoff = 0.01265 + 0.1757 / n;
if (x < cutoff) {
double t = x / cutoff;
t = sqrt(t) * (1 - t) * (49 * t - 102);
return t * (0.0037 / (n * n) + 0.00078 / n + 0.00006) / n;
} else {
double t = (x - cutoff) / (0.8 - cutoff);
t = -0.00022633 +
(6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864 * t) * t) * t) * t) *
t;
return t * (0.04213 + 0.01365 / n) / n;
}
}
double AndersonDarlingPValue(int n, double z) {
double ad = AndersonDarlingInf(z);
double errfix = AndersonDarlingErrFix(n, ad);
return ad + errfix;
}
double AndersonDarlingStatistic(const std::vector<double>& random_sample) {
size_t n = random_sample.size();
double ad_sum = 0;
for (size_t i = 0; i < n; i++) {
ad_sum += (2 * i + 1) *
std::log(random_sample[i] * (1 - random_sample[n - 1 - i]));
}
const auto n_as_double = static_cast<double>(n);
double ad_statistic = -n_as_double - 1 / n_as_double * ad_sum;
return ad_statistic;
}
double AndersonDarlingTest(const std::vector<double>& random_sample) {
double ad_statistic = AndersonDarlingStatistic(random_sample);
double p = AndersonDarlingPValue(static_cast<int>(random_sample.size()),
ad_statistic);
return p;
}
TEST(ExponentialBiasedTest, CoinTossDemoWithGetSkipCount) {
ExponentialBiased eb;
for (int runs = 0; runs < 10; ++runs) {
for (int64_t flips = eb.GetSkipCount(1); flips > 0; --flips) {
printf("head...");
}
printf("tail\n");
}
int heads = 0;
for (int i = 0; i < 10000000; i += 1 + eb.GetSkipCount(1)) {
++heads;
}
printf("Heads = %d (%f%%)\n", heads, 100.0 * heads / 10000000);
}
TEST(ExponentialBiasedTest, SampleDemoWithStride) {
ExponentialBiased eb;
int64_t stride = eb.GetStride(10);
int samples = 0;
for (int i = 0; i < 10000000; ++i) {
if (--stride == 0) {
++samples;
stride = eb.GetStride(10);
}
}
printf("Samples = %d (%f%%)\n", samples, 100.0 * samples / 10000000);
}
TEST(ExponentialBiasedTest, TestNextRandom) {
for (auto n : std::vector<size_t>({
10,
100, 1000,
10000
})) {
uint64_t x = 1;
uint64_t max_prng_value = static_cast<uint64_t>(1) << 48;
for (int i = 1; i <= 20; i++) {
x = ExponentialBiased::NextRandom(x);
}
std::vector<uint64_t> int_random_sample(n);
for (size_t i = 0; i < n; i++) {
int_random_sample[i] = x;
x = ExponentialBiased::NextRandom(x);
}
std::sort(int_random_sample.begin(), int_random_sample.end());
std::vector<double> random_sample(n);
for (size_t i = 0; i < n; i++) {
random_sample[i] =
static_cast<double>(int_random_sample[i]) / max_prng_value;
}
double ad_pvalue = AndersonDarlingTest(random_sample);
EXPECT_GT(std::min(ad_pvalue, 1 - ad_pvalue), 0.0001)
<< "prng is not uniform: n = " << n << " p = " << ad_pvalue;
}
}
TEST(ExponentialBiasedTest, InitializationModes) {
ABSL_CONST_INIT static ExponentialBiased eb_static;
EXPECT_THAT(eb_static.GetSkipCount(2), Ge(0));
#ifdef ABSL_HAVE_THREAD_LOCAL
thread_local ExponentialBiased eb_thread;
EXPECT_THAT(eb_thread.GetSkipCount(2), Ge(0));
#endif
ExponentialBiased eb_stack;
EXPECT_THAT(eb_stack.GetSkipCount(2), Ge(0));
}
}
}
ABSL_NAMESPACE_END
} | 2,509 |
#ifndef ABSL_DEBUGGING_FAILURE_SIGNAL_HANDLER_H_
#define ABSL_DEBUGGING_FAILURE_SIGNAL_HANDLER_H_
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
struct FailureSignalHandlerOptions {
bool symbolize_stacktrace = true;
bool use_alternate_stack = true;
int alarm_on_failure_secs = 3;
bool call_previous_handler = false;
void (*writerfn)(const char*) = nullptr;
};
void InstallFailureSignalHandler(const FailureSignalHandlerOptions& options);
namespace debugging_internal {
const char* FailureSignalToString(int signo);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/debugging/failure_signal_handler.h"
#include "absl/base/config.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <sched.h>
#include <unistd.h>
#endif
#ifdef __APPLE__
#include <TargetConditionals.h>
#endif
#ifdef ABSL_HAVE_MMAP
#include <sys/mman.h>
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
#endif
#ifdef __linux__
#include <sys/prctl.h>
#endif
#include <algorithm>
#include <atomic>
#include <cerrno>
#include <csignal>
#include <cstdio>
#include <cstring>
#include <ctime>
#include "absl/base/attributes.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/sysinfo.h"
#include "absl/debugging/internal/examine_stack.h"
#include "absl/debugging/stacktrace.h"
#if !defined(_WIN32) && !defined(__wasi__)
#define ABSL_HAVE_SIGACTION
#if !(defined(TARGET_OS_OSX) && TARGET_OS_OSX) && \
!(defined(TARGET_OS_WATCH) && TARGET_OS_WATCH) && \
!(defined(TARGET_OS_TV) && TARGET_OS_TV) && !defined(__QNX__)
#define ABSL_HAVE_SIGALTSTACK
#endif
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
ABSL_CONST_INIT static FailureSignalHandlerOptions fsh_options;
static void RaiseToDefaultHandler(int signo) {
signal(signo, SIG_DFL);
raise(signo);
}
struct FailureSignalData {
const int signo;
const char* const as_string;
#ifdef ABSL_HAVE_SIGACTION
struct sigaction previous_action;
using StructSigaction = struct sigaction;
#define FSD_PREVIOUS_INIT FailureSignalData::StructSigaction()
#else
void (*previous_handler)(int);
#define FSD_PREVIOUS_INIT SIG_DFL
#endif
};
ABSL_CONST_INIT static FailureSignalData failure_signal_data[] = {
{SIGSEGV, "SIGSEGV", FSD_PREVIOUS_INIT},
{SIGILL, "SIGILL", FSD_PREVIOUS_INIT},
{SIGFPE, "SIGFPE", FSD_PREVIOUS_INIT},
{SIGABRT, "SIGABRT", FSD_PREVIOUS_INIT},
{SIGTERM, "SIGTERM", FSD_PREVIOUS_INIT},
#ifndef _WIN32
{SIGBUS, "SIGBUS", FSD_PREVIOUS_INIT},
{SIGTRAP, "SIGTRAP", FSD_PREVIOUS_INIT},
#endif
};
#undef FSD_PREVIOUS_INIT
static void RaiseToPreviousHandler(int signo) {
for (const auto& it : failure_signal_data) {
if (it.signo == signo) {
#ifdef ABSL_HAVE_SIGACTION
sigaction(signo, &it.previous_action, nullptr);
#else
signal(signo, it.previous_handler);
#endif
raise(signo);
return;
}
}
RaiseToDefaultHandler(signo);
}
namespace debugging_internal {
const char* FailureSignalToString(int signo) {
for (const auto& it : failure_signal_data) {
if (it.signo == signo) {
return it.as_string;
}
}
return "";
}
}
#ifdef ABSL_HAVE_SIGALTSTACK
static bool SetupAlternateStackOnce() {
#if defined(__wasm__) || defined(__asjms__)
const size_t page_mask = getpagesize() - 1;
#else
const size_t page_mask = static_cast<size_t>(sysconf(_SC_PAGESIZE)) - 1;
#endif
size_t stack_size =
(std::max(static_cast<size_t>(SIGSTKSZ), size_t{65536}) + page_mask) &
~page_mask;
#if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
defined(ABSL_HAVE_MEMORY_SANITIZER) || defined(ABSL_HAVE_THREAD_SANITIZER)
stack_size *= 5;
#endif
stack_t sigstk;
memset(&sigstk, 0, sizeof(sigstk));
sigstk.ss_size = stack_size;
#ifdef ABSL_HAVE_MMAP
#ifndef MAP_STACK
#define MAP_STACK 0
#endif
sigstk.ss_sp = mmap(nullptr, sigstk.ss_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);
if (sigstk.ss_sp == MAP_FAILED) {
ABSL_RAW_LOG(FATAL, "mmap() for alternate signal stack failed");
}
#else
sigstk.ss_sp = malloc(sigstk.ss_size);
if (sigstk.ss_sp == nullptr) {
ABSL_RAW_LOG(FATAL, "malloc() for alternate signal stack failed");
}
#endif
if (sigaltstack(&sigstk, nullptr) != 0) {
ABSL_RAW_LOG(FATAL, "sigaltstack() failed with errno=%d", errno);
}
#ifdef __linux__
#if defined(PR_SET_VMA) && defined(PR_SET_VMA_ANON_NAME)
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, sigstk.ss_sp, sigstk.ss_size,
"absl-signalstack");
#endif
#endif
return true;
}
#endif
#ifdef ABSL_HAVE_SIGACTION
static int MaybeSetupAlternateStack() {
#ifdef ABSL_HAVE_SIGALTSTACK
ABSL_ATTRIBUTE_UNUSED static const bool kOnce = SetupAlternateStackOnce();
return SA_ONSTACK;
#else
return 0;
#endif
}
static void InstallOneFailureHandler(FailureSignalData* data,
void (*handler)(int, siginfo_t*, void*)) {
struct sigaction act;
memset(&act, 0, sizeof(act));
sigemptyset(&act.sa_mask);
act.sa_flags |= SA_SIGINFO;
act.sa_flags |= SA_NODEFER;
if (fsh_options.use_alternate_stack) {
act.sa_flags |= MaybeSetupAlternateStack();
}
act.sa_sigaction = handler;
ABSL_RAW_CHECK(sigaction(data->signo, &act, &data->previous_action) == 0,
"sigaction() failed");
}
#else
static void InstallOneFailureHandler(FailureSignalData* data,
void (*handler)(int)) {
data->previous_handler = signal(data->signo, handler);
ABSL_RAW_CHECK(data->previous_handler != SIG_ERR, "signal() failed");
}
#endif
static void WriteSignalMessage(int signo, int cpu,
void (*writerfn)(const char*)) {
char buf[96];
char on_cpu[32] = {0};
if (cpu != -1) {
snprintf(on_cpu, sizeof(on_cpu), " on cpu %d", cpu);
}
const char* const signal_string =
debugging_internal::FailureSignalToString(signo);
if (signal_string != nullptr && signal_string[0] != '\0') {
snprintf(buf, sizeof(buf), "*** %s received at time=%ld%s ***\n",
signal_string,
static_cast<long>(time(nullptr)),
on_cpu);
} else {
snprintf(buf, sizeof(buf), "*** Signal %d received at time=%ld%s ***\n",
signo, static_cast<long>(time(nullptr)),
on_cpu);
}
writerfn(buf);
}
struct WriterFnStruct {
void (*writerfn)(const char*);
};
static void WriterFnWrapper(const char* data, void* arg) {
static_cast<WriterFnStruct*>(arg)->writerfn(data);
}
ABSL_ATTRIBUTE_NOINLINE static void WriteStackTrace(
void* ucontext, bool symbolize_stacktrace,
void (*writerfn)(const char*, void*), void* writerfn_arg) {
constexpr int kNumStackFrames = 32;
void* stack[kNumStackFrames];
int frame_sizes[kNumStackFrames];
int min_dropped_frames;
int depth = absl::GetStackFramesWithContext(
stack, frame_sizes, kNumStackFrames,
1,
ucontext, &min_dropped_frames);
absl::debugging_internal::DumpPCAndFrameSizesAndStackTrace(
absl::debugging_internal::GetProgramCounter(ucontext), stack, frame_sizes,
depth, min_dropped_frames, symbolize_stacktrace, writerfn, writerfn_arg);
}
static void WriteFailureInfo(int signo, void* ucontext, int cpu,
void (*writerfn)(const char*)) {
WriterFnStruct writerfn_struct{writerfn};
WriteSignalMessage(signo, cpu, writerfn);
WriteStackTrace(ucontext, fsh_options.symbolize_stacktrace, WriterFnWrapper,
&writerfn_struct);
}
static void PortableSleepForSeconds(int seconds) {
#ifdef _WIN32
Sleep(static_cast<DWORD>(seconds * 1000));
#else
struct timespec sleep_time;
sleep_time.tv_sec = seconds;
sleep_time.tv_nsec = 0;
while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) {
}
#endif
}
#ifdef ABSL_HAVE_ALARM
static void ImmediateAbortSignalHandler(int) { RaiseToDefaultHandler(SIGABRT); }
#endif
using GetTidType = decltype(absl::base_internal::GetTID());
ABSL_CONST_INIT static std::atomic<GetTidType> failed_tid(0);
#ifndef ABSL_HAVE_SIGACTION
static void AbslFailureSignalHandler(int signo) {
void* ucontext = nullptr;
#else
static void AbslFailureSignalHandler(int signo, siginfo_t*, void* ucontext) {
#endif
const GetTidType this_tid = absl::base_internal::GetTID();
GetTidType previous_failed_tid = 0;
if (!failed_tid.compare_exchange_strong(previous_failed_tid, this_tid,
std::memory_order_acq_rel,
std::memory_order_relaxed)) {
ABSL_RAW_LOG(
ERROR,
"Signal %d raised at PC=%p while already in AbslFailureSignalHandler()",
signo, absl::debugging_internal::GetProgramCounter(ucontext));
if (this_tid != previous_failed_tid) {
PortableSleepForSeconds(3);
RaiseToDefaultHandler(signo);
return;
}
}
int my_cpu = -1;
#ifdef ABSL_HAVE_SCHED_GETCPU
my_cpu = sched_getcpu();
#endif
#ifdef ABSL_HAVE_ALARM
if (fsh_options.alarm_on_failure_secs > 0) {
alarm(0);
signal(SIGALRM, ImmediateAbortSignalHandler);
alarm(static_cast<unsigned int>(fsh_options.alarm_on_failure_secs));
}
#endif
WriteFailureInfo(
signo, ucontext, my_cpu, +[](const char* data) {
absl::raw_log_internal::AsyncSignalSafeWriteError(data, strlen(data));
});
if (fsh_options.writerfn != nullptr) {
WriteFailureInfo(signo, ucontext, my_cpu, fsh_options.writerfn);
fsh_options.writerfn(nullptr);
}
if (fsh_options.call_previous_handler) {
RaiseToPreviousHandler(signo);
} else {
RaiseToDefaultHandler(signo);
}
}
void InstallFailureSignalHandler(const FailureSignalHandlerOptions& options) {
fsh_options = options;
for (auto& it : failure_signal_data) {
InstallOneFailureHandler(&it, AbslFailureSignalHandler);
}
}
ABSL_NAMESPACE_END
} | #include "absl/debugging/failure_signal_handler.h"
#include <csignal>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/debugging/stacktrace.h"
#include "absl/debugging/symbolize.h"
#include "absl/log/check.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
namespace {
using testing::StartsWith;
#if GTEST_HAS_DEATH_TEST
using FailureSignalHandlerDeathTest = ::testing::TestWithParam<int>;
void InstallHandlerAndRaise(int signo) {
absl::InstallFailureSignalHandler(absl::FailureSignalHandlerOptions());
raise(signo);
}
TEST_P(FailureSignalHandlerDeathTest, AbslFailureSignal) {
const int signo = GetParam();
std::string exit_regex = absl::StrCat(
"\\*\\*\\* ", absl::debugging_internal::FailureSignalToString(signo),
" received at time=");
#ifndef _WIN32
EXPECT_EXIT(InstallHandlerAndRaise(signo), testing::KilledBySignal(signo),
exit_regex);
#else
EXPECT_DEATH_IF_SUPPORTED(InstallHandlerAndRaise(signo), exit_regex);
#endif
}
ABSL_CONST_INIT FILE* error_file = nullptr;
void WriteToErrorFile(const char* msg) {
if (msg != nullptr) {
ABSL_RAW_CHECK(fwrite(msg, strlen(msg), 1, error_file) == 1,
"fwrite() failed");
}
ABSL_RAW_CHECK(fflush(error_file) == 0, "fflush() failed");
}
std::string GetTmpDir() {
static const char* const kTmpEnvVars[] = {"TEST_TMPDIR", "TMPDIR", "TEMP",
"TEMPDIR", "TMP"};
for (const char* const var : kTmpEnvVars) {
const char* tmp_dir = std::getenv(var);
if (tmp_dir != nullptr) {
return tmp_dir;
}
}
return "/tmp";
}
void InstallHandlerWithWriteToFileAndRaise(const char* file, int signo) {
error_file = fopen(file, "w");
CHECK_NE(error_file, nullptr) << "Failed create error_file";
absl::FailureSignalHandlerOptions options;
options.writerfn = WriteToErrorFile;
absl::InstallFailureSignalHandler(options);
raise(signo);
}
TEST_P(FailureSignalHandlerDeathTest, AbslFatalSignalsWithWriterFn) {
const int signo = GetParam();
std::string tmp_dir = GetTmpDir();
std::string file = absl::StrCat(tmp_dir, "/signo_", signo);
std::string exit_regex = absl::StrCat(
"\\*\\*\\* ", absl::debugging_internal::FailureSignalToString(signo),
" received at time=");
#ifndef _WIN32
EXPECT_EXIT(InstallHandlerWithWriteToFileAndRaise(file.c_str(), signo),
testing::KilledBySignal(signo), exit_regex);
#else
EXPECT_DEATH_IF_SUPPORTED(
InstallHandlerWithWriteToFileAndRaise(file.c_str(), signo), exit_regex);
#endif
std::fstream error_output(file);
ASSERT_TRUE(error_output.is_open()) << file;
std::string error_line;
std::getline(error_output, error_line);
EXPECT_THAT(
error_line,
StartsWith(absl::StrCat(
"*** ", absl::debugging_internal::FailureSignalToString(signo),
" received at ")));
#if defined(__linux__)
EXPECT_THAT(error_line, testing::HasSubstr(" on cpu "));
#endif
if (absl::debugging_internal::StackTraceWorksForTest()) {
std::getline(error_output, error_line);
EXPECT_THAT(error_line, StartsWith("PC: "));
}
}
constexpr int kFailureSignals[] = {
SIGSEGV, SIGILL, SIGFPE, SIGABRT, SIGTERM,
#ifndef _WIN32
SIGBUS, SIGTRAP,
#endif
};
std::string SignalParamToString(const ::testing::TestParamInfo<int>& info) {
std::string result =
absl::debugging_internal::FailureSignalToString(info.param);
if (result.empty()) {
result = absl::StrCat(info.param);
}
return result;
}
INSTANTIATE_TEST_SUITE_P(AbslDeathTest, FailureSignalHandlerDeathTest,
::testing::ValuesIn(kFailureSignals),
SignalParamToString);
#endif
}
int main(int argc, char** argv) {
absl::InitializeSymbolizer(argv[0]);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
} | 2,510 |
#ifndef ABSL_DEBUGGING_LEAK_CHECK_H_
#define ABSL_DEBUGGING_LEAK_CHECK_H_
#include <cstddef>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
bool HaveLeakSanitizer();
bool LeakCheckerIsActive();
void DoIgnoreLeak(const void* ptr);
template <typename T>
T* IgnoreLeak(T* ptr) {
DoIgnoreLeak(ptr);
return ptr;
}
bool FindAndReportLeaks();
class LeakCheckDisabler {
public:
LeakCheckDisabler();
LeakCheckDisabler(const LeakCheckDisabler&) = delete;
LeakCheckDisabler& operator=(const LeakCheckDisabler&) = delete;
~LeakCheckDisabler();
};
void RegisterLivePointers(const void* ptr, size_t size);
void UnRegisterLivePointers(const void* ptr, size_t size);
ABSL_NAMESPACE_END
}
#endif
#include "absl/debugging/leak_check.h"
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#if defined(ABSL_HAVE_LEAK_SANITIZER)
#include <sanitizer/lsan_interface.h>
#if ABSL_HAVE_ATTRIBUTE_WEAK
extern "C" ABSL_ATTRIBUTE_WEAK int __lsan_is_turned_off();
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
bool HaveLeakSanitizer() { return true; }
#if ABSL_HAVE_ATTRIBUTE_WEAK
bool LeakCheckerIsActive() {
return !(&__lsan_is_turned_off && __lsan_is_turned_off());
}
#else
bool LeakCheckerIsActive() { return true; }
#endif
bool FindAndReportLeaks() { return __lsan_do_recoverable_leak_check(); }
void DoIgnoreLeak(const void* ptr) { __lsan_ignore_object(ptr); }
void RegisterLivePointers(const void* ptr, size_t size) {
__lsan_register_root_region(ptr, size);
}
void UnRegisterLivePointers(const void* ptr, size_t size) {
__lsan_unregister_root_region(ptr, size);
}
LeakCheckDisabler::LeakCheckDisabler() { __lsan_disable(); }
LeakCheckDisabler::~LeakCheckDisabler() { __lsan_enable(); }
ABSL_NAMESPACE_END
}
#else
namespace absl {
ABSL_NAMESPACE_BEGIN
bool HaveLeakSanitizer() { return false; }
bool LeakCheckerIsActive() { return false; }
void DoIgnoreLeak(const void*) { }
void RegisterLivePointers(const void*, size_t) { }
void UnRegisterLivePointers(const void*, size_t) { }
LeakCheckDisabler::LeakCheckDisabler() = default;
LeakCheckDisabler::~LeakCheckDisabler() = default;
ABSL_NAMESPACE_END
}
#endif | #include <string>
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/debugging/leak_check.h"
#include "absl/log/log.h"
namespace {
TEST(LeakCheckTest, IgnoreLeakSuppressesLeakedMemoryErrors) {
if (!absl::LeakCheckerIsActive()) {
GTEST_SKIP() << "LeakChecker is not active";
}
auto foo = absl::IgnoreLeak(new std::string("some ignored leaked string"));
LOG(INFO) << "Ignoring leaked string " << foo;
}
TEST(LeakCheckTest, LeakCheckDisablerIgnoresLeak) {
if (!absl::LeakCheckerIsActive()) {
GTEST_SKIP() << "LeakChecker is not active";
}
absl::LeakCheckDisabler disabler;
auto foo = new std::string("some string leaked while checks are disabled");
LOG(INFO) << "Ignoring leaked string " << foo;
}
} | 2,511 |
#ifndef ABSL_DEBUGGING_INTERNAL_SYMBOLIZE_H_
#define ABSL_DEBUGGING_INTERNAL_SYMBOLIZE_H_
#ifdef __cplusplus
#include <cstddef>
#include <cstdint>
#include "absl/base/config.h"
#include "absl/strings/string_view.h"
#ifdef ABSL_INTERNAL_HAVE_ELF_SYMBOLIZE
#error ABSL_INTERNAL_HAVE_ELF_SYMBOLIZE cannot be directly set
#elif defined(__ELF__) && defined(__GLIBC__) && !defined(__native_client__) \
&& !defined(__asmjs__) && !defined(__wasm__)
#define ABSL_INTERNAL_HAVE_ELF_SYMBOLIZE 1
#include <elf.h>
#include <link.h>
#include <functional>
#include <string>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
bool ForEachSection(int fd,
const std::function<bool(absl::string_view name,
const ElfW(Shdr) &)>& callback);
bool GetSectionHeaderByName(int fd, const char *name, size_t name_len,
ElfW(Shdr) *out);
}
ABSL_NAMESPACE_END
}
#endif
#ifdef ABSL_INTERNAL_HAVE_DARWIN_SYMBOLIZE
#error ABSL_INTERNAL_HAVE_DARWIN_SYMBOLIZE cannot be directly set
#elif defined(__APPLE__)
#define ABSL_INTERNAL_HAVE_DARWIN_SYMBOLIZE 1
#endif
#ifdef ABSL_INTERNAL_HAVE_EMSCRIPTEN_SYMBOLIZE
#error ABSL_INTERNAL_HAVE_EMSCRIPTEN_SYMBOLIZE cannot be directly set
#elif defined(__EMSCRIPTEN__)
#define ABSL_INTERNAL_HAVE_EMSCRIPTEN_SYMBOLIZE 1
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
struct SymbolDecoratorArgs {
const void *pc;
ptrdiff_t relocation;
int fd;
char *const symbol_buf;
size_t symbol_buf_size;
char *const tmp_buf;
size_t tmp_buf_size;
void* arg;
};
using SymbolDecorator = void (*)(const SymbolDecoratorArgs *);
int InstallSymbolDecorator(SymbolDecorator decorator, void* arg);
bool RemoveSymbolDecorator(int ticket);
bool RemoveAllSymbolDecorators();
bool RegisterFileMappingHint(const void* start, const void* end,
uint64_t offset, const char* filename);
bool GetFileMappingHint(const void** start, const void** end, uint64_t* offset,
const char** filename);
}
ABSL_NAMESPACE_END
}
#endif
#include <stdbool.h>
#ifdef __cplusplus
extern "C"
#endif
bool
AbslInternalGetFileMappingHint(const void** start, const void** end,
uint64_t* offset, const char** filename);
#endif
#include "absl/debugging/symbolize.h"
#ifdef _WIN32
#include <winapifamily.h>
#if !(WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP)) || \
WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
#define ABSL_INTERNAL_HAVE_SYMBOLIZE_WIN32
#endif
#endif
#if defined(__EMSCRIPTEN__) && !defined(STANDALONE_WASM)
#define ABSL_INTERNAL_HAVE_SYMBOLIZE_WASM
#endif
#if defined(ABSL_INTERNAL_HAVE_ELF_SYMBOLIZE)
#include "absl/debugging/symbolize_elf.inc"
#elif defined(ABSL_INTERNAL_HAVE_SYMBOLIZE_WIN32)
#include "absl/debugging/symbolize_win32.inc"
#elif defined(__APPLE__)
#include "absl/debugging/symbolize_darwin.inc"
#elif defined(ABSL_INTERNAL_HAVE_SYMBOLIZE_WASM)
#include "absl/debugging/symbolize_emscripten.inc"
#else
#include "absl/debugging/symbolize_unimplemented.inc"
#endif | #include "absl/debugging/symbolize.h"
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
#endif
#ifndef _WIN32
#include <fcntl.h>
#include <sys/mman.h>
#endif
#include <cstring>
#include <iostream>
#include <memory>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/casts.h"
#include "absl/base/config.h"
#include "absl/base/internal/per_thread_tls.h"
#include "absl/base/optimization.h"
#include "absl/debugging/internal/stack_consumption.h"
#include "absl/log/check.h"
#include "absl/log/log.h"
#include "absl/memory/memory.h"
#include "absl/strings/string_view.h"
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
using testing::Contains;
#ifdef _WIN32
#define ABSL_SYMBOLIZE_TEST_NOINLINE __declspec(noinline)
#else
#define ABSL_SYMBOLIZE_TEST_NOINLINE ABSL_ATTRIBUTE_NOINLINE
#endif
extern "C" {
ABSL_SYMBOLIZE_TEST_NOINLINE void nonstatic_func() {
volatile int x = __LINE__;
static_cast<void>(x);
ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
}
ABSL_SYMBOLIZE_TEST_NOINLINE static void static_func() {
volatile int x = __LINE__;
static_cast<void>(x);
ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
}
}
struct Foo {
static void func(int x);
};
ABSL_SYMBOLIZE_TEST_NOINLINE void Foo::func(int) {
volatile int x = __LINE__;
static_cast<void>(x);
ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
}
int ABSL_ATTRIBUTE_SECTION_VARIABLE(.text.unlikely) unlikely_func() {
return 0;
}
int ABSL_ATTRIBUTE_SECTION_VARIABLE(.text.hot) hot_func() { return 0; }
int ABSL_ATTRIBUTE_SECTION_VARIABLE(.text.startup) startup_func() { return 0; }
int ABSL_ATTRIBUTE_SECTION_VARIABLE(.text.exit) exit_func() { return 0; }
int regular_func() { return 0; }
#if ABSL_PER_THREAD_TLS
static ABSL_PER_THREAD_TLS_KEYWORD char symbolize_test_thread_small[1];
static ABSL_PER_THREAD_TLS_KEYWORD char
symbolize_test_thread_big[2 * 1024 * 1024];
#endif
#if !defined(__EMSCRIPTEN__)
static void *GetPCFromFnPtr(void *ptr) { return ptr; }
static volatile bool volatile_bool = false;
static constexpr size_t kHpageSize = 1 << 21;
const char kHpageTextPadding[kHpageSize * 4] ABSL_ATTRIBUTE_SECTION_VARIABLE(
.text) = "";
#else
static void *GetPCFromFnPtr(void *ptr) {
return EM_ASM_PTR(
{ return wasmOffsetConverter.convert(wasmTable.get($0).name, 0); }, ptr);
}
#endif
static char try_symbolize_buffer[4096];
static const char *TrySymbolizeWithLimit(void *pc, int limit) {
CHECK_LE(limit, sizeof(try_symbolize_buffer))
<< "try_symbolize_buffer is too small";
auto heap_buffer = absl::make_unique<char[]>(sizeof(try_symbolize_buffer));
bool found = absl::Symbolize(pc, heap_buffer.get(), limit);
if (found) {
CHECK_LT(static_cast<int>(
strnlen(heap_buffer.get(), static_cast<size_t>(limit))),
limit)
<< "absl::Symbolize() did not properly terminate the string";
strncpy(try_symbolize_buffer, heap_buffer.get(),
sizeof(try_symbolize_buffer) - 1);
try_symbolize_buffer[sizeof(try_symbolize_buffer) - 1] = '\0';
}
return found ? try_symbolize_buffer : nullptr;
}
static const char *TrySymbolize(void *pc) {
return TrySymbolizeWithLimit(pc, sizeof(try_symbolize_buffer));
}
#if defined(ABSL_INTERNAL_HAVE_ELF_SYMBOLIZE) || \
defined(ABSL_INTERNAL_HAVE_DARWIN_SYMBOLIZE) || \
defined(ABSL_INTERNAL_HAVE_EMSCRIPTEN_SYMBOLIZE)
void ABSL_ATTRIBUTE_NOINLINE TestWithReturnAddress() {
#if defined(ABSL_HAVE_ATTRIBUTE_NOINLINE)
void *return_address = __builtin_return_address(0);
const char *symbol = TrySymbolize(return_address);
CHECK_NE(symbol, nullptr) << "TestWithReturnAddress failed";
CHECK_STREQ(symbol, "main") << "TestWithReturnAddress failed";
std::cout << "TestWithReturnAddress passed" << std::endl;
#endif
}
TEST(Symbolize, Cached) {
EXPECT_STREQ("nonstatic_func",
TrySymbolize(GetPCFromFnPtr((void *)(&nonstatic_func))));
const char *static_func_symbol =
TrySymbolize(GetPCFromFnPtr((void *)(&static_func)));
EXPECT_TRUE(strcmp("static_func", static_func_symbol) == 0 ||
strcmp("static_func()", static_func_symbol) == 0);
EXPECT_TRUE(nullptr == TrySymbolize(nullptr));
}
TEST(Symbolize, Truncation) {
constexpr char kNonStaticFunc[] = "nonstatic_func";
EXPECT_STREQ("nonstatic_func",
TrySymbolizeWithLimit(GetPCFromFnPtr((void *)(&nonstatic_func)),
strlen(kNonStaticFunc) + 1));
EXPECT_STREQ("nonstatic_...",
TrySymbolizeWithLimit(GetPCFromFnPtr((void *)(&nonstatic_func)),
strlen(kNonStaticFunc) + 0));
EXPECT_STREQ("nonstatic...",
TrySymbolizeWithLimit(GetPCFromFnPtr((void *)(&nonstatic_func)),
strlen(kNonStaticFunc) - 1));
EXPECT_STREQ("n...", TrySymbolizeWithLimit(
GetPCFromFnPtr((void *)(&nonstatic_func)), 5));
EXPECT_STREQ("...", TrySymbolizeWithLimit(
GetPCFromFnPtr((void *)(&nonstatic_func)), 4));
EXPECT_STREQ("..", TrySymbolizeWithLimit(
GetPCFromFnPtr((void *)(&nonstatic_func)), 3));
EXPECT_STREQ(
".", TrySymbolizeWithLimit(GetPCFromFnPtr((void *)(&nonstatic_func)), 2));
EXPECT_STREQ(
"", TrySymbolizeWithLimit(GetPCFromFnPtr((void *)(&nonstatic_func)), 1));
EXPECT_EQ(nullptr, TrySymbolizeWithLimit(
GetPCFromFnPtr((void *)(&nonstatic_func)), 0));
}
TEST(Symbolize, SymbolizeWithDemangling) {
Foo::func(100);
#ifdef __EMSCRIPTEN__
EXPECT_STREQ("Foo::func(int)",
TrySymbolize(GetPCFromFnPtr((void *)(&Foo::func))));
#else
EXPECT_STREQ("Foo::func()",
TrySymbolize(GetPCFromFnPtr((void *)(&Foo::func))));
#endif
}
TEST(Symbolize, SymbolizeSplitTextSections) {
EXPECT_STREQ("unlikely_func()",
TrySymbolize(GetPCFromFnPtr((void *)(&unlikely_func))));
EXPECT_STREQ("hot_func()", TrySymbolize(GetPCFromFnPtr((void *)(&hot_func))));
EXPECT_STREQ("startup_func()",
TrySymbolize(GetPCFromFnPtr((void *)(&startup_func))));
EXPECT_STREQ("exit_func()",
TrySymbolize(GetPCFromFnPtr((void *)(&exit_func))));
EXPECT_STREQ("regular_func()",
TrySymbolize(GetPCFromFnPtr((void *)(®ular_func))));
}
#ifdef ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION
static void *g_pc_to_symbolize;
static char g_symbolize_buffer[4096];
static char *g_symbolize_result;
static void SymbolizeSignalHandler(int signo) {
if (absl::Symbolize(g_pc_to_symbolize, g_symbolize_buffer,
sizeof(g_symbolize_buffer))) {
g_symbolize_result = g_symbolize_buffer;
} else {
g_symbolize_result = nullptr;
}
}
static const char *SymbolizeStackConsumption(void *pc, int *stack_consumed) {
g_pc_to_symbolize = pc;
*stack_consumed = absl::debugging_internal::GetSignalHandlerStackConsumption(
SymbolizeSignalHandler);
return g_symbolize_result;
}
static int GetStackConsumptionUpperLimit() {
int stack_consumption_upper_limit = 2048;
#if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
defined(ABSL_HAVE_MEMORY_SANITIZER) || defined(ABSL_HAVE_THREAD_SANITIZER)
stack_consumption_upper_limit *= 5;
#endif
return stack_consumption_upper_limit;
}
TEST(Symbolize, SymbolizeStackConsumption) {
int stack_consumed = 0;
const char *symbol =
SymbolizeStackConsumption((void *)(&nonstatic_func), &stack_consumed);
EXPECT_STREQ("nonstatic_func", symbol);
EXPECT_GT(stack_consumed, 0);
EXPECT_LT(stack_consumed, GetStackConsumptionUpperLimit());
symbol = SymbolizeStackConsumption((void *)(&static_func), &stack_consumed);
EXPECT_TRUE(strcmp("static_func", symbol) == 0 ||
strcmp("static_func()", symbol) == 0);
EXPECT_GT(stack_consumed, 0);
EXPECT_LT(stack_consumed, GetStackConsumptionUpperLimit());
}
TEST(Symbolize, SymbolizeWithDemanglingStackConsumption) {
Foo::func(100);
int stack_consumed = 0;
const char *symbol =
SymbolizeStackConsumption((void *)(&Foo::func), &stack_consumed);
EXPECT_STREQ("Foo::func()", symbol);
EXPECT_GT(stack_consumed, 0);
EXPECT_LT(stack_consumed, GetStackConsumptionUpperLimit());
}
#endif
#if !defined(ABSL_INTERNAL_HAVE_DARWIN_SYMBOLIZE) && \
!defined(ABSL_INTERNAL_HAVE_EMSCRIPTEN_SYMBOLIZE)
const size_t kPageSize = 64 << 10;
const char kPadding0[kPageSize * 4] ABSL_ATTRIBUTE_SECTION_VARIABLE(.text) = "";
const char kPadding1[kPageSize * 4] ABSL_ATTRIBUTE_SECTION_VARIABLE(.text) = "";
static int FilterElfHeader(struct dl_phdr_info *info, size_t size, void *data) {
for (int i = 0; i < info->dlpi_phnum; i++) {
if (info->dlpi_phdr[i].p_type == PT_LOAD &&
info->dlpi_phdr[i].p_flags == (PF_R | PF_X)) {
const void *const vaddr =
absl::bit_cast<void *>(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
const auto segsize = info->dlpi_phdr[i].p_memsz;
const char *self_exe;
if (info->dlpi_name != nullptr && info->dlpi_name[0] != '\0') {
self_exe = info->dlpi_name;
} else {
self_exe = "/proc/self/exe";
}
absl::debugging_internal::RegisterFileMappingHint(
vaddr, reinterpret_cast<const char *>(vaddr) + segsize,
info->dlpi_phdr[i].p_offset, self_exe);
return 1;
}
}
return 1;
}
TEST(Symbolize, SymbolizeWithMultipleMaps) {
if (volatile_bool) {
LOG(INFO) << kPadding0;
LOG(INFO) << kPadding1;
}
char buf[512];
memset(buf, 0, sizeof(buf));
absl::Symbolize(kPadding0, buf, sizeof(buf));
EXPECT_STREQ("kPadding0", buf);
memset(buf, 0, sizeof(buf));
absl::Symbolize(kPadding1, buf, sizeof(buf));
EXPECT_STREQ("kPadding1", buf);
dl_iterate_phdr(FilterElfHeader, nullptr);
const char *ptrs[] = {kPadding0, kPadding1};
for (const char *ptr : ptrs) {
const int kMapFlags = MAP_ANONYMOUS | MAP_PRIVATE;
void *addr = mmap(nullptr, kPageSize, PROT_READ, kMapFlags, 0, 0);
ASSERT_NE(addr, MAP_FAILED);
void *remapped = reinterpret_cast<void *>(
reinterpret_cast<uintptr_t>(ptr + kPageSize) & ~(kPageSize - 1ULL));
const int kMremapFlags = (MREMAP_MAYMOVE | MREMAP_FIXED);
void *ret = mremap(addr, kPageSize, kPageSize, kMremapFlags, remapped);
ASSERT_NE(ret, MAP_FAILED);
}
absl::Symbolize(nullptr, buf, sizeof(buf));
const char *expected[] = {"kPadding0", "kPadding1"};
const size_t offsets[] = {0, kPageSize, 2 * kPageSize, 3 * kPageSize};
for (int i = 0; i < 2; i++) {
for (size_t offset : offsets) {
memset(buf, 0, sizeof(buf));
absl::Symbolize(ptrs[i] + offset, buf, sizeof(buf));
EXPECT_STREQ(expected[i], buf);
}
}
}
static void DummySymbolDecorator(
const absl::debugging_internal::SymbolDecoratorArgs *args) {
std::string *message = static_cast<std::string *>(args->arg);
strncat(args->symbol_buf, message->c_str(),
args->symbol_buf_size - strlen(args->symbol_buf) - 1);
}
TEST(Symbolize, InstallAndRemoveSymbolDecorators) {
int ticket_a;
std::string a_message("a");
EXPECT_GE(ticket_a = absl::debugging_internal::InstallSymbolDecorator(
DummySymbolDecorator, &a_message),
0);
int ticket_b;
std::string b_message("b");
EXPECT_GE(ticket_b = absl::debugging_internal::InstallSymbolDecorator(
DummySymbolDecorator, &b_message),
0);
int ticket_c;
std::string c_message("c");
EXPECT_GE(ticket_c = absl::debugging_internal::InstallSymbolDecorator(
DummySymbolDecorator, &c_message),
0);
char *address = reinterpret_cast<char *>(4);
EXPECT_STREQ("abc", TrySymbolize(address));
EXPECT_TRUE(absl::debugging_internal::RemoveSymbolDecorator(ticket_b));
EXPECT_STREQ("ac", TrySymbolize(address + 4));
EXPECT_TRUE(absl::debugging_internal::RemoveSymbolDecorator(ticket_a));
EXPECT_TRUE(absl::debugging_internal::RemoveSymbolDecorator(ticket_c));
}
static int in_data_section = 1;
TEST(Symbolize, ForEachSection) {
int fd = TEMP_FAILURE_RETRY(open("/proc/self/exe", O_RDONLY));
ASSERT_NE(fd, -1);
std::vector<std::string> sections;
ASSERT_TRUE(absl::debugging_internal::ForEachSection(
fd, [§ions](const absl::string_view name, const ElfW(Shdr) &) {
sections.emplace_back(name);
return true;
}));
EXPECT_THAT(sections, Contains(".text"));
EXPECT_THAT(sections, Contains(".rodata"));
EXPECT_THAT(sections, Contains(".bss"));
++in_data_section;
EXPECT_THAT(sections, Contains(".data"));
close(fd);
}
#endif
extern "C" {
inline void *ABSL_ATTRIBUTE_ALWAYS_INLINE inline_func() {
void *pc = nullptr;
#if defined(__i386__)
__asm__ __volatile__("call 1f;\n 1: pop %[PC]" : [PC] "=r"(pc));
#elif defined(__x86_64__)
__asm__ __volatile__("leaq 0(%%rip),%[PC];\n" : [PC] "=r"(pc));
#endif
return pc;
}
void *ABSL_ATTRIBUTE_NOINLINE non_inline_func() {
void *pc = nullptr;
#if defined(__i386__)
__asm__ __volatile__("call 1f;\n 1: pop %[PC]" : [PC] "=r"(pc));
#elif defined(__x86_64__)
__asm__ __volatile__("leaq 0(%%rip),%[PC];\n" : [PC] "=r"(pc));
#endif
return pc;
}
void ABSL_ATTRIBUTE_NOINLINE TestWithPCInsideNonInlineFunction() {
#if defined(ABSL_HAVE_ATTRIBUTE_NOINLINE) && \
(defined(__i386__) || defined(__x86_64__))
void *pc = non_inline_func();
const char *symbol = TrySymbolize(pc);
CHECK_NE(symbol, nullptr) << "TestWithPCInsideNonInlineFunction failed";
CHECK_STREQ(symbol, "non_inline_func")
<< "TestWithPCInsideNonInlineFunction failed";
std::cout << "TestWithPCInsideNonInlineFunction passed" << std::endl;
#endif
}
void ABSL_ATTRIBUTE_NOINLINE TestWithPCInsideInlineFunction() {
#if defined(ABSL_HAVE_ATTRIBUTE_ALWAYS_INLINE) && \
(defined(__i386__) || defined(__x86_64__))
void *pc = inline_func();
const char *symbol = TrySymbolize(pc);
CHECK_NE(symbol, nullptr) << "TestWithPCInsideInlineFunction failed";
CHECK_STREQ(symbol, __FUNCTION__) << "TestWithPCInsideInlineFunction failed";
std::cout << "TestWithPCInsideInlineFunction passed" << std::endl;
#endif
}
}
#if defined(__arm__) && ABSL_HAVE_ATTRIBUTE(target) && \
((__ARM_ARCH >= 7) || !defined(__ARM_PCS_VFP))
__attribute__((target("thumb"))) int ArmThumbOverlapThumb(int x) {
return x * x * x;
}
__attribute__((target("arm"))) int ArmThumbOverlapArm(int x) {
return x * x * x;
}
void ABSL_ATTRIBUTE_NOINLINE TestArmThumbOverlap() {
#if defined(ABSL_HAVE_ATTRIBUTE_NOINLINE)
const char *symbol = TrySymbolize((void *)&ArmThumbOverlapArm);
CHECK_NE(symbol, nullptr) << "TestArmThumbOverlap failed";
CHECK_STREQ("ArmThumbOverlapArm()", symbol) << "TestArmThumbOverlap failed";
std::cout << "TestArmThumbOverlap passed" << std::endl;
#endif
}
#endif
#elif defined(_WIN32)
#if !defined(ABSL_CONSUME_DLL)
TEST(Symbolize, Basics) {
EXPECT_STREQ("nonstatic_func", TrySymbolize((void *)(&nonstatic_func)));
const char *static_func_symbol = TrySymbolize((void *)(&static_func));
ASSERT_TRUE(static_func_symbol != nullptr);
EXPECT_TRUE(strstr(static_func_symbol, "static_func") != nullptr);
EXPECT_TRUE(nullptr == TrySymbolize(nullptr));
}
TEST(Symbolize, Truncation) {
constexpr char kNonStaticFunc[] = "nonstatic_func";
EXPECT_STREQ("nonstatic_func",
TrySymbolizeWithLimit((void *)(&nonstatic_func),
strlen(kNonStaticFunc) + 1));
EXPECT_STREQ("nonstatic_...",
TrySymbolizeWithLimit((void *)(&nonstatic_func),
strlen(kNonStaticFunc) + 0));
EXPECT_STREQ("nonstatic...",
TrySymbolizeWithLimit((void *)(&nonstatic_func),
strlen(kNonStaticFunc) - 1));
EXPECT_STREQ("n...", TrySymbolizeWithLimit((void *)(&nonstatic_func), 5));
EXPECT_STREQ("...", TrySymbolizeWithLimit((void *)(&nonstatic_func), 4));
EXPECT_STREQ("..", TrySymbolizeWithLimit((void *)(&nonstatic_func), 3));
EXPECT_STREQ(".", TrySymbolizeWithLimit((void *)(&nonstatic_func), 2));
EXPECT_STREQ("", TrySymbolizeWithLimit((void *)(&nonstatic_func), 1));
EXPECT_EQ(nullptr, TrySymbolizeWithLimit((void *)(&nonstatic_func), 0));
}
TEST(Symbolize, SymbolizeWithDemangling) {
const char *result = TrySymbolize((void *)(&Foo::func));
ASSERT_TRUE(result != nullptr);
EXPECT_TRUE(strstr(result, "Foo::func") != nullptr) << result;
}
#endif
#else
TEST(Symbolize, Unimplemented) {
char buf[64];
EXPECT_FALSE(absl::Symbolize((void *)(&nonstatic_func), buf, sizeof(buf)));
EXPECT_FALSE(absl::Symbolize((void *)(&static_func), buf, sizeof(buf)));
EXPECT_FALSE(absl::Symbolize((void *)(&Foo::func), buf, sizeof(buf)));
}
#endif
int main(int argc, char **argv) {
#if !defined(__EMSCRIPTEN__)
if (volatile_bool) {
LOG(INFO) << kHpageTextPadding;
}
#endif
#if ABSL_PER_THREAD_TLS
symbolize_test_thread_small[0] = 0;
symbolize_test_thread_big[0] = 0;
#endif
absl::InitializeSymbolizer(argv[0]);
testing::InitGoogleTest(&argc, argv);
#if defined(ABSL_INTERNAL_HAVE_ELF_SYMBOLIZE) || \
defined(ABSL_INTERNAL_HAVE_EMSCRIPTEN_SYMBOLIZE) || \
defined(ABSL_INTERNAL_HAVE_DARWIN_SYMBOLIZE)
TestWithPCInsideInlineFunction();
TestWithPCInsideNonInlineFunction();
TestWithReturnAddress();
#if defined(__arm__) && ABSL_HAVE_ATTRIBUTE(target) && \
((__ARM_ARCH >= 7) || !defined(__ARM_PCS_VFP))
TestArmThumbOverlap();
#endif
#endif
return RUN_ALL_TESTS();
} | 2,512 |
#ifndef ABSL_DEBUGGING_STACKTRACE_H_
#define ABSL_DEBUGGING_STACKTRACE_H_
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
extern int GetStackFrames(void** result, int* sizes, int max_depth,
int skip_count);
extern int GetStackFramesWithContext(void** result, int* sizes, int max_depth,
int skip_count, const void* uc,
int* min_dropped_frames);
extern int GetStackTrace(void** result, int max_depth, int skip_count);
extern int GetStackTraceWithContext(void** result, int max_depth,
int skip_count, const void* uc,
int* min_dropped_frames);
extern void SetStackUnwinder(int (*unwinder)(void** pcs, int* sizes,
int max_depth, int skip_count,
const void* uc,
int* min_dropped_frames));
extern int DefaultStackUnwinder(void** pcs, int* sizes, int max_depth,
int skip_count, const void* uc,
int* min_dropped_frames);
namespace debugging_internal {
extern bool StackTraceWorksForTest();
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/debugging/stacktrace.h"
#include <atomic>
#include "absl/base/attributes.h"
#include "absl/base/port.h"
#include "absl/debugging/internal/stacktrace_config.h"
#if defined(ABSL_STACKTRACE_INL_HEADER)
#include ABSL_STACKTRACE_INL_HEADER
#else
# error Cannot calculate stack trace: will need to write for your environment
# include "absl/debugging/internal/stacktrace_aarch64-inl.inc"
# include "absl/debugging/internal/stacktrace_arm-inl.inc"
# include "absl/debugging/internal/stacktrace_emscripten-inl.inc"
# include "absl/debugging/internal/stacktrace_generic-inl.inc"
# include "absl/debugging/internal/stacktrace_powerpc-inl.inc"
# include "absl/debugging/internal/stacktrace_riscv-inl.inc"
# include "absl/debugging/internal/stacktrace_unimplemented-inl.inc"
# include "absl/debugging/internal/stacktrace_win32-inl.inc"
# include "absl/debugging/internal/stacktrace_x86-inl.inc"
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
typedef int (*Unwinder)(void**, int*, int, int, const void*, int*);
std::atomic<Unwinder> custom;
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
ABSL_ATTRIBUTE_ALWAYS_INLINE inline int Unwind(void** result, int* sizes,
int max_depth, int skip_count,
const void* uc,
int* min_dropped_frames) {
Unwinder f = &UnwindImpl<IS_STACK_FRAMES, IS_WITH_CONTEXT>;
Unwinder g = custom.load(std::memory_order_acquire);
if (g != nullptr) f = g;
int size = (*f)(result, sizes, max_depth, skip_count + 1, uc,
min_dropped_frames);
ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
return size;
}
}
ABSL_ATTRIBUTE_NOINLINE ABSL_ATTRIBUTE_NO_TAIL_CALL int GetStackFrames(
void** result, int* sizes, int max_depth, int skip_count) {
return Unwind<true, false>(result, sizes, max_depth, skip_count, nullptr,
nullptr);
}
ABSL_ATTRIBUTE_NOINLINE ABSL_ATTRIBUTE_NO_TAIL_CALL int
GetStackFramesWithContext(void** result, int* sizes, int max_depth,
int skip_count, const void* uc,
int* min_dropped_frames) {
return Unwind<true, true>(result, sizes, max_depth, skip_count, uc,
min_dropped_frames);
}
ABSL_ATTRIBUTE_NOINLINE ABSL_ATTRIBUTE_NO_TAIL_CALL int GetStackTrace(
void** result, int max_depth, int skip_count) {
return Unwind<false, false>(result, nullptr, max_depth, skip_count, nullptr,
nullptr);
}
ABSL_ATTRIBUTE_NOINLINE ABSL_ATTRIBUTE_NO_TAIL_CALL int
GetStackTraceWithContext(void** result, int max_depth, int skip_count,
const void* uc, int* min_dropped_frames) {
return Unwind<false, true>(result, nullptr, max_depth, skip_count, uc,
min_dropped_frames);
}
void SetStackUnwinder(Unwinder w) {
custom.store(w, std::memory_order_release);
}
int DefaultStackUnwinder(void** pcs, int* sizes, int depth, int skip,
const void* uc, int* min_dropped_frames) {
skip++;
Unwinder f = nullptr;
if (sizes == nullptr) {
if (uc == nullptr) {
f = &UnwindImpl<false, false>;
} else {
f = &UnwindImpl<false, true>;
}
} else {
if (uc == nullptr) {
f = &UnwindImpl<true, false>;
} else {
f = &UnwindImpl<true, true>;
}
}
volatile int x = 0;
int n = (*f)(pcs, sizes, depth, skip, uc, min_dropped_frames);
x = 1; (void) x;
return n;
}
ABSL_NAMESPACE_END
} | #include "absl/debugging/stacktrace.h"
#include "gtest/gtest.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
namespace {
#if defined(__linux__) && (defined(__x86_64__) || defined(__aarch64__))
ABSL_ATTRIBUTE_NOINLINE void Unwind(void* p) {
ABSL_ATTRIBUTE_UNUSED static void* volatile sink = p;
constexpr int kSize = 16;
void* stack[kSize];
int frames[kSize];
absl::GetStackTrace(stack, kSize, 0);
absl::GetStackFrames(stack, frames, kSize, 0);
}
ABSL_ATTRIBUTE_NOINLINE void HugeFrame() {
char buffer[1 << 20];
Unwind(buffer);
ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
}
TEST(StackTrace, HugeFrame) {
HugeFrame();
ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
}
#endif
} | 2,513 |
#ifndef ABSL_DEBUGGING_INTERNAL_UTF8_FOR_CODE_POINT_H_
#define ABSL_DEBUGGING_INTERNAL_UTF8_FOR_CODE_POINT_H_
#include <cstdint>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
struct Utf8ForCodePoint {
explicit Utf8ForCodePoint(uint64_t code_point);
bool ok() const { return length != 0; }
char bytes[4] = {};
uint32_t length = 0;
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/debugging/internal/utf8_for_code_point.h"
#include <cstdint>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
namespace {
constexpr uint32_t kMinSurrogate = 0xd800, kMaxSurrogate = 0xdfff;
constexpr uint32_t kMax1ByteCodePoint = 0x7f;
constexpr uint32_t kMax2ByteCodePoint = 0x7ff;
constexpr uint32_t kMax3ByteCodePoint = 0xffff;
constexpr uint32_t kMaxCodePoint = 0x10ffff;
}
Utf8ForCodePoint::Utf8ForCodePoint(uint64_t code_point) {
if (code_point <= kMax1ByteCodePoint) {
length = 1;
bytes[0] = static_cast<char>(code_point);
return;
}
if (code_point <= kMax2ByteCodePoint) {
length = 2;
bytes[0] = static_cast<char>(0xc0 | (code_point >> 6));
bytes[1] = static_cast<char>(0x80 | (code_point & 0x3f));
return;
}
if (kMinSurrogate <= code_point && code_point <= kMaxSurrogate) return;
if (code_point <= kMax3ByteCodePoint) {
length = 3;
bytes[0] = static_cast<char>(0xe0 | (code_point >> 12));
bytes[1] = static_cast<char>(0x80 | ((code_point >> 6) & 0x3f));
bytes[2] = static_cast<char>(0x80 | (code_point & 0x3f));
return;
}
if (code_point > kMaxCodePoint) return;
length = 4;
bytes[0] = static_cast<char>(0xf0 | (code_point >> 18));
bytes[1] = static_cast<char>(0x80 | ((code_point >> 12) & 0x3f));
bytes[2] = static_cast<char>(0x80 | ((code_point >> 6) & 0x3f));
bytes[3] = static_cast<char>(0x80 | (code_point & 0x3f));
}
}
ABSL_NAMESPACE_END
} | #include "absl/debugging/internal/utf8_for_code_point.h"
#include <cstdint>
#include "gtest/gtest.h"
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
namespace {
TEST(Utf8ForCodePointTest, RecognizesTheSmallestCodePoint) {
Utf8ForCodePoint utf8(uint64_t{0});
ASSERT_EQ(utf8.length, 1);
EXPECT_EQ(utf8.bytes[0], '\0');
}
TEST(Utf8ForCodePointTest, RecognizesAsciiSmallA) {
Utf8ForCodePoint utf8(uint64_t{'a'});
ASSERT_EQ(utf8.length, 1);
EXPECT_EQ(utf8.bytes[0], 'a');
}
TEST(Utf8ForCodePointTest, RecognizesTheLargestOneByteCodePoint) {
Utf8ForCodePoint utf8(uint64_t{0x7f});
ASSERT_EQ(utf8.length, 1);
EXPECT_EQ(utf8.bytes[0], '\x7f');
}
TEST(Utf8ForCodePointTest, RecognizesTheSmallestTwoByteCodePoint) {
Utf8ForCodePoint utf8(uint64_t{0x80});
ASSERT_EQ(utf8.length, 2);
EXPECT_EQ(utf8.bytes[0], static_cast<char>(0xc2));
EXPECT_EQ(utf8.bytes[1], static_cast<char>(0x80));
}
TEST(Utf8ForCodePointTest, RecognizesSmallNWithTilde) {
Utf8ForCodePoint utf8(uint64_t{0xf1});
ASSERT_EQ(utf8.length, 2);
const char* want = "ñ";
EXPECT_EQ(utf8.bytes[0], want[0]);
EXPECT_EQ(utf8.bytes[1], want[1]);
}
TEST(Utf8ForCodePointTest, RecognizesCapitalPi) {
Utf8ForCodePoint utf8(uint64_t{0x3a0});
ASSERT_EQ(utf8.length, 2);
const char* want = "Π";
EXPECT_EQ(utf8.bytes[0], want[0]);
EXPECT_EQ(utf8.bytes[1], want[1]);
}
TEST(Utf8ForCodePointTest, RecognizesTheLargestTwoByteCodePoint) {
Utf8ForCodePoint utf8(uint64_t{0x7ff});
ASSERT_EQ(utf8.length, 2);
EXPECT_EQ(utf8.bytes[0], static_cast<char>(0xdf));
EXPECT_EQ(utf8.bytes[1], static_cast<char>(0xbf));
}
TEST(Utf8ForCodePointTest, RecognizesTheSmallestThreeByteCodePoint) {
Utf8ForCodePoint utf8(uint64_t{0x800});
ASSERT_EQ(utf8.length, 3);
EXPECT_EQ(utf8.bytes[0], static_cast<char>(0xe0));
EXPECT_EQ(utf8.bytes[1], static_cast<char>(0xa0));
EXPECT_EQ(utf8.bytes[2], static_cast<char>(0x80));
}
TEST(Utf8ForCodePointTest, RecognizesTheChineseCharacterZhong1AsInZhong1Wen2) {
Utf8ForCodePoint utf8(uint64_t{0x4e2d});
ASSERT_EQ(utf8.length, 3);
const char* want = "中";
EXPECT_EQ(utf8.bytes[0], want[0]);
EXPECT_EQ(utf8.bytes[1], want[1]);
EXPECT_EQ(utf8.bytes[2], want[2]);
}
TEST(Utf8ForCodePointTest, RecognizesOneBeforeTheSmallestSurrogate) {
Utf8ForCodePoint utf8(uint64_t{0xd7ff});
ASSERT_EQ(utf8.length, 3);
EXPECT_EQ(utf8.bytes[0], static_cast<char>(0xed));
EXPECT_EQ(utf8.bytes[1], static_cast<char>(0x9f));
EXPECT_EQ(utf8.bytes[2], static_cast<char>(0xbf));
}
TEST(Utf8ForCodePointTest, RejectsTheSmallestSurrogate) {
Utf8ForCodePoint utf8(uint64_t{0xd800});
EXPECT_EQ(utf8.length, 0);
}
TEST(Utf8ForCodePointTest, RejectsTheLargestSurrogate) {
Utf8ForCodePoint utf8(uint64_t{0xdfff});
EXPECT_EQ(utf8.length, 0);
}
TEST(Utf8ForCodePointTest, RecognizesOnePastTheLargestSurrogate) {
Utf8ForCodePoint utf8(uint64_t{0xe000});
ASSERT_EQ(utf8.length, 3);
EXPECT_EQ(utf8.bytes[0], static_cast<char>(0xee));
EXPECT_EQ(utf8.bytes[1], static_cast<char>(0x80));
EXPECT_EQ(utf8.bytes[2], static_cast<char>(0x80));
}
TEST(Utf8ForCodePointTest, RecognizesTheLargestThreeByteCodePoint) {
Utf8ForCodePoint utf8(uint64_t{0xffff});
ASSERT_EQ(utf8.length, 3);
EXPECT_EQ(utf8.bytes[0], static_cast<char>(0xef));
EXPECT_EQ(utf8.bytes[1], static_cast<char>(0xbf));
EXPECT_EQ(utf8.bytes[2], static_cast<char>(0xbf));
}
TEST(Utf8ForCodePointTest, RecognizesTheSmallestFourByteCodePoint) {
Utf8ForCodePoint utf8(uint64_t{0x10000});
ASSERT_EQ(utf8.length, 4);
EXPECT_EQ(utf8.bytes[0], static_cast<char>(0xf0));
EXPECT_EQ(utf8.bytes[1], static_cast<char>(0x90));
EXPECT_EQ(utf8.bytes[2], static_cast<char>(0x80));
EXPECT_EQ(utf8.bytes[3], static_cast<char>(0x80));
}
TEST(Utf8ForCodePointTest, RecognizesTheJackOfHearts) {
Utf8ForCodePoint utf8(uint64_t{0x1f0bb});
ASSERT_EQ(utf8.length, 4);
const char* want = "🂻";
EXPECT_EQ(utf8.bytes[0], want[0]);
EXPECT_EQ(utf8.bytes[1], want[1]);
EXPECT_EQ(utf8.bytes[2], want[2]);
EXPECT_EQ(utf8.bytes[3], want[3]);
}
TEST(Utf8ForCodePointTest, RecognizesTheLargestFourByteCodePoint) {
Utf8ForCodePoint utf8(uint64_t{0x10ffff});
ASSERT_EQ(utf8.length, 4);
EXPECT_EQ(utf8.bytes[0], static_cast<char>(0xf4));
EXPECT_EQ(utf8.bytes[1], static_cast<char>(0x8f));
EXPECT_EQ(utf8.bytes[2], static_cast<char>(0xbf));
EXPECT_EQ(utf8.bytes[3], static_cast<char>(0xbf));
}
TEST(Utf8ForCodePointTest, RejectsTheSmallestOverlargeCodePoint) {
Utf8ForCodePoint utf8(uint64_t{0x110000});
EXPECT_EQ(utf8.length, 0);
}
TEST(Utf8ForCodePointTest, RejectsAThroughlyOverlargeCodePoint) {
Utf8ForCodePoint utf8(uint64_t{0xffffffff00000000});
EXPECT_EQ(utf8.length, 0);
}
TEST(Utf8ForCodePointTest, OkReturnsTrueForAValidCodePoint) {
EXPECT_TRUE(Utf8ForCodePoint(uint64_t{0}).ok());
}
TEST(Utf8ForCodePointTest, OkReturnsFalseForAnInvalidCodePoint) {
EXPECT_FALSE(Utf8ForCodePoint(uint64_t{0xffffffff00000000}).ok());
}
}
}
ABSL_NAMESPACE_END
} | 2,514 |
#ifndef ABSL_DEBUGGING_INTERNAL_DEMANGLE_H_
#define ABSL_DEBUGGING_INTERNAL_DEMANGLE_H_
#include <string>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
bool Demangle(const char* mangled, char* out, size_t out_size);
std::string DemangleString(const char* mangled);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/debugging/internal/demangle.h"
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <string>
#include "absl/base/config.h"
#include "absl/debugging/internal/demangle_rust.h"
#if ABSL_INTERNAL_HAS_CXA_DEMANGLE
#include <cxxabi.h>
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
typedef struct {
const char *abbrev;
const char *real_name;
int arity;
} AbbrevPair;
static const AbbrevPair kOperatorList[] = {
{"nw", "new", 0},
{"na", "new[]", 0},
{"dl", "delete", 1},
{"da", "delete[]", 1},
{"aw", "co_await", 1},
{"ps", "+", 1},
{"ng", "-", 1},
{"ad", "&", 1},
{"de", "*", 1},
{"co", "~", 1},
{"pl", "+", 2},
{"mi", "-", 2},
{"ml", "*", 2},
{"dv", "/", 2},
{"rm", "%", 2},
{"an", "&", 2},
{"or", "|", 2},
{"eo", "^", 2},
{"aS", "=", 2},
{"pL", "+=", 2},
{"mI", "-=", 2},
{"mL", "*=", 2},
{"dV", "/=", 2},
{"rM", "%=", 2},
{"aN", "&=", 2},
{"oR", "|=", 2},
{"eO", "^=", 2},
{"ls", "<<", 2},
{"rs", ">>", 2},
{"lS", "<<=", 2},
{"rS", ">>=", 2},
{"ss", "<=>", 2},
{"eq", "==", 2},
{"ne", "!=", 2},
{"lt", "<", 2},
{"gt", ">", 2},
{"le", "<=", 2},
{"ge", ">=", 2},
{"nt", "!", 1},
{"aa", "&&", 2},
{"oo", "||", 2},
{"pp", "++", 1},
{"mm", "--", 1},
{"cm", ",", 2},
{"pm", "->*", 2},
{"pt", "->", 0},
{"cl", "()", 0},
{"ix", "[]", 2},
{"qu", "?", 3},
{"st", "sizeof", 0},
{"sz", "sizeof", 1},
{"sZ", "sizeof...", 0},
{nullptr, nullptr, 0},
};
static const AbbrevPair kBuiltinTypeList[] = {
{"v", "void", 0},
{"w", "wchar_t", 0},
{"b", "bool", 0},
{"c", "char", 0},
{"a", "signed char", 0},
{"h", "unsigned char", 0},
{"s", "short", 0},
{"t", "unsigned short", 0},
{"i", "int", 0},
{"j", "unsigned int", 0},
{"l", "long", 0},
{"m", "unsigned long", 0},
{"x", "long long", 0},
{"y", "unsigned long long", 0},
{"n", "__int128", 0},
{"o", "unsigned __int128", 0},
{"f", "float", 0},
{"d", "double", 0},
{"e", "long double", 0},
{"g", "__float128", 0},
{"z", "ellipsis", 0},
{"De", "decimal128", 0},
{"Dd", "decimal64", 0},
{"Dc", "decltype(auto)", 0},
{"Da", "auto", 0},
{"Dn", "std::nullptr_t", 0},
{"Df", "decimal32", 0},
{"Di", "char32_t", 0},
{"Du", "char8_t", 0},
{"Ds", "char16_t", 0},
{"Dh", "float16", 0},
{nullptr, nullptr, 0},
};
static const AbbrevPair kSubstitutionList[] = {
{"St", "", 0},
{"Sa", "allocator", 0},
{"Sb", "basic_string", 0},
{"Ss", "string", 0},
{"Si", "istream", 0},
{"So", "ostream", 0},
{"Sd", "iostream", 0},
{nullptr, nullptr, 0},
};
typedef struct {
int mangled_idx;
int out_cur_idx;
int prev_name_idx;
unsigned int prev_name_length : 16;
signed int nest_level : 15;
unsigned int append : 1;
} ParseState;
static_assert(sizeof(ParseState) == 4 * sizeof(int),
"unexpected size of ParseState");
typedef struct {
const char *mangled_begin;
char *out;
int out_end_idx;
int recursion_depth;
int steps;
ParseState parse_state;
#ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK
int high_water_mark;
bool too_complex;
#endif
} State;
namespace {
#ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK
void UpdateHighWaterMark(State *state) {
if (state->high_water_mark < state->parse_state.mangled_idx) {
state->high_water_mark = state->parse_state.mangled_idx;
}
}
void ReportHighWaterMark(State *state) {
const size_t input_length = std::strlen(state->mangled_begin);
if (input_length + 6 > static_cast<size_t>(state->out_end_idx) ||
state->too_complex) {
if (state->out_end_idx > 0) state->out[0] = '\0';
return;
}
const size_t high_water_mark = static_cast<size_t>(state->high_water_mark);
std::memcpy(state->out, state->mangled_begin, high_water_mark);
std::memcpy(state->out + high_water_mark, "--!--", 5);
std::memcpy(state->out + high_water_mark + 5,
state->mangled_begin + high_water_mark,
input_length - high_water_mark);
state->out[input_length + 5] = '\0';
}
#else
void UpdateHighWaterMark(State *) {}
void ReportHighWaterMark(State *) {}
#endif
class ComplexityGuard {
public:
explicit ComplexityGuard(State *state) : state_(state) {
++state->recursion_depth;
++state->steps;
}
~ComplexityGuard() { --state_->recursion_depth; }
static constexpr int kRecursionDepthLimit = 256;
static constexpr int kParseStepsLimit = 1 << 17;
bool IsTooComplex() const {
if (state_->recursion_depth > kRecursionDepthLimit ||
state_->steps > kParseStepsLimit) {
#ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK
state_->too_complex = true;
#endif
return true;
}
return false;
}
private:
State *state_;
};
}
static size_t StrLen(const char *str) {
size_t len = 0;
while (*str != '\0') {
++str;
++len;
}
return len;
}
static bool AtLeastNumCharsRemaining(const char *str, size_t n) {
for (size_t i = 0; i < n; ++i) {
if (str[i] == '\0') {
return false;
}
}
return true;
}
static bool StrPrefix(const char *str, const char *prefix) {
size_t i = 0;
while (str[i] != '\0' && prefix[i] != '\0' && str[i] == prefix[i]) {
++i;
}
return prefix[i] == '\0';
}
static void InitState(State* state,
const char* mangled,
char* out,
size_t out_size) {
state->mangled_begin = mangled;
state->out = out;
state->out_end_idx = static_cast<int>(out_size);
state->recursion_depth = 0;
state->steps = 0;
#ifdef ABSL_INTERNAL_DEMANGLE_RECORDS_HIGH_WATER_MARK
state->high_water_mark = 0;
state->too_complex = false;
#endif
state->parse_state.mangled_idx = 0;
state->parse_state.out_cur_idx = 0;
state->parse_state.prev_name_idx = 0;
state->parse_state.prev_name_length = 0;
state->parse_state.nest_level = -1;
state->parse_state.append = true;
}
static inline const char *RemainingInput(State *state) {
return &state->mangled_begin[state->parse_state.mangled_idx];
}
static bool ParseOneCharToken(State *state, const char one_char_token) {
ComplexityGuard guard(state);
if (guard.IsTooComplex()) return false;
if (RemainingInput(state)[0] == one_char_token) {
++state->parse_state.mangled_idx;
UpdateHighWaterMark(state);
return true;
}
return false;
}
static bool ParseTwoCharToken(State *state, const char *two_char_token) {
ComplexityGuard guard(state);
if (guard.IsTooComplex()) return false;
if (RemainingInput(state)[0] == two_char_token[0] &&
RemainingInput(state)[1] == two_char_token[1]) {
state->parse_state.mangled_idx += 2;
UpdateHighWaterMark(state);
return true;
}
return false;
}
static bool ParseThreeCharToken(State *state, const char *three_char_token) {
ComplexityGuard guard(state);
if (guard.IsTooComplex()) return false;
if (RemainingInput(state)[0] == three_char_token[0] &&
RemainingInput(state)[1] == three_char_token[1] &&
RemainingInput(state)[2] == three_char_token[2]) {
state->parse_state.mangled_idx += 3;
UpdateHighWaterMark(state);
return true;
}
return false;
}
static bool ParseLongToken(State *state, const char *long_token) {
ComplexityGuard guard(state);
if (guard.IsTooComplex()) return false;
int i = 0;
for (; long_token[i] != '\0'; ++i) {
if (RemainingInput(state)[i] != long_token[i]) return false;
}
state->parse_state.mangled_idx += i;
UpdateHighWaterMark(state);
return true;
}
static bool ParseCharClass(State *state, const char *char_class) {
ComplexityGuard guard(state);
if (guard.IsTooComplex()) return false;
if (RemainingInput(state)[0] == '\0') {
return false;
}
const char *p = char_class;
for (; *p != '\0'; ++p) {
if (RemainingInput(state)[0] == *p) {
++state->parse_state.mangled_idx;
UpdateHighWaterMark(state);
return true;
}
}
return false;
}
static bool ParseDigit(State *state, int *digit) {
char c = RemainingInput(state)[0];
if (ParseCharClass(state, "0123456789")) {
if (digit != nullptr) {
*digit = c - '0';
}
return true;
}
return false;
}
static bool Optional(bool ) { return true; }
typedef bool (*ParseFunc)(State *);
static bool OneOrMore(ParseFunc parse_func, State *state) {
if (parse_func(state)) {
while (parse_func(state)) {
}
return true;
}
return false;
}
static bool ZeroOrMore(ParseFunc parse_func, State *state) {
while (parse_func(state)) {
}
return true;
}
static void Append(State *state, const char *const str, const size_t length) {
for (size_t i = 0; i < length; ++i) {
if (state->parse_state.out_cur_idx + 1 <
state->out_end_idx) {
state->out[state->parse_state.out_cur_idx++] = str[i];
} else {
state->parse_state.out_cur_idx = state->out_end_idx + 1;
break;
}
}
if (state->parse_state.out_cur_idx < state->out_end_idx) {
state->out[state->parse_state.out_cur_idx] =
'\0';
}
}
static bool IsLower(char c) { return c >= 'a' && c <= 'z'; }
static bool IsAlpha(char c) {
return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
}
static bool IsDigit(char c) { return c >= '0' && c <= '9'; }
static bool IsFunctionCloneSuffix(const char *str) {
size_t i = 0;
while (str[i] != '\0') {
bool parsed = false;
if (str[i] == '.' && (IsAlpha(str[i + 1]) || str[i + 1] == '_')) {
parsed = true;
i += 2;
while (IsAlpha(str[i]) || str[i] == '_') {
++i;
}
}
if (str[i] == '.' && IsDigit(str[i + 1])) {
parsed = true;
i += 2;
while (IsDigit(str[i])) {
++i;
}
}
if (!parsed)
return false;
}
return true;
}
static bool EndsWith(State *state, const char chr) {
return state->parse_state.out_cur_idx > 0 &&
state->parse_state.out_cur_idx < state->out_end_idx &&
chr == state->out[state->parse_state.out_cur_idx - 1];
}
static void MaybeAppendWithLength(State *state, const char *const str,
const size_t length) {
if (state->parse_state.append && length > 0) {
if (str[0] == '<' && EndsWith(state, '<')) {
Append(state, " ", 1);
}
if (state->parse_state.out_cur_idx < state->out_end_idx &&
(IsAlpha(str[0]) || str[0] == '_')) {
state->parse_state.prev_name_idx = state->parse_state.out_cur_idx;
state->parse_state.prev_name_length = static_cast<unsigned int>(length);
}
Append(state, str, length);
}
}
static bool MaybeAppendDecimal(State *state, int val) {
constexpr size_t kMaxLength = 20;
char buf[kMaxLength];
if (state->parse_state.append) {
char *p = &buf[kMaxLength];
do {
*--p = static_cast<char>((val % 10) + '0');
val /= 10;
} while (p > buf && val != 0);
Append(state, p, kMaxLength - static_cast<size_t>(p - buf));
}
return true;
}
static bool MaybeAppend(State *state, const char *const str) {
if (state->parse_state.append) {
size_t length = StrLen(str);
MaybeAppendWithLength(state, str, length);
}
return true;
}
static bool EnterNestedName(State *state) {
state->parse_state.nest_level = 0;
return true;
}
static bool LeaveNestedName(State *state, int16_t prev_value) {
state->parse_state.nest_level = prev_value;
return true;
}
static bool DisableAppend(State *state) {
state->parse_state.append = false;
return true;
}
static bool RestoreAppend(State *state, bool prev_value) {
state->parse_state.append = prev_value;
return true;
}
static void MaybeIncreaseNestLevel(State *state) {
if (state->parse_state.nest_level > -1) {
++state->parse_state.nest_level;
}
}
static void MaybeAppendSeparator(State *state) {
if (state->parse_state.nest_level >= 1) {
MaybeAppend(state, "::");
}
}
static void MaybeCancelLastSeparator(State *state) {
if (state->parse_state.nest_level >= 1 && state->parse_state.append &&
state->parse_state.out_cur_idx >= 2) {
state->parse_state.out_cur_idx -= 2;
state->out[state->parse_state.out_cur_idx] = '\0';
}
}
static bool IdentifierIsAnonymousNamespace(State *state, size_t length) {
static const char anon_prefix[] = "_GLOBAL__N_";
return (length > (sizeof(anon_prefix) - 1) &&
StrPrefix(RemainingInput(state), anon_prefix));
}
static bool ParseMangledName(State *state);
static bool ParseEncoding(State *state);
static bool ParseName(State *state);
static bool ParseUnscopedName(State *state);
static bool ParseNestedName(State *state);
static bool ParsePrefix(State *state);
static bool ParseUnqualifiedName(State *state);
static bool ParseSourceName(State *state);
static bool ParseLocalSourceName(State *state);
static bool ParseUnnamedTypeName(State *state);
static bool ParseNumber(State *state, int *number_out);
static bool ParseFloatNumber(State *state);
static bool ParseSeqId(State *state);
static bool ParseIdentifier(State *state, size_t length);
static bool ParseOperatorName(State *state, int *arity);
static bool ParseConversionOperatorType(State *state);
static bool ParseSpecialName(State *state);
static bool ParseCallOffset(State *state);
static bool ParseNVOffset(State *state);
static bool ParseVOffset(State *state);
static bool ParseAbiTags(State *state);
static bool ParseCtorDtorName(State *state);
static bool ParseDecltype(State *state);
static bool ParseType(State *state);
static bool ParseCVQualifiers(State *state);
static bool ParseExtendedQualifier(State *state);
static bool ParseBuiltinType(State *state);
static bool ParseVendorExtendedType(State *state);
static bool ParseFunctionType(State *state);
static bool ParseBareFunctionType(State *state);
static bool ParseOverloadAttribute(State *state);
static bool ParseClassEnumType(State *state);
static bool ParseArrayType(State *state);
static bool ParsePointerToMemberType(State *state);
static bool ParseTemplateParam(State *state);
static bool ParseTemplateParamDecl(State *state);
static bool ParseTemplateTemplateParam(State *state);
static bool ParseTemplateArgs(State *state);
static bool ParseTemplateArg(State *state);
static bool ParseBaseUnresolvedName(State *state);
static bool ParseUnresolvedName(State *state);
static bool ParseUnresolvedQualifierLevel(State *state);
static bool ParseUnionSelector(State* state);
static bool ParseFunctionParam(State* state);
static bool ParseBracedExpression(State *state);
static bool ParseExpression(State *state);
static bool ParseInitializer(State *state);
static bool ParseExprPrimary(State *state);
static bool ParseExprCastValueAndTrailingE(State *state);
static bool ParseQRequiresClauseExpr(State *state);
static bool ParseRequirement(State *state);
static bool ParseTypeConstraint(State *state);
static bool ParseLocalName(State *state);
static bool ParseLocalNameSuffix(State *state);
static bool ParseDiscriminator(State *state);
static bool ParseSubstitution(State *state, bool accept_std);
static bool ParseMangledName(State *state) {
ComplexityGuard guard(state);
if (guard.IsTooComplex()) return false;
return ParseTwoCharToken(state, "_Z") && ParseEncoding(state);
}
static bool ParseEncoding(State *state) {
ComplexityGuard guard(state);
if (guard.IsTooComplex()) return false;
if (ParseName(state)) {
if (!ParseBareFunctionType(state)) {
return true;
}
ParseQRequiresClauseExpr(state);
return true;
}
if (ParseSpecialName(state)) {
return true;
}
return false;
}
static bool ParseName(State *state) {
ComplexityGuard guard(state);
if (guard.IsTooComplex()) return false;
if (ParseNestedName(state) || ParseLocalName(state)) {
return true;
}
ParseState copy = state->parse_state;
if (ParseSubstitution(state, false) &&
ParseTemplateArgs(state)) {
return true;
}
state->parse_state = copy;
return ParseUnscopedName(state) && Optional(ParseTemplateArgs(state));
}
static bool ParseUnscopedName(State *state) {
ComplexityGuard guard(state);
if (guard.IsTooComplex()) return false;
if (ParseUnqualifiedName(state)) {
return true;
}
ParseState copy = state->parse_state;
if (ParseTwoCharToken(state, "St") && MaybeAppend(state, "std::") &&
ParseUnqualifiedName(state)) {
return true;
}
state->parse_state = copy;
return false;
}
static inline bool ParseRefQualifier(State *state) {
return ParseCharClass(state, "OR");
}
static bool ParseNestedName(State *state) {
ComplexityGuard guard(state);
if (guard.IsTooComplex()) return false;
ParseState copy = state->parse_state;
if (ParseOneCharToken(state, 'N') && EnterNestedName(state) &&
Optional(ParseCVQualifiers(state)) &&
Optional(ParseRefQualifier(state)) && ParsePrefix(state) &&
LeaveNestedName(state, copy.nest_level) &&
ParseOneCharToken(state, 'E')) {
return true;
}
state->parse_state = copy;
return false;
}
static bool ParsePrefix(State *state) {
ComplexityGuard guard(state);
if (guard.IsTooComplex()) return false;
bool has_ | #include "absl/debugging/internal/demangle.h"
#include <cstdlib>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/debugging/internal/stack_consumption.h"
#include "absl/log/log.h"
#include "absl/memory/memory.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
namespace {
using ::testing::ContainsRegex;
TEST(Demangle, FunctionTemplate) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3fooIiEiT_", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, FunctionTemplateWithNesting) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3fooI7WrapperIiEEiT_", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, FunctionTemplateWithNonTypeParamConstraint) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3fooITkSt8integraliEiT_", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, FunctionTemplateWithFunctionRequiresClause) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3fooIiEivQsr3stdE8integralIT_E", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, FunctionWithTemplateParamRequiresClause) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3fooIiQsr3stdE8integralIT_EEiv", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, FunctionWithTemplateParamAndFunctionRequiresClauses) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3fooIiQsr3stdE8integralIT_EEivQsr3stdE8integralIS0_E",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, FunctionTemplateBacktracksOnMalformedRequiresClause) {
char tmp[100];
ASSERT_FALSE(Demangle("_Z3fooIiQEiT_", tmp, sizeof(tmp)));
}
TEST(Demangle, FunctionTemplateWithAutoParam) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3fooITnDaLi1EEvv", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, FunctionTemplateWithNonTypeParamPack) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3fooITpTnRiJEiEvT0_", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, FunctionTemplateTemplateParamWithConstrainedArg) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3fooITtTyE5FooerEvv", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, ConstrainedAutoInFunctionTemplate) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z1fITnDk1CLi0EEvv", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "f<>()");
}
TEST(Demangle, ConstrainedFriendFunctionTemplate) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZN2ns1YIiEF1yES1_QLb1E", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "ns::Y<>::friend y()");
}
TEST(Demangle, ConstrainedFriendOperatorTemplate) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZN2ns1YIiEFdeES1_QLb1E", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "ns::Y<>::friend operator*()");
}
TEST(Demangle, NonTemplateBuiltinType) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3foou17__my_builtin_type", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo()");
}
TEST(Demangle, SingleArgTemplateBuiltinType) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3fooIiEu17__my_builtin_typeIT_Ev", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, TwoArgTemplateBuiltinType) {
char tmp[100];
ASSERT_TRUE(
Demangle("_Z3fooIicEu17__my_builtin_typeIT_T0_Ev", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, TypeNestedUnderTemplatedBuiltinType) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z1fIRK1CENu20__remove_reference_tIT_E4typeES3_",
tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, TemplateTemplateParamSubstitution) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z3fooITtTyTnTL0__E8FoolableEvv", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "foo<>()");
}
TEST(Demangle, TemplateParamSubstitutionWithGenericLambda) {
char tmp[100];
ASSERT_TRUE(
Demangle("_ZN5FooerIiE3fooIiEEvNS0_UlTL0__TL0_0_E_E", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "Fooer<>::foo<>()");
}
TEST(Demangle, LambdaRequiresTrue) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZNK3$_0clIiEEDaT_QLb1E", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "$_0::operator()<>()");
}
TEST(Demangle, LambdaRequiresSimpleExpression) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZNK3$_0clIiEEDaT_QeqplLi2ELi2ELi4E",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "$_0::operator()<>()");
}
TEST(Demangle, LambdaRequiresRequiresExpressionContainingTrue) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZNK3$_0clIiEEDaT_QrqXLb1EE", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "$_0::operator()<>()");
}
TEST(Demangle, LambdaRequiresRequiresExpressionContainingConcept) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZNK3$_0clIiEEDaT_QrqXsr3stdE7same_asIDtfp_EiEE",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "$_0::operator()<>()");
}
TEST(Demangle, LambdaRequiresRequiresExpressionContainingNoexceptExpression) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZNK3$_0clIiEEDaT_QrqXplfp_fp_NE", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "$_0::operator()<>()");
}
TEST(Demangle, LambdaRequiresRequiresExpressionContainingReturnTypeConstraint) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZNK3$_0clIiEEDaT_QrqXplfp_fp_RNSt7same_asIDtfp_EEEE",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "$_0::operator()<>()");
}
TEST(Demangle, LambdaRequiresRequiresExpressionWithBothNoexceptAndReturnType) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZNK3$_0clIiEEDaT_QrqXplfp_fp_NRNSt7same_asIDtfp_EEEE",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "$_0::operator()<>()");
}
TEST(Demangle, LambdaRequiresRequiresExpressionContainingType) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZNK3$_0clI1SEEDaT_QrqTNS2_1TEE", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "$_0::operator()<>()");
}
TEST(Demangle, LambdaRequiresRequiresExpressionNestingAnotherRequires) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZNK3$_0clIiEEDaT_QrqQLb1EE", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "$_0::operator()<>()");
}
TEST(Demangle, LambdaRequiresRequiresExpressionContainingTwoRequirements) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZNK3$_0clIiEEDaT_QrqXLb1EXeqplLi2ELi2ELi4EE",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "$_0::operator()<>()");
}
TEST(Demangle, RequiresExpressionWithItsOwnParameter) {
char tmp[100];
ASSERT_TRUE(Demangle("_Z1fIiE1SIXrQT__XplfL0p_fp_EEES1_", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "f<>()");
}
TEST(Demangle, LambdaWithExplicitTypeArgument) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZZ1fIiET_S0_ENKUlTyS0_E_clIiEEDaS0_",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "f<>()::{lambda()#1}::operator()<>()");
}
TEST(Demangle, LambdaWithExplicitPackArgument) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZZ1fIiET_S0_ENKUlTpTyDpT_E_clIJiEEEDaS2_",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "f<>()::{lambda()#1}::operator()<>()");
}
TEST(Demangle, LambdaInClassMemberDefaultArgument) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZZN1S1fEPFvvEEd_NKUlvE_clEv", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "S::f()::{default arg#1}::{lambda()#1}::operator()()");
ASSERT_TRUE(Demangle("_ZZN1S1fEPFvvEEd0_NKUlvE_clEv", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "S::f()::{default arg#2}::{lambda()#1}::operator()()");
ASSERT_FALSE(Demangle("_ZZN1S1fEPFvvEEdn1_NKUlvE_clEv", tmp, sizeof(tmp)));
}
TEST(Demangle, AvoidSignedOverflowForUnfortunateParameterNumbers) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZZN1S1fEPFvvEEd2147483645_NKUlvE_clEv",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp,
"S::f()::{default arg#2147483647}::{lambda()#1}::operator()()");
ASSERT_TRUE(Demangle("_ZZN1S1fEPFvvEEd2147483646_NKUlvE_clEv",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "S::f()::{default arg#1}::{lambda()#1}::operator()()");
ASSERT_TRUE(Demangle("_ZZN1S1fEPFvvEEd2147483647_NKUlvE_clEv",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "S::f()::{default arg#1}::{lambda()#1}::operator()()");
ASSERT_TRUE(Demangle("_ZZN1S1fEPFvvEEd2147483648_NKUlvE_clEv",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "S::f()::{default arg#1}::{lambda()#1}::operator()()");
}
TEST(Demangle, SubstpackNotationForTroublesomeTemplatePack) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZN1AIJEE1fIJEEEvDpO1BI_SUBSTPACK_T_E",
tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "A<>::f<>()");
}
TEST(Demangle, TemplateTemplateParamAppearingAsBackrefFollowedByTemplateArgs) {
char tmp[100];
ASSERT_TRUE(Demangle("_ZN1WI1SE1fIiEEDTclsrS0_IT_EE1mEEv", tmp, sizeof(tmp)));
EXPECT_STREQ(tmp, "W<>::f<>()");
}
TEST(Demangle, CornerCases) {
char tmp[10];
EXPECT_TRUE(Demangle("_Z6foobarv", tmp, sizeof(tmp)));
EXPECT_STREQ("foobar()", tmp);
EXPECT_TRUE(Demangle("_Z6foobarv", tmp, 9));
EXPECT_STREQ("foobar()", tmp);
EXPECT_FALSE(Demangle("_Z6foobarv", tmp, 8));
EXPECT_FALSE(Demangle("_Z6foobarv", tmp, 1));
EXPECT_FALSE(Demangle("_Z6foobarv", tmp, 0));
EXPECT_FALSE(Demangle("_Z6foobarv", nullptr, 0));
EXPECT_FALSE(Demangle("_Z1000000", tmp, 9));
}
TEST(Demangle, Clones) {
char tmp[20];
EXPECT_TRUE(Demangle("_ZL3Foov", tmp, sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_TRUE(Demangle("_ZL3Foov.clone.3", tmp, sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_TRUE(Demangle("_ZL3Foov.constprop.80", tmp, sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_TRUE(Demangle("_ZL3Foov.isra.18", tmp, sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_TRUE(Demangle("_ZL3Foov.isra.2.constprop.18", tmp, sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_TRUE(Demangle("_ZL3Foov.__uniq.12345", tmp, sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_TRUE(Demangle("_ZL3Foov.__uniq.12345.isra.2.constprop.18", tmp,
sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_TRUE(Demangle("_ZL3Foov.clo", tmp, sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_TRUE(Demangle("_ZL3Foov.123", tmp, sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_TRUE(Demangle("_ZL3Foov.clone.foo", tmp, sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_TRUE(Demangle("_ZL3Foov.clone.123.456", tmp, sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_TRUE(Demangle("_ZL3Foov.part.9.165493.constprop.775.31805", tmp,
sizeof(tmp)));
EXPECT_STREQ("Foo()", tmp);
EXPECT_FALSE(Demangle("_ZL3Foov.", tmp, sizeof(tmp)));
EXPECT_FALSE(Demangle("_ZL3Foov.abc123", tmp, sizeof(tmp)));
EXPECT_FALSE(Demangle("_ZL3Foov.clone.", tmp, sizeof(tmp)));
EXPECT_FALSE(Demangle("_ZL3Foov.isra.2.constprop.", tmp, sizeof(tmp)));
}
TEST(Demangle, Discriminators) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZZ1fvEN1S1gEv", tmp, sizeof(tmp)));
EXPECT_STREQ("f()::S::g()", tmp);
EXPECT_TRUE(Demangle("_ZZ1fvEN1S1gE_0v", tmp, sizeof(tmp)));
EXPECT_STREQ("f()::S::g()", tmp);
EXPECT_TRUE(Demangle("_ZZ1fvEN1S1gE_9v", tmp, sizeof(tmp)));
EXPECT_STREQ("f()::S::g()", tmp);
EXPECT_TRUE(Demangle("_ZZ1fvEN1S1gE__10_v", tmp, sizeof(tmp)));
EXPECT_STREQ("f()::S::g()", tmp);
}
TEST(Demangle, SingleDigitDiscriminatorFollowedByADigit) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZZ1fvEN1S1gE_911return_type", tmp, sizeof(tmp)));
EXPECT_STREQ("f()::S::g()", tmp);
}
TEST(Demangle, LiteralOfGlobalNamespaceEnumType) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fIL1E42EEvv", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, NullptrLiterals) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fILDnEEvv", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
EXPECT_TRUE(Demangle("_Z1fILDn0EEvv", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, StringLiterals) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fILA42_KcEEvv", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, ComplexFloatingPointLiterals) {
char tmp[80];
EXPECT_TRUE(Demangle(
"_Z1fIiEvRAszpltlCdstT_ELS0_0000000000000000_4010000000000000E_c",
tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, Float128) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvDF128_Ev", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator _Float128()", tmp);
}
TEST(Demangle, Float128x) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvDF128xEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator _Float128x()", tmp);
}
TEST(Demangle, Bfloat16) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvDF16bEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator std::bfloat16_t()", tmp);
}
TEST(Demangle, SimpleSignedBitInt) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvDB256_Ev", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator _BitInt(256)()", tmp);
}
TEST(Demangle, SimpleUnsignedBitInt) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvDU256_Ev", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator unsigned _BitInt(256)()", tmp);
}
TEST(Demangle, DependentBitInt) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvDBT__ILi256EEEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator _BitInt(?)<>()", tmp);
}
TEST(Demangle, ConversionToPointerType) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvPiEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator int*()", tmp);
}
TEST(Demangle, ConversionToLvalueReferenceType) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvRiEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator int&()", tmp);
}
TEST(Demangle, ConversionToRvalueReferenceType) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvOiEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator int&&()", tmp);
}
TEST(Demangle, ConversionToComplexFloatingPointType) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvCfEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator float _Complex()", tmp);
}
TEST(Demangle, ConversionToImaginaryFloatingPointType) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvGfEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator float _Imaginary()", tmp);
}
TEST(Demangle, ConversionToPointerToCvQualifiedType) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvPrVKiEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator int const volatile restrict*()", tmp);
}
TEST(Demangle, ConversionToLayeredPointerType) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvPKPKiEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator int const* const*()", tmp);
}
TEST(Demangle, ConversionToTypeWithExtendedQualifier) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZNK1ScvPU5AS128KiEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::operator int*()", tmp);
}
TEST(Demangle, GlobalInitializers) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZGR1v", tmp, sizeof(tmp)));
EXPECT_STREQ("reference temporary for v", tmp);
EXPECT_TRUE(Demangle("_ZGR1v_", tmp, sizeof(tmp)));
EXPECT_STREQ("reference temporary for v", tmp);
EXPECT_TRUE(Demangle("_ZGR1v0_", tmp, sizeof(tmp)));
EXPECT_STREQ("reference temporary for v", tmp);
EXPECT_TRUE(Demangle("_ZGR1v1Z_", tmp, sizeof(tmp)));
EXPECT_STREQ("reference temporary for v", tmp);
}
TEST(Demangle, StructuredBindings) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZDC1x1yE", tmp, sizeof(tmp)));
EXPECT_TRUE(Demangle("_ZGRDC1x1yE_", tmp, sizeof(tmp)));
}
TEST(Demangle, AbiTags) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1aB3abc", tmp, sizeof(tmp)));
EXPECT_STREQ("a[abi:abc]", tmp);
EXPECT_TRUE(Demangle("_ZN1BC2B3xyzEv", tmp, sizeof(tmp)));
EXPECT_STREQ("B::B[abi:xyz]()", tmp);
EXPECT_TRUE(Demangle("_Z1CB3barB3foov", tmp, sizeof(tmp)));
EXPECT_STREQ("C[abi:bar][abi:foo]()", tmp);
}
TEST(Demangle, SimpleGnuVectorSize) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fDv8_i", tmp, sizeof(tmp)));
EXPECT_STREQ("f()", tmp);
}
TEST(Demangle, GnuVectorSizeIsATemplateParameter) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fILi32EEvDvT__i", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, GnuVectorSizeIsADependentOperatorExpression) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fILi32EEvDvmlLi2ET__i", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, SimpleAddressSpace) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fPU5AS128Ki", tmp, sizeof(tmp)));
EXPECT_STREQ("f()", tmp);
}
TEST(Demangle, DependentAddressSpace) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fILi128EEvPU2ASIT_Ei", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, TransactionSafeEntryPoint) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZGTt1fv", tmp, sizeof(tmp)));
EXPECT_STREQ("transaction clone for f()", tmp);
}
TEST(Demangle, TransactionSafeFunctionType) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fPDxFvvE", tmp, sizeof(tmp)));
EXPECT_STREQ("f()", tmp);
}
TEST(Demangle, TemplateParameterObject) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fIXtl1SLi1ELi2EEEXadL_ZTAXtlS0_Li1ELi2EEEEEEvv",
tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
EXPECT_TRUE(Demangle("_ZTAXtl1SLi1ELi2EEE", tmp, sizeof(tmp)));
EXPECT_STREQ("template parameter object", tmp);
}
TEST(Demangle, EnableIfAttributeOnGlobalFunction) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fUa9enable_ifIXgefL0p_Li0EEEl", tmp, sizeof(tmp)));
EXPECT_STREQ("f()", tmp);
}
TEST(Demangle, EnableIfAttributeOnNamespaceScopeFunction) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZN2ns1fEUa9enable_ifIXgefL0p_Li0EEEl",
tmp, sizeof(tmp)));
EXPECT_STREQ("ns::f()", tmp);
}
TEST(Demangle, EnableIfAttributeOnFunctionTemplate) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fIiEUa9enable_ifIXgefL0p_tliEEET_S0_",
tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, ThisPointerInDependentSignature) {
char tmp[80];
EXPECT_TRUE(Demangle("_ZN1S1fIiEEDTcl1gIT_EfpTEEv", tmp, sizeof(tmp)));
EXPECT_STREQ("S::f<>()", tmp);
}
TEST(Demangle, DependentMemberOperatorCall) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fI1CEDTcldtfp_onclEET_", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, TypeNestedUnderDecltype) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fIiENDTtl1SIT_EEE1tEv", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, ElaboratedTypes) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fIiEvTsN1SIT_E1CE", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
EXPECT_TRUE(Demangle("_Z1fIiEvTuN1SIT_E1CE", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
EXPECT_TRUE(Demangle("_Z1fIiEvTeN1SIT_E1CE", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, SubobjectAddresses) {
char tmp[80];
EXPECT_TRUE(Demangle("_Z1fIXsoKcL_Z1aE123EEEvv", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
EXPECT_TRUE(Demangle("_Z1fIXadsoKcL_Z1aEEEEvv", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
EXPECT_TRUE(Demangle("_Z1fIXadsoKcL_Z1aE123EEEvv", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
EXPECT_TRUE(Demangle("_Z1fIXadsoKcL_Z1aE123pEEEvv", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
EXPECT_TRUE(Demangle("_Z1fIXadsoKcL_Z1aE__1_234EEEvv", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
EXPECT_TRUE(Demangle("_Z1fIXadsoKcL_Z1aE123_456pEEEvv", tmp, sizeof(tmp)));
EXPECT_STREQ("f<>()", tmp);
}
TEST(Demangle, Preincrement) {
char tmp[80]; | 2,515 |
#ifndef ABSL_DEBUGGING_INTERNAL_STACK_CONSUMPTION_H_
#define ABSL_DEBUGGING_INTERNAL_STACK_CONSUMPTION_H_
#include "absl/base/config.h"
#ifdef ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION
#error ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION cannot be set directly
#elif !defined(__APPLE__) && !defined(_WIN32) && \
(defined(__i386__) || defined(__x86_64__) || defined(__ppc__) || \
defined(__aarch64__) || defined(__riscv))
#define ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION 1
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
int GetSignalHandlerStackConsumption(void (*signal_handler)(int));
}
ABSL_NAMESPACE_END
}
#endif
#endif
#include "absl/debugging/internal/stack_consumption.h"
#ifdef ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION
#include <signal.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#include "absl/base/attributes.h"
#include "absl/base/internal/raw_logging.h"
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
namespace {
#if defined(__i386__) || defined(__x86_64__) || defined(__ppc__) || \
defined(__aarch64__) || defined(__riscv)
constexpr bool kStackGrowsDown = true;
#else
#error Need to define kStackGrowsDown
#endif
void EmptySignalHandler(int) {}
constexpr int kAlternateStackSize = 64 << 10;
constexpr int kSafetyMargin = 32;
constexpr char kAlternateStackFillValue = 0x55;
int GetStackConsumption(const void* const altstack) {
const char* begin;
int increment;
if (kStackGrowsDown) {
begin = reinterpret_cast<const char*>(altstack);
increment = 1;
} else {
begin = reinterpret_cast<const char*>(altstack) + kAlternateStackSize - 1;
increment = -1;
}
for (int usage_count = kAlternateStackSize; usage_count > 0; --usage_count) {
if (*begin != kAlternateStackFillValue) {
ABSL_RAW_CHECK(usage_count <= kAlternateStackSize - kSafetyMargin,
"Buffer has overflowed or is about to overflow");
return usage_count;
}
begin += increment;
}
ABSL_RAW_LOG(FATAL, "Unreachable code");
return -1;
}
}
int GetSignalHandlerStackConsumption(void (*signal_handler)(int)) {
void* altstack = mmap(nullptr, kAlternateStackSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
ABSL_RAW_CHECK(altstack != MAP_FAILED, "mmap() failed");
stack_t sigstk;
memset(&sigstk, 0, sizeof(sigstk));
sigstk.ss_sp = altstack;
sigstk.ss_size = kAlternateStackSize;
sigstk.ss_flags = 0;
stack_t old_sigstk;
memset(&old_sigstk, 0, sizeof(old_sigstk));
ABSL_RAW_CHECK(sigaltstack(&sigstk, &old_sigstk) == 0,
"sigaltstack() failed");
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
struct sigaction old_sa1, old_sa2;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_ONSTACK;
sa.sa_handler = EmptySignalHandler;
ABSL_RAW_CHECK(sigaction(SIGUSR1, &sa, &old_sa1) == 0, "sigaction() failed");
sa.sa_handler = signal_handler;
ABSL_RAW_CHECK(sigaction(SIGUSR2, &sa, &old_sa2) == 0, "sigaction() failed");
ABSL_RAW_CHECK(kill(getpid(), SIGUSR1) == 0, "kill() failed");
memset(altstack, kAlternateStackFillValue, kAlternateStackSize);
ABSL_RAW_CHECK(kill(getpid(), SIGUSR1) == 0, "kill() failed");
int base_stack_consumption = GetStackConsumption(altstack);
ABSL_RAW_CHECK(kill(getpid(), SIGUSR2) == 0, "kill() failed");
int signal_handler_stack_consumption = GetStackConsumption(altstack);
if (old_sigstk.ss_sp == nullptr && old_sigstk.ss_size == 0 &&
(old_sigstk.ss_flags & SS_DISABLE)) {
old_sigstk.ss_size = static_cast<size_t>(MINSIGSTKSZ);
}
ABSL_RAW_CHECK(sigaltstack(&old_sigstk, nullptr) == 0,
"sigaltstack() failed");
ABSL_RAW_CHECK(sigaction(SIGUSR1, &old_sa1, nullptr) == 0,
"sigaction() failed");
ABSL_RAW_CHECK(sigaction(SIGUSR2, &old_sa2, nullptr) == 0,
"sigaction() failed");
ABSL_RAW_CHECK(munmap(altstack, kAlternateStackSize) == 0, "munmap() failed");
if (signal_handler_stack_consumption != -1 && base_stack_consumption != -1) {
return signal_handler_stack_consumption - base_stack_consumption;
}
return -1;
}
}
ABSL_NAMESPACE_END
}
#else
#ifdef __APPLE__
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
extern const char kAvoidEmptyStackConsumptionLibraryWarning;
const char kAvoidEmptyStackConsumptionLibraryWarning = 0;
}
ABSL_NAMESPACE_END
}
#endif
#endif | #include "absl/debugging/internal/stack_consumption.h"
#ifdef ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION
#include <string.h>
#include "gtest/gtest.h"
#include "absl/log/log.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
namespace {
static void SimpleSignalHandler(int signo) {
char buf[100];
memset(buf, 'a', sizeof(buf));
if (signo == 0) {
LOG(INFO) << static_cast<void*>(buf);
}
}
TEST(SignalHandlerStackConsumptionTest, MeasuresStackConsumption) {
EXPECT_GE(GetSignalHandlerStackConsumption(SimpleSignalHandler), 100);
}
}
}
ABSL_NAMESPACE_END
}
#endif | 2,516 |
#ifndef ABSL_DEBUGGING_INTERNAL_DEMANGLE_RUST_H_
#define ABSL_DEBUGGING_INTERNAL_DEMANGLE_RUST_H_
#include <cstddef>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
bool DemangleRustSymbolEncoding(const char* mangled, char* out,
size_t out_size);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/debugging/internal/demangle_rust.h"
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <limits>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
namespace {
constexpr int kMaxReturns = 1 << 17;
bool IsDigit(char c) { return '0' <= c && c <= '9'; }
bool IsLower(char c) { return 'a' <= c && c <= 'z'; }
bool IsUpper(char c) { return 'A' <= c && c <= 'Z'; }
bool IsAlpha(char c) { return IsLower(c) || IsUpper(c); }
bool IsIdentifierChar(char c) { return IsAlpha(c) || IsDigit(c) || c == '_'; }
bool IsLowerHexDigit(char c) { return IsDigit(c) || ('a' <= c && c <= 'f'); }
const char* BasicTypeName(char c) {
switch (c) {
case 'a': return "i8";
case 'b': return "bool";
case 'c': return "char";
case 'd': return "f64";
case 'e': return "str";
case 'f': return "f32";
case 'h': return "u8";
case 'i': return "isize";
case 'j': return "usize";
case 'l': return "i32";
case 'm': return "u32";
case 'n': return "i128";
case 'o': return "u128";
case 'p': return "_";
case 's': return "i16";
case 't': return "u16";
case 'u': return "()";
case 'v': return "...";
case 'x': return "i64";
case 'y': return "u64";
case 'z': return "!";
}
return nullptr;
}
class RustSymbolParser {
public:
RustSymbolParser(const char* encoding, char* out, char* const out_end)
: encoding_(encoding), out_(out), out_end_(out_end) {
if (out_ != out_end_) *out_ = '\0';
}
ABSL_MUST_USE_RESULT bool Parse() && {
#define ABSL_DEMANGLER_RECURSE(callee, caller) \
do { \
if (recursion_depth_ == kStackSize) return false; \
\
recursion_stack_[recursion_depth_++] = caller; \
goto callee; \
\
case caller: {} \
} while (0)
int iter = 0;
goto whole_encoding;
for (; iter < kMaxReturns && recursion_depth_ > 0; ++iter) {
switch (recursion_stack_[--recursion_depth_]) {
whole_encoding:
if (!Eat('_') || !Eat('R')) return false;
ABSL_DEMANGLER_RECURSE(path, kInstantiatingCrate);
if (IsAlpha(Peek())) {
++silence_depth_;
ABSL_DEMANGLER_RECURSE(path, kVendorSpecificSuffix);
}
switch (Take()) {
case '.': case '$': case '\0': return true;
}
return false;
path:
switch (Take()) {
case 'C': goto crate_root;
case 'M': goto inherent_impl;
case 'X': goto trait_impl;
case 'Y': goto trait_definition;
case 'N': goto nested_path;
case 'I': goto generic_args;
case 'B': goto path_backref;
default: return false;
}
crate_root:
if (!ParseIdentifier()) return false;
continue;
inherent_impl:
if (!Emit("<")) return false;
ABSL_DEMANGLER_RECURSE(impl_path, kInherentImplType);
ABSL_DEMANGLER_RECURSE(type, kInherentImplEnding);
if (!Emit(">")) return false;
continue;
trait_impl:
if (!Emit("<")) return false;
ABSL_DEMANGLER_RECURSE(impl_path, kTraitImplType);
ABSL_DEMANGLER_RECURSE(type, kTraitImplInfix);
if (!Emit(" as ")) return false;
ABSL_DEMANGLER_RECURSE(path, kTraitImplEnding);
if (!Emit(">")) return false;
continue;
impl_path:
++silence_depth_;
{
int ignored_disambiguator;
if (!ParseDisambiguator(ignored_disambiguator)) return false;
}
ABSL_DEMANGLER_RECURSE(path, kImplPathEnding);
--silence_depth_;
continue;
trait_definition:
if (!Emit("<")) return false;
ABSL_DEMANGLER_RECURSE(type, kTraitDefinitionInfix);
if (!Emit(" as ")) return false;
ABSL_DEMANGLER_RECURSE(path, kTraitDefinitionEnding);
if (!Emit(">")) return false;
continue;
nested_path:
if (IsUpper(Peek())) {
if (!PushNamespace(Take())) return false;
ABSL_DEMANGLER_RECURSE(path, kIdentifierInUppercaseNamespace);
if (!Emit("::")) return false;
if (!ParseIdentifier(PopNamespace())) return false;
continue;
}
if (IsLower(Take())) {
ABSL_DEMANGLER_RECURSE(path, kIdentifierInLowercaseNamespace);
if (!Emit("::")) return false;
if (!ParseIdentifier()) return false;
continue;
}
return false;
type:
if (IsLower(Peek())) {
const char* type_name = BasicTypeName(Take());
if (type_name == nullptr || !Emit(type_name)) return false;
continue;
}
if (Eat('A')) {
if (!Emit("[")) return false;
ABSL_DEMANGLER_RECURSE(type, kArraySize);
if (!Emit("; ")) return false;
ABSL_DEMANGLER_RECURSE(constant, kFinishArray);
if (!Emit("]")) return false;
continue;
}
if (Eat('S')) {
if (!Emit("[")) return false;
ABSL_DEMANGLER_RECURSE(type, kSliceEnding);
if (!Emit("]")) return false;
continue;
}
if (Eat('T')) goto tuple_type;
if (Eat('R')) {
if (!Emit("&")) return false;
if (!ParseOptionalLifetime()) return false;
goto type;
}
if (Eat('Q')) {
if (!Emit("&mut ")) return false;
if (!ParseOptionalLifetime()) return false;
goto type;
}
if (Eat('P')) {
if (!Emit("*const ")) return false;
goto type;
}
if (Eat('O')) {
if (!Emit("*mut ")) return false;
goto type;
}
if (Eat('F')) goto fn_type;
if (Eat('D')) goto dyn_trait_type;
if (Eat('B')) goto type_backref;
goto path;
tuple_type:
if (!Emit("(")) return false;
if (Eat('E')) {
if (!Emit(")")) return false;
continue;
}
ABSL_DEMANGLER_RECURSE(type, kAfterFirstTupleElement);
if (Eat('E')) {
if (!Emit(",)")) return false;
continue;
}
if (!Emit(", ")) return false;
ABSL_DEMANGLER_RECURSE(type, kAfterSecondTupleElement);
if (Eat('E')) {
if (!Emit(")")) return false;
continue;
}
if (!Emit(", ")) return false;
ABSL_DEMANGLER_RECURSE(type, kAfterThirdTupleElement);
if (Eat('E')) {
if (!Emit(")")) return false;
continue;
}
if (!Emit(", ...)")) return false;
++silence_depth_;
while (!Eat('E')) {
ABSL_DEMANGLER_RECURSE(type, kAfterSubsequentTupleElement);
}
--silence_depth_;
continue;
fn_type:
if (!Emit("fn...")) return false;
++silence_depth_;
if (!ParseOptionalBinder()) return false;
(void)Eat('U');
if (Eat('K')) {
if (!Eat('C') && !ParseUndisambiguatedIdentifier()) return false;
}
while (!Eat('E')) {
ABSL_DEMANGLER_RECURSE(type, kContinueParameterList);
}
ABSL_DEMANGLER_RECURSE(type, kFinishFn);
--silence_depth_;
continue;
dyn_trait_type:
if (!Emit("dyn ")) return false;
if (!ParseOptionalBinder()) return false;
if (!Eat('E')) {
ABSL_DEMANGLER_RECURSE(dyn_trait, kBeginAutoTraits);
while (!Eat('E')) {
if (!Emit(" + ")) return false;
ABSL_DEMANGLER_RECURSE(dyn_trait, kContinueAutoTraits);
}
}
if (!ParseRequiredLifetime()) return false;
continue;
dyn_trait:
ABSL_DEMANGLER_RECURSE(path, kContinueDynTrait);
if (Peek() == 'p') {
if (!Emit("<>")) return false;
++silence_depth_;
while (Eat('p')) {
if (!ParseUndisambiguatedIdentifier()) return false;
ABSL_DEMANGLER_RECURSE(type, kContinueAssocBinding);
}
--silence_depth_;
}
continue;
constant:
if (Eat('B')) goto const_backref;
if (Eat('p')) {
if (!Emit("_")) return false;
continue;
}
++silence_depth_;
ABSL_DEMANGLER_RECURSE(type, kConstData);
--silence_depth_;
if (Eat('n') && !EmitChar('-')) return false;
if (!Emit("0x")) return false;
if (Eat('0')) {
if (!EmitChar('0')) return false;
if (!Eat('_')) return false;
continue;
}
while (IsLowerHexDigit(Peek())) {
if (!EmitChar(Take())) return false;
}
if (!Eat('_')) return false;
continue;
generic_args:
ABSL_DEMANGLER_RECURSE(path, kBeginGenericArgList);
if (!Emit("::<>")) return false;
++silence_depth_;
while (!Eat('E')) {
ABSL_DEMANGLER_RECURSE(generic_arg, kContinueGenericArgList);
}
--silence_depth_;
continue;
generic_arg:
if (Peek() == 'L') {
if (!ParseOptionalLifetime()) return false;
continue;
}
if (Eat('K')) goto constant;
goto type;
path_backref:
if (!BeginBackref()) return false;
if (silence_depth_ == 0) {
ABSL_DEMANGLER_RECURSE(path, kPathBackrefEnding);
}
EndBackref();
continue;
type_backref:
if (!BeginBackref()) return false;
if (silence_depth_ == 0) {
ABSL_DEMANGLER_RECURSE(type, kTypeBackrefEnding);
}
EndBackref();
continue;
const_backref:
if (!BeginBackref()) return false;
if (silence_depth_ == 0) {
ABSL_DEMANGLER_RECURSE(constant, kConstantBackrefEnding);
}
EndBackref();
continue;
}
}
return false;
}
private:
enum ReturnAddress : uint8_t {
kInstantiatingCrate,
kVendorSpecificSuffix,
kIdentifierInUppercaseNamespace,
kIdentifierInLowercaseNamespace,
kInherentImplType,
kInherentImplEnding,
kTraitImplType,
kTraitImplInfix,
kTraitImplEnding,
kImplPathEnding,
kTraitDefinitionInfix,
kTraitDefinitionEnding,
kArraySize,
kFinishArray,
kSliceEnding,
kAfterFirstTupleElement,
kAfterSecondTupleElement,
kAfterThirdTupleElement,
kAfterSubsequentTupleElement,
kContinueParameterList,
kFinishFn,
kBeginAutoTraits,
kContinueAutoTraits,
kContinueDynTrait,
kContinueAssocBinding,
kConstData,
kBeginGenericArgList,
kContinueGenericArgList,
kPathBackrefEnding,
kTypeBackrefEnding,
kConstantBackrefEnding,
};
enum {
kStackSize = 256,
kNamespaceStackSize = 64,
kPositionStackSize = 16,
};
char Peek() const { return encoding_[pos_]; }
char Take() { return encoding_[pos_++]; }
ABSL_MUST_USE_RESULT bool Eat(char want) {
if (encoding_[pos_] != want) return false;
++pos_;
return true;
}
ABSL_MUST_USE_RESULT bool EmitChar(char c) {
if (silence_depth_ > 0) return true;
if (out_end_ - out_ < 2) return false;
*out_++ = c;
*out_ = '\0';
return true;
}
ABSL_MUST_USE_RESULT bool Emit(const char* token) {
if (silence_depth_ > 0) return true;
const size_t token_length = std::strlen(token);
const size_t bytes_to_copy = token_length + 1;
if (static_cast<size_t>(out_end_ - out_) < bytes_to_copy) return false;
std::memcpy(out_, token, bytes_to_copy);
out_ += token_length;
return true;
}
ABSL_MUST_USE_RESULT bool EmitDisambiguator(int disambiguator) {
if (disambiguator < 0) return EmitChar('?');
if (disambiguator == 0) return EmitChar('0');
char digits[3 * sizeof(disambiguator)] = {};
size_t leading_digit_index = sizeof(digits) - 1;
for (; disambiguator > 0; disambiguator /= 10) {
digits[--leading_digit_index] =
static_cast<char>('0' + disambiguator % 10);
}
return Emit(digits + leading_digit_index);
}
ABSL_MUST_USE_RESULT bool ParseDisambiguator(int& value) {
value = -1;
if (!Eat('s')) {
value = 0;
return true;
}
int base_62_value = 0;
if (!ParseBase62Number(base_62_value)) return false;
value = base_62_value < 0 ? -1 : base_62_value + 1;
return true;
}
ABSL_MUST_USE_RESULT bool ParseBase62Number(int& value) {
value = -1;
if (Eat('_')) {
value = 0;
return true;
}
int encoded_number = 0;
bool overflowed = false;
while (IsAlpha(Peek()) || IsDigit(Peek())) {
const char c = Take();
if (encoded_number >= std::numeric_limits<int>::max()/62) {
overflowed = true;
} else {
int digit;
if (IsDigit(c)) {
digit = c - '0';
} else if (IsLower(c)) {
digit = c - 'a' + 10;
} else {
digit = c - 'A' + 36;
}
encoded_number = 62 * encoded_number + digit;
}
}
if (!Eat('_')) return false;
if (!overflowed) value = encoded_number + 1;
return true;
}
ABSL_MUST_USE_RESULT bool ParseIdentifier(char uppercase_namespace = '\0') {
int disambiguator = 0;
if (!ParseDisambiguator(disambiguator)) return false;
return ParseUndisambiguatedIdentifier(uppercase_namespace, disambiguator);
}
ABSL_MUST_USE_RESULT bool ParseUndisambiguatedIdentifier(
char uppercase_namespace = '\0', int disambiguator = 0) {
const bool is_punycoded = Eat('u');
if (!IsDigit(Peek())) return false;
int num_bytes = 0;
if (!ParseDecimalNumber(num_bytes)) return false;
(void)Eat('_');
if (uppercase_namespace == '\0') {
if (is_punycoded && !Emit("{Punycode ")) return false;
} else {
switch (uppercase_namespace) {
case 'C':
if (!Emit("{closure")) return false;
break;
case 'S':
if (!Emit("{shim")) return false;
break;
default:
if (!EmitChar('{') || !EmitChar(uppercase_namespace)) return false;
break;
}
if (num_bytes > 0 && !Emit(":")) return false;
}
for (int i = 0; i < num_bytes; ++i) {
const char c = Take();
if (!IsIdentifierChar(c) &&
(is_punycoded || (c & 0x80) == 0)) {
return false;
}
if (!EmitChar(c)) return false;
}
if (uppercase_namespace != '\0') {
if (!EmitChar('#')) return false;
if (!EmitDisambiguator(disambiguator)) return false;
}
if (uppercase_namespace != '\0' || is_punycoded) {
if (!EmitChar('}')) return false;
}
return true;
}
ABSL_MUST_USE_RESULT bool ParseDecimalNumber(int& value) {
value = -1;
if (!IsDigit(Peek())) return false;
int encoded_number = Take() - '0';
if (encoded_number == 0) {
value = 0;
return true;
}
while (IsDigit(Peek()) &&
encoded_number < std::numeric_limits<int>::max()/10) {
encoded_number = 10 * encoded_number + (Take() - '0');
}
if (IsDigit(Peek())) return false;
value = encoded_number;
return true;
}
ABSL_MUST_USE_RESULT bool ParseOptionalBinder() {
if (!Eat('G')) return true;
int ignored_binding_count;
return ParseBase62Number(ignored_binding_count);
}
ABSL_MUST_USE_RESULT bool ParseOptionalLifetime() {
if (!Eat('L')) return true;
int ignored_de_bruijn_index;
return ParseBase62Number(ignored_de_bruijn_index);
}
ABSL_MUST_USE_RESULT bool ParseRequiredLifetime() {
if (Peek() != 'L') return false;
return ParseOptionalLifetime();
}
ABSL_MUST_USE_RESULT bool PushNamespace(ch | #include "absl/debugging/internal/demangle_rust.h"
#include <cstddef>
#include <string>
#include "gtest/gtest.h"
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
namespace {
std::string ResultOfDemangling(const char* mangled, size_t buffer_size) {
std::string buffer(buffer_size + 1, '~');
constexpr char kCanaryCharacter = 0x7f;
buffer[buffer_size] = kCanaryCharacter;
if (!DemangleRustSymbolEncoding(mangled, &buffer[0], buffer_size)) {
return "Failed parse";
}
if (buffer[buffer_size] != kCanaryCharacter) {
return "Buffer overrun by output: " + buffer.substr(0, buffer_size + 1)
+ "...";
}
return buffer.data();
}
#define EXPECT_DEMANGLING(mangled, plaintext) \
do { \
[] { \
constexpr size_t plenty_of_space = sizeof(plaintext) + 128; \
constexpr size_t just_enough_space = sizeof(plaintext); \
constexpr size_t one_byte_too_few = sizeof(plaintext) - 1; \
const char* expected_plaintext = plaintext; \
const char* expected_error = "Failed parse"; \
ASSERT_EQ(ResultOfDemangling(mangled, plenty_of_space), \
expected_plaintext); \
ASSERT_EQ(ResultOfDemangling(mangled, just_enough_space), \
expected_plaintext); \
ASSERT_EQ(ResultOfDemangling(mangled, one_byte_too_few), \
expected_error); \
}(); \
} while (0)
#define EXPECT_DEMANGLING_FAILS(mangled) \
do { \
constexpr size_t plenty_of_space = 1024; \
const char* expected_error = "Failed parse"; \
EXPECT_EQ(ResultOfDemangling(mangled, plenty_of_space), expected_error); \
} while (0)
TEST(DemangleRust, EmptyDemangling) {
EXPECT_TRUE(DemangleRustSymbolEncoding("_RC0", nullptr, 0));
}
TEST(DemangleRust, FunctionAtCrateLevel) {
EXPECT_DEMANGLING("_RNvC10crate_name9func_name", "crate_name::func_name");
EXPECT_DEMANGLING(
"_RNvCs09azAZ_10crate_name9func_name", "crate_name::func_name");
}
TEST(DemangleRust, TruncationsOfFunctionAtCrateLevel) {
EXPECT_DEMANGLING_FAILS("_R");
EXPECT_DEMANGLING_FAILS("_RN");
EXPECT_DEMANGLING_FAILS("_RNvC");
EXPECT_DEMANGLING_FAILS("_RNvC10");
EXPECT_DEMANGLING_FAILS("_RNvC10crate_nam");
EXPECT_DEMANGLING_FAILS("_RNvC10crate_name");
EXPECT_DEMANGLING_FAILS("_RNvC10crate_name9");
EXPECT_DEMANGLING_FAILS("_RNvC10crate_name9func_nam");
EXPECT_DEMANGLING_FAILS("_RNvCs");
EXPECT_DEMANGLING_FAILS("_RNvCs09azAZ");
EXPECT_DEMANGLING_FAILS("_RNvCs09azAZ_");
}
TEST(DemangleRust, VendorSuffixes) {
EXPECT_DEMANGLING("_RNvC10crate_name9func_name.!@#", "crate_name::func_name");
EXPECT_DEMANGLING("_RNvC10crate_name9func_name$!@#", "crate_name::func_name");
}
TEST(DemangleRust, UnicodeIdentifiers) {
EXPECT_DEMANGLING("_RNvC7ice_cap17Eyjafjallajökull",
"ice_cap::Eyjafjallajökull");
EXPECT_DEMANGLING("_RNvC7ice_caps_u19Eyjafjallajkull_jtb",
"ice_cap::{Punycode Eyjafjallajkull_jtb}");
}
TEST(DemangleRust, FunctionInModule) {
EXPECT_DEMANGLING("_RNvNtCs09azAZ_10crate_name11module_name9func_name",
"crate_name::module_name::func_name");
}
TEST(DemangleRust, FunctionInFunction) {
EXPECT_DEMANGLING(
"_RNvNvCs09azAZ_10crate_name15outer_func_name15inner_func_name",
"crate_name::outer_func_name::inner_func_name");
}
TEST(DemangleRust, ClosureInFunction) {
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_name0",
"crate_name::func_name::{closure#0}");
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_name0Cs123_12client_crate",
"crate_name::func_name::{closure#0}");
}
TEST(DemangleRust, ClosureNumbering) {
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_names_0Cs123_12client_crate",
"crate_name::func_name::{closure#1}");
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_names0_0Cs123_12client_crate",
"crate_name::func_name::{closure#2}");
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_names9_0Cs123_12client_crate",
"crate_name::func_name::{closure#11}");
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_namesa_0Cs123_12client_crate",
"crate_name::func_name::{closure#12}");
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_namesz_0Cs123_12client_crate",
"crate_name::func_name::{closure#37}");
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_namesA_0Cs123_12client_crate",
"crate_name::func_name::{closure#38}");
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_namesZ_0Cs123_12client_crate",
"crate_name::func_name::{closure#63}");
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_names10_0Cs123_12client_crate",
"crate_name::func_name::{closure#64}");
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_namesg6_0Cs123_12client_crate",
"crate_name::func_name::{closure#1000}");
}
TEST(DemangleRust, ClosureNumberOverflowingInt) {
EXPECT_DEMANGLING(
"_RNCNvCs09azAZ_10crate_name9func_names1234567_0Cs123_12client_crate",
"crate_name::func_name::{closure#?}");
}
TEST(DemangleRust, UnexpectedlyNamedClosure) {
EXPECT_DEMANGLING(
"_RNCNvCs123_10crate_name9func_name12closure_nameCs456_12client_crate",
"crate_name::func_name::{closure:closure_name#0}");
EXPECT_DEMANGLING(
"_RNCNvCs123_10crate_name9func_names2_12closure_nameCs456_12client_crate",
"crate_name::func_name::{closure:closure_name#4}");
}
TEST(DemangleRust, ItemNestedInsideClosure) {
EXPECT_DEMANGLING(
"_RNvNCNvCs123_10crate_name9func_name015inner_func_nameCs_12client_crate",
"crate_name::func_name::{closure#0}::inner_func_name");
}
TEST(DemangleRust, Shim) {
EXPECT_DEMANGLING(
"_RNSNvCs123_10crate_name9func_name6vtableCs456_12client_crate",
"crate_name::func_name::{shim:vtable#0}");
}
TEST(DemangleRust, UnknownUppercaseNamespace) {
EXPECT_DEMANGLING(
"_RNXNvCs123_10crate_name9func_name14mystery_objectCs456_12client_crate",
"crate_name::func_name::{X:mystery_object#0}");
}
TEST(DemangleRust, NestedUppercaseNamespaces) {
EXPECT_DEMANGLING(
"_RNCNXNYCs123_10crate_names0_1ys1_1xs2_0Cs456_12client_crate",
"crate_name::{Y:y#2}::{X:x#3}::{closure#4}");
}
TEST(DemangleRust, TraitDefinition) {
EXPECT_DEMANGLING(
"_RNvYNtC7crate_a9my_structNtC7crate_b8my_trait1f",
"<crate_a::my_struct as crate_b::my_trait>::f");
}
TEST(DemangleRust, BasicTypeNames) {
EXPECT_DEMANGLING("_RNvYaNtC1c1t1f", "<i8 as c::t>::f");
EXPECT_DEMANGLING("_RNvYbNtC1c1t1f", "<bool as c::t>::f");
EXPECT_DEMANGLING("_RNvYcNtC1c1t1f", "<char as c::t>::f");
EXPECT_DEMANGLING("_RNvYdNtC1c1t1f", "<f64 as c::t>::f");
EXPECT_DEMANGLING("_RNvYeNtC1c1t1f", "<str as c::t>::f");
EXPECT_DEMANGLING("_RNvYfNtC1c1t1f", "<f32 as c::t>::f");
EXPECT_DEMANGLING("_RNvYhNtC1c1t1f", "<u8 as c::t>::f");
EXPECT_DEMANGLING("_RNvYiNtC1c1t1f", "<isize as c::t>::f");
EXPECT_DEMANGLING("_RNvYjNtC1c1t1f", "<usize as c::t>::f");
EXPECT_DEMANGLING("_RNvYlNtC1c1t1f", "<i32 as c::t>::f");
EXPECT_DEMANGLING("_RNvYmNtC1c1t1f", "<u32 as c::t>::f");
EXPECT_DEMANGLING("_RNvYnNtC1c1t1f", "<i128 as c::t>::f");
EXPECT_DEMANGLING("_RNvYoNtC1c1t1f", "<u128 as c::t>::f");
EXPECT_DEMANGLING("_RNvYpNtC1c1t1f", "<_ as c::t>::f");
EXPECT_DEMANGLING("_RNvYsNtC1c1t1f", "<i16 as c::t>::f");
EXPECT_DEMANGLING("_RNvYtNtC1c1t1f", "<u16 as c::t>::f");
EXPECT_DEMANGLING("_RNvYuNtC1c1t1f", "<() as c::t>::f");
EXPECT_DEMANGLING("_RNvYvNtC1c1t1f", "<... as c::t>::f");
EXPECT_DEMANGLING("_RNvYxNtC1c1t1f", "<i64 as c::t>::f");
EXPECT_DEMANGLING("_RNvYyNtC1c1t1f", "<u64 as c::t>::f");
EXPECT_DEMANGLING("_RNvYzNtC1c1t1f", "<! as c::t>::f");
EXPECT_DEMANGLING_FAILS("_RNvYkNtC1c1t1f");
}
TEST(DemangleRust, SliceTypes) {
EXPECT_DEMANGLING("_RNvYSlNtC1c1t1f", "<[i32] as c::t>::f");
EXPECT_DEMANGLING("_RNvYSNtC1d1sNtC1c1t1f", "<[d::s] as c::t>::f");
}
TEST(DemangleRust, ImmutableReferenceTypes) {
EXPECT_DEMANGLING("_RNvYRlNtC1c1t1f", "<&i32 as c::t>::f");
EXPECT_DEMANGLING("_RNvYRNtC1d1sNtC1c1t1f", "<&d::s as c::t>::f");
}
TEST(DemangleRust, MutableReferenceTypes) {
EXPECT_DEMANGLING("_RNvYQlNtC1c1t1f", "<&mut i32 as c::t>::f");
EXPECT_DEMANGLING("_RNvYQNtC1d1sNtC1c1t1f", "<&mut d::s as c::t>::f");
}
TEST(DemangleRust, ConstantRawPointerTypes) {
EXPECT_DEMANGLING("_RNvYPlNtC1c1t1f", "<*const i32 as c::t>::f");
EXPECT_DEMANGLING("_RNvYPNtC1d1sNtC1c1t1f", "<*const d::s as c::t>::f");
}
TEST(DemangleRust, MutableRawPointerTypes) {
EXPECT_DEMANGLING("_RNvYOlNtC1c1t1f", "<*mut i32 as c::t>::f");
EXPECT_DEMANGLING("_RNvYONtC1d1sNtC1c1t1f", "<*mut d::s as c::t>::f");
}
TEST(DemangleRust, TupleLength0) {
EXPECT_DEMANGLING("_RNvYTENtC1c1t1f", "<() as c::t>::f");
}
TEST(DemangleRust, TupleLength1) {
EXPECT_DEMANGLING("_RNvYTlENtC1c1t1f", "<(i32,) as c::t>::f");
EXPECT_DEMANGLING("_RNvYTNtC1d1sENtC1c1t1f", "<(d::s,) as c::t>::f");
}
TEST(DemangleRust, TupleLength2) {
EXPECT_DEMANGLING("_RNvYTlmENtC1c1t1f", "<(i32, u32) as c::t>::f");
EXPECT_DEMANGLING("_RNvYTNtC1d1xNtC1e1yENtC1c1t1f",
"<(d::x, e::y) as c::t>::f");
}
TEST(DemangleRust, TupleLength3) {
EXPECT_DEMANGLING("_RNvYTlmnENtC1c1t1f", "<(i32, u32, i128) as c::t>::f");
EXPECT_DEMANGLING("_RNvYTNtC1d1xNtC1e1yNtC1f1zENtC1c1t1f",
"<(d::x, e::y, f::z) as c::t>::f");
}
TEST(DemangleRust, LongerTuplesAbbreviated) {
EXPECT_DEMANGLING("_RNvYTlmnoENtC1c1t1f",
"<(i32, u32, i128, ...) as c::t>::f");
EXPECT_DEMANGLING("_RNvYTlmnNtC1d1xNtC1e1yENtC1c1t1f",
"<(i32, u32, i128, ...) as c::t>::f");
}
TEST(DemangleRust, PathBackrefToCrate) {
EXPECT_DEMANGLING("_RNvYNtC8my_crate9my_structNtB4_8my_trait1f",
"<my_crate::my_struct as my_crate::my_trait>::f");
}
TEST(DemangleRust, PathBackrefToNestedPath) {
EXPECT_DEMANGLING("_RNvYNtNtC1c1m1sNtB4_1t1f", "<c::m::s as c::m::t>::f");
}
TEST(DemangleRust, PathBackrefAsInstantiatingCrate) {
EXPECT_DEMANGLING("_RNCNvC8my_crate7my_func0B3_",
"my_crate::my_func::{closure#0}");
}
TEST(DemangleRust, TypeBackrefsNestedInTuple) {
EXPECT_DEMANGLING("_RNvYTTRlB4_ERB3_ENtC1c1t1f",
"<((&i32, &i32), &(&i32, &i32)) as c::t>::f");
}
TEST(DemangleRust, NoInfiniteLoopOnBackrefToTheWhole) {
EXPECT_DEMANGLING_FAILS("_RB_");
EXPECT_DEMANGLING_FAILS("_RNvB_1sNtC1c1t1f");
}
TEST(DemangleRust, NoCrashOnForwardBackref) {
EXPECT_DEMANGLING_FAILS("_RB0_");
EXPECT_DEMANGLING_FAILS("_RB1_");
EXPECT_DEMANGLING_FAILS("_RB2_");
EXPECT_DEMANGLING_FAILS("_RB3_");
EXPECT_DEMANGLING_FAILS("_RB4_");
}
TEST(DemangleRust, PathBackrefsDoNotRecurseDuringSilence) {
EXPECT_DEMANGLING("_RNvYTlmnNtB_1sENtC1c1t1f",
"<(i32, u32, i128, ...) as c::t>::f");
}
TEST(DemangleRust, TypeBackrefsDoNotRecurseDuringSilence) {
EXPECT_DEMANGLING("_RNvYTlmnB2_ENtC1c1t1f",
"<(i32, u32, i128, ...) as c::t>::f");
}
TEST(DemangleRust, ConstBackrefsDoNotRecurseDuringSilence) {
EXPECT_DEMANGLING("_RINvC1c1fAlB_E", "c::f::<>");
}
TEST(DemangleRust, ReturnFromBackrefToInputPosition256) {
EXPECT_DEMANGLING("_RNvYNtC1c238very_long_type_"
"ABCDEFGHIJabcdefghijABCDEFGHIJabcdefghij"
"ABCDEFGHIJabcdefghijABCDEFGHIJabcdefghij"
"ABCDEFGHIJabcdefghijABCDEFGHIJabcdefghij"
"ABCDEFGHIJabcdefghijABCDEFGHIJabcdefghij"
"ABCDEFGHIJabcdefghijABCDEFGHIJabcdefghij"
"ABCDEFGHIJabcdefghijABC"
"NtB4_1t1f",
"<c::very_long_type_"
"ABCDEFGHIJabcdefghijABCDEFGHIJabcdefghij"
"ABCDEFGHIJabcdefghijABCDEFGHIJabcdefghij"
"ABCDEFGHIJabcdefghijABCDEFGHIJabcdefghij"
"ABCDEFGHIJabcdefghijABCDEFGHIJabcdefghij"
"ABCDEFGHIJabcdefghijABCDEFGHIJabcdefghij"
"ABCDEFGHIJabcdefghijABC"
" as c::t>::f");
}
TEST(DemangleRust, EmptyGenericArgs) {
EXPECT_DEMANGLING("_RINvC1c1fE", "c::f::<>");
}
TEST(DemangleRust, OneSimpleTypeInGenericArgs) {
EXPECT_DEMANGLING("_RINvC1c1flE",
"c::f::<>");
}
TEST(DemangleRust, OneTupleInGenericArgs) {
EXPECT_DEMANGLING("_RINvC1c1fTlmEE",
"c::f::<>");
}
TEST(DemangleRust, OnePathInGenericArgs) {
EXPECT_DEMANGLING("_RINvC1c1fNtC1d1sE",
"c::f::<>");
}
TEST(DemangleRust, LongerGenericArgs) {
EXPECT_DEMANGLING("_RINvC1c1flmRNtC1d1sE",
"c::f::<>");
}
TEST(DemangleRust, BackrefInGenericArgs) {
EXPECT_DEMANGLING("_RINvC1c1fRlB7_NtB2_1sE",
"c::f::<>");
}
TEST(DemangleRust, NestedGenericArgs) {
EXPECT_DEMANGLING("_RINvC1c1fINtB2_1slEmE",
"c::f::<>");
}
TEST(DemangleRust, MonomorphicEntityNestedInsideGeneric) {
EXPECT_DEMANGLING("_RNvINvC1c1fppE1g",
"c::f::<>::g");
}
TEST(DemangleRust, ArrayTypeWithSimpleElementType) {
EXPECT_DEMANGLING("_RNvYAlj1f_NtC1c1t1f", "<[i32; 0x1f] as c::t>::f");
}
TEST(DemangleRust, ArrayTypeWithComplexElementType) {
EXPECT_DEMANGLING("_RNvYAINtC1c1slEj1f_NtB6_1t1f",
"<[c::s::<>; 0x1f] as c::t>::f");
}
TEST(DemangleRust, NestedArrayType) {
EXPECT_DEMANGLING("_RNvYAAlj1f_j2e_NtC1c1t1f",
"<[[i32; 0x1f]; 0x2e] as c::t>::f");
}
TEST(DemangleRust, BackrefArraySize) {
EXPECT_DEMANGLING("_RNvYAAlj1f_B5_NtC1c1t1f",
"<[[i32; 0x1f]; 0x1f] as c::t>::f");
}
TEST(DemangleRust, ZeroArraySize) {
EXPECT_DEMANGLING("_RNvYAlj0_NtC1c1t1f", "<[i32; 0x0] as c::t>::f");
}
TEST(DemangleRust, SurprisingMinusesInArraySize) {
EXPECT_DEMANGLING("_RNvYAljn0_NtC1c1t1f", "<[i32; -0x0] as c::t>::f");
EXPECT_DEMANGLING("_RNvYAljn42_NtC1c1t1f", "<[i32; -0x42] as c::t>::f");
}
TEST(DemangleRust, NumberAsGenericArg) {
EXPECT_DEMANGLING("_RINvC1c1fKl8_E",
"c::f::<>");
}
TEST(DemangleRust, NumberAsFirstOfTwoGenericArgs) {
EXPECT_DEMANGLING("_RINvC1c1fKl8_mE",
"c::f::<>");
}
TEST(DemangleRust, NumberAsSecondOfTwoGenericArgs) {
EXPECT_DEMANGLING("_RINvC1c1fmKl8_E",
"c::f::<>");
}
TEST(DemangleRust, NumberPlaceholder) {
EXPECT_DEMANGLING("_RNvINvC1c1fKpE1g",
"c::f::<>::g");
}
TEST(DemangleRust, InherentImplWithoutDisambiguator) {
EXPECT_DEMANGLING("_RNvMNtC8my_crate6my_modNtB2_9my_struct7my_func",
"<my_crate::my_mod::my_struct>::my_func");
}
TEST(DemangleRust, InherentImplWithDisambiguator) {
EXPECT_DEMANGLING("_RNvMs_NtC8my_crate6my_modNtB4_9my_struct7my_func",
"<my_crate::my_mod::my_struct>::my_func");
}
TEST(DemangleRust, TraitImplWithoutDisambiguator) {
EXPECT_DEMANGLING("_RNvXC8my_crateNtB2_9my_structNtB2_8my_trait7my_func",
"<my_crate::my_struct as my_crate::my_trait>::my_func");
}
TEST(DemangleRust, TraitImplWithDisambiguator) {
EXPECT_DEMANGLING("_RNvXs_C8my_crateNtB4_9my_structNtB4_8my_trait7my_func",
"<my_crate::my_struct as my_crate::my_trait>::my_func");
}
TEST(DemangleRust, TraitImplWithNonpathSelfType) {
EXPECT_DEMANGLING("_RNvXC8my_crateRlNtB2_8my_trait7my_func",
"<&i32 as my_crate::my_trait>::my_func");
}
TEST(DemangleRust, ThunkType) {
EXPECT_DEMANGLING("_RNvYFEuNtC1c1t1f",
"<fn... as c::t>::f");
}
TEST(DemangleRust, NontrivialFunctionReturnType) {
EXPECT_DEMANGLING(
"_RNvYFERTlmENtC1c1t1f",
"<fn... as c::t>::f");
}
TEST(DemangleRust, OneParameterType) {
EXPECT_DEMANGLING("_RNvYFlEuNtC1c1t1f",
"<fn... as c::t>::f");
}
TEST(DemangleRust, TwoParameterTypes) {
EXPECT_DEMANGLING("_RNvYFlmEuNtC1c1t1f",
"<fn... as c::t>::f");
}
TEST(DemangleRust, ExternC) {
EXPECT_DEMANGLING("_RNvYFKCEuNtC1c1t1f",
"<fn... as c::t>::f");
}
TEST(DemangleRust, ExternOther) {
EXPECT_DEMANGLING(
"_RNvYFK5not_CEuNtC1c1t1f",
"<fn... as c::t>::f");
}
TEST(DemangleRust, Unsafe) {
EXPECT_DEMANGLING("_RNvYFUEuNtC1c1t1f",
"<fn... as c::t>::f");
}
TEST(DemangleRust, Binder) {
EXPECT_DEMANGLING(
"_RNvYFG_RL0_lEB5_NtC1c1t1f",
"<fn... as c::t>::f");
}
TEST(DemangleRust, AllFnSigFeaturesInOrder) {
EXPECT_DEMANGLING(
"_RNvYFG_UKCRL0_lEB8_NtC1c1t1f",
"<fn... as c::t>::f");
}
TEST(DemangleRust, LifetimeInGenericArgs) {
EXPECT_DEMANGLING("_RINvC1c1fINtB2_1sL_EE",
"c::f::<>");
}
TEST(DemangleRust, EmptyDynTrait) {
EXPECT_DEMANGLING("_RNvYDEL_NtC1c1t1f",
"<dyn as c::t>::f");
}
TEST(DemangleRust, SimpleDynTrait) {
EXPECT_DEMANGLING("_RNvYDNtC1c1tEL_NtC1d1u1f",
"<dyn c::t as d::u>::f");
}
TEST(DemangleRust, DynTraitWithOneAssociatedType) {
EXPECT_DEMANGLING(
"_RNvYDNtC1c1tp1xlEL_NtC1d1u1f",
"<dyn c::t<> as d::u>::f");
}
TEST(DemangleRust, DynTraitWithTwoAssociatedTypes) {
EXPECT_DEMANGLING(
"_RNvYDNtC1c1tp1xlp1ymEL_NtC1d1u1f",
"<dyn c::t<> as d::u>::f");
}
TEST(DemangleRust, DynTraitPlusAutoTrait) {
EXPECT_DEMANGLING(
"_RNvYDNtC1c1tNtNtC3std6marker4SendEL_NtC1d1u1f",
"<dyn c::t + std::marker::Send as d::u>::f");
}
TEST(DemangleRust, DynTraitPlusTwoAutoTraits) {
EXPECT_DEMANGLING(
"_RNvYDNtC1c1tNtNtC3std6marker4CopyNtBc_4SyncEL_NtC1d1u1f",
"<dyn c::t + std::marker::Copy + std::marker::Sync as d::u>::f");
}
TEST(DemangleRust, HigherRankedDynTrait) {
EXPECT_DEMANGLING(
"_RNvYDG_INtC1c1tRL0_lEEL_NtC1d1u1f",
"<dyn c::t::<> as d::u>::f");
}
}
}
ABSL_NAMESPACE_END
} | 2,517 |
#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
#define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/base/options.h"
#include "absl/base/port.h"
#include "absl/base/prefetch.h"
#include "absl/container/internal/common.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/hash_policy_traits.h"
#include "absl/container/internal/hashtable_debug_hooks.h"
#include "absl/container/internal/hashtablez_sampler.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/bits.h"
#include "absl/utility/utility.h"
#ifdef ABSL_INTERNAL_HAVE_SSE2
#include <emmintrin.h>
#endif
#ifdef ABSL_INTERNAL_HAVE_SSSE3
#include <tmmintrin.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#ifdef ABSL_INTERNAL_HAVE_ARM_NEON
#include <arm_neon.h>
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
#ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
#error ABSL_SWISSTABLE_ENABLE_GENERATIONS cannot be directly set
#elif (defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \
defined(ABSL_HAVE_MEMORY_SANITIZER)) && \
!defined(NDEBUG_SANITIZER)
#define ABSL_SWISSTABLE_ENABLE_GENERATIONS
#endif
using GenerationType = uint8_t;
constexpr GenerationType SentinelEmptyGeneration() { return 0; }
constexpr GenerationType NextGeneration(GenerationType generation) {
return ++generation == SentinelEmptyGeneration() ? ++generation : generation;
}
#ifdef ABSL_SWISSTABLE_ENABLE_GENERATIONS
constexpr bool SwisstableGenerationsEnabled() { return true; }
constexpr size_t NumGenerationBytes() { return sizeof(GenerationType); }
#else
constexpr bool SwisstableGenerationsEnabled() { return false; }
constexpr size_t NumGenerationBytes() { return 0; }
#endif
template <typename AllocType>
void SwapAlloc(AllocType& lhs, AllocType& rhs,
std::true_type ) {
using std::swap;
swap(lhs, rhs);
}
template <typename AllocType>
void SwapAlloc(AllocType& lhs, AllocType& rhs,
std::false_type ) {
(void)lhs;
(void)rhs;
assert(lhs == rhs &&
"It's UB to call swap with unequal non-propagating allocators.");
}
template <typename AllocType>
void CopyAlloc(AllocType& lhs, AllocType& rhs,
std::true_type ) {
lhs = rhs;
}
template <typename AllocType>
void CopyAlloc(AllocType&, AllocType&, std::false_type ) {}
template <size_t Width>
class probe_seq {
public:
probe_seq(size_t hash, size_t mask) {
assert(((mask + 1) & mask) == 0 && "not a mask");
mask_ = mask;
offset_ = hash & mask_;
}
size_t offset() const { return offset_; }
size_t offset(size_t i) const { return (offset_ + i) & mask_; }
void next() {
index_ += Width;
offset_ += index_;
offset_ &= mask_;
}
size_t index() const { return index_; }
private:
size_t mask_;
size_t offset_;
size_t index_ = 0;
};
template <class ContainerKey, class Hash, class Eq>
struct RequireUsableKey {
template <class PassedKey, class... Args>
std::pair<
decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
std::declval<const PassedKey&>()))>*
operator()(const PassedKey&, const Args&...) const;
};
template <class E, class Policy, class Hash, class Eq, class... Ts>
struct IsDecomposable : std::false_type {};
template <class Policy, class Hash, class Eq, class... Ts>
struct IsDecomposable<
absl::void_t<decltype(Policy::apply(
RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
std::declval<Ts>()...))>,
Policy, Hash, Eq, Ts...> : std::true_type {};
template <class T>
constexpr bool IsNoThrowSwappable(std::true_type = {} ) {
using std::swap;
return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
}
template <class T>
constexpr bool IsNoThrowSwappable(std::false_type ) {
return false;
}
template <typename T>
uint32_t TrailingZeros(T x) {
ABSL_ASSUME(x != 0);
return static_cast<uint32_t>(countr_zero(x));
}
constexpr uint64_t kMsbs8Bytes = 0x8080808080808080ULL;
template <class T, int SignificantBits, int Shift = 0>
class NonIterableBitMask {
public:
explicit NonIterableBitMask(T mask) : mask_(mask) {}
explicit operator bool() const { return this->mask_ != 0; }
uint32_t LowestBitSet() const {
return container_internal::TrailingZeros(mask_) >> Shift;
}
uint32_t HighestBitSet() const {
return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift);
}
uint32_t TrailingZeros() const {
return container_internal::TrailingZeros(mask_) >> Shift;
}
uint32_t LeadingZeros() const {
constexpr int total_significant_bits = SignificantBits << Shift;
constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits;
return static_cast<uint32_t>(
countl_zero(static_cast<T>(mask_ << extra_bits))) >>
Shift;
}
T mask_;
};
template <class T, int SignificantBits, int Shift = 0,
bool NullifyBitsOnIteration = false>
class BitMask : public NonIterableBitMask<T, SignificantBits, Shift> {
using Base = NonIterableBitMask<T, SignificantBits, Shift>;
static_assert(std::is_unsigned<T>::value, "");
static_assert(Shift == 0 || Shift == 3, "");
static_assert(!NullifyBitsOnIteration || Shift == 3, "");
public:
explicit BitMask(T mask) : Base(mask) {
if (Shift == 3 && !NullifyBitsOnIteration) {
assert(this->mask_ == (this->mask_ & kMsbs8Bytes));
}
}
using value_type = int;
using iterator = BitMask;
using const_iterator = BitMask;
BitMask& operator++() {
if (Shift == 3 && NullifyBitsOnIteration) {
this->mask_ &= kMsbs8Bytes;
}
this->mask_ &= (this->mask_ - 1);
return *this;
}
uint32_t operator*() const { return Base::LowestBitSet(); }
BitMask begin() const { return *this; }
BitMask end() const { return BitMask(0); }
private:
friend bool operator==(const BitMask& a, const BitMask& b) {
return a.mask_ == b.mask_;
}
friend bool operator!=(const BitMask& a, const BitMask& b) {
return a.mask_ != b.mask_;
}
};
using h2_t = uint8_t;
enum class ctrl_t : int8_t {
kEmpty = -128,
kDeleted = -2,
kSentinel = -1,
};
static_assert(
(static_cast<int8_t>(ctrl_t::kEmpty) &
static_cast<int8_t>(ctrl_t::kDeleted) &
static_cast<int8_t>(ctrl_t::kSentinel) & 0x80) != 0,
"Special markers need to have the MSB to make checking for them efficient");
static_assert(
ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel,
"ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than "
"ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient");
static_assert(
ctrl_t::kSentinel == static_cast<ctrl_t>(-1),
"ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD "
"registers (pcmpeqd xmm, xmm)");
static_assert(ctrl_t::kEmpty == static_cast<ctrl_t>(-128),
"ctrl_t::kEmpty must be -128 to make the SIMD check for its "
"existence efficient (psignb xmm, xmm)");
static_assert(
(~static_cast<int8_t>(ctrl_t::kEmpty) &
~static_cast<int8_t>(ctrl_t::kDeleted) &
static_cast<int8_t>(ctrl_t::kSentinel) & 0x7F) != 0,
"ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not "
"shared by ctrl_t::kSentinel to make the scalar test for "
"MaskEmptyOrDeleted() efficient");
static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2),
"ctrl_t::kDeleted must be -2 to make the implementation of "
"ConvertSpecialToEmptyAndFullToDeleted efficient");
ABSL_DLL extern const ctrl_t kEmptyGroup[32];
inline ctrl_t* EmptyGroup() {
return const_cast<ctrl_t*>(kEmptyGroup + 16);
}
ABSL_DLL extern const ctrl_t kSooControl[17];
inline ctrl_t* SooControl() {
return const_cast<ctrl_t*>(kSooControl);
}
inline bool IsSooControl(const ctrl_t* ctrl) { return ctrl == SooControl(); }
GenerationType* EmptyGeneration();
inline bool IsEmptyGeneration(const GenerationType* generation) {
return *generation == SentinelEmptyGeneration();
}
bool ShouldInsertBackwardsForDebug(size_t capacity, size_t hash,
const ctrl_t* ctrl);
ABSL_ATTRIBUTE_ALWAYS_INLINE inline bool ShouldInsertBackwards(
ABSL_ATTRIBUTE_UNUSED size_t capacity, ABSL_ATTRIBUTE_UNUSED size_t hash,
ABSL_ATTRIBUTE_UNUSED const ctrl_t* ctrl) {
#if defined(NDEBUG)
return false;
#else
return ShouldInsertBackwardsForDebug(capacity, hash, ctrl);
#endif
}
template <class Mask>
ABSL_ATTRIBUTE_ALWAYS_INLINE inline auto GetInsertionOffset(
Mask mask, ABSL_ATTRIBUTE_UNUSED size_t capacity,
ABSL_ATTRIBUTE_UNUSED size_t hash,
ABSL_ATTRIBUTE_UNUSED const ctrl_t* ctrl) {
#if defined(NDEBUG)
return mask.LowestBitSet();
#else
return ShouldInsertBackwardsForDebug(capacity, hash, ctrl)
? mask.HighestBitSet()
: mask.LowestBitSet();
#endif
}
inline size_t PerTableSalt(const ctrl_t* ctrl) {
return reinterpret_cast<uintptr_t>(ctrl) >> 12;
}
inline size_t H1(size_t hash, const ctrl_t* ctrl) {
return (hash >> 7) ^ PerTableSalt(ctrl);
}
inline h2_t H2(size_t hash) { return hash & 0x7F; }
inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; }
inline bool IsFull(ctrl_t c) {
return static_cast<std::underlying_type_t<ctrl_t>>(c) >= 0;
}
inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; }
inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; }
#ifdef ABSL_INTERNAL_HAVE_SSE2
inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) {
#if defined(__GNUC__) && !defined(__clang__)
if (std::is_unsigned<char>::value) {
const __m128i mask = _mm_set1_epi8(0x80);
const __m128i diff = _mm_subs_epi8(b, a);
return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask);
}
#endif
return _mm_cmpgt_epi8(a, b);
}
struct GroupSse2Impl {
static constexpr size_t kWidth = 16;
explicit GroupSse2Impl(const ctrl_t* pos) {
ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos));
}
BitMask<uint16_t, kWidth> Match(h2_t hash) const {
auto match = _mm_set1_epi8(static_cast<char>(hash));
BitMask<uint16_t, kWidth> result = BitMask<uint16_t, kWidth>(0);
result = BitMask<uint16_t, kWidth>(
static_cast<uint16_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
return result;
}
NonIterableBitMask<uint16_t, kWidth> MaskEmpty() const {
#ifdef ABSL_INTERNAL_HAVE_SSSE3
return NonIterableBitMask<uint16_t, kWidth>(
static_cast<uint16_t>(_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl))));
#else
auto match = _mm_set1_epi8(static_cast<char>(ctrl_t::kEmpty));
return NonIterableBitMask<uint16_t, kWidth>(
static_cast<uint16_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
#endif
}
BitMask<uint16_t, kWidth> MaskFull() const {
return BitMask<uint16_t, kWidth>(
static_cast<uint16_t>(_mm_movemask_epi8(ctrl) ^ 0xffff));
}
auto MaskNonFull() const {
return BitMask<uint16_t, kWidth>(
static_cast<uint16_t>(_mm_movemask_epi8(ctrl)));
}
NonIterableBitMask<uint16_t, kWidth> MaskEmptyOrDeleted() const {
auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel));
return NonIterableBitMask<uint16_t, kWidth>(static_cast<uint16_t>(
_mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl))));
}
uint32_t CountLeadingEmptyOrDeleted() const {
auto special = _mm_set1_epi8(static_cast<char>(ctrl_t::kSentinel));
return TrailingZeros(static_cast<uint32_t>(
_mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1));
}
void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
auto msbs = _mm_set1_epi8(static_cast<char>(-128));
auto x126 = _mm_set1_epi8(126);
#ifdef ABSL_INTERNAL_HAVE_SSSE3
auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
#else
auto zero = _mm_setzero_si128();
auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl);
auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126));
#endif
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res);
}
__m128i ctrl;
};
#endif
#if defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN)
struct GroupAArch64Impl {
static constexpr size_t kWidth = 8;
explicit GroupAArch64Impl(const ctrl_t* pos) {
ctrl = vld1_u8(reinterpret_cast<const uint8_t*>(pos));
}
auto Match(h2_t hash) const {
uint8x8_t dup = vdup_n_u8(hash);
auto mask = vceq_u8(ctrl, dup);
return BitMask<uint64_t, kWidth, 3,
true>(
vget_lane_u64(vreinterpret_u64_u8(mask), 0));
}
NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const {
uint64_t mask =
vget_lane_u64(vreinterpret_u64_u8(vceq_s8(
vdup_n_s8(static_cast<int8_t>(ctrl_t::kEmpty)),
vreinterpret_s8_u8(ctrl))),
0);
return NonIterableBitMask<uint64_t, kWidth, 3>(mask);
}
auto MaskFull() const {
uint64_t mask = vget_lane_u64(
vreinterpret_u64_u8(vcge_s8(vreinterpret_s8_u8(ctrl),
vdup_n_s8(static_cast<int8_t>(0)))),
0);
return BitMask<uint64_t, kWidth, 3,
true>(mask);
}
auto MaskNonFull() const {
uint64_t mask = vget_lane_u64(
vreinterpret_u64_u8(vclt_s8(vreinterpret_s8_u8(ctrl),
vdup_n_s8(static_cast<int8_t>(0)))),
0);
return BitMask<uint64_t, kWidth, 3,
true>(mask);
}
NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const {
uint64_t mask =
vget_lane_u64(vreinterpret_u64_u8(vcgt_s8(
vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)),
vreinterpret_s8_u8(ctrl))), | #include "absl/container/internal/raw_hash_set.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <functional>
#include <iostream>
#include <iterator>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <ostream>
#include <random>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/base/prefetch.h"
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/hash_function_defaults.h"
#include "absl/container/internal/hash_policy_testing.h"
#include "absl/container/internal/hashtable_debug.h"
#include "absl/container/internal/hashtablez_sampler.h"
#include "absl/container/internal/test_allocator.h"
#include "absl/container/internal/test_instance_tracker.h"
#include "absl/container/node_hash_set.h"
#include "absl/functional/function_ref.h"
#include "absl/hash/hash.h"
#include "absl/log/check.h"
#include "absl/log/log.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
struct RawHashSetTestOnlyAccess {
template <typename C>
static auto GetCommon(const C& c) -> decltype(c.common()) {
return c.common();
}
template <typename C>
static auto GetSlots(const C& c) -> decltype(c.slot_array()) {
return c.slot_array();
}
template <typename C>
static size_t CountTombstones(const C& c) {
return c.common().TombstonesCount();
}
};
namespace {
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::Eq;
using ::testing::Ge;
using ::testing::Lt;
using ::testing::Pair;
using ::testing::UnorderedElementsAre;
ctrl_t CtrlT(int i) { return static_cast<ctrl_t>(i); }
TEST(GrowthInfoTest, GetGrowthLeft) {
GrowthInfo gi;
gi.InitGrowthLeftNoDeleted(5);
EXPECT_EQ(gi.GetGrowthLeft(), 5);
gi.OverwriteFullAsDeleted();
EXPECT_EQ(gi.GetGrowthLeft(), 5);
}
TEST(GrowthInfoTest, HasNoDeleted) {
GrowthInfo gi;
gi.InitGrowthLeftNoDeleted(5);
EXPECT_TRUE(gi.HasNoDeleted());
gi.OverwriteFullAsDeleted();
EXPECT_FALSE(gi.HasNoDeleted());
gi.InitGrowthLeftNoDeleted(5);
EXPECT_TRUE(gi.HasNoDeleted());
}
TEST(GrowthInfoTest, HasNoDeletedAndGrowthLeft) {
GrowthInfo gi;
gi.InitGrowthLeftNoDeleted(5);
EXPECT_TRUE(gi.HasNoDeletedAndGrowthLeft());
gi.OverwriteFullAsDeleted();
EXPECT_FALSE(gi.HasNoDeletedAndGrowthLeft());
gi.InitGrowthLeftNoDeleted(0);
EXPECT_FALSE(gi.HasNoDeletedAndGrowthLeft());
gi.OverwriteFullAsDeleted();
EXPECT_FALSE(gi.HasNoDeletedAndGrowthLeft());
gi.InitGrowthLeftNoDeleted(5);
EXPECT_TRUE(gi.HasNoDeletedAndGrowthLeft());
}
TEST(GrowthInfoTest, HasNoGrowthLeftAndNoDeleted) {
GrowthInfo gi;
gi.InitGrowthLeftNoDeleted(1);
EXPECT_FALSE(gi.HasNoGrowthLeftAndNoDeleted());
gi.OverwriteEmptyAsFull();
EXPECT_TRUE(gi.HasNoGrowthLeftAndNoDeleted());
gi.OverwriteFullAsDeleted();
EXPECT_FALSE(gi.HasNoGrowthLeftAndNoDeleted());
gi.OverwriteFullAsEmpty();
EXPECT_FALSE(gi.HasNoGrowthLeftAndNoDeleted());
gi.InitGrowthLeftNoDeleted(0);
EXPECT_TRUE(gi.HasNoGrowthLeftAndNoDeleted());
gi.OverwriteFullAsEmpty();
EXPECT_FALSE(gi.HasNoGrowthLeftAndNoDeleted());
}
TEST(GrowthInfoTest, OverwriteFullAsEmpty) {
GrowthInfo gi;
gi.InitGrowthLeftNoDeleted(5);
gi.OverwriteFullAsEmpty();
EXPECT_EQ(gi.GetGrowthLeft(), 6);
gi.OverwriteFullAsDeleted();
EXPECT_EQ(gi.GetGrowthLeft(), 6);
gi.OverwriteFullAsEmpty();
EXPECT_EQ(gi.GetGrowthLeft(), 7);
EXPECT_FALSE(gi.HasNoDeleted());
}
TEST(GrowthInfoTest, OverwriteEmptyAsFull) {
GrowthInfo gi;
gi.InitGrowthLeftNoDeleted(5);
gi.OverwriteEmptyAsFull();
EXPECT_EQ(gi.GetGrowthLeft(), 4);
gi.OverwriteFullAsDeleted();
EXPECT_EQ(gi.GetGrowthLeft(), 4);
gi.OverwriteEmptyAsFull();
EXPECT_EQ(gi.GetGrowthLeft(), 3);
EXPECT_FALSE(gi.HasNoDeleted());
}
TEST(GrowthInfoTest, OverwriteControlAsFull) {
GrowthInfo gi;
gi.InitGrowthLeftNoDeleted(5);
gi.OverwriteControlAsFull(ctrl_t::kEmpty);
EXPECT_EQ(gi.GetGrowthLeft(), 4);
gi.OverwriteControlAsFull(ctrl_t::kDeleted);
EXPECT_EQ(gi.GetGrowthLeft(), 4);
gi.OverwriteFullAsDeleted();
gi.OverwriteControlAsFull(ctrl_t::kDeleted);
EXPECT_FALSE(gi.HasNoDeletedAndGrowthLeft());
EXPECT_FALSE(gi.HasNoDeleted());
}
TEST(Util, NormalizeCapacity) {
EXPECT_EQ(1, NormalizeCapacity(0));
EXPECT_EQ(1, NormalizeCapacity(1));
EXPECT_EQ(3, NormalizeCapacity(2));
EXPECT_EQ(3, NormalizeCapacity(3));
EXPECT_EQ(7, NormalizeCapacity(4));
EXPECT_EQ(7, NormalizeCapacity(7));
EXPECT_EQ(15, NormalizeCapacity(8));
EXPECT_EQ(15, NormalizeCapacity(15));
EXPECT_EQ(15 * 2 + 1, NormalizeCapacity(15 + 1));
EXPECT_EQ(15 * 2 + 1, NormalizeCapacity(15 + 2));
}
TEST(Util, GrowthAndCapacity) {
for (size_t growth = 0; growth < 10000; ++growth) {
SCOPED_TRACE(growth);
size_t capacity = NormalizeCapacity(GrowthToLowerboundCapacity(growth));
EXPECT_THAT(CapacityToGrowth(capacity), Ge(growth));
if (capacity + 1 < Group::kWidth) {
EXPECT_THAT(CapacityToGrowth(capacity), Eq(capacity));
} else {
EXPECT_THAT(CapacityToGrowth(capacity), Lt(capacity));
}
if (growth != 0 && capacity > 1) {
EXPECT_THAT(CapacityToGrowth(capacity / 2), Lt(growth));
}
}
for (size_t capacity = Group::kWidth - 1; capacity < 10000;
capacity = 2 * capacity + 1) {
SCOPED_TRACE(capacity);
size_t growth = CapacityToGrowth(capacity);
EXPECT_THAT(growth, Lt(capacity));
EXPECT_LE(GrowthToLowerboundCapacity(growth), capacity);
EXPECT_EQ(NormalizeCapacity(GrowthToLowerboundCapacity(growth)), capacity);
}
}
TEST(Util, probe_seq) {
probe_seq<16> seq(0, 127);
auto gen = [&]() {
size_t res = seq.offset();
seq.next();
return res;
};
std::vector<size_t> offsets(8);
std::generate_n(offsets.begin(), 8, gen);
EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64));
seq = probe_seq<16>(128, 127);
std::generate_n(offsets.begin(), 8, gen);
EXPECT_THAT(offsets, ElementsAre(0, 16, 48, 96, 32, 112, 80, 64));
}
TEST(BitMask, Smoke) {
EXPECT_FALSE((BitMask<uint8_t, 8>(0)));
EXPECT_TRUE((BitMask<uint8_t, 8>(5)));
EXPECT_THAT((BitMask<uint8_t, 8>(0)), ElementsAre());
EXPECT_THAT((BitMask<uint8_t, 8>(0x1)), ElementsAre(0));
EXPECT_THAT((BitMask<uint8_t, 8>(0x2)), ElementsAre(1));
EXPECT_THAT((BitMask<uint8_t, 8>(0x3)), ElementsAre(0, 1));
EXPECT_THAT((BitMask<uint8_t, 8>(0x4)), ElementsAre(2));
EXPECT_THAT((BitMask<uint8_t, 8>(0x5)), ElementsAre(0, 2));
EXPECT_THAT((BitMask<uint8_t, 8>(0x55)), ElementsAre(0, 2, 4, 6));
EXPECT_THAT((BitMask<uint8_t, 8>(0xAA)), ElementsAre(1, 3, 5, 7));
}
TEST(BitMask, WithShift_MatchPortable) {
uint64_t ctrl = 0x1716151413121110;
uint64_t hash = 0x12;
constexpr uint64_t lsbs = 0x0101010101010101ULL;
auto x = ctrl ^ (lsbs * hash);
uint64_t mask = (x - lsbs) & ~x & kMsbs8Bytes;
EXPECT_EQ(0x0000000080800000, mask);
BitMask<uint64_t, 8, 3> b(mask);
EXPECT_EQ(*b, 2);
}
constexpr uint64_t kSome8BytesMask = 0x8000808080008000ULL;
constexpr uint64_t kSome8BytesMaskAllOnes = 0xff00ffffff00ff00ULL;
constexpr auto kSome8BytesMaskBits = std::array<int, 5>{1, 3, 4, 5, 7};
TEST(BitMask, WithShift_FullMask) {
EXPECT_THAT((BitMask<uint64_t, 8, 3>(kMsbs8Bytes)),
ElementsAre(0, 1, 2, 3, 4, 5, 6, 7));
EXPECT_THAT(
(BitMask<uint64_t, 8, 3, true>(kMsbs8Bytes)),
ElementsAre(0, 1, 2, 3, 4, 5, 6, 7));
EXPECT_THAT(
(BitMask<uint64_t, 8, 3, true>(~uint64_t{0})),
ElementsAre(0, 1, 2, 3, 4, 5, 6, 7));
}
TEST(BitMask, WithShift_EmptyMask) {
EXPECT_THAT((BitMask<uint64_t, 8, 3>(0)), ElementsAre());
EXPECT_THAT((BitMask<uint64_t, 8, 3, true>(0)),
ElementsAre());
}
TEST(BitMask, WithShift_SomeMask) {
EXPECT_THAT((BitMask<uint64_t, 8, 3>(kSome8BytesMask)),
ElementsAreArray(kSome8BytesMaskBits));
EXPECT_THAT((BitMask<uint64_t, 8, 3, true>(
kSome8BytesMask)),
ElementsAreArray(kSome8BytesMaskBits));
EXPECT_THAT((BitMask<uint64_t, 8, 3, true>(
kSome8BytesMaskAllOnes)),
ElementsAreArray(kSome8BytesMaskBits));
}
TEST(BitMask, WithShift_SomeMaskExtraBitsForNullify) {
uint64_t extra_bits = 77;
for (int i = 0; i < 100; ++i) {
uint64_t extra_mask = extra_bits & kSome8BytesMaskAllOnes;
EXPECT_THAT((BitMask<uint64_t, 8, 3, true>(
kSome8BytesMask | extra_mask)),
ElementsAreArray(kSome8BytesMaskBits))
<< i << " " << extra_mask;
extra_bits = (extra_bits + 1) * 3;
}
}
TEST(BitMask, LeadingTrailing) {
EXPECT_EQ((BitMask<uint32_t, 16>(0x00001a40).LeadingZeros()), 3);
EXPECT_EQ((BitMask<uint32_t, 16>(0x00001a40).TrailingZeros()), 6);
EXPECT_EQ((BitMask<uint32_t, 16>(0x00000001).LeadingZeros()), 15);
EXPECT_EQ((BitMask<uint32_t, 16>(0x00000001).TrailingZeros()), 0);
EXPECT_EQ((BitMask<uint32_t, 16>(0x00008000).LeadingZeros()), 0);
EXPECT_EQ((BitMask<uint32_t, 16>(0x00008000).TrailingZeros()), 15);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).LeadingZeros()), 3);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000008080808000).TrailingZeros()), 1);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).LeadingZeros()), 7);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x0000000000000080).TrailingZeros()), 0);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).LeadingZeros()), 0);
EXPECT_EQ((BitMask<uint64_t, 8, 3>(0x8000000000000000).TrailingZeros()), 7);
}
TEST(Group, EmptyGroup) {
for (h2_t h = 0; h != 128; ++h) EXPECT_FALSE(Group{EmptyGroup()}.Match(h));
}
TEST(Group, Match) {
if (Group::kWidth == 16) {
ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), ctrl_t::kDeleted, CtrlT(3),
ctrl_t::kEmpty, CtrlT(5), ctrl_t::kSentinel, CtrlT(7),
CtrlT(7), CtrlT(5), CtrlT(3), CtrlT(1),
CtrlT(1), CtrlT(1), CtrlT(1), CtrlT(1)};
EXPECT_THAT(Group{group}.Match(0), ElementsAre());
EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 11, 12, 13, 14, 15));
EXPECT_THAT(Group{group}.Match(3), ElementsAre(3, 10));
EXPECT_THAT(Group{group}.Match(5), ElementsAre(5, 9));
EXPECT_THAT(Group{group}.Match(7), ElementsAre(7, 8));
} else if (Group::kWidth == 8) {
ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), CtrlT(2),
ctrl_t::kDeleted, CtrlT(2), CtrlT(1),
ctrl_t::kSentinel, CtrlT(1)};
EXPECT_THAT(Group{group}.Match(0), ElementsAre());
EXPECT_THAT(Group{group}.Match(1), ElementsAre(1, 5, 7));
EXPECT_THAT(Group{group}.Match(2), ElementsAre(2, 4));
} else {
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
}
}
TEST(Group, MaskEmpty) {
if (Group::kWidth == 16) {
ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), ctrl_t::kDeleted, CtrlT(3),
ctrl_t::kEmpty, CtrlT(5), ctrl_t::kSentinel, CtrlT(7),
CtrlT(7), CtrlT(5), CtrlT(3), CtrlT(1),
CtrlT(1), CtrlT(1), CtrlT(1), CtrlT(1)};
EXPECT_THAT(Group{group}.MaskEmpty().LowestBitSet(), 0);
EXPECT_THAT(Group{group}.MaskEmpty().HighestBitSet(), 4);
} else if (Group::kWidth == 8) {
ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), CtrlT(2),
ctrl_t::kDeleted, CtrlT(2), CtrlT(1),
ctrl_t::kSentinel, CtrlT(1)};
EXPECT_THAT(Group{group}.MaskEmpty().LowestBitSet(), 0);
EXPECT_THAT(Group{group}.MaskEmpty().HighestBitSet(), 0);
} else {
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
}
}
TEST(Group, MaskFull) {
if (Group::kWidth == 16) {
ctrl_t group[] = {
ctrl_t::kEmpty, CtrlT(1), ctrl_t::kDeleted, CtrlT(3),
ctrl_t::kEmpty, CtrlT(5), ctrl_t::kSentinel, CtrlT(7),
CtrlT(7), CtrlT(5), ctrl_t::kDeleted, CtrlT(1),
CtrlT(1), ctrl_t::kSentinel, ctrl_t::kEmpty, CtrlT(1)};
EXPECT_THAT(Group{group}.MaskFull(),
ElementsAre(1, 3, 5, 7, 8, 9, 11, 12, 15));
} else if (Group::kWidth == 8) {
ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), ctrl_t::kEmpty,
ctrl_t::kDeleted, CtrlT(2), ctrl_t::kSentinel,
ctrl_t::kSentinel, CtrlT(1)};
EXPECT_THAT(Group{group}.MaskFull(), ElementsAre(1, 4, 7));
} else {
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
}
}
TEST(Group, MaskNonFull) {
if (Group::kWidth == 16) {
ctrl_t group[] = {
ctrl_t::kEmpty, CtrlT(1), ctrl_t::kDeleted, CtrlT(3),
ctrl_t::kEmpty, CtrlT(5), ctrl_t::kSentinel, CtrlT(7),
CtrlT(7), CtrlT(5), ctrl_t::kDeleted, CtrlT(1),
CtrlT(1), ctrl_t::kSentinel, ctrl_t::kEmpty, CtrlT(1)};
EXPECT_THAT(Group{group}.MaskNonFull(),
ElementsAre(0, 2, 4, 6, 10, 13, 14));
} else if (Group::kWidth == 8) {
ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), ctrl_t::kEmpty,
ctrl_t::kDeleted, CtrlT(2), ctrl_t::kSentinel,
ctrl_t::kSentinel, CtrlT(1)};
EXPECT_THAT(Group{group}.MaskNonFull(), ElementsAre(0, 2, 3, 5, 6));
} else {
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
}
}
TEST(Group, MaskEmptyOrDeleted) {
if (Group::kWidth == 16) {
ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), ctrl_t::kEmpty, CtrlT(3),
ctrl_t::kDeleted, CtrlT(5), ctrl_t::kSentinel, CtrlT(7),
CtrlT(7), CtrlT(5), CtrlT(3), CtrlT(1),
CtrlT(1), CtrlT(1), CtrlT(1), CtrlT(1)};
EXPECT_THAT(Group{group}.MaskEmptyOrDeleted().LowestBitSet(), 0);
EXPECT_THAT(Group{group}.MaskEmptyOrDeleted().HighestBitSet(), 4);
} else if (Group::kWidth == 8) {
ctrl_t group[] = {ctrl_t::kEmpty, CtrlT(1), CtrlT(2),
ctrl_t::kDeleted, CtrlT(2), CtrlT(1),
ctrl_t::kSentinel, CtrlT(1)};
EXPECT_THAT(Group{group}.MaskEmptyOrDeleted().LowestBitSet(), 0);
EXPECT_THAT(Group{group}.MaskEmptyOrDeleted().HighestBitSet(), 3);
} else {
FAIL() << "No test coverage for Group::kWidth==" << Group::kWidth;
}
}
TEST(Batch, DropDeletes) {
constexpr size_t kCapacity = 63;
constexpr size_t kGroupWidth = container_internal::Group::kWidth;
std::vector<ctrl_t> ctrl(kCapacity + 1 + kGroupWidth);
ctrl[kCapacity] = ctrl_t::kSentinel;
std::vector<ctrl_t> pattern = {
ctrl_t::kEmpty, CtrlT(2), ctrl_t::kDeleted, CtrlT(2),
ctrl_t::kEmpty, CtrlT(1), ctrl_t::kDeleted};
for (size_t i = 0; i != kCapacity; ++i) {
ctrl[i] = pattern[i % pattern.size()];
if (i < kGroupWidth - 1)
ctrl[i + kCapacity + 1] = pattern[i % pattern.size()];
}
ConvertDeletedToEmptyAndFullToDeleted(ctrl.data(), kCapacity);
ASSERT_EQ(ctrl[kCapacity], ctrl_t::kSentinel);
for (size_t i = 0; i < kCapacity + kGroupWidth; ++i) {
ctrl_t expected = pattern[i % (kCapacity + 1) % pattern.size()];
if (i == kCapacity) expected = ctrl_t::kSentinel;
if (expected == ctrl_t::kDeleted) expected = ctrl_t::kEmpty;
if (IsFull(expected)) expected = ctrl_t::kDeleted;
EXPECT_EQ(ctrl[i], expected)
<< i << " " << static_cast<int>(pattern[i % pattern.size()]);
}
}
TEST(Group, CountLeadingEmptyOrDeleted) {
const std::vector<ctrl_t> empty_examples = {ctrl_t::kEmpty, ctrl_t::kDeleted};
const std::vector<ctrl_t> full_examples = {
CtrlT(0), CtrlT(1), CtrlT(2), CtrlT(3),
CtrlT(5), CtrlT(9), CtrlT(127), ctrl_t::kSentinel};
for (ctrl_t empty : empty_examples) {
std::vector<ctrl_t> e(Group::kWidth, empty);
EXPECT_EQ(Group::kWidth, Group{e.data()}.CountLeadingEmptyOrDeleted());
for (ctrl_t full : full_examples) {
for (size_t i = 0; i != Group::kWidth; ++i) {
std::vector<ctrl_t> f(Group::kWidth, empty);
f[i] = full;
EXPECT_EQ(i, Group{f.data()}.CountLeadingEmptyOrDeleted());
}
std::vector<ctrl_t> f(Group::kWidth, empty);
f[Group::kWidth * 2 / 3] = full;
f[Group::kWidth / 2] = full;
EXPECT_EQ(Group::kWidth / 2,
Group{f.data()}.CountLeadingEmptyOrDeleted());
}
}
}
template <class T, bool kTransferable = false, bool kSoo = false>
struct ValuePolicy {
using slot_type = T;
using key_type = T;
using init_type = T;
template <class Allocator, class... Args>
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
absl::allocator_traits<Allocator>::construct(*alloc, slot,
std::forward<Args>(args)...);
}
template <class Allocator>
static void destroy(Allocator* alloc, slot_type* slot) {
absl::allocator_traits<Allocator>::destroy(*alloc, slot);
}
template <class Allocator>
static std::integral_constant<bool, kTransferable> transfer(
Allocator* alloc, slot_type* new_slot, slot_type* old_slot) {
construct(alloc, new_slot, std::move(*old_slot));
destroy(alloc, old_slot);
return {};
}
static T& element(slot_type* slot) { return *slot; }
template <class F, class... Args>
static decltype(absl::container_internal::DecomposeValue(
std::declval<F>(), std::declval<Args>()...))
apply(F&& f, Args&&... args) {
return absl::container_internal::DecomposeValue(
std::forward<F>(f), std::forward<Args>(args)...);
}
template <class Hash>
static constexpr HashSlotFn get_hash_slot_fn() {
return nullptr;
}
static constexpr bool soo_enabled() { return kSoo; }
};
using IntPolicy = ValuePolicy<int64_t>;
using Uint8Policy = ValuePolicy<uint8_t>;
using TranferableIntPolicy = ValuePolicy<int64_t, true>;
template <int N>
class SizedValue {
public:
SizedValue(int64_t v) {
vals_[0] = v;
}
SizedValue() : SizedValue(0) {}
SizedValue(const SizedValue&) = default;
SizedValue& operator=(const SizedValue&) = default;
int64_t operator*() const {
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
return vals_[0];
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
}
explicit operator int() const { return **this; }
explicit operator int64_t() const { return **this; }
template <typename H>
friend H AbslHashValue(H h, SizedValue sv) {
return H::combine(std::move(h), *sv);
}
bool operator==(const SizedValue& rhs) const { return **this == *rhs; }
private:
int64_t vals_[N / sizeof(int64_t)];
};
template <int N, bool kSoo>
using SizedValuePolicy =
ValuePolicy<SizedValue<N>, true, kSoo>;
class StringPolicy {
template <class F, class K, class V,
class = typename std::enable_if<
std::is_convertible<const K&, absl::string_view>::value>::type>
decltype(std::declval<F>()(
std::declval<const absl::string_view&>(), std::piecewise_construct,
std::declval<std::tuple<K>>(),
std::declval<V>())) static apply_impl(F&& f,
std::pair<std::tuple<K>, V> p) {
const absl::string_view& key = std::get<0>(p.first);
return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
std::move(p.second));
}
public:
struct slot_type {
struct ctor {};
template <class... Ts>
explicit slot_type(ctor, Ts&&... ts) : pair(std::forward<Ts>(ts)...) {}
std::pair<std::string, std::string> pair;
};
using key_type = std::string;
using init_type = std::pair<std::string, std::string>;
template <class allocator_type, class... Args>
static void construct(allocator_type* alloc, slot_type* slot, Args... args) {
std::allocator_traits<allocator_type>::construct(
*alloc, slot, typename slot_type::ctor(), std::forward<Args>(args)...);
}
template <class allocator_type>
static void destroy(allocator_type* alloc, slot_type* slot) {
std::allocator_traits<allocator_type>::destroy(*alloc, slot);
}
template <class allocator_type>
static void transfer(allocator_type* alloc, slot_type* new_slot,
slot_type* old_slot) {
construct(alloc, new_slot, std::move(old_slot->pair));
destroy(alloc, old_slot);
}
static std::pair<std::string, std::string>& element(slot_type* slot) {
return slot->pair;
}
template <class F, class... Args>
static auto apply(F&& f, Args&&... args)
-> decltype(apply_impl(std::forward<F>(f),
PairArgs(std::forward<Args>(args)...))) {
return apply_impl(std::forward<F>(f),
PairArgs(std::forward<Args>(args)...));
}
template <class Hash>
static constexpr HashSlotFn get_hash_slot_fn() {
return nullptr;
}
};
struct StringHash : absl::Hash<absl::string_view> {
using is_transparent = void;
};
struct StringEq : std::equal_to<absl::string_view> {
using is_transparent = void;
};
struct StringTable
: raw_hash_set<StringPolicy, StringHash, StringEq, std::allocator<int>> {
using Base = typename StringTable::raw_hash_set;
StringTable() = default;
using Base::Base;
};
template <typename T, bool kTransferable = false, bool kSoo = false>
struct ValueTable
: raw_hash_set<ValuePolicy<T, kTransferable, kSoo>, hash_default_hash<T>,
std::equal_to<T>, std::allocator<T>> {
using Base = typename ValueTable::raw_hash_set;
using Base::Base;
};
using IntTable = ValueTable<int64_t>;
using Uint8Table = ValueTable<uint8_t>;
using TransferableIntTable = ValueTable<int64_t, true>;
constexpr size_t kNonSooSize = sizeof(HeapOrSoo) + 8;
static_assert(sizeof(SizedValue<kNonSooSize>) >= kNonSooSize, "too small");
using NonSooIntTable = ValueTable<SizedValue<kNonSooSize>>;
using SooIntTable = ValueTable<int64_t, true, true>;
template <typename T>
struct CustomAlloc : std::allocator<T> {
CustomAlloc() = default;
template <typename U>
explicit CustomAlloc(const CustomAlloc<U>& ) {}
template <class U>
struct rebind {
using other = CustomAlloc<U>;
};
};
struct CustomAllocIntTable
: raw_hash_set<IntPolicy, hash_default_hash<int64_t>,
std::equal_to<int64_t>, CustomAlloc<int64_t>> {
using Base = typename CustomAllocIntTable::raw_hash_set;
using Base::Base;
};
struct MinimumAlignmentUint8Table
: raw_hash_set<Uint8Policy, hash_default_hash<uint8_t>,
std::equal_to<uint8_t>, MinimumAlignmentAlloc<uint8_t>> {
using Base = typename MinimumAlignmentUint8Table::raw_hash_set;
using Base::Base;
};
template <typename T>
struct FreezableAlloc : std::allocator<T> {
explicit FreezableAlloc(bool* f) : frozen(f) {}
template <typename U>
explicit FreezableAlloc(const FreezableAlloc<U>& other)
: frozen(other.frozen) {}
template <class U>
struct rebind {
using other = FreezableAlloc<U>;
};
T* allocate(size_t n) {
EXPECT_FALSE(*frozen);
return std::allocator<T>::allocate(n);
}
bool* frozen;
};
template <int N>
struct FreezableSizedValueSooTable
: raw_hash_set<SizedValuePolicy<N, true>,
container_internal::hash_default_hash<SizedValue<N>>,
std::equal_to<SizedValue<N>>,
FreezableAlloc<SizedValue<N>>> {
using Base = typename FreezableSizedValueSooTable::raw_hash_set;
using Base::Base;
};
struct BadFastHash {
template <class T>
size_t operator()(const T&) const {
return 0;
}
};
struct BadHashFreezableIntTable
: raw_hash_set<IntPolicy, BadFastHash, std::equal_to<int64_t>,
FreezableAlloc<int64_t>> {
using Base = typename BadHashFreezableIntTable::raw_hash_set;
using Base::Base;
};
struct BadTable : raw_hash_set<IntPolicy, BadFastHash, std::equal_to<int>,
std::allocator<int>> {
using Base = typename BadTable::raw_hash_set;
BadTable() = default;
using Base::Base;
};
TEST(Table, EmptyFunctorOptimization) {
static_assert(std::is_empty<std::equal_to<absl::string_view>>::value, "");
static_assert(std::is_empty<std::allocator<int>>::value, "");
struct MockTable {
void* ctrl;
void* slots;
size_t size;
size_t capacity;
};
struct StatelessHash {
size_t operator()(absl::string_view) const { return 0; }
};
struct StatefulHash : StatelessHash {
size_t dummy;
};
struct GenerationData {
size_t reserved_growth;
size_t reservation_size;
GenerationType* generation;
};
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunreachable-code"
#endif
constexpr size_t mock_size = sizeof(MockTable);
constexpr size_t generation_size =
SwisstableGenerationsEnabled() ? sizeof(GenerationData) : 0;
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
EXPECT_EQ(
mock_size + generation_size,
sizeof(
raw_hash_set<StringPolicy, StatelessHash,
std::equal_to<absl::string_view>, std::allocator<int>>));
EXPECT_EQ(
mock_size + sizeof(StatefulHash) + generation_size,
sizeof(
raw_hash_set<StringPolicy, StatefulHash,
std::equal_to<absl::string_view>, std::allocator<int>>));
}
template <class TableType>
class SooTest : public testing::Test {};
using SooTableTypes = ::testing::Types<SooIntTable, NonSooIntTable>;
TYPED_TEST_SUITE(SooTest, SooTableTypes);
TYPED_TEST(SooTest, Empty) {
TypeParam t;
EXPECT_EQ(0, t.size());
EXPECT_TRUE(t.empty());
}
TYPED_TEST(SooTest, LookupEmpty) {
TypeParam t;
auto it = t.find(0);
EXPECT_TRUE(it == t.end());
}
TYPED_TEST(SooTest, Insert1) {
TypeParam t;
EXPECT_TRUE(t.find(0) == t.end());
auto res = t.emplace(0);
EXPECT_TRUE(res.second);
EXPECT_THAT(*res.first, 0);
EXPECT_EQ(1, t.size());
EXPECT_THAT(*t.find(0), 0);
}
TYPED_TEST(SooTest, Insert2) {
TypeParam t;
EXPECT_TRUE(t.find(0) == t.end());
auto res = t.emplace(0);
EXPECT_TRUE(res.second);
EXPECT_THAT(*res.first, 0);
EXPECT_EQ(1, t.size());
EXPECT_TRUE(t.find(1) == t.end());
res = t.emplace(1);
EXPECT_TRUE(res.second);
EXPECT_THAT(*res.first, 1);
EXPECT_EQ(2, t.size());
EXPECT_THAT(*t.find(0), 0);
EXPECT_THAT(*t.find(1), 1);
}
TEST(Table, InsertCollision) {
BadTable t;
EXPECT_TRUE(t.find(1) == t.end());
auto res = t.emplace(1);
EXPECT_TRUE(res.second);
EXPECT_THAT(*res.first, 1);
EXPECT_EQ(1, t.size());
EXPECT_TRUE(t.find(2) == t.end());
res = t.emplace(2);
EXPECT_THAT(*res.first, 2);
EXPECT_TRUE(res.second);
EXPECT_EQ(2, t.size());
EXPECT_THAT(*t.find(1), 1);
EXPECT_THAT(*t.find(2), 2);
}
TEST(Table, InsertCollisionAndFindAfterDelete) {
BadTable t;
constexpr size_t kNumInserts = Group::kWidth * 2 + 5;
for (size_t i = 0; i < kNumInserts; ++i) {
auto res = t.emplace(i);
EXPECT_TRUE(res.second);
EXPECT_THAT(*res.first, i);
EXPECT_EQ(i + 1, t.size());
}
for (size_t i = 0; i < kNumInserts; ++i) {
EXPECT_EQ(1, t.erase(i)) << i;
for (size_t j = i + 1; j < kNumInserts; ++j) {
EXPECT_THAT(*t.find(j), j);
auto res = t.emplace(j);
EXPECT_FALSE(res.second) << i << " " << j;
EXPECT_THAT(*res.first, j);
EXPECT_EQ(kNumInserts - i - 1, t.size());
}
}
EXPECT_TRUE(t.empty());
}
TYPED_TEST(SooTest, EraseInSmallTables) {
for (int64_t size = 0; size < 64; ++size) {
TypeParam t;
for (int64_t i = 0; i < size; ++i) {
t.insert(i);
}
for (int64_t i = 0; i < size; ++i) {
t.erase(i);
EXPECT_EQ(t.size(), size - i - 1);
for (int64_t j = i + 1; j < size; ++j) {
EXPECT_THAT(*t.find(j), j);
}
}
EXPECT_TRUE(t.empty());
}
}
TYPED_TEST(SooTest, InsertWithinCapacity) {
TypeParam t;
t.reserve(10);
const size_t original_capacity = t.capacity();
const auto addr = [&](int i) {
return reinterpret_cast<uintptr_t>(&*t.find(i));
};
t.insert(0);
EXPECT_THAT(t.capacity(), original_capacity);
const uintptr_t original_addr_0 = addr(0);
t.insert(1);
EXPECT_THAT(t.capacity(), original_capacity);
EXPECT_THAT(addr(0), original_addr_0);
for (int i = 0; i < 100; ++i) {
t.insert(i % 10);
}
EXPECT_THAT(t.capacity(), original_capacity);
EXPECT_THAT(addr(0), original_addr_0);
std::vector<int> dup_range;
for (int i = 0; i < 100; ++i) {
dup_range.push_back(i % 10);
}
t.insert(dup_range.begin(), dup_range.end());
EXPECT_THAT(t.capacity(), original_capacity);
EXPECT_THAT(addr(0), original_addr_0);
}
template <class TableType>
class SmallTableResizeTest : public testing::Test {};
using SmallTableTypes =
::testing::Types<IntTable, TransferableIntTable, SooIntTable>;
TYPED_TEST_SUITE(SmallTableResizeTest, SmallTableTypes);
TYPED_TEST(SmallTableResizeTest, InsertIntoSmallTable) {
TypeParam t;
for (int i = 0; i < 32; ++i) {
t.insert(i);
ASSERT_EQ(t.size(), i + 1);
for (int j = 0; j < i + 1; ++j) {
EXPECT_TRUE(t.find(j) != t.end());
EXPECT_EQ(*t.find(j), j);
}
}
}
TYPED_TEST(SmallTableResizeTest, ResizeGrowSmallTables) {
for (size_t source_size = 0; source_size < 32; ++source_size) {
for (size_t target_size = source_size; target_size < 32; ++target_size) {
for (bool rehash : {false, true}) {
TypeParam t;
for (size_t i = 0; i < source_size; ++i) {
t.insert(static_cast<int>(i));
}
if (rehash) {
t.rehash(target_size);
} else {
t.reserve(target_size);
}
for (size_t i = 0; i < source_size; ++i) {
EXPECT_TRUE(t.find(static_cast<int>(i)) != t.end());
EXPECT_EQ(*t.find(static_cast<int>(i)), static_cast<int>(i));
}
}
}
}
}
TYPED_TEST(SmallTableResizeTest, ResizeReduceSmallTable | 2,518 |
#ifndef ABSL_CONTAINER_INTERNAL_HASHTABLEZ_SAMPLER_H_
#define ABSL_CONTAINER_INTERNAL_HASHTABLEZ_SAMPLER_H_
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <memory>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/per_thread_tls.h"
#include "absl/base/optimization.h"
#include "absl/base/thread_annotations.h"
#include "absl/profiling/internal/sample_recorder.h"
#include "absl/synchronization/mutex.h"
#include "absl/time/time.h"
#include "absl/utility/utility.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
struct HashtablezInfo : public profiling_internal::Sample<HashtablezInfo> {
HashtablezInfo();
~HashtablezInfo();
HashtablezInfo(const HashtablezInfo&) = delete;
HashtablezInfo& operator=(const HashtablezInfo&) = delete;
void PrepareForSampling(int64_t stride, size_t inline_element_size_value,
size_t key_size, size_t value_size,
uint16_t soo_capacity_value)
ABSL_EXCLUSIVE_LOCKS_REQUIRED(init_mu);
std::atomic<size_t> capacity;
std::atomic<size_t> size;
std::atomic<size_t> num_erases;
std::atomic<size_t> num_rehashes;
std::atomic<size_t> max_probe_length;
std::atomic<size_t> total_probe_length;
std::atomic<size_t> hashes_bitwise_or;
std::atomic<size_t> hashes_bitwise_and;
std::atomic<size_t> hashes_bitwise_xor;
std::atomic<size_t> max_reserve;
static constexpr int kMaxStackDepth = 64;
absl::Time create_time;
int32_t depth;
uint16_t soo_capacity;
void* stack[kMaxStackDepth];
size_t inline_element_size;
size_t key_size;
size_t value_size;
};
void RecordRehashSlow(HashtablezInfo* info, size_t total_probe_length);
void RecordReservationSlow(HashtablezInfo* info, size_t target_capacity);
void RecordClearedReservationSlow(HashtablezInfo* info);
void RecordStorageChangedSlow(HashtablezInfo* info, size_t size,
size_t capacity);
void RecordInsertSlow(HashtablezInfo* info, size_t hash,
size_t distance_from_desired);
void RecordEraseSlow(HashtablezInfo* info);
struct SamplingState {
int64_t next_sample;
int64_t sample_stride;
};
HashtablezInfo* SampleSlow(SamplingState& next_sample,
size_t inline_element_size, size_t key_size,
size_t value_size, uint16_t soo_capacity);
void UnsampleSlow(HashtablezInfo* info);
#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE)
#error ABSL_INTERNAL_HASHTABLEZ_SAMPLE cannot be directly set
#endif
#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE)
class HashtablezInfoHandle {
public:
explicit HashtablezInfoHandle() : info_(nullptr) {}
explicit HashtablezInfoHandle(HashtablezInfo* info) : info_(info) {}
void Unregister() {
if (ABSL_PREDICT_TRUE(info_ == nullptr)) return;
UnsampleSlow(info_);
}
inline bool IsSampled() const { return ABSL_PREDICT_FALSE(info_ != nullptr); }
inline void RecordStorageChanged(size_t size, size_t capacity) {
if (ABSL_PREDICT_TRUE(info_ == nullptr)) return;
RecordStorageChangedSlow(info_, size, capacity);
}
inline void RecordRehash(size_t total_probe_length) {
if (ABSL_PREDICT_TRUE(info_ == nullptr)) return;
RecordRehashSlow(info_, total_probe_length);
}
inline void RecordReservation(size_t target_capacity) {
if (ABSL_PREDICT_TRUE(info_ == nullptr)) return;
RecordReservationSlow(info_, target_capacity);
}
inline void RecordClearedReservation() {
if (ABSL_PREDICT_TRUE(info_ == nullptr)) return;
RecordClearedReservationSlow(info_);
}
inline void RecordInsert(size_t hash, size_t distance_from_desired) {
if (ABSL_PREDICT_TRUE(info_ == nullptr)) return;
RecordInsertSlow(info_, hash, distance_from_desired);
}
inline void RecordErase() {
if (ABSL_PREDICT_TRUE(info_ == nullptr)) return;
RecordEraseSlow(info_);
}
friend inline void swap(HashtablezInfoHandle& lhs,
HashtablezInfoHandle& rhs) {
std::swap(lhs.info_, rhs.info_);
}
private:
friend class HashtablezInfoHandlePeer;
HashtablezInfo* info_;
};
#else
class HashtablezInfoHandle {
public:
explicit HashtablezInfoHandle() = default;
explicit HashtablezInfoHandle(std::nullptr_t) {}
inline void Unregister() {}
inline bool IsSampled() const { return false; }
inline void RecordStorageChanged(size_t , size_t ) {}
inline void RecordRehash(size_t ) {}
inline void RecordReservation(size_t ) {}
inline void RecordClearedReservation() {}
inline void RecordInsert(size_t , size_t ) {}
inline void RecordErase() {}
friend inline void swap(HashtablezInfoHandle& ,
HashtablezInfoHandle& ) {}
};
#endif
#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE)
extern ABSL_PER_THREAD_TLS_KEYWORD SamplingState global_next_sample;
#endif
inline HashtablezInfoHandle Sample(
ABSL_ATTRIBUTE_UNUSED size_t inline_element_size,
ABSL_ATTRIBUTE_UNUSED size_t key_size,
ABSL_ATTRIBUTE_UNUSED size_t value_size,
ABSL_ATTRIBUTE_UNUSED uint16_t soo_capacity) {
#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE)
if (ABSL_PREDICT_TRUE(--global_next_sample.next_sample > 0)) {
return HashtablezInfoHandle(nullptr);
}
return HashtablezInfoHandle(SampleSlow(global_next_sample,
inline_element_size, key_size,
value_size, soo_capacity));
#else
return HashtablezInfoHandle(nullptr);
#endif
}
using HashtablezSampler =
::absl::profiling_internal::SampleRecorder<HashtablezInfo>;
HashtablezSampler& GlobalHashtablezSampler();
using HashtablezConfigListener = void (*)();
void SetHashtablezConfigListener(HashtablezConfigListener l);
bool IsHashtablezEnabled();
void SetHashtablezEnabled(bool enabled);
void SetHashtablezEnabledInternal(bool enabled);
int32_t GetHashtablezSampleParameter();
void SetHashtablezSampleParameter(int32_t rate);
void SetHashtablezSampleParameterInternal(int32_t rate);
size_t GetHashtablezMaxSamples();
void SetHashtablezMaxSamples(size_t max);
void SetHashtablezMaxSamplesInternal(size_t max);
extern "C" bool ABSL_INTERNAL_C_SYMBOL(AbslContainerInternalSampleEverything)();
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/container/internal/hashtablez_sampler.h"
#include <algorithm>
#include <atomic>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <limits>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/per_thread_tls.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/base/no_destructor.h"
#include "absl/base/optimization.h"
#include "absl/debugging/stacktrace.h"
#include "absl/memory/memory.h"
#include "absl/profiling/internal/exponential_biased.h"
#include "absl/profiling/internal/sample_recorder.h"
#include "absl/synchronization/mutex.h"
#include "absl/time/clock.h"
#include "absl/utility/utility.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr int HashtablezInfo::kMaxStackDepth;
#endif
namespace {
ABSL_CONST_INIT std::atomic<bool> g_hashtablez_enabled{
false
};
ABSL_CONST_INIT std::atomic<int32_t> g_hashtablez_sample_parameter{1 << 10};
std::atomic<HashtablezConfigListener> g_hashtablez_config_listener{nullptr};
#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE)
ABSL_PER_THREAD_TLS_KEYWORD absl::profiling_internal::ExponentialBiased
g_exponential_biased_generator;
#endif
void TriggerHashtablezConfigListener() {
auto* listener = g_hashtablez_config_listener.load(std::memory_order_acquire);
if (listener != nullptr) listener();
}
}
#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE)
ABSL_PER_THREAD_TLS_KEYWORD SamplingState global_next_sample = {0, 0};
#endif
HashtablezSampler& GlobalHashtablezSampler() {
static absl::NoDestructor<HashtablezSampler> sampler;
return *sampler;
}
HashtablezInfo::HashtablezInfo() = default;
HashtablezInfo::~HashtablezInfo() = default;
void HashtablezInfo::PrepareForSampling(int64_t stride,
size_t inline_element_size_value,
size_t key_size_value,
size_t value_size_value,
uint16_t soo_capacity_value) {
capacity.store(0, std::memory_order_relaxed);
size.store(0, std::memory_order_relaxed);
num_erases.store(0, std::memory_order_relaxed);
num_rehashes.store(0, std::memory_order_relaxed);
max_probe_length.store(0, std::memory_order_relaxed);
total_probe_length.store(0, std::memory_order_relaxed);
hashes_bitwise_or.store(0, std::memory_order_relaxed);
hashes_bitwise_and.store(~size_t{}, std::memory_order_relaxed);
hashes_bitwise_xor.store(0, std::memory_order_relaxed);
max_reserve.store(0, std::memory_order_relaxed);
create_time = absl::Now();
weight = stride;
depth = absl::GetStackTrace(stack, HashtablezInfo::kMaxStackDepth,
0);
inline_element_size = inline_element_size_value;
key_size = key_size_value;
value_size = value_size_value;
soo_capacity = soo_capacity_value;
}
static bool ShouldForceSampling() {
enum ForceState {
kDontForce,
kForce,
kUninitialized
};
ABSL_CONST_INIT static std::atomic<ForceState> global_state{
kUninitialized};
ForceState state = global_state.load(std::memory_order_relaxed);
if (ABSL_PREDICT_TRUE(state == kDontForce)) return false;
if (state == kUninitialized) {
state = ABSL_INTERNAL_C_SYMBOL(AbslContainerInternalSampleEverything)()
? kForce
: kDontForce;
global_state.store(state, std::memory_order_relaxed);
}
return state == kForce;
}
HashtablezInfo* SampleSlow(SamplingState& next_sample,
size_t inline_element_size, size_t key_size,
size_t value_size, uint16_t soo_capacity) {
if (ABSL_PREDICT_FALSE(ShouldForceSampling())) {
next_sample.next_sample = 1;
const int64_t old_stride = exchange(next_sample.sample_stride, 1);
HashtablezInfo* result = GlobalHashtablezSampler().Register(
old_stride, inline_element_size, key_size, value_size, soo_capacity);
return result;
}
#if !defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE)
next_sample = {
std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max(),
};
return nullptr;
#else
bool first = next_sample.next_sample < 0;
const int64_t next_stride = g_exponential_biased_generator.GetStride(
g_hashtablez_sample_parameter.load(std::memory_order_relaxed));
next_sample.next_sample = next_stride;
const int64_t old_stride = exchange(next_sample.sample_stride, next_stride);
ABSL_ASSERT(next_stride >= 1);
if (!g_hashtablez_enabled.load(std::memory_order_relaxed)) return nullptr;
if (first) {
if (ABSL_PREDICT_TRUE(--next_sample.next_sample > 0)) return nullptr;
return SampleSlow(next_sample, inline_element_size, key_size, value_size,
soo_capacity);
}
return GlobalHashtablezSampler().Register(old_stride, inline_element_size,
key_size, value_size, soo_capacity);
#endif
}
void UnsampleSlow(HashtablezInfo* info) {
GlobalHashtablezSampler().Unregister(info);
}
void RecordRehashSlow(HashtablezInfo* info, size_t total_probe_length) {
#ifdef ABSL_INTERNAL_HAVE_SSE2
total_probe_length /= 16;
#else
total_probe_length /= 8;
#endif
info->total_probe_length.store(total_probe_length, std::memory_order_relaxed);
info->num_erases.store(0, std::memory_order_relaxed);
info->num_rehashes.store(
1 + info->num_rehashes.load(std::memory_order_relaxed),
std::memory_order_relaxed);
}
void RecordReservationSlow(HashtablezInfo* info, size_t target_capacity) {
info->max_reserve.store(
(std::max)(info->max_reserve.load(std::memory_order_relaxed),
target_capacity),
std::memory_order_relaxed);
}
void RecordClearedReservationSlow(HashtablezInfo* info) {
info->max_reserve.store(0, std::memory_order_relaxed);
}
void RecordStorageChangedSlow(HashtablezInfo* info, size_t size,
size_t capacity) {
info->size.store(size, std::memory_order_relaxed);
info->capacity.store(capacity, std::memory_order_relaxed);
if (size == 0) {
info->total_probe_length.store(0, std::memory_order_relaxed);
info->num_erases.store(0, std::memory_order_relaxed);
}
}
void RecordInsertSlow(HashtablezInfo* info, size_t hash,
size_t distance_from_desired) {
size_t probe_length = distance_from_desired;
#ifdef ABSL_INTERNAL_HAVE_SSE2
probe_length /= 16;
#else
probe_length /= 8;
#endif
info->hashes_bitwise_and.fetch_and(hash, std::memory_order_relaxed);
info->hashes_bitwise_or.fetch_or(hash, std::memory_order_relaxed);
info->hashes_bitwise_xor.fetch_xor(hash, std::memory_order_relaxed);
info->max_probe_length.store(
std::max(info->max_probe_length.load(std::memory_order_relaxed),
probe_length),
std::memory_order_relaxed);
info->total_probe_length.fetch_add(probe_length, std::memory_order_relaxed);
info->size.fetch_add(1, std::memory_order_relaxed);
}
void RecordEraseSlow(HashtablezInfo* info) {
info->size.fetch_sub(1, std::memory_order_relaxed);
info->num_erases.store(1 + info->num_erases.load(std::memory_order_relaxed),
std::memory_order_relaxed);
}
void SetHashtablezConfigListener(HashtablezConfigListener l) {
g_hashtablez_config_listener.store(l, std::memory_order_release);
}
bool IsHashtablezEnabled() {
return g_hashtablez_enabled.load(std::memory_order_acquire);
}
void SetHashtablezEnabled(bool enabled) {
SetHashtablezEnabledInternal(enabled);
TriggerHashtablezConfigListener();
}
void SetHashtablezEnabledInternal(bool enabled) {
g_hashtablez_enabled.store(enabled, std::memory_order_release);
}
int32_t GetHashtablezSampleParameter() {
return g_hashtablez_sample_parameter.load(std::memory_order_acquire);
}
void SetHashtablezSampleParameter(int32_t rate) {
SetHashtablezSampleParameterInternal(rate);
TriggerHashtablezConfigListener();
}
void SetHashtablezSampleParameterInternal(int32_t rate) {
if (rate > 0) {
g_hashtablez_sample_parameter.store(rate, std::memory_order_release);
} else {
ABSL_RAW_LOG(ERROR, "Invalid hashtablez sample rate: %lld",
static_cast<long long>(rate));
}
}
size_t GetHashtablezMaxSamples() {
return GlobalHashtablezSampler().GetMaxSamples();
}
void SetHashtablezMaxSamples(size_t max) {
SetHashtablezMaxSamplesInternal(max);
TriggerHashtablezConfigListener();
}
void SetHashtablezMaxSamplesInternal(size_t max) {
if (max > 0) {
GlobalHashtablezSampler().SetMaxSamples(max);
} else {
ABSL_RAW_LOG(ERROR, "Invalid hashtablez max samples: 0");
}
}
}
ABSL_NAMESPACE_END
} | #include "absl/container/internal/hashtablez_sampler.h"
#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <random>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/profiling/internal/sample_recorder.h"
#include "absl/synchronization/blocking_counter.h"
#include "absl/synchronization/internal/thread_pool.h"
#include "absl/synchronization/mutex.h"
#include "absl/synchronization/notification.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#ifdef ABSL_INTERNAL_HAVE_SSE2
constexpr int kProbeLength = 16;
#else
constexpr int kProbeLength = 8;
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE)
class HashtablezInfoHandlePeer {
public:
static HashtablezInfo* GetInfo(HashtablezInfoHandle* h) { return h->info_; }
};
#else
class HashtablezInfoHandlePeer {
public:
static HashtablezInfo* GetInfo(HashtablezInfoHandle*) { return nullptr; }
};
#endif
namespace {
using ::absl::synchronization_internal::ThreadPool;
using ::testing::IsEmpty;
using ::testing::UnorderedElementsAre;
std::vector<size_t> GetSizes(HashtablezSampler* s) {
std::vector<size_t> res;
s->Iterate([&](const HashtablezInfo& info) {
res.push_back(info.size.load(std::memory_order_acquire));
});
return res;
}
HashtablezInfo* Register(HashtablezSampler* s, size_t size) {
const int64_t test_stride = 123;
const size_t test_element_size = 17;
const size_t test_key_size = 3;
const size_t test_value_size = 5;
auto* info =
s->Register(test_stride, test_element_size, test_key_size,
test_value_size, 0);
assert(info != nullptr);
info->size.store(size);
return info;
}
TEST(HashtablezInfoTest, PrepareForSampling) {
absl::Time test_start = absl::Now();
const int64_t test_stride = 123;
const size_t test_element_size = 17;
const size_t test_key_size = 15;
const size_t test_value_size = 13;
HashtablezInfo info;
absl::MutexLock l(&info.init_mu);
info.PrepareForSampling(test_stride, test_element_size,
test_key_size,
test_value_size,
1);
EXPECT_EQ(info.capacity.load(), 0);
EXPECT_EQ(info.size.load(), 0);
EXPECT_EQ(info.num_erases.load(), 0);
EXPECT_EQ(info.num_rehashes.load(), 0);
EXPECT_EQ(info.max_probe_length.load(), 0);
EXPECT_EQ(info.total_probe_length.load(), 0);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0);
EXPECT_EQ(info.hashes_bitwise_and.load(), ~size_t{});
EXPECT_EQ(info.hashes_bitwise_xor.load(), 0);
EXPECT_EQ(info.max_reserve.load(), 0);
EXPECT_GE(info.create_time, test_start);
EXPECT_EQ(info.weight, test_stride);
EXPECT_EQ(info.inline_element_size, test_element_size);
EXPECT_EQ(info.key_size, test_key_size);
EXPECT_EQ(info.value_size, test_value_size);
EXPECT_EQ(info.soo_capacity, 1);
info.capacity.store(1, std::memory_order_relaxed);
info.size.store(1, std::memory_order_relaxed);
info.num_erases.store(1, std::memory_order_relaxed);
info.max_probe_length.store(1, std::memory_order_relaxed);
info.total_probe_length.store(1, std::memory_order_relaxed);
info.hashes_bitwise_or.store(1, std::memory_order_relaxed);
info.hashes_bitwise_and.store(1, std::memory_order_relaxed);
info.hashes_bitwise_xor.store(1, std::memory_order_relaxed);
info.max_reserve.store(1, std::memory_order_relaxed);
info.create_time = test_start - absl::Hours(20);
info.PrepareForSampling(test_stride * 2, test_element_size,
test_key_size,
test_value_size,
0);
EXPECT_EQ(info.capacity.load(), 0);
EXPECT_EQ(info.size.load(), 0);
EXPECT_EQ(info.num_erases.load(), 0);
EXPECT_EQ(info.num_rehashes.load(), 0);
EXPECT_EQ(info.max_probe_length.load(), 0);
EXPECT_EQ(info.total_probe_length.load(), 0);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0);
EXPECT_EQ(info.hashes_bitwise_and.load(), ~size_t{});
EXPECT_EQ(info.hashes_bitwise_xor.load(), 0);
EXPECT_EQ(info.max_reserve.load(), 0);
EXPECT_EQ(info.weight, 2 * test_stride);
EXPECT_EQ(info.inline_element_size, test_element_size);
EXPECT_EQ(info.key_size, test_key_size);
EXPECT_EQ(info.value_size, test_value_size);
EXPECT_GE(info.create_time, test_start);
EXPECT_EQ(info.soo_capacity, 0);
}
TEST(HashtablezInfoTest, RecordStorageChanged) {
HashtablezInfo info;
absl::MutexLock l(&info.init_mu);
const int64_t test_stride = 21;
const size_t test_element_size = 19;
const size_t test_key_size = 17;
const size_t test_value_size = 15;
info.PrepareForSampling(test_stride, test_element_size,
test_key_size,
test_value_size,
0);
RecordStorageChangedSlow(&info, 17, 47);
EXPECT_EQ(info.size.load(), 17);
EXPECT_EQ(info.capacity.load(), 47);
RecordStorageChangedSlow(&info, 20, 20);
EXPECT_EQ(info.size.load(), 20);
EXPECT_EQ(info.capacity.load(), 20);
}
TEST(HashtablezInfoTest, RecordInsert) {
HashtablezInfo info;
absl::MutexLock l(&info.init_mu);
const int64_t test_stride = 25;
const size_t test_element_size = 23;
const size_t test_key_size = 21;
const size_t test_value_size = 19;
info.PrepareForSampling(test_stride, test_element_size,
test_key_size,
test_value_size,
0);
EXPECT_EQ(info.max_probe_length.load(), 0);
RecordInsertSlow(&info, 0x0000FF00, 6 * kProbeLength);
EXPECT_EQ(info.max_probe_length.load(), 6);
EXPECT_EQ(info.hashes_bitwise_and.load(), 0x0000FF00);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0x0000FF00);
EXPECT_EQ(info.hashes_bitwise_xor.load(), 0x0000FF00);
RecordInsertSlow(&info, 0x000FF000, 4 * kProbeLength);
EXPECT_EQ(info.max_probe_length.load(), 6);
EXPECT_EQ(info.hashes_bitwise_and.load(), 0x0000F000);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0x000FFF00);
EXPECT_EQ(info.hashes_bitwise_xor.load(), 0x000F0F00);
RecordInsertSlow(&info, 0x00FF0000, 12 * kProbeLength);
EXPECT_EQ(info.max_probe_length.load(), 12);
EXPECT_EQ(info.hashes_bitwise_and.load(), 0x00000000);
EXPECT_EQ(info.hashes_bitwise_or.load(), 0x00FFFF00);
EXPECT_EQ(info.hashes_bitwise_xor.load(), 0x00F00F00);
}
TEST(HashtablezInfoTest, RecordErase) {
const int64_t test_stride = 31;
const size_t test_element_size = 29;
const size_t test_key_size = 27;
const size_t test_value_size = 25;
HashtablezInfo info;
absl::MutexLock l(&info.init_mu);
info.PrepareForSampling(test_stride, test_element_size,
test_key_size,
test_value_size,
1);
EXPECT_EQ(info.num_erases.load(), 0);
EXPECT_EQ(info.size.load(), 0);
RecordInsertSlow(&info, 0x0000FF00, 6 * kProbeLength);
EXPECT_EQ(info.size.load(), 1);
RecordEraseSlow(&info);
EXPECT_EQ(info.size.load(), 0);
EXPECT_EQ(info.num_erases.load(), 1);
EXPECT_EQ(info.inline_element_size, test_element_size);
EXPECT_EQ(info.key_size, test_key_size);
EXPECT_EQ(info.value_size, test_value_size);
EXPECT_EQ(info.soo_capacity, 1);
}
TEST(HashtablezInfoTest, RecordRehash) {
const int64_t test_stride = 33;
const size_t test_element_size = 31;
const size_t test_key_size = 29;
const size_t test_value_size = 27;
HashtablezInfo info;
absl::MutexLock l(&info.init_mu);
info.PrepareForSampling(test_stride, test_element_size,
test_key_size,
test_value_size,
0);
RecordInsertSlow(&info, 0x1, 0);
RecordInsertSlow(&info, 0x2, kProbeLength);
RecordInsertSlow(&info, 0x4, kProbeLength);
RecordInsertSlow(&info, 0x8, 2 * kProbeLength);
EXPECT_EQ(info.size.load(), 4);
EXPECT_EQ(info.total_probe_length.load(), 4);
RecordEraseSlow(&info);
RecordEraseSlow(&info);
EXPECT_EQ(info.size.load(), 2);
EXPECT_EQ(info.total_probe_length.load(), 4);
EXPECT_EQ(info.num_erases.load(), 2);
RecordRehashSlow(&info, 3 * kProbeLength);
EXPECT_EQ(info.size.load(), 2);
EXPECT_EQ(info.total_probe_length.load(), 3);
EXPECT_EQ(info.num_erases.load(), 0);
EXPECT_EQ(info.num_rehashes.load(), 1);
EXPECT_EQ(info.inline_element_size, test_element_size);
EXPECT_EQ(info.key_size, test_key_size);
EXPECT_EQ(info.value_size, test_value_size);
EXPECT_EQ(info.soo_capacity, 0);
}
TEST(HashtablezInfoTest, RecordReservation) {
HashtablezInfo info;
absl::MutexLock l(&info.init_mu);
const int64_t test_stride = 35;
const size_t test_element_size = 33;
const size_t test_key_size = 31;
const size_t test_value_size = 29;
info.PrepareForSampling(test_stride, test_element_size,
test_key_size,
test_value_size,
0);
RecordReservationSlow(&info, 3);
EXPECT_EQ(info.max_reserve.load(), 3);
RecordReservationSlow(&info, 2);
EXPECT_EQ(info.max_reserve.load(), 3);
RecordReservationSlow(&info, 10);
EXPECT_EQ(info.max_reserve.load(), 10);
}
#if defined(ABSL_INTERNAL_HASHTABLEZ_SAMPLE)
TEST(HashtablezSamplerTest, SmallSampleParameter) {
const size_t test_element_size = 31;
const size_t test_key_size = 33;
const size_t test_value_size = 35;
SetHashtablezEnabled(true);
SetHashtablezSampleParameter(100);
for (int i = 0; i < 1000; ++i) {
SamplingState next_sample = {0, 0};
HashtablezInfo* sample =
SampleSlow(next_sample, test_element_size,
test_key_size, test_value_size,
0);
EXPECT_GT(next_sample.next_sample, 0);
EXPECT_EQ(next_sample.next_sample, next_sample.sample_stride);
EXPECT_NE(sample, nullptr);
UnsampleSlow(sample);
}
}
TEST(HashtablezSamplerTest, LargeSampleParameter) {
const size_t test_element_size = 31;
const size_t test_key_size = 33;
const size_t test_value_size = 35;
SetHashtablezEnabled(true);
SetHashtablezSampleParameter(std::numeric_limits<int32_t>::max());
for (int i = 0; i < 1000; ++i) {
SamplingState next_sample = {0, 0};
HashtablezInfo* sample =
SampleSlow(next_sample, test_element_size,
test_key_size, test_value_size,
0);
EXPECT_GT(next_sample.next_sample, 0);
EXPECT_EQ(next_sample.next_sample, next_sample.sample_stride);
EXPECT_NE(sample, nullptr);
UnsampleSlow(sample);
}
}
TEST(HashtablezSamplerTest, Sample) {
const size_t test_element_size = 31;
const size_t test_key_size = 33;
const size_t test_value_size = 35;
SetHashtablezEnabled(true);
SetHashtablezSampleParameter(100);
int64_t num_sampled = 0;
int64_t total = 0;
double sample_rate = 0.0;
for (int i = 0; i < 1000000; ++i) {
HashtablezInfoHandle h =
Sample(test_element_size,
test_key_size, test_value_size,
0);
++total;
if (h.IsSampled()) {
++num_sampled;
}
sample_rate = static_cast<double>(num_sampled) / total;
if (0.005 < sample_rate && sample_rate < 0.015) break;
}
EXPECT_NEAR(sample_rate, 0.01, 0.005);
}
TEST(HashtablezSamplerTest, Handle) {
auto& sampler = GlobalHashtablezSampler();
const int64_t test_stride = 41;
const size_t test_element_size = 39;
const size_t test_key_size = 37;
const size_t test_value_size = 35;
HashtablezInfoHandle h(sampler.Register(test_stride, test_element_size,
test_key_size,
test_value_size,
0));
auto* info = HashtablezInfoHandlePeer::GetInfo(&h);
info->hashes_bitwise_and.store(0x12345678, std::memory_order_relaxed);
bool found = false;
sampler.Iterate([&](const HashtablezInfo& h) {
if (&h == info) {
EXPECT_EQ(h.weight, test_stride);
EXPECT_EQ(h.hashes_bitwise_and.load(), 0x12345678);
found = true;
}
});
EXPECT_TRUE(found);
h.Unregister();
h = HashtablezInfoHandle();
found = false;
sampler.Iterate([&](const HashtablezInfo& h) {
if (&h == info) {
if (h.hashes_bitwise_and.load() == 0x12345678) {
found = true;
}
}
});
EXPECT_FALSE(found);
}
#endif
TEST(HashtablezSamplerTest, Registration) {
HashtablezSampler sampler;
auto* info1 = Register(&sampler, 1);
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(1));
auto* info2 = Register(&sampler, 2);
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(1, 2));
info1->size.store(3);
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(3, 2));
sampler.Unregister(info1);
sampler.Unregister(info2);
}
TEST(HashtablezSamplerTest, Unregistration) {
HashtablezSampler sampler;
std::vector<HashtablezInfo*> infos;
for (size_t i = 0; i < 3; ++i) {
infos.push_back(Register(&sampler, i));
}
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 1, 2));
sampler.Unregister(infos[1]);
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2));
infos.push_back(Register(&sampler, 3));
infos.push_back(Register(&sampler, 4));
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2, 3, 4));
sampler.Unregister(infos[3]);
EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2, 4));
sampler.Unregister(infos[0]);
sampler.Unregister(infos[2]);
sampler.Unregister(infos[4]);
EXPECT_THAT(GetSizes(&sampler), IsEmpty());
}
TEST(HashtablezSamplerTest, MultiThreaded) {
HashtablezSampler sampler;
Notification stop;
ThreadPool pool(10);
for (int i = 0; i < 10; ++i) {
const int64_t sampling_stride = 11 + i % 3;
const size_t elt_size = 10 + i % 2;
const size_t key_size = 12 + i % 4;
const size_t value_size = 13 + i % 5;
pool.Schedule([&sampler, &stop, sampling_stride, elt_size, key_size,
value_size]() {
std::random_device rd;
std::mt19937 gen(rd());
std::vector<HashtablezInfo*> infoz;
while (!stop.HasBeenNotified()) {
if (infoz.empty()) {
infoz.push_back(sampler.Register(sampling_stride, elt_size,
key_size,
value_size,
0));
}
switch (std::uniform_int_distribution<>(0, 2)(gen)) {
case 0: {
infoz.push_back(sampler.Register(sampling_stride, elt_size,
key_size,
value_size,
0));
break;
}
case 1: {
size_t p =
std::uniform_int_distribution<>(0, infoz.size() - 1)(gen);
HashtablezInfo* info = infoz[p];
infoz[p] = infoz.back();
infoz.pop_back();
EXPECT_EQ(info->weight, sampling_stride);
sampler.Unregister(info);
break;
}
case 2: {
absl::Duration oldest = absl::ZeroDuration();
sampler.Iterate([&](const HashtablezInfo& info) {
oldest = std::max(oldest, absl::Now() - info.create_time);
});
ASSERT_GE(oldest, absl::ZeroDuration());
break;
}
}
}
});
}
absl::SleepFor(absl::Seconds(3));
stop.Notify();
}
TEST(HashtablezSamplerTest, Callback) {
HashtablezSampler sampler;
auto* info1 = Register(&sampler, 1);
auto* info2 = Register(&sampler, 2);
static const HashtablezInfo* expected;
auto callback = [](const HashtablezInfo& info) {
EXPECT_EQ(&info, expected);
};
EXPECT_EQ(sampler.SetDisposeCallback(callback), nullptr);
expected = info1;
sampler.Unregister(info1);
EXPECT_EQ(callback, sampler.SetDisposeCallback(nullptr));
expected = nullptr;
sampler.Unregister(info2);
}
}
}
ABSL_NAMESPACE_END
} | 2,519 |
#ifndef ABSL_CONTAINER_INTERNAL_TEST_INSTANCE_TRACKER_H_
#define ABSL_CONTAINER_INTERNAL_TEST_INSTANCE_TRACKER_H_
#include <cstdlib>
#include <ostream>
#include "absl/types/compare.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace test_internal {
class BaseCountedInstance {
public:
explicit BaseCountedInstance(int x) : value_(x) {
++num_instances_;
++num_live_instances_;
}
BaseCountedInstance(const BaseCountedInstance& x)
: value_(x.value_), is_live_(x.is_live_) {
++num_instances_;
if (is_live_) ++num_live_instances_;
++num_copies_;
}
BaseCountedInstance(BaseCountedInstance&& x)
: value_(x.value_), is_live_(x.is_live_) {
x.is_live_ = false;
++num_instances_;
++num_moves_;
}
~BaseCountedInstance() {
--num_instances_;
if (is_live_) --num_live_instances_;
}
BaseCountedInstance& operator=(const BaseCountedInstance& x) {
value_ = x.value_;
if (is_live_) --num_live_instances_;
is_live_ = x.is_live_;
if (is_live_) ++num_live_instances_;
++num_copies_;
return *this;
}
BaseCountedInstance& operator=(BaseCountedInstance&& x) {
value_ = x.value_;
if (is_live_) --num_live_instances_;
is_live_ = x.is_live_;
x.is_live_ = false;
++num_moves_;
return *this;
}
bool operator==(const BaseCountedInstance& x) const {
++num_comparisons_;
return value_ == x.value_;
}
bool operator!=(const BaseCountedInstance& x) const {
++num_comparisons_;
return value_ != x.value_;
}
bool operator<(const BaseCountedInstance& x) const {
++num_comparisons_;
return value_ < x.value_;
}
bool operator>(const BaseCountedInstance& x) const {
++num_comparisons_;
return value_ > x.value_;
}
bool operator<=(const BaseCountedInstance& x) const {
++num_comparisons_;
return value_ <= x.value_;
}
bool operator>=(const BaseCountedInstance& x) const {
++num_comparisons_;
return value_ >= x.value_;
}
absl::weak_ordering compare(const BaseCountedInstance& x) const {
++num_comparisons_;
return value_ < x.value_
? absl::weak_ordering::less
: value_ == x.value_ ? absl::weak_ordering::equivalent
: absl::weak_ordering::greater;
}
int value() const {
if (!is_live_) std::abort();
return value_;
}
friend std::ostream& operator<<(std::ostream& o,
const BaseCountedInstance& v) {
return o << "[value:" << v.value() << "]";
}
static void SwapImpl(
BaseCountedInstance& lhs,
BaseCountedInstance& rhs) {
using std::swap;
swap(lhs.value_, rhs.value_);
swap(lhs.is_live_, rhs.is_live_);
++BaseCountedInstance::num_swaps_;
}
private:
friend class InstanceTracker;
int value_;
bool is_live_ = true;
static int num_instances_;
static int num_live_instances_;
static int num_moves_;
static int num_copies_;
static int num_swaps_;
static int num_comparisons_;
};
class InstanceTracker {
public:
InstanceTracker()
: start_instances_(BaseCountedInstance::num_instances_),
start_live_instances_(BaseCountedInstance::num_live_instances_) {
ResetCopiesMovesSwaps();
}
~InstanceTracker() {
if (instances() != 0) std::abort();
if (live_instances() != 0) std::abort();
}
int instances() const {
return BaseCountedInstance::num_instances_ - start_instances_;
}
int live_instances() const {
return BaseCountedInstance::num_live_instances_ - start_live_instances_;
}
int moves() const { return BaseCountedInstance::num_moves_ - start_moves_; }
int copies() const {
return BaseCountedInstance::num_copies_ - start_copies_;
}
int swaps() const { return BaseCountedInstance::num_swaps_ - start_swaps_; }
int comparisons() const {
return BaseCountedInstance::num_comparisons_ - start_comparisons_;
}
void ResetCopiesMovesSwaps() {
start_moves_ = BaseCountedInstance::num_moves_;
start_copies_ = BaseCountedInstance::num_copies_;
start_swaps_ = BaseCountedInstance::num_swaps_;
start_comparisons_ = BaseCountedInstance::num_comparisons_;
}
private:
int start_instances_;
int start_live_instances_;
int start_moves_;
int start_copies_;
int start_swaps_;
int start_comparisons_;
};
class CopyableOnlyInstance : public BaseCountedInstance {
public:
explicit CopyableOnlyInstance(int x) : BaseCountedInstance(x) {}
CopyableOnlyInstance(const CopyableOnlyInstance& rhs) = default;
CopyableOnlyInstance& operator=(const CopyableOnlyInstance& rhs) = default;
friend void swap(CopyableOnlyInstance& lhs, CopyableOnlyInstance& rhs) {
BaseCountedInstance::SwapImpl(lhs, rhs);
}
static bool supports_move() { return false; }
};
class CopyableMovableInstance : public BaseCountedInstance {
public:
explicit CopyableMovableInstance(int x) : BaseCountedInstance(x) {}
CopyableMovableInstance(const CopyableMovableInstance& rhs) = default;
CopyableMovableInstance(CopyableMovableInstance&& rhs) = default;
CopyableMovableInstance& operator=(const CopyableMovableInstance& rhs) =
default;
CopyableMovableInstance& operator=(CopyableMovableInstance&& rhs) = default;
friend void swap(CopyableMovableInstance& lhs, CopyableMovableInstance& rhs) {
BaseCountedInstance::SwapImpl(lhs, rhs);
}
static bool supports_move() { return true; }
};
class MovableOnlyInstance : public BaseCountedInstance {
public:
explicit MovableOnlyInstance(int x) : BaseCountedInstance(x) {}
MovableOnlyInstance(MovableOnlyInstance&& other) = default;
MovableOnlyInstance& operator=(MovableOnlyInstance&& other) = default;
friend void swap(MovableOnlyInstance& lhs, MovableOnlyInstance& rhs) {
BaseCountedInstance::SwapImpl(lhs, rhs);
}
static bool supports_move() { return true; }
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/container/internal/test_instance_tracker.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace test_internal {
int BaseCountedInstance::num_instances_ = 0;
int BaseCountedInstance::num_live_instances_ = 0;
int BaseCountedInstance::num_moves_ = 0;
int BaseCountedInstance::num_copies_ = 0;
int BaseCountedInstance::num_swaps_ = 0;
int BaseCountedInstance::num_comparisons_ = 0;
}
ABSL_NAMESPACE_END
} | #include "absl/container/internal/test_instance_tracker.h"
#include "gtest/gtest.h"
namespace {
using absl::test_internal::CopyableMovableInstance;
using absl::test_internal::CopyableOnlyInstance;
using absl::test_internal::InstanceTracker;
using absl::test_internal::MovableOnlyInstance;
TEST(TestInstanceTracker, CopyableMovable) {
InstanceTracker tracker;
CopyableMovableInstance src(1);
EXPECT_EQ(1, src.value()) << src;
CopyableMovableInstance copy(src);
CopyableMovableInstance move(std::move(src));
EXPECT_EQ(1, tracker.copies());
EXPECT_EQ(1, tracker.moves());
EXPECT_EQ(0, tracker.swaps());
EXPECT_EQ(3, tracker.instances());
EXPECT_EQ(2, tracker.live_instances());
tracker.ResetCopiesMovesSwaps();
CopyableMovableInstance copy_assign(1);
copy_assign = copy;
CopyableMovableInstance move_assign(1);
move_assign = std::move(move);
EXPECT_EQ(1, tracker.copies());
EXPECT_EQ(1, tracker.moves());
EXPECT_EQ(0, tracker.swaps());
EXPECT_EQ(5, tracker.instances());
EXPECT_EQ(3, tracker.live_instances());
tracker.ResetCopiesMovesSwaps();
{
using std::swap;
swap(move_assign, copy);
swap(copy, move_assign);
EXPECT_EQ(2, tracker.swaps());
EXPECT_EQ(0, tracker.copies());
EXPECT_EQ(0, tracker.moves());
EXPECT_EQ(5, tracker.instances());
EXPECT_EQ(3, tracker.live_instances());
}
}
TEST(TestInstanceTracker, CopyableOnly) {
InstanceTracker tracker;
CopyableOnlyInstance src(1);
EXPECT_EQ(1, src.value()) << src;
CopyableOnlyInstance copy(src);
CopyableOnlyInstance copy2(std::move(src));
EXPECT_EQ(2, tracker.copies());
EXPECT_EQ(0, tracker.moves());
EXPECT_EQ(3, tracker.instances());
EXPECT_EQ(3, tracker.live_instances());
tracker.ResetCopiesMovesSwaps();
CopyableOnlyInstance copy_assign(1);
copy_assign = copy;
CopyableOnlyInstance copy_assign2(1);
copy_assign2 = std::move(copy2);
EXPECT_EQ(2, tracker.copies());
EXPECT_EQ(0, tracker.moves());
EXPECT_EQ(5, tracker.instances());
EXPECT_EQ(5, tracker.live_instances());
tracker.ResetCopiesMovesSwaps();
{
using std::swap;
swap(src, copy);
swap(copy, src);
EXPECT_EQ(2, tracker.swaps());
EXPECT_EQ(0, tracker.copies());
EXPECT_EQ(0, tracker.moves());
EXPECT_EQ(5, tracker.instances());
EXPECT_EQ(5, tracker.live_instances());
}
}
TEST(TestInstanceTracker, MovableOnly) {
InstanceTracker tracker;
MovableOnlyInstance src(1);
EXPECT_EQ(1, src.value()) << src;
MovableOnlyInstance move(std::move(src));
MovableOnlyInstance move_assign(2);
move_assign = std::move(move);
EXPECT_EQ(3, tracker.instances());
EXPECT_EQ(1, tracker.live_instances());
EXPECT_EQ(2, tracker.moves());
EXPECT_EQ(0, tracker.copies());
tracker.ResetCopiesMovesSwaps();
{
using std::swap;
MovableOnlyInstance other(2);
swap(move_assign, other);
swap(other, move_assign);
EXPECT_EQ(2, tracker.swaps());
EXPECT_EQ(0, tracker.copies());
EXPECT_EQ(0, tracker.moves());
EXPECT_EQ(4, tracker.instances());
EXPECT_EQ(2, tracker.live_instances());
}
}
TEST(TestInstanceTracker, ExistingInstances) {
CopyableMovableInstance uncounted_instance(1);
CopyableMovableInstance uncounted_live_instance(
std::move(uncounted_instance));
InstanceTracker tracker;
EXPECT_EQ(0, tracker.instances());
EXPECT_EQ(0, tracker.live_instances());
EXPECT_EQ(0, tracker.copies());
{
CopyableMovableInstance instance1(1);
EXPECT_EQ(1, tracker.instances());
EXPECT_EQ(1, tracker.live_instances());
EXPECT_EQ(0, tracker.copies());
EXPECT_EQ(0, tracker.moves());
{
InstanceTracker tracker2;
CopyableMovableInstance instance2(instance1);
CopyableMovableInstance instance3(std::move(instance2));
EXPECT_EQ(3, tracker.instances());
EXPECT_EQ(2, tracker.live_instances());
EXPECT_EQ(1, tracker.copies());
EXPECT_EQ(1, tracker.moves());
EXPECT_EQ(2, tracker2.instances());
EXPECT_EQ(1, tracker2.live_instances());
EXPECT_EQ(1, tracker2.copies());
EXPECT_EQ(1, tracker2.moves());
}
EXPECT_EQ(1, tracker.instances());
EXPECT_EQ(1, tracker.live_instances());
EXPECT_EQ(1, tracker.copies());
EXPECT_EQ(1, tracker.moves());
}
EXPECT_EQ(0, tracker.instances());
EXPECT_EQ(0, tracker.live_instances());
EXPECT_EQ(1, tracker.copies());
EXPECT_EQ(1, tracker.moves());
}
TEST(TestInstanceTracker, Comparisons) {
InstanceTracker tracker;
MovableOnlyInstance one(1), two(2);
EXPECT_EQ(0, tracker.comparisons());
EXPECT_FALSE(one == two);
EXPECT_EQ(1, tracker.comparisons());
EXPECT_TRUE(one != two);
EXPECT_EQ(2, tracker.comparisons());
EXPECT_TRUE(one < two);
EXPECT_EQ(3, tracker.comparisons());
EXPECT_FALSE(one > two);
EXPECT_EQ(4, tracker.comparisons());
EXPECT_TRUE(one <= two);
EXPECT_EQ(5, tracker.comparisons());
EXPECT_FALSE(one >= two);
EXPECT_EQ(6, tracker.comparisons());
EXPECT_TRUE(one.compare(two) < 0);
EXPECT_EQ(7, tracker.comparisons());
tracker.ResetCopiesMovesSwaps();
EXPECT_EQ(0, tracker.comparisons());
}
} | 2,520 |
#ifndef ABSL_BASE_LOG_SEVERITY_H_
#define ABSL_BASE_LOG_SEVERITY_H_
#include <array>
#include <ostream>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
enum class LogSeverity : int {
kInfo = 0,
kWarning = 1,
kError = 2,
kFatal = 3,
};
constexpr std::array<absl::LogSeverity, 4> LogSeverities() {
return {{absl::LogSeverity::kInfo, absl::LogSeverity::kWarning,
absl::LogSeverity::kError, absl::LogSeverity::kFatal}};
}
#ifdef NDEBUG
static constexpr absl::LogSeverity kLogDebugFatal = absl::LogSeverity::kError;
#else
static constexpr absl::LogSeverity kLogDebugFatal = absl::LogSeverity::kFatal;
#endif
constexpr const char* LogSeverityName(absl::LogSeverity s) {
switch (s) {
case absl::LogSeverity::kInfo: return "INFO";
case absl::LogSeverity::kWarning: return "WARNING";
case absl::LogSeverity::kError: return "ERROR";
case absl::LogSeverity::kFatal: return "FATAL";
}
return "UNKNOWN";
}
constexpr absl::LogSeverity NormalizeLogSeverity(absl::LogSeverity s) {
absl::LogSeverity n = s;
if (n < absl::LogSeverity::kInfo) n = absl::LogSeverity::kInfo;
if (n > absl::LogSeverity::kFatal) n = absl::LogSeverity::kError;
return n;
}
constexpr absl::LogSeverity NormalizeLogSeverity(int s) {
return absl::NormalizeLogSeverity(static_cast<absl::LogSeverity>(s));
}
std::ostream& operator<<(std::ostream& os, absl::LogSeverity s);
enum class LogSeverityAtLeast : int {
kInfo = static_cast<int>(absl::LogSeverity::kInfo),
kWarning = static_cast<int>(absl::LogSeverity::kWarning),
kError = static_cast<int>(absl::LogSeverity::kError),
kFatal = static_cast<int>(absl::LogSeverity::kFatal),
kInfinity = 1000,
};
std::ostream& operator<<(std::ostream& os, absl::LogSeverityAtLeast s);
enum class LogSeverityAtMost : int {
kNegativeInfinity = -1000,
kInfo = static_cast<int>(absl::LogSeverity::kInfo),
kWarning = static_cast<int>(absl::LogSeverity::kWarning),
kError = static_cast<int>(absl::LogSeverity::kError),
kFatal = static_cast<int>(absl::LogSeverity::kFatal),
};
std::ostream& operator<<(std::ostream& os, absl::LogSeverityAtMost s);
#define COMPOP(op1, op2, T) \
constexpr bool operator op1(absl::T lhs, absl::LogSeverity rhs) { \
return static_cast<absl::LogSeverity>(lhs) op1 rhs; \
} \
constexpr bool operator op2(absl::LogSeverity lhs, absl::T rhs) { \
return lhs op2 static_cast<absl::LogSeverity>(rhs); \
}
COMPOP(>, <, LogSeverityAtLeast)
COMPOP(<=, >=, LogSeverityAtLeast)
COMPOP(<, >, LogSeverityAtMost)
COMPOP(>=, <=, LogSeverityAtMost)
#undef COMPOP
ABSL_NAMESPACE_END
}
#endif
#include "absl/base/log_severity.h"
#include <ostream>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
std::ostream& operator<<(std::ostream& os, absl::LogSeverity s) {
if (s == absl::NormalizeLogSeverity(s)) return os << absl::LogSeverityName(s);
return os << "absl::LogSeverity(" << static_cast<int>(s) << ")";
}
std::ostream& operator<<(std::ostream& os, absl::LogSeverityAtLeast s) {
switch (s) {
case absl::LogSeverityAtLeast::kInfo:
case absl::LogSeverityAtLeast::kWarning:
case absl::LogSeverityAtLeast::kError:
case absl::LogSeverityAtLeast::kFatal:
return os << ">=" << static_cast<absl::LogSeverity>(s);
case absl::LogSeverityAtLeast::kInfinity:
return os << "INFINITY";
}
return os;
}
std::ostream& operator<<(std::ostream& os, absl::LogSeverityAtMost s) {
switch (s) {
case absl::LogSeverityAtMost::kInfo:
case absl::LogSeverityAtMost::kWarning:
case absl::LogSeverityAtMost::kError:
case absl::LogSeverityAtMost::kFatal:
return os << "<=" << static_cast<absl::LogSeverity>(s);
case absl::LogSeverityAtMost::kNegativeInfinity:
return os << "NEGATIVE_INFINITY";
}
return os;
}
ABSL_NAMESPACE_END
} | #include "absl/base/log_severity.h"
#include <cstdint>
#include <ios>
#include <limits>
#include <ostream>
#include <sstream>
#include <string>
#include <tuple>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/flags/internal/flag.h"
#include "absl/flags/marshalling.h"
#include "absl/strings/str_cat.h"
namespace {
using ::testing::Eq;
using ::testing::IsFalse;
using ::testing::IsTrue;
using ::testing::TestWithParam;
using ::testing::Values;
template <typename T>
std::string StreamHelper(T value) {
std::ostringstream stream;
stream << value;
return stream.str();
}
TEST(StreamTest, Works) {
EXPECT_THAT(StreamHelper(static_cast<absl::LogSeverity>(-100)),
Eq("absl::LogSeverity(-100)"));
EXPECT_THAT(StreamHelper(absl::LogSeverity::kInfo), Eq("INFO"));
EXPECT_THAT(StreamHelper(absl::LogSeverity::kWarning), Eq("WARNING"));
EXPECT_THAT(StreamHelper(absl::LogSeverity::kError), Eq("ERROR"));
EXPECT_THAT(StreamHelper(absl::LogSeverity::kFatal), Eq("FATAL"));
EXPECT_THAT(StreamHelper(static_cast<absl::LogSeverity>(4)),
Eq("absl::LogSeverity(4)"));
}
static_assert(absl::flags_internal::FlagUseValueAndInitBitStorage<
absl::LogSeverity>::value,
"Flags of type absl::LogSeverity ought to be lock-free.");
using ParseFlagFromOutOfRangeIntegerTest = TestWithParam<int64_t>;
INSTANTIATE_TEST_SUITE_P(
Instantiation, ParseFlagFromOutOfRangeIntegerTest,
Values(static_cast<int64_t>(std::numeric_limits<int>::min()) - 1,
static_cast<int64_t>(std::numeric_limits<int>::max()) + 1));
TEST_P(ParseFlagFromOutOfRangeIntegerTest, ReturnsError) {
const std::string to_parse = absl::StrCat(GetParam());
absl::LogSeverity value;
std::string error;
EXPECT_THAT(absl::ParseFlag(to_parse, &value, &error), IsFalse()) << value;
}
using ParseFlagFromAlmostOutOfRangeIntegerTest = TestWithParam<int>;
INSTANTIATE_TEST_SUITE_P(Instantiation,
ParseFlagFromAlmostOutOfRangeIntegerTest,
Values(std::numeric_limits<int>::min(),
std::numeric_limits<int>::max()));
TEST_P(ParseFlagFromAlmostOutOfRangeIntegerTest, YieldsExpectedValue) {
const auto expected = static_cast<absl::LogSeverity>(GetParam());
const std::string to_parse = absl::StrCat(GetParam());
absl::LogSeverity value;
std::string error;
ASSERT_THAT(absl::ParseFlag(to_parse, &value, &error), IsTrue()) << error;
EXPECT_THAT(value, Eq(expected));
}
using ParseFlagFromIntegerMatchingEnumeratorTest =
TestWithParam<std::tuple<absl::string_view, absl::LogSeverity>>;
INSTANTIATE_TEST_SUITE_P(
Instantiation, ParseFlagFromIntegerMatchingEnumeratorTest,
Values(std::make_tuple("0", absl::LogSeverity::kInfo),
std::make_tuple(" 0", absl::LogSeverity::kInfo),
std::make_tuple("-0", absl::LogSeverity::kInfo),
std::make_tuple("+0", absl::LogSeverity::kInfo),
std::make_tuple("00", absl::LogSeverity::kInfo),
std::make_tuple("0 ", absl::LogSeverity::kInfo),
std::make_tuple("0x0", absl::LogSeverity::kInfo),
std::make_tuple("1", absl::LogSeverity::kWarning),
std::make_tuple("+1", absl::LogSeverity::kWarning),
std::make_tuple("2", absl::LogSeverity::kError),
std::make_tuple("3", absl::LogSeverity::kFatal)));
TEST_P(ParseFlagFromIntegerMatchingEnumeratorTest, YieldsExpectedValue) {
const absl::string_view to_parse = std::get<0>(GetParam());
const absl::LogSeverity expected = std::get<1>(GetParam());
absl::LogSeverity value;
std::string error;
ASSERT_THAT(absl::ParseFlag(to_parse, &value, &error), IsTrue()) << error;
EXPECT_THAT(value, Eq(expected));
}
using ParseFlagFromOtherIntegerTest =
TestWithParam<std::tuple<absl::string_view, int>>;
INSTANTIATE_TEST_SUITE_P(Instantiation, ParseFlagFromOtherIntegerTest,
Values(std::make_tuple("-1", -1),
std::make_tuple("4", 4),
std::make_tuple("010", 10),
std::make_tuple("0x10", 16)));
TEST_P(ParseFlagFromOtherIntegerTest, YieldsExpectedValue) {
const absl::string_view to_parse = std::get<0>(GetParam());
const auto expected = static_cast<absl::LogSeverity>(std::get<1>(GetParam()));
absl::LogSeverity value;
std::string error;
ASSERT_THAT(absl::ParseFlag(to_parse, &value, &error), IsTrue()) << error;
EXPECT_THAT(value, Eq(expected));
}
using ParseFlagFromEnumeratorTest =
TestWithParam<std::tuple<absl::string_view, absl::LogSeverity>>;
INSTANTIATE_TEST_SUITE_P(
Instantiation, ParseFlagFromEnumeratorTest,
Values(std::make_tuple("INFO", absl::LogSeverity::kInfo),
std::make_tuple("info", absl::LogSeverity::kInfo),
std::make_tuple("kInfo", absl::LogSeverity::kInfo),
std::make_tuple("iNfO", absl::LogSeverity::kInfo),
std::make_tuple("kInFo", absl::LogSeverity::kInfo),
std::make_tuple("WARNING", absl::LogSeverity::kWarning),
std::make_tuple("warning", absl::LogSeverity::kWarning),
std::make_tuple("kWarning", absl::LogSeverity::kWarning),
std::make_tuple("WaRnInG", absl::LogSeverity::kWarning),
std::make_tuple("KwArNiNg", absl::LogSeverity::kWarning),
std::make_tuple("ERROR", absl::LogSeverity::kError),
std::make_tuple("error", absl::LogSeverity::kError),
std::make_tuple("kError", absl::LogSeverity::kError),
std::make_tuple("eRrOr", absl::LogSeverity::kError),
std::make_tuple("kErRoR", absl::LogSeverity::kError),
std::make_tuple("FATAL", absl::LogSeverity::kFatal),
std::make_tuple("fatal", absl::LogSeverity::kFatal),
std::make_tuple("kFatal", absl::LogSeverity::kFatal),
std::make_tuple("FaTaL", absl::LogSeverity::kFatal),
std::make_tuple("KfAtAl", absl::LogSeverity::kFatal),
std::make_tuple("DFATAL", absl::kLogDebugFatal),
std::make_tuple("dfatal", absl::kLogDebugFatal),
std::make_tuple("kLogDebugFatal", absl::kLogDebugFatal),
std::make_tuple("dFaTaL", absl::kLogDebugFatal),
std::make_tuple("kLoGdEbUgFaTaL", absl::kLogDebugFatal)));
TEST_P(ParseFlagFromEnumeratorTest, YieldsExpectedValue) {
const absl::string_view to_parse = std::get<0>(GetParam());
const absl::LogSeverity expected = std::get<1>(GetParam());
absl::LogSeverity value;
std::string error;
ASSERT_THAT(absl::ParseFlag(to_parse, &value, &error), IsTrue()) << error;
EXPECT_THAT(value, Eq(expected));
}
using ParseFlagFromGarbageTest = TestWithParam<absl::string_view>;
INSTANTIATE_TEST_SUITE_P(Instantiation, ParseFlagFromGarbageTest,
Values("", "\0", " ", "garbage", "kkinfo", "I",
"kDFATAL", "LogDebugFatal", "lOgDeBuGfAtAl"));
TEST_P(ParseFlagFromGarbageTest, ReturnsError) {
const absl::string_view to_parse = GetParam();
absl::LogSeverity value;
std::string error;
EXPECT_THAT(absl::ParseFlag(to_parse, &value, &error), IsFalse()) << value;
}
using UnparseFlagToEnumeratorTest =
TestWithParam<std::tuple<absl::LogSeverity, absl::string_view>>;
INSTANTIATE_TEST_SUITE_P(
Instantiation, UnparseFlagToEnumeratorTest,
Values(std::make_tuple(absl::LogSeverity::kInfo, "INFO"),
std::make_tuple(absl::LogSeverity::kWarning, "WARNING"),
std::make_tuple(absl::LogSeverity::kError, "ERROR"),
std::make_tuple(absl::LogSeverity::kFatal, "FATAL")));
TEST_P(UnparseFlagToEnumeratorTest, ReturnsExpectedValueAndRoundTrips) {
const absl::LogSeverity to_unparse = std::get<0>(GetParam());
const absl::string_view expected = std::get<1>(GetParam());
const std::string stringified_value = absl::UnparseFlag(to_unparse);
EXPECT_THAT(stringified_value, Eq(expected));
absl::LogSeverity reparsed_value;
std::string error;
EXPECT_THAT(absl::ParseFlag(stringified_value, &reparsed_value, &error),
IsTrue());
EXPECT_THAT(reparsed_value, Eq(to_unparse));
}
using UnparseFlagToOtherIntegerTest = TestWithParam<int>;
INSTANTIATE_TEST_SUITE_P(Instantiation, UnparseFlagToOtherIntegerTest,
Values(std::numeric_limits<int>::min(), -1, 4,
std::numeric_limits<int>::max()));
TEST_P(UnparseFlagToOtherIntegerTest, ReturnsExpectedValueAndRoundTrips) {
const absl::LogSeverity to_unparse =
static_cast<absl::LogSeverity>(GetParam());
const std::string expected = absl::StrCat(GetParam());
const std::string stringified_value = absl::UnparseFlag(to_unparse);
EXPECT_THAT(stringified_value, Eq(expected));
absl::LogSeverity reparsed_value;
std::string error;
EXPECT_THAT(absl::ParseFlag(stringified_value, &reparsed_value, &error),
IsTrue());
EXPECT_THAT(reparsed_value, Eq(to_unparse));
}
TEST(LogThresholdTest, LogSeverityAtLeastTest) {
EXPECT_LT(absl::LogSeverity::kError, absl::LogSeverityAtLeast::kFatal);
EXPECT_GT(absl::LogSeverityAtLeast::kError, absl::LogSeverity::kInfo);
EXPECT_LE(absl::LogSeverityAtLeast::kInfo, absl::LogSeverity::kError);
EXPECT_GE(absl::LogSeverity::kError, absl::LogSeverityAtLeast::kInfo);
}
TEST(LogThresholdTest, LogSeverityAtMostTest) {
EXPECT_GT(absl::LogSeverity::kError, absl::LogSeverityAtMost::kWarning);
EXPECT_LT(absl::LogSeverityAtMost::kError, absl::LogSeverity::kFatal);
EXPECT_GE(absl::LogSeverityAtMost::kFatal, absl::LogSeverity::kError);
EXPECT_LE(absl::LogSeverity::kWarning, absl::LogSeverityAtMost::kError);
}
TEST(LogThresholdTest, Extremes) {
EXPECT_LT(absl::LogSeverity::kFatal, absl::LogSeverityAtLeast::kInfinity);
EXPECT_GT(absl::LogSeverity::kInfo,
absl::LogSeverityAtMost::kNegativeInfinity);
}
TEST(LogThresholdTest, Output) {
EXPECT_THAT(StreamHelper(absl::LogSeverityAtLeast::kInfo), Eq(">=INFO"));
EXPECT_THAT(StreamHelper(absl::LogSeverityAtLeast::kWarning),
Eq(">=WARNING"));
EXPECT_THAT(StreamHelper(absl::LogSeverityAtLeast::kError), Eq(">=ERROR"));
EXPECT_THAT(StreamHelper(absl::LogSeverityAtLeast::kFatal), Eq(">=FATAL"));
EXPECT_THAT(StreamHelper(absl::LogSeverityAtLeast::kInfinity),
Eq("INFINITY"));
EXPECT_THAT(StreamHelper(absl::LogSeverityAtMost::kInfo), Eq("<=INFO"));
EXPECT_THAT(StreamHelper(absl::LogSeverityAtMost::kWarning), Eq("<=WARNING"));
EXPECT_THAT(StreamHelper(absl::LogSeverityAtMost::kError), Eq("<=ERROR"));
EXPECT_THAT(StreamHelper(absl::LogSeverityAtMost::kFatal), Eq("<=FATAL"));
EXPECT_THAT(StreamHelper(absl::LogSeverityAtMost::kNegativeInfinity),
Eq("NEGATIVE_INFINITY"));
}
} | 2,521 |
#ifndef ABSL_BASE_INTERNAL_STRERROR_H_
#define ABSL_BASE_INTERNAL_STRERROR_H_
#include <string>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
std::string StrError(int errnum);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/base/internal/strerror.h"
#include <array>
#include <cerrno>
#include <cstddef>
#include <cstdio>
#include <cstring>
#include <string>
#include <type_traits>
#include "absl/base/internal/errno_saver.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
namespace {
const char* StrErrorAdaptor(int errnum, char* buf, size_t buflen) {
#if defined(_WIN32)
int rc = strerror_s(buf, buflen, errnum);
buf[buflen - 1] = '\0';
if (rc == 0 && strncmp(buf, "Unknown error", buflen) == 0) *buf = '\0';
return buf;
#else
auto ret = strerror_r(errnum, buf, buflen);
if (std::is_same<decltype(ret), int>::value) {
if (ret) *buf = '\0';
return buf;
} else {
return reinterpret_cast<const char*>(ret);
}
#endif
}
std::string StrErrorInternal(int errnum) {
char buf[100];
const char* str = StrErrorAdaptor(errnum, buf, sizeof buf);
if (*str == '\0') {
snprintf(buf, sizeof buf, "Unknown error %d", errnum);
str = buf;
}
return str;
}
constexpr int kSysNerr = 135;
std::array<std::string, kSysNerr>* NewStrErrorTable() {
auto* table = new std::array<std::string, kSysNerr>;
for (size_t i = 0; i < table->size(); ++i) {
(*table)[i] = StrErrorInternal(static_cast<int>(i));
}
return table;
}
}
std::string StrError(int errnum) {
absl::base_internal::ErrnoSaver errno_saver;
static const auto* table = NewStrErrorTable();
if (errnum >= 0 && static_cast<size_t>(errnum) < table->size()) {
return (*table)[static_cast<size_t>(errnum)];
}
return StrErrorInternal(errnum);
}
}
ABSL_NAMESPACE_END
} | #include "absl/base/internal/strerror.h"
#include <atomic>
#include <cerrno>
#include <cstdio>
#include <cstring>
#include <string>
#include <thread>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/match.h"
namespace {
using ::testing::AnyOf;
using ::testing::Eq;
TEST(StrErrorTest, ValidErrorCode) {
errno = ERANGE;
EXPECT_THAT(absl::base_internal::StrError(EDOM), Eq(strerror(EDOM)));
EXPECT_THAT(errno, Eq(ERANGE));
}
TEST(StrErrorTest, InvalidErrorCode) {
errno = ERANGE;
EXPECT_THAT(absl::base_internal::StrError(-1),
AnyOf(Eq("No error information"), Eq("Unknown error -1")));
EXPECT_THAT(errno, Eq(ERANGE));
}
TEST(StrErrorTest, MultipleThreads) {
const int kNumCodes = 1000;
std::vector<std::string> expected_strings(kNumCodes);
for (int i = 0; i < kNumCodes; ++i) {
expected_strings[i] = strerror(i);
}
std::atomic_int counter(0);
auto thread_fun = [&]() {
for (int i = 0; i < kNumCodes; ++i) {
++counter;
errno = ERANGE;
const std::string value = absl::base_internal::StrError(i);
int check_err = errno;
EXPECT_THAT(check_err, Eq(ERANGE));
if (!absl::StartsWith(value, "Unknown error ")) {
EXPECT_THAT(value, Eq(expected_strings[i]));
}
}
};
const int kNumThreads = 100;
std::vector<std::thread> threads;
for (int i = 0; i < kNumThreads; ++i) {
threads.push_back(std::thread(thread_fun));
}
for (auto& thread : threads) {
thread.join();
}
EXPECT_THAT(counter, Eq(kNumThreads * kNumCodes));
}
} | 2,522 |
#ifndef ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_
#define ABSL_BASE_INTERNAL_EXCEPTION_SAFETY_TESTING_H_
#include "absl/base/config.h"
#ifdef ABSL_HAVE_EXCEPTIONS
#include <cstddef>
#include <cstdint>
#include <functional>
#include <initializer_list>
#include <iosfwd>
#include <string>
#include <tuple>
#include <unordered_map>
#include "gtest/gtest.h"
#include "absl/base/internal/pretty_function.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
#include "absl/strings/substitute.h"
#include "absl/utility/utility.h"
namespace testing {
enum class TypeSpec;
enum class AllocSpec;
constexpr TypeSpec operator|(TypeSpec a, TypeSpec b) {
using T = absl::underlying_type_t<TypeSpec>;
return static_cast<TypeSpec>(static_cast<T>(a) | static_cast<T>(b));
}
constexpr TypeSpec operator&(TypeSpec a, TypeSpec b) {
using T = absl::underlying_type_t<TypeSpec>;
return static_cast<TypeSpec>(static_cast<T>(a) & static_cast<T>(b));
}
constexpr AllocSpec operator|(AllocSpec a, AllocSpec b) {
using T = absl::underlying_type_t<AllocSpec>;
return static_cast<AllocSpec>(static_cast<T>(a) | static_cast<T>(b));
}
constexpr AllocSpec operator&(AllocSpec a, AllocSpec b) {
using T = absl::underlying_type_t<AllocSpec>;
return static_cast<AllocSpec>(static_cast<T>(a) & static_cast<T>(b));
}
namespace exceptions_internal {
std::string GetSpecString(TypeSpec);
std::string GetSpecString(AllocSpec);
struct NoThrowTag {};
struct StrongGuaranteeTagType {};
class TestException {
public:
explicit TestException(absl::string_view msg) : msg_(msg) {}
virtual ~TestException() {}
virtual const char* what() const noexcept { return msg_.c_str(); }
private:
std::string msg_;
};
class TestBadAllocException : public std::bad_alloc, public TestException {
public:
explicit TestBadAllocException(absl::string_view msg) : TestException(msg) {}
using TestException::what;
};
extern int countdown;
inline void SetCountdown(int i = 0) { countdown = i; }
inline void UnsetCountdown() { SetCountdown(-1); }
void MaybeThrow(absl::string_view msg, bool throw_bad_alloc = false);
testing::AssertionResult FailureMessage(const TestException& e,
int countdown) noexcept;
struct TrackedAddress {
bool is_alive;
std::string description;
};
class ConstructorTracker {
public:
explicit ConstructorTracker(int count) : countdown_(count) {
assert(current_tracker_instance_ == nullptr);
current_tracker_instance_ = this;
}
~ConstructorTracker() {
assert(current_tracker_instance_ == this);
current_tracker_instance_ = nullptr;
for (auto& it : address_map_) {
void* address = it.first;
TrackedAddress& tracked_address = it.second;
if (tracked_address.is_alive) {
ADD_FAILURE() << ErrorMessage(address, tracked_address.description,
countdown_, "Object was not destroyed.");
}
}
}
static void ObjectConstructed(void* address, std::string description) {
if (!CurrentlyTracking()) return;
TrackedAddress& tracked_address =
current_tracker_instance_->address_map_[address];
if (tracked_address.is_alive) {
ADD_FAILURE() << ErrorMessage(
address, tracked_address.description,
current_tracker_instance_->countdown_,
"Object was re-constructed. Current object was constructed by " +
description);
}
tracked_address = {true, std::move(description)};
}
static void ObjectDestructed(void* address) {
if (!CurrentlyTracking()) return;
auto it = current_tracker_instance_->address_map_.find(address);
if (it == current_tracker_instance_->address_map_.end()) return;
TrackedAddress& tracked_address = it->second;
if (!tracked_address.is_alive) {
ADD_FAILURE() << ErrorMessage(address, tracked_address.description,
current_tracker_instance_->countdown_,
"Object was re-destroyed.");
}
tracked_address.is_alive = false;
}
private:
static bool CurrentlyTracking() {
return current_tracker_instance_ != nullptr;
}
static std::string ErrorMessage(void* address,
const std::string& address_description,
int countdown,
const std::string& error_description) {
return absl::Substitute(
"With coundtown at $0:\n"
" $1\n"
" Object originally constructed by $2\n"
" Object address: $3\n",
countdown, error_description, address_description, address);
}
std::unordered_map<void*, TrackedAddress> address_map_;
int countdown_;
static ConstructorTracker* current_tracker_instance_;
};
class TrackedObject {
public:
TrackedObject(const TrackedObject&) = delete;
TrackedObject(TrackedObject&&) = delete;
protected:
explicit TrackedObject(std::string description) {
ConstructorTracker::ObjectConstructed(this, std::move(description));
}
~TrackedObject() noexcept { ConstructorTracker::ObjectDestructed(this); }
};
}
extern exceptions_internal::NoThrowTag nothrow_ctor;
extern exceptions_internal::StrongGuaranteeTagType strong_guarantee;
class ThrowingBool {
public:
ThrowingBool(bool b) noexcept : b_(b) {}
operator bool() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return b_;
}
private:
bool b_;
};
enum class TypeSpec {
kEverythingThrows = 0,
kNoThrowCopy = 1,
kNoThrowMove = 1 << 1,
kNoThrowNew = 1 << 2,
};
template <TypeSpec Spec = TypeSpec::kEverythingThrows>
class ThrowingValue : private exceptions_internal::TrackedObject {
static constexpr bool IsSpecified(TypeSpec spec) {
return static_cast<bool>(Spec & spec);
}
static constexpr int kDefaultValue = 0;
static constexpr int kBadValue = 938550620;
public:
ThrowingValue() : TrackedObject(GetInstanceString(kDefaultValue)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = kDefaultValue;
}
ThrowingValue(const ThrowingValue& other) noexcept(
IsSpecified(TypeSpec::kNoThrowCopy))
: TrackedObject(GetInstanceString(other.dummy_)) {
if (!IsSpecified(TypeSpec::kNoThrowCopy)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
dummy_ = other.dummy_;
}
ThrowingValue(ThrowingValue&& other) noexcept(
IsSpecified(TypeSpec::kNoThrowMove))
: TrackedObject(GetInstanceString(other.dummy_)) {
if (!IsSpecified(TypeSpec::kNoThrowMove)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
dummy_ = other.dummy_;
}
explicit ThrowingValue(int i) : TrackedObject(GetInstanceString(i)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = i;
}
ThrowingValue(int i, exceptions_internal::NoThrowTag) noexcept
: TrackedObject(GetInstanceString(i)), dummy_(i) {}
~ThrowingValue() noexcept = default;
ThrowingValue& operator=(const ThrowingValue& other) noexcept(
IsSpecified(TypeSpec::kNoThrowCopy)) {
dummy_ = kBadValue;
if (!IsSpecified(TypeSpec::kNoThrowCopy)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
dummy_ = other.dummy_;
return *this;
}
ThrowingValue& operator=(ThrowingValue&& other) noexcept(
IsSpecified(TypeSpec::kNoThrowMove)) {
dummy_ = kBadValue;
if (!IsSpecified(TypeSpec::kNoThrowMove)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
}
dummy_ = other.dummy_;
return *this;
}
ThrowingValue operator+(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ + other.dummy_, nothrow_ctor);
}
ThrowingValue operator+() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_, nothrow_ctor);
}
ThrowingValue operator-(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ - other.dummy_, nothrow_ctor);
}
ThrowingValue operator-() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(-dummy_, nothrow_ctor);
}
ThrowingValue& operator++() {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
++dummy_;
return *this;
}
ThrowingValue operator++(int) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
auto out = ThrowingValue(dummy_, nothrow_ctor);
++dummy_;
return out;
}
ThrowingValue& operator--() {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
--dummy_;
return *this;
}
ThrowingValue operator--(int) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
auto out = ThrowingValue(dummy_, nothrow_ctor);
--dummy_;
return out;
}
ThrowingValue operator*(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ * other.dummy_, nothrow_ctor);
}
ThrowingValue operator/(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ / other.dummy_, nothrow_ctor);
}
ThrowingValue operator%(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ % other.dummy_, nothrow_ctor);
}
ThrowingValue operator<<(int shift) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ << shift, nothrow_ctor);
}
ThrowingValue operator>>(int shift) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ >> shift, nothrow_ctor);
}
friend ThrowingBool operator==(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ == b.dummy_;
}
friend ThrowingBool operator!=(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ != b.dummy_;
}
friend ThrowingBool operator<(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ < b.dummy_;
}
friend ThrowingBool operator<=(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ <= b.dummy_;
}
friend ThrowingBool operator>(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ > b.dummy_;
}
friend ThrowingBool operator>=(const ThrowingValue& a,
const ThrowingValue& b) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return a.dummy_ >= b.dummy_;
}
ThrowingBool operator!() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return !dummy_;
}
ThrowingBool operator&&(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return dummy_ && other.dummy_;
}
ThrowingBool operator||(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return dummy_ || other.dummy_;
}
ThrowingValue operator~() const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(~dummy_, nothrow_ctor);
}
ThrowingValue operator&(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ & other.dummy_, nothrow_ctor);
}
ThrowingValue operator|(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ | other.dummy_, nothrow_ctor);
}
ThrowingValue operator^(const ThrowingValue& other) const {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return ThrowingValue(dummy_ ^ other.dummy_, nothrow_ctor);
}
ThrowingValue& operator+=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ += other.dummy_;
return *this;
}
ThrowingValue& operator-=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ -= other.dummy_;
return *this;
}
ThrowingValue& operator*=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ *= other.dummy_;
return *this;
}
ThrowingValue& operator/=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ /= other.dummy_;
return *this;
}
ThrowingValue& operator%=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ %= other.dummy_;
return *this;
}
ThrowingValue& operator&=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ &= other.dummy_;
return *this;
}
ThrowingValue& operator|=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ |= other.dummy_;
return *this;
}
ThrowingValue& operator^=(const ThrowingValue& other) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ ^= other.dummy_;
return *this;
}
ThrowingValue& operator<<=(int shift) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ <<= shift;
return *this;
}
ThrowingValue& operator>>=(int shift) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ >>= shift;
return *this;
}
void operator&() const = delete;
friend std::ostream& operator<<(std::ostream& os, const ThrowingValue& tv) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return os << GetInstanceString(tv.dummy_);
}
friend std::istream& operator>>(std::istream& is, const ThrowingValue&) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
return is;
}
static void* operator new(size_t s) noexcept(
IsSpecified(TypeSpec::kNoThrowNew)) {
if (!IsSpecified(TypeSpec::kNoThrowNew)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true);
}
return ::operator new(s);
}
static void* operator new[](size_t s) noexcept(
IsSpecified(TypeSpec::kNoThrowNew)) {
if (!IsSpecified(TypeSpec::kNoThrowNew)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true);
}
return ::operator new[](s);
}
template <typename... Args>
static void* operator new(size_t s, Args&&... args) noexcept(
IsSpecified(TypeSpec::kNoThrowNew)) {
if (!IsSpecified(TypeSpec::kNoThrowNew)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true);
}
return ::operator new(s, std::forward<Args>(args)...);
}
template <typename... Args>
static void* operator new[](size_t s, Args&&... args) noexcept(
IsSpecified(TypeSpec::kNoThrowNew)) {
if (!IsSpecified(TypeSpec::kNoThrowNew)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION, true);
}
return ::operator new[](s, std::forward<Args>(args)...);
}
void operator delete(void* p) noexcept { ::operator delete(p); }
template <typename... Args>
void operator delete(void* p, Args&&... args) noexcept {
::operator delete(p, std::forward<Args>(args)...);
}
void operator delete[](void* p) noexcept { return ::operator delete[](p); }
template <typename... Args>
void operator delete[](void* p, Args&&... args) noexcept {
return ::operator delete[](p, std::forward<Args>(args)...);
}
int& Get() noexcept { return dummy_; }
const int& Get() const noexcept { return dummy_; }
private:
static std::string GetInstanceString(int dummy) {
return absl::StrCat("ThrowingValue<",
exceptions_internal::GetSpecString(Spec), ">(", dummy,
")");
}
int dummy_;
};
template <TypeSpec Spec, typename T>
void operator,(const ThrowingValue<Spec>&, T&&) = delete;
template <TypeSpec Spec, typename T>
void operator,(T&&, const ThrowingValue<Spec>&) = delete;
enum class AllocSpec {
kEverythingThrows = 0,
kNoThrowAllocate = 1,
};
template <typename T, AllocSpec Spec = AllocSpec::kEverythingThrows>
class ThrowingAllocator : private exceptions_internal::TrackedObject {
static constexpr bool IsSpecified(AllocSpec spec) {
return static_cast<bool>(Spec & spec);
}
public:
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using void_pointer = void*;
using const_void_pointer = const void*;
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
using is_nothrow =
std::integral_constant<bool, Spec == AllocSpec::kNoThrowAllocate>;
using propagate_on_container_copy_assignment = std::true_type;
using propagate_on_container_move_assignment = std::true_type;
using propagate_on_container_swap = std::true_type;
using is_always_equal = std::false_type;
ThrowingAllocator() : TrackedObject(GetInstanceString(next_id_)) {
exceptions_internal::MaybeThrow(ABSL_PRETTY_FUNCTION);
dummy_ = std::make_shared<const int>(next_id_++);
}
template <typename U>
ThrowingAllocator(const ThrowingAllocator<U, Spec>& other) noexcept
: TrackedObject(GetInstanceString(*other.State())),
dummy_(other.State()) {}
ThrowingAllocator(const ThrowingAllocator& other) noexcept
: TrackedObject(GetInstanceString(*other.State())),
dummy_(other.State()) {}
template <typename U>
ThrowingAllocator(ThrowingAllocator<U, Spec>&& other) noexcept
: TrackedObject(GetInstanceString(*other.State())),
dummy_(std::move(other.State())) {}
ThrowingAllocator(ThrowingAllocator&& other) noexcept
: TrackedObject(GetInstanceString(*other.State())),
dummy_(std::move(other.State())) {}
~ThrowingAllocator() noexcept = default;
ThrowingAllocator& operator=(const ThrowingAllocator& other) noexcept {
dummy_ = other.State();
return *this;
}
template <typename U>
ThrowingAllocator& operator=(
const ThrowingAllocator<U, Spec>& other) noexcept {
dummy_ = other.State();
return *this;
}
template <typename U>
ThrowingAllocator& operator=(ThrowingAllocator<U, Spec>&& other) noexcept {
dummy_ = std::move(other.State());
return *this;
}
template <typename U>
struct rebind {
using other = ThrowingAllocator<U, Spec>;
};
pointer allocate(size_type n) noexcept(
IsSpecified(AllocSpec::kNoThrowAllocate)) {
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
return static_cast<pointer>(::operator new(n * sizeof(T)));
}
pointer allocate(size_type n, const_void_pointer) noexcept(
IsSpecified(AllocSpec::kNoThrowAllocate)) {
return allocate(n);
}
void deallocate(pointer ptr, size_type) noexcept {
ReadState();
::operator delete(static_cast<void*>(ptr));
}
template <typename U, typename... Args>
void construct(U* ptr, Args&&... args) noexcept(
IsSpecified(AllocSpec::kNoThrowAllocate)) {
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
::new (static_cast<void*>(ptr)) U(std::forward<Args>(args)...);
}
template <typename U>
void destroy(U* p) noexcept {
ReadState();
p->~U();
}
size_type max_size() const noexcept {
return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
}
ThrowingAllocator select_on_container_copy_construction() noexcept(
IsSpecified(AllocSpec::kNoThrowAllocate)) {
ReadStateAndMaybeThrow(ABSL_PRETTY_FUNCTION);
return *this;
}
template <typename U>
bool operator==(const ThrowingAllocator<U, Spec>& other) const noexcept {
return dummy_ == other.dummy_;
}
template <typename U>
bool operator!=(const ThrowingAllocator<U, Spec>& other) const noexcept {
return dummy_ != other.dummy_;
}
template <typename, AllocSpec>
friend class ThrowingAllocator;
private:
static std::string GetInstanceString(int dummy) {
return absl::StrCat("ThrowingAllocator<",
exceptions_internal::GetSpecString(Spec), ">(", dummy,
")");
}
const std::shared_ptr<const int>& State() const { return dummy_; }
std::shared_ptr<const int>& State() { return dummy_; }
void ReadState() {
if (*dummy_ < 0) std::abort();
}
void ReadStateAndMaybeThrow(absl::string_view msg) const {
if (!IsSpecified(AllocSpec::kNoThrowAllocate)) {
exceptions_internal::MaybeThrow(
absl::Substitute("Allocator id $0 threw from $1", *dummy_, msg));
}
}
static int next_id_;
std::shared_ptr<const int> dummy_;
};
template <typename T, AllocSpec Spec>
int ThrowingAllocator<T, Spec>::next_id_ = 0;
template <typename T, typename... Args>
void TestThrowingCtor(Args&&... args) {
struct Cleanup {
~Cleanup() { exceptions_internal::UnsetCountdown(); }
} c;
for (int count = 0;; ++count) {
exceptions_internal::ConstructorTracker ct(count);
exceptions_internal::SetCountdown(count);
try {
T temp(std::forward<Args>(args)...);
static_cast<void>(temp);
break;
} catch (const exceptions_internal::TestException&) {
}
}
}
template <typename Operation>
testing::AssertionResult TestNothrowOp(const Operation& operation) {
struct Cleanup {
Cleanup() { exceptions_internal::SetCountdown(); }
~Cleanup() { exceptions_internal::UnsetCountdown(); }
} c;
try {
operation();
return testing::AssertionSuccess();
} catch (const exceptions_internal::TestException&) {
return testing::AssertionFailure()
<< "TestException thrown during call to operation() when nothrow "
"guarantee was expected.";
} catch (...) {
return testing::AssertionFailure()
<< "Unknown exception thrown during call to operation() when "
"nothrow guarantee was expected.";
}
}
namespace exceptions_internal {
struct UninitializedT {};
template <typename T>
class DefaultFactory {
public:
explicit DefaultFactory(const T& t) : t_(t) {}
std::unique_ptr<T> operator()() const { return absl::make_unique<T>(t_); }
private:
T t_;
};
template <size_t LazyContractsCount, typename LazyFactory,
typename LazyOperation>
using EnableIfTestable = typename absl::enable_if_t<
LazyContractsCount != 0 &&
!std::is_same<LazyFactory, UninitializedT>::value &&
!std::is_same<LazyOperation, UninitializedT>::value>;
template <typename Factory = UninitializedT,
typename Operation = UninitializedT, typename... Contracts>
class ExceptionSafetyTestBuilder;
}
exceptions_internal::ExceptionSafetyTestBuilder<> MakeExceptionSafetyTester();
namespace exceptions_internal {
template <typename T>
struct IsUniquePtr : std::false_type {};
template <typename T, typename D>
struct IsUniquePtr<std::unique_ptr<T, D>> : std::true_type {};
template <typename Factory>
struct FactoryPtrTypeHelper {
using type = decltype(std::declval<const Factory&>()());
static_assert(IsUniquePtr<type>::value, "Factories must return a unique_ptr");
};
template <typename Factory>
using FactoryPtrType = typename FactoryPtrTypeHelper<Factory>::type;
template <typename Factory>
using FactoryElementType = typename FactoryPtrType<Factory>::element_type;
template <typename T>
class ExceptionSafetyTest {
using Factory = std::function<std::unique_ptr<T>()>;
using Operation = std::function<void(T*)>;
using Contract = std::function<AssertionResult(T*)>;
public:
template <typename... Contracts>
explicit ExceptionSafetyTest(const Factory& f, const Operation& op,
const Contracts&... contracts)
: factory_(f), operation_(op), contracts_{WrapContract(contracts)...} {}
AssertionResult Test() const {
for (int count = 0;; ++count) {
exceptions_internal::ConstructorTracker ct(count);
for (const auto& contract : contracts_) {
auto t_ptr = factory_();
try {
SetCountdown(count);
operation_(t_ptr.get());
UnsetCountdown();
return AssertionSuccess();
} catch (const exceptions_internal::TestException& e) {
if (!contract(t_ptr.get())) {
return AssertionFailure() << e.what() << " failed contract check";
}
}
}
}
}
private:
template <typename ContractFn>
Contract WrapContract(const ContractFn& contract) {
return [contract](T* t_ptr) { return AssertionResult(contract(t_ptr)); };
}
Contract WrapContract(StrongGuaranteeTagType) {
return [this](T* t_ptr) { return AssertionResult(*factory_() == *t_ptr); };
}
Factory factory_;
Operation operation_;
std::vector<Contract> contracts_;
};
template <typename Factory, typename Operation, typename... Contracts>
class ExceptionSafetyTestBuilder {
public:
/*
* Returns a new ExceptionSafetyTestBuilder with an included T factory based
* on the provided T instance. The existing factory will not be included in
* the newly created tes | #include "absl/base/internal/exception_safety_testing.h"
#ifdef ABSL_HAVE_EXCEPTIONS
#include <cstddef>
#include <exception>
#include <iostream>
#include <list>
#include <type_traits>
#include <vector>
#include "gtest/gtest-spi.h"
#include "gtest/gtest.h"
#include "absl/memory/memory.h"
namespace testing {
namespace {
using ::testing::exceptions_internal::SetCountdown;
using ::testing::exceptions_internal::TestException;
using ::testing::exceptions_internal::UnsetCountdown;
template <typename F>
void ExpectNoThrow(const F& f) {
try {
f();
} catch (const TestException& e) {
ADD_FAILURE() << "Unexpected exception thrown from " << e.what();
}
}
TEST(ThrowingValueTest, Throws) {
SetCountdown();
EXPECT_THROW(ThrowingValue<> bomb, TestException);
SetCountdown(2);
ExpectNoThrow([]() { ThrowingValue<> bomb; });
ExpectNoThrow([]() { ThrowingValue<> bomb; });
EXPECT_THROW(ThrowingValue<> bomb, TestException);
UnsetCountdown();
}
template <typename F>
void TestOp(const F& f) {
ExpectNoThrow(f);
SetCountdown();
EXPECT_THROW(f(), TestException);
UnsetCountdown();
}
TEST(ThrowingValueTest, ThrowingCtors) {
ThrowingValue<> bomb;
TestOp([]() { ThrowingValue<> bomb(1); });
TestOp([&]() { ThrowingValue<> bomb1 = bomb; });
TestOp([&]() { ThrowingValue<> bomb1 = std::move(bomb); });
}
TEST(ThrowingValueTest, ThrowingAssignment) {
ThrowingValue<> bomb, bomb1;
TestOp([&]() { bomb = bomb1; });
TestOp([&]() { bomb = std::move(bomb1); });
{
ThrowingValue<> lhs(39), rhs(42);
ThrowingValue<> lhs_copy(lhs);
SetCountdown();
EXPECT_THROW(lhs = rhs, TestException);
UnsetCountdown();
EXPECT_NE(lhs, rhs);
EXPECT_NE(lhs_copy, lhs);
}
{
ThrowingValue<> lhs(39), rhs(42);
ThrowingValue<> lhs_copy(lhs), rhs_copy(rhs);
SetCountdown();
EXPECT_THROW(lhs = std::move(rhs), TestException);
UnsetCountdown();
EXPECT_NE(lhs, rhs_copy);
EXPECT_NE(lhs_copy, lhs);
}
}
TEST(ThrowingValueTest, ThrowingComparisons) {
ThrowingValue<> bomb1, bomb2;
TestOp([&]() { return bomb1 == bomb2; });
TestOp([&]() { return bomb1 != bomb2; });
TestOp([&]() { return bomb1 < bomb2; });
TestOp([&]() { return bomb1 <= bomb2; });
TestOp([&]() { return bomb1 > bomb2; });
TestOp([&]() { return bomb1 >= bomb2; });
}
TEST(ThrowingValueTest, ThrowingArithmeticOps) {
ThrowingValue<> bomb1(1), bomb2(2);
TestOp([&bomb1]() { +bomb1; });
TestOp([&bomb1]() { -bomb1; });
TestOp([&bomb1]() { ++bomb1; });
TestOp([&bomb1]() { bomb1++; });
TestOp([&bomb1]() { --bomb1; });
TestOp([&bomb1]() { bomb1--; });
TestOp([&]() { bomb1 + bomb2; });
TestOp([&]() { bomb1 - bomb2; });
TestOp([&]() { bomb1* bomb2; });
TestOp([&]() { bomb1 / bomb2; });
TestOp([&]() { bomb1 << 1; });
TestOp([&]() { bomb1 >> 1; });
}
TEST(ThrowingValueTest, ThrowingLogicalOps) {
ThrowingValue<> bomb1, bomb2;
TestOp([&bomb1]() { !bomb1; });
TestOp([&]() { bomb1&& bomb2; });
TestOp([&]() { bomb1 || bomb2; });
}
TEST(ThrowingValueTest, ThrowingBitwiseOps) {
ThrowingValue<> bomb1, bomb2;
TestOp([&bomb1]() { ~bomb1; });
TestOp([&]() { bomb1 & bomb2; });
TestOp([&]() { bomb1 | bomb2; });
TestOp([&]() { bomb1 ^ bomb2; });
}
TEST(ThrowingValueTest, ThrowingCompoundAssignmentOps) {
ThrowingValue<> bomb1(1), bomb2(2);
TestOp([&]() { bomb1 += bomb2; });
TestOp([&]() { bomb1 -= bomb2; });
TestOp([&]() { bomb1 *= bomb2; });
TestOp([&]() { bomb1 /= bomb2; });
TestOp([&]() { bomb1 %= bomb2; });
TestOp([&]() { bomb1 &= bomb2; });
TestOp([&]() { bomb1 |= bomb2; });
TestOp([&]() { bomb1 ^= bomb2; });
TestOp([&]() { bomb1 *= bomb2; });
}
TEST(ThrowingValueTest, ThrowingStreamOps) {
ThrowingValue<> bomb;
TestOp([&]() {
std::istringstream stream;
stream >> bomb;
});
TestOp([&]() {
std::stringstream stream;
stream << bomb;
});
}
TEST(ThrowingValueTest, StreamOpsOutput) {
using ::testing::TypeSpec;
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
EXPECT_NONFATAL_FAILURE(
{
using Thrower = ThrowingValue<TypeSpec{}>;
auto thrower = Thrower(123);
thrower.~Thrower();
},
"ThrowingValue<>(123)");
EXPECT_NONFATAL_FAILURE(
{
using Thrower = ThrowingValue<TypeSpec::kNoThrowCopy>;
auto thrower = Thrower(234);
thrower.~Thrower();
},
"ThrowingValue<kNoThrowCopy>(234)");
EXPECT_NONFATAL_FAILURE(
{
using Thrower =
ThrowingValue<TypeSpec::kNoThrowMove | TypeSpec::kNoThrowNew>;
auto thrower = Thrower(345);
thrower.~Thrower();
},
"ThrowingValue<kNoThrowMove | kNoThrowNew>(345)");
EXPECT_NONFATAL_FAILURE(
{
using Thrower = ThrowingValue<static_cast<TypeSpec>(-1)>;
auto thrower = Thrower(456);
thrower.~Thrower();
},
"ThrowingValue<kNoThrowCopy | kNoThrowMove | kNoThrowNew>(456)");
}
template <typename F>
void TestAllocatingOp(const F& f) {
ExpectNoThrow(f);
SetCountdown();
EXPECT_THROW(f(), exceptions_internal::TestBadAllocException);
UnsetCountdown();
}
TEST(ThrowingValueTest, ThrowingAllocatingOps) {
TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>>(1); });
TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>[]>(2); });
}
TEST(ThrowingValueTest, NonThrowingMoveCtor) {
ThrowingValue<TypeSpec::kNoThrowMove> nothrow_ctor;
SetCountdown();
ExpectNoThrow([¬hrow_ctor]() {
ThrowingValue<TypeSpec::kNoThrowMove> nothrow1 = std::move(nothrow_ctor);
});
UnsetCountdown();
}
TEST(ThrowingValueTest, NonThrowingMoveAssign) {
ThrowingValue<TypeSpec::kNoThrowMove> nothrow_assign1, nothrow_assign2;
SetCountdown();
ExpectNoThrow([¬hrow_assign1, ¬hrow_assign2]() {
nothrow_assign1 = std::move(nothrow_assign2);
});
UnsetCountdown();
}
TEST(ThrowingValueTest, ThrowingCopyCtor) {
ThrowingValue<> tv;
TestOp([&]() { ThrowingValue<> tv_copy(tv); });
}
TEST(ThrowingValueTest, ThrowingCopyAssign) {
ThrowingValue<> tv1, tv2;
TestOp([&]() { tv1 = tv2; });
}
TEST(ThrowingValueTest, NonThrowingCopyCtor) {
ThrowingValue<TypeSpec::kNoThrowCopy> nothrow_ctor;
SetCountdown();
ExpectNoThrow([¬hrow_ctor]() {
ThrowingValue<TypeSpec::kNoThrowCopy> nothrow1(nothrow_ctor);
});
UnsetCountdown();
}
TEST(ThrowingValueTest, NonThrowingCopyAssign) {
ThrowingValue<TypeSpec::kNoThrowCopy> nothrow_assign1, nothrow_assign2;
SetCountdown();
ExpectNoThrow([¬hrow_assign1, ¬hrow_assign2]() {
nothrow_assign1 = nothrow_assign2;
});
UnsetCountdown();
}
TEST(ThrowingValueTest, ThrowingSwap) {
ThrowingValue<> bomb1, bomb2;
TestOp([&]() { std::swap(bomb1, bomb2); });
}
TEST(ThrowingValueTest, NonThrowingSwap) {
ThrowingValue<TypeSpec::kNoThrowMove> bomb1, bomb2;
ExpectNoThrow([&]() { std::swap(bomb1, bomb2); });
}
TEST(ThrowingValueTest, NonThrowingAllocation) {
ThrowingValue<TypeSpec::kNoThrowNew>* allocated;
ThrowingValue<TypeSpec::kNoThrowNew>* array;
ExpectNoThrow([&allocated]() {
allocated = new ThrowingValue<TypeSpec::kNoThrowNew>(1);
delete allocated;
});
ExpectNoThrow([&array]() {
array = new ThrowingValue<TypeSpec::kNoThrowNew>[2];
delete[] array;
});
}
TEST(ThrowingValueTest, NonThrowingDelete) {
auto* allocated = new ThrowingValue<>(1);
auto* array = new ThrowingValue<>[2];
SetCountdown();
ExpectNoThrow([allocated]() { delete allocated; });
SetCountdown();
ExpectNoThrow([array]() { delete[] array; });
UnsetCountdown();
}
TEST(ThrowingValueTest, NonThrowingPlacementDelete) {
constexpr int kArrayLen = 2;
constexpr size_t kExtraSpaceLen = sizeof(size_t) * 2;
alignas(ThrowingValue<>) unsigned char buf[sizeof(ThrowingValue<>)];
alignas(ThrowingValue<>) unsigned char
array_buf[kExtraSpaceLen + sizeof(ThrowingValue<>[kArrayLen])];
auto* placed = new (&buf) ThrowingValue<>(1);
auto placed_array = new (&array_buf) ThrowingValue<>[kArrayLen];
auto* placed_array_end = reinterpret_cast<unsigned char*>(placed_array) +
sizeof(ThrowingValue<>[kArrayLen]);
EXPECT_LE(placed_array_end, array_buf + sizeof(array_buf));
SetCountdown();
ExpectNoThrow([placed, &buf]() {
placed->~ThrowingValue<>();
ThrowingValue<>::operator delete(placed, &buf);
});
SetCountdown();
ExpectNoThrow([&, placed_array]() {
for (int i = 0; i < kArrayLen; ++i) placed_array[i].~ThrowingValue<>();
ThrowingValue<>::operator delete[](placed_array, &array_buf);
});
UnsetCountdown();
}
TEST(ThrowingValueTest, NonThrowingDestructor) {
auto* allocated = new ThrowingValue<>();
SetCountdown();
ExpectNoThrow([allocated]() { delete allocated; });
UnsetCountdown();
}
TEST(ThrowingBoolTest, ThrowingBool) {
ThrowingBool t = true;
if (t) {
}
EXPECT_TRUE(t);
TestOp([&]() { (void)!t; });
}
TEST(ThrowingAllocatorTest, MemoryManagement) {
ThrowingAllocator<int> int_alloc;
int* ip = int_alloc.allocate(1);
int_alloc.deallocate(ip, 1);
int* i_array = int_alloc.allocate(2);
int_alloc.deallocate(i_array, 2);
ThrowingAllocator<ThrowingValue<>> tv_alloc;
ThrowingValue<>* ptr = tv_alloc.allocate(1);
tv_alloc.deallocate(ptr, 1);
ThrowingValue<>* tv_array = tv_alloc.allocate(2);
tv_alloc.deallocate(tv_array, 2);
}
TEST(ThrowingAllocatorTest, CallsGlobalNew) {
ThrowingAllocator<ThrowingValue<>, AllocSpec::kNoThrowAllocate> nothrow_alloc;
ThrowingValue<>* ptr;
SetCountdown();
ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); });
nothrow_alloc.deallocate(ptr, 1);
UnsetCountdown();
}
TEST(ThrowingAllocatorTest, ThrowingConstructors) {
ThrowingAllocator<int> int_alloc;
int* ip = nullptr;
SetCountdown();
EXPECT_THROW(ip = int_alloc.allocate(1), TestException);
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); });
*ip = 1;
SetCountdown();
EXPECT_THROW(int_alloc.construct(ip, 2), TestException);
EXPECT_EQ(*ip, 1);
int_alloc.deallocate(ip, 1);
UnsetCountdown();
}
TEST(ThrowingAllocatorTest, NonThrowingConstruction) {
{
ThrowingAllocator<int, AllocSpec::kNoThrowAllocate> int_alloc;
int* ip = nullptr;
SetCountdown();
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); });
SetCountdown();
ExpectNoThrow([&]() { int_alloc.construct(ip, 2); });
EXPECT_EQ(*ip, 2);
int_alloc.deallocate(ip, 1);
UnsetCountdown();
}
{
ThrowingAllocator<int> int_alloc;
int* ip = nullptr;
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); });
ExpectNoThrow([&]() { int_alloc.construct(ip, 2); });
EXPECT_EQ(*ip, 2);
int_alloc.deallocate(ip, 1);
}
{
ThrowingAllocator<ThrowingValue<>, AllocSpec::kNoThrowAllocate>
nothrow_alloc;
ThrowingValue<>* ptr;
SetCountdown();
ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); });
SetCountdown();
ExpectNoThrow(
[&]() { nothrow_alloc.construct(ptr, 2, testing::nothrow_ctor); });
EXPECT_EQ(ptr->Get(), 2);
nothrow_alloc.destroy(ptr);
nothrow_alloc.deallocate(ptr, 1);
UnsetCountdown();
}
{
ThrowingAllocator<int> a;
SetCountdown();
ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = a; });
SetCountdown();
ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = std::move(a); });
UnsetCountdown();
}
}
TEST(ThrowingAllocatorTest, ThrowingAllocatorConstruction) {
ThrowingAllocator<int> a;
TestOp([]() { ThrowingAllocator<int> a; });
TestOp([&]() { a.select_on_container_copy_construction(); });
}
TEST(ThrowingAllocatorTest, State) {
ThrowingAllocator<int> a1, a2;
EXPECT_NE(a1, a2);
auto a3 = a1;
EXPECT_EQ(a3, a1);
int* ip = a1.allocate(1);
EXPECT_EQ(a3, a1);
a3.deallocate(ip, 1);
EXPECT_EQ(a3, a1);
}
TEST(ThrowingAllocatorTest, InVector) {
std::vector<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> v;
for (int i = 0; i < 20; ++i) v.push_back({});
for (int i = 0; i < 20; ++i) v.pop_back();
}
TEST(ThrowingAllocatorTest, InList) {
std::list<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> l;
for (int i = 0; i < 20; ++i) l.push_back({});
for (int i = 0; i < 20; ++i) l.pop_back();
for (int i = 0; i < 20; ++i) l.push_front({});
for (int i = 0; i < 20; ++i) l.pop_front();
}
template <typename TesterInstance, typename = void>
struct NullaryTestValidator : public std::false_type {};
template <typename TesterInstance>
struct NullaryTestValidator<
TesterInstance,
absl::void_t<decltype(std::declval<TesterInstance>().Test())>>
: public std::true_type {};
template <typename TesterInstance>
bool HasNullaryTest(const TesterInstance&) {
return NullaryTestValidator<TesterInstance>::value;
}
void DummyOp(void*) {}
template <typename TesterInstance, typename = void>
struct UnaryTestValidator : public std::false_type {};
template <typename TesterInstance>
struct UnaryTestValidator<
TesterInstance,
absl::void_t<decltype(std::declval<TesterInstance>().Test(DummyOp))>>
: public std::true_type {};
template <typename TesterInstance>
bool HasUnaryTest(const TesterInstance&) {
return UnaryTestValidator<TesterInstance>::value;
}
TEST(ExceptionSafetyTesterTest, IncompleteTypesAreNotTestable) {
using T = exceptions_internal::UninitializedT;
auto op = [](T* t) {};
auto inv = [](T*) { return testing::AssertionSuccess(); };
auto fac = []() { return absl::make_unique<T>(); };
auto without_fac =
testing::MakeExceptionSafetyTester().WithOperation(op).WithContracts(
inv, testing::strong_guarantee);
EXPECT_FALSE(HasNullaryTest(without_fac));
EXPECT_FALSE(HasUnaryTest(without_fac));
auto without_op = testing::MakeExceptionSafetyTester()
.WithContracts(inv, testing::strong_guarantee)
.WithFactory(fac);
EXPECT_FALSE(HasNullaryTest(without_op));
EXPECT_TRUE(HasUnaryTest(without_op));
auto without_inv =
testing::MakeExceptionSafetyTester().WithOperation(op).WithFactory(fac);
EXPECT_FALSE(HasNullaryTest(without_inv));
EXPECT_FALSE(HasUnaryTest(without_inv));
}
struct ExampleStruct {};
std::unique_ptr<ExampleStruct> ExampleFunctionFactory() {
return absl::make_unique<ExampleStruct>();
}
void ExampleFunctionOperation(ExampleStruct*) {}
testing::AssertionResult ExampleFunctionContract(ExampleStruct*) {
return testing::AssertionSuccess();
}
struct {
std::unique_ptr<ExampleStruct> operator()() const {
return ExampleFunctionFactory();
}
} example_struct_factory;
struct {
void operator()(ExampleStruct*) const {}
} example_struct_operation;
struct {
testing::AssertionResult operator()(ExampleStruct* example_struct) const {
return ExampleFunctionContract(example_struct);
}
} example_struct_contract;
auto example_lambda_factory = []() { return ExampleFunctionFactory(); };
auto example_lambda_operation = [](ExampleStruct*) {};
auto example_lambda_contract = [](ExampleStruct* example_struct) {
return ExampleFunctionContract(example_struct);
};
TEST(ExceptionSafetyTesterTest, MixedFunctionTypes) {
EXPECT_TRUE(testing::MakeExceptionSafetyTester()
.WithFactory(ExampleFunctionFactory)
.WithOperation(ExampleFunctionOperation)
.WithContracts(ExampleFunctionContract)
.Test());
EXPECT_TRUE(testing::MakeExceptionSafetyTester()
.WithFactory(&ExampleFunctionFactory)
.WithOperation(&ExampleFunctionOperation)
.WithContracts(&ExampleFunctionContract)
.Test());
EXPECT_TRUE(testing::MakeExceptionSafetyTester()
.WithFactory(example_struct_factory)
.WithOperation(example_struct_operation)
.WithContracts(example_struct_contract)
.Test());
EXPECT_TRUE(testing::MakeExceptionSafetyTester()
.WithFactory(example_lambda_factory)
.WithOperation(example_lambda_operation)
.WithContracts(example_lambda_contract)
.Test());
}
struct NonNegative {
bool operator==(const NonNegative& other) const { return i == other.i; }
int i;
};
testing::AssertionResult CheckNonNegativeInvariants(NonNegative* g) {
if (g->i >= 0) {
return testing::AssertionSuccess();
}
return testing::AssertionFailure()
<< "i should be non-negative but is " << g->i;
}
struct {
template <typename T>
void operator()(T* t) const {
(*t)();
}
} invoker;
auto tester =
testing::MakeExceptionSafetyTester().WithOperation(invoker).WithContracts(
CheckNonNegativeInvariants);
auto strong_tester = tester.WithContracts(testing::strong_guarantee);
struct FailsBasicGuarantee : public NonNegative {
void operator()() {
--i;
ThrowingValue<> bomb;
++i;
}
};
TEST(ExceptionCheckTest, BasicGuaranteeFailure) {
EXPECT_FALSE(tester.WithInitialValue(FailsBasicGuarantee{}).Test());
}
struct FollowsBasicGuarantee : public NonNegative {
void operator()() {
++i;
ThrowingValue<> bomb;
}
};
TEST(ExceptionCheckTest, BasicGuarantee) {
EXPECT_TRUE(tester.WithInitialValue(FollowsBasicGuarantee{}).Test());
}
TEST(ExceptionCheckTest, StrongGuaranteeFailure) {
EXPECT_FALSE(strong_tester.WithInitialValue(FailsBasicGuarantee{}).Test());
EXPECT_FALSE(strong_tester.WithInitialValue(FollowsBasicGuarantee{}).Test());
}
struct BasicGuaranteeWithExtraContracts : public NonNegative {
void operator()() {
int old_i = i;
i = kExceptionSentinel;
ThrowingValue<> bomb;
i = ++old_i;
}
static constexpr int kExceptionSentinel = 9999;
};
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr int BasicGuaranteeWithExtraContracts::kExceptionSentinel;
#endif
TEST(ExceptionCheckTest, BasicGuaranteeWithExtraContracts) {
auto tester_with_val =
tester.WithInitialValue(BasicGuaranteeWithExtraContracts{});
EXPECT_TRUE(tester_with_val.Test());
EXPECT_TRUE(
tester_with_val
.WithContracts([](BasicGuaranteeWithExtraContracts* o) {
if (o->i == BasicGuaranteeWithExtraContracts::kExceptionSentinel) {
return testing::AssertionSuccess();
}
return testing::AssertionFailure()
<< "i should be "
<< BasicGuaranteeWithExtraContracts::kExceptionSentinel
<< ", but is " << o->i;
})
.Test());
}
struct FollowsStrongGuarantee : public NonNegative {
void operator()() { ThrowingValue<> bomb; }
};
TEST(ExceptionCheckTest, StrongGuarantee) {
EXPECT_TRUE(tester.WithInitialValue(FollowsStrongGuarantee{}).Test());
EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{}).Test());
}
struct HasReset : public NonNegative {
void operator()() {
i = -1;
ThrowingValue<> bomb;
i = 1;
}
void reset() { i = 0; }
};
testing::AssertionResult CheckHasResetContracts(HasReset* h) {
h->reset();
return testing::AssertionResult(h->i == 0);
}
TEST(ExceptionCheckTest, ModifyingChecker) {
auto set_to_1000 = [](FollowsBasicGuarantee* g) {
g->i = 1000;
return testing::AssertionSuccess();
};
auto is_1000 = [](FollowsBasicGuarantee* g) {
return testing::AssertionResult(g->i == 1000);
};
auto increment = [](FollowsStrongGuarantee* g) {
++g->i;
return testing::AssertionSuccess();
};
EXPECT_FALSE(tester.WithInitialValue(FollowsBasicGuarantee{})
.WithContracts(set_to_1000, is_1000)
.Test());
EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{})
.WithContracts(increment)
.Test());
EXPECT_TRUE(testing::MakeExceptionSafetyTester()
.WithInitialValue(HasReset{})
.WithContracts(CheckHasResetContracts)
.Test(invoker));
}
TEST(ExceptionSafetyTesterTest, ResetsCountdown) {
auto test =
testing::MakeExceptionSafetyTester()
.WithInitialValue(ThrowingValue<>())
.WithContracts([](ThrowingValue<>*) { return AssertionSuccess(); })
.WithOperation([](ThrowingValue<>*) {});
ASSERT_TRUE(test.Test());
EXPECT_TRUE(test.Test());
}
struct NonCopyable : public NonNegative {
NonCopyable(const NonCopyable&) = delete;
NonCopyable() : NonNegative{0} {}
void operator()() { ThrowingValue<> bomb; }
};
TEST(ExceptionCheckTest, NonCopyable) {
auto factory = []() { return absl::make_unique<NonCopyable>(); };
EXPECT_TRUE(tester.WithFactory(factory).Test());
EXPECT_TRUE(strong_tester.WithFactory(factory).Test());
}
struct NonEqualityComparable : public NonNegative {
void operator()() { ThrowingValue<> bomb; }
void ModifyOnThrow() {
++i;
ThrowingValue<> bomb;
static_cast<void>(bomb);
--i;
}
};
TEST(ExceptionCheckTest, NonEqualityComparable) {
auto nec_is_strong = [](NonEqualityComparable* nec) {
return testing::AssertionResult(nec->i == NonEqualityComparable().i);
};
auto strong_nec_tester = tester.WithInitialValue(NonEqualityComparable{})
.WithContracts(nec_is_strong);
EXPECT_TRUE(strong_nec_tester.Test());
EXPECT_FALSE(strong_nec_tester.Test(
[](NonEqualityComparable* n) { n->ModifyOnThrow(); }));
}
template <typename T>
struct ExhaustivenessTester {
void operator()() {
successes |= 1;
T b1;
static_cast<void>(b1);
successes |= (1 << 1);
T b2;
static_cast<void>(b2);
successes |= (1 << 2);
T b3;
static_cast<void>(b3);
successes |= (1 << 3);
}
bool operator==(const ExhaustivenessTester<ThrowingValue<>>&) const {
return true;
}
static unsigned char successes;
};
struct {
template <typename T>
testing::AssertionResult operator()(ExhaustivenessTester<T>*) const {
return testing::AssertionSuccess();
}
} CheckExhaustivenessTesterContracts;
template <typename T>
unsigned char ExhaustivenessTester<T>::successes = 0;
TEST(ExceptionCheckTest, Exhaustiveness) {
auto exhaust_tester = testing::MakeExceptionSafetyTester()
.WithContracts(CheckExhaustivenessTesterContracts)
.WithOperation(invoker);
EXPECT_TRUE(
exhaust_tester.WithInitialValue(ExhaustivenessTester<int>{}).Test());
EXPECT_EQ(ExhaustivenessTester<int>::successes, 0xF);
EXPECT_TRUE(
exhaust_tester.WithInitialValue(ExhaustivenessTester<ThrowingValue<>>{})
.WithContracts(testing::strong_guarantee)
.Test());
EXPECT_EQ(ExhaustivenessTester<ThrowingValue<>>::successes, 0xF);
}
struct LeaksIfCtorThrows : private exceptions_internal::TrackedObject {
LeaksIfCtorThrows() : TrackedObject(ABSL_PRETTY_FUNCTION) {
++counter;
ThrowingValue<> v;
static_cast<void>(v);
--counter;
}
LeaksIfCtorThrows(const LeaksIfCtorThrows&) noexcept
: TrackedObject(ABSL_PRETTY_FUNCTION) {}
static int counter;
};
int LeaksIfCtorThrows::counter = 0;
TEST(ExceptionCheckTest, TestLeakyCtor) {
testing::TestThrowingCtor<LeaksIfCtorThrows>();
EXPECT_EQ(LeaksIfCtorThrows::counter, 1);
LeaksIfCtorThrows::counter = 0;
}
struct Tracked : private exceptions_internal::TrackedObject {
Tracked() : TrackedObject(ABSL_PRETTY_FUNCTION) {}
};
TEST(ConstructorTrackerTest, CreatedBefore) {
Tracked a, b, c;
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
}
TEST(ConstructorTrackerTest, CreatedAfter) {
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
Tracked a, b, c;
}
TEST(ConstructorTrackerTest, NotDestroyedAfter) {
alignas(Tracked) unsigned char storage[sizeof(Tracked)];
EXPECT_NONFATAL_FAILURE(
{
exceptions_internal::ConstructorTracker ct(
exceptions_internal::countdown);
new (&storage) Tracked();
},
"not destroyed");
}
TEST(ConstructorTrackerTest, DestroyedTwice) {
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
EXPECT_NONFATAL_FAILURE(
{
Tracked t;
t.~Tracked();
},
"re-destroyed");
}
TEST(ConstructorTrackerTest, ConstructedTwice) {
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown);
alignas(Tracked) unsigned char storage[sizeof(Tracked)];
EXPECT_NONFATAL_FAILURE(
{
new (&storage) Tracked();
new (&storage) Tracked();
reinterpret_cast<Tracked*>(&storage)->~Tracked();
},
"re-constructed");
}
TEST(ThrowingValueTraitsTest, RelationalOperators) {
ThrowingValue<> a, b;
EXPECT_TRUE((std::is_convertible<decltype(a == b), bool>::value));
EXPECT_TRUE((std::is_convertible<decltype(a != b), bool>::value));
EXPECT_TRUE((std::is_convertible<decltype(a < b), bool>::value));
EXPECT_TRUE((std::is_convertible<decltype(a <= b), bool>::value));
EXPECT_TRUE((std::is_convertible<decltype(a > b), bool>::value));
EXPECT_TRUE((std::is_convertible<decltype(a >= b), bool>::value));
}
TEST(ThrowingAllocatorTraitsTest, Assignablility) {
EXPECT_TRUE(absl::is_move_assignable<ThrowingAllocator<int>>::value);
EXPECT_TRUE(absl::is_copy_assignable<ThrowingAllocator<int>>::value);
EXPECT_TRUE(std::is_nothrow_move_assignable<ThrowingAllocator<int>>::value);
EXPECT_TRUE(std::is_nothrow_copy_assignable<ThrowingAllocator<int>>::value);
}
}
}
#endif | 2,523 |
#ifndef ABSL_BASE_INTERNAL_THREAD_IDENTITY_H_
#define ABSL_BASE_INTERNAL_THREAD_IDENTITY_H_
#ifndef _WIN32
#include <pthread.h>
#include <unistd.h>
#endif
#include <atomic>
#include <cstdint>
#include "absl/base/config.h"
#include "absl/base/internal/per_thread_tls.h"
#include "absl/base/optimization.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
struct SynchLocksHeld;
struct SynchWaitParams;
namespace base_internal {
class SpinLock;
struct ThreadIdentity;
struct PerThreadSynch {
static constexpr int kLowZeroBits = 8;
static constexpr int kAlignment = 1 << kLowZeroBits;
ThreadIdentity* thread_identity() {
return reinterpret_cast<ThreadIdentity*>(this);
}
PerThreadSynch* next;
PerThreadSynch* skip;
bool may_skip;
bool wake;
bool cond_waiter;
bool maybe_unlocking;
bool suppress_fatal_errors;
int priority;
enum State { kAvailable, kQueued };
std::atomic<State> state;
SynchWaitParams* waitp;
intptr_t readers;
int64_t next_priority_read_cycles;
SynchLocksHeld* all_locks;
};
struct ThreadIdentity {
PerThreadSynch per_thread_synch;
struct WaiterState {
alignas(void*) char data[256];
} waiter_state;
std::atomic<int>* blocked_count_ptr;
std::atomic<int> ticker;
std::atomic<int> wait_start;
std::atomic<bool> is_idle;
ThreadIdentity* next;
};
ThreadIdentity* CurrentThreadIdentityIfPresent();
using ThreadIdentityReclaimerFunction = void (*)(void*);
void SetCurrentThreadIdentity(ThreadIdentity* identity,
ThreadIdentityReclaimerFunction reclaimer);
void ClearCurrentThreadIdentity();
#ifdef ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
#error ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC cannot be directly set
#else
#define ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC 0
#endif
#ifdef ABSL_THREAD_IDENTITY_MODE_USE_TLS
#error ABSL_THREAD_IDENTITY_MODE_USE_TLS cannot be directly set
#else
#define ABSL_THREAD_IDENTITY_MODE_USE_TLS 1
#endif
#ifdef ABSL_THREAD_IDENTITY_MODE_USE_CPP11
#error ABSL_THREAD_IDENTITY_MODE_USE_CPP11 cannot be directly set
#else
#define ABSL_THREAD_IDENTITY_MODE_USE_CPP11 2
#endif
#ifdef ABSL_THREAD_IDENTITY_MODE
#error ABSL_THREAD_IDENTITY_MODE cannot be directly set
#elif defined(ABSL_FORCE_THREAD_IDENTITY_MODE)
#define ABSL_THREAD_IDENTITY_MODE ABSL_FORCE_THREAD_IDENTITY_MODE
#elif defined(_WIN32) && !defined(__MINGW32__)
#define ABSL_THREAD_IDENTITY_MODE ABSL_THREAD_IDENTITY_MODE_USE_CPP11
#elif defined(__APPLE__) && defined(ABSL_HAVE_THREAD_LOCAL)
#define ABSL_THREAD_IDENTITY_MODE ABSL_THREAD_IDENTITY_MODE_USE_CPP11
#elif ABSL_PER_THREAD_TLS && defined(__GOOGLE_GRTE_VERSION__) && \
(__GOOGLE_GRTE_VERSION__ >= 20140228L)
#define ABSL_THREAD_IDENTITY_MODE ABSL_THREAD_IDENTITY_MODE_USE_TLS
#else
#define ABSL_THREAD_IDENTITY_MODE \
ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
#endif
#if ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_TLS || \
ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_CPP11
#if ABSL_PER_THREAD_TLS
ABSL_CONST_INIT extern ABSL_PER_THREAD_TLS_KEYWORD ThreadIdentity*
thread_identity_ptr;
#elif defined(ABSL_HAVE_THREAD_LOCAL)
ABSL_CONST_INIT extern thread_local ThreadIdentity* thread_identity_ptr;
#else
#error Thread-local storage not detected on this platform
#endif
#if !defined(__APPLE__) && !defined(ABSL_BUILD_DLL) && \
!defined(ABSL_CONSUME_DLL)
#define ABSL_INTERNAL_INLINE_CURRENT_THREAD_IDENTITY_IF_PRESENT 1
#endif
#ifdef ABSL_INTERNAL_INLINE_CURRENT_THREAD_IDENTITY_IF_PRESENT
inline ThreadIdentity* CurrentThreadIdentityIfPresent() {
return thread_identity_ptr;
}
#endif
#elif ABSL_THREAD_IDENTITY_MODE != \
ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
#error Unknown ABSL_THREAD_IDENTITY_MODE
#endif
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/base/internal/thread_identity.h"
#if !defined(_WIN32) || defined(__MINGW32__)
#include <pthread.h>
#ifndef __wasi__
#include <signal.h>
#endif
#endif
#include <atomic>
#include <cassert>
#include <memory>
#include "absl/base/attributes.h"
#include "absl/base/call_once.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
#if ABSL_THREAD_IDENTITY_MODE != ABSL_THREAD_IDENTITY_MODE_USE_CPP11
namespace {
absl::once_flag init_thread_identity_key_once;
pthread_key_t thread_identity_pthread_key;
std::atomic<bool> pthread_key_initialized(false);
void AllocateThreadIdentityKey(ThreadIdentityReclaimerFunction reclaimer) {
pthread_key_create(&thread_identity_pthread_key, reclaimer);
pthread_key_initialized.store(true, std::memory_order_release);
}
}
#endif
#if ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_TLS || \
ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_CPP11
ABSL_CONST_INIT
#if ABSL_HAVE_ATTRIBUTE(visibility) && !defined(__APPLE__)
__attribute__((visibility("protected")))
#endif
#if ABSL_PER_THREAD_TLS
ABSL_PER_THREAD_TLS_KEYWORD ThreadIdentity* thread_identity_ptr = nullptr;
#elif defined(ABSL_HAVE_THREAD_LOCAL)
thread_local ThreadIdentity* thread_identity_ptr = nullptr;
#endif
#endif
void SetCurrentThreadIdentity(ThreadIdentity* identity,
ThreadIdentityReclaimerFunction reclaimer) {
assert(CurrentThreadIdentityIfPresent() == nullptr);
#if ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
absl::call_once(init_thread_identity_key_once, AllocateThreadIdentityKey,
reclaimer);
#if defined(__wasi__) || defined(__EMSCRIPTEN__) || defined(__MINGW32__) || \
defined(__hexagon__)
pthread_setspecific(thread_identity_pthread_key,
reinterpret_cast<void*>(identity));
#else
sigset_t all_signals;
sigset_t curr_signals;
sigfillset(&all_signals);
pthread_sigmask(SIG_SETMASK, &all_signals, &curr_signals);
pthread_setspecific(thread_identity_pthread_key,
reinterpret_cast<void*>(identity));
pthread_sigmask(SIG_SETMASK, &curr_signals, nullptr);
#endif
#elif ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_TLS
absl::call_once(init_thread_identity_key_once, AllocateThreadIdentityKey,
reclaimer);
pthread_setspecific(thread_identity_pthread_key,
reinterpret_cast<void*>(identity));
thread_identity_ptr = identity;
#elif ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_CPP11
thread_local std::unique_ptr<ThreadIdentity, ThreadIdentityReclaimerFunction>
holder(identity, reclaimer);
thread_identity_ptr = identity;
#else
#error Unimplemented ABSL_THREAD_IDENTITY_MODE
#endif
}
#if ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_TLS || \
ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_CPP11
#ifndef ABSL_INTERNAL_INLINE_CURRENT_THREAD_IDENTITY_IF_PRESENT
ThreadIdentity* CurrentThreadIdentityIfPresent() { return thread_identity_ptr; }
#endif
#endif
void ClearCurrentThreadIdentity() {
#if ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_TLS || \
ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_CPP11
thread_identity_ptr = nullptr;
#elif ABSL_THREAD_IDENTITY_MODE == \
ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
assert(CurrentThreadIdentityIfPresent() == nullptr);
#endif
}
#if ABSL_THREAD_IDENTITY_MODE == ABSL_THREAD_IDENTITY_MODE_USE_POSIX_SETSPECIFIC
ThreadIdentity* CurrentThreadIdentityIfPresent() {
bool initialized = pthread_key_initialized.load(std::memory_order_acquire);
if (!initialized) {
return nullptr;
}
return reinterpret_cast<ThreadIdentity*>(
pthread_getspecific(thread_identity_pthread_key));
}
#endif
}
ABSL_NAMESPACE_END
} | #include "absl/base/internal/thread_identity.h"
#include <thread>
#include <vector>
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/macros.h"
#include "absl/base/thread_annotations.h"
#include "absl/synchronization/internal/per_thread_sem.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
namespace {
ABSL_CONST_INIT static absl::base_internal::SpinLock map_lock(
absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
ABSL_CONST_INIT static int num_identities_reused ABSL_GUARDED_BY(map_lock);
static const void* const kCheckNoIdentity = reinterpret_cast<void*>(1);
static void TestThreadIdentityCurrent(const void* assert_no_identity) {
ThreadIdentity* identity;
if (assert_no_identity == kCheckNoIdentity) {
identity = CurrentThreadIdentityIfPresent();
EXPECT_TRUE(identity == nullptr);
}
identity = synchronization_internal::GetOrCreateCurrentThreadIdentity();
EXPECT_TRUE(identity != nullptr);
ThreadIdentity* identity_no_init;
identity_no_init = CurrentThreadIdentityIfPresent();
EXPECT_TRUE(identity == identity_no_init);
EXPECT_EQ(0, reinterpret_cast<intptr_t>(&identity->per_thread_synch) %
PerThreadSynch::kAlignment);
EXPECT_EQ(identity, identity->per_thread_synch.thread_identity());
absl::base_internal::SpinLockHolder l(&map_lock);
num_identities_reused++;
}
TEST(ThreadIdentityTest, BasicIdentityWorks) {
TestThreadIdentityCurrent(nullptr);
}
TEST(ThreadIdentityTest, BasicIdentityWorksThreaded) {
static const int kNumLoops = 3;
static const int kNumThreads = 32;
for (int iter = 0; iter < kNumLoops; iter++) {
std::vector<std::thread> threads;
for (int i = 0; i < kNumThreads; ++i) {
threads.push_back(
std::thread(TestThreadIdentityCurrent, kCheckNoIdentity));
}
for (auto& thread : threads) {
thread.join();
}
}
absl::base_internal::SpinLockHolder l(&map_lock);
EXPECT_LT(kNumThreads, num_identities_reused);
}
TEST(ThreadIdentityTest, ReusedThreadIdentityMutexTest) {
static const int kNumLoops = 10;
static const int kNumThreads = 12;
static const int kNumMutexes = 3;
static const int kNumLockLoops = 5;
Mutex mutexes[kNumMutexes];
for (int iter = 0; iter < kNumLoops; ++iter) {
std::vector<std::thread> threads;
for (int thread = 0; thread < kNumThreads; ++thread) {
threads.push_back(std::thread([&]() {
for (int l = 0; l < kNumLockLoops; ++l) {
for (int m = 0; m < kNumMutexes; ++m) {
MutexLock lock(&mutexes[m]);
}
}
}));
}
for (auto& thread : threads) {
thread.join();
}
}
}
}
}
ABSL_NAMESPACE_END
} | 2,524 |
#ifndef ABSL_BASE_INTERNAL_POISON_H_
#define ABSL_BASE_INTERNAL_POISON_H_
#include <atomic>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
extern std::atomic<void*> poison_data;
inline void* get_poisoned_pointer() {
return poison_data.load(std::memory_order_relaxed);
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/base/internal/poison.h"
#include <atomic>
#include <cstdint>
#include <cstdlib>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#if defined(ABSL_HAVE_ADDRESS_SANITIZER)
#include <sanitizer/asan_interface.h>
#elif defined(ABSL_HAVE_MEMORY_SANITIZER)
#include <sanitizer/msan_interface.h>
#elif defined(ABSL_HAVE_MMAP) && !defined(SGX_SIM)
#include <sys/mman.h>
#elif defined(_MSC_VER)
#include <windows.h>
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
namespace {
constexpr size_t kPageSize = 1 << 12;
alignas(kPageSize) static char poison_page[kPageSize];
}
std::atomic<void*> poison_data = {&poison_page};
namespace {
#if defined(ABSL_HAVE_ADDRESS_SANITIZER)
void PoisonBlock(void* data) { ASAN_POISON_MEMORY_REGION(data, kPageSize); }
#elif defined(ABSL_HAVE_MEMORY_SANITIZER)
void PoisonBlock(void* data) { __msan_poison(data, kPageSize); }
#elif defined(ABSL_HAVE_MMAP)
void PoisonBlock(void* data) { mprotect(data, kPageSize, PROT_NONE); }
#elif defined(_MSC_VER)
void PoisonBlock(void* data) {
DWORD old_mode = 0;
VirtualProtect(data, kPageSize, PAGE_NOACCESS, &old_mode);
}
#else
void PoisonBlock(void* data) {
constexpr uint64_t kBadPtr = 0xBAD0BAD0BAD0BAD0;
poison_data = reinterpret_cast<void*>(static_cast<uintptr_t>(kBadPtr));
}
#endif
void* InitializePoisonedPointer() {
PoisonBlock(&poison_page);
return &poison_page;
}
}
ABSL_ATTRIBUTE_UNUSED void* force_initialize = InitializePoisonedPointer();
}
ABSL_NAMESPACE_END
} | #include "absl/base/internal/poison.h"
#include <iostream>
#include "gtest/gtest.h"
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
namespace {
TEST(PoisonTest, CrashesOnDereference) {
#ifdef __ANDROID__
GTEST_SKIP() << "On Android, poisoned pointer dereference times out instead "
"of crashing.";
#endif
void* poisoned_ptr = get_poisoned_pointer();
EXPECT_DEATH_IF_SUPPORTED(std::cout << *static_cast<int*>(poisoned_ptr), "");
}
}
}
ABSL_NAMESPACE_END
} | 2,525 |
#ifndef ABSL_BASE_INTERNAL_LOW_LEVEL_ALLOC_H_
#define ABSL_BASE_INTERNAL_LOW_LEVEL_ALLOC_H_
#include <sys/types.h>
#include <cstdint>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#ifdef ABSL_LOW_LEVEL_ALLOC_MISSING
#error ABSL_LOW_LEVEL_ALLOC_MISSING cannot be directly set
#elif !defined(ABSL_HAVE_MMAP) && !defined(_WIN32)
#define ABSL_LOW_LEVEL_ALLOC_MISSING 1
#endif
#ifdef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
#error ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING cannot be directly set
#elif defined(_WIN32) || defined(__asmjs__) || defined(__wasm__) || \
defined(__hexagon__)
#define ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING 1
#endif
#include <cstddef>
#include "absl/base/port.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
class LowLevelAlloc {
public:
struct Arena;
static void *Alloc(size_t request) ABSL_ATTRIBUTE_SECTION(malloc_hook);
static void *AllocWithArena(size_t request, Arena *arena)
ABSL_ATTRIBUTE_SECTION(malloc_hook);
static void Free(void *s) ABSL_ATTRIBUTE_SECTION(malloc_hook);
enum {
kCallMallocHook = 0x0001,
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
kAsyncSignalSafe = 0x0002,
#endif
};
static Arena *NewArena(uint32_t flags);
static bool DeleteArena(Arena *arena);
static Arena *DefaultArena();
private:
LowLevelAlloc();
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/base/internal/low_level_alloc.h"
#include <type_traits>
#include "absl/base/call_once.h"
#include "absl/base/config.h"
#include "absl/base/internal/direct_mmap.h"
#include "absl/base/internal/scheduling_mode.h"
#include "absl/base/macros.h"
#include "absl/base/thread_annotations.h"
#ifndef ABSL_LOW_LEVEL_ALLOC_MISSING
#ifndef _WIN32
#include <pthread.h>
#include <signal.h>
#include <sys/mman.h>
#include <unistd.h>
#else
#include <windows.h>
#endif
#ifdef __linux__
#include <sys/prctl.h>
#endif
#include <string.h>
#include <algorithm>
#include <atomic>
#include <cerrno>
#include <cstddef>
#include <new>
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
static const int kMaxLevel = 30;
namespace {
struct AllocList {
struct Header {
uintptr_t size;
uintptr_t magic;
LowLevelAlloc::Arena *arena;
void *dummy_for_alignment;
} header;
int levels;
AllocList *next[kMaxLevel];
};
}
static int IntLog2(size_t size, size_t base) {
int result = 0;
for (size_t i = size; i > base; i >>= 1) {
result++;
}
return result;
}
static int Random(uint32_t *state) {
uint32_t r = *state;
int result = 1;
while ((((r = r * 1103515245 + 12345) >> 30) & 1) == 0) {
result++;
}
*state = r;
return result;
}
static int LLA_SkiplistLevels(size_t size, size_t base, uint32_t *random) {
size_t max_fit = (size - offsetof(AllocList, next)) / sizeof(AllocList *);
int level = IntLog2(size, base) + (random != nullptr ? Random(random) : 1);
if (static_cast<size_t>(level) > max_fit) level = static_cast<int>(max_fit);
if (level > kMaxLevel - 1) level = kMaxLevel - 1;
ABSL_RAW_CHECK(level >= 1, "block not big enough for even one level");
return level;
}
static AllocList *LLA_SkiplistSearch(AllocList *head, AllocList *e,
AllocList **prev) {
AllocList *p = head;
for (int level = head->levels - 1; level >= 0; level--) {
for (AllocList *n; (n = p->next[level]) != nullptr && n < e; p = n) {
}
prev[level] = p;
}
return (head->levels == 0) ? nullptr : prev[0]->next[0];
}
static void LLA_SkiplistInsert(AllocList *head, AllocList *e,
AllocList **prev) {
LLA_SkiplistSearch(head, e, prev);
for (; head->levels < e->levels; head->levels++) {
prev[head->levels] = head;
}
for (int i = 0; i != e->levels; i++) {
e->next[i] = prev[i]->next[i];
prev[i]->next[i] = e;
}
}
static void LLA_SkiplistDelete(AllocList *head, AllocList *e,
AllocList **prev) {
AllocList *found = LLA_SkiplistSearch(head, e, prev);
ABSL_RAW_CHECK(e == found, "element not in freelist");
for (int i = 0; i != e->levels && prev[i]->next[i] == e; i++) {
prev[i]->next[i] = e->next[i];
}
while (head->levels > 0 && head->next[head->levels - 1] == nullptr) {
head->levels--;
}
}
struct LowLevelAlloc::Arena {
explicit Arena(uint32_t flags_value);
base_internal::SpinLock mu;
AllocList freelist ABSL_GUARDED_BY(mu);
int32_t allocation_count ABSL_GUARDED_BY(mu);
const uint32_t flags;
const size_t pagesize;
const size_t round_up;
const size_t min_size;
uint32_t random ABSL_GUARDED_BY(mu);
};
namespace {
alignas(LowLevelAlloc::Arena) unsigned char default_arena_storage[sizeof(
LowLevelAlloc::Arena)];
alignas(LowLevelAlloc::Arena) unsigned char unhooked_arena_storage[sizeof(
LowLevelAlloc::Arena)];
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
alignas(
LowLevelAlloc::Arena) unsigned char unhooked_async_sig_safe_arena_storage
[sizeof(LowLevelAlloc::Arena)];
#endif
absl::once_flag create_globals_once;
void CreateGlobalArenas() {
new (&default_arena_storage)
LowLevelAlloc::Arena(LowLevelAlloc::kCallMallocHook);
new (&unhooked_arena_storage) LowLevelAlloc::Arena(0);
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
new (&unhooked_async_sig_safe_arena_storage)
LowLevelAlloc::Arena(LowLevelAlloc::kAsyncSignalSafe);
#endif
}
LowLevelAlloc::Arena *UnhookedArena() {
base_internal::LowLevelCallOnce(&create_globals_once, CreateGlobalArenas);
return reinterpret_cast<LowLevelAlloc::Arena *>(&unhooked_arena_storage);
}
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
LowLevelAlloc::Arena *UnhookedAsyncSigSafeArena() {
base_internal::LowLevelCallOnce(&create_globals_once, CreateGlobalArenas);
return reinterpret_cast<LowLevelAlloc::Arena *>(
&unhooked_async_sig_safe_arena_storage);
}
#endif
}
LowLevelAlloc::Arena *LowLevelAlloc::DefaultArena() {
base_internal::LowLevelCallOnce(&create_globals_once, CreateGlobalArenas);
return reinterpret_cast<LowLevelAlloc::Arena *>(&default_arena_storage);
}
static const uintptr_t kMagicAllocated = 0x4c833e95U;
static const uintptr_t kMagicUnallocated = ~kMagicAllocated;
namespace {
class ABSL_SCOPED_LOCKABLE ArenaLock {
public:
explicit ArenaLock(LowLevelAlloc::Arena *arena)
ABSL_EXCLUSIVE_LOCK_FUNCTION(arena->mu)
: arena_(arena) {
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
if ((arena->flags & LowLevelAlloc::kAsyncSignalSafe) != 0) {
sigset_t all;
sigfillset(&all);
mask_valid_ = pthread_sigmask(SIG_BLOCK, &all, &mask_) == 0;
}
#endif
arena_->mu.Lock();
}
~ArenaLock() { ABSL_RAW_CHECK(left_, "haven't left Arena region"); }
void Leave() ABSL_UNLOCK_FUNCTION() {
arena_->mu.Unlock();
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
if (mask_valid_) {
const int err = pthread_sigmask(SIG_SETMASK, &mask_, nullptr);
if (err != 0) {
ABSL_RAW_LOG(FATAL, "pthread_sigmask failed: %d", err);
}
}
#endif
left_ = true;
}
private:
bool left_ = false;
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
bool mask_valid_ = false;
sigset_t mask_;
#endif
LowLevelAlloc::Arena *arena_;
ArenaLock(const ArenaLock &) = delete;
ArenaLock &operator=(const ArenaLock &) = delete;
};
}
inline static uintptr_t Magic(uintptr_t magic, AllocList::Header *ptr) {
return magic ^ reinterpret_cast<uintptr_t>(ptr);
}
namespace {
size_t GetPageSize() {
#ifdef _WIN32
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
return std::max(system_info.dwPageSize, system_info.dwAllocationGranularity);
#elif defined(__wasm__) || defined(__asmjs__) || defined(__hexagon__)
return getpagesize();
#else
return static_cast<size_t>(sysconf(_SC_PAGESIZE));
#endif
}
size_t RoundedUpBlockSize() {
size_t round_up = 16;
while (round_up < sizeof(AllocList::Header)) {
round_up += round_up;
}
return round_up;
}
}
LowLevelAlloc::Arena::Arena(uint32_t flags_value)
: mu(base_internal::SCHEDULE_KERNEL_ONLY),
allocation_count(0),
flags(flags_value),
pagesize(GetPageSize()),
round_up(RoundedUpBlockSize()),
min_size(2 * round_up),
random(0) {
freelist.header.size = 0;
freelist.header.magic = Magic(kMagicUnallocated, &freelist.header);
freelist.header.arena = this;
freelist.levels = 0;
memset(freelist.next, 0, sizeof(freelist.next));
}
LowLevelAlloc::Arena *LowLevelAlloc::NewArena(uint32_t flags) {
Arena *meta_data_arena = DefaultArena();
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
if ((flags & LowLevelAlloc::kAsyncSignalSafe) != 0) {
meta_data_arena = UnhookedAsyncSigSafeArena();
} else
#endif
if ((flags & LowLevelAlloc::kCallMallocHook) == 0) {
meta_data_arena = UnhookedArena();
}
Arena *result =
new (AllocWithArena(sizeof(*result), meta_data_arena)) Arena(flags);
return result;
}
bool LowLevelAlloc::DeleteArena(Arena *arena) {
ABSL_RAW_CHECK(
arena != nullptr && arena != DefaultArena() && arena != UnhookedArena(),
"may not delete default arena");
ArenaLock section(arena);
if (arena->allocation_count != 0) {
section.Leave();
return false;
}
while (arena->freelist.next[0] != nullptr) {
AllocList *region = arena->freelist.next[0];
size_t size = region->header.size;
arena->freelist.next[0] = region->next[0];
ABSL_RAW_CHECK(
region->header.magic == Magic(kMagicUnallocated, ®ion->header),
"bad magic number in DeleteArena()");
ABSL_RAW_CHECK(region->header.arena == arena,
"bad arena pointer in DeleteArena()");
ABSL_RAW_CHECK(size % arena->pagesize == 0,
"empty arena has non-page-aligned block size");
ABSL_RAW_CHECK(reinterpret_cast<uintptr_t>(region) % arena->pagesize == 0,
"empty arena has non-page-aligned block");
int munmap_result;
#ifdef _WIN32
munmap_result = VirtualFree(region, 0, MEM_RELEASE);
ABSL_RAW_CHECK(munmap_result != 0,
"LowLevelAlloc::DeleteArena: VitualFree failed");
#else
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
if ((arena->flags & LowLevelAlloc::kAsyncSignalSafe) == 0) {
munmap_result = munmap(region, size);
} else {
munmap_result = base_internal::DirectMunmap(region, size);
}
#else
munmap_result = munmap(region, size);
#endif
if (munmap_result != 0) {
ABSL_RAW_LOG(FATAL, "LowLevelAlloc::DeleteArena: munmap failed: %d",
errno);
}
#endif
}
section.Leave();
arena->~Arena();
Free(arena);
return true;
}
static inline uintptr_t CheckedAdd(uintptr_t a, uintptr_t b) {
uintptr_t sum = a + b;
ABSL_RAW_CHECK(sum >= a, "LowLevelAlloc arithmetic overflow");
return sum;
}
static inline uintptr_t RoundUp(uintptr_t addr, uintptr_t align) {
return CheckedAdd(addr, align - 1) & ~(align - 1);
}
static AllocList *Next(int i, AllocList *prev, LowLevelAlloc::Arena *arena) {
ABSL_RAW_CHECK(i < prev->levels, "too few levels in Next()");
AllocList *next = prev->next[i];
if (next != nullptr) {
ABSL_RAW_CHECK(
next->header.magic == Magic(kMagicUnallocated, &next->header),
"bad magic number in Next()");
ABSL_RAW_CHECK(next->header.arena == arena, "bad arena pointer in Next()");
if (prev != &arena->freelist) {
ABSL_RAW_CHECK(prev < next, "unordered freelist");
ABSL_RAW_CHECK(reinterpret_cast<char *>(prev) + prev->header.size <
reinterpret_cast<char *>(next),
"malformed freelist");
}
}
return next;
}
static void Coalesce(AllocList *a) {
AllocList *n = a->next[0];
if (n != nullptr && reinterpret_cast<char *>(a) + a->header.size ==
reinterpret_cast<char *>(n)) {
LowLevelAlloc::Arena *arena = a->header.arena;
a->header.size += n->header.size;
n->header.magic = 0;
n->header.arena = nullptr;
AllocList *prev[kMaxLevel];
LLA_SkiplistDelete(&arena->freelist, n, prev);
LLA_SkiplistDelete(&arena->freelist, a, prev);
a->levels =
LLA_SkiplistLevels(a->header.size, arena->min_size, &arena->random);
LLA_SkiplistInsert(&arena->freelist, a, prev);
}
}
static void AddToFreelist(void *v, LowLevelAlloc::Arena *arena) {
AllocList *f = reinterpret_cast<AllocList *>(reinterpret_cast<char *>(v) -
sizeof(f->header));
ABSL_RAW_CHECK(f->header.magic == Magic(kMagicAllocated, &f->header),
"bad magic number in AddToFreelist()");
ABSL_RAW_CHECK(f->header.arena == arena,
"bad arena pointer in AddToFreelist()");
f->levels =
LLA_SkiplistLevels(f->header.size, arena->min_size, &arena->random);
AllocList *prev[kMaxLevel];
LLA_SkiplistInsert(&arena->freelist, f, prev);
f->header.magic = Magic(kMagicUnallocated, &f->header);
Coalesce(f);
Coalesce(prev[0]);
}
void LowLevelAlloc::Free(void *v) {
if (v != nullptr) {
AllocList *f = reinterpret_cast<AllocList *>(reinterpret_cast<char *>(v) -
sizeof(f->header));
LowLevelAlloc::Arena *arena = f->header.arena;
ArenaLock section(arena);
AddToFreelist(v, arena);
ABSL_RAW_CHECK(arena->allocation_count > 0, "nothing in arena to free");
arena->allocation_count--;
section.Leave();
}
}
static void *DoAllocWithArena(size_t request, LowLevelAlloc::Arena *arena) {
void *result = nullptr;
if (request != 0) {
AllocList *s;
ArenaLock section(arena);
size_t req_rnd =
RoundUp(CheckedAdd(request, sizeof(s->header)), arena->round_up);
for (;;) {
int i = LLA_SkiplistLevels(req_rnd, arena->min_size, nullptr) - 1;
if (i < arena->freelist.levels) {
AllocList *before = &arena->freelist;
while ((s = Next(i, before, arena)) != nullptr &&
s->header.size < req_rnd) {
before = s;
}
if (s != nullptr) {
break;
}
}
arena->mu.Unlock();
size_t new_pages_size = RoundUp(req_rnd, arena->pagesize * 16);
void *new_pages;
#ifdef _WIN32
new_pages = VirtualAlloc(nullptr, new_pages_size,
MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
ABSL_RAW_CHECK(new_pages != nullptr, "VirtualAlloc failed");
#else
#ifndef ABSL_LOW_LEVEL_ALLOC_ASYNC_SIGNAL_SAFE_MISSING
if ((arena->flags & LowLevelAlloc::kAsyncSignalSafe) != 0) {
new_pages = base_internal::DirectMmap(nullptr, new_pages_size,
PROT_WRITE|PROT_READ, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
} else {
new_pages = mmap(nullptr, new_pages_size, PROT_WRITE | PROT_READ,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
}
#else
new_pages = mmap(nullptr, new_pages_size, PROT_WRITE | PROT_READ,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
#endif
if (new_pages == MAP_FAILED) {
ABSL_RAW_LOG(FATAL, "mmap error: %d", errno);
}
#ifdef __linux__
#if defined(PR_SET_VMA) && defined(PR_SET_VMA_ANON_NAME)
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, new_pages, new_pages_size,
"absl");
#endif
#endif
#endif
arena->mu.Lock();
s = reinterpret_cast<AllocList *>(new_pages);
s->header.size = new_pages_size;
s->header.magic = Magic(kMagicAllocated, &s->header);
s->header.arena = arena;
AddToFreelist(&s->levels, arena);
}
AllocList *prev[kMaxLevel];
LLA_SkiplistDelete(&arena->freelist, s, prev);
if (CheckedAdd(req_rnd, arena->min_size) <= s->header.size) {
AllocList *n =
reinterpret_cast<AllocList *>(req_rnd + reinterpret_cast<char *>(s));
n->header.size = s->header.size - req_rnd;
n->header.magic = Magic(kMagicAllocated, &n->header);
n->header.arena = arena;
s->header.size = req_rnd;
AddToFreelist(&n->levels, arena);
}
s->header.magic = Magic(kMagicAllocated, &s->header);
ABSL_RAW_CHECK(s->header.arena == arena, "");
arena->allocation_count++;
section.Leave();
result = &s->levels;
}
ABSL_ANNOTATE_MEMORY_IS_UNINITIALIZED(result, request);
return result;
}
void *LowLevelAlloc::Alloc(size_t request) {
void *result = DoAllocWithArena(request, DefaultArena());
return result;
}
void *LowLevelAlloc::AllocWithArena(size_t request, Arena *arena) {
ABSL_RAW_CHECK(arena != nullptr, "must pass a valid arena");
void *result = DoAllocWithArena(request, arena);
return result;
}
}
ABSL_NAMESPACE_END
}
#endif | #include "absl/base/internal/low_level_alloc.h"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <thread>
#include <unordered_map>
#include <utility>
#ifdef __EMSCRIPTEN__
#include <emscripten.h>
#endif
#include "absl/container/node_hash_map.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
namespace {
#define TEST_ASSERT(x) \
if (!(x)) { \
printf("TEST_ASSERT(%s) FAILED ON LINE %d\n", #x, __LINE__); \
abort(); \
}
struct BlockDesc {
char *ptr;
int len;
int fill;
};
static void CheckBlockDesc(const BlockDesc &d) {
for (int i = 0; i != d.len; i++) {
TEST_ASSERT((d.ptr[i] & 0xff) == ((d.fill + i) & 0xff));
}
}
static void RandomizeBlockDesc(BlockDesc *d) {
d->fill = rand() & 0xff;
for (int i = 0; i != d->len; i++) {
d->ptr[i] = (d->fill + i) & 0xff;
}
}
static bool using_low_level_alloc = false;
static void Test(bool use_new_arena, bool call_malloc_hook, int n) {
typedef absl::node_hash_map<int, BlockDesc> AllocMap;
AllocMap allocated;
AllocMap::iterator it;
BlockDesc block_desc;
int rnd;
LowLevelAlloc::Arena *arena = nullptr;
if (use_new_arena) {
int32_t flags = call_malloc_hook ? LowLevelAlloc::kCallMallocHook : 0;
arena = LowLevelAlloc::NewArena(flags);
}
for (int i = 0; i != n; i++) {
if (i != 0 && i % 10000 == 0) {
printf(".");
fflush(stdout);
}
switch (rand() & 1) {
case 0:
using_low_level_alloc = true;
block_desc.len = rand() & 0x3fff;
block_desc.ptr = reinterpret_cast<char *>(
arena == nullptr
? LowLevelAlloc::Alloc(block_desc.len)
: LowLevelAlloc::AllocWithArena(block_desc.len, arena));
using_low_level_alloc = false;
RandomizeBlockDesc(&block_desc);
rnd = rand();
it = allocated.find(rnd);
if (it != allocated.end()) {
CheckBlockDesc(it->second);
using_low_level_alloc = true;
LowLevelAlloc::Free(it->second.ptr);
using_low_level_alloc = false;
it->second = block_desc;
} else {
allocated[rnd] = block_desc;
}
break;
case 1:
it = allocated.begin();
if (it != allocated.end()) {
CheckBlockDesc(it->second);
using_low_level_alloc = true;
LowLevelAlloc::Free(it->second.ptr);
using_low_level_alloc = false;
allocated.erase(it);
}
break;
}
}
while ((it = allocated.begin()) != allocated.end()) {
CheckBlockDesc(it->second);
using_low_level_alloc = true;
LowLevelAlloc::Free(it->second.ptr);
using_low_level_alloc = false;
allocated.erase(it);
}
if (use_new_arena) {
TEST_ASSERT(LowLevelAlloc::DeleteArena(arena));
}
}
static struct BeforeMain {
BeforeMain() {
Test(false, false, 50000);
Test(true, false, 50000);
Test(true, true, 50000);
}
} before_main;
}
}
ABSL_NAMESPACE_END
}
int main(int argc, char *argv[]) {
printf("PASS\n");
#ifdef __EMSCRIPTEN__
MAIN_THREAD_EM_ASM({
if (ENVIRONMENT_IS_WEB) {
if (typeof TEST_FINISH === 'function') {
TEST_FINISH($0);
} else {
console.error('Attempted to exit with status ' + $0);
console.error('But TEST_FINSIHED is not a function.');
}
}
}, 0);
#endif
return 0;
} | 2,526 |
#ifndef ABSL_BASE_INTERNAL_RAW_LOGGING_H_
#define ABSL_BASE_INTERNAL_RAW_LOGGING_H_
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/atomic_hook.h"
#include "absl/base/log_severity.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
#define ABSL_RAW_LOG(severity, ...) \
do { \
constexpr const char* absl_raw_log_internal_basename = \
::absl::raw_log_internal::Basename(__FILE__, sizeof(__FILE__) - 1); \
::absl::raw_log_internal::RawLog(ABSL_RAW_LOG_INTERNAL_##severity, \
absl_raw_log_internal_basename, __LINE__, \
__VA_ARGS__); \
ABSL_RAW_LOG_INTERNAL_MAYBE_UNREACHABLE_##severity; \
} while (0)
#define ABSL_RAW_CHECK(condition, message) \
do { \
if (ABSL_PREDICT_FALSE(!(condition))) { \
ABSL_RAW_LOG(FATAL, "Check %s failed: %s", #condition, message); \
} \
} while (0)
#define ABSL_INTERNAL_LOG(severity, message) \
do { \
constexpr const char* absl_raw_log_internal_filename = __FILE__; \
::absl::raw_log_internal::internal_log_function( \
ABSL_RAW_LOG_INTERNAL_##severity, absl_raw_log_internal_filename, \
__LINE__, message); \
ABSL_RAW_LOG_INTERNAL_MAYBE_UNREACHABLE_##severity; \
} while (0)
#define ABSL_INTERNAL_CHECK(condition, message) \
do { \
if (ABSL_PREDICT_FALSE(!(condition))) { \
std::string death_message = "Check " #condition " failed: "; \
death_message += std::string(message); \
ABSL_INTERNAL_LOG(FATAL, death_message); \
} \
} while (0)
#ifndef NDEBUG
#define ABSL_RAW_DLOG(severity, ...) ABSL_RAW_LOG(severity, __VA_ARGS__)
#define ABSL_RAW_DCHECK(condition, message) ABSL_RAW_CHECK(condition, message)
#else
#define ABSL_RAW_DLOG(severity, ...) \
while (false) ABSL_RAW_LOG(severity, __VA_ARGS__)
#define ABSL_RAW_DCHECK(condition, message) \
while (false) ABSL_RAW_CHECK(condition, message)
#endif
#define ABSL_RAW_LOG_INTERNAL_INFO ::absl::LogSeverity::kInfo
#define ABSL_RAW_LOG_INTERNAL_WARNING ::absl::LogSeverity::kWarning
#define ABSL_RAW_LOG_INTERNAL_ERROR ::absl::LogSeverity::kError
#define ABSL_RAW_LOG_INTERNAL_FATAL ::absl::LogSeverity::kFatal
#define ABSL_RAW_LOG_INTERNAL_DFATAL ::absl::kLogDebugFatal
#define ABSL_RAW_LOG_INTERNAL_LEVEL(severity) \
::absl::NormalizeLogSeverity(severity)
#define ABSL_RAW_LOG_INTERNAL_MAYBE_UNREACHABLE_INFO
#define ABSL_RAW_LOG_INTERNAL_MAYBE_UNREACHABLE_WARNING
#define ABSL_RAW_LOG_INTERNAL_MAYBE_UNREACHABLE_ERROR
#define ABSL_RAW_LOG_INTERNAL_MAYBE_UNREACHABLE_FATAL ABSL_UNREACHABLE()
#define ABSL_RAW_LOG_INTERNAL_MAYBE_UNREACHABLE_DFATAL
#define ABSL_RAW_LOG_INTERNAL_MAYBE_UNREACHABLE_LEVEL(severity)
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace raw_log_internal {
void RawLog(absl::LogSeverity severity, const char* file, int line,
const char* format, ...) ABSL_PRINTF_ATTRIBUTE(4, 5);
void AsyncSignalSafeWriteError(const char* s, size_t len);
constexpr const char* Basename(const char* fname, int offset) {
return offset == 0 || fname[offset - 1] == '/' || fname[offset - 1] == '\\'
? fname + offset
: Basename(fname, offset - 1);
}
bool RawLoggingFullySupported();
using LogFilterAndPrefixHook = bool (*)(absl::LogSeverity severity,
const char* file, int line, char** buf,
int* buf_size);
using AbortHook = void (*)(const char* file, int line, const char* buf_start,
const char* prefix_end, const char* buf_end);
using InternalLogFunction = void (*)(absl::LogSeverity severity,
const char* file, int line,
const std::string& message);
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES ABSL_DLL extern base_internal::AtomicHook<
InternalLogFunction>
internal_log_function;
void RegisterLogFilterAndPrefixHook(LogFilterAndPrefixHook func);
void RegisterAbortHook(AbortHook func);
void RegisterInternalLogFunction(InternalLogFunction func);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/base/internal/raw_logging.h"
#include <cstdarg>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#ifdef __EMSCRIPTEN__
#include <emscripten/console.h>
#endif
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/atomic_hook.h"
#include "absl/base/internal/errno_saver.h"
#include "absl/base/log_severity.h"
#if defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || \
defined(__hexagon__) || defined(__Fuchsia__) || \
defined(__native_client__) || defined(__OpenBSD__) || \
defined(__EMSCRIPTEN__) || defined(__ASYLO__)
#include <unistd.h>
#define ABSL_HAVE_POSIX_WRITE 1
#define ABSL_LOW_LEVEL_WRITE_SUPPORTED 1
#else
#undef ABSL_HAVE_POSIX_WRITE
#endif
#if (defined(__linux__) || defined(__FreeBSD__)) && !defined(__ANDROID__)
#include <sys/syscall.h>
#define ABSL_HAVE_SYSCALL_WRITE 1
#define ABSL_LOW_LEVEL_WRITE_SUPPORTED 1
#else
#undef ABSL_HAVE_SYSCALL_WRITE
#endif
#ifdef _WIN32
#include <io.h>
#define ABSL_HAVE_RAW_IO 1
#define ABSL_LOW_LEVEL_WRITE_SUPPORTED 1
#else
#undef ABSL_HAVE_RAW_IO
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace raw_log_internal {
namespace {
#ifdef ABSL_LOW_LEVEL_WRITE_SUPPORTED
constexpr char kTruncated[] = " ... (message truncated)\n";
bool VADoRawLog(char** buf, int* size, const char* format, va_list ap)
ABSL_PRINTF_ATTRIBUTE(3, 0);
bool VADoRawLog(char** buf, int* size, const char* format, va_list ap) {
if (*size < 0) return false;
int n = vsnprintf(*buf, static_cast<size_t>(*size), format, ap);
bool result = true;
if (n < 0 || n > *size) {
result = false;
if (static_cast<size_t>(*size) > sizeof(kTruncated)) {
n = *size - static_cast<int>(sizeof(kTruncated));
} else {
n = 0;
}
}
*size -= n;
*buf += n;
return result;
}
#endif
constexpr int kLogBufSize = 3000;
bool DoRawLog(char** buf, int* size, const char* format, ...)
ABSL_PRINTF_ATTRIBUTE(3, 4);
bool DoRawLog(char** buf, int* size, const char* format, ...) {
if (*size < 0) return false;
va_list ap;
va_start(ap, format);
int n = vsnprintf(*buf, static_cast<size_t>(*size), format, ap);
va_end(ap);
if (n < 0 || n > *size) return false;
*size -= n;
*buf += n;
return true;
}
bool DefaultLogFilterAndPrefix(absl::LogSeverity, const char* file, int line,
char** buf, int* buf_size) {
DoRawLog(buf, buf_size, "[%s : %d] RAW: ", file, line);
return true;
}
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
absl::base_internal::AtomicHook<LogFilterAndPrefixHook>
log_filter_and_prefix_hook(DefaultLogFilterAndPrefix);
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES
absl::base_internal::AtomicHook<AbortHook> abort_hook;
void RawLogVA(absl::LogSeverity severity, const char* file, int line,
const char* format, va_list ap) ABSL_PRINTF_ATTRIBUTE(4, 0);
void RawLogVA(absl::LogSeverity severity, const char* file, int line,
const char* format, va_list ap) {
char buffer[kLogBufSize];
char* buf = buffer;
int size = sizeof(buffer);
#ifdef ABSL_LOW_LEVEL_WRITE_SUPPORTED
bool enabled = true;
#else
bool enabled = false;
#endif
#ifdef ABSL_MIN_LOG_LEVEL
if (severity < static_cast<absl::LogSeverity>(ABSL_MIN_LOG_LEVEL) &&
severity < absl::LogSeverity::kFatal) {
enabled = false;
}
#endif
enabled = log_filter_and_prefix_hook(severity, file, line, &buf, &size);
const char* const prefix_end = buf;
#ifdef ABSL_LOW_LEVEL_WRITE_SUPPORTED
if (enabled) {
bool no_chop = VADoRawLog(&buf, &size, format, ap);
if (no_chop) {
DoRawLog(&buf, &size, "\n");
} else {
DoRawLog(&buf, &size, "%s", kTruncated);
}
AsyncSignalSafeWriteError(buffer, strlen(buffer));
}
#else
static_cast<void>(format);
static_cast<void>(ap);
static_cast<void>(enabled);
#endif
if (severity == absl::LogSeverity::kFatal) {
abort_hook(file, line, buffer, prefix_end, buffer + kLogBufSize);
abort();
}
}
void DefaultInternalLog(absl::LogSeverity severity, const char* file, int line,
const std::string& message) {
RawLog(severity, file, line, "%.*s", static_cast<int>(message.size()),
message.data());
}
}
void AsyncSignalSafeWriteError(const char* s, size_t len) {
if (!len) return;
absl::base_internal::ErrnoSaver errno_saver;
#if defined(__EMSCRIPTEN__)
if (s[len - 1] == '\n') {
len--;
}
#if ABSL_INTERNAL_EMSCRIPTEN_VERSION >= 3001043
emscripten_errn(s, len);
#else
char buf[kLogBufSize];
if (len >= kLogBufSize) {
len = kLogBufSize - 1;
constexpr size_t trunc_len = sizeof(kTruncated) - 2;
memcpy(buf + len - trunc_len, kTruncated, trunc_len);
buf[len] = '\0';
len -= trunc_len;
} else {
buf[len] = '\0';
}
memcpy(buf, s, len);
_emscripten_err(buf);
#endif
#elif defined(ABSL_HAVE_SYSCALL_WRITE)
syscall(SYS_write, STDERR_FILENO, s, len);
#elif defined(ABSL_HAVE_POSIX_WRITE)
write(STDERR_FILENO, s, len);
#elif defined(ABSL_HAVE_RAW_IO)
_write( 2, s, static_cast<unsigned>(len));
#else
(void)s;
(void)len;
#endif
}
void RawLog(absl::LogSeverity severity, const char* file, int line,
const char* format, ...) {
va_list ap;
va_start(ap, format);
RawLogVA(severity, file, line, format, ap);
va_end(ap);
}
bool RawLoggingFullySupported() {
#ifdef ABSL_LOW_LEVEL_WRITE_SUPPORTED
return true;
#else
return false;
#endif
}
ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES ABSL_DLL
absl::base_internal::AtomicHook<InternalLogFunction>
internal_log_function(DefaultInternalLog);
void RegisterLogFilterAndPrefixHook(LogFilterAndPrefixHook func) {
log_filter_and_prefix_hook.Store(func);
}
void RegisterAbortHook(AbortHook func) { abort_hook.Store(func); }
void RegisterInternalLogFunction(InternalLogFunction func) {
internal_log_function.Store(func);
}
}
ABSL_NAMESPACE_END
} | #include "absl/base/internal/raw_logging.h"
#include <tuple>
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
namespace {
TEST(RawLoggingCompilationTest, Log) {
ABSL_RAW_LOG(INFO, "RAW INFO: %d", 1);
ABSL_RAW_LOG(INFO, "RAW INFO: %d %d", 1, 2);
ABSL_RAW_LOG(INFO, "RAW INFO: %d %d %d", 1, 2, 3);
ABSL_RAW_LOG(INFO, "RAW INFO: %d %d %d %d", 1, 2, 3, 4);
ABSL_RAW_LOG(INFO, "RAW INFO: %d %d %d %d %d", 1, 2, 3, 4, 5);
ABSL_RAW_LOG(WARNING, "RAW WARNING: %d", 1);
ABSL_RAW_LOG(ERROR, "RAW ERROR: %d", 1);
}
TEST(RawLoggingCompilationTest, PassingCheck) {
ABSL_RAW_CHECK(true, "RAW CHECK");
}
const char kExpectedDeathOutput[] = "";
TEST(RawLoggingDeathTest, FailingCheck) {
EXPECT_DEATH_IF_SUPPORTED(ABSL_RAW_CHECK(1 == 0, "explanation"),
kExpectedDeathOutput);
}
TEST(RawLoggingDeathTest, LogFatal) {
EXPECT_DEATH_IF_SUPPORTED(ABSL_RAW_LOG(FATAL, "my dog has fleas"),
kExpectedDeathOutput);
}
TEST(InternalLog, CompilationTest) {
ABSL_INTERNAL_LOG(INFO, "Internal Log");
std::string log_msg = "Internal Log";
ABSL_INTERNAL_LOG(INFO, log_msg);
ABSL_INTERNAL_LOG(INFO, log_msg + " 2");
float d = 1.1f;
ABSL_INTERNAL_LOG(INFO, absl::StrCat("Internal log ", 3, " + ", d));
}
TEST(InternalLogDeathTest, FailingCheck) {
EXPECT_DEATH_IF_SUPPORTED(ABSL_INTERNAL_CHECK(1 == 0, "explanation"),
kExpectedDeathOutput);
}
TEST(InternalLogDeathTest, LogFatal) {
EXPECT_DEATH_IF_SUPPORTED(ABSL_INTERNAL_LOG(FATAL, "my dog has fleas"),
kExpectedDeathOutput);
}
} | 2,527 |
#ifndef ABSL_BASE_INTERNAL_THROW_DELEGATE_H_
#define ABSL_BASE_INTERNAL_THROW_DELEGATE_H_
#include <string>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
[[noreturn]] void ThrowStdLogicError(const std::string& what_arg);
[[noreturn]] void ThrowStdLogicError(const char* what_arg);
[[noreturn]] void ThrowStdInvalidArgument(const std::string& what_arg);
[[noreturn]] void ThrowStdInvalidArgument(const char* what_arg);
[[noreturn]] void ThrowStdDomainError(const std::string& what_arg);
[[noreturn]] void ThrowStdDomainError(const char* what_arg);
[[noreturn]] void ThrowStdLengthError(const std::string& what_arg);
[[noreturn]] void ThrowStdLengthError(const char* what_arg);
[[noreturn]] void ThrowStdOutOfRange(const std::string& what_arg);
[[noreturn]] void ThrowStdOutOfRange(const char* what_arg);
[[noreturn]] void ThrowStdRuntimeError(const std::string& what_arg);
[[noreturn]] void ThrowStdRuntimeError(const char* what_arg);
[[noreturn]] void ThrowStdRangeError(const std::string& what_arg);
[[noreturn]] void ThrowStdRangeError(const char* what_arg);
[[noreturn]] void ThrowStdOverflowError(const std::string& what_arg);
[[noreturn]] void ThrowStdOverflowError(const char* what_arg);
[[noreturn]] void ThrowStdUnderflowError(const std::string& what_arg);
[[noreturn]] void ThrowStdUnderflowError(const char* what_arg);
[[noreturn]] void ThrowStdBadFunctionCall();
[[noreturn]] void ThrowStdBadAlloc();
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/base/internal/throw_delegate.h"
#include <cstdlib>
#include <functional>
#include <new>
#include <stdexcept>
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
void ThrowStdLogicError(const std::string& what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::logic_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str());
std::abort();
#endif
}
void ThrowStdLogicError(const char* what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::logic_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg);
std::abort();
#endif
}
void ThrowStdInvalidArgument(const std::string& what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::invalid_argument(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str());
std::abort();
#endif
}
void ThrowStdInvalidArgument(const char* what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::invalid_argument(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg);
std::abort();
#endif
}
void ThrowStdDomainError(const std::string& what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::domain_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str());
std::abort();
#endif
}
void ThrowStdDomainError(const char* what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::domain_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg);
std::abort();
#endif
}
void ThrowStdLengthError(const std::string& what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::length_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str());
std::abort();
#endif
}
void ThrowStdLengthError(const char* what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::length_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg);
std::abort();
#endif
}
void ThrowStdOutOfRange(const std::string& what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::out_of_range(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str());
std::abort();
#endif
}
void ThrowStdOutOfRange(const char* what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::out_of_range(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg);
std::abort();
#endif
}
void ThrowStdRuntimeError(const std::string& what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::runtime_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str());
std::abort();
#endif
}
void ThrowStdRuntimeError(const char* what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::runtime_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg);
std::abort();
#endif
}
void ThrowStdRangeError(const std::string& what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::range_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str());
std::abort();
#endif
}
void ThrowStdRangeError(const char* what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::range_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg);
std::abort();
#endif
}
void ThrowStdOverflowError(const std::string& what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::overflow_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str());
std::abort();
#endif
}
void ThrowStdOverflowError(const char* what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::overflow_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg);
std::abort();
#endif
}
void ThrowStdUnderflowError(const std::string& what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::underflow_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str());
std::abort();
#endif
}
void ThrowStdUnderflowError(const char* what_arg) {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::underflow_error(what_arg);
#else
ABSL_RAW_LOG(FATAL, "%s", what_arg);
std::abort();
#endif
}
void ThrowStdBadFunctionCall() {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::bad_function_call();
#else
std::abort();
#endif
}
void ThrowStdBadAlloc() {
#ifdef ABSL_HAVE_EXCEPTIONS
throw std::bad_alloc();
#else
std::abort();
#endif
}
}
ABSL_NAMESPACE_END
} | #include "absl/base/internal/throw_delegate.h"
#include <functional>
#include <new>
#include <stdexcept>
#include "absl/base/config.h"
#include "gtest/gtest.h"
namespace {
using absl::base_internal::ThrowStdLogicError;
using absl::base_internal::ThrowStdInvalidArgument;
using absl::base_internal::ThrowStdDomainError;
using absl::base_internal::ThrowStdLengthError;
using absl::base_internal::ThrowStdOutOfRange;
using absl::base_internal::ThrowStdRuntimeError;
using absl::base_internal::ThrowStdRangeError;
using absl::base_internal::ThrowStdOverflowError;
using absl::base_internal::ThrowStdUnderflowError;
using absl::base_internal::ThrowStdBadFunctionCall;
using absl::base_internal::ThrowStdBadAlloc;
constexpr const char* what_arg = "The quick brown fox jumps over the lazy dog";
template <typename E>
void ExpectThrowChar(void (*f)(const char*)) {
#ifdef ABSL_HAVE_EXCEPTIONS
try {
f(what_arg);
FAIL() << "Didn't throw";
} catch (const E& e) {
EXPECT_STREQ(e.what(), what_arg);
}
#else
EXPECT_DEATH_IF_SUPPORTED(f(what_arg), what_arg);
#endif
}
template <typename E>
void ExpectThrowString(void (*f)(const std::string&)) {
#ifdef ABSL_HAVE_EXCEPTIONS
try {
f(what_arg);
FAIL() << "Didn't throw";
} catch (const E& e) {
EXPECT_STREQ(e.what(), what_arg);
}
#else
EXPECT_DEATH_IF_SUPPORTED(f(what_arg), what_arg);
#endif
}
template <typename E>
void ExpectThrowNoWhat(void (*f)()) {
#ifdef ABSL_HAVE_EXCEPTIONS
try {
f();
FAIL() << "Didn't throw";
} catch (const E& e) {
}
#else
EXPECT_DEATH_IF_SUPPORTED(f(), "");
#endif
}
TEST(ThrowDelegate, ThrowStdLogicErrorChar) {
ExpectThrowChar<std::logic_error>(ThrowStdLogicError);
}
TEST(ThrowDelegate, ThrowStdInvalidArgumentChar) {
ExpectThrowChar<std::invalid_argument>(ThrowStdInvalidArgument);
}
TEST(ThrowDelegate, ThrowStdDomainErrorChar) {
ExpectThrowChar<std::domain_error>(ThrowStdDomainError);
}
TEST(ThrowDelegate, ThrowStdLengthErrorChar) {
ExpectThrowChar<std::length_error>(ThrowStdLengthError);
}
TEST(ThrowDelegate, ThrowStdOutOfRangeChar) {
ExpectThrowChar<std::out_of_range>(ThrowStdOutOfRange);
}
TEST(ThrowDelegate, ThrowStdRuntimeErrorChar) {
ExpectThrowChar<std::runtime_error>(ThrowStdRuntimeError);
}
TEST(ThrowDelegate, ThrowStdRangeErrorChar) {
ExpectThrowChar<std::range_error>(ThrowStdRangeError);
}
TEST(ThrowDelegate, ThrowStdOverflowErrorChar) {
ExpectThrowChar<std::overflow_error>(ThrowStdOverflowError);
}
TEST(ThrowDelegate, ThrowStdUnderflowErrorChar) {
ExpectThrowChar<std::underflow_error>(ThrowStdUnderflowError);
}
TEST(ThrowDelegate, ThrowStdLogicErrorString) {
ExpectThrowString<std::logic_error>(ThrowStdLogicError);
}
TEST(ThrowDelegate, ThrowStdInvalidArgumentString) {
ExpectThrowString<std::invalid_argument>(ThrowStdInvalidArgument);
}
TEST(ThrowDelegate, ThrowStdDomainErrorString) {
ExpectThrowString<std::domain_error>(ThrowStdDomainError);
}
TEST(ThrowDelegate, ThrowStdLengthErrorString) {
ExpectThrowString<std::length_error>(ThrowStdLengthError);
}
TEST(ThrowDelegate, ThrowStdOutOfRangeString) {
ExpectThrowString<std::out_of_range>(ThrowStdOutOfRange);
}
TEST(ThrowDelegate, ThrowStdRuntimeErrorString) {
ExpectThrowString<std::runtime_error>(ThrowStdRuntimeError);
}
TEST(ThrowDelegate, ThrowStdRangeErrorString) {
ExpectThrowString<std::range_error>(ThrowStdRangeError);
}
TEST(ThrowDelegate, ThrowStdOverflowErrorString) {
ExpectThrowString<std::overflow_error>(ThrowStdOverflowError);
}
TEST(ThrowDelegate, ThrowStdUnderflowErrorString) {
ExpectThrowString<std::underflow_error>(ThrowStdUnderflowError);
}
TEST(ThrowDelegate, ThrowStdBadFunctionCallNoWhat) {
#ifdef ABSL_HAVE_EXCEPTIONS
try {
ThrowStdBadFunctionCall();
FAIL() << "Didn't throw";
} catch (const std::bad_function_call&) {
}
#ifdef _LIBCPP_VERSION
catch (const std::exception&) {
}
#endif
#else
EXPECT_DEATH_IF_SUPPORTED(ThrowStdBadFunctionCall(), "");
#endif
}
TEST(ThrowDelegate, ThrowStdBadAllocNoWhat) {
ExpectThrowNoWhat<std::bad_alloc>(ThrowStdBadAlloc);
}
} | 2,528 |
#ifndef ABSL_BASE_INTERNAL_SYSINFO_H_
#define ABSL_BASE_INTERNAL_SYSINFO_H_
#ifndef _WIN32
#include <sys/types.h>
#endif
#include <cstdint>
#include "absl/base/config.h"
#include "absl/base/port.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
double NominalCPUFrequency();
int NumCPUs();
#ifdef _WIN32
using pid_t = uint32_t;
#endif
pid_t GetTID();
pid_t GetCachedTID();
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/base/internal/sysinfo.h"
#include "absl/base/attributes.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <fcntl.h>
#include <pthread.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#endif
#ifdef __linux__
#include <sys/syscall.h>
#endif
#if defined(__APPLE__) || defined(__FreeBSD__)
#include <sys/sysctl.h>
#endif
#ifdef __FreeBSD__
#include <pthread_np.h>
#endif
#ifdef __NetBSD__
#include <lwp.h>
#endif
#if defined(__myriad2__)
#include <rtems.h>
#endif
#include <string.h>
#include <cassert>
#include <cerrno>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <limits>
#include <thread>
#include <utility>
#include <vector>
#include "absl/base/call_once.h"
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/internal/unscaledcycleclock.h"
#include "absl/base/thread_annotations.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
namespace {
#if defined(_WIN32)
DWORD Win32CountSetBits(ULONG_PTR bitMask) {
for (DWORD bitSetCount = 0; ; ++bitSetCount) {
if (bitMask == 0) return bitSetCount;
bitMask &= bitMask - 1;
}
}
int Win32NumCPUs() {
#pragma comment(lib, "kernel32.lib")
using Info = SYSTEM_LOGICAL_PROCESSOR_INFORMATION;
DWORD info_size = sizeof(Info);
Info* info(static_cast<Info*>(malloc(info_size)));
if (info == nullptr) return 0;
bool success = GetLogicalProcessorInformation(info, &info_size);
if (!success && GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
free(info);
info = static_cast<Info*>(malloc(info_size));
if (info == nullptr) return 0;
success = GetLogicalProcessorInformation(info, &info_size);
}
DWORD logicalProcessorCount = 0;
if (success) {
Info* ptr = info;
DWORD byteOffset = 0;
while (byteOffset + sizeof(Info) <= info_size) {
switch (ptr->Relationship) {
case RelationProcessorCore:
logicalProcessorCount += Win32CountSetBits(ptr->ProcessorMask);
break;
case RelationNumaNode:
case RelationCache:
case RelationProcessorPackage:
break;
default:
break;
}
byteOffset += sizeof(Info);
ptr++;
}
}
free(info);
return static_cast<int>(logicalProcessorCount);
}
#endif
}
static int GetNumCPUs() {
#if defined(__myriad2__)
return 1;
#elif defined(_WIN32)
const int hardware_concurrency = Win32NumCPUs();
return hardware_concurrency ? hardware_concurrency : 1;
#elif defined(_AIX)
return sysconf(_SC_NPROCESSORS_ONLN);
#else
return static_cast<int>(std::thread::hardware_concurrency());
#endif
}
#if defined(_WIN32)
static double GetNominalCPUFrequency() {
#if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && \
!WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
return 1.0;
#else
#pragma comment(lib, "advapi32.lib")
HKEY key;
if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,
"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
KEY_READ, &key) == ERROR_SUCCESS) {
DWORD type = 0;
DWORD data = 0;
DWORD data_size = sizeof(data);
auto result = RegQueryValueExA(key, "~MHz", nullptr, &type,
reinterpret_cast<LPBYTE>(&data), &data_size);
RegCloseKey(key);
if (result == ERROR_SUCCESS && type == REG_DWORD &&
data_size == sizeof(data)) {
return data * 1e6;
}
}
return 1.0;
#endif
}
#elif defined(CTL_HW) && defined(HW_CPU_FREQ)
static double GetNominalCPUFrequency() {
unsigned freq;
size_t size = sizeof(freq);
int mib[2] = {CTL_HW, HW_CPU_FREQ};
if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) {
return static_cast<double>(freq);
}
return 1.0;
}
#else
static bool ReadLongFromFile(const char *file, long *value) {
bool ret = false;
#if defined(_POSIX_C_SOURCE)
const int file_mode = (O_RDONLY | O_CLOEXEC);
#else
const int file_mode = O_RDONLY;
#endif
int fd = open(file, file_mode);
if (fd != -1) {
char line[1024];
char *err;
memset(line, '\0', sizeof(line));
ssize_t len;
do {
len = read(fd, line, sizeof(line) - 1);
} while (len < 0 && errno == EINTR);
if (len <= 0) {
ret = false;
} else {
const long temp_value = strtol(line, &err, 10);
if (line[0] != '\0' && (*err == '\n' || *err == '\0')) {
*value = temp_value;
ret = true;
}
}
close(fd);
}
return ret;
}
#if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
static int64_t ReadMonotonicClockNanos() {
struct timespec t;
#ifdef CLOCK_MONOTONIC_RAW
int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t);
#else
int rc = clock_gettime(CLOCK_MONOTONIC, &t);
#endif
if (rc != 0) {
ABSL_INTERNAL_LOG(
FATAL, "clock_gettime() failed: (" + std::to_string(errno) + ")");
}
return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec;
}
class UnscaledCycleClockWrapperForInitializeFrequency {
public:
static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
};
struct TimeTscPair {
int64_t time;
int64_t tsc;
};
static TimeTscPair GetTimeTscPair() {
int64_t best_latency = std::numeric_limits<int64_t>::max();
TimeTscPair best;
for (int i = 0; i < 10; ++i) {
int64_t t0 = ReadMonotonicClockNanos();
int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now();
int64_t t1 = ReadMonotonicClockNanos();
int64_t latency = t1 - t0;
if (latency < best_latency) {
best_latency = latency;
best.time = t0;
best.tsc = tsc;
}
}
return best;
}
static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) {
auto t0 = GetTimeTscPair();
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = sleep_nanoseconds;
while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {}
auto t1 = GetTimeTscPair();
double elapsed_ticks = t1.tsc - t0.tsc;
double elapsed_time = (t1.time - t0.time) * 1e-9;
return elapsed_ticks / elapsed_time;
}
static double MeasureTscFrequency() {
double last_measurement = -1.0;
int sleep_nanoseconds = 1000000;
for (int i = 0; i < 8; ++i) {
double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds);
if (measurement * 0.99 < last_measurement &&
last_measurement < measurement * 1.01) {
return measurement;
}
last_measurement = measurement;
sleep_nanoseconds *= 2;
}
return last_measurement;
}
#endif
static double GetNominalCPUFrequency() {
long freq = 0;
if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) {
return freq * 1e3;
}
#if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
return MeasureTscFrequency();
#else
if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
&freq)) {
return freq * 1e3;
}
return 1.0;
#endif
}
#endif
ABSL_CONST_INIT static once_flag init_num_cpus_once;
ABSL_CONST_INIT static int num_cpus = 0;
int NumCPUs() {
base_internal::LowLevelCallOnce(
&init_num_cpus_once, []() { num_cpus = GetNumCPUs(); });
return num_cpus;
}
ABSL_CONST_INIT static once_flag init_nominal_cpu_frequency_once;
ABSL_CONST_INIT static double nominal_cpu_frequency = 1.0;
double NominalCPUFrequency() {
base_internal::LowLevelCallOnce(
&init_nominal_cpu_frequency_once,
[]() { nominal_cpu_frequency = GetNominalCPUFrequency(); });
return nominal_cpu_frequency;
}
#if defined(_WIN32)
pid_t GetTID() {
return pid_t{GetCurrentThreadId()};
}
#elif defined(__linux__)
#ifndef SYS_gettid
#define SYS_gettid __NR_gettid
#endif
pid_t GetTID() {
return static_cast<pid_t>(syscall(SYS_gettid));
}
#elif defined(__akaros__)
pid_t GetTID() {
if (in_vcore_context())
return 0;
return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id;
}
#elif defined(__myriad2__)
pid_t GetTID() {
uint32_t tid;
rtems_task_ident(RTEMS_SELF, 0, &tid);
return tid;
}
#elif defined(__APPLE__)
pid_t GetTID() {
uint64_t tid;
pthread_threadid_np(nullptr, &tid);
return static_cast<pid_t>(tid);
}
#elif defined(__FreeBSD__)
pid_t GetTID() { return static_cast<pid_t>(pthread_getthreadid_np()); }
#elif defined(__OpenBSD__)
pid_t GetTID() { return getthrid(); }
#elif defined(__NetBSD__)
pid_t GetTID() { return static_cast<pid_t>(_lwp_self()); }
#elif defined(__native_client__)
pid_t GetTID() {
auto* thread = pthread_self();
static_assert(sizeof(pid_t) == sizeof(thread),
"In NaCL int expected to be the same size as a pointer");
return reinterpret_cast<pid_t>(thread);
}
#else
pid_t GetTID() {
return static_cast<pid_t>(pthread_self());
}
#endif
pid_t GetCachedTID() {
#ifdef ABSL_HAVE_THREAD_LOCAL
static thread_local pid_t thread_id = GetTID();
return thread_id;
#else
return GetTID();
#endif
}
}
ABSL_NAMESPACE_END
} | #include "absl/base/internal/sysinfo.h"
#ifndef _WIN32
#include <sys/types.h>
#include <unistd.h>
#endif
#include <thread>
#include <unordered_set>
#include <vector>
#include "gtest/gtest.h"
#include "absl/synchronization/barrier.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
namespace {
TEST(SysinfoTest, NumCPUs) {
EXPECT_NE(NumCPUs(), 0)
<< "NumCPUs() should not have the default value of 0";
}
TEST(SysinfoTest, GetTID) {
EXPECT_EQ(GetTID(), GetTID());
#ifdef __native_client__
return;
#endif
for (int i = 0; i < 10; ++i) {
constexpr int kNumThreads = 10;
Barrier all_threads_done(kNumThreads);
std::vector<std::thread> threads;
Mutex mutex;
std::unordered_set<pid_t> tids;
for (int j = 0; j < kNumThreads; ++j) {
threads.push_back(std::thread([&]() {
pid_t id = GetTID();
{
MutexLock lock(&mutex);
ASSERT_TRUE(tids.find(id) == tids.end());
tids.insert(id);
}
all_threads_done.Block();
}));
}
for (auto& thread : threads) {
thread.join();
}
}
}
#ifdef __linux__
TEST(SysinfoTest, LinuxGetTID) {
EXPECT_EQ(GetTID(), getpid());
}
#endif
}
}
ABSL_NAMESPACE_END
} | 2,529 |
#ifndef ABSL_BASE_INTERNAL_SCOPED_SET_ENV_H_
#define ABSL_BASE_INTERNAL_SCOPED_SET_ENV_H_
#include <string>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
class ScopedSetEnv {
public:
ScopedSetEnv(const char* var_name, const char* new_value);
~ScopedSetEnv();
private:
std::string var_name_;
std::string old_value_;
bool was_unset_;
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/base/internal/scoped_set_env.h"
#ifdef _WIN32
#include <windows.h>
#endif
#include <cstdlib>
#include "absl/base/internal/raw_logging.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace base_internal {
namespace {
#ifdef _WIN32
const int kMaxEnvVarValueSize = 1024;
#endif
void SetEnvVar(const char* name, const char* value) {
#ifdef _WIN32
SetEnvironmentVariableA(name, value);
#else
if (value == nullptr) {
::unsetenv(name);
} else {
::setenv(name, value, 1);
}
#endif
}
}
ScopedSetEnv::ScopedSetEnv(const char* var_name, const char* new_value)
: var_name_(var_name), was_unset_(false) {
#ifdef _WIN32
char buf[kMaxEnvVarValueSize];
auto get_res = GetEnvironmentVariableA(var_name_.c_str(), buf, sizeof(buf));
ABSL_INTERNAL_CHECK(get_res < sizeof(buf), "value exceeds buffer size");
if (get_res == 0) {
was_unset_ = (GetLastError() == ERROR_ENVVAR_NOT_FOUND);
} else {
old_value_.assign(buf, get_res);
}
SetEnvironmentVariableA(var_name_.c_str(), new_value);
#else
const char* val = ::getenv(var_name_.c_str());
if (val == nullptr) {
was_unset_ = true;
} else {
old_value_ = val;
}
#endif
SetEnvVar(var_name_.c_str(), new_value);
}
ScopedSetEnv::~ScopedSetEnv() {
SetEnvVar(var_name_.c_str(), was_unset_ ? nullptr : old_value_.c_str());
}
}
ABSL_NAMESPACE_END
} | #ifdef _WIN32
#include <windows.h>
#endif
#include "gtest/gtest.h"
#include "absl/base/internal/scoped_set_env.h"
namespace {
using absl::base_internal::ScopedSetEnv;
std::string GetEnvVar(const char* name) {
#ifdef _WIN32
char buf[1024];
auto get_res = GetEnvironmentVariableA(name, buf, sizeof(buf));
if (get_res >= sizeof(buf)) {
return "TOO_BIG";
}
if (get_res == 0) {
return "UNSET";
}
return std::string(buf, get_res);
#else
const char* val = ::getenv(name);
if (val == nullptr) {
return "UNSET";
}
return val;
#endif
}
TEST(ScopedSetEnvTest, SetNonExistingVarToString) {
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET");
{
ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", "value");
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "value");
}
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET");
}
TEST(ScopedSetEnvTest, SetNonExistingVarToNull) {
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET");
{
ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", nullptr);
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET");
}
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET");
}
TEST(ScopedSetEnvTest, SetExistingVarToString) {
ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", "value");
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "value");
{
ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", "new_value");
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "new_value");
}
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "value");
}
TEST(ScopedSetEnvTest, SetExistingVarToNull) {
ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", "value");
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "value");
{
ScopedSetEnv scoped_set("SCOPED_SET_ENV_TEST_VAR", nullptr);
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "UNSET");
}
EXPECT_EQ(GetEnvVar("SCOPED_SET_ENV_TEST_VAR"), "value");
}
} | 2,530 |
#ifndef ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
#define ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
#include <cmath>
#include <cstdint>
#include <istream>
#include <limits>
#include <type_traits>
#include "absl/base/config.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/generate_real.h"
#include "absl/random/internal/iostream_state_saver.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
class ABSL_DLL gaussian_distribution_base {
public:
template <typename URBG>
inline double zignor(URBG& g);
private:
friend class TableGenerator;
template <typename URBG>
inline double zignor_fallback(URBG& g,
bool neg);
static constexpr double kR = 3.442619855899;
static constexpr double kRInv = 0.29047645161474317;
static constexpr double kV = 9.91256303526217e-3;
static constexpr uint64_t kMask = 0x07f;
struct Tables {
double x[kMask + 2];
double f[kMask + 2];
};
static const Tables zg_;
random_internal::FastUniformBits<uint64_t> fast_u64_;
};
}
template <typename RealType = double>
class gaussian_distribution : random_internal::gaussian_distribution_base {
public:
using result_type = RealType;
class param_type {
public:
using distribution_type = gaussian_distribution;
explicit param_type(result_type mean = 0, result_type stddev = 1)
: mean_(mean), stddev_(stddev) {}
result_type mean() const { return mean_; }
result_type stddev() const { return stddev_; }
friend bool operator==(const param_type& a, const param_type& b) {
return a.mean_ == b.mean_ && a.stddev_ == b.stddev_;
}
friend bool operator!=(const param_type& a, const param_type& b) {
return !(a == b);
}
private:
result_type mean_;
result_type stddev_;
static_assert(
std::is_floating_point<RealType>::value,
"Class-template absl::gaussian_distribution<> must be parameterized "
"using a floating-point type.");
};
gaussian_distribution() : gaussian_distribution(0) {}
explicit gaussian_distribution(result_type mean, result_type stddev = 1)
: param_(mean, stddev) {}
explicit gaussian_distribution(const param_type& p) : param_(p) {}
void reset() {}
template <typename URBG>
result_type operator()(URBG& g) {
return (*this)(g, param_);
}
template <typename URBG>
result_type operator()(URBG& g,
const param_type& p);
param_type param() const { return param_; }
void param(const param_type& p) { param_ = p; }
result_type(min)() const {
return -std::numeric_limits<result_type>::infinity();
}
result_type(max)() const {
return std::numeric_limits<result_type>::infinity();
}
result_type mean() const { return param_.mean(); }
result_type stddev() const { return param_.stddev(); }
friend bool operator==(const gaussian_distribution& a,
const gaussian_distribution& b) {
return a.param_ == b.param_;
}
friend bool operator!=(const gaussian_distribution& a,
const gaussian_distribution& b) {
return a.param_ != b.param_;
}
private:
param_type param_;
};
template <typename RealType>
template <typename URBG>
typename gaussian_distribution<RealType>::result_type
gaussian_distribution<RealType>::operator()(
URBG& g,
const param_type& p) {
return p.mean() + p.stddev() * static_cast<result_type>(zignor(g));
}
template <typename CharT, typename Traits, typename RealType>
std::basic_ostream<CharT, Traits>& operator<<(
std::basic_ostream<CharT, Traits>& os,
const gaussian_distribution<RealType>& x) {
auto saver = random_internal::make_ostream_state_saver(os);
os.precision(random_internal::stream_precision_helper<RealType>::kPrecision);
os << x.mean() << os.fill() << x.stddev();
return os;
}
template <typename CharT, typename Traits, typename RealType>
std::basic_istream<CharT, Traits>& operator>>(
std::basic_istream<CharT, Traits>& is,
gaussian_distribution<RealType>& x) {
using result_type = typename gaussian_distribution<RealType>::result_type;
using param_type = typename gaussian_distribution<RealType>::param_type;
auto saver = random_internal::make_istream_state_saver(is);
auto mean = random_internal::read_floating_point<result_type>(is);
if (is.fail()) return is;
auto stddev = random_internal::read_floating_point<result_type>(is);
if (!is.fail()) {
x.param(param_type(mean, stddev));
}
return is;
}
namespace random_internal {
template <typename URBG>
inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) {
using random_internal::GeneratePositiveTag;
using random_internal::GenerateRealFromBits;
double x, y;
do {
x = kRInv *
std::log(GenerateRealFromBits<double, GeneratePositiveTag, false>(
fast_u64_(g)));
y = -std::log(
GenerateRealFromBits<double, GeneratePositiveTag, false>(fast_u64_(g)));
} while ((y + y) < (x * x));
return neg ? (x - kR) : (kR - x);
}
template <typename URBG>
inline double gaussian_distribution_base::zignor(
URBG& g) {
using random_internal::GeneratePositiveTag;
using random_internal::GenerateRealFromBits;
using random_internal::GenerateSignedTag;
while (true) {
uint64_t bits = fast_u64_(g);
int i = static_cast<int>(bits & kMask);
double j = GenerateRealFromBits<double, GenerateSignedTag, false>(
bits);
const double x = j * zg_.x[i];
if (std::abs(x) < zg_.x[i + 1]) {
return x;
}
if (i == 0) {
return zignor_fallback(g, j < 0);
}
double v = GenerateRealFromBits<double, GeneratePositiveTag, false>(
fast_u64_(g));
if ((zg_.f[i + 1] + v * (zg_.f[i] - zg_.f[i + 1])) <
std::exp(-0.5 * x * x)) {
return x;
}
}
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/random/gaussian_distribution.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
const gaussian_distribution_base::Tables
gaussian_distribution_base::zg_ = {
{3.7130862467425505, 3.442619855899000214, 3.223084984581141565,
3.083228858216868318, 2.978696252647779819, 2.894344007021528942,
2.82312535054891045, 2.761169372387176857, 2.706113573121819549,
2.656406411261359679, 2.610972248431847387, 2.56903362592493778,
2.530009672388827457, 2.493454522095372106, 2.459018177411830486,
2.426420645533749809, 2.395434278011062457, 2.365871370117638595,
2.337575241339236776, 2.310413683698762988, 2.284274059677471769,
2.25905957386919809, 2.234686395590979036, 2.21108140887870297,
2.188180432076048731, 2.165926793748921497, 2.144270182360394905,
2.123165708673976138, 2.102573135189237608, 2.082456237992015957,
2.062782274508307978, 2.043521536655067194, 2.02464697337738464,
2.006133869963471206, 1.987959574127619033, 1.970103260854325633,
1.952545729553555764, 1.935269228296621957, 1.918257300864508963,
1.901494653105150423, 1.884967035707758143, 1.868661140994487768,
1.852564511728090002, 1.836665460258444904, 1.820952996596124418,
1.805416764219227366, 1.790046982599857506, 1.77483439558606837,
1.759770224899592339, 1.744846128113799244, 1.730054160563729182,
1.71538674071366648, 1.700836618569915748, 1.686396846779167014,
1.6720607540975998, 1.657821920954023254, 1.643674156862867441,
1.629611479470633562, 1.615628095043159629, 1.601718380221376581,
1.587876864890574558, 1.574098216022999264, 1.560377222366167382,
1.546708779859908844, 1.533087877674041755, 1.519509584765938559,
1.505969036863201937, 1.492461423781352714, 1.478981976989922842,
1.465525957342709296, 1.452088642889222792, 1.438665316684561546,
1.425251254514058319, 1.411841712447055919, 1.398431914131003539,
1.385017037732650058, 1.371592202427340812, 1.358152454330141534,
1.34469275175354519, 1.331207949665625279, 1.317692783209412299,
1.304141850128615054, 1.290549591926194894, 1.27691027356015363,
1.263217961454619287, 1.249466499573066436, 1.23564948326336066,
1.221760230539994385, 1.207791750415947662, 1.193736707833126465,
1.17958738466398616, 1.165335636164750222, 1.150972842148865416,
1.136489852013158774, 1.121876922582540237, 1.107123647534034028,
1.092218876907275371, 1.077150624892893482, 1.061905963694822042,
1.046470900764042922, 1.030830236068192907, 1.014967395251327842,
0.9988642334929808131, 0.9825008035154263464, 0.9658550794011470098,
0.9489026255113034436, 0.9316161966151479401, 0.9139652510230292792,
0.8959153525809346874, 0.8774274291129204872, 0.8584568431938099931,
0.8389522142975741614, 0.8188539067003538507, 0.7980920606440534693,
0.7765839878947563557, 0.7542306644540520688, 0.7309119106424850631,
0.7064796113354325779, 0.6807479186691505202, 0.6534786387399710295,
0.6243585973360461505, 0.5929629424714434327, 0.5586921784081798625,
0.5206560387620546848, 0.4774378372966830431, 0.4265479863554152429,
0.3628714310970211909, 0.2723208648139477384, 0},
{0.001014352564120377413, 0.002669629083880922793, 0.005548995220771345792,
0.008624484412859888607, 0.01183947865788486861, 0.01516729801054656976,
0.01859210273701129151, 0.02210330461592709475, 0.02569329193593428151,
0.02935631744000685023, 0.03308788614622575758, 0.03688438878665621645,
0.04074286807444417458, 0.04466086220049143157, 0.04863629585986780496,
0.05266740190305100461, 0.05675266348104984759, 0.06089077034804041277,
0.06508058521306804567, 0.06932111739357792179, 0.07361150188411341722,
0.07795098251397346301, 0.08233889824223575293, 0.08677467189478028919,
0.09125780082683036809, 0.095787849121731522, 0.1003644410286559929,
0.1049872554094214289, 0.1096560210148404546, 0.1143705124488661323,
0.1191305467076509556, 0.1239359802028679736, 0.1287867061959434012,
0.1336826525834396151, 0.1386237799845948804, 0.1436100800906280339,
0.1486415742423425057, 0.1537183122081819397, 0.1588403711394795748,
0.1640078546834206341, 0.1692208922373653057, 0.1744796383307898324,
0.1797842721232958407, 0.1851349970089926078, 0.1905320403191375633,
0.1959756531162781534, 0.2014661100743140865, 0.2070037094399269362,
0.2125887730717307134, 0.2182216465543058426, 0.2239026993850088965,
0.229632325232116602, 0.2354109422634795556, 0.2412389935454402889,
0.2471169475123218551, 0.2530452985073261551, 0.2590245673962052742,
0.2650553022555897087, 0.271138079138385224, 0.2772735029191887857,
0.2834622082232336471, 0.2897048604429605656, 0.2960021568469337061,
0.3023548277864842593, 0.3087636380061818397, 0.3152293880650116065,
0.3217529158759855901, 0.3283350983728509642, 0.3349768533135899506,
0.3416791412315512977, 0.3484429675463274756, 0.355269384847918035,
0.3621594953693184626, 0.3691144536644731522, 0.376135469510563536,
0.3832238110559021416, 0.3903808082373155797, 0.3976078564938743676,
0.404906420807223999, 0.4122780401026620578, 0.4197243320495753771,
0.4272469983049970721, 0.4348478302499918513, 0.4425287152754694975,
0.4502916436820402768, 0.458138716267873114, 0.4660721526894572309,
0.4740943006930180559, 0.4822076463294863724, 0.4904148252838453348,
0.4987186354709807201, 0.5071220510755701794, 0.5156282382440030565,
0.5242405726729852944, 0.5329626593838373561, 0.5417983550254266145,
0.5507517931146057588, 0.5598274127040882009, 0.5690299910679523787,
0.5783646811197646898, 0.5878370544347081283, 0.5974531509445183408,
0.6072195366251219584, 0.6171433708188825973, 0.6272324852499290282,
0.6374954773350440806, 0.6479418211102242475, 0.6585820000500898219,
0.6694276673488921414, 0.6804918409973358395, 0.6917891434366769676,
0.7033360990161600101, 0.7151515074105005976, 0.7272569183441868201,
0.7396772436726493094, 0.7524415591746134169, 0.7655841738977066102,
0.7791460859296898134, 0.7931770117713072832, 0.8077382946829627652,
0.8229072113814113187, 0.8387836052959920519, 0.8555006078694531446,
0.873243048910072206, 0.8922816507840289901, 0.9130436479717434217,
0.9362826816850632339, 0.9635996931270905952, 1}};
}
ABSL_NAMESPACE_END
} | #include "absl/random/gaussian_distribution.h"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <ios>
#include <iterator>
#include <random>
#include <string>
#include <type_traits>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/macros.h"
#include "absl/log/log.h"
#include "absl/numeric/internal/representation.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_replace.h"
#include "absl/strings/strip.h"
namespace {
using absl::random_internal::kChiSquared;
template <typename RealType>
class GaussianDistributionInterfaceTest : public ::testing::Test {};
using RealTypes =
std::conditional<absl::numeric_internal::IsDoubleDouble(),
::testing::Types<float, double>,
::testing::Types<float, double, long double>>::type;
TYPED_TEST_SUITE(GaussianDistributionInterfaceTest, RealTypes);
TYPED_TEST(GaussianDistributionInterfaceTest, SerializeTest) {
using param_type =
typename absl::gaussian_distribution<TypeParam>::param_type;
const TypeParam kParams[] = {
1,
std::nextafter(TypeParam(1), TypeParam(0)),
std::nextafter(TypeParam(1), TypeParam(2)),
TypeParam(1e-8), TypeParam(1e-4), TypeParam(2), TypeParam(1e4),
TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
std::numeric_limits<TypeParam>::infinity(),
std::numeric_limits<TypeParam>::max(),
std::numeric_limits<TypeParam>::epsilon(),
std::nextafter(std::numeric_limits<TypeParam>::min(),
TypeParam(1)),
std::numeric_limits<TypeParam>::min(),
std::numeric_limits<TypeParam>::denorm_min(),
std::numeric_limits<TypeParam>::min() / 2,
std::nextafter(std::numeric_limits<TypeParam>::min(),
TypeParam(0)),
};
constexpr int kCount = 1000;
absl::InsecureBitGen gen;
for (const auto mod : {0, 1, 2, 3}) {
for (const auto x : kParams) {
if (!std::isfinite(x)) continue;
for (const auto y : kParams) {
const TypeParam mean = (mod & 0x1) ? -x : x;
const TypeParam stddev = (mod & 0x2) ? -y : y;
const param_type param(mean, stddev);
absl::gaussian_distribution<TypeParam> before(mean, stddev);
EXPECT_EQ(before.mean(), param.mean());
EXPECT_EQ(before.stddev(), param.stddev());
{
absl::gaussian_distribution<TypeParam> via_param(param);
EXPECT_EQ(via_param, before);
EXPECT_EQ(via_param.param(), before.param());
}
auto sample_min = before.max();
auto sample_max = before.min();
for (int i = 0; i < kCount; i++) {
auto sample = before(gen);
if (sample > sample_max) sample_max = sample;
if (sample < sample_min) sample_min = sample;
EXPECT_GE(sample, before.min()) << before;
EXPECT_LE(sample, before.max()) << before;
}
if (!std::is_same<TypeParam, long double>::value) {
LOG(INFO) << "Range{" << mean << ", " << stddev << "}: " << sample_min
<< ", " << sample_max;
}
std::stringstream ss;
ss << before;
if (!std::isfinite(mean) || !std::isfinite(stddev)) {
continue;
}
absl::gaussian_distribution<TypeParam> after(-0.53f, 2.3456f);
EXPECT_NE(before.mean(), after.mean());
EXPECT_NE(before.stddev(), after.stddev());
EXPECT_NE(before.param(), after.param());
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before.mean(), after.mean());
EXPECT_EQ(before.stddev(), after.stddev())
<< ss.str() << " "
<< (ss.good() ? "good " : "")
<< (ss.bad() ? "bad " : "")
<< (ss.eof() ? "eof " : "")
<< (ss.fail() ? "fail " : "");
}
}
}
}
class GaussianModel {
public:
GaussianModel(double mean, double stddev) : mean_(mean), stddev_(stddev) {}
double mean() const { return mean_; }
double variance() const { return stddev() * stddev(); }
double stddev() const { return stddev_; }
double skew() const { return 0; }
double kurtosis() const { return 3.0; }
double InverseCDF(double p) {
ABSL_ASSERT(p >= 0.0);
ABSL_ASSERT(p < 1.0);
return mean() + stddev() * -absl::random_internal::InverseNormalSurvival(p);
}
private:
const double mean_;
const double stddev_;
};
struct Param {
double mean;
double stddev;
double p_fail;
int trials;
};
class GaussianDistributionTests : public testing::TestWithParam<Param>,
public GaussianModel {
public:
GaussianDistributionTests()
: GaussianModel(GetParam().mean, GetParam().stddev) {}
template <typename D>
bool SingleZTest(const double p, const size_t samples);
template <typename D>
double SingleChiSquaredTest();
absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
};
template <typename D>
bool GaussianDistributionTests::SingleZTest(const double p,
const size_t samples) {
D dis(mean(), stddev());
std::vector<double> data;
data.reserve(samples);
for (size_t i = 0; i < samples; i++) {
const double x = dis(rng_);
data.push_back(x);
}
const double max_err = absl::random_internal::MaxErrorTolerance(p);
const auto m = absl::random_internal::ComputeDistributionMoments(data);
const double z = absl::random_internal::ZScore(mean(), m);
const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
const double jb =
static_cast<double>(m.n) / 6.0 *
(std::pow(m.skewness, 2.0) + std::pow(m.kurtosis - 3.0, 2.0) / 4.0);
if (!pass || jb > 9.21) {
LOG(INFO)
<< "p=" << p << " max_err=" << max_err << "\n"
" mean=" << m.mean << " vs. " << mean() << "\n"
" stddev=" << std::sqrt(m.variance) << " vs. " << stddev() << "\n"
" skewness=" << m.skewness << " vs. " << skew() << "\n"
" kurtosis=" << m.kurtosis << " vs. " << kurtosis() << "\n"
" z=" << z << " vs. 0\n"
" jb=" << jb << " vs. 9.21";
}
return pass;
}
template <typename D>
double GaussianDistributionTests::SingleChiSquaredTest() {
const size_t kSamples = 10000;
const int kBuckets = 50;
std::vector<double> cutoffs;
const double kInc = 1.0 / static_cast<double>(kBuckets);
for (double p = kInc; p < 1.0; p += kInc) {
cutoffs.push_back(InverseCDF(p));
}
if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
cutoffs.push_back(std::numeric_limits<double>::infinity());
}
D dis(mean(), stddev());
std::vector<int32_t> counts(cutoffs.size(), 0);
for (int j = 0; j < kSamples; j++) {
const double x = dis(rng_);
auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
counts[std::distance(cutoffs.begin(), it)]++;
}
const int dof = static_cast<int>(counts.size()) - 1;
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
const double expected =
static_cast<double>(kSamples) / static_cast<double>(counts.size());
double chi_square = absl::random_internal::ChiSquareWithExpected(
std::begin(counts), std::end(counts), expected);
double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
if (chi_square > threshold) {
for (size_t i = 0; i < cutoffs.size(); i++) {
LOG(INFO) << i << " : (" << cutoffs[i] << ") = " << counts[i];
}
LOG(INFO) << "mean=" << mean() << " stddev=" << stddev() << "\n"
" expected " << expected << "\n"
<< kChiSquared << " " << chi_square << " (" << p << ")\n"
<< kChiSquared << " @ 0.98 = " << threshold;
}
return p;
}
TEST_P(GaussianDistributionTests, ZTest) {
const size_t kSamples = 10000;
const auto& param = GetParam();
const int expected_failures =
std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
const double p = absl::random_internal::RequiredSuccessProbability(
param.p_fail, param.trials);
int failures = 0;
for (int i = 0; i < param.trials; i++) {
failures +=
SingleZTest<absl::gaussian_distribution<double>>(p, kSamples) ? 0 : 1;
}
EXPECT_LE(failures, expected_failures);
}
TEST_P(GaussianDistributionTests, ChiSquaredTest) {
const int kTrials = 20;
int failures = 0;
for (int i = 0; i < kTrials; i++) {
double p_value =
SingleChiSquaredTest<absl::gaussian_distribution<double>>();
if (p_value < 0.0025) {
failures++;
}
}
EXPECT_LE(failures, 4);
}
std::vector<Param> GenParams() {
return {
Param{0.0, 1.0, 0.01, 100},
Param{0.0, 1e2, 0.01, 100},
Param{0.0, 1e4, 0.01, 100},
Param{0.0, 1e8, 0.01, 100},
Param{0.0, 1e16, 0.01, 100},
Param{0.0, 1e-3, 0.01, 100},
Param{0.0, 1e-5, 0.01, 100},
Param{0.0, 1e-9, 0.01, 100},
Param{0.0, 1e-17, 0.01, 100},
Param{1.0, 1.0, 0.01, 100},
Param{1.0, 1e2, 0.01, 100},
Param{1.0, 1e-2, 0.01, 100},
Param{1e2, 1.0, 0.01, 100},
Param{-1e2, 1.0, 0.01, 100},
Param{1e2, 1e6, 0.01, 100},
Param{-1e2, 1e6, 0.01, 100},
Param{1e4, 1e4, 0.01, 100},
Param{1e8, 1e4, 0.01, 100},
Param{1e12, 1e4, 0.01, 100},
};
}
std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
const auto& p = info.param;
std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean), "__stddev_",
absl::SixDigits(p.stddev));
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
}
INSTANTIATE_TEST_SUITE_P(All, GaussianDistributionTests,
::testing::ValuesIn(GenParams()), ParamName);
TEST(GaussianDistributionTest, StabilityTest) {
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
std::vector<int> output(11);
{
absl::gaussian_distribution<double> dist;
std::generate(std::begin(output), std::end(output),
[&] { return static_cast<int>(10000000.0 * dist(urbg)); });
EXPECT_EQ(13, urbg.invocations());
EXPECT_THAT(output,
testing::ElementsAre(1494, 25518841, 9991550, 1351856,
-20373238, 3456682, 333530, -6804981,
-15279580, -16459654, 1494));
}
urbg.reset();
{
absl::gaussian_distribution<float> dist;
std::generate(std::begin(output), std::end(output),
[&] { return static_cast<int>(1000000.0f * dist(urbg)); });
EXPECT_EQ(13, urbg.invocations());
EXPECT_THAT(
output,
testing::ElementsAre(149, 2551884, 999155, 135185, -2037323, 345668,
33353, -680498, -1527958, -1645965, 149));
}
}
TEST(GaussianDistributionTest, AlgorithmBounds) {
absl::gaussian_distribution<double> dist;
const uint64_t kValues[] = {
0x1000000000000100ull, 0x2000000000000100ull, 0x3000000000000100ull,
0x4000000000000100ull, 0x5000000000000100ull, 0x6000000000000100ull,
0x9000000000000100ull, 0xa000000000000100ull, 0xb000000000000100ull,
0xc000000000000100ull, 0xd000000000000100ull, 0xe000000000000100ull};
const uint64_t kExtraValues[] = {
0x7000000000000100ull, 0x7800000000000100ull,
0x7c00000000000100ull, 0x7e00000000000100ull,
0xf000000000000100ull, 0xf800000000000100ull,
0xfc00000000000100ull, 0xfe00000000000100ull};
auto make_box = [](uint64_t v, uint64_t box) {
return (v & 0xffffffffffffff80ull) | box;
};
for (uint64_t box = 0; box < 0x7f; box++) {
for (const uint64_t v : kValues) {
absl::random_internal::sequence_urbg urbg(
{make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});
auto a = dist(urbg);
EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
if (v & 0x8000000000000000ull) {
EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
} else {
EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
}
}
if (box > 10 && box < 100) {
for (const uint64_t v : kExtraValues) {
absl::random_internal::sequence_urbg urbg(
{make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});
auto a = dist(urbg);
EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
if (v & 0x8000000000000000ull) {
EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
} else {
EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
}
}
}
}
auto make_fallback = [](uint64_t v) { return (v & 0xffffffffffffff80ull); };
double tail[2];
{
absl::random_internal::sequence_urbg urbg(
{make_fallback(0x7800000000000000ull), 0x13CCA830EB61BD96ull,
0x00000076f6f7f755ull});
tail[0] = dist(urbg);
EXPECT_EQ(3, urbg.invocations());
EXPECT_GT(tail[0], 0);
}
{
absl::random_internal::sequence_urbg urbg(
{make_fallback(0xf800000000000000ull), 0x13CCA830EB61BD96ull,
0x00000076f6f7f755ull});
tail[1] = dist(urbg);
EXPECT_EQ(3, urbg.invocations());
EXPECT_LT(tail[1], 0);
}
EXPECT_EQ(tail[0], -tail[1]);
EXPECT_EQ(418610, static_cast<int64_t>(tail[0] * 100000.0));
{
absl::random_internal::sequence_urbg urbg(
{make_box(0x7f00000000000000ull, 120), 0xe000000000000001ull,
0x13CCA830EB61BD96ull});
tail[0] = dist(urbg);
EXPECT_EQ(2, urbg.invocations());
EXPECT_GT(tail[0], 0);
}
{
absl::random_internal::sequence_urbg urbg(
{make_box(0xff00000000000000ull, 120), 0xe000000000000001ull,
0x13CCA830EB61BD96ull});
tail[1] = dist(urbg);
EXPECT_EQ(2, urbg.invocations());
EXPECT_LT(tail[1], 0);
}
EXPECT_EQ(tail[0], -tail[1]);
EXPECT_EQ(61948, static_cast<int64_t>(tail[0] * 100000.0));
{
absl::random_internal::sequence_urbg urbg(
{make_box(0xff00000000000000ull, 120), 0x1000000000000001,
make_box(0x1000000000000100ull, 50), 0x13CCA830EB61BD96ull});
dist(urbg);
EXPECT_EQ(3, urbg.invocations());
}
}
} | 2,531 |
#ifndef ABSL_RANDOM_SEED_SEQUENCES_H_
#define ABSL_RANDOM_SEED_SEQUENCES_H_
#include <iterator>
#include <random>
#include "absl/base/config.h"
#include "absl/base/nullability.h"
#include "absl/random/internal/salted_seed_seq.h"
#include "absl/random/internal/seed_material.h"
#include "absl/random/seed_gen_exception.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
using SeedSeq = random_internal::SaltedSeedSeq<std::seed_seq>;
template <typename URBG>
SeedSeq CreateSeedSeqFrom(URBG* urbg) {
SeedSeq::result_type
seed_material[random_internal::kEntropyBlocksNeeded];
if (!random_internal::ReadSeedMaterialFromURBG(
urbg, absl::MakeSpan(seed_material))) {
random_internal::ThrowSeedGenException();
}
return SeedSeq(std::begin(seed_material), std::end(seed_material));
}
SeedSeq MakeSeedSeq();
ABSL_NAMESPACE_END
}
#endif
#include "absl/random/seed_sequences.h"
#include "absl/random/internal/pool_urbg.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
SeedSeq MakeSeedSeq() {
SeedSeq::result_type seed_material[8];
random_internal::RandenPool<uint32_t>::Fill(absl::MakeSpan(seed_material));
return SeedSeq(std::begin(seed_material), std::end(seed_material));
}
ABSL_NAMESPACE_END
} | #include "absl/random/seed_sequences.h"
#include <iterator>
#include <random>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/random/internal/nonsecure_base.h"
#include "absl/random/random.h"
namespace {
TEST(SeedSequences, Examples) {
{
absl::SeedSeq seed_seq({1, 2, 3});
absl::BitGen bitgen(seed_seq);
EXPECT_NE(0, bitgen());
}
{
absl::BitGen engine;
auto seed_seq = absl::CreateSeedSeqFrom(&engine);
absl::BitGen bitgen(seed_seq);
EXPECT_NE(engine(), bitgen());
}
{
auto seed_seq = absl::MakeSeedSeq();
std::mt19937 random(seed_seq);
EXPECT_NE(0, random());
}
}
TEST(CreateSeedSeqFrom, CompatibleWithStdTypes) {
using ExampleNonsecureURBG =
absl::random_internal::NonsecureURBGBase<std::minstd_rand0>;
ExampleNonsecureURBG rng;
auto seq_from_rng = absl::CreateSeedSeqFrom(&rng);
std::mt19937_64{seq_from_rng};
}
TEST(CreateSeedSeqFrom, CompatibleWithBitGenerator) {
absl::BitGen rng;
auto seq_from_rng = absl::CreateSeedSeqFrom(&rng);
std::mt19937_64{seq_from_rng};
}
TEST(CreateSeedSeqFrom, CompatibleWithInsecureBitGen) {
absl::InsecureBitGen rng;
auto seq_from_rng = absl::CreateSeedSeqFrom(&rng);
std::mt19937_64{seq_from_rng};
}
TEST(CreateSeedSeqFrom, CompatibleWithRawURBG) {
std::random_device urandom;
auto seq_from_rng = absl::CreateSeedSeqFrom(&urandom);
std::mt19937_64{seq_from_rng};
}
template <typename URBG>
void TestReproducibleVariateSequencesForNonsecureURBG() {
const size_t kNumVariates = 1000;
URBG rng;
auto reusable_seed = absl::CreateSeedSeqFrom(&rng);
typename URBG::result_type variates[kNumVariates];
{
URBG child(reusable_seed);
for (auto& variate : variates) {
variate = child();
}
}
{
URBG child(reusable_seed);
for (auto& variate : variates) {
ASSERT_EQ(variate, child());
}
}
}
TEST(CreateSeedSeqFrom, ReproducesVariateSequencesForInsecureBitGen) {
TestReproducibleVariateSequencesForNonsecureURBG<absl::InsecureBitGen>();
}
TEST(CreateSeedSeqFrom, ReproducesVariateSequencesForBitGenerator) {
TestReproducibleVariateSequencesForNonsecureURBG<absl::BitGen>();
}
} | 2,532 |
#ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
#define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_
#include <cassert>
#include <cmath>
#include <istream>
#include <limits>
#include <numeric>
#include <type_traits>
#include <utility>
#include <vector>
#include "absl/random/bernoulli_distribution.h"
#include "absl/random/internal/iostream_state_saver.h"
#include "absl/random/uniform_int_distribution.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
template <typename IntType = int>
class discrete_distribution {
public:
using result_type = IntType;
class param_type {
public:
using distribution_type = discrete_distribution;
param_type() { init(); }
template <typename InputIterator>
explicit param_type(InputIterator begin, InputIterator end)
: p_(begin, end) {
init();
}
explicit param_type(std::initializer_list<double> weights) : p_(weights) {
init();
}
template <class UnaryOperation>
explicit param_type(size_t nw, double xmin, double xmax,
UnaryOperation fw) {
if (nw > 0) {
p_.reserve(nw);
double delta = (xmax - xmin) / static_cast<double>(nw);
assert(delta > 0);
double t = delta * 0.5;
for (size_t i = 0; i < nw; ++i) {
p_.push_back(fw(xmin + i * delta + t));
}
}
init();
}
const std::vector<double>& probabilities() const { return p_; }
size_t n() const { return p_.size() - 1; }
friend bool operator==(const param_type& a, const param_type& b) {
return a.probabilities() == b.probabilities();
}
friend bool operator!=(const param_type& a, const param_type& b) {
return !(a == b);
}
private:
friend class discrete_distribution;
void init();
std::vector<double> p_;
std::vector<std::pair<double, size_t>> q_;
static_assert(std::is_integral<result_type>::value,
"Class-template absl::discrete_distribution<> must be "
"parameterized using an integral type.");
};
discrete_distribution() : param_() {}
explicit discrete_distribution(const param_type& p) : param_(p) {}
template <typename InputIterator>
explicit discrete_distribution(InputIterator begin, InputIterator end)
: param_(begin, end) {}
explicit discrete_distribution(std::initializer_list<double> weights)
: param_(weights) {}
template <class UnaryOperation>
explicit discrete_distribution(size_t nw, double xmin, double xmax,
UnaryOperation fw)
: param_(nw, xmin, xmax, std::move(fw)) {}
void reset() {}
template <typename URBG>
result_type operator()(URBG& g) {
return (*this)(g, param_);
}
template <typename URBG>
result_type operator()(URBG& g,
const param_type& p);
const param_type& param() const { return param_; }
void param(const param_type& p) { param_ = p; }
result_type(min)() const { return 0; }
result_type(max)() const {
return static_cast<result_type>(param_.n());
}
const std::vector<double>& probabilities() const {
return param_.probabilities();
}
friend bool operator==(const discrete_distribution& a,
const discrete_distribution& b) {
return a.param_ == b.param_;
}
friend bool operator!=(const discrete_distribution& a,
const discrete_distribution& b) {
return a.param_ != b.param_;
}
private:
param_type param_;
};
namespace random_internal {
std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
std::vector<double>* probabilities);
}
template <typename IntType>
void discrete_distribution<IntType>::param_type::init() {
if (p_.empty()) {
p_.push_back(1.0);
q_.emplace_back(1.0, 0);
} else {
assert(n() <= (std::numeric_limits<IntType>::max)());
q_ = random_internal::InitDiscreteDistribution(&p_);
}
}
template <typename IntType>
template <typename URBG>
typename discrete_distribution<IntType>::result_type
discrete_distribution<IntType>::operator()(
URBG& g,
const param_type& p) {
const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g);
const auto& q = p.q_[idx];
const bool selected = absl::bernoulli_distribution(q.first)(g);
return selected ? idx : static_cast<result_type>(q.second);
}
template <typename CharT, typename Traits, typename IntType>
std::basic_ostream<CharT, Traits>& operator<<(
std::basic_ostream<CharT, Traits>& os,
const discrete_distribution<IntType>& x) {
auto saver = random_internal::make_ostream_state_saver(os);
const auto& probabilities = x.param().probabilities();
os << probabilities.size();
os.precision(random_internal::stream_precision_helper<double>::kPrecision);
for (const auto& p : probabilities) {
os << os.fill() << p;
}
return os;
}
template <typename CharT, typename Traits, typename IntType>
std::basic_istream<CharT, Traits>& operator>>(
std::basic_istream<CharT, Traits>& is,
discrete_distribution<IntType>& x) {
using param_type = typename discrete_distribution<IntType>::param_type;
auto saver = random_internal::make_istream_state_saver(is);
size_t n;
std::vector<double> p;
is >> n;
if (is.fail()) return is;
if (n > 0) {
p.reserve(n);
for (IntType i = 0; i < n && !is.fail(); ++i) {
auto tmp = random_internal::read_floating_point<double>(is);
if (is.fail()) return is;
p.push_back(tmp);
}
}
x.param(param_type(p.begin(), p.end()));
return is;
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/random/discrete_distribution.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
std::vector<double>* probabilities) {
assert(probabilities);
assert(!probabilities->empty());
double sum = std::accumulate(std::begin(*probabilities),
std::end(*probabilities), 0.0);
if (std::fabs(sum - 1.0) > 1e-6) {
for (double& item : *probabilities) {
item = item / sum;
}
}
const size_t n = probabilities->size();
std::vector<std::pair<double, size_t>> q;
q.reserve(n);
std::vector<size_t> over;
std::vector<size_t> under;
size_t idx = 0;
for (const double item : *probabilities) {
assert(item >= 0);
const double v = item * n;
q.emplace_back(v, 0);
if (v < 1.0) {
under.push_back(idx++);
} else {
over.push_back(idx++);
}
}
while (!over.empty() && !under.empty()) {
auto lo = under.back();
under.pop_back();
auto hi = over.back();
over.pop_back();
q[lo].second = hi;
const double r = q[hi].first - (1.0 - q[lo].first);
q[hi].first = r;
if (r < 1.0) {
under.push_back(hi);
} else {
over.push_back(hi);
}
}
for (auto i : over) {
q[i] = {1.0, i};
}
for (auto i : under) {
q[i] = {1.0, i};
}
return q;
}
}
ABSL_NAMESPACE_END
} | #include "absl/random/discrete_distribution.h"
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <random>
#include <sstream>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/log/log.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/strip.h"
namespace {
template <typename IntType>
class DiscreteDistributionTypeTest : public ::testing::Test {};
using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t,
uint32_t, int64_t, uint64_t>;
TYPED_TEST_SUITE(DiscreteDistributionTypeTest, IntTypes);
TYPED_TEST(DiscreteDistributionTypeTest, ParamSerializeTest) {
using param_type =
typename absl::discrete_distribution<TypeParam>::param_type;
absl::discrete_distribution<TypeParam> empty;
EXPECT_THAT(empty.probabilities(), testing::ElementsAre(1.0));
absl::discrete_distribution<TypeParam> before({1.0, 2.0, 1.0});
double s = 0;
for (const auto& x : before.probabilities()) {
s += x;
}
EXPECT_EQ(s, 1.0);
EXPECT_THAT(before.probabilities(), testing::ElementsAre(0.25, 0.5, 0.25));
{
std::vector<double> data({1.0, 2.0, 1.0});
absl::discrete_distribution<TypeParam> via_param{
param_type(std::begin(data), std::end(data))};
EXPECT_EQ(via_param, before);
}
std::stringstream ss;
ss << before;
absl::discrete_distribution<TypeParam> after;
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before, after);
}
TYPED_TEST(DiscreteDistributionTypeTest, Constructor) {
auto fn = [](double x) { return x; };
{
absl::discrete_distribution<int> unary(0, 1.0, 9.0, fn);
EXPECT_THAT(unary.probabilities(), testing::ElementsAre(1.0));
}
{
absl::discrete_distribution<int> unary(2, 1.0, 9.0, fn);
EXPECT_THAT(unary.probabilities(), testing::ElementsAre(0.3, 0.7));
}
}
TEST(DiscreteDistributionTest, InitDiscreteDistribution) {
using testing::_;
using testing::Pair;
{
std::vector<double> p({1.0, 2.0, 3.0});
std::vector<std::pair<double, size_t>> q =
absl::random_internal::InitDiscreteDistribution(&p);
EXPECT_THAT(p, testing::ElementsAre(1 / 6.0, 2 / 6.0, 3 / 6.0));
EXPECT_THAT(q, testing::ElementsAre(Pair(0.5, 2),
Pair(1.0, _),
Pair(1.0, _)));
}
{
std::vector<double> p({1.0, 2.0, 3.0, 5.0, 2.0});
std::vector<std::pair<double, size_t>> q =
absl::random_internal::InitDiscreteDistribution(&p);
EXPECT_THAT(p, testing::ElementsAre(1 / 13.0, 2 / 13.0, 3 / 13.0, 5 / 13.0,
2 / 13.0));
constexpr double b0 = 1.0 / 13.0 / 0.2;
constexpr double b1 = 2.0 / 13.0 / 0.2;
constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
EXPECT_THAT(q, testing::ElementsAre(Pair(b0, 3),
Pair(b1, 3),
Pair(1.0, _),
Pair(b3, 2),
Pair(b1, 3)));
}
}
TEST(DiscreteDistributionTest, ChiSquaredTest50) {
using absl::random_internal::kChiSquared;
constexpr size_t kTrials = 10000;
constexpr int kBuckets = 50;
const int kThreshold =
absl::random_internal::ChiSquareValue(kBuckets, 0.99999);
std::vector<double> weights(kBuckets, 0);
std::iota(std::begin(weights), std::end(weights), 1);
absl::discrete_distribution<int> dist(std::begin(weights), std::end(weights));
absl::random_internal::pcg64_2018_engine rng(0x2B7E151628AED2A6);
std::vector<int32_t> counts(kBuckets, 0);
for (size_t i = 0; i < kTrials; i++) {
auto x = dist(rng);
counts[x]++;
}
double sum = 0;
for (double x : weights) {
sum += x;
}
for (double& x : weights) {
x = kTrials * (x / sum);
}
double chi_square =
absl::random_internal::ChiSquare(std::begin(counts), std::end(counts),
std::begin(weights), std::end(weights));
if (chi_square > kThreshold) {
double p_value =
absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
std::string msg;
for (size_t i = 0; i < counts.size(); i++) {
absl::StrAppend(&msg, i, ": ", counts[i], " vs ", weights[i], "\n");
}
absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
kThreshold);
LOG(INFO) << msg;
FAIL() << msg;
}
}
TEST(DiscreteDistributionTest, StabilityTest) {
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
std::vector<int> output(6);
{
absl::discrete_distribution<int32_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
EXPECT_EQ(0, dist.min());
EXPECT_EQ(4, dist.max());
for (auto& v : output) {
v = dist(urbg);
}
EXPECT_EQ(12, urbg.invocations());
}
EXPECT_THAT(output, testing::ElementsAre(3, 3, 1, 3, 3, 3));
{
urbg.reset();
absl::discrete_distribution<int64_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
EXPECT_EQ(0, dist.min());
EXPECT_EQ(4, dist.max());
for (auto& v : output) {
v = dist(urbg);
}
EXPECT_EQ(12, urbg.invocations());
}
EXPECT_THAT(output, testing::ElementsAre(3, 3, 0, 3, 0, 4));
}
} | 2,533 |
#ifndef ABSL_RANDOM_INTERNAL_RANDEN_HWAES_H_
#define ABSL_RANDOM_INTERNAL_RANDEN_HWAES_H_
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
class RandenHwAes {
public:
static void Generate(const void* keys, void* state_void);
static void Absorb(const void* seed_void, void* state_void);
static const void* GetKeys();
};
bool HasRandenHwAesImplementation();
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/random/internal/randen_hwaes.h"
#include <cstdint>
#include <cstring>
#include "absl/base/attributes.h"
#include "absl/numeric/int128.h"
#include "absl/random/internal/platform.h"
#include "absl/random/internal/randen_traits.h"
#if ABSL_HAVE_ACCELERATED_AES
#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32) || \
defined(ABSL_ARCH_PPC) || defined(ABSL_ARCH_ARM) || \
defined(ABSL_ARCH_AARCH64)
#define ABSL_RANDEN_HWAES_IMPL 1
#endif
#endif
#if !defined(ABSL_RANDEN_HWAES_IMPL)
#include <cstdio>
#include <cstdlib>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
bool HasRandenHwAesImplementation() { return false; }
const void* RandenHwAes::GetKeys() {
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
exit(1);
return nullptr;
}
void RandenHwAes::Absorb(const void*, void*) {
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
exit(1);
}
void RandenHwAes::Generate(const void*, void*) {
const int d = ABSL_RANDOM_INTERNAL_AES_DISPATCH;
fprintf(stderr, "AES Hardware detection failed (%d).\n", d);
exit(1);
}
}
ABSL_NAMESPACE_END
}
#else
namespace {
using absl::random_internal::RandenTraits;
}
#if (defined(__clang__) || defined(__GNUC__))
#if defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
#define ABSL_TARGET_CRYPTO __attribute__((target("aes")))
#elif defined(ABSL_ARCH_PPC)
#define ABSL_TARGET_CRYPTO __attribute__((target("crypto")))
#else
#define ABSL_TARGET_CRYPTO
#endif
#else
#define ABSL_TARGET_CRYPTO
#endif
#if defined(ABSL_ARCH_PPC)
#include <altivec.h>
#undef vector
#undef bool
using Vector128 = __vector unsigned long long;
namespace {
inline ABSL_TARGET_CRYPTO Vector128 ReverseBytes(const Vector128& v) {
const __vector unsigned char perm = {15, 14, 13, 12, 11, 10, 9, 8,
7, 6, 5, 4, 3, 2, 1, 0};
return vec_perm(v, v, perm);
}
inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
return vec_vsx_ld(0, reinterpret_cast<const Vector128*>(from));
}
inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
vec_vsx_st(v, 0, reinterpret_cast<Vector128*>(to));
}
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
const Vector128& round_key) {
return Vector128(__builtin_crypto_vcipher(state, round_key));
}
inline ABSL_TARGET_CRYPTO void SwapEndian(absl::uint128* state) {
for (uint32_t block = 0; block < RandenTraits::kFeistelBlocks; ++block) {
Vector128Store(ReverseBytes(Vector128Load(state + block)), state + block);
}
}
}
#elif defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
#include <arm_neon.h>
using Vector128 = uint8x16_t;
namespace {
inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
return vld1q_u8(reinterpret_cast<const uint8_t*>(from));
}
inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
vst1q_u8(reinterpret_cast<uint8_t*>(to), v);
}
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
const Vector128& round_key) {
return vaesmcq_u8(vaeseq_u8(state, uint8x16_t{})) ^ round_key;
}
inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
}
#elif defined(ABSL_ARCH_X86_64) || defined(ABSL_ARCH_X86_32)
#include <immintrin.h>
namespace {
class Vector128 {
public:
inline explicit Vector128(const __m128i& v) : data_(v) {}
inline __m128i data() const { return data_; }
inline Vector128& operator^=(const Vector128& other) {
data_ = _mm_xor_si128(data_, other.data());
return *this;
}
private:
__m128i data_;
};
inline ABSL_TARGET_CRYPTO Vector128 Vector128Load(const void* from) {
return Vector128(_mm_load_si128(reinterpret_cast<const __m128i*>(from)));
}
inline ABSL_TARGET_CRYPTO void Vector128Store(const Vector128& v, void* to) {
_mm_store_si128(reinterpret_cast<__m128i*>(to), v.data());
}
inline ABSL_TARGET_CRYPTO Vector128 AesRound(const Vector128& state,
const Vector128& round_key) {
return Vector128(_mm_aesenc_si128(state.data(), round_key.data()));
}
inline ABSL_TARGET_CRYPTO void SwapEndian(void*) {}
}
#endif
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-pragmas"
#endif
namespace {
inline ABSL_TARGET_CRYPTO void BlockShuffle(absl::uint128* state) {
static_assert(RandenTraits::kFeistelBlocks == 16,
"Expecting 16 FeistelBlocks.");
constexpr size_t shuffle[RandenTraits::kFeistelBlocks] = {
7, 2, 13, 4, 11, 8, 3, 6, 15, 0, 9, 10, 1, 14, 5, 12};
const Vector128 v0 = Vector128Load(state + shuffle[0]);
const Vector128 v1 = Vector128Load(state + shuffle[1]);
const Vector128 v2 = Vector128Load(state + shuffle[2]);
const Vector128 v3 = Vector128Load(state + shuffle[3]);
const Vector128 v4 = Vector128Load(state + shuffle[4]);
const Vector128 v5 = Vector128Load(state + shuffle[5]);
const Vector128 v6 = Vector128Load(state + shuffle[6]);
const Vector128 v7 = Vector128Load(state + shuffle[7]);
const Vector128 w0 = Vector128Load(state + shuffle[8]);
const Vector128 w1 = Vector128Load(state + shuffle[9]);
const Vector128 w2 = Vector128Load(state + shuffle[10]);
const Vector128 w3 = Vector128Load(state + shuffle[11]);
const Vector128 w4 = Vector128Load(state + shuffle[12]);
const Vector128 w5 = Vector128Load(state + shuffle[13]);
const Vector128 w6 = Vector128Load(state + shuffle[14]);
const Vector128 w7 = Vector128Load(state + shuffle[15]);
Vector128Store(v0, state + 0);
Vector128Store(v1, state + 1);
Vector128Store(v2, state + 2);
Vector128Store(v3, state + 3);
Vector128Store(v4, state + 4);
Vector128Store(v5, state + 5);
Vector128Store(v6, state + 6);
Vector128Store(v7, state + 7);
Vector128Store(w0, state + 8);
Vector128Store(w1, state + 9);
Vector128Store(w2, state + 10);
Vector128Store(w3, state + 11);
Vector128Store(w4, state + 12);
Vector128Store(w5, state + 13);
Vector128Store(w6, state + 14);
Vector128Store(w7, state + 15);
}
inline ABSL_TARGET_CRYPTO const absl::uint128* FeistelRound(
absl::uint128* state,
const absl::uint128* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
static_assert(RandenTraits::kFeistelBlocks == 16,
"Expecting 16 FeistelBlocks.");
const Vector128 s0 = Vector128Load(state + 0);
const Vector128 s1 = Vector128Load(state + 1);
const Vector128 s2 = Vector128Load(state + 2);
const Vector128 s3 = Vector128Load(state + 3);
const Vector128 s4 = Vector128Load(state + 4);
const Vector128 s5 = Vector128Load(state + 5);
const Vector128 s6 = Vector128Load(state + 6);
const Vector128 s7 = Vector128Load(state + 7);
const Vector128 s8 = Vector128Load(state + 8);
const Vector128 s9 = Vector128Load(state + 9);
const Vector128 s10 = Vector128Load(state + 10);
const Vector128 s11 = Vector128Load(state + 11);
const Vector128 s12 = Vector128Load(state + 12);
const Vector128 s13 = Vector128Load(state + 13);
const Vector128 s14 = Vector128Load(state + 14);
const Vector128 s15 = Vector128Load(state + 15);
const Vector128 e0 = AesRound(s0, Vector128Load(keys + 0));
const Vector128 e2 = AesRound(s2, Vector128Load(keys + 1));
const Vector128 e4 = AesRound(s4, Vector128Load(keys + 2));
const Vector128 e6 = AesRound(s6, Vector128Load(keys + 3));
const Vector128 e8 = AesRound(s8, Vector128Load(keys + 4));
const Vector128 e10 = AesRound(s10, Vector128Load(keys + 5));
const Vector128 e12 = AesRound(s12, Vector128Load(keys + 6));
const Vector128 e14 = AesRound(s14, Vector128Load(keys + 7));
const Vector128 o1 = AesRound(e0, s1);
const Vector128 o3 = AesRound(e2, s3);
const Vector128 o5 = AesRound(e4, s5);
const Vector128 o7 = AesRound(e6, s7);
const Vector128 o9 = AesRound(e8, s9);
const Vector128 o11 = AesRound(e10, s11);
const Vector128 o13 = AesRound(e12, s13);
const Vector128 o15 = AesRound(e14, s15);
Vector128Store(o1, state + 1);
Vector128Store(o3, state + 3);
Vector128Store(o5, state + 5);
Vector128Store(o7, state + 7);
Vector128Store(o9, state + 9);
Vector128Store(o11, state + 11);
Vector128Store(o13, state + 13);
Vector128Store(o15, state + 15);
return keys + 8;
}
inline ABSL_TARGET_CRYPTO void Permute(
absl::uint128* state,
const absl::uint128* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
#ifdef __clang__
#pragma clang loop unroll_count(2)
#endif
for (size_t round = 0; round < RandenTraits::kFeistelRounds; ++round) {
keys = FeistelRound(state, keys);
BlockShuffle(state);
}
}
}
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
bool HasRandenHwAesImplementation() { return true; }
const void* ABSL_TARGET_CRYPTO RandenHwAes::GetKeys() {
#if defined(ABSL_ARCH_PPC)
return kRandenRoundKeysBE;
#else
return kRandenRoundKeys;
#endif
}
void ABSL_TARGET_CRYPTO RandenHwAes::Absorb(const void* seed_void,
void* state_void) {
static_assert(RandenTraits::kCapacityBytes / sizeof(Vector128) == 1,
"Unexpected Randen kCapacityBlocks");
static_assert(RandenTraits::kStateBytes / sizeof(Vector128) == 16,
"Unexpected Randen kStateBlocks");
auto* state = reinterpret_cast<absl::uint128 * ABSL_RANDOM_INTERNAL_RESTRICT>(
state_void);
const auto* seed =
reinterpret_cast<const absl::uint128 * ABSL_RANDOM_INTERNAL_RESTRICT>(
seed_void);
Vector128 b1 = Vector128Load(state + 1);
b1 ^= Vector128Load(seed + 0);
Vector128Store(b1, state + 1);
Vector128 b2 = Vector128Load(state + 2);
b2 ^= Vector128Load(seed + 1);
Vector128Store(b2, state + 2);
Vector128 b3 = Vector128Load(state + 3);
b3 ^= Vector128Load(seed + 2);
Vector128Store(b3, state + 3);
Vector128 b4 = Vector128Load(state + 4);
b4 ^= Vector128Load(seed + 3);
Vector128Store(b4, state + 4);
Vector128 b5 = Vector128Load(state + 5);
b5 ^= Vector128Load(seed + 4);
Vector128Store(b5, state + 5);
Vector128 b6 = Vector128Load(state + 6);
b6 ^= Vector128Load(seed + 5);
Vector128Store(b6, state + 6);
Vector128 b7 = Vector128Load(state + 7);
b7 ^= Vector128Load(seed + 6);
Vector128Store(b7, state + 7);
Vector128 b8 = Vector128Load(state + 8);
b8 ^= Vector128Load(seed + 7);
Vector128Store(b8, state + 8);
Vector128 b9 = Vector128Load(state + 9);
b9 ^= Vector128Load(seed + 8);
Vector128Store(b9, state + 9);
Vector128 b10 = Vector128Load(state + 10);
b10 ^= Vector128Load(seed + 9);
Vector128Store(b10, state + 10);
Vector128 b11 = Vector128Load(state + 11);
b11 ^= Vector128Load(seed + 10);
Vector128Store(b11, state + 11);
Vector128 b12 = Vector128Load(state + 12);
b12 ^= Vector128Load(seed + 11);
Vector128Store(b12, state + 12);
Vector128 b13 = Vector128Load(state + 13);
b13 ^= Vector128Load(seed + 12);
Vector128Store(b13, state + 13);
Vector128 b14 = Vector128Load(state + 14);
b14 ^= Vector128Load(seed + 13);
Vector128Store(b14, state + 14);
Vector128 b15 = Vector128Load(state + 15);
b15 ^= Vector128Load(seed + 14);
Vector128Store(b15, state + 15);
}
void ABSL_TARGET_CRYPTO RandenHwAes::Generate(const void* keys_void,
void* state_void) {
static_assert(RandenTraits::kCapacityBytes == sizeof(Vector128),
"Capacity mismatch");
auto* state = reinterpret_cast<absl::uint128*>(state_void);
const auto* keys = reinterpret_cast<const absl::uint128*>(keys_void);
const Vector128 prev_inner = Vector128Load(state);
SwapEndian(state);
Permute(state, keys);
SwapEndian(state);
Vector128 inner = Vector128Load(state);
inner ^= prev_inner;
Vector128Store(inner, state);
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif
}
ABSL_NAMESPACE_END
}
#endif | #include "absl/random/internal/randen_hwaes.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/log/log.h"
#include "absl/random/internal/platform.h"
#include "absl/random/internal/randen_detect.h"
#include "absl/random/internal/randen_traits.h"
#include "absl/strings/str_format.h"
namespace {
using absl::random_internal::RandenHwAes;
using absl::random_internal::RandenTraits;
TEST(RandenHwAesTest, Default) {
EXPECT_TRUE(absl::random_internal::CPUSupportsRandenHwAes());
constexpr uint8_t kGolden[] = {
0xee, 0xd3, 0xe6, 0x0e, 0x09, 0x34, 0x65, 0x6c, 0xc6, 0x33, 0x53, 0x9d,
0x9b, 0x2b, 0x4e, 0x04, 0x77, 0x39, 0x43, 0x4e, 0x13, 0x4f, 0xc1, 0xc3,
0xee, 0x10, 0x04, 0xd9, 0x7c, 0xf4, 0xa9, 0xdd, 0x10, 0xca, 0xd8, 0x7f,
0x08, 0xf3, 0x7b, 0x88, 0x12, 0x29, 0xc7, 0x45, 0xf5, 0x80, 0xb7, 0xf0,
0x9f, 0x59, 0x96, 0x76, 0xd3, 0xb1, 0xdb, 0x15, 0x59, 0x6d, 0x3c, 0xff,
0xba, 0x63, 0xec, 0x30, 0xa6, 0x20, 0x7f, 0x6f, 0x60, 0x73, 0x9f, 0xb2,
0x4c, 0xa5, 0x49, 0x6f, 0x31, 0x8a, 0x80, 0x02, 0x0e, 0xe5, 0xc8, 0xd5,
0xf9, 0xea, 0x8f, 0x3b, 0x8a, 0xde, 0xd9, 0x3f, 0x5e, 0x60, 0xbf, 0x9c,
0xbb, 0x3b, 0x18, 0x78, 0x1a, 0xae, 0x70, 0xc9, 0xd5, 0x1e, 0x30, 0x56,
0xd3, 0xff, 0xb2, 0xd8, 0x37, 0x3c, 0xc7, 0x0f, 0xfe, 0x27, 0xb3, 0xf4,
0x19, 0x9a, 0x8f, 0xeb, 0x76, 0x8d, 0xfd, 0xcd, 0x9d, 0x0c, 0x42, 0x91,
0xeb, 0x06, 0xa5, 0xc3, 0x56, 0x95, 0xff, 0x3e, 0xdd, 0x05, 0xaf, 0xd5,
0xa1, 0xc4, 0x83, 0x8f, 0xb7, 0x1b, 0xdb, 0x48, 0x8c, 0xfe, 0x6b, 0x0d,
0x0e, 0x92, 0x23, 0x70, 0x42, 0x6d, 0x95, 0x34, 0x58, 0x57, 0xd3, 0x58,
0x40, 0xb8, 0x87, 0x6b, 0xc2, 0xf4, 0x1e, 0xed, 0xf3, 0x2d, 0x0b, 0x3e,
0xa2, 0x32, 0xef, 0x8e, 0xfc, 0x54, 0x11, 0x43, 0xf3, 0xab, 0x7c, 0x49,
0x8b, 0x9a, 0x02, 0x70, 0x05, 0x37, 0x24, 0x4e, 0xea, 0xe5, 0x90, 0xf0,
0x49, 0x57, 0x8b, 0xd8, 0x2f, 0x69, 0x70, 0xa9, 0x82, 0xa5, 0x51, 0xc6,
0xf5, 0x42, 0x63, 0xbb, 0x2c, 0xec, 0xfc, 0x78, 0xdb, 0x55, 0x2f, 0x61,
0x45, 0xb7, 0x3c, 0x46, 0xe3, 0xaf, 0x16, 0x18, 0xad, 0xe4, 0x2e, 0x35,
0x7e, 0xda, 0x01, 0xc1, 0x74, 0xf3, 0x6f, 0x02, 0x51, 0xe8, 0x3d, 0x1c,
0x82, 0xf0, 0x1e, 0x81,
};
alignas(16) uint8_t state[RandenTraits::kStateBytes];
std::memset(state, 0, sizeof(state));
RandenHwAes::Generate(RandenHwAes::GetKeys(), state);
EXPECT_EQ(0, std::memcmp(state, kGolden, sizeof(state)));
}
}
int main(int argc, char* argv[]) {
testing::InitGoogleTest(&argc, argv);
LOG(INFO) << "ABSL_HAVE_ACCELERATED_AES=" << ABSL_HAVE_ACCELERATED_AES;
LOG(INFO) << "ABSL_RANDOM_INTERNAL_AES_DISPATCH="
<< ABSL_RANDOM_INTERNAL_AES_DISPATCH;
#if defined(ABSL_ARCH_X86_64)
LOG(INFO) << "ABSL_ARCH_X86_64";
#elif defined(ABSL_ARCH_X86_32)
LOG(INFO) << "ABSL_ARCH_X86_32";
#elif defined(ABSL_ARCH_AARCH64)
LOG(INFO) << "ABSL_ARCH_AARCH64";
#elif defined(ABSL_ARCH_ARM)
LOG(INFO) << "ABSL_ARCH_ARM";
#elif defined(ABSL_ARCH_PPC)
LOG(INFO) << "ABSL_ARCH_PPC";
#else
LOG(INFO) << "ARCH Unknown";
#endif
int x = absl::random_internal::HasRandenHwAesImplementation();
LOG(INFO) << "HasRandenHwAesImplementation = " << x;
int y = absl::random_internal::CPUSupportsRandenHwAes();
LOG(INFO) << "CPUSupportsRandenHwAes = " << x;
if (!x || !y) {
LOG(INFO) << "Skipping Randen HWAES tests.";
return 0;
}
return RUN_ALL_TESTS();
} | 2,534 |
#ifndef ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
#define ABSL_RANDOM_INTERNAL_CHI_SQUARE_H_
#include <cassert>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
constexpr const char kChiSquared[] = "chi-squared";
template <typename Iterator>
double ChiSquareWithExpected(Iterator begin, Iterator end, double expected) {
assert(expected >= 10);
double chi_square = 0;
for (auto it = begin; it != end; it++) {
double d = static_cast<double>(*it) - expected;
chi_square += d * d;
}
chi_square = chi_square / expected;
return chi_square;
}
template <typename Iterator, typename Expected>
double ChiSquare(Iterator it, Iterator end, Expected eit, Expected eend) {
double chi_square = 0;
for (; it != end && eit != eend; ++it, ++eit) {
if (*it > 0) {
assert(*eit > 0);
}
double e = static_cast<double>(*eit);
double d = static_cast<double>(*it - *eit);
if (d != 0) {
assert(e > 0);
chi_square += (d * d) / e;
}
}
assert(it == end && eit == eend);
return chi_square;
}
double ChiSquareValue(int dof, double p);
double ChiSquarePValue(double chi_square, int dof);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/random/internal/chi_square.h"
#include <cmath>
#include "absl/random/internal/distribution_test_util.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
namespace {
#if defined(__EMSCRIPTEN__)
inline double fma(double x, double y, double z) {
return (x * y) + z;
}
#endif
template <typename T, unsigned N>
inline T EvaluatePolynomial(T x, const T (&poly)[N]) {
#if !defined(__EMSCRIPTEN__)
using std::fma;
#endif
T p = poly[N - 1];
for (unsigned i = 2; i <= N; i++) {
p = fma(p, x, poly[N - i]);
}
return p;
}
static constexpr int kLargeDOF = 150;
double POZ(double z) {
static constexpr double kP1[] = {
0.797884560593, -0.531923007300, 0.319152932694,
-0.151968751364, 0.059054035642, -0.019198292004,
0.005198775019, -0.001075204047, 0.000124818987,
};
static constexpr double kP2[] = {
0.999936657524, 0.000535310849, -0.002141268741, 0.005353579108,
-0.009279453341, 0.011630447319, -0.010557625006, 0.006549791214,
-0.002034254874, -0.000794620820, 0.001390604284, -0.000676904986,
-0.000019538132, 0.000152529290, -0.000045255659,
};
const double kZMax = 6.0;
if (z == 0.0) {
return 0.5;
}
double x;
double y = 0.5 * std::fabs(z);
if (y >= (kZMax * 0.5)) {
x = 1.0;
} else if (y < 1.0) {
double w = y * y;
x = EvaluatePolynomial(w, kP1) * y * 2.0;
} else {
y -= 2.0;
x = EvaluatePolynomial(y, kP2);
}
return z > 0.0 ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5);
}
double normal_survival(double z) {
static constexpr double kR[] = {
1.0, 0.196854, 0.115194, 0.000344, 0.019527,
};
double r = EvaluatePolynomial(z, kR);
r *= r;
return 0.5 / (r * r);
}
}
double ChiSquareValue(int dof, double p) {
static constexpr double kChiEpsilon =
0.000001;
static constexpr double kChiMax =
99999.0;
const double p_value = 1.0 - p;
if (dof < 1 || p_value > 1.0) {
return 0.0;
}
if (dof > kLargeDOF) {
const double z = InverseNormalSurvival(p_value);
const double mean = 1 - 2.0 / (9 * dof);
const double variance = 2.0 / (9 * dof);
if (variance != 0) {
double term = z * std::sqrt(variance) + mean;
return dof * (term * term * term);
}
}
if (p_value <= 0.0) return kChiMax;
double min_chisq = 0.0;
double max_chisq = kChiMax;
double current = dof / std::sqrt(p_value);
while ((max_chisq - min_chisq) > kChiEpsilon) {
if (ChiSquarePValue(current, dof) < p_value) {
max_chisq = current;
} else {
min_chisq = current;
}
current = (max_chisq + min_chisq) * 0.5;
}
return current;
}
double ChiSquarePValue(double chi_square, int dof) {
static constexpr double kLogSqrtPi =
0.5723649429247000870717135;
static constexpr double kInverseSqrtPi =
0.5641895835477562869480795;
if (dof > kLargeDOF) {
const double chi_square_scaled = std::pow(chi_square / dof, 1.0 / 3);
const double mean = 1 - 2.0 / (9 * dof);
const double variance = 2.0 / (9 * dof);
if (variance != 0) {
const double z = (chi_square_scaled - mean) / std::sqrt(variance);
if (z > 0) {
return normal_survival(z);
} else if (z < 0) {
return 1.0 - normal_survival(-z);
} else {
return 0.5;
}
}
}
if (chi_square <= 0.0) return 1.0;
if (dof < 1) return 0;
auto capped_exp = [](double x) { return x < -20 ? 0.0 : std::exp(x); };
static constexpr double kBigX = 20;
double a = 0.5 * chi_square;
const bool even = !(dof & 1);
const double y = capped_exp(-a);
double s = even ? y : (2.0 * POZ(-std::sqrt(chi_square)));
if (dof <= 2) {
return s;
}
chi_square = 0.5 * (dof - 1.0);
double z = (even ? 1.0 : 0.5);
if (a > kBigX) {
double e = (even ? 0.0 : kLogSqrtPi);
double c = std::log(a);
while (z <= chi_square) {
e = std::log(z) + e;
s += capped_exp(c * z - a - e);
z += 1.0;
}
return s;
}
double e = (even ? 1.0 : (kInverseSqrtPi / std::sqrt(a)));
double c = 0.0;
while (z <= chi_square) {
e = e * (a / z);
c = c + e;
z += 1.0;
}
return c * y + s;
}
}
ABSL_NAMESPACE_END
} | #include "absl/random/internal/chi_square.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <vector>
#include "gtest/gtest.h"
#include "absl/base/macros.h"
using absl::random_internal::ChiSquare;
using absl::random_internal::ChiSquarePValue;
using absl::random_internal::ChiSquareValue;
using absl::random_internal::ChiSquareWithExpected;
namespace {
TEST(ChiSquare, Value) {
struct {
int line;
double chi_square;
int df;
double confidence;
} const specs[] = {
{__LINE__, 0, 0, 0.01},
{__LINE__, 0.00016, 1, 0.01},
{__LINE__, 1.64650, 8, 0.01},
{__LINE__, 5.81221, 16, 0.01},
{__LINE__, 156.4319, 200, 0.01},
{__LINE__, 1121.3784, 1234, 0.01},
{__LINE__, 53557.1629, 54321, 0.01},
{__LINE__, 651662.6647, 654321, 0.01},
{__LINE__, 0, 0, 0.99},
{__LINE__, 6.635, 1, 0.99},
{__LINE__, 20.090, 8, 0.99},
{__LINE__, 32.000, 16, 0.99},
{__LINE__, 249.4456, 200, 0.99},
{__LINE__, 1131.1573, 1023, 0.99},
{__LINE__, 1352.5038, 1234, 0.99},
{__LINE__, 55090.7356, 54321, 0.99},
{__LINE__, 656985.1514, 654321, 0.99},
{__LINE__, 16.2659, 3, 0.999},
{__LINE__, 22.4580, 6, 0.999},
{__LINE__, 267.5409, 200, 0.999},
{__LINE__, 1168.5033, 1023, 0.999},
{__LINE__, 55345.1741, 54321, 0.999},
{__LINE__, 657861.7284, 654321, 0.999},
{__LINE__, 51.1772, 24, 0.999},
{__LINE__, 59.7003, 30, 0.999},
{__LINE__, 37.6984, 15, 0.999},
{__LINE__, 29.5898, 10, 0.999},
{__LINE__, 27.8776, 9, 0.999},
{__LINE__, 0.000157088, 1, 0.01},
{__LINE__, 5.31852, 2, 0.93},
{__LINE__, 1.92256, 4, 0.25},
{__LINE__, 10.7709, 13, 0.37},
{__LINE__, 26.2514, 17, 0.93},
{__LINE__, 36.4799, 29, 0.84},
{__LINE__, 25.818, 31, 0.27},
{__LINE__, 63.3346, 64, 0.50},
{__LINE__, 196.211, 128, 0.9999},
{__LINE__, 215.21, 243, 0.10},
{__LINE__, 285.393, 256, 0.90},
{__LINE__, 984.504, 1024, 0.1923},
{__LINE__, 2043.85, 2048, 0.4783},
{__LINE__, 48004.6, 48273, 0.194},
};
for (const auto& spec : specs) {
SCOPED_TRACE(spec.line);
const double val = ChiSquareValue(spec.df, spec.confidence);
const double err = std::max(5e-6, spec.chi_square / 5e3);
EXPECT_NEAR(spec.chi_square, val, err) << spec.line;
}
EXPECT_NEAR(49.2680, ChiSquareValue(100, 1e-6), 5);
EXPECT_NEAR(123.499, ChiSquareValue(200, 1e-6), 5);
EXPECT_NEAR(149.449, ChiSquareValue(100, 0.999), 0.01);
EXPECT_NEAR(161.318, ChiSquareValue(100, 0.9999), 0.01);
EXPECT_NEAR(172.098, ChiSquareValue(100, 0.99999), 0.01);
EXPECT_NEAR(381.426, ChiSquareValue(300, 0.999), 0.05);
EXPECT_NEAR(399.756, ChiSquareValue(300, 0.9999), 0.1);
EXPECT_NEAR(416.126, ChiSquareValue(300, 0.99999), 0.2);
}
TEST(ChiSquareTest, PValue) {
struct {
int line;
double pval;
double chi_square;
int df;
} static const specs[] = {
{__LINE__, 1, 0, 0},
{__LINE__, 0, 0.001, 0},
{__LINE__, 1.000, 0, 453},
{__LINE__, 0.134471, 7972.52, 7834},
{__LINE__, 0.203922, 28.32, 23},
{__LINE__, 0.737171, 48274, 48472},
{__LINE__, 0.444146, 583.1234, 579},
{__LINE__, 0.294814, 138.2, 130},
{__LINE__, 0.0816532, 12.63, 7},
{__LINE__, 0, 682.32, 67},
{__LINE__, 0.49405, 999, 999},
{__LINE__, 1.000, 0, 9999},
{__LINE__, 0.997477, 0.00001, 1},
{__LINE__, 0, 5823.21, 5040},
};
for (const auto& spec : specs) {
SCOPED_TRACE(spec.line);
const double pval = ChiSquarePValue(spec.chi_square, spec.df);
EXPECT_NEAR(spec.pval, pval, 1e-3);
}
}
TEST(ChiSquareTest, CalcChiSquare) {
struct {
int line;
std::vector<int> expected;
std::vector<int> actual;
} const specs[] = {
{__LINE__,
{56, 234, 76, 1, 546, 1, 87, 345, 1, 234},
{2, 132, 4, 43, 234, 8, 345, 8, 236, 56}},
{__LINE__,
{123, 36, 234, 367, 345, 2, 456, 567, 234, 567},
{123, 56, 2345, 8, 345, 8, 2345, 23, 48, 267}},
{__LINE__,
{123, 234, 345, 456, 567, 678, 789, 890, 98, 76},
{123, 234, 345, 456, 567, 678, 789, 890, 98, 76}},
{__LINE__, {3, 675, 23, 86, 2, 8, 2}, {456, 675, 23, 86, 23, 65, 2}},
{__LINE__, {1}, {23}},
};
for (const auto& spec : specs) {
SCOPED_TRACE(spec.line);
double chi_square = 0;
for (int i = 0; i < spec.expected.size(); ++i) {
const double diff = spec.actual[i] - spec.expected[i];
chi_square += (diff * diff) / spec.expected[i];
}
EXPECT_NEAR(chi_square,
ChiSquare(std::begin(spec.actual), std::end(spec.actual),
std::begin(spec.expected), std::end(spec.expected)),
1e-5);
}
}
TEST(ChiSquareTest, CalcChiSquareInt64) {
const int64_t data[3] = {910293487, 910292491, 910216780};
double sum = std::accumulate(std::begin(data), std::end(data), double{0});
size_t n = std::distance(std::begin(data), std::end(data));
double a = ChiSquareWithExpected(std::begin(data), std::end(data), sum / n);
EXPECT_NEAR(4.254101, a, 1e-6);
double b =
ChiSquareWithExpected(std::begin(data), std::end(data), 910267586.0);
EXPECT_NEAR(4.254101, b, 1e-6);
}
TEST(ChiSquareTest, TableData) {
const double data[100][5] = {
{2.706, 3.841, 5.024, 6.635, 10.828},
{4.605, 5.991, 7.378, 9.210, 13.816},
{6.251, 7.815, 9.348, 11.345, 16.266},
{7.779, 9.488, 11.143, 13.277, 18.467},
{9.236, 11.070, 12.833, 15.086, 20.515},
{10.645, 12.592, 14.449, 16.812, 22.458},
{12.017, 14.067, 16.013, 18.475, 24.322},
{13.362, 15.507, 17.535, 20.090, 26.125},
{14.684, 16.919, 19.023, 21.666, 27.877},
{15.987, 18.307, 20.483, 23.209, 29.588},
{17.275, 19.675, 21.920, 24.725, 31.264},
{18.549, 21.026, 23.337, 26.217, 32.910},
{19.812, 22.362, 24.736, 27.688, 34.528},
{21.064, 23.685, 26.119, 29.141, 36.123},
{22.307, 24.996, 27.488, 30.578, 37.697},
{23.542, 26.296, 28.845, 32.000, 39.252},
{24.769, 27.587, 30.191, 33.409, 40.790},
{25.989, 28.869, 31.526, 34.805, 42.312},
{27.204, 30.144, 32.852, 36.191, 43.820},
{28.412, 31.410, 34.170, 37.566, 45.315},
{29.615, 32.671, 35.479, 38.932, 46.797},
{30.813, 33.924, 36.781, 40.289, 48.268},
{32.007, 35.172, 38.076, 41.638, 49.728},
{33.196, 36.415, 39.364, 42.980, 51.179},
{34.382, 37.652, 40.646, 44.314, 52.620},
{35.563, 38.885, 41.923, 45.642, 54.052},
{36.741, 40.113, 43.195, 46.963, 55.476},
{37.916, 41.337, 44.461, 48.278, 56.892},
{39.087, 42.557, 45.722, 49.588, 58.301},
{40.256, 43.773, 46.979, 50.892, 59.703},
{41.422, 44.985, 48.232, 52.191, 61.098},
{42.585, 46.194, 49.480, 53.486, 62.487},
{43.745, 47.400, 50.725, 54.776, 63.870},
{44.903, 48.602, 51.966, 56.061, 65.247},
{46.059, 49.802, 53.203, 57.342, 66.619},
{47.212, 50.998, 54.437, 58.619, 67.985},
{48.363, 52.192, 55.668, 59.893, 69.347},
{49.513, 53.384, 56.896, 61.162, 70.703},
{50.660, 54.572, 58.120, 62.428, 72.055},
{51.805, 55.758, 59.342, 63.691, 73.402},
{52.949, 56.942, 60.561, 64.950, 74.745},
{54.090, 58.124, 61.777, 66.206, 76.084},
{55.230, 59.304, 62.990, 67.459, 77.419},
{56.369, 60.481, 64.201, 68.710, 78.750},
{57.505, 61.656, 65.410, 69.957, 80.077},
{58.641, 62.830, 66.617, 71.201, 81.400},
{59.774, 64.001, 67.821, 72.443, 82.720},
{60.907, 65.171, 69.023, 73.683, 84.037},
{62.038, 66.339, 70.222, 74.919, 85.351},
{63.167, 67.505, 71.420, 76.154, 86.661},
{64.295, 68.669, 72.616, 77.386, 87.968},
{65.422, 69.832, 73.810, 78.616, 89.272},
{66.548, 70.993, 75.002, 79.843, 90.573},
{67.673, 72.153, 76.192, 81.069, 91.872},
{68.796, 73.311, 77.380, 82.292, 93.168},
{69.919, 74.468, 78.567, 83.513, 94.461},
{71.040, 75.624, 79.752, 84.733, 95.751},
{72.160, 76.778, 80.936, 85.950, 97.039},
{73.279, 77.931, 82.117, 87.166, 98.324},
{74.397, 79.082, 83.298, 88.379, 99.607},
{75.514, 80.232, 84.476, 89.591, 100.888},
{76.630, 81.381, 85.654, 90.802, 102.166},
{77.745, 82.529, 86.830, 92.010, 103.442},
{78.860, 83.675, 88.004, 93.217, 104.716},
{79.973, 84.821, 89.177, 94.422, 105.988},
{81.085, 85.965, 90.349, 95.626, 107.258},
{82.197, 87.108, 91.519, 96.828, 108.526},
{83.308, 88.250, 92.689, 98.028, 109.791},
{84.418, 89.391, 93.856, 99.228, 111.055},
{85.527, 90.531, 95.023, 100.425, 112.317},
{86.635, 91.670, 96.189, 101.621, 113.577},
{87.743, 92.808, 97.353, 102.816, 114.835},
{88.850, 93.945, 98.516, 104.010, 116.092},
{89.956, 95.081, 99.678, 105.202, 117.346},
{91.061, 96.217, 100.839, 106.393, 118.599},
{92.166, 97.351, 101.999, 107.583, 119.850},
{93.270, 98.484, 103.158, 108.771, 121.100},
{94.374, 99.617, 104.316, 109.958, 122.348},
{95.476, 100.749, 105.473, 111.144, 123.594},
{96.578, 101.879, 106.629, 112.329, 124.839},
{97.680, 103.010, 107.783, 113.512, 126.083},
{98.780, 104.139, 108.937, 114.695, 127.324},
{99.880, 105.267, 110.090, 115.876, 128.565},
{100.980, 106.395, 111.242, 117.057, 129.804},
{102.079, 107.522, 112.393, 118.236, 131.041},
{103.177, 108.648, 113.544, 119.414, 132.277},
{104.275, 109.773, 114.693, 120.591, 133.512},
{105.372, 110.898, 115.841, 121.767, 134.746},
{106.469, 112.022, 116.989, 122.942, 135.978},
{107.565, 113.145, 118.136, 124.116, 137.208},
{108.661, 114.268, 119.282, 125.289, 138.438},
{109.756, 115.390, 120.427, 126.462, 139.666},
{110.850, 116.511, 121.571, 127.633, 140.893},
{111.944, 117.632, 122.715, 128.803, 142.119},
{113.038, 118.752, 123.858, 129.973, 143.344},
{114.131, 119.871, 125.000, 131.141, 144.567},
{115.223, 120.990, 126.141, 132.309, 145.789},
{116.315, 122.108, 127.282, 133.476, 147.010},
{117.407, 123.225, 128.422, 134.642, 148.230},
{118.498, 124.342, 129.561, 135.807, 149.449}
};
for (int i = 0; i < ABSL_ARRAYSIZE(data); i++) {
const double E = 0.0001;
EXPECT_NEAR(ChiSquarePValue(data[i][0], i + 1), 0.10, E)
<< i << " " << data[i][0];
EXPECT_NEAR(ChiSquarePValue(data[i][1], i + 1), 0.05, E)
<< i << " " << data[i][1];
EXPECT_NEAR(ChiSquarePValue(data[i][2], i + 1), 0.025, E)
<< i << " " << data[i][2];
EXPECT_NEAR(ChiSquarePValue(data[i][3], i + 1), 0.01, E)
<< i << " " << data[i][3];
EXPECT_NEAR(ChiSquarePValue(data[i][4], i + 1), 0.001, E)
<< i << " " << data[i][4];
const double F = 0.1;
EXPECT_NEAR(ChiSquareValue(i + 1, 0.90), data[i][0], F) << i;
EXPECT_NEAR(ChiSquareValue(i + 1, 0.95), data[i][1], F) << i;
EXPECT_NEAR(ChiSquareValue(i + 1, 0.975), data[i][2], F) << i;
EXPECT_NEAR(ChiSquareValue(i + 1, 0.99), data[i][3], F) << i;
EXPECT_NEAR(ChiSquareValue(i + 1, 0.999), data[i][4], F) << i;
}
}
TEST(ChiSquareTest, ChiSquareTwoIterator) {
const int counts[10] = {6, 6, 18, 33, 38, 38, 28, 21, 9, 3};
const double expected[10] = {4.6, 8.8, 18.4, 30.0, 38.2,
38.2, 30.0, 18.4, 8.8, 4.6};
double chi_square = ChiSquare(std::begin(counts), std::end(counts),
std::begin(expected), std::end(expected));
EXPECT_NEAR(chi_square, 2.69, 0.001);
const int dof = 7;
double p_value_05 = ChiSquarePValue(14.067, dof);
EXPECT_NEAR(p_value_05, 0.05, 0.001);
double p_actual = ChiSquarePValue(chi_square, dof);
EXPECT_GT(p_actual, 0.05);
}
TEST(ChiSquareTest, DiceRolls) {
const int rolls[6] = {22, 11, 17, 14, 20, 18};
double sum = std::accumulate(std::begin(rolls), std::end(rolls), double{0});
size_t n = std::distance(std::begin(rolls), std::end(rolls));
double a = ChiSquareWithExpected(std::begin(rolls), std::end(rolls), sum / n);
EXPECT_NEAR(a, 4.70588, 1e-5);
EXPECT_LT(a, ChiSquareValue(4, 0.95));
double p_a = ChiSquarePValue(a, 4);
EXPECT_NEAR(p_a, 0.318828, 1e-5);
double b = ChiSquareWithExpected(std::begin(rolls), std::end(rolls), 17.0);
EXPECT_NEAR(b, 4.70588, 1e-5);
EXPECT_LT(b, ChiSquareValue(5, 0.95));
double p_b = ChiSquarePValue(b, 5);
EXPECT_NEAR(p_b, 0.4528180, 1e-5);
}
} | 2,535 |
#ifndef ABSL_RANDOM_INTERNAL_SEED_MATERIAL_H_
#define ABSL_RANDOM_INTERNAL_SEED_MATERIAL_H_
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <string>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/types/optional.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
constexpr size_t SeedBitsToBlocks(size_t seed_size) {
return (seed_size + 31) / 32;
}
constexpr size_t kEntropyBitsNeeded = 256;
constexpr size_t kEntropyBlocksNeeded =
random_internal::SeedBitsToBlocks(kEntropyBitsNeeded);
static_assert(kEntropyBlocksNeeded > 0,
"Entropy used to seed URBGs must be nonzero.");
ABSL_MUST_USE_RESULT
bool ReadSeedMaterialFromOSEntropy(absl::Span<uint32_t> values);
template <typename URBG>
ABSL_MUST_USE_RESULT bool ReadSeedMaterialFromURBG(
URBG* urbg, absl::Span<uint32_t> values) {
random_internal::FastUniformBits<uint32_t> distr;
assert(urbg != nullptr && values.data() != nullptr);
if (urbg == nullptr || values.data() == nullptr) {
return false;
}
for (uint32_t& seed_value : values) {
seed_value = distr(*urbg);
}
return true;
}
void MixIntoSeedMaterial(absl::Span<const uint32_t> sequence,
absl::Span<uint32_t> seed_material);
absl::optional<uint32_t> GetSaltMaterial();
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/random/internal/seed_material.h"
#include <fcntl.h>
#ifndef _WIN32
#include <unistd.h>
#else
#include <io.h>
#endif
#include <algorithm>
#include <cerrno>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include "absl/base/dynamic_annotations.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/strings/ascii.h"
#include "absl/strings/escaping.h"
#include "absl/strings/string_view.h"
#include "absl/strings/strip.h"
#if defined(__native_client__)
#include <nacl/nacl_random.h>
#define ABSL_RANDOM_USE_NACL_SECURE_RANDOM 1
#elif defined(_WIN32)
#include <windows.h>
#define ABSL_RANDOM_USE_BCRYPT 1
#pragma comment(lib, "bcrypt.lib")
#elif defined(__Fuchsia__)
#include <zircon/syscalls.h>
#endif
#if defined(__GLIBC__) && \
(__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 25))
#define ABSL_RANDOM_USE_GET_ENTROPY 1
#endif
#if defined(__EMSCRIPTEN__)
#include <sys/random.h>
#define ABSL_RANDOM_USE_GET_ENTROPY 1
#endif
#if defined(ABSL_RANDOM_USE_BCRYPT)
#include <bcrypt.h>
#ifndef BCRYPT_SUCCESS
#define BCRYPT_SUCCESS(Status) (((NTSTATUS)(Status)) >= 0)
#endif
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
namespace {
#if defined(ABSL_RANDOM_USE_BCRYPT)
bool ReadSeedMaterialFromOSEntropyImpl(absl::Span<uint32_t> values) {
BCRYPT_ALG_HANDLE hProvider;
NTSTATUS ret;
ret = BCryptOpenAlgorithmProvider(&hProvider, BCRYPT_RNG_ALGORITHM,
MS_PRIMITIVE_PROVIDER, 0);
if (!(BCRYPT_SUCCESS(ret))) {
ABSL_RAW_LOG(ERROR, "Failed to open crypto provider.");
return false;
}
ret = BCryptGenRandom(
hProvider,
reinterpret_cast<UCHAR*>(values.data()),
static_cast<ULONG>(sizeof(uint32_t) * values.size()),
0);
BCryptCloseAlgorithmProvider(hProvider, 0);
return BCRYPT_SUCCESS(ret);
}
#elif defined(ABSL_RANDOM_USE_NACL_SECURE_RANDOM)
bool ReadSeedMaterialFromOSEntropyImpl(absl::Span<uint32_t> values) {
auto buffer = reinterpret_cast<uint8_t*>(values.data());
size_t buffer_size = sizeof(uint32_t) * values.size();
uint8_t* output_ptr = buffer;
while (buffer_size > 0) {
size_t nread = 0;
const int error = nacl_secure_random(output_ptr, buffer_size, &nread);
if (error != 0 || nread > buffer_size) {
ABSL_RAW_LOG(ERROR, "Failed to read secure_random seed data: %d", error);
return false;
}
output_ptr += nread;
buffer_size -= nread;
}
return true;
}
#elif defined(__Fuchsia__)
bool ReadSeedMaterialFromOSEntropyImpl(absl::Span<uint32_t> values) {
auto buffer = reinterpret_cast<uint8_t*>(values.data());
size_t buffer_size = sizeof(uint32_t) * values.size();
zx_cprng_draw(buffer, buffer_size);
return true;
}
#else
#if defined(ABSL_RANDOM_USE_GET_ENTROPY)
bool ReadSeedMaterialFromGetEntropy(absl::Span<uint32_t> values) {
auto buffer = reinterpret_cast<uint8_t*>(values.data());
size_t buffer_size = sizeof(uint32_t) * values.size();
while (buffer_size > 0) {
size_t to_read = std::min<size_t>(buffer_size, 256);
int result = getentropy(buffer, to_read);
if (result < 0) {
return false;
}
ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(buffer, to_read);
buffer += to_read;
buffer_size -= to_read;
}
return true;
}
#endif
bool ReadSeedMaterialFromDevURandom(absl::Span<uint32_t> values) {
const char kEntropyFile[] = "/dev/urandom";
auto buffer = reinterpret_cast<uint8_t*>(values.data());
size_t buffer_size = sizeof(uint32_t) * values.size();
int dev_urandom = open(kEntropyFile, O_RDONLY);
bool success = (-1 != dev_urandom);
if (!success) {
return false;
}
while (success && buffer_size > 0) {
ssize_t bytes_read = read(dev_urandom, buffer, buffer_size);
int read_error = errno;
success = (bytes_read > 0);
if (success) {
buffer += bytes_read;
buffer_size -= static_cast<size_t>(bytes_read);
} else if (bytes_read == -1 && read_error == EINTR) {
success = true;
}
}
close(dev_urandom);
return success;
}
bool ReadSeedMaterialFromOSEntropyImpl(absl::Span<uint32_t> values) {
#if defined(ABSL_RANDOM_USE_GET_ENTROPY)
if (ReadSeedMaterialFromGetEntropy(values)) {
return true;
}
#endif
return ReadSeedMaterialFromDevURandom(values);
}
#endif
}
bool ReadSeedMaterialFromOSEntropy(absl::Span<uint32_t> values) {
assert(values.data() != nullptr);
if (values.data() == nullptr) {
return false;
}
if (values.empty()) {
return true;
}
return ReadSeedMaterialFromOSEntropyImpl(values);
}
void MixIntoSeedMaterial(absl::Span<const uint32_t> sequence,
absl::Span<uint32_t> seed_material) {
constexpr uint32_t kInitVal = 0x43b0d7e5;
constexpr uint32_t kHashMul = 0x931e8875;
constexpr uint32_t kMixMulL = 0xca01f9dd;
constexpr uint32_t kMixMulR = 0x4973f715;
constexpr uint32_t kShiftSize = sizeof(uint32_t) * 8 / 2;
uint32_t hash_const = kInitVal;
auto hash = [&](uint32_t value) {
value ^= hash_const;
hash_const *= kHashMul;
value *= hash_const;
value ^= value >> kShiftSize;
return value;
};
auto mix = [&](uint32_t x, uint32_t y) {
uint32_t result = kMixMulL * x - kMixMulR * y;
result ^= result >> kShiftSize;
return result;
};
for (const auto& seq_val : sequence) {
for (auto& elem : seed_material) {
elem = mix(elem, hash(seq_val));
}
}
}
absl::optional<uint32_t> GetSaltMaterial() {
static const auto salt_material = []() -> absl::optional<uint32_t> {
uint32_t salt_value = 0;
if (random_internal::ReadSeedMaterialFromOSEntropy(
MakeSpan(&salt_value, 1))) {
return salt_value;
}
return absl::nullopt;
}();
return salt_material;
}
}
ABSL_NAMESPACE_END
} | #include "absl/random/internal/seed_material.h"
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <random>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#ifdef __ANDROID__
#define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \
EXPECT_DEATH_IF_SUPPORTED(statement, ".*")
#else
#define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \
EXPECT_DEATH_IF_SUPPORTED(statement, regex)
#endif
namespace {
using testing::Each;
using testing::ElementsAre;
using testing::Eq;
using testing::Ne;
using testing::Pointwise;
TEST(SeedBitsToBlocks, VerifyCases) {
EXPECT_EQ(0, absl::random_internal::SeedBitsToBlocks(0));
EXPECT_EQ(1, absl::random_internal::SeedBitsToBlocks(1));
EXPECT_EQ(1, absl::random_internal::SeedBitsToBlocks(31));
EXPECT_EQ(1, absl::random_internal::SeedBitsToBlocks(32));
EXPECT_EQ(2, absl::random_internal::SeedBitsToBlocks(33));
EXPECT_EQ(4, absl::random_internal::SeedBitsToBlocks(127));
EXPECT_EQ(4, absl::random_internal::SeedBitsToBlocks(128));
EXPECT_EQ(5, absl::random_internal::SeedBitsToBlocks(129));
}
TEST(ReadSeedMaterialFromOSEntropy, SuccessiveReadsAreDistinct) {
constexpr size_t kSeedMaterialSize = 64;
uint32_t seed_material_1[kSeedMaterialSize] = {};
uint32_t seed_material_2[kSeedMaterialSize] = {};
EXPECT_TRUE(absl::random_internal::ReadSeedMaterialFromOSEntropy(
absl::Span<uint32_t>(seed_material_1, kSeedMaterialSize)));
EXPECT_TRUE(absl::random_internal::ReadSeedMaterialFromOSEntropy(
absl::Span<uint32_t>(seed_material_2, kSeedMaterialSize)));
EXPECT_THAT(seed_material_1, Pointwise(Ne(), seed_material_2));
}
TEST(ReadSeedMaterialFromOSEntropy, ReadZeroBytesIsNoOp) {
uint32_t seed_material[32] = {};
std::memset(seed_material, 0xAA, sizeof(seed_material));
EXPECT_TRUE(absl::random_internal::ReadSeedMaterialFromOSEntropy(
absl::Span<uint32_t>(seed_material, 0)));
EXPECT_THAT(seed_material, Each(Eq(0xAAAAAAAA)));
}
TEST(ReadSeedMaterialFromOSEntropy, NullPtrVectorArgument) {
#ifdef NDEBUG
EXPECT_FALSE(absl::random_internal::ReadSeedMaterialFromOSEntropy(
absl::Span<uint32_t>(nullptr, 32)));
#else
bool result;
ABSL_EXPECT_DEATH_IF_SUPPORTED(
result = absl::random_internal::ReadSeedMaterialFromOSEntropy(
absl::Span<uint32_t>(nullptr, 32)),
"!= nullptr");
(void)result;
#endif
}
TEST(ReadSeedMaterialFromURBG, SeedMaterialEqualsVariateSequence) {
std::mt19937 urbg_1;
std::mt19937 urbg_2;
constexpr size_t kSeedMaterialSize = 1024;
uint32_t seed_material[kSeedMaterialSize] = {};
EXPECT_TRUE(absl::random_internal::ReadSeedMaterialFromURBG(
&urbg_1, absl::Span<uint32_t>(seed_material, kSeedMaterialSize)));
for (uint32_t seed : seed_material) {
EXPECT_EQ(seed, urbg_2());
}
}
TEST(ReadSeedMaterialFromURBG, ReadZeroBytesIsNoOp) {
std::mt19937_64 urbg;
uint32_t seed_material[32];
std::memset(seed_material, 0xAA, sizeof(seed_material));
EXPECT_TRUE(absl::random_internal::ReadSeedMaterialFromURBG(
&urbg, absl::Span<uint32_t>(seed_material, 0)));
EXPECT_THAT(seed_material, Each(Eq(0xAAAAAAAA)));
}
TEST(ReadSeedMaterialFromURBG, NullUrbgArgument) {
constexpr size_t kSeedMaterialSize = 32;
uint32_t seed_material[kSeedMaterialSize];
#ifdef NDEBUG
EXPECT_FALSE(absl::random_internal::ReadSeedMaterialFromURBG<std::mt19937_64>(
nullptr, absl::Span<uint32_t>(seed_material, kSeedMaterialSize)));
#else
bool result;
ABSL_EXPECT_DEATH_IF_SUPPORTED(
result = absl::random_internal::ReadSeedMaterialFromURBG<std::mt19937_64>(
nullptr, absl::Span<uint32_t>(seed_material, kSeedMaterialSize)),
"!= nullptr");
(void)result;
#endif
}
TEST(ReadSeedMaterialFromURBG, NullPtrVectorArgument) {
std::mt19937_64 urbg;
#ifdef NDEBUG
EXPECT_FALSE(absl::random_internal::ReadSeedMaterialFromURBG(
&urbg, absl::Span<uint32_t>(nullptr, 32)));
#else
bool result;
ABSL_EXPECT_DEATH_IF_SUPPORTED(
result = absl::random_internal::ReadSeedMaterialFromURBG(
&urbg, absl::Span<uint32_t>(nullptr, 32)),
"!= nullptr");
(void)result;
#endif
}
TEST(MixSequenceIntoSeedMaterial, AvalancheEffectTestOneBitLong) {
std::vector<uint32_t> seed_material = {1, 2, 3, 4, 5, 6, 7, 8};
for (uint32_t v = 1; v != 0; v <<= 1) {
std::vector<uint32_t> seed_material_copy = seed_material;
absl::random_internal::MixIntoSeedMaterial(
absl::Span<uint32_t>(&v, 1),
absl::Span<uint32_t>(seed_material_copy.data(),
seed_material_copy.size()));
uint32_t changed_bits = 0;
for (size_t i = 0; i < seed_material.size(); i++) {
std::bitset<sizeof(uint32_t) * 8> bitset(seed_material[i] ^
seed_material_copy[i]);
changed_bits += bitset.count();
}
EXPECT_LE(changed_bits, 0.7 * sizeof(uint32_t) * 8 * seed_material.size());
EXPECT_GE(changed_bits, 0.3 * sizeof(uint32_t) * 8 * seed_material.size());
}
}
TEST(MixSequenceIntoSeedMaterial, AvalancheEffectTestOneBitShort) {
std::vector<uint32_t> seed_material = {1};
for (uint32_t v = 1; v != 0; v <<= 1) {
std::vector<uint32_t> seed_material_copy = seed_material;
absl::random_internal::MixIntoSeedMaterial(
absl::Span<uint32_t>(&v, 1),
absl::Span<uint32_t>(seed_material_copy.data(),
seed_material_copy.size()));
uint32_t changed_bits = 0;
for (size_t i = 0; i < seed_material.size(); i++) {
std::bitset<sizeof(uint32_t) * 8> bitset(seed_material[i] ^
seed_material_copy[i]);
changed_bits += bitset.count();
}
EXPECT_LE(changed_bits, 0.7 * sizeof(uint32_t) * 8 * seed_material.size());
EXPECT_GE(changed_bits, 0.3 * sizeof(uint32_t) * 8 * seed_material.size());
}
}
} | 2,536 |
#ifndef ABSL_RANDOM_INTERNAL_NANOBENCHMARK_H_
#define ABSL_RANDOM_INTERNAL_NANOBENCHMARK_H_
#include <stddef.h>
#include <stdint.h>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal_nanobenchmark {
using FuncInput = size_t;
using FuncOutput = uint64_t;
using Func = FuncOutput (*)(const void*, FuncInput);
struct Params {
static constexpr size_t kTimerSamples = 256;
size_t precision_divisor = 1024;
size_t subset_ratio = 2;
double seconds_per_eval = 4E-3;
size_t min_samples_per_eval = 7;
size_t min_mode_samples = 64;
double target_rel_mad = 0.002;
size_t max_evals = 9;
size_t max_measure_retries = 2;
bool verbose = true;
};
struct Result {
FuncInput input;
float ticks;
float variability;
};
void PinThreadToCPU(const int cpu = -1);
double InvariantTicksPerSecond();
size_t Measure(const Func func, const void* arg, const FuncInput* inputs,
const size_t num_inputs, Result* results,
const Params& p = Params());
template <class Closure>
static FuncOutput CallClosure(const void* f, const FuncInput input) {
return (*reinterpret_cast<const Closure*>(f))(input);
}
template <class Closure>
static inline size_t MeasureClosure(const Closure& closure,
const FuncInput* inputs,
const size_t num_inputs, Result* results,
const Params& p = Params()) {
return Measure(reinterpret_cast<Func>(&CallClosure<Closure>),
reinterpret_cast<const void*>(&closure), inputs, num_inputs,
results, p);
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/random/internal/nanobenchmark.h"
#include <sys/types.h>
#include <algorithm>
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <string>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/random/internal/platform.h"
#include "absl/random/internal/randen_engine.h"
#if defined(_WIN32) || defined(_WIN64)
#define ABSL_OS_WIN
#include <windows.h>
#elif defined(__ANDROID__)
#define ABSL_OS_ANDROID
#elif defined(__linux__)
#define ABSL_OS_LINUX
#include <sched.h>
#include <sys/syscall.h>
#endif
#if defined(ABSL_ARCH_X86_64) && !defined(ABSL_OS_WIN)
#include <cpuid.h>
#endif
#if defined(ABSL_ARCH_PPC)
#include <sys/platform/ppc.h>
#endif
#if defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
#include <time.h>
#endif
#if ABSL_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __attribute__((noinline))
#elif defined(_MSC_VER)
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __declspec(noinline)
#else
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal_nanobenchmark {
namespace {
namespace platform {
#if defined(ABSL_ARCH_X86_64)
void Cpuid(const uint32_t level, const uint32_t count,
uint32_t* ABSL_RANDOM_INTERNAL_RESTRICT abcd) {
#if defined(ABSL_OS_WIN)
int regs[4];
__cpuidex(regs, level, count);
for (int i = 0; i < 4; ++i) {
abcd[i] = regs[i];
}
#else
uint32_t a, b, c, d;
__cpuid_count(level, count, a, b, c, d);
abcd[0] = a;
abcd[1] = b;
abcd[2] = c;
abcd[3] = d;
#endif
}
std::string BrandString() {
char brand_string[49];
uint32_t abcd[4];
Cpuid(0x80000000U, 0, abcd);
if (abcd[0] < 0x80000004U) {
return std::string();
}
for (int i = 0; i < 3; ++i) {
Cpuid(0x80000002U + i, 0, abcd);
memcpy(brand_string + i * 16, &abcd, sizeof(abcd));
}
brand_string[48] = 0;
return brand_string;
}
double NominalClockRate() {
const std::string& brand_string = BrandString();
const char* prefixes[3] = {"MHz", "GHz", "THz"};
const double multipliers[3] = {1E6, 1E9, 1E12};
for (size_t i = 0; i < 3; ++i) {
const size_t pos_prefix = brand_string.find(prefixes[i]);
if (pos_prefix != std::string::npos) {
const size_t pos_space = brand_string.rfind(' ', pos_prefix - 1);
if (pos_space != std::string::npos) {
const std::string digits =
brand_string.substr(pos_space + 1, pos_prefix - pos_space - 1);
return std::stod(digits) * multipliers[i];
}
}
}
return 0.0;
}
#endif
}
template <class T>
inline void PreventElision(T&& output) {
#ifndef ABSL_OS_WIN
asm volatile("" : "+r"(output) : : "memory");
#else
static std::atomic<T> dummy(T{});
dummy.store(output, std::memory_order_relaxed);
#endif
}
namespace timer {
inline uint64_t Start64() {
uint64_t t;
#if defined(ABSL_ARCH_PPC)
asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
#elif defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
t = __rdtsc();
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
#else
asm volatile(
"lfence\n\t"
"rdtsc\n\t"
"shl $32, %%rdx\n\t"
"or %%rdx, %0\n\t"
"lfence"
: "=a"(t)
:
: "rdx", "memory", "cc");
#endif
#else
timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
t = ts.tv_sec * 1000000000LL + ts.tv_nsec;
#endif
return t;
}
inline uint64_t Stop64() {
uint64_t t;
#if defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
_ReadWriteBarrier();
unsigned aux;
t = __rdtscp(&aux);
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
#else
asm volatile(
"rdtscp\n\t"
"shl $32, %%rdx\n\t"
"or %%rdx, %0\n\t"
"lfence"
: "=a"(t)
:
: "rcx", "rdx", "memory", "cc");
#endif
#else
t = Start64();
#endif
return t;
}
inline uint32_t Start32() {
uint32_t t;
#if defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
t = static_cast<uint32_t>(__rdtsc());
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
#else
asm volatile(
"lfence\n\t"
"rdtsc\n\t"
"lfence"
: "=a"(t)
:
: "rdx", "memory");
#endif
#else
t = static_cast<uint32_t>(Start64());
#endif
return t;
}
inline uint32_t Stop32() {
uint32_t t;
#if defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
_ReadWriteBarrier();
unsigned aux;
t = static_cast<uint32_t>(__rdtscp(&aux));
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
#else
asm volatile(
"rdtscp\n\t"
"lfence"
: "=a"(t)
:
: "rcx", "rdx", "memory");
#endif
#else
t = static_cast<uint32_t>(Stop64());
#endif
return t;
}
}
namespace robust_statistics {
template <class T>
void CountingSort(T* values, size_t num_values) {
using Unique = std::pair<T, int>;
std::vector<Unique> unique;
for (size_t i = 0; i < num_values; ++i) {
const T value = values[i];
const auto pos =
std::find_if(unique.begin(), unique.end(),
[value](const Unique u) { return u.first == value; });
if (pos == unique.end()) {
unique.push_back(std::make_pair(value, 1));
} else {
++pos->second;
}
}
std::sort(unique.begin(), unique.end());
T* ABSL_RANDOM_INTERNAL_RESTRICT p = values;
for (const auto& value_count : unique) {
std::fill_n(p, value_count.second, value_count.first);
p += value_count.second;
}
ABSL_RAW_CHECK(p == values + num_values, "Did not produce enough output");
}
template <typename T>
size_t MinRange(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted,
const size_t idx_begin, const size_t half_count) {
T min_range = (std::numeric_limits<T>::max)();
size_t min_idx = 0;
for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) {
ABSL_RAW_CHECK(sorted[idx] <= sorted[idx + half_count], "Not sorted");
const T range = sorted[idx + half_count] - sorted[idx];
if (range < min_range) {
min_range = range;
min_idx = idx;
}
}
return min_idx;
}
template <typename T>
T ModeOfSorted(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted,
const size_t num_values) {
size_t idx_begin = 0;
size_t half_count = num_values / 2;
while (half_count > 1) {
idx_begin = MinRange(sorted, idx_begin, half_count);
half_count >>= 1;
}
const T x = sorted[idx_begin + 0];
if (half_count == 0) {
return x;
}
ABSL_RAW_CHECK(half_count == 1, "Should stop at half_count=1");
const T average = (x + sorted[idx_begin + 1] + 1) / 2;
return average;
}
template <typename T>
T Mode(T* values, const size_t num_values) {
CountingSort(values, num_values);
return ModeOfSorted(values, num_values);
}
template <typename T, size_t N>
T Mode(T (&values)[N]) {
return Mode(&values[0], N);
}
template <typename T>
T Median(T* values, const size_t num_values) {
ABSL_RAW_CHECK(num_values != 0, "Empty input");
std::sort(values, values + num_values);
const size_t half = num_values / 2;
if (num_values % 2) {
return values[half];
}
return (values[half] + values[half - 1] + 1) / 2;
}
template <typename T>
T MedianAbsoluteDeviation(const T* values, const size_t num_values,
const T median) {
ABSL_RAW_CHECK(num_values != 0, "Empty input");
std::vector<T> abs_deviations;
abs_deviations.reserve(num_values);
for (size_t i = 0; i < num_values; ++i) {
const int64_t abs = std::abs(int64_t(values[i]) - int64_t(median));
abs_deviations.push_back(static_cast<T>(abs));
}
return Median(abs_deviations.data(), num_values);
}
}
using Ticks = uint32_t;
Ticks TimerResolution() {
Ticks repetitions[Params::kTimerSamples];
for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) {
Ticks samples[Params::kTimerSamples];
for (size_t i = 0; i < Params::kTimerSamples; ++i) {
const Ticks t0 = timer::Start32();
const Ticks t1 = timer::Stop32();
samples[i] = t1 - t0;
}
repetitions[rep] = robust_statistics::Mode(samples);
}
return robust_statistics::Mode(repetitions);
}
static const Ticks timer_resolution = TimerResolution();
template <class Lambda>
Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad,
const Params& p, const Lambda& lambda) {
auto measure_duration = [&lambda]() -> Ticks {
const Ticks t0 = timer::Start32();
lambda();
const Ticks t1 = timer::Stop32();
return t1 - t0;
};
Ticks est = measure_duration();
static const double ticks_per_second = InvariantTicksPerSecond();
const size_t ticks_per_eval = ticks_per_second * p.seconds_per_eval;
size_t samples_per_eval = ticks_per_eval / est;
samples_per_eval = (std::max)(samples_per_eval, p.min_samples_per_eval);
std::vector<Ticks> samples;
samples.reserve(1 + samples_per_eval);
samples.push_back(est);
const Ticks max_abs_mad = (timer_resolution + 99) / 100;
*rel_mad = 0.0;
for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) {
samples.reserve(samples.size() + samples_per_eval);
for (size_t i = 0; i < samples_per_eval; ++i) {
const Ticks r = measure_duration();
samples.push_back(r);
}
if (samples.size() >= p.min_mode_samples) {
est = robust_statistics::Mode(samples.data(), samples.size());
} else {
est = robust_statistics::Median(samples.data(), samples.size());
}
ABSL_RAW_CHECK(est != 0, "Estimator returned zero duration");
const Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation(
samples.data(), samples.size(), est);
*rel_mad = static_cast<double>(static_cast<int>(abs_mad)) / est;
if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) {
if (p.verbose) {
ABSL_RAW_LOG(INFO,
"%6zu samples => %5u (abs_mad=%4u, rel_mad=%4.2f%%)\n",
samples.size(), est, abs_mad, *rel_mad * 100.0);
}
return est;
}
}
if (p.verbose) {
ABSL_RAW_LOG(WARNING,
"rel_mad=%4.2f%% still exceeds %4.2f%% after %6zu samples.\n",
*rel_mad * 100.0, max_rel_mad * 100.0, samples.size());
}
return est;
}
using InputVec = std::vector<FuncInput>;
InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) {
InputVec unique(inputs, inputs + num_inputs);
std::sort(unique.begin(), unique.end());
unique.erase(std::unique(unique.begin(), unique.end()), unique.end());
return unique;
}
size_t NumSkip(const Func func, const void* arg, const InputVec& unique,
const Params& p) {
Ticks min_duration = ~0u;
for (const FuncInput input : unique) {
const uint64_t t0 = timer::Start64();
PreventElision(func(arg, input));
const uint64_t t1 = timer::Stop64();
const uint64_t elapsed = t1 - t0;
if (elapsed >= (1ULL << 30)) {
ABSL_RAW_LOG(WARNING,
"Measurement failed: need 64-bit timer for input=%zu\n",
static_cast<size_t>(input));
return 0;
}
double rel_mad;
const Ticks total = SampleUntilStable(
p.target_rel_mad, &rel_mad, p,
[func, arg, input]() { PreventElision(func(arg, input)); });
min_duration = (std::min)(min_duration, total - timer_resolution);
}
const size_t max_skip = p.precision_divisor;
const size_t num_skip =
min_duration == 0 ? 0 : (max_skip + min_duration - 1) / min_duration;
if (p.verbose) {
ABSL_RAW_LOG(INFO, "res=%u max_skip=%zu min_dur=%u num_skip=%zu\n",
timer_resolution, max_skip, min_duration, num_skip);
}
return num_skip;
}
InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs,
const size_t num_unique, const size_t num_skip,
const Params& p) {
InputVec full;
if (num_unique == 1) {
full.assign(p.subset_ratio * num_skip, inputs[0]);
return full;
}
full.reserve(p.subset_ratio * num_skip * num_inputs);
for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) {
full.insert(full.end(), inputs, inputs + num_inputs);
}
absl::random_internal::randen_engine<uint32_t> rng;
std::shuffle(full.begin(), full.end(), rng);
return full;
}
void FillSubset(const InputVec& full, const FuncInput input_to_skip,
const size_t num_skip, InputVec* subset) {
const size_t count = std::count(full.begin(), full.end(), input_to_skip);
std::vector<uint32_t> omit;
omit.reserve(count);
for (size_t i = 0; i < count; ++i) {
omit.push_back(i);
}
absl::random_internal::randen_engine<uint32_t> rng;
std::shuffle(omit.begin(), omit.end(), rng);
omit.resize(num_skip);
std::sort(omit.begin(), omit.end());
uint32_t occurrence = ~0u;
size_t idx_omit = 0;
size_t idx_subset = 0;
for (const FuncInput next : full) {
if (next == input_to_skip) {
++occurrence;
if (idx_omit < num_skip) {
if (occurrence == omit[idx_omit]) {
++idx_omit;
continue;
}
}
}
if (idx_subset < subset->size()) {
(*subset)[idx_subset++] = next;
}
}
ABSL_RAW_CHECK(idx_subset == subset->size(), "idx_subset not at end");
ABSL_RAW_CHECK(idx_omit == omit.size(), "idx_omit not at end");
ABSL_RAW_CHECK(occurrence == count - 1, "occurrence not at end");
}
Ticks TotalDuration(const Func func, const void* arg, const InputVec* inputs,
const Params& p, double* max_rel_mad) {
double rel_mad;
const Ticks duration =
SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() {
for (const FuncInput input : *inputs) {
PreventElision(func(arg, input));
}
});
*max_rel_mad = (std::max)(*max_rel_mad, rel_mad);
return duration;
}
ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE FuncOutput
EmptyFunc(const void* arg, const FuncInput input) {
return input;
}
Ticks Overhead(const void* arg, const InputVec* inputs, const Params& p) {
double rel_mad;
return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() {
for (const FuncInput input : *inputs) {
PreventElision(EmptyFunc(arg, input));
}
});
}
}
void PinThreadToCPU(int cpu) {
#if defined(ABSL_OS_WIN)
if (cpu < 0) {
cpu = static_cast<int>(GetCurrentProcessorNumber());
ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed");
if (cpu >= 64) {
ABSL_RAW_LOG(ERROR, "Invalid CPU number: %d", cpu);
return;
}
} else if (cpu >= 64) {
ABSL_RAW_LOG(FATAL, "Invalid CPU number: %d", cpu);
}
const DWORD_PTR prev = SetThreadAffinityMask(GetCurrentThread(), 1ULL << cpu);
ABSL_RAW_CHECK(prev != 0, "SetAffinity failed");
#elif defined(ABSL_OS_LINUX) && !defined(ABSL_OS_ANDROID)
if (cpu < 0) {
cpu = sched_getcpu();
ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed");
}
const pid_t pid = 0;
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(cpu, &set);
const int err = sched_setaffinity(pid, sizeof(set), &set);
ABSL_RAW_CHECK(err == 0, "SetAffinity failed");
#endif
}
double InvariantTicksPerSecond() {
#if defined(ABSL_ARCH_PPC)
return __ppc_get_timebase_freq();
#elif defined(ABSL_ARCH_X86_64) | #include "absl/random/internal/nanobenchmark.h"
#include "absl/log/check.h"
#include "absl/log/log.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_format.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal_nanobenchmark {
namespace {
uint64_t Div(const void*, FuncInput in) {
const int64_t d1 = 0xFFFFFFFFFFll / int64_t(in);
return d1;
}
template <size_t N>
void MeasureDiv(const FuncInput (&inputs)[N]) {
Result results[N];
Params params;
params.max_evals = 6;
const size_t num_results = Measure(&Div, nullptr, inputs, N, results, params);
if (num_results == 0) {
LOG(WARNING)
<< "WARNING: Measurement failed, should not happen when using "
"PinThreadToCPU unless the region to measure takes > 1 second.";
return;
}
for (size_t i = 0; i < num_results; ++i) {
LOG(INFO) << absl::StreamFormat("%5u: %6.2f ticks; MAD=%4.2f%%\n",
results[i].input, results[i].ticks,
results[i].variability * 100.0);
CHECK_NE(results[i].ticks, 0.0f) << "Zero duration";
}
}
void RunAll(const int argc, char* argv[]) {
int cpu = -1;
if (argc == 2) {
if (!absl::SimpleAtoi(argv[1], &cpu)) {
LOG(FATAL) << "The optional argument must be a CPU number >= 0.";
}
}
PinThreadToCPU(cpu);
const FuncInput unpredictable = argc != 999;
static const FuncInput inputs[] = {unpredictable * 10, unpredictable * 100};
MeasureDiv(inputs);
}
}
}
ABSL_NAMESPACE_END
}
int main(int argc, char* argv[]) {
absl::random_internal_nanobenchmark::RunAll(argc, argv);
return 0;
} | 2,537 |
#ifndef ABSL_RANDOM_INTERNAL_POOL_URBG_H_
#define ABSL_RANDOM_INTERNAL_POOL_URBG_H_
#include <cinttypes>
#include <limits>
#include "absl/random/internal/traits.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
template <typename T>
class RandenPool {
public:
using result_type = T;
static_assert(std::is_unsigned<result_type>::value,
"RandenPool template argument must be a built-in unsigned "
"integer type");
static constexpr result_type(min)() {
return (std::numeric_limits<result_type>::min)();
}
static constexpr result_type(max)() {
return (std::numeric_limits<result_type>::max)();
}
RandenPool() {}
inline result_type operator()() { return Generate(); }
static void Fill(absl::Span<result_type> data);
protected:
static result_type Generate();
};
extern template class RandenPool<uint8_t>;
extern template class RandenPool<uint16_t>;
extern template class RandenPool<uint32_t>;
extern template class RandenPool<uint64_t>;
template <typename T, size_t kBufferSize>
class PoolURBG {
using unsigned_type = typename make_unsigned_bits<T>::type;
using PoolType = RandenPool<unsigned_type>;
using SpanType = absl::Span<unsigned_type>;
static constexpr size_t kInitialBuffer = kBufferSize + 1;
static constexpr size_t kHalfBuffer = kBufferSize / 2;
public:
using result_type = T;
static_assert(std::is_unsigned<result_type>::value,
"PoolURBG must be parameterized by an unsigned integer type");
static_assert(kBufferSize > 1,
"PoolURBG must be parameterized by a buffer-size > 1");
static_assert(kBufferSize <= 256,
"PoolURBG must be parameterized by a buffer-size <= 256");
static constexpr result_type(min)() {
return (std::numeric_limits<result_type>::min)();
}
static constexpr result_type(max)() {
return (std::numeric_limits<result_type>::max)();
}
PoolURBG() : next_(kInitialBuffer) {}
PoolURBG(const PoolURBG&) : next_(kInitialBuffer) {}
const PoolURBG& operator=(const PoolURBG&) {
next_ = kInitialBuffer;
return *this;
}
PoolURBG(PoolURBG&&) = default;
PoolURBG& operator=(PoolURBG&&) = default;
inline result_type operator()() {
if (next_ >= kBufferSize) {
next_ = (kBufferSize > 2 && next_ > kBufferSize) ? kHalfBuffer : 0;
PoolType::Fill(SpanType(reinterpret_cast<unsigned_type*>(state_ + next_),
kBufferSize - next_));
}
return state_[next_++];
}
private:
size_t next_;
result_type state_[kBufferSize];
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/random/internal/pool_urbg.h"
#include <algorithm>
#include <atomic>
#include <cstdint>
#include <cstring>
#include <iterator>
#include "absl/base/attributes.h"
#include "absl/base/call_once.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/internal/sysinfo.h"
#include "absl/base/internal/unaligned_access.h"
#include "absl/base/optimization.h"
#include "absl/random/internal/randen.h"
#include "absl/random/internal/seed_material.h"
#include "absl/random/seed_gen_exception.h"
using absl::base_internal::SpinLock;
using absl::base_internal::SpinLockHolder;
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
namespace {
class RandenPoolEntry {
public:
static constexpr size_t kState = RandenTraits::kStateBytes / sizeof(uint32_t);
static constexpr size_t kCapacity =
RandenTraits::kCapacityBytes / sizeof(uint32_t);
void Init(absl::Span<const uint32_t> data) {
SpinLockHolder l(&mu_);
std::copy(data.begin(), data.end(), std::begin(state_));
next_ = kState;
}
void Fill(uint8_t* out, size_t bytes) ABSL_LOCKS_EXCLUDED(mu_);
template <typename T>
inline T Generate() ABSL_LOCKS_EXCLUDED(mu_);
inline void MaybeRefill() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu_) {
if (next_ >= kState) {
next_ = kCapacity;
impl_.Generate(state_);
}
}
private:
uint32_t state_[kState] ABSL_GUARDED_BY(mu_);
SpinLock mu_;
const Randen impl_;
size_t next_ ABSL_GUARDED_BY(mu_);
};
template <>
inline uint8_t RandenPoolEntry::Generate<uint8_t>() {
SpinLockHolder l(&mu_);
MaybeRefill();
return static_cast<uint8_t>(state_[next_++]);
}
template <>
inline uint16_t RandenPoolEntry::Generate<uint16_t>() {
SpinLockHolder l(&mu_);
MaybeRefill();
return static_cast<uint16_t>(state_[next_++]);
}
template <>
inline uint32_t RandenPoolEntry::Generate<uint32_t>() {
SpinLockHolder l(&mu_);
MaybeRefill();
return state_[next_++];
}
template <>
inline uint64_t RandenPoolEntry::Generate<uint64_t>() {
SpinLockHolder l(&mu_);
if (next_ >= kState - 1) {
next_ = kCapacity;
impl_.Generate(state_);
}
auto p = state_ + next_;
next_ += 2;
uint64_t result;
std::memcpy(&result, p, sizeof(result));
return result;
}
void RandenPoolEntry::Fill(uint8_t* out, size_t bytes) {
SpinLockHolder l(&mu_);
while (bytes > 0) {
MaybeRefill();
size_t remaining = (kState - next_) * sizeof(state_[0]);
size_t to_copy = std::min(bytes, remaining);
std::memcpy(out, &state_[next_], to_copy);
out += to_copy;
bytes -= to_copy;
next_ += (to_copy + sizeof(state_[0]) - 1) / sizeof(state_[0]);
}
}
static constexpr size_t kPoolSize = 8;
static absl::once_flag pool_once;
ABSL_CACHELINE_ALIGNED static RandenPoolEntry* shared_pools[kPoolSize];
size_t GetPoolID() {
static_assert(kPoolSize >= 1,
"At least one urbg instance is required for PoolURBG");
ABSL_CONST_INIT static std::atomic<uint64_t> sequence{0};
#ifdef ABSL_HAVE_THREAD_LOCAL
static thread_local size_t my_pool_id = kPoolSize;
if (ABSL_PREDICT_FALSE(my_pool_id == kPoolSize)) {
my_pool_id = (sequence++ % kPoolSize);
}
return my_pool_id;
#else
static pthread_key_t tid_key = [] {
pthread_key_t tmp_key;
int err = pthread_key_create(&tmp_key, nullptr);
if (err) {
ABSL_RAW_LOG(FATAL, "pthread_key_create failed with %d", err);
}
return tmp_key;
}();
uintptr_t my_pool_id =
reinterpret_cast<uintptr_t>(pthread_getspecific(tid_key));
if (ABSL_PREDICT_FALSE(my_pool_id == 0)) {
my_pool_id = (sequence++ % kPoolSize) + 1;
int err = pthread_setspecific(tid_key, reinterpret_cast<void*>(my_pool_id));
if (err) {
ABSL_RAW_LOG(FATAL, "pthread_setspecific failed with %d", err);
}
}
return my_pool_id - 1;
#endif
}
RandenPoolEntry* PoolAlignedAlloc() {
constexpr size_t kAlignment =
ABSL_CACHELINE_SIZE > 32 ? ABSL_CACHELINE_SIZE : 32;
uintptr_t x = reinterpret_cast<uintptr_t>(
new char[sizeof(RandenPoolEntry) + kAlignment]);
auto y = x % kAlignment;
void* aligned = reinterpret_cast<void*>(y == 0 ? x : (x + kAlignment - y));
return new (aligned) RandenPoolEntry();
}
void InitPoolURBG() {
static constexpr size_t kSeedSize =
RandenTraits::kStateBytes / sizeof(uint32_t);
uint32_t seed_material[kPoolSize * kSeedSize];
if (!random_internal::ReadSeedMaterialFromOSEntropy(
absl::MakeSpan(seed_material))) {
random_internal::ThrowSeedGenException();
}
for (size_t i = 0; i < kPoolSize; i++) {
shared_pools[i] = PoolAlignedAlloc();
shared_pools[i]->Init(
absl::MakeSpan(&seed_material[i * kSeedSize], kSeedSize));
}
}
RandenPoolEntry* GetPoolForCurrentThread() {
absl::call_once(pool_once, InitPoolURBG);
return shared_pools[GetPoolID()];
}
}
template <typename T>
typename RandenPool<T>::result_type RandenPool<T>::Generate() {
auto* pool = GetPoolForCurrentThread();
return pool->Generate<T>();
}
template <typename T>
void RandenPool<T>::Fill(absl::Span<result_type> data) {
auto* pool = GetPoolForCurrentThread();
pool->Fill(reinterpret_cast<uint8_t*>(data.data()),
data.size() * sizeof(result_type));
}
template class RandenPool<uint8_t>;
template class RandenPool<uint16_t>;
template class RandenPool<uint32_t>;
template class RandenPool<uint64_t>;
}
ABSL_NAMESPACE_END
} | #include "absl/random/internal/pool_urbg.h"
#include <algorithm>
#include <bitset>
#include <cmath>
#include <cstdint>
#include <iterator>
#include "gtest/gtest.h"
#include "absl/meta/type_traits.h"
#include "absl/types/span.h"
using absl::random_internal::PoolURBG;
using absl::random_internal::RandenPool;
namespace {
template <typename T>
using is_randen_pool = typename absl::disjunction<
std::is_same<T, RandenPool<uint8_t>>,
std::is_same<T, RandenPool<uint16_t>>,
std::is_same<T, RandenPool<uint32_t>>,
std::is_same<T, RandenPool<uint64_t>>>;
template <typename T, typename V>
typename absl::enable_if_t<absl::negation<is_randen_pool<T>>::value, void>
MyFill(T& rng, absl::Span<V> data) {
std::generate(std::begin(data), std::end(data), rng);
}
template <typename T, typename V>
typename absl::enable_if_t<is_randen_pool<T>::value, void>
MyFill(T& rng, absl::Span<V> data) {
rng.Fill(data);
}
template <typename EngineType>
class PoolURBGTypedTest : public ::testing::Test {};
using EngineTypes = ::testing::Types<
RandenPool<uint8_t>,
RandenPool<uint16_t>,
RandenPool<uint32_t>,
RandenPool<uint64_t>,
PoolURBG<uint8_t, 2>,
PoolURBG<uint16_t, 2>,
PoolURBG<uint32_t, 2>,
PoolURBG<uint64_t, 2>,
PoolURBG<unsigned int, 8>,
PoolURBG<unsigned long, 8>,
PoolURBG<unsigned long int, 4>,
PoolURBG<unsigned long long, 4>>;
TYPED_TEST_SUITE(PoolURBGTypedTest, EngineTypes);
TYPED_TEST(PoolURBGTypedTest, URBGInterface) {
using E = TypeParam;
using T = typename E::result_type;
static_assert(std::is_copy_constructible<E>::value,
"engine must be copy constructible");
static_assert(absl::is_copy_assignable<E>::value,
"engine must be copy assignable");
E e;
const E x;
e();
static_assert(std::is_same<decltype(e()), T>::value,
"return type of operator() must be result_type");
E u0(x);
u0();
E u1 = e;
u1();
}
TYPED_TEST(PoolURBGTypedTest, VerifySequences) {
using E = TypeParam;
using result_type = typename E::result_type;
E rng;
(void)rng();
constexpr int kNumOutputs = 64;
result_type a[kNumOutputs];
result_type b[kNumOutputs];
std::fill(std::begin(b), std::end(b), 0);
{
E x = rng;
MyFill(x, absl::MakeSpan(a));
}
{
E x = rng;
std::generate(std::begin(b), std::end(b), x);
}
size_t changed_bits = 0;
size_t unchanged_bits = 0;
size_t total_set = 0;
size_t total_bits = 0;
size_t equal_count = 0;
for (size_t i = 0; i < kNumOutputs; ++i) {
equal_count += (a[i] == b[i]) ? 1 : 0;
std::bitset<sizeof(result_type) * 8> bitset(a[i] ^ b[i]);
changed_bits += bitset.count();
unchanged_bits += bitset.size() - bitset.count();
std::bitset<sizeof(result_type) * 8> a_set(a[i]);
std::bitset<sizeof(result_type) * 8> b_set(b[i]);
total_set += a_set.count() + b_set.count();
total_bits += 2 * 8 * sizeof(result_type);
}
EXPECT_LE(changed_bits, 0.60 * (changed_bits + unchanged_bits));
EXPECT_GE(changed_bits, 0.40 * (changed_bits + unchanged_bits));
EXPECT_NEAR(total_set, total_bits * 0.5, 4 * std::sqrt(total_bits))
<< "@" << total_set / static_cast<double>(total_bits);
const double kExpected = kNumOutputs / (1.0 * sizeof(result_type) * 8);
EXPECT_LE(equal_count, 1.0 + kExpected);
}
} | 2,538 |
#ifndef ABSL_RANDOM_INTERNAL_RANDEN_SLOW_H_
#define ABSL_RANDOM_INTERNAL_RANDEN_SLOW_H_
#include <cstddef>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
class RandenSlow {
public:
static void Generate(const void* keys, void* state_void);
static void Absorb(const void* seed_void, void* state_void);
static const void* GetKeys();
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/random/internal/randen_slow.h"
#include <cstddef>
#include <cstdint>
#include <cstring>
#include "absl/base/attributes.h"
#include "absl/base/internal/endian.h"
#include "absl/numeric/int128.h"
#include "absl/random/internal/platform.h"
#include "absl/random/internal/randen_traits.h"
#if ABSL_HAVE_ATTRIBUTE(always_inline) || \
(defined(__GNUC__) && !defined(__clang__))
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE \
__attribute__((always_inline))
#elif defined(_MSC_VER)
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE __forceinline
#else
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE
#endif
namespace {
constexpr uint32_t te0[256] = {
0xa56363c6, 0x847c7cf8, 0x997777ee, 0x8d7b7bf6, 0x0df2f2ff, 0xbd6b6bd6,
0xb16f6fde, 0x54c5c591, 0x50303060, 0x03010102, 0xa96767ce, 0x7d2b2b56,
0x19fefee7, 0x62d7d7b5, 0xe6abab4d, 0x9a7676ec, 0x45caca8f, 0x9d82821f,
0x40c9c989, 0x877d7dfa, 0x15fafaef, 0xeb5959b2, 0xc947478e, 0x0bf0f0fb,
0xecadad41, 0x67d4d4b3, 0xfda2a25f, 0xeaafaf45, 0xbf9c9c23, 0xf7a4a453,
0x967272e4, 0x5bc0c09b, 0xc2b7b775, 0x1cfdfde1, 0xae93933d, 0x6a26264c,
0x5a36366c, 0x413f3f7e, 0x02f7f7f5, 0x4fcccc83, 0x5c343468, 0xf4a5a551,
0x34e5e5d1, 0x08f1f1f9, 0x937171e2, 0x73d8d8ab, 0x53313162, 0x3f15152a,
0x0c040408, 0x52c7c795, 0x65232346, 0x5ec3c39d, 0x28181830, 0xa1969637,
0x0f05050a, 0xb59a9a2f, 0x0907070e, 0x36121224, 0x9b80801b, 0x3de2e2df,
0x26ebebcd, 0x6927274e, 0xcdb2b27f, 0x9f7575ea, 0x1b090912, 0x9e83831d,
0x742c2c58, 0x2e1a1a34, 0x2d1b1b36, 0xb26e6edc, 0xee5a5ab4, 0xfba0a05b,
0xf65252a4, 0x4d3b3b76, 0x61d6d6b7, 0xceb3b37d, 0x7b292952, 0x3ee3e3dd,
0x712f2f5e, 0x97848413, 0xf55353a6, 0x68d1d1b9, 0x00000000, 0x2cededc1,
0x60202040, 0x1ffcfce3, 0xc8b1b179, 0xed5b5bb6, 0xbe6a6ad4, 0x46cbcb8d,
0xd9bebe67, 0x4b393972, 0xde4a4a94, 0xd44c4c98, 0xe85858b0, 0x4acfcf85,
0x6bd0d0bb, 0x2aefefc5, 0xe5aaaa4f, 0x16fbfbed, 0xc5434386, 0xd74d4d9a,
0x55333366, 0x94858511, 0xcf45458a, 0x10f9f9e9, 0x06020204, 0x817f7ffe,
0xf05050a0, 0x443c3c78, 0xba9f9f25, 0xe3a8a84b, 0xf35151a2, 0xfea3a35d,
0xc0404080, 0x8a8f8f05, 0xad92923f, 0xbc9d9d21, 0x48383870, 0x04f5f5f1,
0xdfbcbc63, 0xc1b6b677, 0x75dadaaf, 0x63212142, 0x30101020, 0x1affffe5,
0x0ef3f3fd, 0x6dd2d2bf, 0x4ccdcd81, 0x140c0c18, 0x35131326, 0x2fececc3,
0xe15f5fbe, 0xa2979735, 0xcc444488, 0x3917172e, 0x57c4c493, 0xf2a7a755,
0x827e7efc, 0x473d3d7a, 0xac6464c8, 0xe75d5dba, 0x2b191932, 0x957373e6,
0xa06060c0, 0x98818119, 0xd14f4f9e, 0x7fdcdca3, 0x66222244, 0x7e2a2a54,
0xab90903b, 0x8388880b, 0xca46468c, 0x29eeeec7, 0xd3b8b86b, 0x3c141428,
0x79dedea7, 0xe25e5ebc, 0x1d0b0b16, 0x76dbdbad, 0x3be0e0db, 0x56323264,
0x4e3a3a74, 0x1e0a0a14, 0xdb494992, 0x0a06060c, 0x6c242448, 0xe45c5cb8,
0x5dc2c29f, 0x6ed3d3bd, 0xefacac43, 0xa66262c4, 0xa8919139, 0xa4959531,
0x37e4e4d3, 0x8b7979f2, 0x32e7e7d5, 0x43c8c88b, 0x5937376e, 0xb76d6dda,
0x8c8d8d01, 0x64d5d5b1, 0xd24e4e9c, 0xe0a9a949, 0xb46c6cd8, 0xfa5656ac,
0x07f4f4f3, 0x25eaeacf, 0xaf6565ca, 0x8e7a7af4, 0xe9aeae47, 0x18080810,
0xd5baba6f, 0x887878f0, 0x6f25254a, 0x722e2e5c, 0x241c1c38, 0xf1a6a657,
0xc7b4b473, 0x51c6c697, 0x23e8e8cb, 0x7cdddda1, 0x9c7474e8, 0x211f1f3e,
0xdd4b4b96, 0xdcbdbd61, 0x868b8b0d, 0x858a8a0f, 0x907070e0, 0x423e3e7c,
0xc4b5b571, 0xaa6666cc, 0xd8484890, 0x05030306, 0x01f6f6f7, 0x120e0e1c,
0xa36161c2, 0x5f35356a, 0xf95757ae, 0xd0b9b969, 0x91868617, 0x58c1c199,
0x271d1d3a, 0xb99e9e27, 0x38e1e1d9, 0x13f8f8eb, 0xb398982b, 0x33111122,
0xbb6969d2, 0x70d9d9a9, 0x898e8e07, 0xa7949433, 0xb69b9b2d, 0x221e1e3c,
0x92878715, 0x20e9e9c9, 0x49cece87, 0xff5555aa, 0x78282850, 0x7adfdfa5,
0x8f8c8c03, 0xf8a1a159, 0x80898909, 0x170d0d1a, 0xdabfbf65, 0x31e6e6d7,
0xc6424284, 0xb86868d0, 0xc3414182, 0xb0999929, 0x772d2d5a, 0x110f0f1e,
0xcbb0b07b, 0xfc5454a8, 0xd6bbbb6d, 0x3a16162c,
};
constexpr uint32_t te1[256] = {
0x6363c6a5, 0x7c7cf884, 0x7777ee99, 0x7b7bf68d, 0xf2f2ff0d, 0x6b6bd6bd,
0x6f6fdeb1, 0xc5c59154, 0x30306050, 0x01010203, 0x6767cea9, 0x2b2b567d,
0xfefee719, 0xd7d7b562, 0xabab4de6, 0x7676ec9a, 0xcaca8f45, 0x82821f9d,
0xc9c98940, 0x7d7dfa87, 0xfafaef15, 0x5959b2eb, 0x47478ec9, 0xf0f0fb0b,
0xadad41ec, 0xd4d4b367, 0xa2a25ffd, 0xafaf45ea, 0x9c9c23bf, 0xa4a453f7,
0x7272e496, 0xc0c09b5b, 0xb7b775c2, 0xfdfde11c, 0x93933dae, 0x26264c6a,
0x36366c5a, 0x3f3f7e41, 0xf7f7f502, 0xcccc834f, 0x3434685c, 0xa5a551f4,
0xe5e5d134, 0xf1f1f908, 0x7171e293, 0xd8d8ab73, 0x31316253, 0x15152a3f,
0x0404080c, 0xc7c79552, 0x23234665, 0xc3c39d5e, 0x18183028, 0x969637a1,
0x05050a0f, 0x9a9a2fb5, 0x07070e09, 0x12122436, 0x80801b9b, 0xe2e2df3d,
0xebebcd26, 0x27274e69, 0xb2b27fcd, 0x7575ea9f, 0x0909121b, 0x83831d9e,
0x2c2c5874, 0x1a1a342e, 0x1b1b362d, 0x6e6edcb2, 0x5a5ab4ee, 0xa0a05bfb,
0x5252a4f6, 0x3b3b764d, 0xd6d6b761, 0xb3b37dce, 0x2929527b, 0xe3e3dd3e,
0x2f2f5e71, 0x84841397, 0x5353a6f5, 0xd1d1b968, 0x00000000, 0xededc12c,
0x20204060, 0xfcfce31f, 0xb1b179c8, 0x5b5bb6ed, 0x6a6ad4be, 0xcbcb8d46,
0xbebe67d9, 0x3939724b, 0x4a4a94de, 0x4c4c98d4, 0x5858b0e8, 0xcfcf854a,
0xd0d0bb6b, 0xefefc52a, 0xaaaa4fe5, 0xfbfbed16, 0x434386c5, 0x4d4d9ad7,
0x33336655, 0x85851194, 0x45458acf, 0xf9f9e910, 0x02020406, 0x7f7ffe81,
0x5050a0f0, 0x3c3c7844, 0x9f9f25ba, 0xa8a84be3, 0x5151a2f3, 0xa3a35dfe,
0x404080c0, 0x8f8f058a, 0x92923fad, 0x9d9d21bc, 0x38387048, 0xf5f5f104,
0xbcbc63df, 0xb6b677c1, 0xdadaaf75, 0x21214263, 0x10102030, 0xffffe51a,
0xf3f3fd0e, 0xd2d2bf6d, 0xcdcd814c, 0x0c0c1814, 0x13132635, 0xececc32f,
0x5f5fbee1, 0x979735a2, 0x444488cc, 0x17172e39, 0xc4c49357, 0xa7a755f2,
0x7e7efc82, 0x3d3d7a47, 0x6464c8ac, 0x5d5dbae7, 0x1919322b, 0x7373e695,
0x6060c0a0, 0x81811998, 0x4f4f9ed1, 0xdcdca37f, 0x22224466, 0x2a2a547e,
0x90903bab, 0x88880b83, 0x46468cca, 0xeeeec729, 0xb8b86bd3, 0x1414283c,
0xdedea779, 0x5e5ebce2, 0x0b0b161d, 0xdbdbad76, 0xe0e0db3b, 0x32326456,
0x3a3a744e, 0x0a0a141e, 0x494992db, 0x06060c0a, 0x2424486c, 0x5c5cb8e4,
0xc2c29f5d, 0xd3d3bd6e, 0xacac43ef, 0x6262c4a6, 0x919139a8, 0x959531a4,
0xe4e4d337, 0x7979f28b, 0xe7e7d532, 0xc8c88b43, 0x37376e59, 0x6d6ddab7,
0x8d8d018c, 0xd5d5b164, 0x4e4e9cd2, 0xa9a949e0, 0x6c6cd8b4, 0x5656acfa,
0xf4f4f307, 0xeaeacf25, 0x6565caaf, 0x7a7af48e, 0xaeae47e9, 0x08081018,
0xbaba6fd5, 0x7878f088, 0x25254a6f, 0x2e2e5c72, 0x1c1c3824, 0xa6a657f1,
0xb4b473c7, 0xc6c69751, 0xe8e8cb23, 0xdddda17c, 0x7474e89c, 0x1f1f3e21,
0x4b4b96dd, 0xbdbd61dc, 0x8b8b0d86, 0x8a8a0f85, 0x7070e090, 0x3e3e7c42,
0xb5b571c4, 0x6666ccaa, 0x484890d8, 0x03030605, 0xf6f6f701, 0x0e0e1c12,
0x6161c2a3, 0x35356a5f, 0x5757aef9, 0xb9b969d0, 0x86861791, 0xc1c19958,
0x1d1d3a27, 0x9e9e27b9, 0xe1e1d938, 0xf8f8eb13, 0x98982bb3, 0x11112233,
0x6969d2bb, 0xd9d9a970, 0x8e8e0789, 0x949433a7, 0x9b9b2db6, 0x1e1e3c22,
0x87871592, 0xe9e9c920, 0xcece8749, 0x5555aaff, 0x28285078, 0xdfdfa57a,
0x8c8c038f, 0xa1a159f8, 0x89890980, 0x0d0d1a17, 0xbfbf65da, 0xe6e6d731,
0x424284c6, 0x6868d0b8, 0x414182c3, 0x999929b0, 0x2d2d5a77, 0x0f0f1e11,
0xb0b07bcb, 0x5454a8fc, 0xbbbb6dd6, 0x16162c3a,
};
constexpr uint32_t te2[256] = {
0x63c6a563, 0x7cf8847c, 0x77ee9977, 0x7bf68d7b, 0xf2ff0df2, 0x6bd6bd6b,
0x6fdeb16f, 0xc59154c5, 0x30605030, 0x01020301, 0x67cea967, 0x2b567d2b,
0xfee719fe, 0xd7b562d7, 0xab4de6ab, 0x76ec9a76, 0xca8f45ca, 0x821f9d82,
0xc98940c9, 0x7dfa877d, 0xfaef15fa, 0x59b2eb59, 0x478ec947, 0xf0fb0bf0,
0xad41ecad, 0xd4b367d4, 0xa25ffda2, 0xaf45eaaf, 0x9c23bf9c, 0xa453f7a4,
0x72e49672, 0xc09b5bc0, 0xb775c2b7, 0xfde11cfd, 0x933dae93, 0x264c6a26,
0x366c5a36, 0x3f7e413f, 0xf7f502f7, 0xcc834fcc, 0x34685c34, 0xa551f4a5,
0xe5d134e5, 0xf1f908f1, 0x71e29371, 0xd8ab73d8, 0x31625331, 0x152a3f15,
0x04080c04, 0xc79552c7, 0x23466523, 0xc39d5ec3, 0x18302818, 0x9637a196,
0x050a0f05, 0x9a2fb59a, 0x070e0907, 0x12243612, 0x801b9b80, 0xe2df3de2,
0xebcd26eb, 0x274e6927, 0xb27fcdb2, 0x75ea9f75, 0x09121b09, 0x831d9e83,
0x2c58742c, 0x1a342e1a, 0x1b362d1b, 0x6edcb26e, 0x5ab4ee5a, 0xa05bfba0,
0x52a4f652, 0x3b764d3b, 0xd6b761d6, 0xb37dceb3, 0x29527b29, 0xe3dd3ee3,
0x2f5e712f, 0x84139784, 0x53a6f553, 0xd1b968d1, 0x00000000, 0xedc12ced,
0x20406020, 0xfce31ffc, 0xb179c8b1, 0x5bb6ed5b, 0x6ad4be6a, 0xcb8d46cb,
0xbe67d9be, 0x39724b39, 0x4a94de4a, 0x4c98d44c, 0x58b0e858, 0xcf854acf,
0xd0bb6bd0, 0xefc52aef, 0xaa4fe5aa, 0xfbed16fb, 0x4386c543, 0x4d9ad74d,
0x33665533, 0x85119485, 0x458acf45, 0xf9e910f9, 0x02040602, 0x7ffe817f,
0x50a0f050, 0x3c78443c, 0x9f25ba9f, 0xa84be3a8, 0x51a2f351, 0xa35dfea3,
0x4080c040, 0x8f058a8f, 0x923fad92, 0x9d21bc9d, 0x38704838, 0xf5f104f5,
0xbc63dfbc, 0xb677c1b6, 0xdaaf75da, 0x21426321, 0x10203010, 0xffe51aff,
0xf3fd0ef3, 0xd2bf6dd2, 0xcd814ccd, 0x0c18140c, 0x13263513, 0xecc32fec,
0x5fbee15f, 0x9735a297, 0x4488cc44, 0x172e3917, 0xc49357c4, 0xa755f2a7,
0x7efc827e, 0x3d7a473d, 0x64c8ac64, 0x5dbae75d, 0x19322b19, 0x73e69573,
0x60c0a060, 0x81199881, 0x4f9ed14f, 0xdca37fdc, 0x22446622, 0x2a547e2a,
0x903bab90, 0x880b8388, 0x468cca46, 0xeec729ee, 0xb86bd3b8, 0x14283c14,
0xdea779de, 0x5ebce25e, 0x0b161d0b, 0xdbad76db, 0xe0db3be0, 0x32645632,
0x3a744e3a, 0x0a141e0a, 0x4992db49, 0x060c0a06, 0x24486c24, 0x5cb8e45c,
0xc29f5dc2, 0xd3bd6ed3, 0xac43efac, 0x62c4a662, 0x9139a891, 0x9531a495,
0xe4d337e4, 0x79f28b79, 0xe7d532e7, 0xc88b43c8, 0x376e5937, 0x6ddab76d,
0x8d018c8d, 0xd5b164d5, 0x4e9cd24e, 0xa949e0a9, 0x6cd8b46c, 0x56acfa56,
0xf4f307f4, 0xeacf25ea, 0x65caaf65, 0x7af48e7a, 0xae47e9ae, 0x08101808,
0xba6fd5ba, 0x78f08878, 0x254a6f25, 0x2e5c722e, 0x1c38241c, 0xa657f1a6,
0xb473c7b4, 0xc69751c6, 0xe8cb23e8, 0xdda17cdd, 0x74e89c74, 0x1f3e211f,
0x4b96dd4b, 0xbd61dcbd, 0x8b0d868b, 0x8a0f858a, 0x70e09070, 0x3e7c423e,
0xb571c4b5, 0x66ccaa66, 0x4890d848, 0x03060503, 0xf6f701f6, 0x0e1c120e,
0x61c2a361, 0x356a5f35, 0x57aef957, 0xb969d0b9, 0x86179186, 0xc19958c1,
0x1d3a271d, 0x9e27b99e, 0xe1d938e1, 0xf8eb13f8, 0x982bb398, 0x11223311,
0x69d2bb69, 0xd9a970d9, 0x8e07898e, 0x9433a794, 0x9b2db69b, 0x1e3c221e,
0x87159287, 0xe9c920e9, 0xce8749ce, 0x55aaff55, 0x28507828, 0xdfa57adf,
0x8c038f8c, 0xa159f8a1, 0x89098089, 0x0d1a170d, 0xbf65dabf, 0xe6d731e6,
0x4284c642, 0x68d0b868, 0x4182c341, 0x9929b099, 0x2d5a772d, 0x0f1e110f,
0xb07bcbb0, 0x54a8fc54, 0xbb6dd6bb, 0x162c3a16,
};
constexpr uint32_t te3[256] = {
0xc6a56363, 0xf8847c7c, 0xee997777, 0xf68d7b7b, 0xff0df2f2, 0xd6bd6b6b,
0xdeb16f6f, 0x9154c5c5, 0x60503030, 0x02030101, 0xcea96767, 0x567d2b2b,
0xe719fefe, 0xb562d7d7, 0x4de6abab, 0xec9a7676, 0x8f45caca, 0x1f9d8282,
0x8940c9c9, 0xfa877d7d, 0xef15fafa, 0xb2eb5959, 0x8ec94747, 0xfb0bf0f0,
0x41ecadad, 0xb367d4d4, 0x5ffda2a2, 0x45eaafaf, 0x23bf9c9c, 0x53f7a4a4,
0xe4967272, 0x9b5bc0c0, 0x75c2b7b7, 0xe11cfdfd, 0x3dae9393, 0x4c6a2626,
0x6c5a3636, 0x7e413f3f, 0xf502f7f7, 0x834fcccc, 0x685c3434, 0x51f4a5a5,
0xd134e5e5, 0xf908f1f1, 0xe2937171, 0xab73d8d8, 0x62533131, 0x2a3f1515,
0x080c0404, 0x9552c7c7, 0x46652323, 0x9d5ec3c3, 0x30281818, 0x37a19696,
0x0a0f0505, 0x2fb59a9a, 0x0e090707, 0x24361212, 0x1b9b8080, 0xdf3de2e2,
0xcd26ebeb, 0x4e692727, 0x7fcdb2b2, 0xea9f7575, 0x121b0909, 0x1d9e8383,
0x58742c2c, 0x342e1a1a, 0x362d1b1b, 0xdcb26e6e, 0xb4ee5a5a, 0x5bfba0a0,
0xa4f65252, 0x764d3b3b, 0xb761d6d6, 0x7dceb3b3, 0x527b2929, 0xdd3ee3e3,
0x5e712f2f, 0x13978484, 0xa6f55353, 0xb968d1d1, 0x00000000, 0xc12ceded,
0x40602020, 0xe31ffcfc, 0x79c8b1b1, 0xb6ed5b5b, 0xd4be6a6a, 0x8d46cbcb,
0x67d9bebe, 0x724b3939, 0x94de4a4a, 0x98d44c4c, 0xb0e85858, 0x854acfcf,
0xbb6bd0d0, 0xc52aefef, 0x4fe5aaaa, 0xed16fbfb, 0x86c54343, 0x9ad74d4d,
0x66553333, 0x11948585, 0x8acf4545, 0xe910f9f9, 0x04060202, 0xfe817f7f,
0xa0f05050, 0x78443c3c, 0x25ba9f9f, 0x4be3a8a8, 0xa2f35151, 0x5dfea3a3,
0x80c04040, 0x058a8f8f, 0x3fad9292, 0x21bc9d9d, 0x70483838, 0xf104f5f5,
0x63dfbcbc, 0x77c1b6b6, 0xaf75dada, 0x42632121, 0x20301010, 0xe51affff,
0xfd0ef3f3, 0xbf6dd2d2, 0x814ccdcd, 0x18140c0c, 0x26351313, 0xc32fecec,
0xbee15f5f, 0x35a29797, 0x88cc4444, 0x2e391717, 0x9357c4c4, 0x55f2a7a7,
0xfc827e7e, 0x7a473d3d, 0xc8ac6464, 0xbae75d5d, 0x322b1919, 0xe6957373,
0xc0a06060, 0x19988181, 0x9ed14f4f, 0xa37fdcdc, 0x44662222, 0x547e2a2a,
0x3bab9090, 0x0b838888, 0x8cca4646, 0xc729eeee, 0x6bd3b8b8, 0x283c1414,
0xa779dede, 0xbce25e5e, 0x161d0b0b, 0xad76dbdb, 0xdb3be0e0, 0x64563232,
0x744e3a3a, 0x141e0a0a, 0x92db4949, 0x0c0a0606, 0x486c2424, 0xb8e45c5c,
0x9f5dc2c2, 0xbd6ed3d3, 0x43efacac, 0xc4a66262, 0x39a89191, 0x31a49595,
0xd337e4e4, 0xf28b7979, 0xd532e7e7, 0x8b43c8c8, 0x6e593737, 0xdab76d6d,
0x018c8d8d, 0xb164d5d5, 0x9cd24e4e, 0x49e0a9a9, 0xd8b46c6c, 0xacfa5656,
0xf307f4f4, 0xcf25eaea, 0xcaaf6565, 0xf48e7a7a, 0x47e9aeae, 0x10180808,
0x6fd5baba, 0xf0887878, 0x4a6f2525, 0x5c722e2e, 0x38241c1c, 0x57f1a6a6,
0x73c7b4b4, 0x9751c6c6, 0xcb23e8e8, 0xa17cdddd, 0xe89c7474, 0x3e211f1f,
0x96dd4b4b, 0x61dcbdbd, 0x0d868b8b, 0x0f858a8a, 0xe0907070, 0x7c423e3e,
0x71c4b5b5, 0xccaa6666, 0x90d84848, 0x06050303, 0xf701f6f6, 0x1c120e0e,
0xc2a36161, 0x6a5f3535, 0xaef95757, 0x69d0b9b9, 0x17918686, 0x9958c1c1,
0x3a271d1d, 0x27b99e9e, 0xd938e1e1, 0xeb13f8f8, 0x2bb39898, 0x22331111,
0xd2bb6969, 0xa970d9d9, 0x07898e8e, 0x33a79494, 0x2db69b9b, 0x3c221e1e,
0x15928787, 0xc920e9e9, 0x8749cece, 0xaaff5555, 0x50782828, 0xa57adfdf,
0x038f8c8c, 0x59f8a1a1, 0x09808989, 0x1a170d0d, 0x65dabfbf, 0xd731e6e6,
0x84c64242, 0xd0b86868, 0x82c34141, 0x29b09999, 0x5a772d2d, 0x1e110f0f,
0x7bcbb0b0, 0xa8fc5454, 0x6dd6bbbb, 0x2c3a1616,
};
struct alignas(16) Vector128 {
uint32_t s[4];
};
inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128
Vector128Load(const void* from) {
Vector128 result;
std::memcpy(result.s, from, sizeof(Vector128));
return result;
}
inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void Vector128Store(
const Vector128& v, void* to) {
std::memcpy(to, v.s, sizeof(Vector128));
}
inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE Vector128
AesRound(const Vector128& state, const Vector128& round_key) {
Vector128 result;
#ifdef ABSL_IS_LITTLE_ENDIAN
result.s[0] = round_key.s[0] ^
te0[uint8_t(state.s[0])] ^
te1[uint8_t(state.s[1] >> 8)] ^
te2[uint8_t(state.s[2] >> 16)] ^
te3[uint8_t(state.s[3] >> 24)];
result.s[1] = round_key.s[1] ^
te0[uint8_t(state.s[1])] ^
te1[uint8_t(state.s[2] >> 8)] ^
te2[uint8_t(state.s[3] >> 16)] ^
te3[uint8_t(state.s[0] >> 24)];
result.s[2] = round_key.s[2] ^
te0[uint8_t(state.s[2])] ^
te1[uint8_t(state.s[3] >> 8)] ^
te2[uint8_t(state.s[0] >> 16)] ^
te3[uint8_t(state.s[1] >> 24)];
result.s[3] = round_key.s[3] ^
te0[uint8_t(state.s[3])] ^
te1[uint8_t(state.s[0] >> 8)] ^
te2[uint8_t(state.s[1] >> 16)] ^
te3[uint8_t(state.s[2] >> 24)];
#else
result.s[0] = round_key.s[0] ^
te0[uint8_t(state.s[0])] ^
te1[uint8_t(state.s[3] >> 8)] ^
te2[uint8_t(state.s[2] >> 16)] ^
te3[uint8_t(state.s[1] >> 24)];
result.s[1] = round_key.s[1] ^
te0[uint8_t(state.s[1])] ^
te1[uint8_t(state.s[0] >> 8)] ^
te2[uint8_t(state.s[3] >> 16)] ^
te3[uint8_t(state.s[2] >> 24)];
result.s[2] = round_key.s[2] ^
te0[uint8_t(state.s[2])] ^
te1[uint8_t(state.s[1] >> 8)] ^
te2[uint8_t(state.s[0] >> 16)] ^
te3[uint8_t(state.s[3] >> 24)];
result.s[3] = round_key.s[3] ^
te0[uint8_t(state.s[3])] ^
te1[uint8_t(state.s[2] >> 8)] ^
te2[uint8_t(state.s[1] >> 16)] ^
te3[uint8_t(state.s[0] >> 24)];
#endif
return result;
}
using ::absl::random_internal::RandenTraits;
inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void BlockShuffle(
absl::uint128* state) {
static_assert(RandenTraits::kFeistelBlocks == 16,
"Feistel block shuffle only works for 16 blocks.");
constexpr size_t shuffle[RandenTraits::kFeistelBlocks] = {
7, 2, 13, 4, 11, 8, 3, 6, 15, 0, 9, 10, 1, 14, 5, 12};
#if 0
absl::uint128 source[RandenTraits::kFeistelBlocks];
std::memcpy(source, state, sizeof(source));
for (size_t i = 0; i < RandenTraits::kFeistelBlocks; i++) {
const absl::uint128 v0 = source[shuffle[i]];
state[i] = v0;
}
return;
#endif
const absl::uint128 v0 = state[shuffle[0]];
const absl::uint128 v1 = state[shuffle[1]];
const absl::uint128 v2 = state[shuffle[2]];
const absl::uint128 v3 = state[shuffle[3]];
const absl::uint128 v4 = state[shuffle[4]];
const absl::uint128 v5 = state[shuffle[5]];
const absl::uint128 v6 = state[shuffle[6]];
const absl::uint128 v7 = state[shuffle[7]];
const absl::uint128 w0 = state[shuffle[8]];
const absl::uint128 w1 = state[shuffle[9]];
const absl::uint128 w2 = state[shuffle[10]];
const absl::uint128 w3 = state[shuffle[11]];
const absl::uint128 w4 = state[shuffle[12]];
const absl::uint128 w5 = state[shuffle[13]];
const absl::uint128 w6 = state[shuffle[14]];
const absl::uint128 w7 = state[shuffle[15]];
state[0] = v0;
state[1] = v1;
state[2] = v2;
state[3] = v3;
state[4] = v4;
state[5] = v5;
state[6] = v6;
state[7] = v7;
state[8] = w0;
state[9] = w1;
state[10] = w2;
state[11] = w3;
state[12] = w4;
state[13] = w5;
state[14] = w6;
state[15] = w7;
}
inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE const absl::uint128*
FeistelRound(absl::uint128* ABSL_RANDOM_INTERNAL_RESTRICT state,
const absl::uint128* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
for (size_t branch = 0; branch < RandenTraits::kFeistelBlocks; branch += 4) {
const Vector128 s0 = Vector128Load(state + branch);
const Vector128 s1 = Vector128Load(state + branch + 1);
const Vector128 f0 = AesRound(s0, Vector128Load(keys));
keys++;
const Vector128 o1 = AesRound(f0, s1);
Vector128Store(o1, state + branch + 1);
const Vector128 s2 = Vector128Load(state + branch + 2);
const Vector128 s3 = Vector128Load(state + branch + 3);
const Vector128 f2 = AesRound(s2, Vector128Load(keys));
keys++;
const Vector128 o3 = AesRound(f2, s3);
Vector128Store(o3, state + branch + 3);
}
return keys;
}
inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void Permute(
absl::uint128* state,
const absl::uint128* ABSL_RANDOM_INTERNAL_RESTRICT keys) {
for (size_t round = 0; round < RandenTraits::kFeistelRounds; ++round) {
keys = FeistelRound(state, keys);
BlockShuffle(state);
}
}
inline ABSL_RANDOM_INTERNAL_ATTRIBUTE_ALWAYS_INLINE void SwapEndian(
absl::uint128* state) {
#ifdef ABSL_IS_BIG_ENDIAN
for (uint32_t block = 0; block < RandenTraits::kFeistelBlocks; ++block) {
uint64_t new_lo = absl::little_endian::ToHost64(
static_cast<uint64_t>(state[block] >> 64));
uint64_t new_hi = absl::little_endian::ToHost64(
static_cast<uint64_t>((state[block] << 64) >> 64));
state[block] = (static_cast<absl::uint128>(new_hi) << 64) | new_lo;
}
#else
(void)state;
#endif
}
}
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
const void* RandenSlow::GetKeys() {
#ifdef ABSL_IS_LITTLE_ENDIAN
return kRandenRoundKeys;
#else
return kRandenRoundKeysBE;
#endif
}
void RandenSlow::Absorb(const void* seed_void, void* state_void) {
auto* state =
reinterpret_cast<uint64_t * ABSL_RANDOM_INTERNAL_RESTRICT>(state_void);
const auto* seed =
reinterpret_cast<const uint64_t * ABSL_RANDOM_INTERNAL_RESTRICT>(
seed_void);
constexpr size_t kCapacityBlocks =
RandenTraits::kCapacityBytes / sizeof(uint64_t);
static_assert(
kCapacityBlocks * sizeof(uint64_t) == RandenTraits::kCapacityBytes,
"Not i*V");
for (size_t i = kCapacityBlocks;
i < RandenTraits::kStateBytes / sizeof(uint64_t); ++i) {
state[i] ^= seed[i - kCapacityBlocks];
}
}
void RandenSlow::Generate(const void* keys_void, void* state_void) {
static_assert(RandenTraits::kCapacityBytes == sizeof(absl::uint128),
"Capacity mismatch");
auto* state = reinterpret_cast<absl::uint128*>(state_void);
const auto* keys = reinterpret_cast<const absl::uint128*>(keys_void);
const absl::uint128 prev_inner = state[0];
SwapEndian(state);
Permute(state, keys);
SwapEndian(state);
*state ^= prev_inner;
}
}
ABSL_NAMESPACE_END
} | #include "absl/random/internal/randen_slow.h"
#include <cstring>
#include "gtest/gtest.h"
#include "absl/base/internal/endian.h"
#include "absl/random/internal/randen_traits.h"
namespace {
using absl::random_internal::RandenSlow;
using absl::random_internal::RandenTraits;
TEST(RandenSlowTest, Default) {
constexpr uint8_t kGolden[] = {
0xee, 0xd3, 0xe6, 0x0e, 0x09, 0x34, 0x65, 0x6c, 0xc6, 0x33, 0x53, 0x9d,
0x9b, 0x2b, 0x4e, 0x04, 0x77, 0x39, 0x43, 0x4e, 0x13, 0x4f, 0xc1, 0xc3,
0xee, 0x10, 0x04, 0xd9, 0x7c, 0xf4, 0xa9, 0xdd, 0x10, 0xca, 0xd8, 0x7f,
0x08, 0xf3, 0x7b, 0x88, 0x12, 0x29, 0xc7, 0x45, 0xf5, 0x80, 0xb7, 0xf0,
0x9f, 0x59, 0x96, 0x76, 0xd3, 0xb1, 0xdb, 0x15, 0x59, 0x6d, 0x3c, 0xff,
0xba, 0x63, 0xec, 0x30, 0xa6, 0x20, 0x7f, 0x6f, 0x60, 0x73, 0x9f, 0xb2,
0x4c, 0xa5, 0x49, 0x6f, 0x31, 0x8a, 0x80, 0x02, 0x0e, 0xe5, 0xc8, 0xd5,
0xf9, 0xea, 0x8f, 0x3b, 0x8a, 0xde, 0xd9, 0x3f, 0x5e, 0x60, 0xbf, 0x9c,
0xbb, 0x3b, 0x18, 0x78, 0x1a, 0xae, 0x70, 0xc9, 0xd5, 0x1e, 0x30, 0x56,
0xd3, 0xff, 0xb2, 0xd8, 0x37, 0x3c, 0xc7, 0x0f, 0xfe, 0x27, 0xb3, 0xf4,
0x19, 0x9a, 0x8f, 0xeb, 0x76, 0x8d, 0xfd, 0xcd, 0x9d, 0x0c, 0x42, 0x91,
0xeb, 0x06, 0xa5, 0xc3, 0x56, 0x95, 0xff, 0x3e, 0xdd, 0x05, 0xaf, 0xd5,
0xa1, 0xc4, 0x83, 0x8f, 0xb7, 0x1b, 0xdb, 0x48, 0x8c, 0xfe, 0x6b, 0x0d,
0x0e, 0x92, 0x23, 0x70, 0x42, 0x6d, 0x95, 0x34, 0x58, 0x57, 0xd3, 0x58,
0x40, 0xb8, 0x87, 0x6b, 0xc2, 0xf4, 0x1e, 0xed, 0xf3, 0x2d, 0x0b, 0x3e,
0xa2, 0x32, 0xef, 0x8e, 0xfc, 0x54, 0x11, 0x43, 0xf3, 0xab, 0x7c, 0x49,
0x8b, 0x9a, 0x02, 0x70, 0x05, 0x37, 0x24, 0x4e, 0xea, 0xe5, 0x90, 0xf0,
0x49, 0x57, 0x8b, 0xd8, 0x2f, 0x69, 0x70, 0xa9, 0x82, 0xa5, 0x51, 0xc6,
0xf5, 0x42, 0x63, 0xbb, 0x2c, 0xec, 0xfc, 0x78, 0xdb, 0x55, 0x2f, 0x61,
0x45, 0xb7, 0x3c, 0x46, 0xe3, 0xaf, 0x16, 0x18, 0xad, 0xe4, 0x2e, 0x35,
0x7e, 0xda, 0x01, 0xc1, 0x74, 0xf3, 0x6f, 0x02, 0x51, 0xe8, 0x3d, 0x1c,
0x82, 0xf0, 0x1e, 0x81,
};
alignas(16) uint8_t state[RandenTraits::kStateBytes];
std::memset(state, 0, sizeof(state));
RandenSlow::Generate(RandenSlow::GetKeys(), state);
EXPECT_EQ(0, std::memcmp(state, kGolden, sizeof(state)));
}
} | 2,539 |
#ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_
#define ABSL_RANDOM_INTERNAL_DISTRIBUTION_TEST_UTIL_H_
#include <cstddef>
#include <iostream>
#include <vector>
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
struct DistributionMoments {
size_t n = 0;
double mean = 0.0;
double variance = 0.0;
double skewness = 0.0;
double kurtosis = 0.0;
};
DistributionMoments ComputeDistributionMoments(
absl::Span<const double> data_points);
std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments);
double ZScore(double expected_mean, const DistributionMoments& moments);
double RequiredSuccessProbability(double p_fail, int num_trials);
double MaxErrorTolerance(double acceptance_probability);
double erfinv(double x);
double beta(double p, double q);
double InverseNormalSurvival(double x);
bool Near(absl::string_view msg, double actual, double expected, double bound);
double BetaIncomplete(double x, double p, double q);
double BetaIncompleteInv(double p, double q, double alpha);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/random/internal/distribution_test_util.h"
#include <cassert>
#include <cmath>
#include <string>
#include <vector>
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
namespace {
#if defined(__EMSCRIPTEN__)
inline double fma(double x, double y, double z) { return (x * y) + z; }
#endif
}
DistributionMoments ComputeDistributionMoments(
absl::Span<const double> data_points) {
DistributionMoments result;
for (double x : data_points) {
result.n++;
result.mean += x;
}
result.mean /= static_cast<double>(result.n);
for (double x : data_points) {
double v = x - result.mean;
result.variance += v * v;
result.skewness += v * v * v;
result.kurtosis += v * v * v * v;
}
result.variance /= static_cast<double>(result.n - 1);
result.skewness /= static_cast<double>(result.n);
result.skewness /= std::pow(result.variance, 1.5);
result.kurtosis /= static_cast<double>(result.n);
result.kurtosis /= std::pow(result.variance, 2.0);
return result;
}
std::ostream& operator<<(std::ostream& os, const DistributionMoments& moments) {
return os << absl::StrFormat("mean=%f, stddev=%f, skewness=%f, kurtosis=%f",
moments.mean, std::sqrt(moments.variance),
moments.skewness, moments.kurtosis);
}
double InverseNormalSurvival(double x) {
static constexpr double kSqrt2 = 1.4142135623730950488;
return -kSqrt2 * absl::random_internal::erfinv(2 * x - 1.0);
}
bool Near(absl::string_view msg, double actual, double expected, double bound) {
assert(bound > 0.0);
double delta = fabs(expected - actual);
if (delta < bound) {
return true;
}
std::string formatted = absl::StrCat(
msg, " actual=", actual, " expected=", expected, " err=", delta / bound);
ABSL_RAW_LOG(INFO, "%s", formatted.c_str());
return false;
}
double beta(double p, double q) {
double lbeta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
return std::exp(lbeta);
}
double erfinv(double x) {
#if !defined(__EMSCRIPTEN__)
using std::fma;
#endif
double w = 0.0;
double p = 0.0;
w = -std::log((1.0 - x) * (1.0 + x));
if (w < 6.250000) {
w = w - 3.125000;
p = -3.6444120640178196996e-21;
p = fma(p, w, -1.685059138182016589e-19);
p = fma(p, w, 1.2858480715256400167e-18);
p = fma(p, w, 1.115787767802518096e-17);
p = fma(p, w, -1.333171662854620906e-16);
p = fma(p, w, 2.0972767875968561637e-17);
p = fma(p, w, 6.6376381343583238325e-15);
p = fma(p, w, -4.0545662729752068639e-14);
p = fma(p, w, -8.1519341976054721522e-14);
p = fma(p, w, 2.6335093153082322977e-12);
p = fma(p, w, -1.2975133253453532498e-11);
p = fma(p, w, -5.4154120542946279317e-11);
p = fma(p, w, 1.051212273321532285e-09);
p = fma(p, w, -4.1126339803469836976e-09);
p = fma(p, w, -2.9070369957882005086e-08);
p = fma(p, w, 4.2347877827932403518e-07);
p = fma(p, w, -1.3654692000834678645e-06);
p = fma(p, w, -1.3882523362786468719e-05);
p = fma(p, w, 0.0001867342080340571352);
p = fma(p, w, -0.00074070253416626697512);
p = fma(p, w, -0.0060336708714301490533);
p = fma(p, w, 0.24015818242558961693);
p = fma(p, w, 1.6536545626831027356);
} else if (w < 16.000000) {
w = std::sqrt(w) - 3.250000;
p = 2.2137376921775787049e-09;
p = fma(p, w, 9.0756561938885390979e-08);
p = fma(p, w, -2.7517406297064545428e-07);
p = fma(p, w, 1.8239629214389227755e-08);
p = fma(p, w, 1.5027403968909827627e-06);
p = fma(p, w, -4.013867526981545969e-06);
p = fma(p, w, 2.9234449089955446044e-06);
p = fma(p, w, 1.2475304481671778723e-05);
p = fma(p, w, -4.7318229009055733981e-05);
p = fma(p, w, 6.8284851459573175448e-05);
p = fma(p, w, 2.4031110387097893999e-05);
p = fma(p, w, -0.0003550375203628474796);
p = fma(p, w, 0.00095328937973738049703);
p = fma(p, w, -0.0016882755560235047313);
p = fma(p, w, 0.0024914420961078508066);
p = fma(p, w, -0.0037512085075692412107);
p = fma(p, w, 0.005370914553590063617);
p = fma(p, w, 1.0052589676941592334);
p = fma(p, w, 3.0838856104922207635);
} else {
w = std::sqrt(w) - 5.000000;
p = -2.7109920616438573243e-11;
p = fma(p, w, -2.5556418169965252055e-10);
p = fma(p, w, 1.5076572693500548083e-09);
p = fma(p, w, -3.7894654401267369937e-09);
p = fma(p, w, 7.6157012080783393804e-09);
p = fma(p, w, -1.4960026627149240478e-08);
p = fma(p, w, 2.9147953450901080826e-08);
p = fma(p, w, -6.7711997758452339498e-08);
p = fma(p, w, 2.2900482228026654717e-07);
p = fma(p, w, -9.9298272942317002539e-07);
p = fma(p, w, 4.5260625972231537039e-06);
p = fma(p, w, -1.9681778105531670567e-05);
p = fma(p, w, 7.5995277030017761139e-05);
p = fma(p, w, -0.00021503011930044477347);
p = fma(p, w, -0.00013871931833623122026);
p = fma(p, w, 1.0103004648645343977);
p = fma(p, w, 4.8499064014085844221);
}
return p * x;
}
namespace {
double BetaIncompleteImpl(const double x, const double p, const double q,
const double beta) {
if (p < (p + q) * x) {
return 1. - BetaIncompleteImpl(1.0 - x, q, p, beta);
}
double psq = p + q;
const double kErr = 1e-14;
const double xc = 1. - x;
const double pre =
std::exp(p * std::log(x) + (q - 1.) * std::log(xc) - beta) / p;
double term = 1.;
double ai = 1.;
double result = 1.;
int ns = static_cast<int>(q + xc * psq);
double rx = (ns == 0) ? x : x / xc;
double temp = q - ai;
for (;;) {
term = term * temp * rx / (p + ai);
result = result + term;
temp = std::fabs(term);
if (temp < kErr && temp < kErr * result) {
return result * pre;
}
ai = ai + 1.;
--ns;
if (ns >= 0) {
temp = q - ai;
if (ns == 0) {
rx = x;
}
} else {
temp = psq;
psq = psq + 1.;
}
}
}
double BetaIncompleteInvImpl(const double p, const double q, const double beta,
const double alpha) {
if (alpha < 0.5) {
return 1. - BetaIncompleteInvImpl(q, p, beta, 1. - alpha);
}
const double kErr = 1e-14;
double value = kErr;
{
double r = std::sqrt(-std::log(alpha * alpha));
double y =
r - fma(r, 0.27061, 2.30753) / fma(r, fma(r, 0.04481, 0.99229), 1.0);
if (p > 1. && q > 1.) {
r = (y * y - 3.) / 6.;
double s = 1. / (p + p - 1.);
double t = 1. / (q + q - 1.);
double h = 2. / s + t;
double w =
y * std::sqrt(h + r) / h - (t - s) * (r + 5. / 6. - t / (3. * h));
value = p / (p + q * std::exp(w + w));
} else {
r = q + q;
double t = 1.0 / (9. * q);
double u = 1.0 - t + y * std::sqrt(t);
t = r * (u * u * u);
if (t <= 0) {
value = 1.0 - std::exp((std::log((1.0 - alpha) * q) + beta) / q);
} else {
t = (4.0 * p + r - 2.0) / t;
if (t <= 1) {
value = std::exp((std::log(alpha * p) + beta) / p);
} else {
value = 1.0 - 2.0 / (t + 1.0);
}
}
}
}
{
value = std::max(value, kErr);
value = std::min(value, 1.0 - kErr);
const double r = 1.0 - p;
const double t = 1.0 - q;
double y;
double yprev = 0;
double sq = 1;
double prev = 1;
for (;;) {
if (value < 0 || value > 1.0) {
return std::numeric_limits<double>::infinity();
} else if (value == 0 || value == 1) {
y = value;
} else {
y = BetaIncompleteImpl(value, p, q, beta);
if (!std::isfinite(y)) {
return y;
}
}
y = (y - alpha) *
std::exp(beta + r * std::log(value) + t * std::log(1.0 - value));
if (y * yprev <= 0) {
prev = std::max(sq, std::numeric_limits<double>::min());
}
double g = 1.0;
for (;;) {
const double adj = g * y;
const double adj_sq = adj * adj;
if (adj_sq >= prev) {
g = g / 3.0;
continue;
}
const double tx = value - adj;
if (tx < 0 || tx > 1) {
g = g / 3.0;
continue;
}
if (prev < kErr) {
return value;
}
if (y * y < kErr) {
return value;
}
if (tx == value) {
return value;
}
if (tx == 0 || tx == 1) {
g = g / 3.0;
continue;
}
value = tx;
yprev = y;
break;
}
}
}
}
}
double BetaIncomplete(const double x, const double p, const double q) {
if (p < 0 || q < 0 || x < 0 || x > 1.0) {
return std::numeric_limits<double>::infinity();
}
if (x == 0 || x == 1) {
return x;
}
double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
return BetaIncompleteImpl(x, p, q, beta);
}
double BetaIncompleteInv(const double p, const double q, const double alpha) {
if (p < 0 || q < 0 || alpha < 0 || alpha > 1.0) {
return std::numeric_limits<double>::infinity();
}
if (alpha == 0 || alpha == 1) {
return alpha;
}
double beta = std::lgamma(p) + std::lgamma(q) - std::lgamma(p + q);
return BetaIncompleteInvImpl(p, q, beta, alpha);
}
double RequiredSuccessProbability(const double p_fail, const int num_trials) {
double p = std::exp(std::log(1.0 - p_fail) / static_cast<double>(num_trials));
ABSL_ASSERT(p > 0);
return p;
}
double ZScore(double expected_mean, const DistributionMoments& moments) {
return (moments.mean - expected_mean) /
(std::sqrt(moments.variance) /
std::sqrt(static_cast<double>(moments.n)));
}
double MaxErrorTolerance(double acceptance_probability) {
double one_sided_pvalue = 0.5 * (1.0 - acceptance_probability);
const double max_err = InverseNormalSurvival(one_sided_pvalue);
ABSL_ASSERT(max_err > 0);
return max_err;
}
}
ABSL_NAMESPACE_END
} | #include "absl/random/internal/distribution_test_util.h"
#include "gtest/gtest.h"
namespace {
TEST(TestUtil, InverseErf) {
const struct {
const double z;
const double value;
} kErfInvTable[] = {
{0.0000001, 8.86227e-8},
{0.00001, 8.86227e-6},
{0.5, 0.4769362762044},
{0.6, 0.5951160814499},
{0.99999, 3.1234132743},
{0.9999999, 3.7665625816},
{0.999999944, 3.8403850690566985},
{0.999999999, 4.3200053849134452},
};
for (const auto& data : kErfInvTable) {
auto value = absl::random_internal::erfinv(data.z);
EXPECT_NEAR(value, data.value, 1e-8)
<< " InverseErf[" << data.z << "] (expected=" << data.value << ") -> "
<< value;
}
}
const struct {
const double p;
const double q;
const double x;
const double alpha;
} kBetaTable[] = {
{0.5, 0.5, 0.01, 0.06376856085851985},
{0.5, 0.5, 0.1, 0.2048327646991335},
{0.5, 0.5, 1, 1},
{1, 0.5, 0, 0},
{1, 0.5, 0.01, 0.005012562893380045},
{1, 0.5, 0.1, 0.0513167019494862},
{1, 0.5, 0.5, 0.2928932188134525},
{1, 1, 0.5, 0.5},
{2, 2, 0.1, 0.028},
{2, 2, 0.2, 0.104},
{2, 2, 0.3, 0.216},
{2, 2, 0.4, 0.352},
{2, 2, 0.5, 0.5},
{2, 2, 0.6, 0.648},
{2, 2, 0.7, 0.784},
{2, 2, 0.8, 0.896},
{2, 2, 0.9, 0.972},
{5.5, 5, 0.5, 0.4361908850559777},
{10, 0.5, 0.9, 0.1516409096346979},
{10, 5, 0.5, 0.08978271484375},
{10, 5, 1, 1},
{10, 10, 0.5, 0.5},
{20, 5, 0.8, 0.4598773297575791},
{20, 10, 0.6, 0.2146816102371739},
{20, 10, 0.8, 0.9507364826957875},
{20, 20, 0.5, 0.5},
{20, 20, 0.6, 0.8979413687105918},
{30, 10, 0.7, 0.2241297491808366},
{30, 10, 0.8, 0.7586405487192086},
{40, 20, 0.7, 0.7001783247477069},
{1, 0.5, 0.1, 0.0513167019494862},
{1, 0.5, 0.2, 0.1055728090000841},
{1, 0.5, 0.3, 0.1633399734659245},
{1, 0.5, 0.4, 0.2254033307585166},
{1, 2, 0.2, 0.36},
{1, 3, 0.2, 0.488},
{1, 4, 0.2, 0.5904},
{1, 5, 0.2, 0.67232},
{2, 2, 0.3, 0.216},
{3, 2, 0.3, 0.0837},
{4, 2, 0.3, 0.03078},
{5, 2, 0.3, 0.010935},
{1e-5, 1e-5, 1e-5, 0.4999424388184638311},
{1e-5, 1e-5, (1.0 - 1e-8), 0.5000920948389232964},
{1e-5, 1e5, 1e-6, 0.9999817708130066936},
{1e-5, 1e5, (1.0 - 1e-7), 1.0},
{1e5, 1e-5, 1e-6, 0},
{1e5, 1e-5, (1.0 - 1e-6), 1.8229186993306369e-5},
};
TEST(BetaTest, BetaIncomplete) {
for (const auto& data : kBetaTable) {
auto value = absl::random_internal::BetaIncomplete(data.x, data.p, data.q);
EXPECT_NEAR(value, data.alpha, 1e-12)
<< " BetaRegularized[" << data.x << ", " << data.p << ", " << data.q
<< "] (expected=" << data.alpha << ") -> " << value;
}
}
TEST(BetaTest, BetaIncompleteInv) {
for (const auto& data : kBetaTable) {
auto value =
absl::random_internal::BetaIncompleteInv(data.p, data.q, data.alpha);
EXPECT_NEAR(value, data.x, 1e-6)
<< " InverseBetaRegularized[" << data.alpha << ", " << data.p << ", "
<< data.q << "] (expected=" << data.x << ") -> " << value;
}
}
TEST(MaxErrorTolerance, MaxErrorTolerance) {
std::vector<std::pair<double, double>> cases = {
{0.0000001, 8.86227e-8 * 1.41421356237},
{0.00001, 8.86227e-6 * 1.41421356237},
{0.5, 0.4769362762044 * 1.41421356237},
{0.6, 0.5951160814499 * 1.41421356237},
{0.99999, 3.1234132743 * 1.41421356237},
{0.9999999, 3.7665625816 * 1.41421356237},
{0.999999944, 3.8403850690566985 * 1.41421356237},
{0.999999999, 4.3200053849134452 * 1.41421356237}};
for (auto entry : cases) {
EXPECT_NEAR(absl::random_internal::MaxErrorTolerance(entry.first),
entry.second, 1e-8);
}
}
TEST(ZScore, WithSameMean) {
absl::random_internal::DistributionMoments m;
m.n = 100;
m.mean = 5;
m.variance = 1;
EXPECT_NEAR(absl::random_internal::ZScore(5, m), 0, 1e-12);
m.n = 1;
m.mean = 0;
m.variance = 1;
EXPECT_NEAR(absl::random_internal::ZScore(0, m), 0, 1e-12);
m.n = 10000;
m.mean = -5;
m.variance = 100;
EXPECT_NEAR(absl::random_internal::ZScore(-5, m), 0, 1e-12);
}
TEST(ZScore, DifferentMean) {
absl::random_internal::DistributionMoments m;
m.n = 100;
m.mean = 5;
m.variance = 1;
EXPECT_NEAR(absl::random_internal::ZScore(4, m), 10, 1e-12);
m.n = 1;
m.mean = 0;
m.variance = 1;
EXPECT_NEAR(absl::random_internal::ZScore(-1, m), 1, 1e-12);
m.n = 10000;
m.mean = -5;
m.variance = 100;
EXPECT_NEAR(absl::random_internal::ZScore(-4, m), -10, 1e-12);
}
} | 2,540 |
#ifndef ABSL_RANDOM_INTERNAL_RANDEN_H_
#define ABSL_RANDOM_INTERNAL_RANDEN_H_
#include <cstddef>
#include "absl/random/internal/platform.h"
#include "absl/random/internal/randen_hwaes.h"
#include "absl/random/internal/randen_slow.h"
#include "absl/random/internal/randen_traits.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
class Randen {
public:
static constexpr size_t kStateBytes = RandenTraits::kStateBytes;
static constexpr size_t kCapacityBytes = RandenTraits::kCapacityBytes;
static constexpr size_t kSeedBytes = RandenTraits::kSeedBytes;
~Randen() = default;
Randen();
inline void Generate(void* state) const {
#if ABSL_RANDOM_INTERNAL_AES_DISPATCH
if (has_crypto_) {
RandenHwAes::Generate(keys_, state);
} else {
RandenSlow::Generate(keys_, state);
}
#elif ABSL_HAVE_ACCELERATED_AES
RandenHwAes::Generate(keys_, state);
#else
RandenSlow::Generate(keys_, state);
#endif
}
inline void Absorb(const void* seed, void* state) const {
#if ABSL_RANDOM_INTERNAL_AES_DISPATCH
if (has_crypto_) {
RandenHwAes::Absorb(seed, state);
} else {
RandenSlow::Absorb(seed, state);
}
#elif ABSL_HAVE_ACCELERATED_AES
RandenHwAes::Absorb(seed, state);
#else
RandenSlow::Absorb(seed, state);
#endif
}
private:
const void* keys_;
#if ABSL_RANDOM_INTERNAL_AES_DISPATCH
bool has_crypto_;
#endif
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/random/internal/randen.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/random/internal/randen_detect.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal {
namespace {
struct RandenState {
const void* keys;
bool has_crypto;
};
RandenState GetRandenState() {
static const RandenState state = []() {
RandenState tmp;
#if ABSL_RANDOM_INTERNAL_AES_DISPATCH
if (HasRandenHwAesImplementation() && CPUSupportsRandenHwAes()) {
tmp.has_crypto = true;
tmp.keys = RandenHwAes::GetKeys();
} else {
tmp.has_crypto = false;
tmp.keys = RandenSlow::GetKeys();
}
#elif ABSL_HAVE_ACCELERATED_AES
tmp.has_crypto = true;
tmp.keys = RandenHwAes::GetKeys();
#else
tmp.has_crypto = false;
tmp.keys = RandenSlow::GetKeys();
#endif
return tmp;
}();
return state;
}
}
Randen::Randen() {
auto tmp = GetRandenState();
keys_ = tmp.keys;
#if ABSL_RANDOM_INTERNAL_AES_DISPATCH
has_crypto_ = tmp.has_crypto;
#endif
}
}
ABSL_NAMESPACE_END
} | #include "absl/random/internal/randen.h"
#include <cstring>
#include "gtest/gtest.h"
#include "absl/meta/type_traits.h"
namespace {
using absl::random_internal::Randen;
TEST(RandenTest, CopyAndMove) {
static_assert(std::is_copy_constructible<Randen>::value,
"Randen must be copy constructible");
static_assert(absl::is_copy_assignable<Randen>::value,
"Randen must be copy assignable");
static_assert(std::is_move_constructible<Randen>::value,
"Randen must be move constructible");
static_assert(absl::is_move_assignable<Randen>::value,
"Randen must be move assignable");
}
TEST(RandenTest, Default) {
constexpr uint8_t kGolden[] = {
0xee, 0xd3, 0xe6, 0x0e, 0x09, 0x34, 0x65, 0x6c, 0xc6, 0x33, 0x53, 0x9d,
0x9b, 0x2b, 0x4e, 0x04, 0x77, 0x39, 0x43, 0x4e, 0x13, 0x4f, 0xc1, 0xc3,
0xee, 0x10, 0x04, 0xd9, 0x7c, 0xf4, 0xa9, 0xdd, 0x10, 0xca, 0xd8, 0x7f,
0x08, 0xf3, 0x7b, 0x88, 0x12, 0x29, 0xc7, 0x45, 0xf5, 0x80, 0xb7, 0xf0,
0x9f, 0x59, 0x96, 0x76, 0xd3, 0xb1, 0xdb, 0x15, 0x59, 0x6d, 0x3c, 0xff,
0xba, 0x63, 0xec, 0x30, 0xa6, 0x20, 0x7f, 0x6f, 0x60, 0x73, 0x9f, 0xb2,
0x4c, 0xa5, 0x49, 0x6f, 0x31, 0x8a, 0x80, 0x02, 0x0e, 0xe5, 0xc8, 0xd5,
0xf9, 0xea, 0x8f, 0x3b, 0x8a, 0xde, 0xd9, 0x3f, 0x5e, 0x60, 0xbf, 0x9c,
0xbb, 0x3b, 0x18, 0x78, 0x1a, 0xae, 0x70, 0xc9, 0xd5, 0x1e, 0x30, 0x56,
0xd3, 0xff, 0xb2, 0xd8, 0x37, 0x3c, 0xc7, 0x0f, 0xfe, 0x27, 0xb3, 0xf4,
0x19, 0x9a, 0x8f, 0xeb, 0x76, 0x8d, 0xfd, 0xcd, 0x9d, 0x0c, 0x42, 0x91,
0xeb, 0x06, 0xa5, 0xc3, 0x56, 0x95, 0xff, 0x3e, 0xdd, 0x05, 0xaf, 0xd5,
0xa1, 0xc4, 0x83, 0x8f, 0xb7, 0x1b, 0xdb, 0x48, 0x8c, 0xfe, 0x6b, 0x0d,
0x0e, 0x92, 0x23, 0x70, 0x42, 0x6d, 0x95, 0x34, 0x58, 0x57, 0xd3, 0x58,
0x40, 0xb8, 0x87, 0x6b, 0xc2, 0xf4, 0x1e, 0xed, 0xf3, 0x2d, 0x0b, 0x3e,
0xa2, 0x32, 0xef, 0x8e, 0xfc, 0x54, 0x11, 0x43, 0xf3, 0xab, 0x7c, 0x49,
0x8b, 0x9a, 0x02, 0x70, 0x05, 0x37, 0x24, 0x4e, 0xea, 0xe5, 0x90, 0xf0,
0x49, 0x57, 0x8b, 0xd8, 0x2f, 0x69, 0x70, 0xa9, 0x82, 0xa5, 0x51, 0xc6,
0xf5, 0x42, 0x63, 0xbb, 0x2c, 0xec, 0xfc, 0x78, 0xdb, 0x55, 0x2f, 0x61,
0x45, 0xb7, 0x3c, 0x46, 0xe3, 0xaf, 0x16, 0x18, 0xad, 0xe4, 0x2e, 0x35,
0x7e, 0xda, 0x01, 0xc1, 0x74, 0xf3, 0x6f, 0x02, 0x51, 0xe8, 0x3d, 0x1c,
0x82, 0xf0, 0x1e, 0x81,
};
alignas(16) uint8_t state[Randen::kStateBytes];
std::memset(state, 0, sizeof(state));
Randen r;
r.Generate(state);
EXPECT_EQ(0, std::memcmp(state, kGolden, sizeof(state)));
}
} | 2,541 |
#ifndef ABSL_CRC_INTERNAL_CRC32C_H_
#define ABSL_CRC_INTERNAL_CRC32C_H_
#include "absl/base/config.h"
#include "absl/crc/crc32c.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace crc_internal {
crc32c_t UnextendCrc32cByZeroes(crc32c_t initial_crc, size_t length);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/crc/crc32c.h"
#include <cstdint>
#include "absl/crc/internal/crc.h"
#include "absl/crc/internal/crc32c.h"
#include "absl/crc/internal/crc_memcpy.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
const crc_internal::CRC* CrcEngine() {
static const crc_internal::CRC* engine = crc_internal::CRC::Crc32c();
return engine;
}
constexpr uint32_t kCRC32Xor = 0xffffffffU;
}
namespace crc_internal {
crc32c_t UnextendCrc32cByZeroes(crc32c_t initial_crc, size_t length) {
uint32_t crc = static_cast<uint32_t>(initial_crc) ^ kCRC32Xor;
CrcEngine()->UnextendByZeroes(&crc, length);
return static_cast<crc32c_t>(crc ^ kCRC32Xor);
}
crc32c_t ExtendCrc32cInternal(crc32c_t initial_crc,
absl::string_view buf_to_add) {
uint32_t crc = static_cast<uint32_t>(initial_crc) ^ kCRC32Xor;
CrcEngine()->Extend(&crc, buf_to_add.data(), buf_to_add.size());
return static_cast<crc32c_t>(crc ^ kCRC32Xor);
}
}
crc32c_t ComputeCrc32c(absl::string_view buf) {
return ExtendCrc32c(crc32c_t{0}, buf);
}
crc32c_t ExtendCrc32cByZeroes(crc32c_t initial_crc, size_t length) {
uint32_t crc = static_cast<uint32_t>(initial_crc) ^ kCRC32Xor;
CrcEngine()->ExtendByZeroes(&crc, length);
return static_cast<crc32c_t>(crc ^ kCRC32Xor);
}
crc32c_t ConcatCrc32c(crc32c_t lhs_crc, crc32c_t rhs_crc, size_t rhs_len) {
uint32_t result = static_cast<uint32_t>(lhs_crc);
CrcEngine()->ExtendByZeroes(&result, rhs_len);
return crc32c_t{result ^ static_cast<uint32_t>(rhs_crc)};
}
crc32c_t RemoveCrc32cPrefix(crc32c_t crc_a, crc32c_t crc_ab, size_t length_b) {
return ConcatCrc32c(crc_a, crc_ab, length_b);
}
crc32c_t MemcpyCrc32c(void* dest, const void* src, size_t count,
crc32c_t initial_crc) {
return static_cast<crc32c_t>(
crc_internal::Crc32CAndCopy(dest, src, count, initial_crc, false));
}
crc32c_t RemoveCrc32cSuffix(crc32c_t full_string_crc, crc32c_t suffix_crc,
size_t suffix_len) {
uint32_t result = static_cast<uint32_t>(full_string_crc) ^
static_cast<uint32_t>(suffix_crc);
CrcEngine()->UnextendByZeroes(&result, suffix_len);
return crc32c_t{result};
}
ABSL_NAMESPACE_END
} | #include "absl/crc/crc32c.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <sstream>
#include <string>
#include "gtest/gtest.h"
#include "absl/crc/internal/crc32c.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
namespace {
TEST(CRC32C, RFC3720) {
char data[32];
memset(data, 0, sizeof(data));
EXPECT_EQ(absl::ComputeCrc32c(absl::string_view(data, sizeof(data))),
absl::crc32c_t{0x8a9136aa});
memset(data, 0xff, sizeof(data));
EXPECT_EQ(absl::ComputeCrc32c(absl::string_view(data, sizeof(data))),
absl::crc32c_t{0x62a8ab43});
for (int i = 0; i < 32; ++i) data[i] = static_cast<char>(i);
EXPECT_EQ(absl::ComputeCrc32c(absl::string_view(data, sizeof(data))),
absl::crc32c_t{0x46dd794e});
for (int i = 0; i < 32; ++i) data[i] = static_cast<char>(31 - i);
EXPECT_EQ(absl::ComputeCrc32c(absl::string_view(data, sizeof(data))),
absl::crc32c_t{0x113fdb5c});
constexpr uint8_t cmd[48] = {
0x01, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00,
0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x18, 0x28, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
EXPECT_EQ(absl::ComputeCrc32c(absl::string_view(
reinterpret_cast<const char*>(cmd), sizeof(cmd))),
absl::crc32c_t{0xd9963a56});
}
std::string TestString(size_t len) {
std::string result;
result.reserve(len);
for (size_t i = 0; i < len; ++i) {
result.push_back(static_cast<char>(i % 256));
}
return result;
}
TEST(CRC32C, Compute) {
EXPECT_EQ(absl::ComputeCrc32c(""), absl::crc32c_t{0});
EXPECT_EQ(absl::ComputeCrc32c("hello world"), absl::crc32c_t{0xc99465aa});
}
TEST(CRC32C, Extend) {
uint32_t base = 0xC99465AA;
std::string extension = "Extension String";
EXPECT_EQ(
absl::ExtendCrc32c(absl::crc32c_t{base}, extension),
absl::crc32c_t{0xD2F65090});
}
TEST(CRC32C, ExtendByZeroes) {
std::string base = "hello world";
absl::crc32c_t base_crc = absl::crc32c_t{0xc99465aa};
constexpr size_t kExtendByValues[] = {100, 10000, 100000};
for (const size_t extend_by : kExtendByValues) {
SCOPED_TRACE(extend_by);
absl::crc32c_t crc2 = absl::ExtendCrc32cByZeroes(base_crc, extend_by);
EXPECT_EQ(crc2, absl::ComputeCrc32c(base + std::string(extend_by, '\0')));
}
}
TEST(CRC32C, UnextendByZeroes) {
constexpr size_t kExtendByValues[] = {2, 200, 20000, 200000, 20000000};
constexpr size_t kUnextendByValues[] = {0, 100, 10000, 100000, 10000000};
for (auto seed_crc : {absl::crc32c_t{0}, absl::crc32c_t{0xc99465aa}}) {
SCOPED_TRACE(seed_crc);
for (const size_t size_1 : kExtendByValues) {
for (const size_t size_2 : kUnextendByValues) {
size_t extend_size = std::max(size_1, size_2);
size_t unextend_size = std::min(size_1, size_2);
SCOPED_TRACE(extend_size);
SCOPED_TRACE(unextend_size);
absl::crc32c_t crc1 = seed_crc;
crc1 = absl::ExtendCrc32cByZeroes(crc1, extend_size);
crc1 = absl::crc_internal::UnextendCrc32cByZeroes(crc1, unextend_size);
absl::crc32c_t crc2 = seed_crc;
crc2 = absl::ExtendCrc32cByZeroes(crc2, extend_size - unextend_size);
EXPECT_EQ(crc1, crc2);
}
}
}
constexpr size_t kSizes[] = {0, 1, 100, 10000};
for (const size_t size : kSizes) {
SCOPED_TRACE(size);
std::string string_before = TestString(size);
std::string string_after = string_before + std::string(size, '\0');
absl::crc32c_t crc_before = absl::ComputeCrc32c(string_before);
absl::crc32c_t crc_after = absl::ComputeCrc32c(string_after);
EXPECT_EQ(crc_before,
absl::crc_internal::UnextendCrc32cByZeroes(crc_after, size));
}
}
TEST(CRC32C, Concat) {
std::string hello = "Hello, ";
std::string world = "world!";
std::string hello_world = absl::StrCat(hello, world);
absl::crc32c_t crc_a = absl::ComputeCrc32c(hello);
absl::crc32c_t crc_b = absl::ComputeCrc32c(world);
absl::crc32c_t crc_ab = absl::ComputeCrc32c(hello_world);
EXPECT_EQ(absl::ConcatCrc32c(crc_a, crc_b, world.size()), crc_ab);
}
TEST(CRC32C, Memcpy) {
constexpr size_t kBytesSize[] = {0, 1, 20, 500, 100000};
for (size_t bytes : kBytesSize) {
SCOPED_TRACE(bytes);
std::string sample_string = TestString(bytes);
std::string target_buffer = std::string(bytes, '\0');
absl::crc32c_t memcpy_crc =
absl::MemcpyCrc32c(&(target_buffer[0]), sample_string.data(), bytes);
absl::crc32c_t compute_crc = absl::ComputeCrc32c(sample_string);
EXPECT_EQ(memcpy_crc, compute_crc);
EXPECT_EQ(sample_string, target_buffer);
}
}
TEST(CRC32C, RemovePrefix) {
std::string hello = "Hello, ";
std::string world = "world!";
std::string hello_world = absl::StrCat(hello, world);
absl::crc32c_t crc_a = absl::ComputeCrc32c(hello);
absl::crc32c_t crc_b = absl::ComputeCrc32c(world);
absl::crc32c_t crc_ab = absl::ComputeCrc32c(hello_world);
EXPECT_EQ(absl::RemoveCrc32cPrefix(crc_a, crc_ab, world.size()), crc_b);
}
TEST(CRC32C, RemoveSuffix) {
std::string hello = "Hello, ";
std::string world = "world!";
std::string hello_world = absl::StrCat(hello, world);
absl::crc32c_t crc_a = absl::ComputeCrc32c(hello);
absl::crc32c_t crc_b = absl::ComputeCrc32c(world);
absl::crc32c_t crc_ab = absl::ComputeCrc32c(hello_world);
EXPECT_EQ(absl::RemoveCrc32cSuffix(crc_ab, crc_b, world.size()), crc_a);
}
TEST(CRC32C, InsertionOperator) {
{
std::ostringstream buf;
buf << absl::crc32c_t{0xc99465aa};
EXPECT_EQ(buf.str(), "c99465aa");
}
{
std::ostringstream buf;
buf << absl::crc32c_t{0};
EXPECT_EQ(buf.str(), "00000000");
}
{
std::ostringstream buf;
buf << absl::crc32c_t{17};
EXPECT_EQ(buf.str(), "00000011");
}
}
TEST(CRC32C, AbslStringify) {
EXPECT_EQ(absl::StrFormat("%v", absl::crc32c_t{0xc99465aa}), "c99465aa");
EXPECT_EQ(absl::StrFormat("%v", absl::crc32c_t{0}), "00000000");
EXPECT_EQ(absl::StrFormat("%v", absl::crc32c_t{17}), "00000011");
EXPECT_EQ(absl::StrCat(absl::crc32c_t{0xc99465aa}), "c99465aa");
EXPECT_EQ(absl::StrCat(absl::crc32c_t{0}), "00000000");
EXPECT_EQ(absl::StrCat(absl::crc32c_t{17}), "00000011");
}
} | 2,542 |
#ifndef ABSL_CRC_INTERNAL_CRC_CORD_STATE_H_
#define ABSL_CRC_INTERNAL_CRC_CORD_STATE_H_
#include <atomic>
#include <cstddef>
#include <deque>
#include "absl/base/config.h"
#include "absl/crc/crc32c.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace crc_internal {
class CrcCordState {
public:
CrcCordState();
CrcCordState(const CrcCordState&);
CrcCordState(CrcCordState&&);
~CrcCordState();
CrcCordState& operator=(const CrcCordState&);
CrcCordState& operator=(CrcCordState&&);
struct PrefixCrc {
PrefixCrc() = default;
PrefixCrc(size_t length_arg, absl::crc32c_t crc_arg)
: length(length_arg), crc(crc_arg) {}
size_t length = 0;
absl::crc32c_t crc = absl::crc32c_t{0};
};
struct Rep {
PrefixCrc removed_prefix;
std::deque<PrefixCrc> prefix_crc;
};
const Rep& rep() const { return refcounted_rep_->rep; }
Rep* mutable_rep() {
if (refcounted_rep_->count.load(std::memory_order_acquire) != 1) {
RefcountedRep* copy = new RefcountedRep;
copy->rep = refcounted_rep_->rep;
Unref(refcounted_rep_);
refcounted_rep_ = copy;
}
return &refcounted_rep_->rep;
}
absl::crc32c_t Checksum() const;
bool IsNormalized() const { return rep().removed_prefix.length == 0; }
void Normalize();
size_t NumChunks() const { return rep().prefix_crc.size(); }
PrefixCrc NormalizedPrefixCrcAtNthChunk(size_t n) const;
void Poison();
private:
struct RefcountedRep {
std::atomic<int32_t> count{1};
Rep rep;
};
static RefcountedRep* RefSharedEmptyRep();
static void Ref(RefcountedRep* r) {
assert(r != nullptr);
r->count.fetch_add(1, std::memory_order_relaxed);
}
static void Unref(RefcountedRep* r) {
assert(r != nullptr);
if (r->count.fetch_sub(1, std::memory_order_acq_rel) == 1) {
delete r;
}
}
RefcountedRep* refcounted_rep_;
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/crc/internal/crc_cord_state.h"
#include <cassert>
#include "absl/base/config.h"
#include "absl/base/no_destructor.h"
#include "absl/numeric/bits.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace crc_internal {
CrcCordState::RefcountedRep* CrcCordState::RefSharedEmptyRep() {
static absl::NoDestructor<CrcCordState::RefcountedRep> empty;
assert(empty->count.load(std::memory_order_relaxed) >= 1);
assert(empty->rep.removed_prefix.length == 0);
assert(empty->rep.prefix_crc.empty());
Ref(empty.get());
return empty.get();
}
CrcCordState::CrcCordState() : refcounted_rep_(new RefcountedRep) {}
CrcCordState::CrcCordState(const CrcCordState& other)
: refcounted_rep_(other.refcounted_rep_) {
Ref(refcounted_rep_);
}
CrcCordState::CrcCordState(CrcCordState&& other)
: refcounted_rep_(other.refcounted_rep_) {
other.refcounted_rep_ = RefSharedEmptyRep();
}
CrcCordState& CrcCordState::operator=(const CrcCordState& other) {
if (this != &other) {
Unref(refcounted_rep_);
refcounted_rep_ = other.refcounted_rep_;
Ref(refcounted_rep_);
}
return *this;
}
CrcCordState& CrcCordState::operator=(CrcCordState&& other) {
if (this != &other) {
Unref(refcounted_rep_);
refcounted_rep_ = other.refcounted_rep_;
other.refcounted_rep_ = RefSharedEmptyRep();
}
return *this;
}
CrcCordState::~CrcCordState() {
Unref(refcounted_rep_);
}
crc32c_t CrcCordState::Checksum() const {
if (rep().prefix_crc.empty()) {
return absl::crc32c_t{0};
}
if (IsNormalized()) {
return rep().prefix_crc.back().crc;
}
return absl::RemoveCrc32cPrefix(
rep().removed_prefix.crc, rep().prefix_crc.back().crc,
rep().prefix_crc.back().length - rep().removed_prefix.length);
}
CrcCordState::PrefixCrc CrcCordState::NormalizedPrefixCrcAtNthChunk(
size_t n) const {
assert(n < NumChunks());
if (IsNormalized()) {
return rep().prefix_crc[n];
}
size_t length = rep().prefix_crc[n].length - rep().removed_prefix.length;
return PrefixCrc(length,
absl::RemoveCrc32cPrefix(rep().removed_prefix.crc,
rep().prefix_crc[n].crc, length));
}
void CrcCordState::Normalize() {
if (IsNormalized() || rep().prefix_crc.empty()) {
return;
}
Rep* r = mutable_rep();
for (auto& prefix_crc : r->prefix_crc) {
size_t remaining = prefix_crc.length - r->removed_prefix.length;
prefix_crc.crc = absl::RemoveCrc32cPrefix(r->removed_prefix.crc,
prefix_crc.crc, remaining);
prefix_crc.length = remaining;
}
r->removed_prefix = PrefixCrc();
}
void CrcCordState::Poison() {
Rep* rep = mutable_rep();
if (NumChunks() > 0) {
for (auto& prefix_crc : rep->prefix_crc) {
uint32_t crc = static_cast<uint32_t>(prefix_crc.crc);
crc += 0x2e76e41b;
crc = absl::rotr(crc, 17);
prefix_crc.crc = crc32c_t{crc};
}
} else {
rep->prefix_crc.emplace_back(0, crc32c_t{1});
}
}
}
ABSL_NAMESPACE_END
} | #include "absl/crc/internal/crc_cord_state.h"
#include <algorithm>
#include <cstdint>
#include <string>
#include <utility>
#include "gtest/gtest.h"
#include "absl/crc/crc32c.h"
namespace {
TEST(CrcCordState, Default) {
absl::crc_internal::CrcCordState state;
EXPECT_TRUE(state.IsNormalized());
EXPECT_EQ(state.Checksum(), absl::crc32c_t{0});
state.Normalize();
EXPECT_EQ(state.Checksum(), absl::crc32c_t{0});
}
TEST(CrcCordState, Normalize) {
absl::crc_internal::CrcCordState state;
auto* rep = state.mutable_rep();
rep->prefix_crc.push_back(
absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000}));
rep->prefix_crc.push_back(
absl::crc_internal::CrcCordState::PrefixCrc(2000, absl::crc32c_t{2000}));
rep->removed_prefix =
absl::crc_internal::CrcCordState::PrefixCrc(500, absl::crc32c_t{500});
EXPECT_FALSE(state.IsNormalized());
absl::crc32c_t crc = state.Checksum();
state.Normalize();
EXPECT_TRUE(state.IsNormalized());
EXPECT_EQ(state.Checksum(), crc);
EXPECT_EQ(rep->removed_prefix.length, 0);
}
TEST(CrcCordState, Copy) {
absl::crc_internal::CrcCordState state;
auto* rep = state.mutable_rep();
rep->prefix_crc.push_back(
absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000}));
absl::crc_internal::CrcCordState copy = state;
EXPECT_EQ(state.Checksum(), absl::crc32c_t{1000});
EXPECT_EQ(copy.Checksum(), absl::crc32c_t{1000});
}
TEST(CrcCordState, UnsharedSelfCopy) {
absl::crc_internal::CrcCordState state;
auto* rep = state.mutable_rep();
rep->prefix_crc.push_back(
absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000}));
const absl::crc_internal::CrcCordState& ref = state;
state = ref;
EXPECT_EQ(state.Checksum(), absl::crc32c_t{1000});
}
TEST(CrcCordState, Move) {
absl::crc_internal::CrcCordState state;
auto* rep = state.mutable_rep();
rep->prefix_crc.push_back(
absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000}));
absl::crc_internal::CrcCordState moved = std::move(state);
EXPECT_EQ(moved.Checksum(), absl::crc32c_t{1000});
}
TEST(CrcCordState, UnsharedSelfMove) {
absl::crc_internal::CrcCordState state;
auto* rep = state.mutable_rep();
rep->prefix_crc.push_back(
absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000}));
absl::crc_internal::CrcCordState& ref = state;
state = std::move(ref);
EXPECT_EQ(state.Checksum(), absl::crc32c_t{1000});
}
TEST(CrcCordState, PoisonDefault) {
absl::crc_internal::CrcCordState state;
state.Poison();
EXPECT_NE(state.Checksum(), absl::crc32c_t{0});
}
TEST(CrcCordState, PoisonData) {
absl::crc_internal::CrcCordState state;
auto* rep = state.mutable_rep();
rep->prefix_crc.push_back(
absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000}));
rep->prefix_crc.push_back(
absl::crc_internal::CrcCordState::PrefixCrc(2000, absl::crc32c_t{2000}));
rep->removed_prefix =
absl::crc_internal::CrcCordState::PrefixCrc(500, absl::crc32c_t{500});
absl::crc32c_t crc = state.Checksum();
state.Poison();
EXPECT_NE(state.Checksum(), crc);
}
} | 2,543 |
#ifndef ABSL_LOG_DIE_IF_NULL_H_
#define ABSL_LOG_DIE_IF_NULL_H_
#include <stdint.h>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/optimization.h"
#define ABSL_DIE_IF_NULL(val) \
::absl::log_internal::DieIfNull(__FILE__, __LINE__, #val, (val))
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
ABSL_ATTRIBUTE_NORETURN ABSL_ATTRIBUTE_NOINLINE void DieBecauseNull(
const char* file, int line, const char* exprtext);
template <typename T>
ABSL_MUST_USE_RESULT T DieIfNull(const char* file, int line,
const char* exprtext, T&& t) {
if (ABSL_PREDICT_FALSE(t == nullptr)) {
DieBecauseNull(file, line, exprtext);
}
return std::forward<T>(t);
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/log/die_if_null.h"
#include "absl/base/config.h"
#include "absl/log/log.h"
#include "absl/strings/str_cat.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
void DieBecauseNull(const char* file, int line, const char* exprtext) {
LOG(FATAL).AtLocation(file, line)
<< absl::StrCat("Check failed: '", exprtext, "' Must be non-null");
}
}
ABSL_NAMESPACE_END
} | #include "absl/log/die_if_null.h"
#include <stdint.h>
#include <memory>
#include <utility>
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/log/internal/test_helpers.h"
namespace {
auto* test_env ABSL_ATTRIBUTE_UNUSED = ::testing::AddGlobalTestEnvironment(
new absl::log_internal::LogTestEnvironment);
TEST(AbslDieIfNull, Simple) {
int64_t t;
void* ptr = static_cast<void*>(&t);
void* ref = ABSL_DIE_IF_NULL(ptr);
ASSERT_EQ(ptr, ref);
char* t_as_char;
t_as_char = ABSL_DIE_IF_NULL(reinterpret_cast<char*>(&t));
(void)t_as_char;
unsigned char* t_as_uchar;
t_as_uchar = ABSL_DIE_IF_NULL(reinterpret_cast<unsigned char*>(&t));
(void)t_as_uchar;
int* t_as_int;
t_as_int = ABSL_DIE_IF_NULL(reinterpret_cast<int*>(&t));
(void)t_as_int;
int64_t* t_as_int64_t;
t_as_int64_t = ABSL_DIE_IF_NULL(reinterpret_cast<int64_t*>(&t));
(void)t_as_int64_t;
std::unique_ptr<int64_t> sptr(new int64_t);
EXPECT_EQ(sptr.get(), ABSL_DIE_IF_NULL(sptr).get());
ABSL_DIE_IF_NULL(sptr).reset();
int64_t* int_ptr = new int64_t();
EXPECT_EQ(int_ptr, ABSL_DIE_IF_NULL(std::unique_ptr<int64_t>(int_ptr)).get());
}
#if GTEST_HAS_DEATH_TEST
TEST(DeathCheckAbslDieIfNull, Simple) {
void* ptr;
ASSERT_DEATH({ ptr = ABSL_DIE_IF_NULL(nullptr); }, "");
(void)ptr;
std::unique_ptr<int64_t> sptr;
ASSERT_DEATH(ptr = ABSL_DIE_IF_NULL(sptr).get(), "");
}
#endif
TEST(AbslDieIfNull, DoesNotCompareSmartPointerToNULL) {
std::unique_ptr<int> up(new int);
EXPECT_EQ(&up, &ABSL_DIE_IF_NULL(up));
ABSL_DIE_IF_NULL(up).reset();
std::shared_ptr<int> sp(new int);
EXPECT_EQ(&sp, &ABSL_DIE_IF_NULL(sp));
ABSL_DIE_IF_NULL(sp).reset();
}
TEST(AbslDieIfNull, PreservesRValues) {
int64_t* ptr = new int64_t();
auto uptr = ABSL_DIE_IF_NULL(std::unique_ptr<int64_t>(ptr));
EXPECT_EQ(ptr, uptr.get());
}
TEST(AbslDieIfNull, PreservesLValues) {
int64_t array[2] = {0};
int64_t* a = array + 0;
int64_t* b = array + 1;
using std::swap;
swap(ABSL_DIE_IF_NULL(a), ABSL_DIE_IF_NULL(b));
EXPECT_EQ(array + 1, a);
EXPECT_EQ(array + 0, b);
}
} | 2,544 |
#ifndef ABSL_LOG_LOG_ENTRY_H_
#define ABSL_LOG_LOG_ENTRY_H_
#include <cstddef>
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/log_severity.h"
#include "absl/log/internal/config.h"
#include "absl/strings/string_view.h"
#include "absl/time/time.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
class LogEntryTestPeer;
class LogMessage;
}
class LogEntry final {
public:
using tid_t = log_internal::Tid;
static constexpr int kNoVerbosityLevel = -1;
static constexpr int kNoVerboseLevel = -1;
LogEntry(const LogEntry&) = delete;
LogEntry& operator=(const LogEntry&) = delete;
absl::string_view source_filename() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return full_filename_;
}
absl::string_view source_basename() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return base_filename_;
}
int source_line() const { return line_; }
bool prefix() const { return prefix_; }
absl::LogSeverity log_severity() const { return severity_; }
int verbosity() const { return verbose_level_; }
absl::Time timestamp() const { return timestamp_; }
tid_t tid() const { return tid_; }
absl::string_view text_message_with_prefix_and_newline() const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return absl::string_view(
text_message_with_prefix_and_newline_and_nul_.data(),
text_message_with_prefix_and_newline_and_nul_.size() - 1);
}
absl::string_view text_message_with_prefix() const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return absl::string_view(
text_message_with_prefix_and_newline_and_nul_.data(),
text_message_with_prefix_and_newline_and_nul_.size() - 2);
}
absl::string_view text_message_with_newline() const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return absl::string_view(
text_message_with_prefix_and_newline_and_nul_.data() + prefix_len_,
text_message_with_prefix_and_newline_and_nul_.size() - prefix_len_ - 1);
}
absl::string_view text_message() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return absl::string_view(
text_message_with_prefix_and_newline_and_nul_.data() + prefix_len_,
text_message_with_prefix_and_newline_and_nul_.size() - prefix_len_ - 2);
}
const char* text_message_with_prefix_and_newline_c_str() const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return text_message_with_prefix_and_newline_and_nul_.data();
}
absl::string_view encoded_message() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return encoding_;
}
absl::string_view stacktrace() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return stacktrace_;
}
private:
LogEntry() = default;
absl::string_view full_filename_;
absl::string_view base_filename_;
int line_;
bool prefix_;
absl::LogSeverity severity_;
int verbose_level_;
absl::Time timestamp_;
tid_t tid_;
absl::Span<const char> text_message_with_prefix_and_newline_and_nul_;
size_t prefix_len_;
absl::string_view encoding_;
std::string stacktrace_;
friend class log_internal::LogEntryTestPeer;
friend class log_internal::LogMessage;
};
ABSL_NAMESPACE_END
}
#endif
#include "absl/log/log_entry.h"
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr int LogEntry::kNoVerbosityLevel;
constexpr int LogEntry::kNoVerboseLevel;
#endif
#ifdef __APPLE__
namespace log_internal {
extern const char kAvoidEmptyLogEntryLibraryWarning;
const char kAvoidEmptyLogEntryLibraryWarning = 0;
}
#endif
ABSL_NAMESPACE_END
} | #include "absl/log/log_entry.h"
#include <stddef.h>
#include <stdint.h>
#include <cstring>
#include <limits>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/log_severity.h"
#include "absl/log/internal/append_truncated.h"
#include "absl/log/internal/log_format.h"
#include "absl/log/internal/test_helpers.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "absl/time/civil_time.h"
#include "absl/time/time.h"
#include "absl/types/span.h"
namespace {
using ::absl::log_internal::LogEntryTestPeer;
using ::testing::Eq;
using ::testing::IsTrue;
using ::testing::StartsWith;
using ::testing::StrEq;
auto* test_env ABSL_ATTRIBUTE_UNUSED = ::testing::AddGlobalTestEnvironment(
new absl::log_internal::LogTestEnvironment);
}
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
class LogEntryTestPeer {
public:
LogEntryTestPeer(absl::string_view base_filename, int line, bool prefix,
absl::LogSeverity severity, absl::string_view timestamp,
absl::LogEntry::tid_t tid, PrefixFormat format,
absl::string_view text_message)
: format_{format}, buf_(15000, '\0') {
entry_.base_filename_ = base_filename;
entry_.line_ = line;
entry_.prefix_ = prefix;
entry_.severity_ = severity;
std::string time_err;
EXPECT_THAT(
absl::ParseTime("%Y-%m-%d%ET%H:%M:%E*S", timestamp,
absl::LocalTimeZone(), &entry_.timestamp_, &time_err),
IsTrue())
<< "Failed to parse time " << timestamp << ": " << time_err;
entry_.tid_ = tid;
std::pair<absl::string_view, std::string> timestamp_bits =
absl::StrSplit(timestamp, absl::ByChar('.'));
EXPECT_THAT(absl::ParseCivilTime(timestamp_bits.first, &ci_.cs), IsTrue())
<< "Failed to parse time " << timestamp_bits.first;
timestamp_bits.second.resize(9, '0');
int64_t nanos = 0;
EXPECT_THAT(absl::SimpleAtoi(timestamp_bits.second, &nanos), IsTrue())
<< "Failed to parse time " << timestamp_bits.first;
ci_.subsecond = absl::Nanoseconds(nanos);
absl::Span<char> view = absl::MakeSpan(buf_);
view.remove_suffix(2);
entry_.prefix_len_ =
entry_.prefix_
? log_internal::FormatLogPrefix(
entry_.log_severity(), entry_.timestamp(), entry_.tid(),
entry_.source_basename(), entry_.source_line(), format_, view)
: 0;
EXPECT_THAT(entry_.prefix_len_,
Eq(static_cast<size_t>(view.data() - buf_.data())));
log_internal::AppendTruncated(text_message, view);
view = absl::Span<char>(view.data(), view.size() + 2);
view[0] = '\n';
view[1] = '\0';
view.remove_prefix(2);
buf_.resize(static_cast<size_t>(view.data() - buf_.data()));
entry_.text_message_with_prefix_and_newline_and_nul_ = absl::MakeSpan(buf_);
}
LogEntryTestPeer(const LogEntryTestPeer&) = delete;
LogEntryTestPeer& operator=(const LogEntryTestPeer&) = delete;
std::string FormatLogMessage() const {
return log_internal::FormatLogMessage(
entry_.log_severity(), ci_.cs, ci_.subsecond, entry_.tid(),
entry_.source_basename(), entry_.source_line(), format_,
entry_.text_message());
}
std::string FormatPrefixIntoSizedBuffer(size_t sz) {
std::string str(sz, '\0');
absl::Span<char> buf(&str[0], str.size());
const size_t prefix_size = log_internal::FormatLogPrefix(
entry_.log_severity(), entry_.timestamp(), entry_.tid(),
entry_.source_basename(), entry_.source_line(), format_, buf);
EXPECT_THAT(prefix_size, Eq(static_cast<size_t>(buf.data() - str.data())));
str.resize(prefix_size);
return str;
}
const absl::LogEntry& entry() const { return entry_; }
private:
absl::LogEntry entry_;
PrefixFormat format_;
absl::TimeZone::CivilInfo ci_;
std::vector<char> buf_;
};
}
ABSL_NAMESPACE_END
}
namespace {
constexpr bool kUsePrefix = true, kNoPrefix = false;
TEST(LogEntryTest, Baseline) {
LogEntryTestPeer entry("foo.cc", 1234, kUsePrefix, absl::LogSeverity::kInfo,
"2020-01-02T03:04:05.6789", 451,
absl::log_internal::PrefixFormat::kNotRaw,
"hello world");
EXPECT_THAT(entry.FormatLogMessage(),
Eq("I0102 03:04:05.678900 451 foo.cc:1234] hello world"));
EXPECT_THAT(entry.FormatPrefixIntoSizedBuffer(1000),
Eq("I0102 03:04:05.678900 451 foo.cc:1234] "));
for (size_t sz = strlen("I0102 03:04:05.678900 451 foo.cc:1234] ") + 20;
sz != std::numeric_limits<size_t>::max(); sz--)
EXPECT_THAT("I0102 03:04:05.678900 451 foo.cc:1234] ",
StartsWith(entry.FormatPrefixIntoSizedBuffer(sz)));
EXPECT_THAT(entry.entry().text_message_with_prefix_and_newline(),
Eq("I0102 03:04:05.678900 451 foo.cc:1234] hello world\n"));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline_c_str(),
StrEq("I0102 03:04:05.678900 451 foo.cc:1234] hello world\n"));
EXPECT_THAT(entry.entry().text_message_with_prefix(),
Eq("I0102 03:04:05.678900 451 foo.cc:1234] hello world"));
EXPECT_THAT(entry.entry().text_message(), Eq("hello world"));
}
TEST(LogEntryTest, NoPrefix) {
LogEntryTestPeer entry("foo.cc", 1234, kNoPrefix, absl::LogSeverity::kInfo,
"2020-01-02T03:04:05.6789", 451,
absl::log_internal::PrefixFormat::kNotRaw,
"hello world");
EXPECT_THAT(entry.FormatLogMessage(),
Eq("I0102 03:04:05.678900 451 foo.cc:1234] hello world"));
EXPECT_THAT(entry.FormatPrefixIntoSizedBuffer(1000),
Eq("I0102 03:04:05.678900 451 foo.cc:1234] "));
for (size_t sz = strlen("I0102 03:04:05.678900 451 foo.cc:1234] ") + 20;
sz != std::numeric_limits<size_t>::max(); sz--)
EXPECT_THAT("I0102 03:04:05.678900 451 foo.cc:1234] ",
StartsWith(entry.FormatPrefixIntoSizedBuffer(sz)));
EXPECT_THAT(entry.entry().text_message_with_prefix_and_newline(),
Eq("hello world\n"));
EXPECT_THAT(entry.entry().text_message_with_prefix_and_newline_c_str(),
StrEq("hello world\n"));
EXPECT_THAT(entry.entry().text_message_with_prefix(), Eq("hello world"));
EXPECT_THAT(entry.entry().text_message(), Eq("hello world"));
}
TEST(LogEntryTest, EmptyFields) {
LogEntryTestPeer entry("", 0, kUsePrefix, absl::LogSeverity::kInfo,
"2020-01-02T03:04:05", 0,
absl::log_internal::PrefixFormat::kNotRaw, "");
const std::string format_message = entry.FormatLogMessage();
EXPECT_THAT(format_message, Eq("I0102 03:04:05.000000 0 :0] "));
EXPECT_THAT(entry.FormatPrefixIntoSizedBuffer(1000), Eq(format_message));
for (size_t sz = format_message.size() + 20;
sz != std::numeric_limits<size_t>::max(); sz--)
EXPECT_THAT(format_message,
StartsWith(entry.FormatPrefixIntoSizedBuffer(sz)));
EXPECT_THAT(entry.entry().text_message_with_prefix_and_newline(),
Eq("I0102 03:04:05.000000 0 :0] \n"));
EXPECT_THAT(entry.entry().text_message_with_prefix_and_newline_c_str(),
StrEq("I0102 03:04:05.000000 0 :0] \n"));
EXPECT_THAT(entry.entry().text_message_with_prefix(),
Eq("I0102 03:04:05.000000 0 :0] "));
EXPECT_THAT(entry.entry().text_message(), Eq(""));
}
TEST(LogEntryTest, NegativeFields) {
if (std::is_signed<absl::LogEntry::tid_t>::value) {
LogEntryTestPeer entry(
"foo.cc", -1234, kUsePrefix, absl::LogSeverity::kInfo,
"2020-01-02T03:04:05.6789", static_cast<absl::LogEntry::tid_t>(-451),
absl::log_internal::PrefixFormat::kNotRaw, "hello world");
EXPECT_THAT(entry.FormatLogMessage(),
Eq("I0102 03:04:05.678900 -451 foo.cc:-1234] hello world"));
EXPECT_THAT(entry.FormatPrefixIntoSizedBuffer(1000),
Eq("I0102 03:04:05.678900 -451 foo.cc:-1234] "));
for (size_t sz =
strlen("I0102 03:04:05.678900 -451 foo.cc:-1234] ") + 20;
sz != std::numeric_limits<size_t>::max(); sz--)
EXPECT_THAT("I0102 03:04:05.678900 -451 foo.cc:-1234] ",
StartsWith(entry.FormatPrefixIntoSizedBuffer(sz)));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline(),
Eq("I0102 03:04:05.678900 -451 foo.cc:-1234] hello world\n"));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline_c_str(),
StrEq("I0102 03:04:05.678900 -451 foo.cc:-1234] hello world\n"));
EXPECT_THAT(entry.entry().text_message_with_prefix(),
Eq("I0102 03:04:05.678900 -451 foo.cc:-1234] hello world"));
EXPECT_THAT(entry.entry().text_message(), Eq("hello world"));
} else {
LogEntryTestPeer entry("foo.cc", -1234, kUsePrefix,
absl::LogSeverity::kInfo, "2020-01-02T03:04:05.6789",
451, absl::log_internal::PrefixFormat::kNotRaw,
"hello world");
EXPECT_THAT(entry.FormatLogMessage(),
Eq("I0102 03:04:05.678900 451 foo.cc:-1234] hello world"));
EXPECT_THAT(entry.FormatPrefixIntoSizedBuffer(1000),
Eq("I0102 03:04:05.678900 451 foo.cc:-1234] "));
for (size_t sz =
strlen("I0102 03:04:05.678900 451 foo.cc:-1234] ") + 20;
sz != std::numeric_limits<size_t>::max(); sz--)
EXPECT_THAT("I0102 03:04:05.678900 451 foo.cc:-1234] ",
StartsWith(entry.FormatPrefixIntoSizedBuffer(sz)));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline(),
Eq("I0102 03:04:05.678900 451 foo.cc:-1234] hello world\n"));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline_c_str(),
StrEq("I0102 03:04:05.678900 451 foo.cc:-1234] hello world\n"));
EXPECT_THAT(entry.entry().text_message_with_prefix(),
Eq("I0102 03:04:05.678900 451 foo.cc:-1234] hello world"));
EXPECT_THAT(entry.entry().text_message(), Eq("hello world"));
}
}
TEST(LogEntryTest, LongFields) {
LogEntryTestPeer entry(
"I am the very model of a modern Major-General / "
"I've information vegetable, animal, and mineral.",
2147483647, kUsePrefix, absl::LogSeverity::kInfo,
"2020-01-02T03:04:05.678967896789", 2147483647,
absl::log_internal::PrefixFormat::kNotRaw,
"I know the kings of England, and I quote the fights historical / "
"From Marathon to Waterloo, in order categorical.");
EXPECT_THAT(entry.FormatLogMessage(),
Eq("I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical."));
EXPECT_THAT(entry.FormatPrefixIntoSizedBuffer(1000),
Eq("I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:2147483647] "));
for (size_t sz =
strlen("I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:2147483647] ") +
20;
sz != std::numeric_limits<size_t>::max(); sz--)
EXPECT_THAT(
"I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:2147483647] ",
StartsWith(entry.FormatPrefixIntoSizedBuffer(sz)));
EXPECT_THAT(entry.entry().text_message_with_prefix_and_newline(),
Eq("I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical.\n"));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline_c_str(),
StrEq("I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical.\n"));
EXPECT_THAT(entry.entry().text_message_with_prefix(),
Eq("I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical."));
EXPECT_THAT(
entry.entry().text_message(),
Eq("I know the kings of England, and I quote the fights historical / "
"From Marathon to Waterloo, in order categorical."));
}
TEST(LogEntryTest, LongNegativeFields) {
if (std::is_signed<absl::LogEntry::tid_t>::value) {
LogEntryTestPeer entry(
"I am the very model of a modern Major-General / "
"I've information vegetable, animal, and mineral.",
-2147483647, kUsePrefix, absl::LogSeverity::kInfo,
"2020-01-02T03:04:05.678967896789",
static_cast<absl::LogEntry::tid_t>(-2147483647),
absl::log_internal::PrefixFormat::kNotRaw,
"I know the kings of England, and I quote the fights historical / "
"From Marathon to Waterloo, in order categorical.");
EXPECT_THAT(
entry.FormatLogMessage(),
Eq("I0102 03:04:05.678967 -2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical."));
EXPECT_THAT(entry.FormatPrefixIntoSizedBuffer(1000),
Eq("I0102 03:04:05.678967 -2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] "));
for (size_t sz =
strlen(
"I0102 03:04:05.678967 -2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] ") +
20;
sz != std::numeric_limits<size_t>::max(); sz--)
EXPECT_THAT(
"I0102 03:04:05.678967 -2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] ",
StartsWith(entry.FormatPrefixIntoSizedBuffer(sz)));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline(),
Eq("I0102 03:04:05.678967 -2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical.\n"));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline_c_str(),
StrEq("I0102 03:04:05.678967 -2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical.\n"));
EXPECT_THAT(
entry.entry().text_message_with_prefix(),
Eq("I0102 03:04:05.678967 -2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical."));
EXPECT_THAT(
entry.entry().text_message(),
Eq("I know the kings of England, and I quote the fights historical / "
"From Marathon to Waterloo, in order categorical."));
} else {
LogEntryTestPeer entry(
"I am the very model of a modern Major-General / "
"I've information vegetable, animal, and mineral.",
-2147483647, kUsePrefix, absl::LogSeverity::kInfo,
"2020-01-02T03:04:05.678967896789", 2147483647,
absl::log_internal::PrefixFormat::kNotRaw,
"I know the kings of England, and I quote the fights historical / "
"From Marathon to Waterloo, in order categorical.");
EXPECT_THAT(
entry.FormatLogMessage(),
Eq("I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical."));
EXPECT_THAT(entry.FormatPrefixIntoSizedBuffer(1000),
Eq("I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] "));
for (size_t sz =
strlen(
"I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] ") +
20;
sz != std::numeric_limits<size_t>::max(); sz--)
EXPECT_THAT(
"I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] ",
StartsWith(entry.FormatPrefixIntoSizedBuffer(sz)));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline(),
Eq("I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical.\n"));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline_c_str(),
StrEq("I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical.\n"));
EXPECT_THAT(
entry.entry().text_message_with_prefix(),
Eq("I0102 03:04:05.678967 2147483647 I am the very model of a "
"modern Major-General / I've information vegetable, animal, "
"and mineral.:-2147483647] I know the kings of England, and I "
"quote the fights historical / From Marathon to Waterloo, in "
"order categorical."));
EXPECT_THAT(
entry.entry().text_message(),
Eq("I know the kings of England, and I quote the fights historical / "
"From Marathon to Waterloo, in order categorical."));
}
}
TEST(LogEntryTest, Raw) {
LogEntryTestPeer entry("foo.cc", 1234, kUsePrefix, absl::LogSeverity::kInfo,
"2020-01-02T03:04:05.6789", 451,
absl::log_internal::PrefixFormat::kRaw, "hello world");
EXPECT_THAT(
entry.FormatLogMessage(),
Eq("I0102 03:04:05.678900 451 foo.cc:1234] RAW: hello world"));
EXPECT_THAT(entry.FormatPrefixIntoSizedBuffer(1000),
Eq("I0102 03:04:05.678900 451 foo.cc:1234] RAW: "));
for (size_t sz =
strlen("I0102 03:04:05.678900 451 foo.cc:1234] RAW: ") + 20;
sz != std::numeric_limits<size_t>::max(); sz--)
EXPECT_THAT("I0102 03:04:05.678900 451 foo.cc:1234] RAW: ",
StartsWith(entry.FormatPrefixIntoSizedBuffer(sz)));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline(),
Eq("I0102 03:04:05.678900 451 foo.cc:1234] RAW: hello world\n"));
EXPECT_THAT(
entry.entry().text_message_with_prefix_and_newline_c_str(),
StrEq("I0102 03:04:05.678900 451 foo.cc:1234] RAW: hello world\n"));
EXPECT_THAT(
entry.entry().text_message_with_prefix(),
Eq("I0102 03:04:05.678900 451 foo.cc:1234] RAW: hello world"));
EXPECT_THAT(entry.entry().text_message(), Eq("hello world"));
}
} | 2,545 |
#ifndef ABSL_LOG_INTERNAL_GLOBALS_H_
#define ABSL_LOG_INTERNAL_GLOBALS_H_
#include "absl/base/config.h"
#include "absl/base/log_severity.h"
#include "absl/strings/string_view.h"
#include "absl/time/time.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
bool IsInitialized();
void SetInitialized();
void WriteToStderr(absl::string_view message, absl::LogSeverity severity);
void SetTimeZone(absl::TimeZone tz);
const absl::TimeZone* TimeZone();
bool ShouldSymbolizeLogStackTrace();
void EnableSymbolizeLogStackTrace(bool on_off);
int MaxFramesInLogStackTrace();
void SetMaxFramesInLogStackTrace(int max_num_frames);
bool ExitOnDFatal();
void SetExitOnDFatal(bool on_off);
bool SuppressSigabortTrace();
bool SetSuppressSigabortTrace(bool on_off);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/log/internal/globals.h"
#include <atomic>
#include <cstdio>
#if defined(__EMSCRIPTEN__)
#include <emscripten/console.h>
#endif
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/log_severity.h"
#include "absl/strings/string_view.h"
#include "absl/strings/strip.h"
#include "absl/time/time.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
namespace {
ABSL_CONST_INIT std::atomic<bool> logging_initialized(false);
ABSL_CONST_INIT std::atomic<absl::TimeZone*> timezone_ptr{nullptr};
ABSL_CONST_INIT std::atomic<bool> symbolize_stack_trace(true);
ABSL_CONST_INIT std::atomic<int> max_frames_in_stack_trace(64);
ABSL_CONST_INIT std::atomic<bool> exit_on_dfatal(true);
ABSL_CONST_INIT std::atomic<bool> suppress_sigabort_trace(false);
}
bool IsInitialized() {
return logging_initialized.load(std::memory_order_acquire);
}
void SetInitialized() {
logging_initialized.store(true, std::memory_order_release);
}
void WriteToStderr(absl::string_view message, absl::LogSeverity severity) {
if (message.empty()) return;
#if defined(__EMSCRIPTEN__)
const auto message_minus_newline = absl::StripSuffix(message, "\n");
#if ABSL_INTERNAL_EMSCRIPTEN_VERSION >= 3001043
emscripten_errn(message_minus_newline.data(), message_minus_newline.size());
#else
std::string null_terminated_message(message_minus_newline);
_emscripten_err(null_terminated_message.c_str());
#endif
#else
std::fwrite(message.data(), message.size(), 1, stderr);
#endif
#if defined(_WIN64) || defined(_WIN32) || defined(_WIN16)
if (severity >= absl::LogSeverity::kWarning) {
std::fflush(stderr);
}
#else
(void)severity;
#endif
}
void SetTimeZone(absl::TimeZone tz) {
absl::TimeZone* expected = nullptr;
absl::TimeZone* new_tz = new absl::TimeZone(tz);
if (!timezone_ptr.compare_exchange_strong(expected, new_tz,
std::memory_order_release,
std::memory_order_relaxed)) {
ABSL_RAW_LOG(FATAL,
"absl::log_internal::SetTimeZone() has already been called");
}
}
const absl::TimeZone* TimeZone() {
return timezone_ptr.load(std::memory_order_acquire);
}
bool ShouldSymbolizeLogStackTrace() {
return symbolize_stack_trace.load(std::memory_order_acquire);
}
void EnableSymbolizeLogStackTrace(bool on_off) {
symbolize_stack_trace.store(on_off, std::memory_order_release);
}
int MaxFramesInLogStackTrace() {
return max_frames_in_stack_trace.load(std::memory_order_acquire);
}
void SetMaxFramesInLogStackTrace(int max_num_frames) {
max_frames_in_stack_trace.store(max_num_frames, std::memory_order_release);
}
bool ExitOnDFatal() { return exit_on_dfatal.load(std::memory_order_acquire); }
void SetExitOnDFatal(bool on_off) {
exit_on_dfatal.store(on_off, std::memory_order_release);
}
bool SuppressSigabortTrace() {
return suppress_sigabort_trace.load(std::memory_order_acquire);
}
bool SetSuppressSigabortTrace(bool on_off) {
return suppress_sigabort_trace.exchange(on_off);
}
}
ABSL_NAMESPACE_END
} | #include "absl/log/globals.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/log_severity.h"
#include "absl/log/internal/globals.h"
#include "absl/log/internal/test_helpers.h"
#include "absl/log/log.h"
#include "absl/log/scoped_mock_log.h"
namespace {
using ::testing::_;
using ::testing::StrEq;
auto* test_env ABSL_ATTRIBUTE_UNUSED = ::testing::AddGlobalTestEnvironment(
new absl::log_internal::LogTestEnvironment);
constexpr static absl::LogSeverityAtLeast DefaultMinLogLevel() {
return absl::LogSeverityAtLeast::kInfo;
}
constexpr static absl::LogSeverityAtLeast DefaultStderrThreshold() {
return absl::LogSeverityAtLeast::kError;
}
TEST(TestGlobals, MinLogLevel) {
EXPECT_EQ(absl::MinLogLevel(), DefaultMinLogLevel());
absl::SetMinLogLevel(absl::LogSeverityAtLeast::kError);
EXPECT_EQ(absl::MinLogLevel(), absl::LogSeverityAtLeast::kError);
absl::SetMinLogLevel(DefaultMinLogLevel());
}
TEST(TestGlobals, ScopedMinLogLevel) {
EXPECT_EQ(absl::MinLogLevel(), DefaultMinLogLevel());
{
absl::log_internal::ScopedMinLogLevel scoped_stderr_threshold(
absl::LogSeverityAtLeast::kError);
EXPECT_EQ(absl::MinLogLevel(), absl::LogSeverityAtLeast::kError);
}
EXPECT_EQ(absl::MinLogLevel(), DefaultMinLogLevel());
}
TEST(TestGlobals, StderrThreshold) {
EXPECT_EQ(absl::StderrThreshold(), DefaultStderrThreshold());
absl::SetStderrThreshold(absl::LogSeverityAtLeast::kError);
EXPECT_EQ(absl::StderrThreshold(), absl::LogSeverityAtLeast::kError);
absl::SetStderrThreshold(DefaultStderrThreshold());
}
TEST(TestGlobals, ScopedStderrThreshold) {
EXPECT_EQ(absl::StderrThreshold(), DefaultStderrThreshold());
{
absl::ScopedStderrThreshold scoped_stderr_threshold(
absl::LogSeverityAtLeast::kError);
EXPECT_EQ(absl::StderrThreshold(), absl::LogSeverityAtLeast::kError);
}
EXPECT_EQ(absl::StderrThreshold(), DefaultStderrThreshold());
}
TEST(TestGlobals, LogBacktraceAt) {
EXPECT_FALSE(absl::log_internal::ShouldLogBacktraceAt("some_file.cc", 111));
absl::SetLogBacktraceLocation("some_file.cc", 111);
EXPECT_TRUE(absl::log_internal::ShouldLogBacktraceAt("some_file.cc", 111));
EXPECT_FALSE(
absl::log_internal::ShouldLogBacktraceAt("another_file.cc", 222));
}
TEST(TestGlobals, LogPrefix) {
EXPECT_TRUE(absl::ShouldPrependLogPrefix());
absl::EnableLogPrefix(false);
EXPECT_FALSE(absl::ShouldPrependLogPrefix());
absl::EnableLogPrefix(true);
EXPECT_TRUE(absl::ShouldPrependLogPrefix());
}
TEST(TestGlobals, SetGlobalVLogLevel) {
EXPECT_EQ(absl::SetGlobalVLogLevel(42), 0);
EXPECT_EQ(absl::SetGlobalVLogLevel(1337), 42);
EXPECT_EQ(absl::SetGlobalVLogLevel(0), 1337);
}
TEST(TestGlobals, SetVLogLevel) {
EXPECT_EQ(absl::SetVLogLevel("setvloglevel", 42), 0);
EXPECT_EQ(absl::SetVLogLevel("setvloglevel", 1337), 42);
EXPECT_EQ(absl::SetVLogLevel("othersetvloglevel", 50), 0);
}
TEST(TestGlobals, AndroidLogTag) {
EXPECT_DEATH_IF_SUPPORTED(absl::SetAndroidNativeTag(nullptr), ".*");
EXPECT_THAT(absl::log_internal::GetAndroidNativeTag(), StrEq("native"));
absl::SetAndroidNativeTag("test_tag");
EXPECT_THAT(absl::log_internal::GetAndroidNativeTag(), StrEq("test_tag"));
EXPECT_DEATH_IF_SUPPORTED(absl::SetAndroidNativeTag("test_tag_fail"), ".*");
}
TEST(TestExitOnDFatal, OffTest) {
absl::log_internal::SetExitOnDFatal(false);
EXPECT_FALSE(absl::log_internal::ExitOnDFatal());
{
absl::ScopedMockLog log(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(log, Log(absl::kLogDebugFatal, _, "This should not be fatal"));
log.StartCapturingLogs();
LOG(DFATAL) << "This should not be fatal";
}
}
#if GTEST_HAS_DEATH_TEST
TEST(TestDeathWhileExitOnDFatal, OnTest) {
absl::log_internal::SetExitOnDFatal(true);
EXPECT_TRUE(absl::log_internal::ExitOnDFatal());
EXPECT_DEBUG_DEATH({ LOG(DFATAL) << "This should be fatal in debug mode"; },
"This should be fatal in debug mode");
}
#endif
} | 2,546 |
#ifndef ABSL_LOG_INTERNAL_FLAGS_H_
#define ABSL_LOG_INTERNAL_FLAGS_H_
#include <string>
#include "absl/flags/declare.h"
ABSL_DECLARE_FLAG(int, stderrthreshold);
ABSL_DECLARE_FLAG(int, minloglevel);
ABSL_DECLARE_FLAG(std::string, log_backtrace_at);
ABSL_DECLARE_FLAG(bool, log_prefix);
ABSL_DECLARE_FLAG(int, v);
ABSL_DECLARE_FLAG(std::string, vmodule);
#endif
#include "absl/log/internal/flags.h"
#include <stddef.h>
#include <algorithm>
#include <cstdlib>
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/log_severity.h"
#include "absl/flags/flag.h"
#include "absl/flags/marshalling.h"
#include "absl/log/globals.h"
#include "absl/log/internal/config.h"
#include "absl/log/internal/vlog_config.h"
#include "absl/strings/numbers.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
namespace {
void SyncLoggingFlags() {
absl::SetFlag(&FLAGS_minloglevel, static_cast<int>(absl::MinLogLevel()));
absl::SetFlag(&FLAGS_log_prefix, absl::ShouldPrependLogPrefix());
}
bool RegisterSyncLoggingFlags() {
log_internal::SetLoggingGlobalsListener(&SyncLoggingFlags);
return true;
}
ABSL_ATTRIBUTE_UNUSED const bool unused = RegisterSyncLoggingFlags();
template <typename T>
T GetFromEnv(const char* varname, T dflt) {
const char* val = ::getenv(varname);
if (val != nullptr) {
std::string err;
ABSL_INTERNAL_CHECK(absl::ParseFlag(val, &dflt, &err), err.c_str());
}
return dflt;
}
constexpr absl::LogSeverityAtLeast StderrThresholdDefault() {
return absl::LogSeverityAtLeast::kError;
}
}
}
ABSL_NAMESPACE_END
}
ABSL_FLAG(int, stderrthreshold,
static_cast<int>(absl::log_internal::StderrThresholdDefault()),
"Log messages at or above this threshold level are copied to stderr.")
.OnUpdate([] {
absl::log_internal::RawSetStderrThreshold(
static_cast<absl::LogSeverityAtLeast>(
absl::GetFlag(FLAGS_stderrthreshold)));
});
ABSL_FLAG(int, minloglevel, static_cast<int>(absl::LogSeverityAtLeast::kInfo),
"Messages logged at a lower level than this don't actually "
"get logged anywhere")
.OnUpdate([] {
absl::log_internal::RawSetMinLogLevel(
static_cast<absl::LogSeverityAtLeast>(
absl::GetFlag(FLAGS_minloglevel)));
});
ABSL_FLAG(std::string, log_backtrace_at, "",
"Emit a backtrace when logging at file:linenum.")
.OnUpdate([] {
const std::string log_backtrace_at =
absl::GetFlag(FLAGS_log_backtrace_at);
if (log_backtrace_at.empty()) {
absl::ClearLogBacktraceLocation();
return;
}
const size_t last_colon = log_backtrace_at.rfind(':');
if (last_colon == log_backtrace_at.npos) {
absl::ClearLogBacktraceLocation();
return;
}
const absl::string_view file =
absl::string_view(log_backtrace_at).substr(0, last_colon);
int line;
if (!absl::SimpleAtoi(
absl::string_view(log_backtrace_at).substr(last_colon + 1),
&line)) {
absl::ClearLogBacktraceLocation();
return;
}
absl::SetLogBacktraceLocation(file, line);
});
ABSL_FLAG(bool, log_prefix, true,
"Prepend the log prefix to the start of each log line")
.OnUpdate([] {
absl::log_internal::RawEnableLogPrefix(absl::GetFlag(FLAGS_log_prefix));
});
ABSL_FLAG(int, v, 0,
"Show all VLOG(m) messages for m <= this. Overridable by --vmodule.")
.OnUpdate([] {
absl::log_internal::UpdateGlobalVLogLevel(absl::GetFlag(FLAGS_v));
});
ABSL_FLAG(
std::string, vmodule, "",
"per-module log verbosity level."
" Argument is a comma-separated list of <module name>=<log level>."
" <module name> is a glob pattern, matched against the filename base"
" (that is, name ignoring .cc/.h./-inl.h)."
" A pattern without slashes matches just the file name portion, otherwise"
" the whole file path below the workspace root"
" (still without .cc/.h./-inl.h) is matched."
" ? and * in the glob pattern match any single or sequence of characters"
" respectively including slashes."
" <log level> overrides any value given by --v.")
.OnUpdate([] {
absl::log_internal::UpdateVModule(absl::GetFlag(FLAGS_vmodule));
}); | #include "absl/log/internal/flags.h"
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/log_severity.h"
#include "absl/flags/flag.h"
#include "absl/flags/reflection.h"
#include "absl/log/globals.h"
#include "absl/log/internal/test_helpers.h"
#include "absl/log/internal/test_matchers.h"
#include "absl/log/log.h"
#include "absl/log/scoped_mock_log.h"
#include "absl/strings/str_cat.h"
namespace {
using ::absl::log_internal::TextMessage;
using ::testing::HasSubstr;
using ::testing::Not;
auto* test_env ABSL_ATTRIBUTE_UNUSED = ::testing::AddGlobalTestEnvironment(
new absl::log_internal::LogTestEnvironment);
constexpr static absl::LogSeverityAtLeast DefaultStderrThreshold() {
return absl::LogSeverityAtLeast::kError;
}
class LogFlagsTest : public ::testing::Test {
protected:
absl::FlagSaver flag_saver_;
};
TEST_F(LogFlagsTest, DISABLED_StderrKnobsDefault) {
EXPECT_EQ(absl::StderrThreshold(), DefaultStderrThreshold());
}
TEST_F(LogFlagsTest, SetStderrThreshold) {
absl::SetFlag(&FLAGS_stderrthreshold,
static_cast<int>(absl::LogSeverityAtLeast::kInfo));
EXPECT_EQ(absl::StderrThreshold(), absl::LogSeverityAtLeast::kInfo);
absl::SetFlag(&FLAGS_stderrthreshold,
static_cast<int>(absl::LogSeverityAtLeast::kError));
EXPECT_EQ(absl::StderrThreshold(), absl::LogSeverityAtLeast::kError);
}
TEST_F(LogFlagsTest, SetMinLogLevel) {
absl::SetFlag(&FLAGS_minloglevel,
static_cast<int>(absl::LogSeverityAtLeast::kError));
EXPECT_EQ(absl::MinLogLevel(), absl::LogSeverityAtLeast::kError);
absl::log_internal::ScopedMinLogLevel scoped_min_log_level(
absl::LogSeverityAtLeast::kWarning);
EXPECT_EQ(absl::GetFlag(FLAGS_minloglevel),
static_cast<int>(absl::LogSeverityAtLeast::kWarning));
}
TEST_F(LogFlagsTest, PrependLogPrefix) {
absl::SetFlag(&FLAGS_log_prefix, false);
EXPECT_EQ(absl::ShouldPrependLogPrefix(), false);
absl::EnableLogPrefix(true);
EXPECT_EQ(absl::GetFlag(FLAGS_log_prefix), true);
}
TEST_F(LogFlagsTest, EmptyBacktraceAtFlag) {
absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo);
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:")))));
test_sink.StartCapturingLogs();
absl::SetFlag(&FLAGS_log_backtrace_at, "");
LOG(INFO) << "hello world";
}
TEST_F(LogFlagsTest, BacktraceAtNonsense) {
absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo);
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:")))));
test_sink.StartCapturingLogs();
absl::SetFlag(&FLAGS_log_backtrace_at, "gibberish");
LOG(INFO) << "hello world";
}
TEST_F(LogFlagsTest, BacktraceAtWrongFile) {
absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo);
const int log_line = __LINE__ + 1;
auto do_log = [] { LOG(INFO) << "hello world"; };
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:")))));
test_sink.StartCapturingLogs();
absl::SetFlag(&FLAGS_log_backtrace_at,
absl::StrCat("some_other_file.cc:", log_line));
do_log();
}
TEST_F(LogFlagsTest, BacktraceAtWrongLine) {
absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo);
const int log_line = __LINE__ + 1;
auto do_log = [] { LOG(INFO) << "hello world"; };
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:")))));
test_sink.StartCapturingLogs();
absl::SetFlag(&FLAGS_log_backtrace_at,
absl::StrCat("flags_test.cc:", log_line + 1));
do_log();
}
TEST_F(LogFlagsTest, BacktraceAtWholeFilename) {
absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo);
const int log_line = __LINE__ + 1;
auto do_log = [] { LOG(INFO) << "hello world"; };
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:")))));
test_sink.StartCapturingLogs();
absl::SetFlag(&FLAGS_log_backtrace_at, absl::StrCat(__FILE__, ":", log_line));
do_log();
}
TEST_F(LogFlagsTest, BacktraceAtNonmatchingSuffix) {
absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo);
const int log_line = __LINE__ + 1;
auto do_log = [] { LOG(INFO) << "hello world"; };
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:")))));
test_sink.StartCapturingLogs();
absl::SetFlag(&FLAGS_log_backtrace_at,
absl::StrCat("flags_test.cc:", log_line, "gibberish"));
do_log();
}
TEST_F(LogFlagsTest, LogsBacktrace) {
absl::SetMinLogLevel(absl::LogSeverityAtLeast::kInfo);
const int log_line = __LINE__ + 1;
auto do_log = [] { LOG(INFO) << "hello world"; };
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
testing::InSequence seq;
EXPECT_CALL(test_sink, Send(TextMessage(HasSubstr("(stacktrace:"))));
EXPECT_CALL(test_sink, Send(TextMessage(Not(HasSubstr("(stacktrace:")))));
test_sink.StartCapturingLogs();
absl::SetFlag(&FLAGS_log_backtrace_at,
absl::StrCat("flags_test.cc:", log_line));
do_log();
absl::SetFlag(&FLAGS_log_backtrace_at, "");
do_log();
}
} | 2,547 |
#ifndef ABSL_LOG_SCOPED_MOCK_LOG_H_
#define ABSL_LOG_SCOPED_MOCK_LOG_H_
#include <atomic>
#include <string>
#include "gmock/gmock.h"
#include "absl/base/config.h"
#include "absl/base/log_severity.h"
#include "absl/log/log_entry.h"
#include "absl/log/log_sink.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
enum class MockLogDefault { kIgnoreUnexpected, kDisallowUnexpected };
class ScopedMockLog final {
public:
explicit ScopedMockLog(
MockLogDefault default_exp = MockLogDefault::kIgnoreUnexpected);
ScopedMockLog(const ScopedMockLog&) = delete;
ScopedMockLog& operator=(const ScopedMockLog&) = delete;
~ScopedMockLog();
void StartCapturingLogs();
void StopCapturingLogs();
absl::LogSink& UseAsLocalSink();
MOCK_METHOD(void, Log,
(absl::LogSeverity severity, const std::string& file_path,
const std::string& message));
MOCK_METHOD(void, Send, (const absl::LogEntry&));
MOCK_METHOD(void, Flush, ());
private:
class ForwardingSink final : public absl::LogSink {
public:
explicit ForwardingSink(ScopedMockLog* sml) : sml_(sml) {}
ForwardingSink(const ForwardingSink&) = delete;
ForwardingSink& operator=(const ForwardingSink&) = delete;
void Send(const absl::LogEntry& entry) override { sml_->Send(entry); }
void Flush() override { sml_->Flush(); }
private:
ScopedMockLog* sml_;
};
ForwardingSink sink_;
bool is_capturing_logs_;
std::atomic<bool> is_triggered_;
};
ABSL_NAMESPACE_END
}
#endif
#include "absl/log/scoped_mock_log.h"
#include <atomic>
#include <string>
#include "gmock/gmock.h"
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/log/log_entry.h"
#include "absl/log/log_sink.h"
#include "absl/log/log_sink_registry.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
ScopedMockLog::ScopedMockLog(MockLogDefault default_exp)
: sink_(this), is_capturing_logs_(false), is_triggered_(false) {
if (default_exp == MockLogDefault::kIgnoreUnexpected) {
EXPECT_CALL(*this, Log).Times(::testing::AnyNumber());
} else {
EXPECT_CALL(*this, Log).Times(0);
}
EXPECT_CALL(*this, Send)
.Times(::testing::AnyNumber())
.WillRepeatedly([this](const absl::LogEntry& entry) {
is_triggered_.store(true, std::memory_order_relaxed);
Log(entry.log_severity(), std::string(entry.source_filename()),
std::string(entry.text_message()));
});
EXPECT_CALL(*this, Flush).Times(::testing::AnyNumber());
}
ScopedMockLog::~ScopedMockLog() {
ABSL_RAW_CHECK(is_triggered_.load(std::memory_order_relaxed),
"Did you forget to call StartCapturingLogs()?");
if (is_capturing_logs_) StopCapturingLogs();
}
void ScopedMockLog::StartCapturingLogs() {
ABSL_RAW_CHECK(!is_capturing_logs_,
"StartCapturingLogs() can be called only when the "
"absl::ScopedMockLog object is not capturing logs.");
is_capturing_logs_ = true;
is_triggered_.store(true, std::memory_order_relaxed);
absl::AddLogSink(&sink_);
}
void ScopedMockLog::StopCapturingLogs() {
ABSL_RAW_CHECK(is_capturing_logs_,
"StopCapturingLogs() can be called only when the "
"absl::ScopedMockLog object is capturing logs.");
is_capturing_logs_ = false;
absl::RemoveLogSink(&sink_);
}
absl::LogSink& ScopedMockLog::UseAsLocalSink() {
is_triggered_.store(true, std::memory_order_relaxed);
return sink_;
}
ABSL_NAMESPACE_END
} | #include "absl/log/scoped_mock_log.h"
#include <memory>
#include <thread>
#include "gmock/gmock.h"
#include "gtest/gtest-spi.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/log_severity.h"
#include "absl/log/globals.h"
#include "absl/log/internal/test_helpers.h"
#include "absl/log/internal/test_matchers.h"
#include "absl/log/log.h"
#include "absl/memory/memory.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/barrier.h"
#include "absl/synchronization/notification.h"
namespace {
using ::testing::_;
using ::testing::AnyNumber;
using ::testing::Eq;
using ::testing::HasSubstr;
using ::testing::InSequence;
using ::testing::Lt;
using ::testing::Truly;
using absl::log_internal::SourceBasename;
using absl::log_internal::SourceFilename;
using absl::log_internal::SourceLine;
using absl::log_internal::TextMessageWithPrefix;
using absl::log_internal::ThreadID;
auto* test_env ABSL_ATTRIBUTE_UNUSED = ::testing::AddGlobalTestEnvironment(
new absl::log_internal::LogTestEnvironment);
#if GTEST_HAS_DEATH_TEST
TEST(ScopedMockLogDeathTest,
StartCapturingLogsCannotBeCalledWhenAlreadyCapturing) {
EXPECT_DEATH(
{
absl::ScopedMockLog log;
log.StartCapturingLogs();
log.StartCapturingLogs();
},
"StartCapturingLogs");
}
TEST(ScopedMockLogDeathTest, StopCapturingLogsCannotBeCalledWhenNotCapturing) {
EXPECT_DEATH(
{
absl::ScopedMockLog log;
log.StopCapturingLogs();
},
"StopCapturingLogs");
}
TEST(ScopedMockLogDeathTest, FailsCheckIfStartCapturingLogsIsNeverCalled) {
EXPECT_DEATH({ absl::ScopedMockLog log; },
"Did you forget to call StartCapturingLogs");
}
#endif
TEST(ScopedMockLogTest, LogMockCatchAndMatchStrictExpectations) {
absl::ScopedMockLog log;
InSequence s;
EXPECT_CALL(log,
Log(absl::LogSeverity::kWarning, HasSubstr(__FILE__), "Danger."));
EXPECT_CALL(log, Log(absl::LogSeverity::kInfo, _, "Working...")).Times(2);
EXPECT_CALL(log, Log(absl::LogSeverity::kError, _, "Bad!!"));
log.StartCapturingLogs();
LOG(WARNING) << "Danger.";
LOG(INFO) << "Working...";
LOG(INFO) << "Working...";
LOG(ERROR) << "Bad!!";
}
TEST(ScopedMockLogTest, LogMockCatchAndMatchSendExpectations) {
absl::ScopedMockLog log;
EXPECT_CALL(
log,
Send(AllOf(SourceFilename(Eq("/my/very/very/very_long_source_file.cc")),
SourceBasename(Eq("very_long_source_file.cc")),
SourceLine(Eq(777)), ThreadID(Eq(absl::LogEntry::tid_t{1234})),
TextMessageWithPrefix(Truly([](absl::string_view msg) {
return absl::EndsWith(
msg, " very_long_source_file.cc:777] Info message");
})))));
log.StartCapturingLogs();
LOG(INFO)
.AtLocation("/my/very/very/very_long_source_file.cc", 777)
.WithThreadID(1234)
<< "Info message";
}
TEST(ScopedMockLogTest, ScopedMockLogCanBeNice) {
absl::ScopedMockLog log;
InSequence s;
EXPECT_CALL(log,
Log(absl::LogSeverity::kWarning, HasSubstr(__FILE__), "Danger."));
EXPECT_CALL(log, Log(absl::LogSeverity::kInfo, _, "Working...")).Times(2);
EXPECT_CALL(log, Log(absl::LogSeverity::kError, _, "Bad!!"));
log.StartCapturingLogs();
LOG(INFO) << "Info message.";
LOG(WARNING).AtLocation("SomeOtherFile.cc", 100) << "Danger ";
LOG(WARNING) << "Danger.";
LOG(INFO) << "Info message.";
LOG(WARNING).AtLocation("SomeOtherFile.cc", 100) << "Danger ";
LOG(INFO) << "Working...";
LOG(INFO) << "Info message.";
LOG(WARNING).AtLocation("SomeOtherFile.cc", 100) << "Danger ";
LOG(INFO) << "Working...";
LOG(INFO) << "Info message.";
LOG(WARNING).AtLocation("SomeOtherFile.cc", 100) << "Danger ";
LOG(ERROR) << "Bad!!";
LOG(INFO) << "Info message.";
LOG(WARNING).AtLocation("SomeOtherFile.cc", 100) << "Danger ";
}
TEST(ScopedMockLogTest, RejectsUnexpectedLogs) {
EXPECT_NONFATAL_FAILURE(
{
absl::ScopedMockLog log(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(log, Log(Lt(absl::LogSeverity::kError), _, _))
.Times(AnyNumber());
log.StartCapturingLogs();
LOG(INFO) << "Ignored";
LOG(WARNING) << "Ignored";
LOG(ERROR) << "Should not be ignored";
},
"Should not be ignored");
}
TEST(ScopedMockLogTest, CapturesLogsAfterStartCapturingLogs) {
absl::SetStderrThreshold(absl::LogSeverityAtLeast::kInfinity);
absl::ScopedMockLog log;
LOG(INFO) << "Ignored info";
LOG(WARNING) << "Ignored warning";
LOG(ERROR) << "Ignored error";
EXPECT_CALL(log, Log(absl::LogSeverity::kInfo, _, "Expected info"));
log.StartCapturingLogs();
LOG(INFO) << "Expected info";
}
TEST(ScopedMockLogTest, DoesNotCaptureLogsAfterStopCapturingLogs) {
absl::ScopedMockLog log;
EXPECT_CALL(log, Log(absl::LogSeverity::kInfo, _, "Expected info"));
log.StartCapturingLogs();
LOG(INFO) << "Expected info";
log.StopCapturingLogs();
LOG(INFO) << "Ignored info";
LOG(WARNING) << "Ignored warning";
LOG(ERROR) << "Ignored error";
}
TEST(ScopedMockLogTest, LogFromMultipleThreads) {
absl::ScopedMockLog log;
EXPECT_CALL(log, Log(absl::LogSeverity::kInfo, __FILE__, "Thread 1"));
EXPECT_CALL(log, Log(absl::LogSeverity::kInfo, __FILE__, "Thread 2"));
log.StartCapturingLogs();
absl::Barrier barrier(2);
std::thread thread1([&barrier]() {
barrier.Block();
LOG(INFO) << "Thread 1";
});
std::thread thread2([&barrier]() {
barrier.Block();
LOG(INFO) << "Thread 2";
});
thread1.join();
thread2.join();
}
TEST(ScopedMockLogTest, NoSequenceWithMultipleThreads) {
absl::ScopedMockLog log;
absl::Barrier barrier(2);
EXPECT_CALL(log, Log(absl::LogSeverity::kInfo, _, _))
.Times(2)
.WillRepeatedly([&barrier]() { barrier.Block(); });
log.StartCapturingLogs();
std::thread thread1([]() { LOG(INFO) << "Thread 1"; });
std::thread thread2([]() { LOG(INFO) << "Thread 2"; });
thread1.join();
thread2.join();
}
TEST(ScopedMockLogTsanTest,
ScopedMockLogCanBeDeletedWhenAnotherThreadIsLogging) {
auto log = absl::make_unique<absl::ScopedMockLog>();
EXPECT_CALL(*log, Log(absl::LogSeverity::kInfo, __FILE__, "Thread log"))
.Times(AnyNumber());
log->StartCapturingLogs();
absl::Notification logging_started;
std::thread thread([&logging_started]() {
for (int i = 0; i < 100; ++i) {
if (i == 50) logging_started.Notify();
LOG(INFO) << "Thread log";
}
});
logging_started.WaitForNotification();
log.reset();
thread.join();
}
TEST(ScopedMockLogTest, AsLocalSink) {
absl::ScopedMockLog log(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(log, Log(_, _, "two"));
EXPECT_CALL(log, Log(_, _, "three"));
LOG(INFO) << "one";
LOG(INFO).ToSinkOnly(&log.UseAsLocalSink()) << "two";
LOG(INFO).ToSinkAlso(&log.UseAsLocalSink()) << "three";
}
} | 2,548 |
#ifndef ABSL_LOG_LOG_SINK_H_
#define ABSL_LOG_LOG_SINK_H_
#include "absl/base/config.h"
#include "absl/log/log_entry.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class LogSink {
public:
virtual ~LogSink() = default;
virtual void Send(const absl::LogEntry& entry) = 0;
virtual void Flush() {}
protected:
LogSink() = default;
LogSink(const LogSink&) = default;
LogSink& operator=(const LogSink&) = default;
private:
virtual void KeyFunction() const final;
};
ABSL_NAMESPACE_END
}
#endif
#include "absl/log/log_sink.h"
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
void LogSink::KeyFunction() const {}
ABSL_NAMESPACE_END
} | #include "absl/log/log_sink.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/log/internal/test_actions.h"
#include "absl/log/internal/test_helpers.h"
#include "absl/log/internal/test_matchers.h"
#include "absl/log/log.h"
#include "absl/log/log_sink_registry.h"
#include "absl/log/scoped_mock_log.h"
#include "absl/strings/string_view.h"
namespace {
using ::absl::log_internal::DeathTestExpectedLogging;
using ::absl::log_internal::DeathTestUnexpectedLogging;
using ::absl::log_internal::DeathTestValidateExpectations;
using ::absl::log_internal::DiedOfFatal;
using ::testing::_;
using ::testing::AnyNumber;
using ::testing::HasSubstr;
using ::testing::InSequence;
auto* test_env ABSL_ATTRIBUTE_UNUSED = ::testing::AddGlobalTestEnvironment(
new absl::log_internal::LogTestEnvironment);
TEST(LogSinkRegistryTest, AddLogSink) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
InSequence s;
EXPECT_CALL(test_sink, Log(_, _, "hello world")).Times(0);
EXPECT_CALL(test_sink, Log(absl::LogSeverity::kInfo, __FILE__, "Test : 42"));
EXPECT_CALL(test_sink,
Log(absl::LogSeverity::kWarning, __FILE__, "Danger ahead"));
EXPECT_CALL(test_sink,
Log(absl::LogSeverity::kError, __FILE__, "This is an error"));
LOG(INFO) << "hello world";
test_sink.StartCapturingLogs();
LOG(INFO) << "Test : " << 42;
LOG(WARNING) << "Danger" << ' ' << "ahead";
LOG(ERROR) << "This is an error";
test_sink.StopCapturingLogs();
LOG(INFO) << "Goodby world";
}
TEST(LogSinkRegistryTest, MultipleLogSinks) {
absl::ScopedMockLog test_sink1(absl::MockLogDefault::kDisallowUnexpected);
absl::ScopedMockLog test_sink2(absl::MockLogDefault::kDisallowUnexpected);
::testing::InSequence seq;
EXPECT_CALL(test_sink1, Log(absl::LogSeverity::kInfo, _, "First")).Times(1);
EXPECT_CALL(test_sink2, Log(absl::LogSeverity::kInfo, _, "First")).Times(0);
EXPECT_CALL(test_sink1, Log(absl::LogSeverity::kInfo, _, "Second")).Times(1);
EXPECT_CALL(test_sink2, Log(absl::LogSeverity::kInfo, _, "Second")).Times(1);
EXPECT_CALL(test_sink1, Log(absl::LogSeverity::kInfo, _, "Third")).Times(0);
EXPECT_CALL(test_sink2, Log(absl::LogSeverity::kInfo, _, "Third")).Times(1);
LOG(INFO) << "Before first";
test_sink1.StartCapturingLogs();
LOG(INFO) << "First";
test_sink2.StartCapturingLogs();
LOG(INFO) << "Second";
test_sink1.StopCapturingLogs();
LOG(INFO) << "Third";
test_sink2.StopCapturingLogs();
LOG(INFO) << "Fourth";
}
TEST(LogSinkRegistrationDeathTest, DuplicateSinkRegistration) {
ASSERT_DEATH_IF_SUPPORTED(
{
absl::ScopedMockLog sink;
sink.StartCapturingLogs();
absl::AddLogSink(&sink.UseAsLocalSink());
},
HasSubstr("Duplicate log sinks"));
}
TEST(LogSinkRegistrationDeathTest, MismatchSinkRemoval) {
ASSERT_DEATH_IF_SUPPORTED(
{
absl::ScopedMockLog sink;
absl::RemoveLogSink(&sink.UseAsLocalSink());
},
HasSubstr("Mismatched log sink"));
}
TEST(LogSinkTest, FlushSinks) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(test_sink, Flush()).Times(2);
test_sink.StartCapturingLogs();
absl::FlushLogSinks();
absl::FlushLogSinks();
}
TEST(LogSinkDeathTest, DeathInSend) {
class FatalSendSink : public absl::LogSink {
public:
void Send(const absl::LogEntry&) override { LOG(FATAL) << "goodbye world"; }
};
FatalSendSink sink;
EXPECT_EXIT({ LOG(INFO).ToSinkAlso(&sink) << "hello world"; }, DiedOfFatal,
_);
}
TEST(LogSinkTest, ToSinkAlso) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
absl::ScopedMockLog another_sink(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(test_sink, Log(_, _, "hello world"));
EXPECT_CALL(another_sink, Log(_, _, "hello world"));
test_sink.StartCapturingLogs();
LOG(INFO).ToSinkAlso(&another_sink.UseAsLocalSink()) << "hello world";
}
TEST(LogSinkTest, ToSinkOnly) {
absl::ScopedMockLog another_sink(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(another_sink, Log(_, _, "hello world"));
LOG(INFO).ToSinkOnly(&another_sink.UseAsLocalSink()) << "hello world";
}
TEST(LogSinkTest, ToManySinks) {
absl::ScopedMockLog sink1(absl::MockLogDefault::kDisallowUnexpected);
absl::ScopedMockLog sink2(absl::MockLogDefault::kDisallowUnexpected);
absl::ScopedMockLog sink3(absl::MockLogDefault::kDisallowUnexpected);
absl::ScopedMockLog sink4(absl::MockLogDefault::kDisallowUnexpected);
absl::ScopedMockLog sink5(absl::MockLogDefault::kDisallowUnexpected);
EXPECT_CALL(sink3, Log(_, _, "hello world"));
EXPECT_CALL(sink4, Log(_, _, "hello world"));
EXPECT_CALL(sink5, Log(_, _, "hello world"));
LOG(INFO)
.ToSinkAlso(&sink1.UseAsLocalSink())
.ToSinkAlso(&sink2.UseAsLocalSink())
.ToSinkOnly(&sink3.UseAsLocalSink())
.ToSinkAlso(&sink4.UseAsLocalSink())
.ToSinkAlso(&sink5.UseAsLocalSink())
<< "hello world";
}
class ReentrancyTest : public ::testing::Test {
protected:
ReentrancyTest() = default;
enum class LogMode : int { kNormal, kToSinkAlso, kToSinkOnly };
class ReentrantSendLogSink : public absl::LogSink {
public:
explicit ReentrantSendLogSink(absl::LogSeverity severity,
absl::LogSink* sink, LogMode mode)
: severity_(severity), sink_(sink), mode_(mode) {}
explicit ReentrantSendLogSink(absl::LogSeverity severity)
: ReentrantSendLogSink(severity, nullptr, LogMode::kNormal) {}
void Send(const absl::LogEntry&) override {
switch (mode_) {
case LogMode::kNormal:
LOG(LEVEL(severity_)) << "The log is coming from *inside the sink*.";
break;
case LogMode::kToSinkAlso:
LOG(LEVEL(severity_)).ToSinkAlso(sink_)
<< "The log is coming from *inside the sink*.";
break;
case LogMode::kToSinkOnly:
LOG(LEVEL(severity_)).ToSinkOnly(sink_)
<< "The log is coming from *inside the sink*.";
break;
default:
LOG(FATAL) << "Invalid mode " << static_cast<int>(mode_);
}
}
private:
absl::LogSeverity severity_;
absl::LogSink* sink_;
LogMode mode_;
};
static absl::string_view LogAndReturn(absl::LogSeverity severity,
absl::string_view to_log,
absl::string_view to_return) {
LOG(LEVEL(severity)) << to_log;
return to_return;
}
};
TEST_F(ReentrancyTest, LogFunctionThatLogs) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
InSequence seq;
EXPECT_CALL(test_sink, Log(absl::LogSeverity::kInfo, _, "hello"));
EXPECT_CALL(test_sink, Log(absl::LogSeverity::kInfo, _, "world"));
EXPECT_CALL(test_sink, Log(absl::LogSeverity::kWarning, _, "danger"));
EXPECT_CALL(test_sink, Log(absl::LogSeverity::kInfo, _, "here"));
test_sink.StartCapturingLogs();
LOG(INFO) << LogAndReturn(absl::LogSeverity::kInfo, "hello", "world");
LOG(INFO) << LogAndReturn(absl::LogSeverity::kWarning, "danger", "here");
}
TEST_F(ReentrancyTest, RegisteredLogSinkThatLogsInSend) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
ReentrantSendLogSink renentrant_sink(absl::LogSeverity::kInfo);
EXPECT_CALL(test_sink, Log(_, _, "hello world"));
test_sink.StartCapturingLogs();
absl::AddLogSink(&renentrant_sink);
LOG(INFO) << "hello world";
absl::RemoveLogSink(&renentrant_sink);
}
TEST_F(ReentrancyTest, AlsoLogSinkThatLogsInSend) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kInfo);
EXPECT_CALL(test_sink, Log(_, _, "hello world"));
EXPECT_CALL(test_sink,
Log(_, _, "The log is coming from *inside the sink*."));
test_sink.StartCapturingLogs();
LOG(INFO).ToSinkAlso(&reentrant_sink) << "hello world";
}
TEST_F(ReentrancyTest, RegisteredAlsoLogSinkThatLogsInSend) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kInfo);
EXPECT_CALL(test_sink, Log(_, _, "hello world"));
EXPECT_CALL(test_sink,
Log(_, _, "The log is coming from *inside the sink*."));
test_sink.StartCapturingLogs();
absl::AddLogSink(&reentrant_sink);
LOG(INFO).ToSinkAlso(&reentrant_sink) << "hello world";
absl::RemoveLogSink(&reentrant_sink);
}
TEST_F(ReentrancyTest, OnlyLogSinkThatLogsInSend) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kInfo);
EXPECT_CALL(test_sink,
Log(_, _, "The log is coming from *inside the sink*."));
test_sink.StartCapturingLogs();
LOG(INFO).ToSinkOnly(&reentrant_sink) << "hello world";
}
TEST_F(ReentrancyTest, RegisteredOnlyLogSinkThatLogsInSend) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kInfo);
EXPECT_CALL(test_sink,
Log(_, _, "The log is coming from *inside the sink*."));
test_sink.StartCapturingLogs();
absl::AddLogSink(&reentrant_sink);
LOG(INFO).ToSinkOnly(&reentrant_sink) << "hello world";
absl::RemoveLogSink(&reentrant_sink);
}
using ReentrancyDeathTest = ReentrancyTest;
TEST_F(ReentrancyDeathTest, LogFunctionThatLogsFatal) {
EXPECT_EXIT(
{
absl::ScopedMockLog test_sink;
EXPECT_CALL(test_sink, Log)
.Times(AnyNumber())
.WillRepeatedly(DeathTestUnexpectedLogging());
EXPECT_CALL(test_sink, Log(_, _, "hello"))
.WillOnce(DeathTestExpectedLogging());
test_sink.StartCapturingLogs();
LOG(INFO) << LogAndReturn(absl::LogSeverity::kFatal, "hello", "world");
},
DiedOfFatal, DeathTestValidateExpectations());
}
TEST_F(ReentrancyDeathTest, RegisteredLogSinkThatLogsFatalInSend) {
EXPECT_EXIT(
{
absl::ScopedMockLog test_sink;
ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kFatal);
EXPECT_CALL(test_sink, Log)
.Times(AnyNumber())
.WillRepeatedly(DeathTestUnexpectedLogging());
EXPECT_CALL(test_sink, Log(_, _, "hello world"))
.WillOnce(DeathTestExpectedLogging());
test_sink.StartCapturingLogs();
absl::AddLogSink(&reentrant_sink);
LOG(INFO) << "hello world";
},
DiedOfFatal, DeathTestValidateExpectations());
}
TEST_F(ReentrancyDeathTest, AlsoLogSinkThatLogsFatalInSend) {
EXPECT_EXIT(
{
absl::ScopedMockLog test_sink;
ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kFatal);
EXPECT_CALL(test_sink, Log)
.Times(AnyNumber())
.WillRepeatedly(DeathTestUnexpectedLogging());
EXPECT_CALL(test_sink, Log(_, _, "hello world"))
.WillOnce(DeathTestExpectedLogging());
EXPECT_CALL(test_sink,
Log(_, _, "The log is coming from *inside the sink*."))
.WillOnce(DeathTestExpectedLogging());
test_sink.StartCapturingLogs();
LOG(INFO).ToSinkAlso(&reentrant_sink) << "hello world";
},
DiedOfFatal, DeathTestValidateExpectations());
}
TEST_F(ReentrancyDeathTest, RegisteredAlsoLogSinkThatLogsFatalInSend) {
EXPECT_EXIT(
{
absl::ScopedMockLog test_sink;
ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kFatal);
EXPECT_CALL(test_sink, Log)
.Times(AnyNumber())
.WillRepeatedly(DeathTestUnexpectedLogging());
EXPECT_CALL(test_sink, Log(_, _, "hello world"))
.WillOnce(DeathTestExpectedLogging());
EXPECT_CALL(test_sink,
Log(_, _, "The log is coming from *inside the sink*."))
.WillOnce(DeathTestExpectedLogging());
test_sink.StartCapturingLogs();
absl::AddLogSink(&reentrant_sink);
LOG(INFO).ToSinkAlso(&reentrant_sink) << "hello world";
},
DiedOfFatal, DeathTestValidateExpectations());
}
TEST_F(ReentrancyDeathTest, OnlyLogSinkThatLogsFatalInSend) {
EXPECT_EXIT(
{
absl::ScopedMockLog test_sink;
ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kFatal);
EXPECT_CALL(test_sink, Log)
.Times(AnyNumber())
.WillRepeatedly(DeathTestUnexpectedLogging());
EXPECT_CALL(test_sink,
Log(_, _, "The log is coming from *inside the sink*."))
.WillOnce(DeathTestExpectedLogging());
test_sink.StartCapturingLogs();
LOG(INFO).ToSinkOnly(&reentrant_sink) << "hello world";
},
DiedOfFatal, DeathTestValidateExpectations());
}
TEST_F(ReentrancyDeathTest, RegisteredOnlyLogSinkThatLogsFatalInSend) {
EXPECT_EXIT(
{
absl::ScopedMockLog test_sink;
ReentrantSendLogSink reentrant_sink(absl::LogSeverity::kFatal);
EXPECT_CALL(test_sink, Log)
.Times(AnyNumber())
.WillRepeatedly(DeathTestUnexpectedLogging());
EXPECT_CALL(test_sink,
Log(_, _, "The log is coming from *inside the sink*."))
.WillOnce(DeathTestExpectedLogging());
test_sink.StartCapturingLogs();
absl::AddLogSink(&reentrant_sink);
LOG(INFO).ToSinkOnly(&reentrant_sink) << "hello world";
},
DiedOfFatal, DeathTestValidateExpectations());
}
} | 2,549 |
#ifndef ABSL_LOG_INTERNAL_FNMATCH_H_
#define ABSL_LOG_INTERNAL_FNMATCH_H_
#include "absl/base/config.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
bool FNMatch(absl::string_view pattern, absl::string_view str);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/log/internal/fnmatch.h"
#include <cstddef>
#include "absl/base/config.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
bool FNMatch(absl::string_view pattern, absl::string_view str) {
bool in_wildcard_match = false;
while (true) {
if (pattern.empty()) {
return in_wildcard_match || str.empty();
}
if (str.empty()) {
return pattern.find_first_not_of('*') == pattern.npos;
}
switch (pattern.front()) {
case '*':
pattern.remove_prefix(1);
in_wildcard_match = true;
break;
case '?':
pattern.remove_prefix(1);
str.remove_prefix(1);
break;
default:
if (in_wildcard_match) {
absl::string_view fixed_portion = pattern;
const size_t end = fixed_portion.find_first_of("*?");
if (end != fixed_portion.npos) {
fixed_portion = fixed_portion.substr(0, end);
}
const size_t match = str.find(fixed_portion);
if (match == str.npos) {
return false;
}
pattern.remove_prefix(fixed_portion.size());
str.remove_prefix(match + fixed_portion.size());
in_wildcard_match = false;
} else {
if (pattern.front() != str.front()) {
return false;
}
pattern.remove_prefix(1);
str.remove_prefix(1);
}
break;
}
}
}
}
ABSL_NAMESPACE_END
} | #include "absl/log/internal/fnmatch.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace {
using ::testing::IsFalse;
using ::testing::IsTrue;
TEST(FNMatchTest, Works) {
using absl::log_internal::FNMatch;
EXPECT_THAT(FNMatch("foo", "foo"), IsTrue());
EXPECT_THAT(FNMatch("foo", "bar"), IsFalse());
EXPECT_THAT(FNMatch("foo", "fo"), IsFalse());
EXPECT_THAT(FNMatch("foo", "foo2"), IsFalse());
EXPECT_THAT(FNMatch("bar/foo.ext", "bar/foo.ext"), IsTrue());
EXPECT_THAT(FNMatch("*ba*r/fo*o.ext*", "bar/foo.ext"), IsTrue());
EXPECT_THAT(FNMatch("bar/foo.ext", "bar/baz.ext"), IsFalse());
EXPECT_THAT(FNMatch("bar/foo.ext", "bar/foo"), IsFalse());
EXPECT_THAT(FNMatch("bar/foo.ext", "bar/foo.ext.zip"), IsFalse());
EXPECT_THAT(FNMatch("ba?/*.ext", "bar/foo.ext"), IsTrue());
EXPECT_THAT(FNMatch("ba?/*.ext", "baZ/FOO.ext"), IsTrue());
EXPECT_THAT(FNMatch("ba?/*.ext", "barr/foo.ext"), IsFalse());
EXPECT_THAT(FNMatch("ba?/*.ext", "bar/foo.ext2"), IsFalse());
EXPECT_THAT(FNMatch("ba?/*", "bar/foo.ext2"), IsTrue());
EXPECT_THAT(FNMatch("ba?/*", "bar/"), IsTrue());
EXPECT_THAT(FNMatch("ba?/?", "bar/"), IsFalse());
EXPECT_THAT(FNMatch("ba?/*", "bar"), IsFalse());
EXPECT_THAT(FNMatch("?x", "zx"), IsTrue());
EXPECT_THAT(FNMatch("*b", "aab"), IsTrue());
EXPECT_THAT(FNMatch("a*b", "aXb"), IsTrue());
EXPECT_THAT(FNMatch("", ""), IsTrue());
EXPECT_THAT(FNMatch("", "a"), IsFalse());
EXPECT_THAT(FNMatch("ab*", "ab"), IsTrue());
EXPECT_THAT(FNMatch("ab**", "ab"), IsTrue());
EXPECT_THAT(FNMatch("ab*?", "ab"), IsFalse());
EXPECT_THAT(FNMatch("*", "bbb"), IsTrue());
EXPECT_THAT(FNMatch("*", ""), IsTrue());
EXPECT_THAT(FNMatch("?", ""), IsFalse());
EXPECT_THAT(FNMatch("***", "**p"), IsTrue());
EXPECT_THAT(FNMatch("**", "*"), IsTrue());
EXPECT_THAT(FNMatch("*?", "*"), IsTrue());
}
} | 2,550 |
#ifndef ABSL_LOG_INTERNAL_LOG_FORMAT_H_
#define ABSL_LOG_INTERNAL_LOG_FORMAT_H_
#include <stddef.h>
#include <string>
#include "absl/base/config.h"
#include "absl/base/log_severity.h"
#include "absl/log/internal/config.h"
#include "absl/strings/string_view.h"
#include "absl/time/civil_time.h"
#include "absl/time/time.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
enum class PrefixFormat {
kNotRaw,
kRaw,
};
std::string FormatLogMessage(absl::LogSeverity severity,
absl::CivilSecond civil_second,
absl::Duration subsecond, log_internal::Tid tid,
absl::string_view basename, int line,
PrefixFormat format, absl::string_view message);
size_t FormatLogPrefix(absl::LogSeverity severity, absl::Time timestamp,
log_internal::Tid tid, absl::string_view basename,
int line, PrefixFormat format, absl::Span<char>& buf);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/log/internal/log_format.h"
#include <string.h>
#ifdef _MSC_VER
#include <winsock2.h>
#else
#include <sys/time.h>
#endif
#include <cstddef>
#include <cstdint>
#include <limits>
#include <string>
#include <type_traits>
#include "absl/base/config.h"
#include "absl/base/log_severity.h"
#include "absl/base/optimization.h"
#include "absl/log/internal/append_truncated.h"
#include "absl/log/internal/config.h"
#include "absl/log/internal/globals.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "absl/time/civil_time.h"
#include "absl/time/time.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace log_internal {
namespace {
template <typename T>
inline std::enable_if_t<!std::is_signed<T>::value>
PutLeadingWhitespace(T tid, char*& p) {
if (tid < 10) *p++ = ' ';
if (tid < 100) *p++ = ' ';
if (tid < 1000) *p++ = ' ';
if (tid < 10000) *p++ = ' ';
if (tid < 100000) *p++ = ' ';
if (tid < 1000000) *p++ = ' ';
}
template <typename T>
inline std::enable_if_t<std::is_signed<T>::value>
PutLeadingWhitespace(T tid, char*& p) {
if (tid >= 0 && tid < 10) *p++ = ' ';
if (tid > -10 && tid < 100) *p++ = ' ';
if (tid > -100 && tid < 1000) *p++ = ' ';
if (tid > -1000 && tid < 10000) *p++ = ' ';
if (tid > -10000 && tid < 100000) *p++ = ' ';
if (tid > -100000 && tid < 1000000) *p++ = ' ';
}
size_t FormatBoundedFields(absl::LogSeverity severity, absl::Time timestamp,
log_internal::Tid tid, absl::Span<char>& buf) {
constexpr size_t kBoundedFieldsMaxLen =
sizeof("SMMDD HH:MM:SS.NNNNNN ") +
(1 + std::numeric_limits<log_internal::Tid>::digits10 + 1) - sizeof("");
if (ABSL_PREDICT_FALSE(buf.size() < kBoundedFieldsMaxLen)) {
buf.remove_suffix(buf.size());
return 0;
}
const absl::TimeZone* tz = absl::log_internal::TimeZone();
if (ABSL_PREDICT_FALSE(tz == nullptr)) {
auto tv = absl::ToTimeval(timestamp);
int snprintf_result = absl::SNPrintF(
buf.data(), buf.size(), "%c0000 00:00:%02d.%06d %7d ",
absl::LogSeverityName(severity)[0], static_cast<int>(tv.tv_sec),
static_cast<int>(tv.tv_usec), static_cast<int>(tid));
if (snprintf_result >= 0) {
buf.remove_prefix(static_cast<size_t>(snprintf_result));
return static_cast<size_t>(snprintf_result);
}
return 0;
}
char* p = buf.data();
*p++ = absl::LogSeverityName(severity)[0];
const absl::TimeZone::CivilInfo ci = tz->At(timestamp);
absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(ci.cs.month()), p);
p += 2;
absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(ci.cs.day()), p);
p += 2;
*p++ = ' ';
absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(ci.cs.hour()), p);
p += 2;
*p++ = ':';
absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(ci.cs.minute()),
p);
p += 2;
*p++ = ':';
absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(ci.cs.second()),
p);
p += 2;
*p++ = '.';
const int64_t usecs = absl::ToInt64Microseconds(ci.subsecond);
absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(usecs / 10000), p);
p += 2;
absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(usecs / 100 % 100),
p);
p += 2;
absl::numbers_internal::PutTwoDigits(static_cast<uint32_t>(usecs % 100), p);
p += 2;
*p++ = ' ';
PutLeadingWhitespace(tid, p);
p = absl::numbers_internal::FastIntToBuffer(tid, p);
*p++ = ' ';
const size_t bytes_formatted = static_cast<size_t>(p - buf.data());
buf.remove_prefix(bytes_formatted);
return bytes_formatted;
}
size_t FormatLineNumber(int line, absl::Span<char>& buf) {
constexpr size_t kLineFieldMaxLen =
sizeof(":] ") + (1 + std::numeric_limits<int>::digits10 + 1) - sizeof("");
if (ABSL_PREDICT_FALSE(buf.size() < kLineFieldMaxLen)) {
buf.remove_suffix(buf.size());
return 0;
}
char* p = buf.data();
*p++ = ':';
p = absl::numbers_internal::FastIntToBuffer(line, p);
*p++ = ']';
*p++ = ' ';
const size_t bytes_formatted = static_cast<size_t>(p - buf.data());
buf.remove_prefix(bytes_formatted);
return bytes_formatted;
}
}
std::string FormatLogMessage(absl::LogSeverity severity,
absl::CivilSecond civil_second,
absl::Duration subsecond, log_internal::Tid tid,
absl::string_view basename, int line,
PrefixFormat format, absl::string_view message) {
return absl::StrFormat(
"%c%02d%02d %02d:%02d:%02d.%06d %7d %s:%d] %s%s",
absl::LogSeverityName(severity)[0], civil_second.month(),
civil_second.day(), civil_second.hour(), civil_second.minute(),
civil_second.second(), absl::ToInt64Microseconds(subsecond), tid,
basename, line, format == PrefixFormat::kRaw ? "RAW: " : "", message);
}
size_t FormatLogPrefix(absl::LogSeverity severity, absl::Time timestamp,
log_internal::Tid tid, absl::string_view basename,
int line, PrefixFormat format, absl::Span<char>& buf) {
auto prefix_size = FormatBoundedFields(severity, timestamp, tid, buf);
prefix_size += log_internal::AppendTruncated(basename, buf);
prefix_size += FormatLineNumber(line, buf);
if (format == PrefixFormat::kRaw)
prefix_size += log_internal::AppendTruncated("RAW: ", buf);
return prefix_size;
}
}
ABSL_NAMESPACE_END
} | #include <math.h>
#include <iomanip>
#include <ios>
#include <limits>
#include <ostream>
#include <sstream>
#include <string>
#include <type_traits>
#ifdef __ANDROID__
#include <android/api-level.h>
#endif
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/log/check.h"
#include "absl/log/internal/test_matchers.h"
#include "absl/log/log.h"
#include "absl/log/scoped_mock_log.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
namespace {
using ::absl::log_internal::AsString;
using ::absl::log_internal::MatchesOstream;
using ::absl::log_internal::RawEncodedMessage;
using ::absl::log_internal::TextMessage;
using ::absl::log_internal::TextPrefix;
using ::testing::AllOf;
using ::testing::AnyOf;
using ::testing::Each;
using ::testing::EndsWith;
using ::testing::Eq;
using ::testing::Ge;
using ::testing::IsEmpty;
using ::testing::Le;
using ::testing::SizeIs;
using ::testing::Types;
std::ostringstream ComparisonStream() {
std::ostringstream str;
str.setf(std::ios_base::showbase | std::ios_base::boolalpha |
std::ios_base::internal);
return str;
}
TEST(LogFormatTest, NoMessage) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const int log_line = __LINE__ + 1;
auto do_log = [] { LOG(INFO); };
EXPECT_CALL(test_sink,
Send(AllOf(TextMessage(MatchesOstream(ComparisonStream())),
TextPrefix(AsString(EndsWith(absl::StrCat(
" log_format_test.cc:", log_line, "] ")))),
TextMessage(IsEmpty()),
ENCODED_MESSAGE(EqualsProto(R"pb()pb")))));
test_sink.StartCapturingLogs();
do_log();
}
template <typename T>
class CharLogFormatTest : public testing::Test {};
using CharTypes = Types<char, signed char, unsigned char>;
TYPED_TEST_SUITE(CharLogFormatTest, CharTypes);
TYPED_TEST(CharLogFormatTest, Printable) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = 'x';
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("x")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "x" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(CharLogFormatTest, Unprintable) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
constexpr auto value = static_cast<TypeParam>(0xeeu);
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("\xee")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "\xee"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
template <typename T>
class UnsignedIntLogFormatTest : public testing::Test {};
using UnsignedIntTypes = Types<unsigned short, unsigned int,
unsigned long, unsigned long long>;
TYPED_TEST_SUITE(UnsignedIntLogFormatTest, UnsignedIntTypes);
TYPED_TEST(UnsignedIntLogFormatTest, Positive) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = 224;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("224")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "224" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(UnsignedIntLogFormatTest, BitfieldPositive) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const struct {
TypeParam bits : 6;
} value{42};
auto comparison_stream = ComparisonStream();
comparison_stream << value.bits;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("42")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "42" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value.bits;
}
template <typename T>
class SignedIntLogFormatTest : public testing::Test {};
using SignedIntTypes =
Types<signed short, signed int, signed long, signed long long>;
TYPED_TEST_SUITE(SignedIntLogFormatTest, SignedIntTypes);
TYPED_TEST(SignedIntLogFormatTest, Positive) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = 224;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("224")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "224" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(SignedIntLogFormatTest, Negative) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = -112;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("-112")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "-112"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(SignedIntLogFormatTest, BitfieldPositive) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const struct {
TypeParam bits : 6;
} value{21};
auto comparison_stream = ComparisonStream();
comparison_stream << value.bits;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("21")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "21" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value.bits;
}
TYPED_TEST(SignedIntLogFormatTest, BitfieldNegative) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const struct {
TypeParam bits : 6;
} value{-21};
auto comparison_stream = ComparisonStream();
comparison_stream << value.bits;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("-21")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "-21" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value.bits;
}
#if !defined(__GNUC__) || defined(__clang__)
enum MyUnsignedEnum {
MyUnsignedEnum_ZERO = 0,
MyUnsignedEnum_FORTY_TWO = 42,
MyUnsignedEnum_TWO_HUNDRED_TWENTY_FOUR = 224,
};
enum MyUnsignedIntEnum : unsigned int {
MyUnsignedIntEnum_ZERO = 0,
MyUnsignedIntEnum_FORTY_TWO = 42,
MyUnsignedIntEnum_TWO_HUNDRED_TWENTY_FOUR = 224,
};
template <typename T>
class UnsignedEnumLogFormatTest : public testing::Test {};
using UnsignedEnumTypes = std::conditional<
std::is_signed<std::underlying_type<MyUnsignedEnum>::type>::value,
Types<MyUnsignedIntEnum>, Types<MyUnsignedEnum, MyUnsignedIntEnum>>::type;
TYPED_TEST_SUITE(UnsignedEnumLogFormatTest, UnsignedEnumTypes);
TYPED_TEST(UnsignedEnumLogFormatTest, Positive) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = static_cast<TypeParam>(224);
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("224")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "224" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(UnsignedEnumLogFormatTest, BitfieldPositive) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const struct {
TypeParam bits : 6;
} value{static_cast<TypeParam>(42)};
auto comparison_stream = ComparisonStream();
comparison_stream << value.bits;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("42")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "42" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value.bits;
}
enum MySignedEnum {
MySignedEnum_NEGATIVE_ONE_HUNDRED_TWELVE = -112,
MySignedEnum_NEGATIVE_TWENTY_ONE = -21,
MySignedEnum_ZERO = 0,
MySignedEnum_TWENTY_ONE = 21,
MySignedEnum_TWO_HUNDRED_TWENTY_FOUR = 224,
};
enum MySignedIntEnum : signed int {
MySignedIntEnum_NEGATIVE_ONE_HUNDRED_TWELVE = -112,
MySignedIntEnum_NEGATIVE_TWENTY_ONE = -21,
MySignedIntEnum_ZERO = 0,
MySignedIntEnum_TWENTY_ONE = 21,
MySignedIntEnum_TWO_HUNDRED_TWENTY_FOUR = 224,
};
template <typename T>
class SignedEnumLogFormatTest : public testing::Test {};
using SignedEnumTypes = std::conditional<
std::is_signed<std::underlying_type<MyUnsignedEnum>::type>::value,
Types<MyUnsignedEnum, MySignedEnum, MySignedIntEnum>,
Types<MySignedEnum, MySignedIntEnum>>::type;
TYPED_TEST_SUITE(SignedEnumLogFormatTest, SignedEnumTypes);
TYPED_TEST(SignedEnumLogFormatTest, Positive) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = static_cast<TypeParam>(224);
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("224")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "224" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(SignedEnumLogFormatTest, Negative) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = static_cast<TypeParam>(-112);
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("-112")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "-112"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(SignedEnumLogFormatTest, BitfieldPositive) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const struct {
TypeParam bits : 6;
} value{static_cast<TypeParam>(21)};
auto comparison_stream = ComparisonStream();
comparison_stream << value.bits;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("21")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "21" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value.bits;
}
TYPED_TEST(SignedEnumLogFormatTest, BitfieldNegative) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const struct {
TypeParam bits : 6;
} value{static_cast<TypeParam>(-21)};
auto comparison_stream = ComparisonStream();
comparison_stream << value.bits;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("-21")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "-21" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value.bits;
}
#endif
TEST(FloatLogFormatTest, Positive) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const float value = 6.02e23f;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("6.02e+23")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "6.02e+23"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TEST(FloatLogFormatTest, Negative) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const float value = -6.02e23f;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("-6.02e+23")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "-6.02e+23"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TEST(FloatLogFormatTest, NegativeExponent) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const float value = 6.02e-23f;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("6.02e-23")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "6.02e-23"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TEST(DoubleLogFormatTest, Positive) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const double value = 6.02e23;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("6.02e+23")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "6.02e+23"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TEST(DoubleLogFormatTest, Negative) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const double value = -6.02e23;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("-6.02e+23")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "-6.02e+23"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TEST(DoubleLogFormatTest, NegativeExponent) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const double value = 6.02e-23;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("6.02e-23")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "6.02e-23"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
template <typename T>
class FloatingPointLogFormatTest : public testing::Test {};
using FloatingPointTypes = Types<float, double>;
TYPED_TEST_SUITE(FloatingPointLogFormatTest, FloatingPointTypes);
TYPED_TEST(FloatingPointLogFormatTest, Zero) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = 0.0;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("0")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "0" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(FloatingPointLogFormatTest, Integer) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = 1.0;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("1")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "1" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(FloatingPointLogFormatTest, Infinity) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = std::numeric_limits<TypeParam>::infinity();
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(AnyOf(Eq("inf"), Eq("Inf"))),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "inf" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(FloatingPointLogFormatTest, NegativeInfinity) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = -std::numeric_limits<TypeParam>::infinity();
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(AnyOf(Eq("-inf"), Eq("-Inf"))),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "-inf"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(FloatingPointLogFormatTest, NaN) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = std::numeric_limits<TypeParam>::quiet_NaN();
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(AnyOf(Eq("nan"), Eq("NaN"))),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "nan" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(FloatingPointLogFormatTest, NegativeNaN) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value =
std::copysign(std::numeric_limits<TypeParam>::quiet_NaN(), -1.0);
auto comparison_stream = ComparisonStream();
comparison_stream << value;
#ifdef __riscv
EXPECT_CALL(
test_sink,
Send(AllOf(
TextMessage(AnyOf(Eq("-nan"), Eq("nan"), Eq("NaN"), Eq("-nan(ind)"))),
ENCODED_MESSAGE(
AnyOf(EqualsProto(R"pb(value { str: "-nan" })pb"),
EqualsProto(R"pb(value { str: "nan" })pb"),
EqualsProto(R"pb(value { str: "-nan(ind)" })pb"))))));
#else
EXPECT_CALL(
test_sink,
Send(AllOf(
TextMessage(MatchesOstream(comparison_stream)),
TextMessage(AnyOf(Eq("-nan"), Eq("nan"), Eq("NaN"), Eq("-nan(ind)"))),
ENCODED_MESSAGE(
AnyOf(EqualsProto(R"pb(value { str: "-nan" })pb"),
EqualsProto(R"pb(value { str: "nan" })pb"),
EqualsProto(R"pb(value { str: "-nan(ind)" })pb"))))));
#endif
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
template <typename T>
class VoidPtrLogFormatTest : public testing::Test {};
using VoidPtrTypes = Types<void *, const void *>;
TYPED_TEST_SUITE(VoidPtrLogFormatTest, VoidPtrTypes);
TYPED_TEST(VoidPtrLogFormatTest, Null) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = nullptr;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(AnyOf(Eq("(nil)"), Eq("0"), Eq("0x0"),
Eq("00000000"), Eq("0000000000000000"))))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(VoidPtrLogFormatTest, NonNull) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = reinterpret_cast<TypeParam>(0xdeadbeefULL);
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(
TextMessage(MatchesOstream(comparison_stream)),
TextMessage(
AnyOf(Eq("0xdeadbeef"), Eq("DEADBEEF"), Eq("00000000DEADBEEF"))),
ENCODED_MESSAGE(AnyOf(
EqualsProto(R"pb(value { str: "0xdeadbeef" })pb"),
EqualsProto(R"pb(value { str: "00000000DEADBEEF" })pb"))))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
template <typename T>
class VolatilePtrLogFormatTest : public testing::Test {};
using VolatilePtrTypes =
Types<volatile void*, const volatile void*, volatile char*,
const volatile char*, volatile signed char*,
const volatile signed char*, volatile unsigned char*,
const volatile unsigned char*>;
TYPED_TEST_SUITE(VolatilePtrLogFormatTest, VolatilePtrTypes);
TYPED_TEST(VolatilePtrLogFormatTest, Null) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = nullptr;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("false")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "false"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(VolatilePtrLogFormatTest, NonNull) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const TypeParam value = reinterpret_cast<TypeParam>(0xdeadbeefLL);
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("true")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "true"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
template <typename T>
class CharPtrLogFormatTest : public testing::Test {};
using CharPtrTypes = Types<char, const char, signed char, const signed char,
unsigned char, const unsigned char>;
TYPED_TEST_SUITE(CharPtrLogFormatTest, CharPtrTypes);
TYPED_TEST(CharPtrLogFormatTest, Null) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
TypeParam* const value = nullptr;
EXPECT_CALL(
test_sink,
Send(AllOf(
TextMessage(Eq("(null)")),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "(null)" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TYPED_TEST(CharPtrLogFormatTest, NonNull) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
TypeParam data[] = {'v', 'a', 'l', 'u', 'e', '\0'};
TypeParam* const value = data;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("value")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "value"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TEST(BoolLogFormatTest, True) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const bool value = true;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("true")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "true"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TEST(BoolLogFormatTest, False) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
const bool value = false;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("false")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "false"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
TEST(LogFormatTest, StringLiteral) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
auto comparison_stream = ComparisonStream();
comparison_stream << "value";
EXPECT_CALL(test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("value")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
literal: "value"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << "value";
}
TEST(LogFormatTest, CharArray) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
char value[] = "value";
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink, Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("value")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "value"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
class CustomClass {};
std::ostream& operator<<(std::ostream& os, const CustomClass&) {
return os << "CustomClass{}";
}
TEST(LogFormatTest, Custom) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
CustomClass value;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("CustomClass{}")),
ENCODED_MESSAGE(EqualsProto(R"pb(value {
str: "CustomClass{}"
})pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
class CustomClassNonCopyable {
public:
CustomClassNonCopyable() = default;
CustomClassNonCopyable(const CustomClassNonCopyable&) = delete;
CustomClassNonCopyable& operator=(const CustomClassNonCopyable&) = delete;
};
std::ostream& operator<<(std::ostream& os, const CustomClassNonCopyable&) {
return os << "CustomClassNonCopyable{}";
}
TEST(LogFormatTest, CustomNonCopyable) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
CustomClassNonCopyable value;
auto comparison_stream = ComparisonStream();
comparison_stream << value;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(MatchesOstream(comparison_stream)),
TextMessage(Eq("CustomClassNonCopyable{}")),
ENCODED_MESSAGE(EqualsProto(
R"pb(value { str: "CustomClassNonCopyable{}" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << value;
}
struct Point {
template <typename Sink>
friend void AbslStringify(Sink& sink, const Point& p) {
absl::Format(&sink, "(%d, %d)", p.x, p.y);
}
int x = 10;
int y = 20;
};
TEST(LogFormatTest, AbslStringifyExample) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
Point p;
EXPECT_CALL(
test_sink,
Send(AllOf(
TextMessage(Eq("(10, 20)")), TextMessage(Eq(absl::StrCat(p))),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "(10, 20)" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << p;
}
struct PointWithAbslStringifiyAndOstream {
template <typename Sink>
friend void AbslStringify(Sink& sink,
const PointWithAbslStringifiyAndOstream& p) {
absl::Format(&sink, "(%d, %d)", p.x, p.y);
}
int x = 10;
int y = 20;
};
ABSL_ATTRIBUTE_UNUSED std::ostream& operator<<(
std::ostream& os, const PointWithAbslStringifiyAndOstream&) {
return os << "Default to AbslStringify()";
}
TEST(LogFormatTest, CustomWithAbslStringifyAndOstream) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
PointWithAbslStringifiyAndOstream p;
EXPECT_CALL(
test_sink,
Send(AllOf(
TextMessage(Eq("(10, 20)")), TextMessage(Eq(absl::StrCat(p))),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "(10, 20)" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << p;
}
struct PointStreamsNothing {
template <typename Sink>
friend void AbslStringify(Sink&, const PointStreamsNothing&) {}
int x = 10;
int y = 20;
};
TEST(LogFormatTest, AbslStringifyStreamsNothing) {
absl::ScopedMockLog test_sink(absl::MockLogDefault::kDisallowUnexpected);
PointStreamsNothing p;
EXPECT_CALL(
test_sink,
Send(AllOf(TextMessage(Eq("77")), TextMessage(Eq(absl::StrCat(p, 77))),
ENCODED_MESSAGE(EqualsProto(R"pb(value { str: "77" })pb")))));
test_sink.StartCapturingLogs();
LOG(INFO) << p << 77;
}
struct PointMultipleAppend | 2,551 |
#ifndef ABSL_STRINGS_CORD_H_
#define ABSL_STRINGS_CORD_H_
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <iosfwd>
#include <iterator>
#include <string>
#include <type_traits>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/per_thread_tls.h"
#include "absl/base/macros.h"
#include "absl/base/nullability.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
#include "absl/container/inlined_vector.h"
#include "absl/crc/internal/crc_cord_state.h"
#include "absl/functional/function_ref.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/cord_analysis.h"
#include "absl/strings/cord_buffer.h"
#include "absl/strings/internal/cord_data_edge.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_btree_reader.h"
#include "absl/strings/internal/cord_rep_crc.h"
#include "absl/strings/internal/cordz_functions.h"
#include "absl/strings/internal/cordz_info.h"
#include "absl/strings/internal/cordz_statistics.h"
#include "absl/strings/internal/cordz_update_scope.h"
#include "absl/strings/internal/cordz_update_tracker.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/internal/string_constant.h"
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class Cord;
class CordTestPeer;
template <typename Releaser>
Cord MakeCordFromExternal(absl::string_view, Releaser&&);
void CopyCordToString(const Cord& src, absl::Nonnull<std::string*> dst);
void AppendCordToString(const Cord& src, absl::Nonnull<std::string*> dst);
enum class CordMemoryAccounting {
kTotal,
kTotalMorePrecise,
kFairShare,
};
class Cord {
private:
template <typename T>
using EnableIfString =
absl::enable_if_t<std::is_same<T, std::string>::value, int>;
public:
constexpr Cord() noexcept;
Cord(const Cord& src);
Cord(Cord&& src) noexcept;
Cord& operator=(const Cord& x);
Cord& operator=(Cord&& x) noexcept;
explicit Cord(absl::string_view src);
Cord& operator=(absl::string_view src);
template <typename T, EnableIfString<T> = 0>
explicit Cord(T&& src);
template <typename T, EnableIfString<T> = 0>
Cord& operator=(T&& src);
~Cord() {
if (contents_.is_tree()) DestroyCordSlow();
}
template <typename Releaser>
friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser);
ABSL_ATTRIBUTE_REINITIALIZES void Clear();
void Append(const Cord& src);
void Append(Cord&& src);
void Append(absl::string_view src);
template <typename T, EnableIfString<T> = 0>
void Append(T&& src);
void Append(CordBuffer buffer);
CordBuffer GetAppendBuffer(size_t capacity, size_t min_capacity = 16);
CordBuffer GetCustomAppendBuffer(size_t block_size, size_t capacity,
size_t min_capacity = 16);
void Prepend(const Cord& src);
void Prepend(absl::string_view src);
template <typename T, EnableIfString<T> = 0>
void Prepend(T&& src);
void Prepend(CordBuffer buffer);
void RemovePrefix(size_t n);
void RemoveSuffix(size_t n);
Cord Subcord(size_t pos, size_t new_size) const;
void swap(Cord& other) noexcept;
friend void swap(Cord& x, Cord& y) noexcept { x.swap(y); }
size_t size() const;
bool empty() const;
size_t EstimatedMemoryUsage(CordMemoryAccounting accounting_method =
CordMemoryAccounting::kTotal) const;
int Compare(absl::string_view rhs) const;
int Compare(const Cord& rhs) const;
bool StartsWith(const Cord& rhs) const;
bool StartsWith(absl::string_view rhs) const;
bool EndsWith(absl::string_view rhs) const;
bool EndsWith(const Cord& rhs) const;
bool Contains(absl::string_view rhs) const;
bool Contains(const Cord& rhs) const;
explicit operator std::string() const;
friend void CopyCordToString(const Cord& src,
absl::Nonnull<std::string*> dst);
friend void AppendCordToString(const Cord& src,
absl::Nonnull<std::string*> dst);
class CharIterator;
class ChunkIterator {
public:
using iterator_category = std::input_iterator_tag;
using value_type = absl::string_view;
using difference_type = ptrdiff_t;
using pointer = absl::Nonnull<const value_type*>;
using reference = value_type;
ChunkIterator() = default;
ChunkIterator& operator++();
ChunkIterator operator++(int);
bool operator==(const ChunkIterator& other) const;
bool operator!=(const ChunkIterator& other) const;
reference operator*() const;
pointer operator->() const;
friend class Cord;
friend class CharIterator;
private:
using CordRep = absl::cord_internal::CordRep;
using CordRepBtree = absl::cord_internal::CordRepBtree;
using CordRepBtreeReader = absl::cord_internal::CordRepBtreeReader;
explicit ChunkIterator(absl::Nonnull<cord_internal::CordRep*> tree);
explicit ChunkIterator(absl::Nonnull<const Cord*> cord);
void InitTree(absl::Nonnull<cord_internal::CordRep*> tree);
void RemoveChunkPrefix(size_t n);
Cord AdvanceAndReadBytes(size_t n);
void AdvanceBytes(size_t n);
ChunkIterator& AdvanceBtree();
void AdvanceBytesBtree(size_t n);
absl::string_view current_chunk_;
absl::Nullable<absl::cord_internal::CordRep*> current_leaf_ = nullptr;
size_t bytes_remaining_ = 0;
CordRepBtreeReader btree_reader_;
};
ChunkIterator chunk_begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
ChunkIterator chunk_end() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
class ChunkRange {
public:
using value_type = absl::string_view;
using reference = value_type&;
using const_reference = const value_type&;
using iterator = ChunkIterator;
using const_iterator = ChunkIterator;
explicit ChunkRange(absl::Nonnull<const Cord*> cord) : cord_(cord) {}
ChunkIterator begin() const;
ChunkIterator end() const;
private:
absl::Nonnull<const Cord*> cord_;
};
ChunkRange Chunks() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
class CharIterator {
public:
using iterator_category = std::input_iterator_tag;
using value_type = char;
using difference_type = ptrdiff_t;
using pointer = absl::Nonnull<const char*>;
using reference = const char&;
CharIterator() = default;
CharIterator& operator++();
CharIterator operator++(int);
bool operator==(const CharIterator& other) const;
bool operator!=(const CharIterator& other) const;
reference operator*() const;
pointer operator->() const;
friend Cord;
private:
explicit CharIterator(absl::Nonnull<const Cord*> cord)
: chunk_iterator_(cord) {}
ChunkIterator chunk_iterator_;
};
static Cord AdvanceAndRead(absl::Nonnull<CharIterator*> it, size_t n_bytes);
static void Advance(absl::Nonnull<CharIterator*> it, size_t n_bytes);
static absl::string_view ChunkRemaining(const CharIterator& it);
CharIterator char_begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
CharIterator char_end() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
class CharRange {
public:
using value_type = char;
using reference = value_type&;
using const_reference = const value_type&;
using iterator = CharIterator;
using const_iterator = CharIterator;
explicit CharRange(absl::Nonnull<const Cord*> cord) : cord_(cord) {}
CharIterator begin() const;
CharIterator end() const;
private:
absl::Nonnull<const Cord*> cord_;
};
CharRange Chars() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
char operator[](size_t i) const;
absl::optional<absl::string_view> TryFlat() const
ABSL_ATTRIBUTE_LIFETIME_BOUND;
absl::string_view Flatten() ABSL_ATTRIBUTE_LIFETIME_BOUND;
CharIterator Find(absl::string_view needle) const;
CharIterator Find(const absl::Cord& needle) const;
friend void AbslFormatFlush(absl::Nonnull<absl::Cord*> cord,
absl::string_view part) {
cord->Append(part);
}
template <typename Sink>
friend void AbslStringify(Sink& sink, const absl::Cord& cord) {
for (absl::string_view chunk : cord.Chunks()) {
sink.Append(chunk);
}
} | #include "absl/strings/cord.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <iterator>
#include <limits>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/macros.h"
#include "absl/base/no_destructor.h"
#include "absl/base/options.h"
#include "absl/container/fixed_array.h"
#include "absl/functional/function_ref.h"
#include "absl/hash/hash.h"
#include "absl/hash/hash_testing.h"
#include "absl/log/check.h"
#include "absl/log/log.h"
#include "absl/random/random.h"
#include "absl/strings/cord_buffer.h"
#include "absl/strings/cord_test_helpers.h"
#include "absl/strings/cordz_test_helpers.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_crc.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/strings/internal/cordz_statistics.h"
#include "absl/strings/internal/cordz_update_tracker.h"
#include "absl/strings/internal/string_constant.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
static constexpr auto FLAT = absl::cord_internal::FLAT;
static constexpr auto MAX_FLAT_TAG = absl::cord_internal::MAX_FLAT_TAG;
typedef std::mt19937_64 RandomEngine;
using absl::cord_internal::CordRep;
using absl::cord_internal::CordRepBtree;
using absl::cord_internal::CordRepConcat;
using absl::cord_internal::CordRepCrc;
using absl::cord_internal::CordRepExternal;
using absl::cord_internal::CordRepFlat;
using absl::cord_internal::CordRepSubstring;
using absl::cord_internal::CordzUpdateTracker;
using absl::cord_internal::kFlatOverhead;
using absl::cord_internal::kMaxFlatLength;
using ::testing::ElementsAre;
using ::testing::Le;
static std::string RandomLowercaseString(RandomEngine* rng);
static std::string RandomLowercaseString(RandomEngine* rng, size_t length);
static int GetUniformRandomUpTo(RandomEngine* rng, int upper_bound) {
if (upper_bound > 0) {
std::uniform_int_distribution<int> uniform(0, upper_bound - 1);
return uniform(*rng);
} else {
return 0;
}
}
static size_t GetUniformRandomUpTo(RandomEngine* rng, size_t upper_bound) {
if (upper_bound > 0) {
std::uniform_int_distribution<size_t> uniform(0, upper_bound - 1);
return uniform(*rng);
} else {
return 0;
}
}
static int32_t GenerateSkewedRandom(RandomEngine* rng, int max_log) {
const uint32_t base = (*rng)() % (max_log + 1);
const uint32_t mask = ((base < 32) ? (1u << base) : 0u) - 1u;
return (*rng)() & mask;
}
static std::string RandomLowercaseString(RandomEngine* rng) {
int length;
std::bernoulli_distribution one_in_1k(0.001);
std::bernoulli_distribution one_in_10k(0.0001);
if (one_in_10k(*rng)) {
length = GetUniformRandomUpTo(rng, 1048576);
} else if (one_in_1k(*rng)) {
length = GetUniformRandomUpTo(rng, 10000);
} else {
length = GenerateSkewedRandom(rng, 10);
}
return RandomLowercaseString(rng, length);
}
static std::string RandomLowercaseString(RandomEngine* rng, size_t length) {
std::string result(length, '\0');
std::uniform_int_distribution<int> chars('a', 'z');
std::generate(result.begin(), result.end(),
[&]() { return static_cast<char>(chars(*rng)); });
return result;
}
static void DoNothing(absl::string_view , void* ) {}
static void DeleteExternalString(absl::string_view data, void* arg) {
std::string* s = reinterpret_cast<std::string*>(arg);
EXPECT_EQ(data, *s);
delete s;
}
static void AddExternalMemory(absl::string_view s, absl::Cord* dst) {
std::string* str = new std::string(s.data(), s.size());
dst->Append(absl::MakeCordFromExternal(*str, [str](absl::string_view data) {
DeleteExternalString(data, str);
}));
}
static void DumpGrowth() {
absl::Cord str;
for (int i = 0; i < 1000; i++) {
char c = 'a' + i % 26;
str.Append(absl::string_view(&c, 1));
}
}
static size_t AppendWithFragments(const std::string& s, RandomEngine* rng,
absl::Cord* cord) {
size_t j = 0;
const size_t max_size = s.size() / 5;
size_t min_size = max_size;
while (j < s.size()) {
size_t N = 1 + GetUniformRandomUpTo(rng, max_size);
if (N > (s.size() - j)) {
N = s.size() - j;
}
if (N < min_size) {
min_size = N;
}
std::bernoulli_distribution coin_flip(0.5);
if (coin_flip(*rng)) {
AddExternalMemory(absl::string_view(s.data() + j, N), cord);
} else {
cord->Append(absl::string_view(s.data() + j, N));
}
j += N;
}
return min_size;
}
static void AddNewStringBlock(const std::string& str, absl::Cord* dst) {
char* data = new char[str.size()];
memcpy(data, str.data(), str.size());
dst->Append(absl::MakeCordFromExternal(
absl::string_view(data, str.size()),
[](absl::string_view s) { delete[] s.data(); }));
}
static absl::Cord MakeComposite() {
absl::Cord cord;
cord.Append("the");
AddExternalMemory(" quick brown", &cord);
AddExternalMemory(" fox jumped", &cord);
absl::Cord full(" over");
AddExternalMemory(" the lazy", &full);
AddNewStringBlock(" dog slept the whole day away", &full);
absl::Cord substring = full.Subcord(0, 18);
substring.Append(std::string(1000, '.'));
cord.Append(substring);
cord = cord.Subcord(0, cord.size() - 998);
return cord;
}
namespace absl {
ABSL_NAMESPACE_BEGIN
class CordTestPeer {
public:
static void ForEachChunk(
const Cord& c, absl::FunctionRef<void(absl::string_view)> callback) {
c.ForEachChunk(callback);
}
static bool IsTree(const Cord& c) { return c.contents_.is_tree(); }
static CordRep* Tree(const Cord& c) { return c.contents_.tree(); }
static cord_internal::CordzInfo* GetCordzInfo(const Cord& c) {
return c.contents_.cordz_info();
}
static Cord MakeSubstring(Cord src, size_t offset, size_t length) {
CHECK(src.contents_.is_tree()) << "Can not be inlined";
CHECK(!src.ExpectedChecksum().has_value()) << "Can not be hardened";
Cord cord;
auto* tree = cord_internal::SkipCrcNode(src.contents_.tree());
auto* rep = CordRepSubstring::Create(CordRep::Ref(tree), offset, length);
cord.contents_.EmplaceTree(rep, CordzUpdateTracker::kSubCord);
return cord;
}
};
ABSL_NAMESPACE_END
}
class CordTest : public testing::TestWithParam<bool > {
public:
bool UseCrc() const { return GetParam(); }
void MaybeHarden(absl::Cord& c) {
if (UseCrc()) {
c.SetExpectedChecksum(1);
}
}
absl::Cord MaybeHardened(absl::Cord c) {
MaybeHarden(c);
return c;
}
static std::string ToString(testing::TestParamInfo<bool> useCrc) {
if (useCrc.param) {
return "BtreeHardened";
} else {
return "Btree";
}
}
};
INSTANTIATE_TEST_SUITE_P(WithParam, CordTest, testing::Bool(),
CordTest::ToString);
TEST(CordRepFlat, AllFlatCapacities) {
static_assert(absl::cord_internal::kFlatOverhead < 32, "");
static_assert(absl::cord_internal::kMinFlatSize == 32, "");
static_assert(absl::cord_internal::kMaxLargeFlatSize == 256 << 10, "");
EXPECT_EQ(absl::cord_internal::TagToAllocatedSize(FLAT), 32);
EXPECT_EQ(absl::cord_internal::TagToAllocatedSize(MAX_FLAT_TAG), 256 << 10);
size_t last_size = 0;
for (int tag = FLAT; tag <= MAX_FLAT_TAG; ++tag) {
size_t size = absl::cord_internal::TagToAllocatedSize(tag);
ASSERT_GT(size, last_size);
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
last_size = size;
}
for (size_t size = 32; size <= 512; size += 8) {
ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
}
for (size_t size = 512; size <= 8192; size += 64) {
ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
}
for (size_t size = 8192; size <= 256 * 1024; size += 4 * 1024) {
ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
}
}
TEST(CordRepFlat, MaxFlatSize) {
CordRepFlat* flat = CordRepFlat::New(kMaxFlatLength);
EXPECT_EQ(flat->Capacity(), kMaxFlatLength);
CordRep::Unref(flat);
flat = CordRepFlat::New(kMaxFlatLength * 4);
EXPECT_EQ(flat->Capacity(), kMaxFlatLength);
CordRep::Unref(flat);
}
TEST(CordRepFlat, MaxLargeFlatSize) {
const size_t size = 256 * 1024 - kFlatOverhead;
CordRepFlat* flat = CordRepFlat::New(CordRepFlat::Large(), size);
EXPECT_GE(flat->Capacity(), size);
CordRep::Unref(flat);
}
TEST(CordRepFlat, AllFlatSizes) {
const size_t kMaxSize = 256 * 1024;
for (size_t size = 32; size <= kMaxSize; size *=2) {
const size_t length = size - kFlatOverhead - 1;
CordRepFlat* flat = CordRepFlat::New(CordRepFlat::Large(), length);
EXPECT_GE(flat->Capacity(), length);
memset(flat->Data(), 0xCD, flat->Capacity());
CordRep::Unref(flat);
}
}
TEST_P(CordTest, AllFlatSizes) {
using absl::strings_internal::CordTestAccess;
for (size_t s = 0; s < CordTestAccess::MaxFlatLength(); s++) {
std::string src;
while (src.size() < s) {
src.push_back('a' + (src.size() % 26));
}
absl::Cord dst(src);
MaybeHarden(dst);
EXPECT_EQ(std::string(dst), src) << s;
}
}
TEST_P(CordTest, GigabyteCordFromExternal) {
const size_t one_gig = 1024U * 1024U * 1024U;
size_t max_size = 2 * one_gig;
if (sizeof(max_size) > 4) max_size = 128 * one_gig;
size_t length = 128 * 1024;
char* data = new char[length];
absl::Cord from = absl::MakeCordFromExternal(
absl::string_view(data, length),
[](absl::string_view sv) { delete[] sv.data(); });
absl::Cord c;
c.Append(from);
while (c.size() < max_size) {
c.Append(c);
c.Append(from);
c.Append(from);
c.Append(from);
c.Append(from);
MaybeHarden(c);
}
for (int i = 0; i < 1024; ++i) {
c.Append(from);
}
LOG(INFO) << "Made a Cord with " << c.size() << " bytes!";
}
static absl::Cord MakeExternalCord(int size) {
char* buffer = new char[size];
memset(buffer, 'x', size);
absl::Cord cord;
cord.Append(absl::MakeCordFromExternal(
absl::string_view(buffer, size),
[](absl::string_view s) { delete[] s.data(); }));
return cord;
}
extern bool my_unique_true_boolean;
bool my_unique_true_boolean = true;
TEST_P(CordTest, Assignment) {
absl::Cord x(absl::string_view("hi there"));
absl::Cord y(x);
MaybeHarden(y);
ASSERT_EQ(x.ExpectedChecksum(), absl::nullopt);
ASSERT_EQ(std::string(x), "hi there");
ASSERT_EQ(std::string(y), "hi there");
ASSERT_TRUE(x == y);
ASSERT_TRUE(x <= y);
ASSERT_TRUE(y <= x);
x = absl::string_view("foo");
ASSERT_EQ(std::string(x), "foo");
ASSERT_EQ(std::string(y), "hi there");
ASSERT_TRUE(x < y);
ASSERT_TRUE(y > x);
ASSERT_TRUE(x != y);
ASSERT_TRUE(x <= y);
ASSERT_TRUE(y >= x);
x = "foo";
ASSERT_EQ(x, "foo");
std::vector<std::pair<absl::string_view, absl::string_view>>
test_string_pairs = {{"hi there", "foo"},
{"loooooong coooooord", "short cord"},
{"short cord", "loooooong coooooord"},
{"loooooong coooooord1", "loooooong coooooord2"}};
for (std::pair<absl::string_view, absl::string_view> test_strings :
test_string_pairs) {
absl::Cord tmp(test_strings.first);
absl::Cord z(std::move(tmp));
ASSERT_EQ(std::string(z), test_strings.first);
tmp = test_strings.second;
z = std::move(tmp);
ASSERT_EQ(std::string(z), test_strings.second);
}
{
absl::Cord my_small_cord("foo");
absl::Cord my_big_cord("loooooong coooooord");
absl::Cord* my_small_alias =
my_unique_true_boolean ? &my_small_cord : &my_big_cord;
absl::Cord* my_big_alias =
!my_unique_true_boolean ? &my_small_cord : &my_big_cord;
*my_small_alias = std::move(my_small_cord);
*my_big_alias = std::move(my_big_cord);
}
}
TEST_P(CordTest, StartsEndsWith) {
absl::Cord x(absl::string_view("abcde"));
MaybeHarden(x);
absl::Cord empty("");
ASSERT_TRUE(x.StartsWith(absl::Cord("abcde")));
ASSERT_TRUE(x.StartsWith(absl::Cord("abc")));
ASSERT_TRUE(x.StartsWith(absl::Cord("")));
ASSERT_TRUE(empty.StartsWith(absl::Cord("")));
ASSERT_TRUE(x.EndsWith(absl::Cord("abcde")));
ASSERT_TRUE(x.EndsWith(absl::Cord("cde")));
ASSERT_TRUE(x.EndsWith(absl::Cord("")));
ASSERT_TRUE(empty.EndsWith(absl::Cord("")));
ASSERT_TRUE(!x.StartsWith(absl::Cord("xyz")));
ASSERT_TRUE(!empty.StartsWith(absl::Cord("xyz")));
ASSERT_TRUE(!x.EndsWith(absl::Cord("xyz")));
ASSERT_TRUE(!empty.EndsWith(absl::Cord("xyz")));
ASSERT_TRUE(x.StartsWith("abcde"));
ASSERT_TRUE(x.StartsWith("abc"));
ASSERT_TRUE(x.StartsWith(""));
ASSERT_TRUE(empty.StartsWith(""));
ASSERT_TRUE(x.EndsWith("abcde"));
ASSERT_TRUE(x.EndsWith("cde"));
ASSERT_TRUE(x.EndsWith(""));
ASSERT_TRUE(empty.EndsWith(""));
ASSERT_TRUE(!x.StartsWith("xyz"));
ASSERT_TRUE(!empty.StartsWith("xyz"));
ASSERT_TRUE(!x.EndsWith("xyz"));
ASSERT_TRUE(!empty.EndsWith("xyz"));
}
TEST_P(CordTest, Contains) {
auto flat_haystack = absl::Cord("this is a flat cord");
auto fragmented_haystack = absl::MakeFragmentedCord(
{"this", " ", "is", " ", "a", " ", "fragmented", " ", "cord"});
EXPECT_TRUE(flat_haystack.Contains(""));
EXPECT_TRUE(fragmented_haystack.Contains(""));
EXPECT_TRUE(flat_haystack.Contains(absl::Cord("")));
EXPECT_TRUE(fragmented_haystack.Contains(absl::Cord("")));
EXPECT_TRUE(absl::Cord("").Contains(""));
EXPECT_TRUE(absl::Cord("").Contains(absl::Cord("")));
EXPECT_FALSE(absl::Cord("").Contains(flat_haystack));
EXPECT_FALSE(absl::Cord("").Contains(fragmented_haystack));
EXPECT_FALSE(flat_haystack.Contains("z"));
EXPECT_FALSE(fragmented_haystack.Contains("z"));
EXPECT_FALSE(flat_haystack.Contains(absl::Cord("z")));
EXPECT_FALSE(fragmented_haystack.Contains(absl::Cord("z")));
EXPECT_FALSE(flat_haystack.Contains("is an"));
EXPECT_FALSE(fragmented_haystack.Contains("is an"));
EXPECT_FALSE(flat_haystack.Contains(absl::Cord("is an")));
EXPECT_FALSE(fragmented_haystack.Contains(absl::Cord("is an")));
EXPECT_FALSE(
flat_haystack.Contains(absl::MakeFragmentedCord({"is", " ", "an"})));
EXPECT_FALSE(fragmented_haystack.Contains(
absl::MakeFragmentedCord({"is", " ", "an"})));
EXPECT_TRUE(flat_haystack.Contains("is a"));
EXPECT_TRUE(fragmented_haystack.Contains("is a"));
EXPECT_TRUE(flat_haystack.Contains(absl::Cord("is a")));
EXPECT_TRUE(fragmented_haystack.Contains(absl::Cord("is a")));
EXPECT_TRUE(
flat_haystack.Contains(absl::MakeFragmentedCord({"is", " ", "a"})));
EXPECT_TRUE(
fragmented_haystack.Contains(absl::MakeFragmentedCord({"is", " ", "a"})));
}
TEST_P(CordTest, Find) {
auto flat_haystack = absl::Cord("this is a flat cord");
auto fragmented_haystack = absl::MakeFragmentedCord(
{"this", " ", "is", " ", "a", " ", "fragmented", " ", "cord"});
auto empty_haystack = absl::Cord("");
EXPECT_EQ(flat_haystack.Find(""), flat_haystack.char_begin());
EXPECT_EQ(fragmented_haystack.Find(""), fragmented_haystack.char_begin());
EXPECT_EQ(flat_haystack.Find(absl::Cord("")), flat_haystack.char_begin());
EXPECT_EQ(fragmented_haystack.Find(absl::Cord("")),
fragmented_haystack.char_begin());
EXPECT_EQ(empty_haystack.Find(""), empty_haystack.char_begin());
EXPECT_EQ(empty_haystack.Find(absl::Cord("")), empty_haystack.char_begin());
EXPECT_EQ(empty_haystack.Find(flat_haystack), empty_haystack.char_end());
EXPECT_EQ(empty_haystack.Find(fragmented_haystack),
empty_haystack.char_end());
EXPECT_EQ(flat_haystack.Find("z"), flat_haystack.char_end());
EXPECT_EQ(fragmented_haystack.Find("z"), fragmented_haystack.char_end());
EXPECT_EQ(flat_haystack.Find(absl::Cord("z")), flat_haystack.char_end());
EXPECT_EQ(fragmented_haystack.Find(absl::Cord("z")),
fragmented_haystack.char_end());
EXPECT_EQ(flat_haystack.Find("is an"), flat_haystack.char_end());
EXPECT_EQ(fragmented_haystack.Find("is an"), fragmented_haystack.char_end());
EXPECT_EQ(flat_haystack.Find(absl::Cord("is an")), flat_haystack.char_end());
EXPECT_EQ(fragmented_haystack.Find(absl::Cord("is an")),
fragmented_haystack.char_end());
EXPECT_EQ(flat_haystack.Find(absl::MakeFragmentedCord({"is", " ", "an"})),
flat_haystack.char_end());
EXPECT_EQ(
fragmented_haystack.Find(absl::MakeFragmentedCord({"is", " ", "an"})),
fragmented_haystack.char_end());
EXPECT_EQ(flat_haystack.Find("is a"),
std::next(flat_haystack.char_begin(), 5));
EXPECT_EQ(fragmented_haystack.Find("is a"),
std::next(fragmented_haystack.char_begin(), 5));
EXPECT_EQ(flat_haystack.Find(absl::Cord("is a")),
std::next(flat_haystack.char_begin(), 5));
EXPECT_EQ(fragmented_haystack.Find(absl::Cord("is a")),
std::next(fragmented_haystack.char_begin(), 5));
EXPECT_EQ(flat_haystack.Find(absl::MakeFragmentedCord({"is", " ", "a"})),
std::next(flat_haystack.char_begin(), 5));
EXPECT_EQ(
fragmented_haystack.Find(absl::MakeFragmentedCord({"is", " ", "a"})),
std::next(fragmented_haystack.char_begin(), 5));
}
TEST_P(CordTest, Subcord) {
RandomEngine rng(GTEST_FLAG_GET(random_seed));
const std::string s = RandomLowercaseString(&rng, 1024);
absl::Cord a;
AppendWithFragments(s, &rng, &a);
MaybeHarden(a);
ASSERT_EQ(s, std::string(a));
std::set<size_t> positions;
for (int i = 0; i <= 32; ++i) {
positions.insert(i);
positions.insert(i * 32 - 1);
positions.insert(i * 32);
positions.insert(i * 32 + 1);
positions.insert(a.size() - i);
}
positions.insert(237);
positions.insert(732);
for (size_t pos : positions) {
if (pos > a.size()) continue;
for (size_t end_pos : positions) {
if (end_pos < pos || end_pos > a.size()) continue;
absl::Cord sa = a.Subcord(pos, end_pos - pos);
ASSERT_EQ(absl::string_view(s).substr(pos, end_pos - pos),
std::string(sa))
<< a;
if (pos != 0 || end_pos != a.size()) {
ASSERT_EQ(sa.ExpectedChecksum(), absl::nullopt);
}
}
}
const std::string sh = "short";
absl::Cord c(sh);
for (size_t pos = 0; pos <= sh.size(); ++pos) {
for (size_t n = 0; n <= sh.size() - pos; ++n) {
absl::Cord sc = c.Subcord(pos, n);
ASSERT_EQ(sh.substr(pos, n), std::string(sc)) << c;
}
}
absl::Cord sa = a.Subcord(0, a.size());
std::string ss = s.substr(0, s.size());
while (sa.size() > 1) {
sa = sa.Subcord(1, sa.size() - 2);
ss = ss.substr(1, ss.size() - 2);
ASSERT_EQ(ss, std::string(sa)) << a;
if (HasFailure()) break;
}
sa = a.Subcord(0, a.size() + 1);
EXPECT_EQ(s, std::string(sa));
sa = a.Subcord(a.size() + 1, 0);
EXPECT_TRUE(sa.empty());
sa = a.Subcord(a.size() + 1, 1);
EXPECT_TRUE(sa.empty());
}
TEST_P(CordTest, Swap) {
absl::string_view a("Dexter");
absl::string_view b("Mandark");
absl::Cord x(a);
absl::Cord y(b);
MaybeHarden(x);
swap(x, y);
if (UseCrc()) {
ASSERT_EQ(x.ExpectedChecksum(), absl::nullopt);
ASSERT_EQ(y.ExpectedChecksum(), 1);
}
ASSERT_EQ(x, absl::Cord(b));
ASSERT_EQ(y, absl::Cord(a));
x.swap(y);
if (UseCrc()) {
ASSERT_EQ(x.ExpectedChecksum(), 1);
ASSERT_EQ(y.ExpectedChecksum(), absl::nullopt);
}
ASSERT_EQ(x, absl::Cord(a));
ASSERT_EQ(y, absl::Cord(b));
}
static void VerifyCopyToString(const absl::Cord& cord) {
std::string initially_empty;
absl::CopyCordToString(cord, &initially_empty);
EXPECT_EQ(initially_empty, cord);
constexpr size_t kInitialLength = 1024;
std::string has_initial_contents(kInitialLength, 'x');
const char* address_before_copy = has_initial_contents.data();
absl::CopyCordToString(cord, &has_initial_contents);
EXPECT_EQ(has_initial_contents, cord);
if (cord.size() <= kInitialLength) {
EXPECT_EQ(has_initial_contents.data(), address_before_copy)
<< "CopyCordToString allocated new string storage; "
"has_initial_contents = \""
<< has_initial_contents << "\"";
}
}
TEST_P(CordTest, CopyToString) {
VerifyCopyToString(absl::Cord());
VerifyCopyToString(MaybeHardened(absl::Cord("small cord")));
VerifyCopyToString(MaybeHardened(
absl::MakeFragmentedCord({"fragmented ", "cord ", "to ", "test ",
"copying ", "to ", "a ", "string."})));
}
static void VerifyAppendCordToString(const absl::Cord& cord) {
std::string initially_empty;
absl::AppendCordToString(cord, &initially_empty);
EXPECT_EQ(initially_empty, cord);
const absl::string_view kInitialContents = "initial contents.";
std::string expected_after_append =
absl::StrCat(kInitialContents, std::string(cord));
std::string no_reserve(kInitialContents);
absl::AppendCordToString(cord, &no_reserve);
EXPECT_EQ(no_reserve, expected_after_append);
std::string has_reserved_capacity(kInitialContents);
has_reserved_capacity.reserve(has_reserved_capacity.size() + cord.size());
const char* address_before_copy = has_reserved_capacity.data();
absl::AppendCordToString(cord, &has_reserved_capacity);
EXPECT_EQ(has_reserved_capacity, expected_after_append);
EXPECT_EQ(has_reserved_capacity.data(), address_before_copy)
<< "AppendCordToString allocated new string storage; "
"has_reserved_capacity = \""
<< has_reserved_capacity << "\"";
}
TEST_P(CordTest, AppendToString) {
VerifyAppendCordToString(absl::Cord());
VerifyAppendCordToString(MaybeHardened(absl::Cord("small cord")));
VerifyAppendCordToString(MaybeHardened(
absl::MakeFragmentedCord({"fragmented ", "cord ", "to ", "test ",
"appending ", "to ", "a ", "string."})));
}
TEST_P(CordTest, AppendEmptyBuffer) {
absl::Cord cord;
cord.Append(absl::CordBuffer());
cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
}
TEST_P(CordTest, AppendEmptyBufferToFlat) {
absl::Cord cord(std::string(2000, 'x'));
cord.Append(absl::CordBuffer());
cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
}
TEST_P(CordTest, AppendEmptyBufferToTree) {
absl::Cord cord(std::string(2000, 'x'));
cord.Append(std::string(2000, 'y'));
cord.Append(absl::CordBuffer());
cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
}
TEST_P(CordTest, AppendSmallBuffer) {
absl::Cord cord;
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
ASSERT_THAT(buffer.capacity(), Le(15));
memcpy(buffer.data(), "Abc", 3);
buffer.SetLength(3);
cord.Append(std::move(buffer));
EXPECT_EQ(buffer.length(), 0);
EXPECT_GT(buffer.capacity(), 0);
buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
memcpy(buffer.data(), "defgh", 5);
buffer.SetLength(5);
cord.Append(std::move(buffer));
EXPECT_EQ(buffer.length(), 0);
EXPECT_GT(buffer.capacity(), 0);
EXPECT_THAT(cord.Chunks(), ElementsAre("Abcdefgh"));
}
TEST_P(CordTest, AppendAndPrependBufferArePrecise) {
std::string test_data(absl::cord_internal::kMaxFlatLength * 10, 'x');
absl::Cord cord1(test_data);
absl::Cord cord2(test_data);
const size_t size1 = cord1.EstimatedMemoryUsage();
const size_t size2 = cord2.EstimatedMemoryUsage();
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
memcpy(buffer.data(), "Abc", 3);
buffer.SetLength(3);
cord1.Append(std::move(buffer));
buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
memcpy(buffer.data(), "Abc", 3);
buffer.SetLength(3);
cord2.Prepend(std::move(buffer));
#ifndef NDEBUG
constexpr size_t kMaxDelta = 128 + 32;
#else
constexpr size_t kMaxDelta = 128 + 32 + 256;
#endif
EXPECT_LE(cord1.EstimatedMemoryUsage() - size1, kMaxDelta);
EXPECT_LE(cord2.EstimatedMemoryUsage() - size2, kMaxDelta);
EXPECT_EQ(cord1, absl::StrCat(test_data, "Abc"));
EXPECT_EQ(cord2, absl::StrCat("Abc", test_data));
}
TEST_P(CordTest, PrependSmallBuffer) {
absl::Cord cord;
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
ASSERT_THAT(buffer.capacity(), Le(15));
memcpy(buffer.data(), "Abc", 3);
buffer.SetLength(3);
cord.Prepend(std::move(buffer));
EXPECT_EQ(buffer.length(), 0);
EXPECT_GT(buffer.capacity(), 0);
buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
memcpy(buffer.data(), "defgh", 5);
buffer.SetLength(5);
cord.Prepend(std::move(buffer));
EXPECT_EQ(buffer.length(), 0);
EXPECT_GT(buffer.capacity(), 0);
EXPECT_THAT(cord.Chunks(), ElementsAre("defghAbc"));
}
TEST_P(CordTest, AppendLargeBuffer) {
absl::Cord cord;
std::string s1(700, '1');
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(s1.size());
memcpy(buffer.data(), s1.data(), s1.size());
buffer.SetLength(s1.size());
cord.Append(std::move(buffer));
EXPECT_EQ(buffer.length(), 0);
EXPECT_GT(buffer.capacity(), 0);
std::string s2(1000, '2');
buffer = absl::CordBuffer::CreateWithDefaultLimit(s2.size());
memcpy(buffer.data(), s2.data(), s2.size());
buffer.SetLength(s2.size());
cord.Append(std::move(buffer));
EXPECT_EQ(buffer.length(), 0);
EXPECT_GT(buffer.capacity(), 0);
EXPECT_THAT(cord.Chunks(), ElementsAre(s1, s2));
}
TEST_P(CordTest, PrependLargeBuffer) {
absl::Cord cord;
std::string s1(700, '1');
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(s1.size());
memcpy(buffer.data(), s1.data(), s1.size());
buffer.SetLength(s1.size());
cord.Prepend(std::move(buffer));
EXPECT_EQ(buffer.length(), 0);
EXPECT_GT(buffer.capacity(), 0);
std::string s2(1000, '2');
buffer = absl::CordBuffer::CreateWithDefaultLimit(s2.size());
memcpy(buffer.data(), s2.data(), s2.size());
buffer.SetLength(s2.size());
cord.Prepend(std::move(buffer));
EXPECT_EQ(buffer.length(), 0);
EXPECT_GT(buffer.capacity(), 0);
EXPECT_THAT(cord.Chunks(), ElementsAre(s2, s1));
}
class CordAppendBufferTest : public testing::TestWithParam<bool> {
public:
size_t is_default() const { return GetParam(); }
static std::string ToString(testing::TestParamInfo<bool> param) {
return param.param ? "DefaultLimit" : "CustomLimit";
}
size_t limit() const {
return is_default() ? absl::CordBuffer::kDefaultLimit
: absl::CordBuffer::kCustomLimit;
}
size_t maximum_payload() const {
return is_default() ? absl::CordBuffer::MaximumPayload()
: absl::CordBuffer::MaximumPayload(limit());
}
absl::CordBuffer GetAppendBuffer(absl::Cord& cord, size_t capacity,
size_t min_capacity = 16) {
return is_default()
? cord.GetAppendBuffer(capacity, min_capacity)
: cord.GetCustomAppendBuffer(limit(), capacity, min_capacity);
}
};
INSTANTIATE_TEST_SUITE_P(WithParam, CordAppendBufferTest, testing::Bool(),
CordAppendBufferTest::ToString);
TEST_P(CordAppendBufferTest, GetAppendBufferOnEmptyCord) {
absl::Cord cord;
absl::CordBuffer buffer = GetAppendBuffer(cord, 1000);
EXPECT_GE(buffer.capacity(), 1000);
EXPECT_EQ(buffer.length(), 0);
}
TEST_P(CordAppendBufferTest, GetAppendBufferOnInlinedCord) {
static constexpr int kInlinedSize = sizeof(absl::CordBuffer) - 1;
for (int size : {6, kInlinedSize - 3, kInlinedSize - 2, 1000}) {
absl::Cord cord("Abc");
absl::CordBuffer buffer = GetAppendBuffer(cord, size, 1);
EXPECT_GE(buffer.capacity(), 3 + size);
EXPECT_EQ(buffer.length(), 3);
EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc");
EXPECT_TRUE(cord.empty());
}
}
TEST_P(CordAppendBufferTest, GetAppendBufferOnInlinedCordCapacityCloseToMax) {
for (size_t dist_from_max = 0; dist_from_max <= 4; ++dist_from_max) {
absl::Cord cord("Abc");
size_t size = std::numeric_limits<size_t>::max() - dist_from_max;
absl::CordBuffer buffer = GetAppendBuffer(cord, size, 1);
EXPECT_GE(buffer.capacity(), maximum_payload());
EXPECT_EQ(buffer.length(), 3);
EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc");
EXPECT_TRUE(cord.empty());
}
}
TEST_P(CordAppendBufferTest, GetAppend | 2,552 |
#ifndef ABSL_STRINGS_SUBSTITUTE_H_
#define ABSL_STRINGS_SUBSTITUTE_H_
#include <cstring>
#include <string>
#include <type_traits>
#include <vector>
#include "absl/base/macros.h"
#include "absl/base/nullability.h"
#include "absl/base/port.h"
#include "absl/strings/ascii.h"
#include "absl/strings/escaping.h"
#include "absl/strings/internal/stringify_sink.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "absl/strings/strip.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace substitute_internal {
class Arg {
public:
Arg(absl::Nullable<const char*> value)
: piece_(absl::NullSafeStringView(value)) {}
template <typename Allocator>
Arg(
const std::basic_string<char, std::char_traits<char>, Allocator>&
value) noexcept
: piece_(value) {}
Arg(absl::string_view value)
: piece_(value) {}
Arg(char value)
: piece_(scratch_, 1) {
scratch_[0] = value;
}
Arg(short value)
: piece_(scratch_,
static_cast<size_t>(
numbers_internal::FastIntToBuffer(value, scratch_) -
scratch_)) {}
Arg(unsigned short value)
: piece_(scratch_,
static_cast<size_t>(
numbers_internal::FastIntToBuffer(value, scratch_) -
scratch_)) {}
Arg(int value)
: piece_(scratch_,
static_cast<size_t>(
numbers_internal::FastIntToBuffer(value, scratch_) -
scratch_)) {}
Arg(unsigned int value)
: piece_(scratch_,
static_cast<size_t>(
numbers_internal::FastIntToBuffer(value, scratch_) -
scratch_)) {}
Arg(long value)
: piece_(scratch_,
static_cast<size_t>(
numbers_internal::FastIntToBuffer(value, scratch_) -
scratch_)) {}
Arg(unsigned long value)
: piece_(scratch_,
static_cast<size_t>(
numbers_internal::FastIntToBuffer(value, scratch_) -
scratch_)) {}
Arg(long long value)
: piece_(scratch_,
static_cast<size_t>(
numbers_internal::FastIntToBuffer(value, scratch_) -
scratch_)) {}
Arg(unsigned long long value)
: piece_(scratch_,
static_cast<size_t>(
numbers_internal::FastIntToBuffer(value, scratch_) -
scratch_)) {}
Arg(float value)
: piece_(scratch_, numbers_internal::SixDigitsToBuffer(value, scratch_)) {
}
Arg(double value)
: piece_(scratch_, numbers_internal::SixDigitsToBuffer(value, scratch_)) {
}
Arg(bool value)
: piece_(value ? "true" : "false") {}
template <typename T, typename = typename std::enable_if<
HasAbslStringify<T>::value>::type>
Arg(
const T& v, strings_internal::StringifySink&& sink = {})
: piece_(strings_internal::ExtractStringification(sink, v)) {}
Arg(Hex hex);
Arg(Dec dec);
template <typename T,
absl::enable_if_t<
std::is_class<T>::value &&
(std::is_same<T, std::vector<bool>::reference>::value ||
std::is_same<T, std::vector<bool>::const_reference>::value)>* =
nullptr>
Arg(T value)
: Arg(static_cast<bool>(value)) {}
Arg(
absl::Nullable<const void*> value);
template <typename T,
typename = typename std::enable_if<
std::is_enum<T>{} && !std::is_convertible<T, int>{} &&
!HasAbslStringify<T>::value>::type>
Arg(T value)
: Arg(static_cast<typename std::underlying_type<T>::type>(value)) {}
Arg(const Arg&) = delete;
Arg& operator=(const Arg&) = delete;
absl::string_view piece() const { return piece_; }
private:
absl::string_view piece_;
char scratch_[numbers_internal::kFastToBufferSize];
};
void SubstituteAndAppendArray(
absl::Nonnull<std::string*> output, absl::string_view format,
absl::Nullable<const absl::string_view*> args_array, size_t num_args);
#if defined(ABSL_BAD_CALL_IF)
constexpr int CalculateOneBit(absl::Nonnull<const char*> format) {
return (*format < '0' || *format > '9') ? (*format == '$' ? 0 : -1)
: (1 << (*format - '0'));
}
constexpr const char* SkipNumber(absl::Nonnull<const char*> format) {
return !*format ? format : (format + 1);
}
constexpr int PlaceholderBitmask(absl::Nonnull<const char*> format) {
return !*format
? 0
: *format != '$' ? PlaceholderBitmask(format + 1)
: (CalculateOneBit(format + 1) |
PlaceholderBitmask(SkipNumber(format + 1)));
}
#endif
}
inline void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::string_view format) {
substitute_internal::SubstituteAndAppendArray(output, format, nullptr, 0);
}
inline void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::string_view format,
const substitute_internal::Arg& a0) {
const absl::string_view args[] = {a0.piece()};
substitute_internal::SubstituteAndAppendArray(output, format, args,
ABSL_ARRAYSIZE(args));
}
inline void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::string_view format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1) {
const absl::string_view args[] = {a0.piece(), a1.piece()};
substitute_internal::SubstituteAndAppendArray(output, format, args,
ABSL_ARRAYSIZE(args));
}
inline void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::string_view format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2) {
const absl::string_view args[] = {a0.piece(), a1.piece(), a2.piece()};
substitute_internal::SubstituteAndAppendArray(output, format, args,
ABSL_ARRAYSIZE(args));
}
inline void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::string_view format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3) {
const absl::string_view args[] = {a0.piece(), a1.piece(), a2.piece(),
a3.piece()};
substitute_internal::SubstituteAndAppendArray(output, format, args,
ABSL_ARRAYSIZE(args));
}
inline void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::string_view format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4) {
const absl::string_view args[] = {a0.piece(), a1.piece(), a2.piece(),
a3.piece(), a4.piece()};
substitute_internal::SubstituteAndAppendArray(output, format, args,
ABSL_ARRAYSIZE(args));
}
inline void SubstituteAndAppend(
absl::Nonnull<std::string*> output, absl::string_view format,
const substitute_internal::Arg& a0, const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2, const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4, const substitute_internal::Arg& a5) {
const absl::string_view args[] = {a0.piece(), a1.piece(), a2.piece(),
a3.piece(), a4.piece(), a5.piece()};
substitute_internal::SubstituteAndAppendArray(output, format, args,
ABSL_ARRAYSIZE(args));
}
inline void SubstituteAndAppend(
absl::Nonnull<std::string*> output, absl::string_view format,
const substitute_internal::Arg& a0, const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2, const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4, const substitute_internal::Arg& a5,
const substitute_internal::Arg& a6) {
const absl::string_view args[] = {a0.piece(), a1.piece(), a2.piece(),
a3.piece(), a4.piece(), a5.piece(),
a6.piece()};
substitute_internal::SubstituteAndAppendArray(output, format, args,
ABSL_ARRAYSIZE(args));
}
inline void SubstituteAndAppend(
absl::Nonnull<std::string*> output, absl::string_view format,
const substitute_internal::Arg& a0, const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2, const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4, const substitute_internal::Arg& a5,
const substitute_internal::Arg& a6, const substitute_internal::Arg& a7) {
const absl::string_view args[] = {a0.piece(), a1.piece(), a2.piece(),
a3.piece(), a4.piece(), a5.piece(),
a6.piece(), a7.piece()};
substitute_internal::SubstituteAndAppendArray(output, format, args,
ABSL_ARRAYSIZE(args));
}
inline void SubstituteAndAppend(
absl::Nonnull<std::string*> output, absl::string_view format,
const substitute_internal::Arg& a0, const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2, const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4, const substitute_internal::Arg& a5,
const substitute_internal::Arg& a6, const substitute_internal::Arg& a7,
const substitute_internal::Arg& a8) {
const absl::string_view args[] = {a0.piece(), a1.piece(), a2.piece(),
a3.piece(), a4.piece(), a5.piece(),
a6.piece(), a7.piece(), a8.piece()};
substitute_internal::SubstituteAndAppendArray(output, format, args,
ABSL_ARRAYSIZE(args));
}
inline void SubstituteAndAppend(
absl::Nonnull<std::string*> output, absl::string_view format,
const substitute_internal::Arg& a0, const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2, const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4, const substitute_internal::Arg& a5,
const substitute_internal::Arg& a6, const substitute_internal::Arg& a7,
const substitute_internal::Arg& a8, const substitute_internal::Arg& a9) {
const absl::string_view args[] = {
a0.piece(), a1.piece(), a2.piece(), a3.piece(), a4.piece(),
a5.piece(), a6.piece(), a7.piece(), a8.piece(), a9.piece()};
substitute_internal::SubstituteAndAppendArray(output, format, args,
ABSL_ARRAYSIZE(args));
}
#if defined(ABSL_BAD_CALL_IF)
void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::Nonnull<const char*> format)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 0,
"There were no substitution arguments "
"but this format string either has a $[0-9] in it or contains "
"an unescaped $ character (use $$ instead)");
void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0)
ABSL_BAD_CALL_IF(substitute_internal::PlaceholderBitmask(format) != 1,
"There was 1 substitution argument given, but "
"this format string is missing its $0, contains "
"one of $1-$9, or contains an unescaped $ character (use "
"$$ instead)");
void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 3,
"There were 2 substitution arguments given, but this format string is "
"missing its $0/$1, contains one of $2-$9, or contains an "
"unescaped $ character (use $$ instead)");
void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 7,
"There were 3 substitution arguments given, but "
"this format string is missing its $0/$1/$2, contains one of "
"$3-$9, or contains an unescaped $ character (use $$ instead)");
void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 15,
"There were 4 substitution arguments given, but "
"this format string is missing its $0-$3, contains one of "
"$4-$9, or contains an unescaped $ character (use $$ instead)");
void SubstituteAndAppend(absl::Nonnull<std::string*> output,
absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 31,
"There were 5 substitution arguments given, but "
"this format string is missing its $0-$4, contains one of "
"$5-$9, or contains an unescaped $ character (use $$ instead)");
void SubstituteAndAppend(
absl::Nonnull<std::string*> output, absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0, const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2, const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4, const substitute_internal::Arg& a5)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 63,
"There were 6 substitution arguments given, but "
"this format string is missing its $0-$5, contains one of "
"$6-$9, or contains an unescaped $ character (use $$ instead)");
void SubstituteAndAppend(
absl::Nonnull<std::string*> output, absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0, const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2, const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4, const substitute_internal::Arg& a5,
const substitute_internal::Arg& a6)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 127,
"There were 7 substitution arguments given, but "
"this format string is missing its $0-$6, contains one of "
"$7-$9, or contains an unescaped $ character (use $$ instead)");
void SubstituteAndAppend(
absl::Nonnull<std::string*> output, absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0, const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2, const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4, const substitute_internal::Arg& a5,
const substitute_internal::Arg& a6, const substitute_internal::Arg& a7)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 255,
"There were 8 substitution arguments given, but "
"this format string is missing its $0-$7, contains one of "
"$8-$9, or contains an unescaped $ character (use $$ instead)");
void SubstituteAndAppend(
absl::Nonnull<std::string*> output, absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0, const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2, const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4, const substitute_internal::Arg& a5,
const substitute_internal::Arg& a6, const substitute_internal::Arg& a7,
const substitute_internal::Arg& a8)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 511,
"There were 9 substitution arguments given, but "
"this format string is missing its $0-$8, contains a $9, or "
"contains an unescaped $ character (use $$ instead)");
void SubstituteAndAppend(
absl::Nonnull<std::string*> output, absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0, const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2, const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4, const substitute_internal::Arg& a5,
const substitute_internal::Arg& a6, const substitute_internal::Arg& a7,
const substitute_internal::Arg& a8, const substitute_internal::Arg& a9)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 1023,
"There were 10 substitution arguments given, but this "
"format string either doesn't contain all of $0 through $9 or "
"contains an unescaped $ character (use $$ instead)");
#endif
ABSL_MUST_USE_RESULT inline std::string Substitute(absl::string_view format) {
std::string result;
SubstituteAndAppend(&result, format);
return result;
}
ABSL_MUST_USE_RESULT inline std::string Substitute(
absl::string_view format, const substitute_internal::Arg& a0) {
std::string result;
SubstituteAndAppend(&result, format, a0);
return result;
}
ABSL_MUST_USE_RESULT inline std::string Substitute(
absl::string_view format, const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1) {
std::string result;
SubstituteAndAppend(&result, format, a0, a1);
return result;
}
ABSL_MUST_USE_RESULT inline std::string Substitute(
absl::string_view format, const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1, const substitute_internal::Arg& a2) {
std::string result;
SubstituteAndAppend(&result, format, a0, a1, a2);
return result;
}
ABSL_MUST_USE_RESULT inline std::string Substitute(
absl::string_view format, const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1, const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3) {
std::string result;
SubstituteAndAppend(&result, format, a0, a1, a2, a3);
return result;
}
ABSL_MUST_USE_RESULT inline std::string Substitute(
absl::string_view format, const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1, const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3, const substitute_internal::Arg& a4) {
std::string result;
SubstituteAndAppend(&result, format, a0, a1, a2, a3, a4);
return result;
}
ABSL_MUST_USE_RESULT inline std::string Substitute(
absl::string_view format, const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1, const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3, const substitute_internal::Arg& a4,
const substitute_internal::Arg& a5) {
std::string result;
SubstituteAndAppend(&result, format, a0, a1, a2, a3, a4, a5);
return result;
}
ABSL_MUST_USE_RESULT inline std::string Substitute(
absl::string_view format, const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1, const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3, const substitute_internal::Arg& a4,
const substitute_internal::Arg& a5, const substitute_internal::Arg& a6) {
std::string result;
SubstituteAndAppend(&result, format, a0, a1, a2, a3, a4, a5, a6);
return result;
}
ABSL_MUST_USE_RESULT inline std::string Substitute(
absl::string_view format, const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1, const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3, const substitute_internal::Arg& a4,
const substitute_internal::Arg& a5, const substitute_internal::Arg& a6,
const substitute_internal::Arg& a7) {
std::string result;
SubstituteAndAppend(&result, format, a0, a1, a2, a3, a4, a5, a6, a7);
return result;
}
ABSL_MUST_USE_RESULT inline std::string Substitute(
absl::string_view format, const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1, const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3, const substitute_internal::Arg& a4,
const substitute_internal::Arg& a5, const substitute_internal::Arg& a6,
const substitute_internal::Arg& a7, const substitute_internal::Arg& a8) {
std::string result;
SubstituteAndAppend(&result, format, a0, a1, a2, a3, a4, a5, a6, a7, a8);
return result;
}
ABSL_MUST_USE_RESULT inline std::string Substitute(
absl::string_view format, const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1, const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3, const substitute_internal::Arg& a4,
const substitute_internal::Arg& a5, const substitute_internal::Arg& a6,
const substitute_internal::Arg& a7, const substitute_internal::Arg& a8,
const substitute_internal::Arg& a9) {
std::string result;
SubstituteAndAppend(&result, format, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9);
return result;
}
#if defined(ABSL_BAD_CALL_IF)
std::string Substitute(absl::Nonnull<const char*> format)
ABSL_BAD_CALL_IF(substitute_internal::PlaceholderBitmask(format) != 0,
"There were no substitution arguments "
"but this format string either has a $[0-9] in it or "
"contains an unescaped $ character (use $$ instead)");
std::string Substitute(absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 1,
"There was 1 substitution argument given, but "
"this format string is missing its $0, contains one of $1-$9, "
"or contains an unescaped $ character (use $$ instead)");
std::string Substitute(absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 3,
"There were 2 substitution arguments given, but "
"this format string is missing its $0/$1, contains one of "
"$2-$9, or contains an unescaped $ character (use $$ instead)");
std::string Substitute(absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 7,
"There were 3 substitution arguments given, but "
"this format string is missing its $0/$1/$2, contains one of "
"$3-$9, or contains an unescaped $ character (use $$ instead)");
std::string Substitute(absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 15,
"There were 4 substitution arguments given, but "
"this format string is missing its $0-$3, contains one of "
"$4-$9, or contains an unescaped $ character (use $$ instead)");
std::string Substitute(absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4)
ABSL_BAD_CALL_IF(
substitute_internal::PlaceholderBitmask(format) != 31,
"There were 5 substitution arguments given, but "
"this format string is missing its $0-$4, contains one of "
"$5-$9, or contains an unescaped $ character (use $$ instead)");
std::string Substitute(absl::Nonnull<const char*> format,
const substitute_internal::Arg& a0,
const substitute_internal::Arg& a1,
const substitute_internal::Arg& a2,
const substitute_internal::Arg& a3,
const substitute_internal::Arg& a4,
const substitute_internal::Arg& a5)
ABSL_BAD_CALL_IF(
substitute_ | #include "absl/strings/substitute.h"
#include <cstdint>
#include <cstring>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
namespace {
struct MyStruct {
template <typename Sink>
friend void AbslStringify(Sink& sink, const MyStruct& s) {
sink.Append("MyStruct{.value = ");
sink.Append(absl::StrCat(s.value));
sink.Append("}");
}
int value;
};
TEST(SubstituteTest, Substitute) {
EXPECT_EQ("Hello, world!", absl::Substitute("$0, $1!", "Hello", "world"));
EXPECT_EQ("123 0.2 0.1 foo true false x",
absl::Substitute("$0 $1 $2 $3 $4 $5 $6", 123, 0.2, 0.1f,
std::string("foo"), true, false, 'x'));
EXPECT_EQ(
"-32767 65535 "
"-1234567890 3234567890 "
"-1234567890 3234567890 "
"-1234567890123456789 9234567890123456789",
absl::Substitute(
"$0 $1 $2 $3 $4 $5 $6 $7",
static_cast<short>(-32767),
static_cast<unsigned short>(65535),
-1234567890, 3234567890U, -1234567890L, 3234567890UL,
-int64_t{1234567890123456789}, uint64_t{9234567890123456789u}));
EXPECT_EQ("0 1 f ffff0ffff 0123456789abcdef",
absl::Substitute("$0$1$2$3$4 $5",
absl::Hex(0), absl::Hex(1, absl::kSpacePad2),
absl::Hex(0xf, absl::kSpacePad2),
absl::Hex(int16_t{-1}, absl::kSpacePad5),
absl::Hex(int16_t{-1}, absl::kZeroPad5),
absl::Hex(0x123456789abcdef, absl::kZeroPad16)));
EXPECT_EQ("0 115 -1-0001 81985529216486895",
absl::Substitute("$0$1$2$3$4 $5",
absl::Dec(0), absl::Dec(1, absl::kSpacePad2),
absl::Dec(0xf, absl::kSpacePad2),
absl::Dec(int16_t{-1}, absl::kSpacePad5),
absl::Dec(int16_t{-1}, absl::kZeroPad5),
absl::Dec(0x123456789abcdef, absl::kZeroPad16)));
const int* int_p = reinterpret_cast<const int*>(0x12345);
std::string str = absl::Substitute("$0", int_p);
EXPECT_EQ(absl::StrCat("0x", absl::Hex(int_p)), str);
volatile int vol = 237;
volatile int* volatile volptr = &vol;
str = absl::Substitute("$0", volptr);
EXPECT_EQ("true", str);
const uint64_t* null_p = nullptr;
str = absl::Substitute("$0", null_p);
EXPECT_EQ("NULL", str);
const char* char_p = "print me";
str = absl::Substitute("$0", char_p);
EXPECT_EQ("print me", str);
char char_buf[16];
strncpy(char_buf, "print me too", sizeof(char_buf));
str = absl::Substitute("$0", char_buf);
EXPECT_EQ("print me too", str);
char_p = nullptr;
str = absl::Substitute("$0", char_p);
EXPECT_EQ("", str);
EXPECT_EQ("b, a, c, b", absl::Substitute("$1, $0, $2, $1", "a", "b", "c"));
EXPECT_EQ("$", absl::Substitute("$$"));
EXPECT_EQ("$1", absl::Substitute("$$1"));
EXPECT_EQ("a", absl::Substitute("$0", "a"));
EXPECT_EQ("a b", absl::Substitute("$0 $1", "a", "b"));
EXPECT_EQ("a b c", absl::Substitute("$0 $1 $2", "a", "b", "c"));
EXPECT_EQ("a b c d", absl::Substitute("$0 $1 $2 $3", "a", "b", "c", "d"));
EXPECT_EQ("a b c d e",
absl::Substitute("$0 $1 $2 $3 $4", "a", "b", "c", "d", "e"));
EXPECT_EQ("a b c d e f", absl::Substitute("$0 $1 $2 $3 $4 $5", "a", "b", "c",
"d", "e", "f"));
EXPECT_EQ("a b c d e f g", absl::Substitute("$0 $1 $2 $3 $4 $5 $6", "a", "b",
"c", "d", "e", "f", "g"));
EXPECT_EQ("a b c d e f g h",
absl::Substitute("$0 $1 $2 $3 $4 $5 $6 $7", "a", "b", "c", "d", "e",
"f", "g", "h"));
EXPECT_EQ("a b c d e f g h i",
absl::Substitute("$0 $1 $2 $3 $4 $5 $6 $7 $8", "a", "b", "c", "d",
"e", "f", "g", "h", "i"));
EXPECT_EQ("a b c d e f g h i j",
absl::Substitute("$0 $1 $2 $3 $4 $5 $6 $7 $8 $9", "a", "b", "c",
"d", "e", "f", "g", "h", "i", "j"));
EXPECT_EQ("a b c d e f g h i j b0",
absl::Substitute("$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10", "a", "b", "c",
"d", "e", "f", "g", "h", "i", "j"));
const char* null_cstring = nullptr;
EXPECT_EQ("Text: ''", absl::Substitute("Text: '$0'", null_cstring));
MyStruct s1 = MyStruct{17};
MyStruct s2 = MyStruct{1043};
EXPECT_EQ("MyStruct{.value = 17}, MyStruct{.value = 1043}",
absl::Substitute("$0, $1", s1, s2));
}
TEST(SubstituteTest, SubstituteAndAppend) {
std::string str = "Hello";
absl::SubstituteAndAppend(&str, ", $0!", "world");
EXPECT_EQ("Hello, world!", str);
str.clear();
absl::SubstituteAndAppend(&str, "$0", "a");
EXPECT_EQ("a", str);
str.clear();
absl::SubstituteAndAppend(&str, "$0 $1", "a", "b");
EXPECT_EQ("a b", str);
str.clear();
absl::SubstituteAndAppend(&str, "$0 $1 $2", "a", "b", "c");
EXPECT_EQ("a b c", str);
str.clear();
absl::SubstituteAndAppend(&str, "$0 $1 $2 $3", "a", "b", "c", "d");
EXPECT_EQ("a b c d", str);
str.clear();
absl::SubstituteAndAppend(&str, "$0 $1 $2 $3 $4", "a", "b", "c", "d", "e");
EXPECT_EQ("a b c d e", str);
str.clear();
absl::SubstituteAndAppend(&str, "$0 $1 $2 $3 $4 $5", "a", "b", "c", "d", "e",
"f");
EXPECT_EQ("a b c d e f", str);
str.clear();
absl::SubstituteAndAppend(&str, "$0 $1 $2 $3 $4 $5 $6", "a", "b", "c", "d",
"e", "f", "g");
EXPECT_EQ("a b c d e f g", str);
str.clear();
absl::SubstituteAndAppend(&str, "$0 $1 $2 $3 $4 $5 $6 $7", "a", "b", "c", "d",
"e", "f", "g", "h");
EXPECT_EQ("a b c d e f g h", str);
str.clear();
absl::SubstituteAndAppend(&str, "$0 $1 $2 $3 $4 $5 $6 $7 $8", "a", "b", "c",
"d", "e", "f", "g", "h", "i");
EXPECT_EQ("a b c d e f g h i", str);
str.clear();
absl::SubstituteAndAppend(&str, "$0 $1 $2 $3 $4 $5 $6 $7 $8 $9", "a", "b",
"c", "d", "e", "f", "g", "h", "i", "j");
EXPECT_EQ("a b c d e f g h i j", str);
str.clear();
MyStruct s1 = MyStruct{17};
MyStruct s2 = MyStruct{1043};
absl::SubstituteAndAppend(&str, "$0, $1", s1, s2);
EXPECT_EQ("MyStruct{.value = 17}, MyStruct{.value = 1043}", str);
}
TEST(SubstituteTest, VectorBoolRef) {
std::vector<bool> v = {true, false};
const auto& cv = v;
EXPECT_EQ("true false true false",
absl::Substitute("$0 $1 $2 $3", v[0], v[1], cv[0], cv[1]));
std::string str = "Logic be like: ";
absl::SubstituteAndAppend(&str, "$0 $1 $2 $3", v[0], v[1], cv[0], cv[1]);
EXPECT_EQ("Logic be like: true false true false", str);
}
TEST(SubstituteTest, Enums) {
enum UnscopedEnum { kEnum0 = 0, kEnum1 = 1 };
EXPECT_EQ("0 1", absl::Substitute("$0 $1", UnscopedEnum::kEnum0,
UnscopedEnum::kEnum1));
enum class ScopedEnum { kEnum0 = 0, kEnum1 = 1 };
EXPECT_EQ("0 1",
absl::Substitute("$0 $1", ScopedEnum::kEnum0, ScopedEnum::kEnum1));
enum class ScopedEnumInt32 : int32_t { kEnum0 = 989, kEnum1 = INT32_MIN };
EXPECT_EQ("989 -2147483648",
absl::Substitute("$0 $1", ScopedEnumInt32::kEnum0,
ScopedEnumInt32::kEnum1));
enum class ScopedEnumUInt32 : uint32_t { kEnum0 = 1, kEnum1 = UINT32_MAX };
EXPECT_EQ("1 4294967295", absl::Substitute("$0 $1", ScopedEnumUInt32::kEnum0,
ScopedEnumUInt32::kEnum1));
enum class ScopedEnumInt64 : int64_t { kEnum0 = -1, kEnum1 = 42949672950 };
EXPECT_EQ("-1 42949672950", absl::Substitute("$0 $1", ScopedEnumInt64::kEnum0,
ScopedEnumInt64::kEnum1));
enum class ScopedEnumUInt64 : uint64_t { kEnum0 = 1, kEnum1 = 42949672950 };
EXPECT_EQ("1 42949672950", absl::Substitute("$0 $1", ScopedEnumUInt64::kEnum0,
ScopedEnumUInt64::kEnum1));
enum class ScopedEnumChar : signed char { kEnum0 = -1, kEnum1 = 1 };
EXPECT_EQ("-1 1", absl::Substitute("$0 $1", ScopedEnumChar::kEnum0,
ScopedEnumChar::kEnum1));
enum class ScopedEnumUChar : unsigned char {
kEnum0 = 0,
kEnum1 = 1,
kEnumMax = 255
};
EXPECT_EQ("0 1 255", absl::Substitute("$0 $1 $2", ScopedEnumUChar::kEnum0,
ScopedEnumUChar::kEnum1,
ScopedEnumUChar::kEnumMax));
enum class ScopedEnumInt16 : int16_t { kEnum0 = -100, kEnum1 = 10000 };
EXPECT_EQ("-100 10000", absl::Substitute("$0 $1", ScopedEnumInt16::kEnum0,
ScopedEnumInt16::kEnum1));
enum class ScopedEnumUInt16 : uint16_t { kEnum0 = 0, kEnum1 = 10000 };
EXPECT_EQ("0 10000", absl::Substitute("$0 $1", ScopedEnumUInt16::kEnum0,
ScopedEnumUInt16::kEnum1));
}
enum class EnumWithStringify { Many = 0, Choices = 1 };
template <typename Sink>
void AbslStringify(Sink& sink, EnumWithStringify e) {
sink.Append(e == EnumWithStringify::Many ? "Many" : "Choices");
}
TEST(SubstituteTest, AbslStringifyWithEnum) {
const auto e = EnumWithStringify::Choices;
EXPECT_EQ(absl::Substitute("$0", e), "Choices");
}
#if GTEST_HAS_DEATH_TEST
TEST(SubstituteDeathTest, SubstituteDeath) {
EXPECT_DEBUG_DEATH(
static_cast<void>(absl::Substitute(absl::string_view("-$2"), "a", "b")),
"Invalid absl::Substitute\\(\\) format string: asked for \"\\$2\", "
"but only 2 args were given.");
EXPECT_DEBUG_DEATH(
static_cast<void>(absl::Substitute(absl::string_view("-$z-"))),
"Invalid absl::Substitute\\(\\) format string: \"-\\$z-\"");
EXPECT_DEBUG_DEATH(
static_cast<void>(absl::Substitute(absl::string_view("-$"))),
"Invalid absl::Substitute\\(\\) format string: \"-\\$\"");
}
#endif
} | 2,553 |
#ifndef ABSL_STRINGS_MATCH_H_
#define ABSL_STRINGS_MATCH_H_
#include <cstring>
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
inline bool StrContains(absl::string_view haystack,
absl::string_view needle) noexcept {
return haystack.find(needle, 0) != haystack.npos;
}
inline bool StrContains(absl::string_view haystack, char needle) noexcept {
return haystack.find(needle) != haystack.npos;
}
inline bool StartsWith(absl::string_view text,
absl::string_view prefix) noexcept {
return prefix.empty() ||
(text.size() >= prefix.size() &&
memcmp(text.data(), prefix.data(), prefix.size()) == 0);
}
inline bool EndsWith(absl::string_view text,
absl::string_view suffix) noexcept {
return suffix.empty() ||
(text.size() >= suffix.size() &&
memcmp(text.data() + (text.size() - suffix.size()), suffix.data(),
suffix.size()) == 0);
}
bool StrContainsIgnoreCase(absl::string_view haystack,
absl::string_view needle) noexcept;
bool StrContainsIgnoreCase(absl::string_view haystack,
char needle) noexcept;
bool EqualsIgnoreCase(absl::string_view piece1,
absl::string_view piece2) noexcept;
bool StartsWithIgnoreCase(absl::string_view text,
absl::string_view prefix) noexcept;
bool EndsWithIgnoreCase(absl::string_view text,
absl::string_view suffix) noexcept;
absl::string_view FindLongestCommonPrefix(absl::string_view a,
absl::string_view b);
absl::string_view FindLongestCommonSuffix(absl::string_view a,
absl::string_view b);
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/match.h"
#include <algorithm>
#include <cstdint>
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/optimization.h"
#include "absl/numeric/bits.h"
#include "absl/strings/ascii.h"
#include "absl/strings/internal/memutil.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
bool EqualsIgnoreCase(absl::string_view piece1,
absl::string_view piece2) noexcept {
return (piece1.size() == piece2.size() &&
0 == absl::strings_internal::memcasecmp(piece1.data(), piece2.data(),
piece1.size()));
}
bool StrContainsIgnoreCase(absl::string_view haystack,
absl::string_view needle) noexcept {
while (haystack.size() >= needle.size()) {
if (StartsWithIgnoreCase(haystack, needle)) return true;
haystack.remove_prefix(1);
}
return false;
}
bool StrContainsIgnoreCase(absl::string_view haystack,
char needle) noexcept {
char upper_needle = absl::ascii_toupper(static_cast<unsigned char>(needle));
char lower_needle = absl::ascii_tolower(static_cast<unsigned char>(needle));
if (upper_needle == lower_needle) {
return StrContains(haystack, needle);
} else {
const char both_cstr[3] = {lower_needle, upper_needle, '\0'};
return haystack.find_first_of(both_cstr) != absl::string_view::npos;
}
}
bool StartsWithIgnoreCase(absl::string_view text,
absl::string_view prefix) noexcept {
return (text.size() >= prefix.size()) &&
EqualsIgnoreCase(text.substr(0, prefix.size()), prefix);
}
bool EndsWithIgnoreCase(absl::string_view text,
absl::string_view suffix) noexcept {
return (text.size() >= suffix.size()) &&
EqualsIgnoreCase(text.substr(text.size() - suffix.size()), suffix);
}
absl::string_view FindLongestCommonPrefix(absl::string_view a,
absl::string_view b) {
const absl::string_view::size_type limit = std::min(a.size(), b.size());
const char* const pa = a.data();
const char* const pb = b.data();
absl::string_view::size_type count = (unsigned) 0;
if (ABSL_PREDICT_FALSE(limit < 8)) {
while (ABSL_PREDICT_TRUE(count + 2 <= limit)) {
uint16_t xor_bytes = absl::little_endian::Load16(pa + count) ^
absl::little_endian::Load16(pb + count);
if (ABSL_PREDICT_FALSE(xor_bytes != 0)) {
if (ABSL_PREDICT_TRUE((xor_bytes & 0xff) == 0)) ++count;
return absl::string_view(pa, count);
}
count += 2;
}
if (ABSL_PREDICT_TRUE(count != limit)) {
if (ABSL_PREDICT_TRUE(pa[count] == pb[count])) ++count;
}
return absl::string_view(pa, count);
}
do {
uint64_t xor_bytes = absl::little_endian::Load64(pa + count) ^
absl::little_endian::Load64(pb + count);
if (ABSL_PREDICT_FALSE(xor_bytes != 0)) {
count += static_cast<uint64_t>(absl::countr_zero(xor_bytes) >> 3);
return absl::string_view(pa, count);
}
count += 8;
} while (ABSL_PREDICT_TRUE(count + 8 < limit));
count = limit - 8;
uint64_t xor_bytes = absl::little_endian::Load64(pa + count) ^
absl::little_endian::Load64(pb + count);
if (ABSL_PREDICT_TRUE(xor_bytes != 0)) {
count += static_cast<uint64_t>(absl::countr_zero(xor_bytes) >> 3);
return absl::string_view(pa, count);
}
return absl::string_view(pa, limit);
}
absl::string_view FindLongestCommonSuffix(absl::string_view a,
absl::string_view b) {
const absl::string_view::size_type limit = std::min(a.size(), b.size());
if (limit == 0) return absl::string_view();
const char* pa = a.data() + a.size() - 1;
const char* pb = b.data() + b.size() - 1;
absl::string_view::size_type count = (unsigned) 0;
while (count < limit && *pa == *pb) {
--pa;
--pb;
++count;
}
return absl::string_view(++pa, count);
}
ABSL_NAMESPACE_END
} | #include "absl/strings/match.h"
#include <string>
#include "gtest/gtest.h"
#include "absl/strings/string_view.h"
namespace {
TEST(MatchTest, StartsWith) {
const std::string s1("123\0abc", 7);
const absl::string_view a("foobar");
const absl::string_view b(s1);
const absl::string_view e;
EXPECT_TRUE(absl::StartsWith(a, a));
EXPECT_TRUE(absl::StartsWith(a, "foo"));
EXPECT_TRUE(absl::StartsWith(a, e));
EXPECT_TRUE(absl::StartsWith(b, s1));
EXPECT_TRUE(absl::StartsWith(b, b));
EXPECT_TRUE(absl::StartsWith(b, e));
EXPECT_TRUE(absl::StartsWith(e, ""));
EXPECT_FALSE(absl::StartsWith(a, b));
EXPECT_FALSE(absl::StartsWith(b, a));
EXPECT_FALSE(absl::StartsWith(e, a));
}
TEST(MatchTest, EndsWith) {
const std::string s1("123\0abc", 7);
const absl::string_view a("foobar");
const absl::string_view b(s1);
const absl::string_view e;
EXPECT_TRUE(absl::EndsWith(a, a));
EXPECT_TRUE(absl::EndsWith(a, "bar"));
EXPECT_TRUE(absl::EndsWith(a, e));
EXPECT_TRUE(absl::EndsWith(b, s1));
EXPECT_TRUE(absl::EndsWith(b, b));
EXPECT_TRUE(absl::EndsWith(b, e));
EXPECT_TRUE(absl::EndsWith(e, ""));
EXPECT_FALSE(absl::EndsWith(a, b));
EXPECT_FALSE(absl::EndsWith(b, a));
EXPECT_FALSE(absl::EndsWith(e, a));
}
TEST(MatchTest, Contains) {
absl::string_view a("abcdefg");
absl::string_view b("abcd");
absl::string_view c("efg");
absl::string_view d("gh");
EXPECT_TRUE(absl::StrContains(a, a));
EXPECT_TRUE(absl::StrContains(a, b));
EXPECT_TRUE(absl::StrContains(a, c));
EXPECT_FALSE(absl::StrContains(a, d));
EXPECT_TRUE(absl::StrContains("", ""));
EXPECT_TRUE(absl::StrContains("abc", ""));
EXPECT_FALSE(absl::StrContains("", "a"));
}
TEST(MatchTest, ContainsChar) {
absl::string_view a("abcdefg");
absl::string_view b("abcd");
EXPECT_TRUE(absl::StrContains(a, 'a'));
EXPECT_TRUE(absl::StrContains(a, 'b'));
EXPECT_TRUE(absl::StrContains(a, 'e'));
EXPECT_FALSE(absl::StrContains(a, 'h'));
EXPECT_TRUE(absl::StrContains(b, 'a'));
EXPECT_TRUE(absl::StrContains(b, 'b'));
EXPECT_FALSE(absl::StrContains(b, 'e'));
EXPECT_FALSE(absl::StrContains(b, 'h'));
EXPECT_FALSE(absl::StrContains("", 'a'));
EXPECT_FALSE(absl::StrContains("", 'a'));
}
TEST(MatchTest, ContainsNull) {
const std::string s = "foo";
const char* cs = "foo";
const absl::string_view sv("foo");
const absl::string_view sv2("foo\0bar", 4);
EXPECT_EQ(s, "foo");
EXPECT_EQ(sv, "foo");
EXPECT_NE(sv2, "foo");
EXPECT_TRUE(absl::EndsWith(s, sv));
EXPECT_TRUE(absl::StartsWith(cs, sv));
EXPECT_TRUE(absl::StrContains(cs, sv));
EXPECT_FALSE(absl::StrContains(cs, sv2));
}
TEST(MatchTest, EqualsIgnoreCase) {
std::string text = "the";
absl::string_view data(text);
EXPECT_TRUE(absl::EqualsIgnoreCase(data, "The"));
EXPECT_TRUE(absl::EqualsIgnoreCase(data, "THE"));
EXPECT_TRUE(absl::EqualsIgnoreCase(data, "the"));
EXPECT_FALSE(absl::EqualsIgnoreCase(data, "Quick"));
EXPECT_FALSE(absl::EqualsIgnoreCase(data, "then"));
}
TEST(MatchTest, StartsWithIgnoreCase) {
EXPECT_TRUE(absl::StartsWithIgnoreCase("foo", "foo"));
EXPECT_TRUE(absl::StartsWithIgnoreCase("foo", "Fo"));
EXPECT_TRUE(absl::StartsWithIgnoreCase("foo", ""));
EXPECT_FALSE(absl::StartsWithIgnoreCase("foo", "fooo"));
EXPECT_FALSE(absl::StartsWithIgnoreCase("", "fo"));
}
TEST(MatchTest, EndsWithIgnoreCase) {
EXPECT_TRUE(absl::EndsWithIgnoreCase("foo", "foo"));
EXPECT_TRUE(absl::EndsWithIgnoreCase("foo", "Oo"));
EXPECT_TRUE(absl::EndsWithIgnoreCase("foo", ""));
EXPECT_FALSE(absl::EndsWithIgnoreCase("foo", "fooo"));
EXPECT_FALSE(absl::EndsWithIgnoreCase("", "fo"));
}
TEST(MatchTest, ContainsIgnoreCase) {
EXPECT_TRUE(absl::StrContainsIgnoreCase("foo", "foo"));
EXPECT_TRUE(absl::StrContainsIgnoreCase("FOO", "Foo"));
EXPECT_TRUE(absl::StrContainsIgnoreCase("--FOO", "Foo"));
EXPECT_TRUE(absl::StrContainsIgnoreCase("FOO--", "Foo"));
EXPECT_FALSE(absl::StrContainsIgnoreCase("BAR", "Foo"));
EXPECT_FALSE(absl::StrContainsIgnoreCase("BAR", "Foo"));
EXPECT_TRUE(absl::StrContainsIgnoreCase("123456", "123456"));
EXPECT_TRUE(absl::StrContainsIgnoreCase("123456", "234"));
EXPECT_TRUE(absl::StrContainsIgnoreCase("", ""));
EXPECT_TRUE(absl::StrContainsIgnoreCase("abc", ""));
EXPECT_FALSE(absl::StrContainsIgnoreCase("", "a"));
}
TEST(MatchTest, ContainsCharIgnoreCase) {
absl::string_view a("AaBCdefg!");
absl::string_view b("AaBCd!");
EXPECT_TRUE(absl::StrContainsIgnoreCase(a, 'a'));
EXPECT_TRUE(absl::StrContainsIgnoreCase(a, 'A'));
EXPECT_TRUE(absl::StrContainsIgnoreCase(a, 'b'));
EXPECT_TRUE(absl::StrContainsIgnoreCase(a, 'B'));
EXPECT_TRUE(absl::StrContainsIgnoreCase(a, 'e'));
EXPECT_TRUE(absl::StrContainsIgnoreCase(a, 'E'));
EXPECT_FALSE(absl::StrContainsIgnoreCase(a, 'h'));
EXPECT_FALSE(absl::StrContainsIgnoreCase(a, 'H'));
EXPECT_TRUE(absl::StrContainsIgnoreCase(a, '!'));
EXPECT_FALSE(absl::StrContainsIgnoreCase(a, '?'));
EXPECT_TRUE(absl::StrContainsIgnoreCase(b, 'a'));
EXPECT_TRUE(absl::StrContainsIgnoreCase(b, 'A'));
EXPECT_TRUE(absl::StrContainsIgnoreCase(b, 'b'));
EXPECT_TRUE(absl::StrContainsIgnoreCase(b, 'B'));
EXPECT_FALSE(absl::StrContainsIgnoreCase(b, 'e'));
EXPECT_FALSE(absl::StrContainsIgnoreCase(b, 'E'));
EXPECT_FALSE(absl::StrContainsIgnoreCase(b, 'h'));
EXPECT_FALSE(absl::StrContainsIgnoreCase(b, 'H'));
EXPECT_TRUE(absl::StrContainsIgnoreCase(b, '!'));
EXPECT_FALSE(absl::StrContainsIgnoreCase(b, '?'));
EXPECT_FALSE(absl::StrContainsIgnoreCase("", 'a'));
EXPECT_FALSE(absl::StrContainsIgnoreCase("", 'A'));
EXPECT_FALSE(absl::StrContainsIgnoreCase("", '0'));
}
TEST(MatchTest, FindLongestCommonPrefix) {
EXPECT_EQ(absl::FindLongestCommonPrefix("", ""), "");
EXPECT_EQ(absl::FindLongestCommonPrefix("", "abc"), "");
EXPECT_EQ(absl::FindLongestCommonPrefix("abc", ""), "");
EXPECT_EQ(absl::FindLongestCommonPrefix("ab", "abc"), "ab");
EXPECT_EQ(absl::FindLongestCommonPrefix("abc", "ab"), "ab");
EXPECT_EQ(absl::FindLongestCommonPrefix("abc", "abd"), "ab");
EXPECT_EQ(absl::FindLongestCommonPrefix("abc", "abcd"), "abc");
EXPECT_EQ(absl::FindLongestCommonPrefix("abcd", "abcd"), "abcd");
EXPECT_EQ(absl::FindLongestCommonPrefix("abcd", "efgh"), "");
EXPECT_EQ(absl::FindLongestCommonPrefix(
absl::string_view("1234 abcdef").substr(5, 5),
absl::string_view("5678 abcdef").substr(5, 3)),
"abc");
}
TEST(MatchTest, FindLongestCommonPrefixLoad16Mismatch) {
const std::string x1 = "abcdefgh";
const std::string x2 = "abcde_";
EXPECT_EQ(absl::FindLongestCommonPrefix(x1, x2), "abcde");
EXPECT_EQ(absl::FindLongestCommonPrefix(x2, x1), "abcde");
}
TEST(MatchTest, FindLongestCommonPrefixLoad16MatchesNoLast) {
const std::string x1 = "abcdef";
const std::string x2 = "abcdef";
EXPECT_EQ(absl::FindLongestCommonPrefix(x1, x2), "abcdef");
EXPECT_EQ(absl::FindLongestCommonPrefix(x2, x1), "abcdef");
}
TEST(MatchTest, FindLongestCommonPrefixLoad16MatchesLastCharMismatches) {
const std::string x1 = "abcdefg";
const std::string x2 = "abcdef_h";
EXPECT_EQ(absl::FindLongestCommonPrefix(x1, x2), "abcdef");
EXPECT_EQ(absl::FindLongestCommonPrefix(x2, x1), "abcdef");
}
TEST(MatchTest, FindLongestCommonPrefixLoad16MatchesLastMatches) {
const std::string x1 = "abcde";
const std::string x2 = "abcdefgh";
EXPECT_EQ(absl::FindLongestCommonPrefix(x1, x2), "abcde");
EXPECT_EQ(absl::FindLongestCommonPrefix(x2, x1), "abcde");
}
TEST(MatchTest, FindLongestCommonPrefixSize8Load64Mismatches) {
const std::string x1 = "abcdefghijk";
const std::string x2 = "abcde_g_";
EXPECT_EQ(absl::FindLongestCommonPrefix(x1, x2), "abcde");
EXPECT_EQ(absl::FindLongestCommonPrefix(x2, x1), "abcde");
}
TEST(MatchTest, FindLongestCommonPrefixSize8Load64Matches) {
const std::string x1 = "abcdefgh";
const std::string x2 = "abcdefgh";
EXPECT_EQ(absl::FindLongestCommonPrefix(x1, x2), "abcdefgh");
EXPECT_EQ(absl::FindLongestCommonPrefix(x2, x1), "abcdefgh");
}
TEST(MatchTest, FindLongestCommonPrefixSize15Load64Mismatches) {
const std::string x1 = "012345670123456";
const std::string x2 = "0123456701_34_6";
EXPECT_EQ(absl::FindLongestCommonPrefix(x1, x2), "0123456701");
EXPECT_EQ(absl::FindLongestCommonPrefix(x2, x1), "0123456701");
}
TEST(MatchTest, FindLongestCommonPrefixSize15Load64Matches) {
const std::string x1 = "012345670123456";
const std::string x2 = "0123456701234567";
EXPECT_EQ(absl::FindLongestCommonPrefix(x1, x2), "012345670123456");
EXPECT_EQ(absl::FindLongestCommonPrefix(x2, x1), "012345670123456");
}
TEST(MatchTest, FindLongestCommonPrefixSizeFirstByteOfLast8BytesMismatch) {
const std::string x1 = "012345670123456701234567";
const std::string x2 = "0123456701234567_1234567";
EXPECT_EQ(absl::FindLongestCommonPrefix(x1, x2), "0123456701234567");
EXPECT_EQ(absl::FindLongestCommonPrefix(x2, x1), "0123456701234567");
}
TEST(MatchTest, FindLongestCommonPrefixLargeLastCharMismatches) {
const std::string x1(300, 'x');
std::string x2 = x1;
x2.back() = '#';
EXPECT_EQ(absl::FindLongestCommonPrefix(x1, x2), std::string(299, 'x'));
EXPECT_EQ(absl::FindLongestCommonPrefix(x2, x1), std::string(299, 'x'));
}
TEST(MatchTest, FindLongestCommonPrefixLargeFullMatch) {
const std::string x1(300, 'x');
const std::string x2 = x1;
EXPECT_EQ(absl::FindLongestCommonPrefix(x1, x2), std::string(300, 'x'));
EXPECT_EQ(absl::FindLongestCommonPrefix(x2, x1), std::string(300, 'x'));
}
TEST(MatchTest, FindLongestCommonSuffix) {
EXPECT_EQ(absl::FindLongestCommonSuffix("", ""), "");
EXPECT_EQ(absl::FindLongestCommonSuffix("", "abc"), "");
EXPECT_EQ(absl::FindLongestCommonSuffix("abc", ""), "");
EXPECT_EQ(absl::FindLongestCommonSuffix("bc", "abc"), "bc");
EXPECT_EQ(absl::FindLongestCommonSuffix("abc", "bc"), "bc");
EXPECT_EQ(absl::FindLongestCommonSuffix("abc", "dbc"), "bc");
EXPECT_EQ(absl::FindLongestCommonSuffix("bcd", "abcd"), "bcd");
EXPECT_EQ(absl::FindLongestCommonSuffix("abcd", "abcd"), "abcd");
EXPECT_EQ(absl::FindLongestCommonSuffix("abcd", "efgh"), "");
EXPECT_EQ(absl::FindLongestCommonSuffix(
absl::string_view("1234 abcdef").substr(5, 5),
absl::string_view("5678 abcdef").substr(7, 3)),
"cde");
}
} | 2,554 |
#ifndef ABSL_STRINGS_CHARCONV_H_
#define ABSL_STRINGS_CHARCONV_H_
#include <system_error>
#include "absl/base/config.h"
#include "absl/base/nullability.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
enum class chars_format {
scientific = 1,
fixed = 2,
hex = 4,
general = fixed | scientific,
};
struct from_chars_result {
absl::Nonnull<const char*> ptr;
std::errc ec;
};
absl::from_chars_result from_chars(absl::Nonnull<const char*> first,
absl::Nonnull<const char*> last,
double& value,
chars_format fmt = chars_format::general);
absl::from_chars_result from_chars(absl::Nonnull<const char*> first,
absl::Nonnull<const char*> last,
float& value,
chars_format fmt = chars_format::general);
inline constexpr chars_format operator&(chars_format lhs, chars_format rhs) {
return static_cast<chars_format>(static_cast<int>(lhs) &
static_cast<int>(rhs));
}
inline constexpr chars_format operator|(chars_format lhs, chars_format rhs) {
return static_cast<chars_format>(static_cast<int>(lhs) |
static_cast<int>(rhs));
}
inline constexpr chars_format operator^(chars_format lhs, chars_format rhs) {
return static_cast<chars_format>(static_cast<int>(lhs) ^
static_cast<int>(rhs));
}
inline constexpr chars_format operator~(chars_format arg) {
return static_cast<chars_format>(~static_cast<int>(arg));
}
inline chars_format& operator&=(chars_format& lhs, chars_format rhs) {
lhs = lhs & rhs;
return lhs;
}
inline chars_format& operator|=(chars_format& lhs, chars_format rhs) {
lhs = lhs | rhs;
return lhs;
}
inline chars_format& operator^=(chars_format& lhs, chars_format rhs) {
lhs = lhs ^ rhs;
return lhs;
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/charconv.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <system_error>
#include "absl/base/casts.h"
#include "absl/base/config.h"
#include "absl/base/nullability.h"
#include "absl/numeric/bits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/internal/charconv_bigint.h"
#include "absl/strings/internal/charconv_parse.h"
#ifdef ABSL_BIT_PACK_FLOATS
#error ABSL_BIT_PACK_FLOATS cannot be directly set
#elif defined(__x86_64__) || defined(_M_X64)
#define ABSL_BIT_PACK_FLOATS 1
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
template <typename FloatType>
struct FloatTraits;
template <>
struct FloatTraits<double> {
using mantissa_t = uint64_t;
static constexpr int kTargetBits = 64;
static constexpr int kTargetExponentBits = 11;
static constexpr int kTargetMantissaBits = 53;
static constexpr int kMaxExponent = 971;
static constexpr int kMinNormalExponent = -1074;
static constexpr int kExponentBias = 1023;
static constexpr int kEiselLemireShift = 9;
static constexpr uint64_t kEiselLemireMask = uint64_t{0x1FF};
static constexpr int kEiselLemireMinInclusiveExp10 = -324 - 18;
static constexpr int kEiselLemireMaxExclusiveExp10 = 309;
static double MakeNan(absl::Nonnull<const char*> tagp) {
#if ABSL_HAVE_BUILTIN(__builtin_nan)
return __builtin_nan(tagp);
#else
using namespace std;
return nan(tagp);
#endif
}
static double Make(mantissa_t mantissa, int exponent, bool sign) {
#ifndef ABSL_BIT_PACK_FLOATS
using namespace std;
return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
#else
constexpr uint64_t kMantissaMask =
(uint64_t{1} << (kTargetMantissaBits - 1)) - 1;
uint64_t dbl = static_cast<uint64_t>(sign) << 63;
if (mantissa > kMantissaMask) {
dbl += static_cast<uint64_t>(exponent + 1023 + kTargetMantissaBits - 1)
<< 52;
mantissa &= kMantissaMask;
} else {
assert(exponent == kMinNormalExponent);
}
dbl += mantissa;
return absl::bit_cast<double>(dbl);
#endif
}
};
template <>
struct FloatTraits<float> {
using mantissa_t = uint32_t;
static constexpr int kTargetBits = 32;
static constexpr int kTargetExponentBits = 8;
static constexpr int kTargetMantissaBits = 24;
static constexpr int kMaxExponent = 104;
static constexpr int kMinNormalExponent = -149;
static constexpr int kExponentBias = 127;
static constexpr int kEiselLemireShift = 38;
static constexpr uint64_t kEiselLemireMask = uint64_t{0x3FFFFFFFFF};
static constexpr int kEiselLemireMinInclusiveExp10 = -46 - 18;
static constexpr int kEiselLemireMaxExclusiveExp10 = 39;
static float MakeNan(absl::Nonnull<const char*> tagp) {
#if ABSL_HAVE_BUILTIN(__builtin_nanf)
return __builtin_nanf(tagp);
#else
using namespace std;
return std::nanf(tagp);
#endif
}
static float Make(mantissa_t mantissa, int exponent, bool sign) {
#ifndef ABSL_BIT_PACK_FLOATS
using namespace std;
return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
#else
constexpr uint32_t kMantissaMask =
(uint32_t{1} << (kTargetMantissaBits - 1)) - 1;
uint32_t flt = static_cast<uint32_t>(sign) << 31;
if (mantissa > kMantissaMask) {
flt += static_cast<uint32_t>(exponent + 127 + kTargetMantissaBits - 1)
<< 23;
mantissa &= kMantissaMask;
} else {
assert(exponent == kMinNormalExponent);
}
flt += mantissa;
return absl::bit_cast<float>(flt);
#endif
}
};
extern const uint64_t kPower10MantissaHighTable[];
extern const uint64_t kPower10MantissaLowTable[];
constexpr int kPower10TableMinInclusive = -342;
constexpr int kPower10TableMaxExclusive = 309;
uint64_t Power10Mantissa(int n) {
return kPower10MantissaHighTable[n - kPower10TableMinInclusive];
}
int Power10Exponent(int n) {
return (217706 * n >> 16) - 63;
}
bool Power10Overflow(int n) { return n >= kPower10TableMaxExclusive; }
bool Power10Underflow(int n) { return n < kPower10TableMinInclusive; }
bool Power10Exact(int n) { return n >= 0 && n <= 27; }
constexpr int kOverflow = 99999;
constexpr int kUnderflow = -99999;
struct CalculatedFloat {
uint64_t mantissa = 0;
int exponent = 0;
};
int BitWidth(uint128 value) {
if (Uint128High64(value) == 0) {
return static_cast<int>(bit_width(Uint128Low64(value)));
}
return 128 - countl_zero(Uint128High64(value));
}
template <typename FloatType>
int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
const int normal_shift =
mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
const int minimum_shift =
FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
return std::max(normal_shift, minimum_shift);
}
int TruncateToBitWidth(int bit_width, absl::Nonnull<uint128*> value) {
const int current_bit_width = BitWidth(*value);
const int shift = current_bit_width - bit_width;
*value >>= shift;
return shift;
}
template <typename FloatType>
bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
absl::Nonnull<FloatType*> value) {
if (input.type == strings_internal::FloatType::kNan) {
constexpr ptrdiff_t kNanBufferSize = 128;
#if (defined(__GNUC__) && !defined(__clang__)) || \
(defined(__clang__) && __clang_major__ < 7)
volatile char n_char_sequence[kNanBufferSize];
#else
char n_char_sequence[kNanBufferSize];
#endif
if (input.subrange_begin == nullptr) {
n_char_sequence[0] = '\0';
} else {
ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
nan_size = std::min(nan_size, kNanBufferSize - 1);
std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
n_char_sequence[nan_size] = '\0';
}
char* nan_argument = const_cast<char*>(n_char_sequence);
*value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
: FloatTraits<FloatType>::MakeNan(nan_argument);
return true;
}
if (input.type == strings_internal::FloatType::kInfinity) {
*value = negative ? -std::numeric_limits<FloatType>::infinity()
: std::numeric_limits<FloatType>::infinity();
return true;
}
if (input.mantissa == 0) {
*value = negative ? -0.0 : 0.0;
return true;
}
return false;
}
template <typename FloatType>
void EncodeResult(const CalculatedFloat& calculated, bool negative,
absl::Nonnull<absl::from_chars_result*> result,
absl::Nonnull<FloatType*> value) {
if (calculated.exponent == kOverflow) {
result->ec = std::errc::result_out_of_range;
*value = negative ? -std::numeric_limits<FloatType>::max()
: std::numeric_limits<FloatType>::max();
return;
} else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
result->ec = std::errc::result_out_of_range;
*value = negative ? -0.0 : 0.0;
return;
}
*value = FloatTraits<FloatType>::Make(
static_cast<typename FloatTraits<FloatType>::mantissa_t>(
calculated.mantissa),
calculated.exponent, negative);
}
uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
absl::Nonnull<bool*> output_exact) {
if (shift <= 0) {
*output_exact = input_exact;
return static_cast<uint64_t>(value << -shift);
}
if (shift >= 128) {
*output_exact = true;
return 0;
}
*output_exact = true;
const uint128 shift_mask = (uint128(1) << shift) - 1;
const uint128 halfway_point = uint128(1) << (shift - 1);
const uint128 shifted_bits = value & shift_mask;
value >>= shift;
if (shifted_bits > halfway_point) {
return static_cast<uint64_t>(value + 1);
}
if (shifted_bits == halfway_point) {
if ((value & 1) == 1 || !input_exact) {
++value;
}
return static_cast<uint64_t>(value);
}
if (!input_exact && shifted_bits == halfway_point - 1) {
*output_exact = false;
}
return static_cast<uint64_t>(value);
}
bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
const strings_internal::ParsedFloat& parsed_decimal) {
absl::strings_internal::BigUnsigned<84> exact_mantissa;
int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
guess_mantissa = guess_mantissa * 2 + 1;
guess_exponent -= 1;
absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
int comparison;
if (exact_exponent >= 0) {
lhs.MultiplyByFiveToTheNth(exact_exponent);
absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
if (exact_exponent > guess_exponent) {
lhs.ShiftLeft(exact_exponent - guess_exponent);
} else {
rhs.ShiftLeft(guess_exponent - exact_exponent);
}
comparison = Compare(lhs, rhs);
} else {
absl::strings_internal::BigUnsigned<84> rhs =
absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
rhs.MultiplyBy(guess_mantissa);
if (exact_exponent > guess_exponent) {
lhs.ShiftLeft(exact_exponent - guess_exponent);
} else {
rhs.ShiftLeft(guess_exponent - exact_exponent);
}
comparison = Compare(lhs, rhs);
}
if (comparison < 0) {
return false;
} else if (comparison > 0) {
return true;
} else {
return (guess_mantissa & 2) == 2;
}
}
template <typename FloatType>
CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
CalculatedFloat result;
if (mantissa == uint64_t{1} << FloatTraits<FloatType>::kTargetMantissaBits) {
mantissa >>= 1;
exponent += 1;
}
if (exponent > FloatTraits<FloatType>::kMaxExponent) {
result.exponent = kOverflow;
} else if (mantissa == 0) {
result.exponent = kUnderflow;
} else {
result.exponent = exponent;
result.mantissa = mantissa;
}
return result;
}
template <typename FloatType>
CalculatedFloat CalculateFromParsedHexadecimal(
const strings_internal::ParsedFloat& parsed_hex) {
uint64_t mantissa = parsed_hex.mantissa;
int exponent = parsed_hex.exponent;
int mantissa_width = static_cast<int>(bit_width(mantissa));
const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
bool result_exact;
exponent += shift;
mantissa = ShiftRightAndRound(mantissa, shift,
true, &result_exact);
return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
}
template <typename FloatType>
CalculatedFloat CalculateFromParsedDecimal(
const strings_internal::ParsedFloat& parsed_decimal) {
CalculatedFloat result;
if (Power10Underflow(parsed_decimal.exponent)) {
result.exponent = kUnderflow;
return result;
} else if (Power10Overflow(parsed_decimal.exponent)) {
result.exponent = kOverflow;
return result;
}
uint128 wide_binary_mantissa = parsed_decimal.mantissa;
wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
int binary_exponent = Power10Exponent(parsed_decimal.exponent);
bool mantissa_exact;
int mantissa_width;
if (parsed_decimal.subrange_begin) {
mantissa_width = 58;
mantissa_exact = false;
binary_exponent +=
TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
} else if (!Power10Exact(parsed_decimal.exponent)) {
mantissa_width = 63;
mantissa_exact = false;
binary_exponent +=
TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
} else {
mantissa_width = BitWidth(wide_binary_mantissa);
mantissa_exact = true;
}
const int shift =
NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
bool result_exact;
binary_exponent += shift;
uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
mantissa_exact, &result_exact);
if (!result_exact) { | #include "absl/strings/charconv.h"
#include <cfloat>
#include <cmath>
#include <cstdlib>
#include <functional>
#include <limits>
#include <string>
#include <system_error>
#include "gtest/gtest.h"
#include "absl/strings/internal/pow10_helper.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#ifdef _MSC_FULL_VER
#define ABSL_COMPILER_DOES_EXACT_ROUNDING 0
#define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 0
#else
#define ABSL_COMPILER_DOES_EXACT_ROUNDING 1
#define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 1
#endif
namespace {
using absl::strings_internal::Pow10;
#if ABSL_COMPILER_DOES_EXACT_ROUNDING
void TestDoubleParse(absl::string_view str, double expected_number) {
SCOPED_TRACE(str);
double actual_number = 0.0;
absl::from_chars_result result =
absl::from_chars(str.data(), str.data() + str.length(), actual_number);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(result.ptr, str.data() + str.length());
EXPECT_EQ(actual_number, expected_number);
}
void TestFloatParse(absl::string_view str, float expected_number) {
SCOPED_TRACE(str);
float actual_number = 0.0;
absl::from_chars_result result =
absl::from_chars(str.data(), str.data() + str.length(), actual_number);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(result.ptr, str.data() + str.length());
EXPECT_EQ(actual_number, expected_number);
}
#define FROM_CHARS_TEST_DOUBLE(number) \
{ \
TestDoubleParse(#number, number); \
TestDoubleParse("-" #number, -number); \
}
#define FROM_CHARS_TEST_FLOAT(number) \
{ \
TestFloatParse(#number, number##f); \
TestFloatParse("-" #number, -number##f); \
}
TEST(FromChars, NearRoundingCases) {
FROM_CHARS_TEST_DOUBLE(5.e125);
FROM_CHARS_TEST_DOUBLE(69.e267);
FROM_CHARS_TEST_DOUBLE(999.e-026);
FROM_CHARS_TEST_DOUBLE(7861.e-034);
FROM_CHARS_TEST_DOUBLE(75569.e-254);
FROM_CHARS_TEST_DOUBLE(928609.e-261);
FROM_CHARS_TEST_DOUBLE(9210917.e080);
FROM_CHARS_TEST_DOUBLE(84863171.e114);
FROM_CHARS_TEST_DOUBLE(653777767.e273);
FROM_CHARS_TEST_DOUBLE(5232604057.e-298);
FROM_CHARS_TEST_DOUBLE(27235667517.e-109);
FROM_CHARS_TEST_DOUBLE(653532977297.e-123);
FROM_CHARS_TEST_DOUBLE(3142213164987.e-294);
FROM_CHARS_TEST_DOUBLE(46202199371337.e-072);
FROM_CHARS_TEST_DOUBLE(231010996856685.e-073);
FROM_CHARS_TEST_DOUBLE(9324754620109615.e212);
FROM_CHARS_TEST_DOUBLE(78459735791271921.e049);
FROM_CHARS_TEST_DOUBLE(272104041512242479.e200);
FROM_CHARS_TEST_DOUBLE(6802601037806061975.e198);
FROM_CHARS_TEST_DOUBLE(20505426358836677347.e-221);
FROM_CHARS_TEST_DOUBLE(836168422905420598437.e-234);
FROM_CHARS_TEST_DOUBLE(4891559871276714924261.e222);
FROM_CHARS_TEST_FLOAT(5.e-20);
FROM_CHARS_TEST_FLOAT(67.e14);
FROM_CHARS_TEST_FLOAT(985.e15);
FROM_CHARS_TEST_FLOAT(7693.e-42);
FROM_CHARS_TEST_FLOAT(55895.e-16);
FROM_CHARS_TEST_FLOAT(996622.e-44);
FROM_CHARS_TEST_FLOAT(7038531.e-32);
FROM_CHARS_TEST_FLOAT(60419369.e-46);
FROM_CHARS_TEST_FLOAT(702990899.e-20);
FROM_CHARS_TEST_FLOAT(6930161142.e-48);
FROM_CHARS_TEST_FLOAT(25933168707.e-13);
FROM_CHARS_TEST_FLOAT(596428896559.e20);
FROM_CHARS_TEST_DOUBLE(9.e-265);
FROM_CHARS_TEST_DOUBLE(85.e-037);
FROM_CHARS_TEST_DOUBLE(623.e100);
FROM_CHARS_TEST_DOUBLE(3571.e263);
FROM_CHARS_TEST_DOUBLE(81661.e153);
FROM_CHARS_TEST_DOUBLE(920657.e-023);
FROM_CHARS_TEST_DOUBLE(4603285.e-024);
FROM_CHARS_TEST_DOUBLE(87575437.e-309);
FROM_CHARS_TEST_DOUBLE(245540327.e122);
FROM_CHARS_TEST_DOUBLE(6138508175.e120);
FROM_CHARS_TEST_DOUBLE(83356057653.e193);
FROM_CHARS_TEST_DOUBLE(619534293513.e124);
FROM_CHARS_TEST_DOUBLE(2335141086879.e218);
FROM_CHARS_TEST_DOUBLE(36167929443327.e-159);
FROM_CHARS_TEST_DOUBLE(609610927149051.e-255);
FROM_CHARS_TEST_DOUBLE(3743626360493413.e-165);
FROM_CHARS_TEST_DOUBLE(94080055902682397.e-242);
FROM_CHARS_TEST_DOUBLE(899810892172646163.e283);
FROM_CHARS_TEST_DOUBLE(7120190517612959703.e120);
FROM_CHARS_TEST_DOUBLE(25188282901709339043.e-252);
FROM_CHARS_TEST_DOUBLE(308984926168550152811.e-052);
FROM_CHARS_TEST_DOUBLE(6372891218502368041059.e064);
FROM_CHARS_TEST_FLOAT(3.e-23);
FROM_CHARS_TEST_FLOAT(57.e18);
FROM_CHARS_TEST_FLOAT(789.e-35);
FROM_CHARS_TEST_FLOAT(2539.e-18);
FROM_CHARS_TEST_FLOAT(76173.e28);
FROM_CHARS_TEST_FLOAT(887745.e-11);
FROM_CHARS_TEST_FLOAT(5382571.e-37);
FROM_CHARS_TEST_FLOAT(82381273.e-35);
FROM_CHARS_TEST_FLOAT(750486563.e-38);
FROM_CHARS_TEST_FLOAT(3752432815.e-39);
FROM_CHARS_TEST_FLOAT(75224575729.e-45);
FROM_CHARS_TEST_FLOAT(459926601011.e15);
}
#undef FROM_CHARS_TEST_DOUBLE
#undef FROM_CHARS_TEST_FLOAT
#endif
float ToFloat(absl::string_view s) {
float f;
absl::from_chars(s.data(), s.data() + s.size(), f);
return f;
}
double ToDouble(absl::string_view s) {
double d;
absl::from_chars(s.data(), s.data() + s.size(), d);
return d;
}
TEST(FromChars, NearRoundingCasesExplicit) {
EXPECT_EQ(ToDouble("5.e125"), ldexp(6653062250012735, 365));
EXPECT_EQ(ToDouble("69.e267"), ldexp(4705683757438170, 841));
EXPECT_EQ(ToDouble("999.e-026"), ldexp(6798841691080350, -129));
EXPECT_EQ(ToDouble("7861.e-034"), ldexp(8975675289889240, -153));
EXPECT_EQ(ToDouble("75569.e-254"), ldexp(6091718967192243, -880));
EXPECT_EQ(ToDouble("928609.e-261"), ldexp(7849264900213743, -900));
EXPECT_EQ(ToDouble("9210917.e080"), ldexp(8341110837370930, 236));
EXPECT_EQ(ToDouble("84863171.e114"), ldexp(4625202867375927, 353));
EXPECT_EQ(ToDouble("653777767.e273"), ldexp(5068902999763073, 884));
EXPECT_EQ(ToDouble("5232604057.e-298"), ldexp(5741343011915040, -1010));
EXPECT_EQ(ToDouble("27235667517.e-109"), ldexp(6707124626673586, -380));
EXPECT_EQ(ToDouble("653532977297.e-123"), ldexp(7078246407265384, -422));
EXPECT_EQ(ToDouble("3142213164987.e-294"), ldexp(8219991337640559, -988));
EXPECT_EQ(ToDouble("46202199371337.e-072"), ldexp(5224462102115359, -246));
EXPECT_EQ(ToDouble("231010996856685.e-073"), ldexp(5224462102115359, -247));
EXPECT_EQ(ToDouble("9324754620109615.e212"), ldexp(5539753864394442, 705));
EXPECT_EQ(ToDouble("78459735791271921.e049"), ldexp(8388176519442766, 166));
EXPECT_EQ(ToDouble("272104041512242479.e200"), ldexp(5554409530847367, 670));
EXPECT_EQ(ToDouble("6802601037806061975.e198"), ldexp(5554409530847367, 668));
EXPECT_EQ(ToDouble("20505426358836677347.e-221"),
ldexp(4524032052079546, -722));
EXPECT_EQ(ToDouble("836168422905420598437.e-234"),
ldexp(5070963299887562, -760));
EXPECT_EQ(ToDouble("4891559871276714924261.e222"),
ldexp(6452687840519111, 757));
EXPECT_EQ(ToFloat("5.e-20"), ldexpf(15474250, -88));
EXPECT_EQ(ToFloat("67.e14"), ldexpf(12479722, 29));
EXPECT_EQ(ToFloat("985.e15"), ldexpf(14333636, 36));
EXPECT_EQ(ToFloat("7693.e-42"), ldexpf(10979816, -150));
EXPECT_EQ(ToFloat("55895.e-16"), ldexpf(12888509, -61));
EXPECT_EQ(ToFloat("996622.e-44"), ldexpf(14224264, -150));
EXPECT_EQ(ToFloat("7038531.e-32"), ldexpf(11420669, -107));
EXPECT_EQ(ToFloat("60419369.e-46"), ldexpf(8623340, -150));
EXPECT_EQ(ToFloat("702990899.e-20"), ldexpf(16209866, -61));
EXPECT_EQ(ToFloat("6930161142.e-48"), ldexpf(9891056, -150));
EXPECT_EQ(ToFloat("25933168707.e-13"), ldexpf(11138211, -32));
EXPECT_EQ(ToFloat("596428896559.e20"), ldexpf(12333860, 82));
EXPECT_EQ(ToDouble("9.e-265"), ldexp(8168427841980010, -930));
EXPECT_EQ(ToDouble("85.e-037"), ldexp(6360455125664090, -169));
EXPECT_EQ(ToDouble("623.e100"), ldexp(6263531988747231, 289));
EXPECT_EQ(ToDouble("3571.e263"), ldexp(6234526311072170, 833));
EXPECT_EQ(ToDouble("81661.e153"), ldexp(6696636728760206, 472));
EXPECT_EQ(ToDouble("920657.e-023"), ldexp(5975405561110124, -109));
EXPECT_EQ(ToDouble("4603285.e-024"), ldexp(5975405561110124, -110));
EXPECT_EQ(ToDouble("87575437.e-309"), ldexp(8452160731874668, -1053));
EXPECT_EQ(ToDouble("245540327.e122"), ldexp(4985336549131723, 381));
EXPECT_EQ(ToDouble("6138508175.e120"), ldexp(4985336549131723, 379));
EXPECT_EQ(ToDouble("83356057653.e193"), ldexp(5986732817132056, 625));
EXPECT_EQ(ToDouble("619534293513.e124"), ldexp(4798406992060657, 399));
EXPECT_EQ(ToDouble("2335141086879.e218"), ldexp(5419088166961646, 713));
EXPECT_EQ(ToDouble("36167929443327.e-159"), ldexp(8135819834632444, -536));
EXPECT_EQ(ToDouble("609610927149051.e-255"), ldexp(4576664294594737, -850));
EXPECT_EQ(ToDouble("3743626360493413.e-165"), ldexp(6898586531774201, -549));
EXPECT_EQ(ToDouble("94080055902682397.e-242"), ldexp(6273271706052298, -800));
EXPECT_EQ(ToDouble("899810892172646163.e283"), ldexp(7563892574477827, 947));
EXPECT_EQ(ToDouble("7120190517612959703.e120"), ldexp(5385467232557565, 409));
EXPECT_EQ(ToDouble("25188282901709339043.e-252"),
ldexp(5635662608542340, -825));
EXPECT_EQ(ToDouble("308984926168550152811.e-052"),
ldexp(5644774693823803, -157));
EXPECT_EQ(ToDouble("6372891218502368041059.e064"),
ldexp(4616868614322430, 233));
EXPECT_EQ(ToFloat("3.e-23"), ldexpf(9507380, -98));
EXPECT_EQ(ToFloat("57.e18"), ldexpf(12960300, 42));
EXPECT_EQ(ToFloat("789.e-35"), ldexpf(10739312, -130));
EXPECT_EQ(ToFloat("2539.e-18"), ldexpf(11990089, -72));
EXPECT_EQ(ToFloat("76173.e28"), ldexpf(9845130, 86));
EXPECT_EQ(ToFloat("887745.e-11"), ldexpf(9760860, -40));
EXPECT_EQ(ToFloat("5382571.e-37"), ldexpf(11447463, -124));
EXPECT_EQ(ToFloat("82381273.e-35"), ldexpf(8554961, -113));
EXPECT_EQ(ToFloat("750486563.e-38"), ldexpf(9975678, -120));
EXPECT_EQ(ToFloat("3752432815.e-39"), ldexpf(9975678, -121));
EXPECT_EQ(ToFloat("75224575729.e-45"), ldexpf(13105970, -137));
EXPECT_EQ(ToFloat("459926601011.e15"), ldexpf(12466336, 65));
}
template <typename FloatType>
void TestHalfwayValue(const std::string& mantissa, int exponent,
FloatType expected_low, FloatType expected_high,
FloatType expected_half) {
std::string low_rep = mantissa;
low_rep[low_rep.size() - 1] -= 1;
absl::StrAppend(&low_rep, std::string(1000, '9'), "e", exponent);
FloatType actual_low = 0;
absl::from_chars(low_rep.data(), low_rep.data() + low_rep.size(), actual_low);
EXPECT_EQ(expected_low, actual_low);
std::string high_rep =
absl::StrCat(mantissa, std::string(1000, '0'), "1e", exponent);
FloatType actual_high = 0;
absl::from_chars(high_rep.data(), high_rep.data() + high_rep.size(),
actual_high);
EXPECT_EQ(expected_high, actual_high);
std::string halfway_rep = absl::StrCat(mantissa, "e", exponent);
FloatType actual_half = 0;
absl::from_chars(halfway_rep.data(), halfway_rep.data() + halfway_rep.size(),
actual_half);
EXPECT_EQ(expected_half, actual_half);
}
TEST(FromChars, DoubleRounding) {
const double zero = 0.0;
const double first_subnormal = nextafter(zero, 1.0);
const double second_subnormal = nextafter(first_subnormal, 1.0);
const double first_normal = DBL_MIN;
const double last_subnormal = nextafter(first_normal, 0.0);
const double second_normal = nextafter(first_normal, 1.0);
const double last_normal = DBL_MAX;
const double penultimate_normal = nextafter(last_normal, 0.0);
TestHalfwayValue(
"2."
"470328229206232720882843964341106861825299013071623822127928412503377536"
"351043759326499181808179961898982823477228588654633283551779698981993873"
"980053909390631503565951557022639229085839244910518443593180284993653615"
"250031937045767824921936562366986365848075700158576926990370631192827955"
"855133292783433840935197801553124659726357957462276646527282722005637400"
"648549997709659947045402082816622623785739345073633900796776193057750674"
"017632467360096895134053553745851666113422376667860416215968046191446729"
"184030053005753084904876539171138659164623952491262365388187963623937328"
"042389101867234849766823508986338858792562830275599565752445550725518931"
"369083625477918694866799496832404970582102851318545139621383772282614543"
"7693412532098591327667236328125",
-324, zero, first_subnormal, zero);
TestHalfwayValue(
"7."
"410984687618698162648531893023320585475897039214871466383785237510132609"
"053131277979497545424539885696948470431685765963899850655339096945981621"
"940161728171894510697854671067917687257517734731555330779540854980960845"
"750095811137303474765809687100959097544227100475730780971111893578483867"
"565399878350301522805593404659373979179073872386829939581848166016912201"
"945649993128979841136206248449867871357218035220901702390328579173252022"
"052897402080290685402160661237554998340267130003581248647904138574340187"
"552090159017259254714629617513415977493871857473787096164563890871811984"
"127167305601704549300470526959016576377688490826798697257336652176556794"
"107250876433756084600398490497214911746308553955635418864151316847843631"
"3080237596295773983001708984375",
-324, first_subnormal, second_subnormal, second_subnormal);
TestHalfwayValue(
"2."
"225073858507201136057409796709131975934819546351645648023426109724822222"
"021076945516529523908135087914149158913039621106870086438694594645527657"
"207407820621743379988141063267329253552286881372149012981122451451889849"
"057222307285255133155755015914397476397983411801999323962548289017107081"
"850690630666655994938275772572015763062690663332647565300009245888316433"
"037779791869612049497390377829704905051080609940730262937128958950003583"
"799967207254304360284078895771796150945516748243471030702609144621572289"
"880258182545180325707018860872113128079512233426288368622321503775666622"
"503982534335974568884423900265498198385487948292206894721689831099698365"
"846814022854243330660339850886445804001034933970427567186443383770486037"
"86162277173854562306587467901408672332763671875",
-308, last_subnormal, first_normal, first_normal);
TestHalfwayValue(
"2."
"225073858507201630123055637955676152503612414573018013083228724049586647"
"606759446192036794116886953213985520549032000903434781884412325572184367"
"563347617020518175998922941393629966742598285899994830148971433555578567"
"693279306015978183162142425067962460785295885199272493577688320732492479"
"924816869232247165964934329258783950102250973957579510571600738343645738"
"494324192997092179207389919761694314131497173265255020084997973676783743"
"155205818804439163810572367791175177756227497413804253387084478193655533"
"073867420834526162513029462022730109054820067654020201547112002028139700"
"141575259123440177362244273712468151750189745559978653234255886219611516"
"335924167958029604477064946470184777360934300451421683607013647479513962"
"13837722826145437693412532098591327667236328125",
-308, first_normal, second_normal, first_normal);
TestHalfwayValue(
"1."
"797693134862315608353258760581052985162070023416521662616611746258695532"
"672923265745300992879465492467506314903358770175220871059269879629062776"
"047355692132901909191523941804762171253349609463563872612866401980290377"
"995141836029815117562837277714038305214839639239356331336428021390916694"
"57927874464075218944",
308, penultimate_normal, last_normal, penultimate_normal);
}
TEST(FromChars, FloatRounding) {
const float zero = 0.0;
const float first_subnormal = nextafterf(zero, 1.0);
const float second_subnormal = nextafterf(first_subnormal, 1.0);
const float first_normal = FLT_MIN;
const float last_subnormal = nextafterf(first_normal, 0.0);
const float second_normal = nextafterf(first_normal, 1.0);
const float last_normal = FLT_MAX;
const float penultimate_normal = nextafterf(last_normal, 0.0);
TestHalfwayValue(
"7."
"006492321624085354618647916449580656401309709382578858785341419448955413"
"42930300743319094181060791015625",
-46, zero, first_subnormal, zero);
TestHalfwayValue(
"2."
"101947696487225606385594374934874196920392912814773657635602425834686624"
"028790902229957282543182373046875",
-45, first_subnormal, second_subnormal, second_subnormal);
TestHalfwayValue(
"1."
"175494280757364291727882991035766513322858992758990427682963118425003064"
"9651730385585324256680905818939208984375",
-38, last_subnormal, first_normal, first_normal);
TestHalfwayValue(
"1."
"175494420887210724209590083408724842314472120785184615334540294131831453"
"9442813071445925743319094181060791015625",
-38, first_normal, second_normal, first_normal);
TestHalfwayValue("3.40282336497324057985868971510891282432", 38,
penultimate_normal, last_normal, penultimate_normal);
}
TEST(FromChars, Underflow) {
double d;
float f;
absl::from_chars_result result;
std::string negative_underflow = "-1e-1000";
const char* begin = negative_underflow.data();
const char* end = begin + negative_underflow.size();
d = 100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(d));
EXPECT_GE(d, -std::numeric_limits<double>::min());
f = 100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(f));
EXPECT_GE(f, -std::numeric_limits<float>::min());
std::string positive_underflow = "1e-1000";
begin = positive_underflow.data();
end = begin + positive_underflow.size();
d = -100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(d));
EXPECT_LE(d, std::numeric_limits<double>::min());
f = -100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(f));
EXPECT_LE(f, std::numeric_limits<float>::min());
}
TEST(FromChars, Overflow) {
double d;
float f;
absl::from_chars_result result;
std::string negative_overflow = "-1e1000";
const char* begin = negative_overflow.data();
const char* end = begin + negative_overflow.size();
d = 100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(d));
EXPECT_EQ(d, -std::numeric_limits<double>::max());
f = 100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_TRUE(std::signbit(f));
EXPECT_EQ(f, -std::numeric_limits<float>::max());
std::string positive_overflow = "1e1000";
begin = positive_overflow.data();
end = begin + positive_overflow.size();
d = -100.0;
result = absl::from_chars(begin, end, d);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(d));
EXPECT_EQ(d, std::numeric_limits<double>::max());
f = -100.0;
result = absl::from_chars(begin, end, f);
EXPECT_EQ(result.ptr, end);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_FALSE(std::signbit(f));
EXPECT_EQ(f, std::numeric_limits<float>::max());
}
TEST(FromChars, RegressionTestsFromFuzzer) {
absl::string_view src = "0x21900000p00000000099";
float f;
auto result = absl::from_chars(src.data(), src.data() + src.size(), f);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
}
TEST(FromChars, ReturnValuePtr) {
double d;
absl::from_chars_result result;
std::string normal = "3.14@#$%@#$%";
result = absl::from_chars(normal.data(), normal.data() + normal.size(), d);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(result.ptr - normal.data(), 4);
std::string overflow = "1e1000@#$%@#$%";
result = absl::from_chars(overflow.data(),
overflow.data() + overflow.size(), d);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_EQ(result.ptr - overflow.data(), 6);
std::string garbage = "#$%@#$%";
result = absl::from_chars(garbage.data(),
garbage.data() + garbage.size(), d);
EXPECT_EQ(result.ec, std::errc::invalid_argument);
EXPECT_EQ(result.ptr - garbage.data(), 0);
}
TEST(FromChars, TestVersusStrtod) {
for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
for (int exponent = -300; exponent < 300; ++exponent) {
std::string candidate = absl::StrCat(mantissa, "e", exponent);
double strtod_value = strtod(candidate.c_str(), nullptr);
double absl_value = 0;
absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
absl_value);
ASSERT_EQ(strtod_value, absl_value) << candidate;
}
}
}
TEST(FromChars, TestVersusStrtof) {
for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
for (int exponent = -43; exponent < 32; ++exponent) {
std::string candidate = absl::StrCat(mantissa, "e", exponent);
float strtod_value = strtof(candidate.c_str(), nullptr);
float absl_value = 0;
absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
absl_value);
ASSERT_EQ(strtod_value, absl_value) << candidate;
}
}
}
template <typename Float>
bool Identical(Float a, Float b) {
return 0 == memcmp(&a, &b, sizeof(Float));
}
TEST(FromChars, NaNDoubles) {
for (std::string n_char_sequence :
{"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
"8000000000000", "abc123", "legal_but_unexpected",
"99999999999999999999999", "_"}) {
std::string input = absl::StrCat("nan(", n_char_sequence, ")");
SCOPED_TRACE(input);
double from_chars_double;
absl::from_chars(input.data(), input.data() + input.size(),
from_chars_double);
double std_nan_double = std::nan(n_char_sequence.c_str());
EXPECT_TRUE(Identical(from_chars_double, std_nan_double));
#if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
double strtod_double = strtod(input.c_str(), nullptr);
EXPECT_TRUE(Identical(from_chars_double, strtod_double));
#endif
std::string negative_input = "-" + input;
double negative_from_chars_double;
absl::from_chars(negative_input.data(),
negative_input.data() + negative_input.size(),
negative_from_chars_double);
EXPECT_TRUE(std::signbit(negative_from_chars_double));
EXPECT_FALSE(Identical(negative_from_chars_double, from_chars_double));
from_chars_double = std::copysign(from_chars_double, -1.0);
EXPECT_TRUE(Identical(negative_from_chars_double, from_chars_double));
}
}
TEST(FromChars, NaNFloats) {
for (std::string n_char_sequence :
{"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
"8000000000000", "abc123", "legal_but_unexpected",
"99999999999999999999999", "_"}) {
std::string input = absl::StrCat("nan(", n_char_sequence, ")");
SCOPED_TRACE(input);
float from_chars_float;
absl::from_chars(input.data(), input.data() + input.size(),
from_chars_float);
float std_nan_float = std::nanf(n_char_sequence.c_str());
EXPECT_TRUE(Identical(from_chars_float, std_nan_float));
#if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
float strtof_float = strtof(input.c_str(), nullptr);
EXPECT_TRUE(Identical(from_chars_float, strtof_float));
#endif
std::string negative_input = "-" + input;
float negative_from_chars_float;
absl::from_chars(negative_input.data(),
negative_input.data() + negative_input.size(),
negative_from_chars_float);
EXPECT_TRUE(std::signbit(negative_from_chars_float));
EXPECT_FALSE(Identical(negative_from_chars_float, from_chars_float));
from_chars_float = std::copysign(from_chars_float, -1.0f);
EXPECT_TRUE(Identical(negative_from_chars_float, from_chars_float));
}
}
int NextStep(int step) {
return step + (step >> 2) + 1;
}
template <typename Float>
void TestOverflowAndUnderflow(
const std::function<std::string(int)>& input_generator,
const std::function<Float(int)>& expected_generator, int lower_bound,
int upper_bound) {
int index, step;
for (index = lower_bound, step = 1; index < upper_bound;
index += step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float expected = expected_generator(index);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(expected, actual)
<< absl::StrFormat("%a vs %a", expected, actual);
}
for (index = upper_bound, step = 1; index > lower_bound;
index -= step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float expected = expected_generator(index);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc());
EXPECT_EQ(expected, actual)
<< absl::StrFormat("%a vs %a", expected, actual);
}
for (index = lower_bound - 1, step = 1; index > -1000000;
index -= step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_LT(actual, 1.0);
}
for (index = upper_bound + 1, step = 1; index < 1000000;
index += step, step = NextStep(step)) {
std::string input = input_generator(index);
SCOPED_TRACE(input);
Float actual;
auto result =
absl::from_chars(input.data(), input.data() + input.size(), actual);
EXPECT_EQ(result.ec, std::errc::result_out_of_range);
EXPECT_GT(actual, 1.0);
}
}
TEST(FromChars, HexdecimalDoubleLimits) {
auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
auto expected_gen = [](int index) { return std::ldexp(1.0, index); };
TestOverflowAndUnderflow<doub | 2,555 |
#ifndef ABSL_STRINGS_ASCII_H_
#define ABSL_STRINGS_ASCII_H_
#include <algorithm>
#include <cstddef>
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/nullability.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace ascii_internal {
ABSL_DLL extern const unsigned char kPropertyBits[256];
ABSL_DLL extern const char kToUpper[256];
ABSL_DLL extern const char kToLower[256];
}
inline bool ascii_isalpha(unsigned char c) {
return (ascii_internal::kPropertyBits[c] & 0x01) != 0;
}
inline bool ascii_isalnum(unsigned char c) {
return (ascii_internal::kPropertyBits[c] & 0x04) != 0;
}
inline bool ascii_isspace(unsigned char c) {
return (ascii_internal::kPropertyBits[c] & 0x08) != 0;
}
inline bool ascii_ispunct(unsigned char c) {
return (ascii_internal::kPropertyBits[c] & 0x10) != 0;
}
inline bool ascii_isblank(unsigned char c) {
return (ascii_internal::kPropertyBits[c] & 0x20) != 0;
}
inline bool ascii_iscntrl(unsigned char c) {
return (ascii_internal::kPropertyBits[c] & 0x40) != 0;
}
inline bool ascii_isxdigit(unsigned char c) {
return (ascii_internal::kPropertyBits[c] & 0x80) != 0;
}
inline bool ascii_isdigit(unsigned char c) { return c >= '0' && c <= '9'; }
inline bool ascii_isprint(unsigned char c) { return c >= 32 && c < 127; }
inline bool ascii_isgraph(unsigned char c) { return c > 32 && c < 127; }
inline bool ascii_isupper(unsigned char c) { return c >= 'A' && c <= 'Z'; }
inline bool ascii_islower(unsigned char c) { return c >= 'a' && c <= 'z'; }
inline bool ascii_isascii(unsigned char c) { return c < 128; }
inline char ascii_tolower(unsigned char c) {
return ascii_internal::kToLower[c];
}
void AsciiStrToLower(absl::Nonnull<std::string*> s);
ABSL_MUST_USE_RESULT inline std::string AsciiStrToLower(absl::string_view s) {
std::string result(s);
absl::AsciiStrToLower(&result);
return result;
}
inline char ascii_toupper(unsigned char c) {
return ascii_internal::kToUpper[c];
}
void AsciiStrToUpper(absl::Nonnull<std::string*> s);
ABSL_MUST_USE_RESULT inline std::string AsciiStrToUpper(absl::string_view s) {
std::string result(s);
absl::AsciiStrToUpper(&result);
return result;
}
ABSL_MUST_USE_RESULT inline absl::string_view StripLeadingAsciiWhitespace(
absl::string_view str) {
auto it = std::find_if_not(str.begin(), str.end(), absl::ascii_isspace);
return str.substr(static_cast<size_t>(it - str.begin()));
}
inline void StripLeadingAsciiWhitespace(absl::Nonnull<std::string*> str) {
auto it = std::find_if_not(str->begin(), str->end(), absl::ascii_isspace);
str->erase(str->begin(), it);
}
ABSL_MUST_USE_RESULT inline absl::string_view StripTrailingAsciiWhitespace(
absl::string_view str) {
auto it = std::find_if_not(str.rbegin(), str.rend(), absl::ascii_isspace);
return str.substr(0, static_cast<size_t>(str.rend() - it));
}
inline void StripTrailingAsciiWhitespace(absl::Nonnull<std::string*> str) {
auto it = std::find_if_not(str->rbegin(), str->rend(), absl::ascii_isspace);
str->erase(static_cast<size_t>(str->rend() - it));
}
ABSL_MUST_USE_RESULT inline absl::string_view StripAsciiWhitespace(
absl::string_view str) {
return StripTrailingAsciiWhitespace(StripLeadingAsciiWhitespace(str));
}
inline void StripAsciiWhitespace(absl::Nonnull<std::string*> str) {
StripTrailingAsciiWhitespace(str);
StripLeadingAsciiWhitespace(str);
}
void RemoveExtraAsciiWhitespace(absl::Nonnull<std::string*> str);
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/ascii.h"
#include <climits>
#include <cstddef>
#include <cstring>
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/nullability.h"
#include "absl/base/optimization.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace ascii_internal {
ABSL_DLL const unsigned char kPropertyBits[256] = {
0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,
0x40, 0x68, 0x48, 0x48, 0x48, 0x48, 0x40, 0x40,
0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,
0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40,
0x28, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,
0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,
0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84, 0x84,
0x84, 0x84, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,
0x10, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x10, 0x10, 0x10, 0x10, 0x10,
0x10, 0x85, 0x85, 0x85, 0x85, 0x85, 0x85, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
0x05, 0x05, 0x05, 0x10, 0x10, 0x10, 0x10, 0x40,
};
ABSL_DLL const char kToLower[256] = {
'\x00', '\x01', '\x02', '\x03', '\x04', '\x05', '\x06', '\x07',
'\x08', '\x09', '\x0a', '\x0b', '\x0c', '\x0d', '\x0e', '\x0f',
'\x10', '\x11', '\x12', '\x13', '\x14', '\x15', '\x16', '\x17',
'\x18', '\x19', '\x1a', '\x1b', '\x1c', '\x1d', '\x1e', '\x1f',
'\x20', '\x21', '\x22', '\x23', '\x24', '\x25', '\x26', '\x27',
'\x28', '\x29', '\x2a', '\x2b', '\x2c', '\x2d', '\x2e', '\x2f',
'\x30', '\x31', '\x32', '\x33', '\x34', '\x35', '\x36', '\x37',
'\x38', '\x39', '\x3a', '\x3b', '\x3c', '\x3d', '\x3e', '\x3f',
'\x40', 'a', 'b', 'c', 'd', 'e', 'f', 'g',
'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',
'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
'x', 'y', 'z', '\x5b', '\x5c', '\x5d', '\x5e', '\x5f',
'\x60', '\x61', '\x62', '\x63', '\x64', '\x65', '\x66', '\x67',
'\x68', '\x69', '\x6a', '\x6b', '\x6c', '\x6d', '\x6e', '\x6f',
'\x70', '\x71', '\x72', '\x73', '\x74', '\x75', '\x76', '\x77',
'\x78', '\x79', '\x7a', '\x7b', '\x7c', '\x7d', '\x7e', '\x7f',
'\x80', '\x81', '\x82', '\x83', '\x84', '\x85', '\x86', '\x87',
'\x88', '\x89', '\x8a', '\x8b', '\x8c', '\x8d', '\x8e', '\x8f',
'\x90', '\x91', '\x92', '\x93', '\x94', '\x95', '\x96', '\x97',
'\x98', '\x99', '\x9a', '\x9b', '\x9c', '\x9d', '\x9e', '\x9f',
'\xa0', '\xa1', '\xa2', '\xa3', '\xa4', '\xa5', '\xa6', '\xa7',
'\xa8', '\xa9', '\xaa', '\xab', '\xac', '\xad', '\xae', '\xaf',
'\xb0', '\xb1', '\xb2', '\xb3', '\xb4', '\xb5', '\xb6', '\xb7',
'\xb8', '\xb9', '\xba', '\xbb', '\xbc', '\xbd', '\xbe', '\xbf',
'\xc0', '\xc1', '\xc2', '\xc3', '\xc4', '\xc5', '\xc6', '\xc7',
'\xc8', '\xc9', '\xca', '\xcb', '\xcc', '\xcd', '\xce', '\xcf',
'\xd0', '\xd1', '\xd2', '\xd3', '\xd4', '\xd5', '\xd6', '\xd7',
'\xd8', '\xd9', '\xda', '\xdb', '\xdc', '\xdd', '\xde', '\xdf',
'\xe0', '\xe1', '\xe2', '\xe3', '\xe4', '\xe5', '\xe6', '\xe7',
'\xe8', '\xe9', '\xea', '\xeb', '\xec', '\xed', '\xee', '\xef',
'\xf0', '\xf1', '\xf2', '\xf3', '\xf4', '\xf5', '\xf6', '\xf7',
'\xf8', '\xf9', '\xfa', '\xfb', '\xfc', '\xfd', '\xfe', '\xff',
};
ABSL_DLL const char kToUpper[256] = {
'\x00', '\x01', '\x02', '\x03', '\x04', '\x05', '\x06', '\x07',
'\x08', '\x09', '\x0a', '\x0b', '\x0c', '\x0d', '\x0e', '\x0f',
'\x10', '\x11', '\x12', '\x13', '\x14', '\x15', '\x16', '\x17',
'\x18', '\x19', '\x1a', '\x1b', '\x1c', '\x1d', '\x1e', '\x1f',
'\x20', '\x21', '\x22', '\x23', '\x24', '\x25', '\x26', '\x27',
'\x28', '\x29', '\x2a', '\x2b', '\x2c', '\x2d', '\x2e', '\x2f',
'\x30', '\x31', '\x32', '\x33', '\x34', '\x35', '\x36', '\x37',
'\x38', '\x39', '\x3a', '\x3b', '\x3c', '\x3d', '\x3e', '\x3f',
'\x40', '\x41', '\x42', '\x43', '\x44', '\x45', '\x46', '\x47',
'\x48', '\x49', '\x4a', '\x4b', '\x4c', '\x4d', '\x4e', '\x4f',
'\x50', '\x51', '\x52', '\x53', '\x54', '\x55', '\x56', '\x57',
'\x58', '\x59', '\x5a', '\x5b', '\x5c', '\x5d', '\x5e', '\x5f',
'\x60', 'A', 'B', 'C', 'D', 'E', 'F', 'G',
'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',
'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
'X', 'Y', 'Z', '\x7b', '\x7c', '\x7d', '\x7e', '\x7f',
'\x80', '\x81', '\x82', '\x83', '\x84', '\x85', '\x86', '\x87',
'\x88', '\x89', '\x8a', '\x8b', '\x8c', '\x8d', '\x8e', '\x8f',
'\x90', '\x91', '\x92', '\x93', '\x94', '\x95', '\x96', '\x97',
'\x98', '\x99', '\x9a', '\x9b', '\x9c', '\x9d', '\x9e', '\x9f',
'\xa0', '\xa1', '\xa2', '\xa3', '\xa4', '\xa5', '\xa6', '\xa7',
'\xa8', '\xa9', '\xaa', '\xab', '\xac', '\xad', '\xae', '\xaf',
'\xb0', '\xb1', '\xb2', '\xb3', '\xb4', '\xb5', '\xb6', '\xb7',
'\xb8', '\xb9', '\xba', '\xbb', '\xbc', '\xbd', '\xbe', '\xbf',
'\xc0', '\xc1', '\xc2', '\xc3', '\xc4', '\xc5', '\xc6', '\xc7',
'\xc8', '\xc9', '\xca', '\xcb', '\xcc', '\xcd', '\xce', '\xcf',
'\xd0', '\xd1', '\xd2', '\xd3', '\xd4', '\xd5', '\xd6', '\xd7',
'\xd8', '\xd9', '\xda', '\xdb', '\xdc', '\xdd', '\xde', '\xdf',
'\xe0', '\xe1', '\xe2', '\xe3', '\xe4', '\xe5', '\xe6', '\xe7',
'\xe8', '\xe9', '\xea', '\xeb', '\xec', '\xed', '\xee', '\xef',
'\xf0', '\xf1', '\xf2', '\xf3', '\xf4', '\xf5', '\xf6', '\xf7',
'\xf8', '\xf9', '\xfa', '\xfb', '\xfc', '\xfd', '\xfe', '\xff',
};
template <bool ToUpper>
constexpr bool AsciiInAZRange(unsigned char c) {
constexpr unsigned char sub = (ToUpper ? 'a' : 'A') - SCHAR_MIN;
constexpr signed char threshold = SCHAR_MIN + 26;
unsigned char u = c - sub;
return static_cast<signed char>(u) < threshold;
}
template <bool ToUpper>
ABSL_ATTRIBUTE_ALWAYS_INLINE inline constexpr void AsciiStrCaseFoldImpl(
absl::Nonnull<char*> p, size_t size) {
constexpr unsigned char kAsciiCaseBitFlip = 'a' ^ 'A';
for (size_t i = 0; i < size; ++i) {
unsigned char v = static_cast<unsigned char>(p[i]);
v ^= AsciiInAZRange<ToUpper>(v) ? kAsciiCaseBitFlip : 0;
p[i] = static_cast<char>(v);
}
}
constexpr size_t kCaseFoldThreshold = 16;
template <bool ToUpper>
ABSL_ATTRIBUTE_NOINLINE constexpr void AsciiStrCaseFoldLong(
absl::Nonnull<char*> p, size_t size) {
ABSL_ASSUME(size >= kCaseFoldThreshold);
AsciiStrCaseFoldImpl<ToUpper>(p, size);
}
template <bool ToUpper>
constexpr void AsciiStrCaseFold(absl::Nonnull<char*> p, size_t size) {
size < kCaseFoldThreshold ? AsciiStrCaseFoldImpl<ToUpper>(p, size)
: AsciiStrCaseFoldLong<ToUpper>(p, size);
}
static constexpr size_t ValidateAsciiCasefold() {
constexpr size_t num_chars = 1 + CHAR_MAX - CHAR_MIN;
size_t incorrect_index = 0;
char lowered[num_chars] = {};
char uppered[num_chars] = {};
for (unsigned int i = 0; i < num_chars; ++i) {
uppered[i] = lowered[i] = static_cast<char>(i);
}
AsciiStrCaseFold<false>(&lowered[0], num_chars);
AsciiStrCaseFold<true>(&uppered[0], num_chars);
for (size_t i = 0; i < num_chars; ++i) {
const char ch = static_cast<char>(i),
ch_upper = ('a' <= ch && ch <= 'z' ? 'A' + (ch - 'a') : ch),
ch_lower = ('A' <= ch && ch <= 'Z' ? 'a' + (ch - 'A') : ch);
if (uppered[i] != ch_upper || lowered[i] != ch_lower) {
incorrect_index = i > 0 ? i : num_chars;
break;
}
}
return incorrect_index;
}
static_assert(ValidateAsciiCasefold() == 0, "error in case conversion");
}
void AsciiStrToLower(absl::Nonnull<std::string*> s) {
return ascii_internal::AsciiStrCaseFold<false>(&(*s)[0], s->size());
}
void AsciiStrToUpper(absl::Nonnull<std::string*> s) {
return ascii_internal::AsciiStrCaseFold<true>(&(*s)[0], s->size());
}
void RemoveExtraAsciiWhitespace(absl::Nonnull<std::string*> str) {
auto stripped = StripAsciiWhitespace(*str);
if (stripped.empty()) {
str->clear();
return;
}
auto input_it = stripped.begin();
auto input_end = stripped.end();
auto output_it = &(*str)[0];
bool is_ws = false;
for (; input_it < input_end; ++input_it) {
if (is_ws) {
is_ws = absl::ascii_isspace(static_cast<unsigned char>(*input_it));
if (is_ws) --output_it;
} else {
is_ws = absl::ascii_isspace(static_cast<unsigned char>(*input_it));
}
*output_it = *input_it;
++output_it;
}
str->erase(static_cast<size_t>(output_it - &(*str)[0]));
}
ABSL_NAMESPACE_END
} | #include "absl/strings/ascii.h"
#include <algorithm>
#include <cctype>
#include <clocale>
#include <cstring>
#include <string>
#include "gtest/gtest.h"
#include "absl/base/macros.h"
#include "absl/strings/string_view.h"
namespace {
TEST(AsciiIsFoo, All) {
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))
EXPECT_TRUE(absl::ascii_isalpha(c)) << ": failed on " << c;
else
EXPECT_TRUE(!absl::ascii_isalpha(c)) << ": failed on " << c;
}
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if ((c >= '0' && c <= '9'))
EXPECT_TRUE(absl::ascii_isdigit(c)) << ": failed on " << c;
else
EXPECT_TRUE(!absl::ascii_isdigit(c)) << ": failed on " << c;
}
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if (absl::ascii_isalpha(c) || absl::ascii_isdigit(c))
EXPECT_TRUE(absl::ascii_isalnum(c)) << ": failed on " << c;
else
EXPECT_TRUE(!absl::ascii_isalnum(c)) << ": failed on " << c;
}
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if (i != '\0' && strchr(" \r\n\t\v\f", i))
EXPECT_TRUE(absl::ascii_isspace(c)) << ": failed on " << c;
else
EXPECT_TRUE(!absl::ascii_isspace(c)) << ": failed on " << c;
}
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if (i >= 32 && i < 127)
EXPECT_TRUE(absl::ascii_isprint(c)) << ": failed on " << c;
else
EXPECT_TRUE(!absl::ascii_isprint(c)) << ": failed on " << c;
}
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if (absl::ascii_isprint(c) && !absl::ascii_isspace(c) &&
!absl::ascii_isalnum(c)) {
EXPECT_TRUE(absl::ascii_ispunct(c)) << ": failed on " << c;
} else {
EXPECT_TRUE(!absl::ascii_ispunct(c)) << ": failed on " << c;
}
}
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if (i == ' ' || i == '\t')
EXPECT_TRUE(absl::ascii_isblank(c)) << ": failed on " << c;
else
EXPECT_TRUE(!absl::ascii_isblank(c)) << ": failed on " << c;
}
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if (i < 32 || i == 127)
EXPECT_TRUE(absl::ascii_iscntrl(c)) << ": failed on " << c;
else
EXPECT_TRUE(!absl::ascii_iscntrl(c)) << ": failed on " << c;
}
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if (absl::ascii_isdigit(c) || (i >= 'A' && i <= 'F') ||
(i >= 'a' && i <= 'f')) {
EXPECT_TRUE(absl::ascii_isxdigit(c)) << ": failed on " << c;
} else {
EXPECT_TRUE(!absl::ascii_isxdigit(c)) << ": failed on " << c;
}
}
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if (i > 32 && i < 127)
EXPECT_TRUE(absl::ascii_isgraph(c)) << ": failed on " << c;
else
EXPECT_TRUE(!absl::ascii_isgraph(c)) << ": failed on " << c;
}
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if (i >= 'A' && i <= 'Z')
EXPECT_TRUE(absl::ascii_isupper(c)) << ": failed on " << c;
else
EXPECT_TRUE(!absl::ascii_isupper(c)) << ": failed on " << c;
}
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if (i >= 'a' && i <= 'z')
EXPECT_TRUE(absl::ascii_islower(c)) << ": failed on " << c;
else
EXPECT_TRUE(!absl::ascii_islower(c)) << ": failed on " << c;
}
for (unsigned char c = 0; c < 128; c++) {
EXPECT_TRUE(absl::ascii_isascii(c)) << ": failed on " << c;
}
for (int i = 128; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
EXPECT_TRUE(!absl::ascii_isascii(c)) << ": failed on " << c;
}
}
TEST(AsciiIsFoo, SameAsIsFoo) {
#ifndef __ANDROID__
const char* old_locale = setlocale(LC_CTYPE, "C");
ASSERT_TRUE(old_locale != nullptr);
#endif
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
EXPECT_EQ(isalpha(c) != 0, absl::ascii_isalpha(c)) << c;
EXPECT_EQ(isdigit(c) != 0, absl::ascii_isdigit(c)) << c;
EXPECT_EQ(isalnum(c) != 0, absl::ascii_isalnum(c)) << c;
EXPECT_EQ(isspace(c) != 0, absl::ascii_isspace(c)) << c;
EXPECT_EQ(ispunct(c) != 0, absl::ascii_ispunct(c)) << c;
EXPECT_EQ(isblank(c) != 0, absl::ascii_isblank(c)) << c;
EXPECT_EQ(iscntrl(c) != 0, absl::ascii_iscntrl(c)) << c;
EXPECT_EQ(isxdigit(c) != 0, absl::ascii_isxdigit(c)) << c;
EXPECT_EQ(isprint(c) != 0, absl::ascii_isprint(c)) << c;
EXPECT_EQ(isgraph(c) != 0, absl::ascii_isgraph(c)) << c;
EXPECT_EQ(isupper(c) != 0, absl::ascii_isupper(c)) << c;
EXPECT_EQ(islower(c) != 0, absl::ascii_islower(c)) << c;
EXPECT_EQ(isascii(c) != 0, absl::ascii_isascii(c)) << c;
}
#ifndef __ANDROID__
ASSERT_TRUE(setlocale(LC_CTYPE, old_locale));
#endif
}
TEST(AsciiToFoo, All) {
#ifndef __ANDROID__
const char* old_locale = setlocale(LC_CTYPE, "C");
ASSERT_TRUE(old_locale != nullptr);
#endif
for (int i = 0; i < 256; i++) {
const auto c = static_cast<unsigned char>(i);
if (absl::ascii_islower(c))
EXPECT_EQ(absl::ascii_toupper(c), 'A' + (i - 'a')) << c;
else
EXPECT_EQ(absl::ascii_toupper(c), static_cast<char>(i)) << c;
if (absl::ascii_isupper(c))
EXPECT_EQ(absl::ascii_tolower(c), 'a' + (i - 'A')) << c;
else
EXPECT_EQ(absl::ascii_tolower(c), static_cast<char>(i)) << c;
EXPECT_EQ(static_cast<char>(tolower(i)), absl::ascii_tolower(c)) << c;
EXPECT_EQ(static_cast<char>(toupper(i)), absl::ascii_toupper(c)) << c;
}
#ifndef __ANDROID__
ASSERT_TRUE(setlocale(LC_CTYPE, old_locale));
#endif
}
TEST(AsciiStrTo, Lower) {
const char buf[] = "ABCDEF";
const std::string str("GHIJKL");
const std::string str2("MNOPQR");
const absl::string_view sp(str2);
const std::string long_str("ABCDEFGHIJKLMNOPQRSTUVWXYZ1!a");
std::string mutable_str("_`?@[{AMNOPQRSTUVWXYZ");
EXPECT_EQ("abcdef", absl::AsciiStrToLower(buf));
EXPECT_EQ("ghijkl", absl::AsciiStrToLower(str));
EXPECT_EQ("mnopqr", absl::AsciiStrToLower(sp));
EXPECT_EQ("abcdefghijklmnopqrstuvwxyz1!a", absl::AsciiStrToLower(long_str));
absl::AsciiStrToLower(&mutable_str);
EXPECT_EQ("_`?@[{amnopqrstuvwxyz", mutable_str);
char mutable_buf[] = "Mutable";
std::transform(mutable_buf, mutable_buf + strlen(mutable_buf),
mutable_buf, absl::ascii_tolower);
EXPECT_STREQ("mutable", mutable_buf);
}
TEST(AsciiStrTo, Upper) {
const char buf[] = "abcdef";
const std::string str("ghijkl");
const std::string str2("_`?@[{amnopqrstuvwxyz");
const absl::string_view sp(str2);
const std::string long_str("abcdefghijklmnopqrstuvwxyz1!A");
EXPECT_EQ("ABCDEF", absl::AsciiStrToUpper(buf));
EXPECT_EQ("GHIJKL", absl::AsciiStrToUpper(str));
EXPECT_EQ("_`?@[{AMNOPQRSTUVWXYZ", absl::AsciiStrToUpper(sp));
EXPECT_EQ("ABCDEFGHIJKLMNOPQRSTUVWXYZ1!A", absl::AsciiStrToUpper(long_str));
char mutable_buf[] = "Mutable";
std::transform(mutable_buf, mutable_buf + strlen(mutable_buf),
mutable_buf, absl::ascii_toupper);
EXPECT_STREQ("MUTABLE", mutable_buf);
}
TEST(StripLeadingAsciiWhitespace, FromStringView) {
EXPECT_EQ(absl::string_view{},
absl::StripLeadingAsciiWhitespace(absl::string_view{}));
EXPECT_EQ("foo", absl::StripLeadingAsciiWhitespace({"foo"}));
EXPECT_EQ("foo", absl::StripLeadingAsciiWhitespace({"\t \n\f\r\n\vfoo"}));
EXPECT_EQ("foo foo\n ",
absl::StripLeadingAsciiWhitespace({"\t \n\f\r\n\vfoo foo\n "}));
EXPECT_EQ(absl::string_view{}, absl::StripLeadingAsciiWhitespace(
{"\t \n\f\r\v\n\t \n\f\r\v\n"}));
}
TEST(StripLeadingAsciiWhitespace, InPlace) {
std::string str;
absl::StripLeadingAsciiWhitespace(&str);
EXPECT_EQ("", str);
str = "foo";
absl::StripLeadingAsciiWhitespace(&str);
EXPECT_EQ("foo", str);
str = "\t \n\f\r\n\vfoo";
absl::StripLeadingAsciiWhitespace(&str);
EXPECT_EQ("foo", str);
str = "\t \n\f\r\n\vfoo foo\n ";
absl::StripLeadingAsciiWhitespace(&str);
EXPECT_EQ("foo foo\n ", str);
str = "\t \n\f\r\v\n\t \n\f\r\v\n";
absl::StripLeadingAsciiWhitespace(&str);
EXPECT_EQ(absl::string_view{}, str);
}
TEST(StripTrailingAsciiWhitespace, FromStringView) {
EXPECT_EQ(absl::string_view{},
absl::StripTrailingAsciiWhitespace(absl::string_view{}));
EXPECT_EQ("foo", absl::StripTrailingAsciiWhitespace({"foo"}));
EXPECT_EQ("foo", absl::StripTrailingAsciiWhitespace({"foo\t \n\f\r\n\v"}));
EXPECT_EQ(" \nfoo foo",
absl::StripTrailingAsciiWhitespace({" \nfoo foo\t \n\f\r\n\v"}));
EXPECT_EQ(absl::string_view{}, absl::StripTrailingAsciiWhitespace(
{"\t \n\f\r\v\n\t \n\f\r\v\n"}));
}
TEST(StripTrailingAsciiWhitespace, InPlace) {
std::string str;
absl::StripTrailingAsciiWhitespace(&str);
EXPECT_EQ("", str);
str = "foo";
absl::StripTrailingAsciiWhitespace(&str);
EXPECT_EQ("foo", str);
str = "foo\t \n\f\r\n\v";
absl::StripTrailingAsciiWhitespace(&str);
EXPECT_EQ("foo", str);
str = " \nfoo foo\t \n\f\r\n\v";
absl::StripTrailingAsciiWhitespace(&str);
EXPECT_EQ(" \nfoo foo", str);
str = "\t \n\f\r\v\n\t \n\f\r\v\n";
absl::StripTrailingAsciiWhitespace(&str);
EXPECT_EQ(absl::string_view{}, str);
}
TEST(StripAsciiWhitespace, FromStringView) {
EXPECT_EQ(absl::string_view{},
absl::StripAsciiWhitespace(absl::string_view{}));
EXPECT_EQ("foo", absl::StripAsciiWhitespace({"foo"}));
EXPECT_EQ("foo",
absl::StripAsciiWhitespace({"\t \n\f\r\n\vfoo\t \n\f\r\n\v"}));
EXPECT_EQ("foo foo", absl::StripAsciiWhitespace(
{"\t \n\f\r\n\vfoo foo\t \n\f\r\n\v"}));
EXPECT_EQ(absl::string_view{},
absl::StripAsciiWhitespace({"\t \n\f\r\v\n\t \n\f\r\v\n"}));
}
TEST(StripAsciiWhitespace, InPlace) {
std::string str;
absl::StripAsciiWhitespace(&str);
EXPECT_EQ("", str);
str = "foo";
absl::StripAsciiWhitespace(&str);
EXPECT_EQ("foo", str);
str = "\t \n\f\r\n\vfoo\t \n\f\r\n\v";
absl::StripAsciiWhitespace(&str);
EXPECT_EQ("foo", str);
str = "\t \n\f\r\n\vfoo foo\t \n\f\r\n\v";
absl::StripAsciiWhitespace(&str);
EXPECT_EQ("foo foo", str);
str = "\t \n\f\r\v\n\t \n\f\r\v\n";
absl::StripAsciiWhitespace(&str);
EXPECT_EQ(absl::string_view{}, str);
}
TEST(RemoveExtraAsciiWhitespace, InPlace) {
const char* inputs[] = {"No extra space",
" Leading whitespace",
"Trailing whitespace ",
" Leading and trailing ",
" Whitespace \t in\v middle ",
"'Eeeeep! \n Newlines!\n",
"nospaces",
"",
"\n\t a\t\n\nb \t\n"};
const char* outputs[] = {
"No extra space",
"Leading whitespace",
"Trailing whitespace",
"Leading and trailing",
"Whitespace in middle",
"'Eeeeep! Newlines!",
"nospaces",
"",
"a\nb",
};
const int NUM_TESTS = ABSL_ARRAYSIZE(inputs);
for (int i = 0; i < NUM_TESTS; i++) {
std::string s(inputs[i]);
absl::RemoveExtraAsciiWhitespace(&s);
EXPECT_EQ(outputs[i], s);
}
}
} | 2,556 |
#ifndef ABSL_STRINGS_INTERNAL_ESCAPING_H_
#define ABSL_STRINGS_INTERNAL_ESCAPING_H_
#include <cassert>
#include "absl/strings/internal/resize_uninitialized.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
ABSL_CONST_INIT extern const char kBase64Chars[];
ABSL_CONST_INIT extern const char kWebSafeBase64Chars[];
size_t CalculateBase64EscapedLenInternal(size_t input_len, bool do_padding);
size_t Base64EscapeInternal(const unsigned char* src, size_t szsrc, char* dest,
size_t szdest, const char* base64, bool do_padding);
template <typename String>
void Base64EscapeInternal(const unsigned char* src, size_t szsrc, String* dest,
bool do_padding, const char* base64_chars) {
const size_t calc_escaped_size =
CalculateBase64EscapedLenInternal(szsrc, do_padding);
STLStringResizeUninitialized(dest, calc_escaped_size);
const size_t escaped_len = Base64EscapeInternal(
src, szsrc, &(*dest)[0], dest->size(), base64_chars, do_padding);
assert(calc_escaped_size == escaped_len);
dest->erase(escaped_len);
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/escaping.h"
#include <limits>
#include "absl/base/internal/endian.h"
#include "absl/base/internal/raw_logging.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
ABSL_CONST_INIT const char kBase64Chars[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
ABSL_CONST_INIT const char kWebSafeBase64Chars[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
size_t CalculateBase64EscapedLenInternal(size_t input_len, bool do_padding) {
constexpr size_t kMaxSize = (std::numeric_limits<size_t>::max() - 1) / 4 * 3;
ABSL_INTERNAL_CHECK(input_len <= kMaxSize,
"CalculateBase64EscapedLenInternal() overflow");
size_t len = (input_len / 3) * 4;
if (input_len % 3 == 0) {
} else if (input_len % 3 == 1) {
len += 2;
if (do_padding) {
len += 2;
}
} else {
len += 3;
if (do_padding) {
len += 1;
}
}
return len;
}
size_t Base64EscapeInternal(const unsigned char* src, size_t szsrc, char* dest,
size_t szdest, const char* base64,
bool do_padding) {
static const char kPad64 = '=';
if (szsrc * 4 > szdest * 3) return 0;
char* cur_dest = dest;
const unsigned char* cur_src = src;
char* const limit_dest = dest + szdest;
const unsigned char* const limit_src = src + szsrc;
if (szsrc >= 3) {
while (cur_src < limit_src - 3) {
uint32_t in = absl::big_endian::Load32(cur_src) >> 8;
cur_dest[0] = base64[in >> 18];
in &= 0x3FFFF;
cur_dest[1] = base64[in >> 12];
in &= 0xFFF;
cur_dest[2] = base64[in >> 6];
in &= 0x3F;
cur_dest[3] = base64[in];
cur_dest += 4;
cur_src += 3;
}
}
szdest = static_cast<size_t>(limit_dest - cur_dest);
szsrc = static_cast<size_t>(limit_src - cur_src);
switch (szsrc) {
case 0:
break;
case 1: {
if (szdest < 2) return 0;
uint32_t in = cur_src[0];
cur_dest[0] = base64[in >> 2];
in &= 0x3;
cur_dest[1] = base64[in << 4];
cur_dest += 2;
szdest -= 2;
if (do_padding) {
if (szdest < 2) return 0;
cur_dest[0] = kPad64;
cur_dest[1] = kPad64;
cur_dest += 2;
szdest -= 2;
}
break;
}
case 2: {
if (szdest < 3) return 0;
uint32_t in = absl::big_endian::Load16(cur_src);
cur_dest[0] = base64[in >> 10];
in &= 0x3FF;
cur_dest[1] = base64[in >> 4];
in &= 0x00F;
cur_dest[2] = base64[in << 2];
cur_dest += 3;
szdest -= 3;
if (do_padding) {
if (szdest < 1) return 0;
cur_dest[0] = kPad64;
cur_dest += 1;
szdest -= 1;
}
break;
}
case 3: {
if (szdest < 4) return 0;
uint32_t in =
(uint32_t{cur_src[0]} << 16) + absl::big_endian::Load16(cur_src + 1);
cur_dest[0] = base64[in >> 18];
in &= 0x3FFFF;
cur_dest[1] = base64[in >> 12];
in &= 0xFFF;
cur_dest[2] = base64[in >> 6];
in &= 0x3F;
cur_dest[3] = base64[in];
cur_dest += 4;
szdest -= 4;
break;
}
default:
ABSL_RAW_LOG(FATAL, "Logic problem? szsrc = %zu", szsrc);
break;
}
return static_cast<size_t>(cur_dest - dest);
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/escaping.h"
#include <array>
#include <cstddef>
#include <cstdio>
#include <cstring>
#include <initializer_list>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "absl/log/check.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/internal/escaping_test_common.h"
#include "absl/strings/string_view.h"
namespace {
struct epair {
std::string escaped;
std::string unescaped;
};
TEST(CEscape, EscapeAndUnescape) {
const std::string inputs[] = {
std::string("foo\nxx\r\b\0023"),
std::string(""),
std::string("abc"),
std::string("\1chad_rules"),
std::string("\1arnar_drools"),
std::string("xxxx\r\t'\"\\"),
std::string("\0xx\0", 4),
std::string("\x01\x31"),
std::string("abc\xb\x42\141bc"),
std::string("123\1\x31\x32\x33"),
std::string("\xc1\xca\x1b\x62\x19o\xcc\x04"),
std::string(
"\\\"\xe8\xb0\xb7\xe6\xad\x8c\\\" is Google\\\'s Chinese name"),
};
for (int kind = 0; kind < 4; kind++) {
for (const std::string& original : inputs) {
std::string escaped;
switch (kind) {
case 0:
escaped = absl::CEscape(original);
break;
case 1:
escaped = absl::CHexEscape(original);
break;
case 2:
escaped = absl::Utf8SafeCEscape(original);
break;
case 3:
escaped = absl::Utf8SafeCHexEscape(original);
break;
}
std::string unescaped_str;
EXPECT_TRUE(absl::CUnescape(escaped, &unescaped_str));
EXPECT_EQ(unescaped_str, original);
unescaped_str.erase();
std::string error;
EXPECT_TRUE(absl::CUnescape(escaped, &unescaped_str, &error));
EXPECT_EQ(error, "");
std::string s = escaped;
EXPECT_TRUE(absl::CUnescape(s, &s));
ASSERT_EQ(s, original);
}
}
for (int char0 = 0; char0 < 256; char0++) {
for (int char1 = 0; char1 < 256; char1++) {
char chars[2];
chars[0] = char0;
chars[1] = char1;
std::string s(chars, 2);
std::string escaped = absl::CHexEscape(s);
std::string unescaped;
EXPECT_TRUE(absl::CUnescape(escaped, &unescaped));
EXPECT_EQ(s, unescaped);
}
}
}
TEST(CEscape, BasicEscaping) {
epair oct_values[] = {
{"foo\\rbar\\nbaz\\t", "foo\rbar\nbaz\t"},
{"\\'full of \\\"sound\\\" and \\\"fury\\\"\\'",
"'full of \"sound\" and \"fury\"'"},
{"signi\\\\fying\\\\ nothing\\\\", "signi\\fying\\ nothing\\"},
{"\\010\\t\\n\\013\\014\\r", "\010\011\012\013\014\015"}
};
epair hex_values[] = {
{"ubik\\rubik\\nubik\\t", "ubik\rubik\nubik\t"},
{"I\\\'ve just seen a \\\"face\\\"",
"I've just seen a \"face\""},
{"hel\\\\ter\\\\skel\\\\ter\\\\", "hel\\ter\\skel\\ter\\"},
{"\\x08\\t\\n\\x0b\\x0c\\r", "\010\011\012\013\014\015"}
};
epair utf8_oct_values[] = {
{"\xe8\xb0\xb7\xe6\xad\x8c\\r\xe8\xb0\xb7\xe6\xad\x8c\\nbaz\\t",
"\xe8\xb0\xb7\xe6\xad\x8c\r\xe8\xb0\xb7\xe6\xad\x8c\nbaz\t"},
{"\\\"\xe8\xb0\xb7\xe6\xad\x8c\\\" is Google\\\'s Chinese name",
"\"\xe8\xb0\xb7\xe6\xad\x8c\" is Google\'s Chinese name"},
{"\xe3\x83\xa1\xe3\x83\xbc\xe3\x83\xab\\\\are\\\\Japanese\\\\chars\\\\",
"\xe3\x83\xa1\xe3\x83\xbc\xe3\x83\xab\\are\\Japanese\\chars\\"},
{"\xed\x81\xac\xeb\xa1\xac\\010\\t\\n\\013\\014\\r",
"\xed\x81\xac\xeb\xa1\xac\010\011\012\013\014\015"}
};
epair utf8_hex_values[] = {
{"\x20\xe4\xbd\xa0\\t\xe5\xa5\xbd,\\r!\\n",
"\x20\xe4\xbd\xa0\t\xe5\xa5\xbd,\r!\n"},
{"\xe8\xa9\xa6\xe9\xa8\x93\\\' means \\\"test\\\"",
"\xe8\xa9\xa6\xe9\xa8\x93\' means \"test\""},
{"\\\\\xe6\x88\x91\\\\:\\\\\xe6\x9d\xa8\xe6\xac\xa2\\\\",
"\\\xe6\x88\x91\\:\\\xe6\x9d\xa8\xe6\xac\xa2\\"},
{"\xed\x81\xac\xeb\xa1\xac\\x08\\t\\n\\x0b\\x0c\\r",
"\xed\x81\xac\xeb\xa1\xac\010\011\012\013\014\015"}
};
for (const epair& val : oct_values) {
std::string escaped = absl::CEscape(val.unescaped);
EXPECT_EQ(escaped, val.escaped);
}
for (const epair& val : hex_values) {
std::string escaped = absl::CHexEscape(val.unescaped);
EXPECT_EQ(escaped, val.escaped);
}
for (const epair& val : utf8_oct_values) {
std::string escaped = absl::Utf8SafeCEscape(val.unescaped);
EXPECT_EQ(escaped, val.escaped);
}
for (const epair& val : utf8_hex_values) {
std::string escaped = absl::Utf8SafeCHexEscape(val.unescaped);
EXPECT_EQ(escaped, val.escaped);
}
}
TEST(Unescape, BasicFunction) {
epair tests[] =
{{"", ""},
{"\\u0030", "0"},
{"\\u00A3", "\xC2\xA3"},
{"\\u22FD", "\xE2\x8B\xBD"},
{"\\U00010000", "\xF0\x90\x80\x80"},
{"\\U0010FFFD", "\xF4\x8F\xBF\xBD"}};
for (const epair& val : tests) {
std::string out;
EXPECT_TRUE(absl::CUnescape(val.escaped, &out));
EXPECT_EQ(out, val.unescaped);
}
std::string bad[] = {"\\u1",
"\\U1",
"\\Uffffff",
"\\U00110000",
"\\uD835",
"\\U0000DD04",
"\\777",
"\\xABCD"};
for (const std::string& e : bad) {
std::string error;
std::string out;
EXPECT_FALSE(absl::CUnescape(e, &out, &error));
EXPECT_FALSE(error.empty());
out.erase();
EXPECT_FALSE(absl::CUnescape(e, &out));
}
}
class CUnescapeTest : public testing::Test {
protected:
static const char kStringWithMultipleOctalNulls[];
static const char kStringWithMultipleHexNulls[];
static const char kStringWithMultipleUnicodeNulls[];
std::string result_string_;
};
const char CUnescapeTest::kStringWithMultipleOctalNulls[] =
"\\0\\n"
"0\\n"
"\\00\\12"
"\\000";
const char CUnescapeTest::kStringWithMultipleHexNulls[] =
"\\x0\\n"
"0\\n"
"\\x00\\xa"
"\\x000";
const char CUnescapeTest::kStringWithMultipleUnicodeNulls[] =
"\\u0000\\n"
"0\\n"
"\\U00000000";
TEST_F(CUnescapeTest, Unescapes1CharOctalNull) {
std::string original_string = "\\0";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes2CharOctalNull) {
std::string original_string = "\\00";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes3CharOctalNull) {
std::string original_string = "\\000";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes1CharHexNull) {
std::string original_string = "\\x0";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes2CharHexNull) {
std::string original_string = "\\x00";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes3CharHexNull) {
std::string original_string = "\\x000";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes4CharUnicodeNull) {
std::string original_string = "\\u0000";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, Unescapes8CharUnicodeNull) {
std::string original_string = "\\U00000000";
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0", 1), result_string_);
}
TEST_F(CUnescapeTest, UnescapesMultipleOctalNulls) {
std::string original_string(kStringWithMultipleOctalNulls);
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0\n"
"0\n"
"\0\n"
"\0",
7),
result_string_);
}
TEST_F(CUnescapeTest, UnescapesMultipleHexNulls) {
std::string original_string(kStringWithMultipleHexNulls);
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0\n"
"0\n"
"\0\n"
"\0",
7),
result_string_);
}
TEST_F(CUnescapeTest, UnescapesMultipleUnicodeNulls) {
std::string original_string(kStringWithMultipleUnicodeNulls);
EXPECT_TRUE(absl::CUnescape(original_string, &result_string_));
EXPECT_EQ(std::string("\0\n"
"0\n"
"\0",
5),
result_string_);
}
static struct {
absl::string_view plaintext;
absl::string_view cyphertext;
} const base64_tests[] = {
{{"", 0}, {"", 0}},
{{nullptr, 0},
{"", 0}},
{{"\000", 1}, "AA=="},
{{"\001", 1}, "AQ=="},
{{"\002", 1}, "Ag=="},
{{"\004", 1}, "BA=="},
{{"\010", 1}, "CA=="},
{{"\020", 1}, "EA=="},
{{"\040", 1}, "IA=="},
{{"\100", 1}, "QA=="},
{{"\200", 1}, "gA=="},
{{"\377", 1}, "/w=="},
{{"\376", 1}, "/g=="},
{{"\375", 1}, "/Q=="},
{{"\373", 1}, "+w=="},
{{"\367", 1}, "9w=="},
{{"\357", 1}, "7w=="},
{{"\337", 1}, "3w=="},
{{"\277", 1}, "vw=="},
{{"\177", 1}, "fw=="},
{{"\000\000", 2}, "AAA="},
{{"\000\001", 2}, "AAE="},
{{"\000\002", 2}, "AAI="},
{{"\000\004", 2}, "AAQ="},
{{"\000\010", 2}, "AAg="},
{{"\000\020", 2}, "ABA="},
{{"\000\040", 2}, "ACA="},
{{"\000\100", 2}, "AEA="},
{{"\000\200", 2}, "AIA="},
{{"\001\000", 2}, "AQA="},
{{"\002\000", 2}, "AgA="},
{{"\004\000", 2}, "BAA="},
{{"\010\000", 2}, "CAA="},
{{"\020\000", 2}, "EAA="},
{{"\040\000", 2}, "IAA="},
{{"\100\000", 2}, "QAA="},
{{"\200\000", 2}, "gAA="},
{{"\377\377", 2}, "
{{"\377\376", 2}, "
{{"\377\375", 2}, "
{{"\377\373", 2}, "
{{"\377\367", 2}, "
{{"\377\357", 2}, "/+8="},
{{"\377\337", 2}, "/98="},
{{"\377\277", 2}, "/78="},
{{"\377\177", 2}, "/38="},
{{"\376\377", 2}, "/v8="},
{{"\375\377", 2}, "/f8="},
{{"\373\377", 2}, "+/8="},
{{"\367\377", 2}, "9/8="},
{{"\357\377", 2}, "7/8="},
{{"\337\377", 2}, "3/8="},
{{"\277\377", 2}, "v/8="},
{{"\177\377", 2}, "f/8="},
{{"\000\000\000", 3}, "AAAA"},
{{"\000\000\001", 3}, "AAAB"},
{{"\000\000\002", 3}, "AAAC"},
{{"\000\000\004", 3}, "AAAE"},
{{"\000\000\010", 3}, "AAAI"},
{{"\000\000\020", 3}, "AAAQ"},
{{"\000\000\040", 3}, "AAAg"},
{{"\000\000\100", 3}, "AABA"},
{{"\000\000\200", 3}, "AACA"},
{{"\000\001\000", 3}, "AAEA"},
{{"\000\002\000", 3}, "AAIA"},
{{"\000\004\000", 3}, "AAQA"},
{{"\000\010\000", 3}, "AAgA"},
{{"\000\020\000", 3}, "ABAA"},
{{"\000\040\000", 3}, "ACAA"},
{{"\000\100\000", 3}, "AEAA"},
{{"\000\200\000", 3}, "AIAA"},
{{"\001\000\000", 3}, "AQAA"},
{{"\002\000\000", 3}, "AgAA"},
{{"\004\000\000", 3}, "BAAA"},
{{"\010\000\000", 3}, "CAAA"},
{{"\020\000\000", 3}, "EAAA"},
{{"\040\000\000", 3}, "IAAA"},
{{"\100\000\000", 3}, "QAAA"},
{{"\200\000\000", 3}, "gAAA"},
{{"\377\377\377", 3}, "
{{"\377\377\376", 3}, "
{{"\377\377\375", 3}, "
{{"\377\377\373", 3}, "
{{"\377\377\367", 3}, "
{{"\377\377\357", 3}, "
{{"\377\377\337", 3}, "
{{"\377\377\277", 3}, "
{{"\377\377\177", 3}, "
{{"\377\376\377", 3}, "
{{"\377\375\377", 3}, "
{{"\377\373\377", 3}, "
{{"\377\367\377", 3}, "
{{"\377\357\377", 3}, "/+
{{"\377\337\377", 3}, "/9
{{"\377\277\377", 3}, "/7
{{"\377\177\377", 3}, "/3
{{"\376\377\377", 3}, "/v
{{"\375\377\377", 3}, "/f
{{"\373\377\377", 3}, "+
{{"\367\377\377", 3}, "9
{{"\357\377\377", 3}, "7
{{"\337\377\377", 3}, "3
{{"\277\377\377", 3}, "v
{{"\177\377\377", 3}, "f
{{"\243\361", 2}, "o/E="},
{{"\024\167", 2}, "FHc="},
{{"\313\252", 2}, "y6o="},
{{"\046\041", 2}, "JiE="},
{{"\145\236", 2}, "ZZ4="},
{{"\254\325", 2}, "rNU="},
{{"\061\330", 2}, "Mdg="},
{{"\245\032", 2}, "pRo="},
{{"\006\000", 2}, "BgA="},
{{"\375\131", 2}, "/Vk="},
{{"\303\210", 2}, "w4g="},
{{"\040\037", 2}, "IB8="},
{{"\261\372", 2}, "sfo="},
{{"\335\014", 2}, "3Qw="},
{{"\233\217", 2}, "m48="},
{{"\373\056", 2}, "+y4="},
{{"\247\232", 2}, "p5o="},
{{"\107\053", 2}, "Rys="},
{{"\204\077", 2}, "hD8="},
{{"\276\211", 2}, "vok="},
{{"\313\110", 2}, "y0g="},
{{"\363\376", 2}, "8/4="},
{{"\251\234", 2}, "qZw="},
{{"\103\262", 2}, "Q7I="},
{{"\142\312", 2}, "Yso="},
{{"\067\211", 2}, "N4k="},
{{"\220\001", 2}, "kAE="},
{{"\152\240", 2}, "aqA="},
{{"\367\061", 2}, "9zE="},
{{"\133\255", 2}, "W60="},
{{"\176\035", 2}, "fh0="},
{{"\032\231", 2}, "Gpk="},
{{"\013\007\144", 3}, "Cwdk"},
{{"\030\112\106", 3}, "GEpG"},
{{"\047\325\046", 3}, "J9Um"},
{{"\310\160\022", 3}, "yHAS"},
{{"\131\100\237", 3}, "WUCf"},
{{"\064\342\134", 3}, "NOJc"},
{{"\010\177\004", 3}, "CH8E"},
{{"\345\147\205", 3}, "5WeF"},
{{"\300\343\360", 3}, "wOPw"},
{{"\061\240\201", 3}, "MaCB"},
{{"\225\333\044", 3}, "ldsk"},
{{"\215\137\352", 3}, "jV/q"},
{{"\371\147\160", 3}, "+Wdw"},
{{"\030\320\051", 3}, "GNAp"},
{{"\044\174\241", 3}, "JHyh"},
{{"\260\127\037", 3}, "sFcf"},
{{"\111\045\033", 3}, "SSUb"},
{{"\202\114\107", 3}, "gkxH"},
{{"\057\371\042", 3}, "L/ki"},
{{"\223\247\244", 3}, "k6ek"},
{{"\047\216\144", 3}, "J45k"},
{{"\203\070\327", 3}, "gzjX"},
{{"\247\140\072", 3}, "p2A6"},
{{"\124\115\116", 3}, "VE1O"},
{{"\157\162\050", 3}, "b3Io"},
{{"\357\223\004", 3}, "75ME"},
{{"\052\117\156", 3}, "Kk9u"},
{{"\347\154\000", 3}, "52wA"},
{{"\303\012\142", 3}, "wwpi"},
{{"\060\035\362", 3}, "MB3y"},
{{"\130\226\361", 3}, "WJbx"},
{{"\173\013\071", 3}, "ews5"},
{{"\336\004\027", 3}, "3gQX"},
{{"\357\366\234", 3}, "7/ac"},
{{"\353\304\111", 3}, "68RJ"},
{{"\024\264\131", 3}, "FLRZ"},
{{"\075\114\251", 3}, "PUyp"},
{{"\315\031\225", 3}, "zRmV"},
{{"\154\201\276", 3}, "bIG+"},
{{"\200\066\072", 3}, "gDY6"},
{{"\142\350\267", 3}, "Yui3"},
{{"\033\000\166", 3}, "GwB2"},
{{"\210\055\077", 3}, "iC0/"},
{{"\341\037\124", 3}, "4R9U"},
{{"\161\103\152", 3}, "cUNq"},
{{"\270\142\131", 3}, "uGJZ"},
{{"\337\076\074", 3}, "3z48"},
{{"\375\106\362", 3}, "/Uby"},
{{"\227\301\127", 3}, "l8FX"},
{{"\340\002\234", 3}, "4AKc"},
{{"\121\064\033", 3}, "UTQb"},
{{"\157\134\143", 3}, "b1xj"},
{{"\247\055\327", 3}, "py3X"},
{{"\340\142\005", 3}, "4GIF"},
{{"\060\260\143", 3}, "MLBj"},
{{"\075\203\170", 3}, "PYN4"},
{{"\143\160\016", 3}, "Y3AO"},
{{"\313\013\063", 3}, "ywsz"},
{{"\174\236\135", 3}, "fJ5d"},
{{"\103\047\026", 3}, "QycW"},
{{"\365\005\343", 3}, "9QXj"},
{{"\271\160\223", 3}, "uXCT"},
{{"\362\255\172", 3}, "8q16"},
{{"\113\012\015", 3}, "SwoN"},
{{"", 0}, {"", 0}},
{"a", "YQ=="},
{"ab", "YWI="},
{"abc", "YWJj"},
{"abcd", "YWJjZA=="},
{"abcde", "YWJjZGU="},
{"abcdef", "YWJjZGVm"},
{"abcdefg", "YWJjZGVmZw=="},
{"abcdefgh", "YWJjZGVmZ2g="},
{"abcdefghi", "YWJjZGVmZ2hp"},
{"abcdefghij", "YWJjZGVmZ2hpag=="},
{"abcdefghijk", "YWJjZGVmZ2hpams="},
{"abcdefghijkl", "YWJjZGVmZ2hpamts"},
{"abcdefghijklm", "YWJjZGVmZ2hpamtsbQ=="},
{"abcdefghijklmn", "YWJjZGVmZ2hpamtsbW4="},
{"abcdefghijklmno", "YWJjZGVmZ2hpamtsbW5v"},
{"abcdefghijklmnop", "YWJjZGVmZ2hpamtsbW5vcA=="},
{"abcdefghijklmnopq", "YWJjZGVmZ2hpamtsbW5vcHE="},
{"abcdefghijklmnopqr", "YWJjZGVmZ2hpamtsbW5vcHFy"},
{"abcdefghijklmnopqrs", "YWJjZGVmZ2hpamtsbW5vcHFycw=="},
{"abcdefghijklmnopqrst", "YWJjZGVmZ2hpamtsbW5vcHFyc3Q="},
{"abcdefghijklmnopqrstu", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1"},
{"abcdefghijklmnopqrstuv", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dg=="},
{"abcdefghijklmnopqrstuvw", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnc="},
{"abcdefghijklmnopqrstuvwx", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4"},
{"abcdefghijklmnopqrstuvwxy", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eQ=="},
{"abcdefghijklmnopqrstuvwxyz", "YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXo="},
};
template <typename StringType>
void TestEscapeAndUnescape() {
for (const auto& tc : base64_tests) {
StringType encoded("this junk should be ignored");
absl::Base64Escape(tc.plaintext, &encoded);
EXPECT_EQ(encoded, tc.cyphertext);
EXPECT_EQ(absl::Base64Escape(tc.plaintext), tc.cyphertext);
StringType decoded("this junk should be ignored");
EXPECT_TRUE(absl::Base64Unescape(encoded, &decoded));
EXPECT_EQ(decoded, tc.plaintext);
StringType websafe_with_padding(tc.cyphertext);
for (unsigned int c = 0; c < websafe_with_padding.size(); ++c) {
if ('+' == websafe_with_padding[c]) websafe_with_padding[c] = '-';
if ('/' == websafe_with_padding[c]) websafe_with_padding[c] = '_';
}
StringType websafe(websafe_with_padding);
for (unsigned int c = 0; c < websafe.size(); ++c) {
if ('=' == websafe[c]) {
websafe.resize(c);
break;
}
}
encoded = "this junk should be ignored";
absl::WebSafeBase64Escape(tc.plaintext, &encoded);
EXPECT_EQ(encoded, websafe);
EXPECT_EQ(absl::WebSafeBase64Escape(tc.plaintext), websafe);
decoded = "this junk should be ignored";
EXPECT_TRUE(absl::WebSafeBase64Unescape(websafe, &decoded));
EXPECT_EQ(decoded, tc.plaintext);
}
for (const auto& tc : absl::strings_internal::base64_strings()) {
StringType buffer;
absl::WebSafeBase64Escape(tc.plaintext, &buffer);
EXPECT_EQ(tc.cyphertext, buffer);
EXPECT_EQ(absl::WebSafeBase64Escape(tc.plaintext), tc.cyphertext);
}
{
absl::string_view data_set[] = {"ab-/", absl::string_view("\0bcd", 4),
absl::string_view("abc.\0", 5)};
for (absl::string_view bad_data : data_set) {
StringType buf;
EXPECT_FALSE(absl::Base64Unescape(bad_data, &buf));
EXPECT_FALSE(absl::WebSafeBase64Unescape(bad_data, &buf));
EXPECT_TRUE(buf.empty());
}
}
}
TEST(Base64, EscapeAndUnescape) {
TestEscapeAndUnescape<std::string>();
}
TEST(Base64, Padding) {
std::initializer_list<absl::string_view> good_padding = {
"YQ",
"YQ==",
"YQ=.",
"YQ.=",
"YQ..",
};
for (absl::string_view b64 : good_padding) {
std::string decoded;
EXPECT_TRUE(absl::Base64Unescape(b64, &decoded));
EXPECT_EQ(decoded, "a");
std::string websafe_decoded;
EXPECT_TRUE(absl::WebSafeBase64Unescape(b64, &websafe_decoded));
EXPECT_EQ(websafe_decoded, "a");
}
std::initializer_list<absl::string_view> bad_padding = {
"YQ=",
"YQ.",
"YQ===",
"YQ==.",
"YQ=.=",
"YQ=..",
"YQ.==",
"YQ.=.",
"YQ..=",
"YQ...",
"YQ====",
"YQ....",
"YQ=====",
"YQ.....",
};
for (absl::string_view b64 : bad_padding) {
std::string decoded;
EXPECT_FALSE(absl::Base64Unescape(b64, &decoded));
std::string websafe_decoded;
EXPECT_FALSE(absl::WebSafeBase64Unescape(b64, &websafe_decoded));
}
}
TEST(Base64, DISABLED_HugeData) {
const size_t kSize = size_t(3) * 1000 * 1000 * 1000;
static_assert(kSize % 3 == 0, "kSize must be divisible by 3");
const std::string huge(kSize, 'x');
std::string escaped;
absl::Base64Escape(huge, &escaped);
std::string expected_encoding;
expected_encoding.reserve(kSize / 3 * 4);
for (size_t i = 0; i < kSize / 3; ++i) {
expected_encoding.append("eHh4");
}
EXPECT_EQ(expected_encoding, escaped);
std::string unescaped;
EXPECT_TRUE(absl::Base64Unescape(escaped, &unescaped));
EXPECT_EQ(huge, unescaped);
}
TEST(Escaping, HexStringToBytesBackToHex) {
std::string bytes, hex;
constexpr absl::string_view kTestHexLower = "1c2f0032f40123456789abcdef";
constexpr absl::string_view kTestHexUpper = "1C2F0032F40123456789ABCDEF";
constexpr absl::string_view kTestBytes = absl::string_view(
"\x1c\x2f\x00\x32\xf4\x01\x23\x45\x67\x89\xab\xcd\xef", 13);
EXPECT_TRUE(absl::HexStringToBytes(kTestHexLower, &bytes));
EXPECT_EQ(bytes, kTestBytes);
EXPECT_TRUE(absl::HexStringToBytes(kTestHexUpper, &bytes));
EXPECT_EQ(bytes, kTestBytes);
hex = absl::BytesToHexString(kTestBytes);
EXPECT_EQ(hex, kTestHexLower);
bytes = std::string(kTestHexUpper);
(void)absl::HexStringToBytes(bytes, &bytes);
EXPECT_FALSE(absl::HexStringToBytes("1c2f003", &bytes));
EXPECT_FALSE(absl::HexStringToBytes("1c2f00ft", &bytes));
bytes = "abc";
EXPECT_TRUE(absl::HexStringToBytes("", &bytes));
EXPECT_EQ("", bytes);
}
TEST(HexAndBack, HexStringToBytes_and_BytesToHexString) {
std::string hex_mixed = "0123456789abcdefABCDEF";
std::string bytes_expected = "\x01\x23\x45\x67\x89\xab\xcd\xef\xAB\xCD\xEF";
std::string hex_only_lower = "0123456789abcdefabcdef";
std::string bytes_result = absl::HexStringToBytes(hex_mixed);
EXPECT_EQ(bytes_expected, bytes_result);
std::string prefix_valid = hex_mixed + "?";
std::string prefix_valid_result = absl::HexStringToBytes(
absl::string_view(prefix_valid.data(), prefix_valid.size() - 1));
EXPECT_EQ(bytes_expected, prefix_valid_result);
std::string infix_valid = "?" + hex_mixed + "???";
std::string infix_valid_result = absl::HexStringToBytes(
absl::string_view(infix_valid.data() + 1, hex_mixed.size()));
EXPECT_EQ(bytes_expected, infix_valid_result);
std::string hex_result = absl::BytesToHexString(bytes_expected);
EXPECT_EQ(hex_only_lower, hex_result);
}
} | 2,557 |
#ifndef ABSL_STRINGS_CORD_BUFFER_H_
#define ABSL_STRINGS_CORD_BUFFER_H_
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <utility>
#include "absl/base/config.h"
#include "absl/base/macros.h"
#include "absl/numeric/bits.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class Cord;
class CordBufferTestPeer;
class CordBuffer {
public:
static constexpr size_t kDefaultLimit = cord_internal::kMaxFlatLength;
static constexpr size_t kCustomLimit = 64U << 10;
CordBuffer() = default;
~CordBuffer();
CordBuffer(CordBuffer&& rhs) noexcept;
CordBuffer& operator=(CordBuffer&&) noexcept;
CordBuffer(const CordBuffer&) = delete;
CordBuffer& operator=(const CordBuffer&) = delete;
static constexpr size_t MaximumPayload();
static constexpr size_t MaximumPayload(size_t block_size);
static CordBuffer CreateWithDefaultLimit(size_t capacity);
static CordBuffer CreateWithCustomLimit(size_t block_size, size_t capacity);
absl::Span<char> available();
absl::Span<char> available_up_to(size_t size);
char* data();
const char* data() const;
size_t length() const;
size_t capacity() const;
void IncreaseLengthBy(size_t n);
void SetLength(size_t length);
private:
static_assert(kCustomLimit <= cord_internal::kMaxLargeFlatSize, "");
static constexpr size_t kMaxPageSlop = 128;
static constexpr size_t kOverhead = cord_internal::kFlatOverhead;
using CordRepFlat = cord_internal::CordRepFlat;
struct Rep {
static constexpr size_t kInlineCapacity = sizeof(intptr_t) * 2 - 1;
Rep() : short_rep{} {}
explicit Rep(cord_internal::CordRepFlat* rep) : long_rep{rep} {
assert(rep != nullptr);
}
bool is_short() const {
constexpr size_t offset = offsetof(Short, raw_size);
return (reinterpret_cast<const char*>(this)[offset] & 1) != 0;
}
absl::Span<char> short_available() {
const size_t length = short_length();
return absl::Span<char>(short_rep.data + length,
kInlineCapacity - length);
}
absl::Span<char> long_available() const {
assert(!is_short());
const size_t length = long_rep.rep->length;
return absl::Span<char>(long_rep.rep->Data() + length,
long_rep.rep->Capacity() - length);
}
size_t short_length() const {
assert(is_short());
return static_cast<size_t>(short_rep.raw_size >> 1);
}
void set_short_length(size_t length) {
short_rep.raw_size = static_cast<char>((length << 1) + 1);
}
void add_short_length(size_t n) {
assert(is_short());
short_rep.raw_size += static_cast<char>(n << 1);
}
char* data() {
assert(is_short());
return short_rep.data;
}
const char* data() const {
assert(is_short());
return short_rep.data;
}
cord_internal::CordRepFlat* rep() const {
assert(!is_short());
return long_rep.rep;
}
#if defined(ABSL_IS_BIG_ENDIAN)
struct Long {
explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {}
void* padding;
cord_internal::CordRepFlat* rep;
};
struct Short {
char data[sizeof(Long) - 1];
char raw_size = 1;
};
#else
struct Long {
explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {}
cord_internal::CordRepFlat* rep;
void* padding;
};
struct Short {
char raw_size = 1;
char data[sizeof(Long) - 1];
};
#endif
union {
Long long_rep;
Short short_rep;
};
};
static bool IsPow2(size_t size) { return absl::has_single_bit(size); }
static size_t Log2Floor(size_t size) {
return static_cast<size_t>(absl::bit_width(size) - 1);
}
static size_t Log2Ceil(size_t size) {
return static_cast<size_t>(absl::bit_width(size - 1));
}
template <typename... AllocationHints>
static CordBuffer CreateWithCustomLimitImpl(size_t block_size,
size_t capacity,
AllocationHints... hints);
cord_internal::CordRep* ConsumeValue(absl::string_view& short_value) {
cord_internal::CordRep* rep = nullptr;
if (rep_.is_short()) {
short_value = absl::string_view(rep_.data(), rep_.short_length());
} else {
rep = rep_.rep();
}
rep_.set_short_length(0);
return rep;
}
explicit CordBuffer(cord_internal::CordRepFlat* rep) : rep_(rep) {
assert(rep != nullptr);
}
Rep rep_;
friend class Cord;
friend class CordBufferTestPeer;
};
inline constexpr size_t CordBuffer::MaximumPayload() {
return cord_internal::kMaxFlatLength;
}
inline constexpr size_t CordBuffer::MaximumPayload(size_t block_size) {
return (std::min)(kCustomLimit, block_size) - cord_internal::kFlatOverhead;
}
inline CordBuffer CordBuffer::CreateWithDefaultLimit(size_t capacity) {
if (capacity > Rep::kInlineCapacity) {
auto* rep = cord_internal::CordRepFlat::New(capacity);
rep->length = 0;
return CordBuffer(rep);
}
return CordBuffer();
}
template <typename... AllocationHints>
inline CordBuffer CordBuffer::CreateWithCustomLimitImpl(
size_t block_size, size_t capacity, AllocationHints... hints) {
assert(IsPow2(block_size));
capacity = (std::min)(capacity, kCustomLimit);
block_size = (std::min)(block_size, kCustomLimit);
if (capacity + kOverhead >= block_size) {
capacity = block_size;
} else if (capacity <= kDefaultLimit) {
capacity = capacity + kOverhead;
} else if (!IsPow2(capacity)) {
const size_t rounded_up = size_t{1} << Log2Ceil(capacity);
const size_t slop = rounded_up - capacity;
if (slop >= kOverhead && slop <= kMaxPageSlop + kOverhead) {
capacity = rounded_up;
} else {
const size_t rounded_down = size_t{1} << Log2Floor(capacity);
capacity = rounded_down;
}
}
const size_t length = capacity - kOverhead;
auto* rep = CordRepFlat::New(CordRepFlat::Large(), length, hints...);
rep->length = 0;
return CordBuffer(rep);
}
inline CordBuffer CordBuffer::CreateWithCustomLimit(size_t block_size,
size_t capacity) {
return CreateWithCustomLimitImpl(block_size, capacity);
}
inline CordBuffer::~CordBuffer() {
if (!rep_.is_short()) {
cord_internal::CordRepFlat::Delete(rep_.rep());
}
}
inline CordBuffer::CordBuffer(CordBuffer&& rhs) noexcept : rep_(rhs.rep_) {
rhs.rep_.set_short_length(0);
}
inline CordBuffer& CordBuffer::operator=(CordBuffer&& rhs) noexcept {
if (!rep_.is_short()) cord_internal::CordRepFlat::Delete(rep_.rep());
rep_ = rhs.rep_;
rhs.rep_.set_short_length(0);
return *this;
}
inline absl::Span<char> CordBuffer::available() {
return rep_.is_short() ? rep_.short_available() : rep_.long_available();
}
inline absl::Span<char> CordBuffer::available_up_to(size_t size) {
return available().subspan(0, size);
}
inline char* CordBuffer::data() {
return rep_.is_short() ? rep_.data() : rep_.rep()->Data();
}
inline const char* CordBuffer::data() const {
return rep_.is_short() ? rep_.data() : rep_.rep()->Data();
}
inline size_t CordBuffer::capacity() const {
return rep_.is_short() ? Rep::kInlineCapacity : rep_.rep()->Capacity();
}
inline size_t CordBuffer::length() const {
return rep_.is_short() ? rep_.short_length() : rep_.rep()->length;
}
inline void CordBuffer::SetLength(size_t length) {
ABSL_HARDENING_ASSERT(length <= capacity());
if (rep_.is_short()) {
rep_.set_short_length(length);
} else {
rep_.rep()->length = length;
}
}
inline void CordBuffer::IncreaseLengthBy(size_t n) {
ABSL_HARDENING_ASSERT(n <= capacity() && length() + n <= capacity());
if (rep_.is_short()) {
rep_.add_short_length(n);
} else {
rep_.rep()->length += n;
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/cord_buffer.h"
#include <cstddef>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr size_t CordBuffer::kDefaultLimit;
constexpr size_t CordBuffer::kCustomLimit;
#endif
ABSL_NAMESPACE_END
} | #include "absl/strings/cord_buffer.h"
#include <algorithm>
#include <cstring>
#include <limits>
#include <string>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/strings/internal/cord_rep_test_util.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
using testing::Eq;
using testing::Ge;
using testing::Le;
using testing::Ne;
namespace absl {
ABSL_NAMESPACE_BEGIN
class CordBufferTestPeer {
public:
static cord_internal::CordRep* ConsumeValue(CordBuffer& buffer,
absl::string_view& short_value) {
return buffer.ConsumeValue(short_value);
}
};
namespace {
using ::absl::cordrep_testing::CordToString;
constexpr size_t kInlinedSize = sizeof(CordBuffer) - 1;
constexpr size_t kDefaultLimit = CordBuffer::kDefaultLimit;
constexpr size_t kCustomLimit = CordBuffer::kCustomLimit;
constexpr size_t kMaxFlatSize = cord_internal::kMaxFlatSize;
constexpr size_t kMaxFlatLength = cord_internal::kMaxFlatLength;
constexpr size_t kFlatOverhead = cord_internal::kFlatOverhead;
constexpr size_t k8KiB = 8 << 10;
constexpr size_t k16KiB = 16 << 10;
constexpr size_t k64KiB = 64 << 10;
constexpr size_t k1MB = 1 << 20;
class CordBufferTest : public testing::TestWithParam<size_t> {};
INSTANTIATE_TEST_SUITE_P(MediumSize, CordBufferTest,
testing::Values(1, kInlinedSize - 1, kInlinedSize,
kInlinedSize + 1, kDefaultLimit - 1,
kDefaultLimit));
TEST_P(CordBufferTest, MaximumPayload) {
EXPECT_THAT(CordBuffer::MaximumPayload(), Eq(kMaxFlatLength));
EXPECT_THAT(CordBuffer::MaximumPayload(512), Eq(512 - kFlatOverhead));
EXPECT_THAT(CordBuffer::MaximumPayload(k64KiB), Eq(k64KiB - kFlatOverhead));
EXPECT_THAT(CordBuffer::MaximumPayload(k1MB), Eq(k64KiB - kFlatOverhead));
}
TEST(CordBufferTest, ConstructDefault) {
CordBuffer buffer;
EXPECT_THAT(buffer.capacity(), Eq(sizeof(CordBuffer) - 1));
EXPECT_THAT(buffer.length(), Eq(0));
EXPECT_THAT(buffer.data(), Ne(nullptr));
EXPECT_THAT(buffer.available().data(), Eq(buffer.data()));
EXPECT_THAT(buffer.available().size(), Eq(buffer.capacity()));
memset(buffer.data(), 0xCD, buffer.capacity());
}
TEST(CordBufferTest, CreateSsoWithDefaultLimit) {
CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(3);
EXPECT_THAT(buffer.capacity(), Ge(3));
EXPECT_THAT(buffer.capacity(), Le(sizeof(CordBuffer)));
EXPECT_THAT(buffer.length(), Eq(0));
memset(buffer.data(), 0xCD, buffer.capacity());
memcpy(buffer.data(), "Abc", 3);
buffer.SetLength(3);
EXPECT_THAT(buffer.length(), Eq(3));
absl::string_view short_value;
EXPECT_THAT(CordBufferTestPeer::ConsumeValue(buffer, short_value),
Eq(nullptr));
EXPECT_THAT(absl::string_view(buffer.data(), 3), Eq("Abc"));
EXPECT_THAT(short_value, Eq("Abc"));
}
TEST_P(CordBufferTest, Available) {
const size_t requested = GetParam();
CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(requested);
EXPECT_THAT(buffer.available().data(), Eq(buffer.data()));
EXPECT_THAT(buffer.available().size(), Eq(buffer.capacity()));
buffer.SetLength(2);
EXPECT_THAT(buffer.available().data(), Eq(buffer.data() + 2));
EXPECT_THAT(buffer.available().size(), Eq(buffer.capacity() - 2));
}
TEST_P(CordBufferTest, IncreaseLengthBy) {
const size_t requested = GetParam();
CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(requested);
buffer.IncreaseLengthBy(2);
EXPECT_THAT(buffer.length(), Eq(2));
buffer.IncreaseLengthBy(5);
EXPECT_THAT(buffer.length(), Eq(7));
}
TEST_P(CordBufferTest, AvailableUpTo) {
const size_t requested = GetParam();
CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(requested);
size_t expected_up_to = std::min<size_t>(3, buffer.capacity());
EXPECT_THAT(buffer.available_up_to(3).data(), Eq(buffer.data()));
EXPECT_THAT(buffer.available_up_to(3).size(), Eq(expected_up_to));
buffer.SetLength(2);
expected_up_to = std::min<size_t>(3, buffer.capacity() - 2);
EXPECT_THAT(buffer.available_up_to(3).data(), Eq(buffer.data() + 2));
EXPECT_THAT(buffer.available_up_to(3).size(), Eq(expected_up_to));
}
size_t MaxCapacityFor(size_t block_size, size_t requested) {
requested = (std::min)(requested, cord_internal::kMaxLargeFlatSize);
return block_size - kFlatOverhead;
}
TEST_P(CordBufferTest, CreateWithDefaultLimit) {
const size_t requested = GetParam();
CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(requested);
EXPECT_THAT(buffer.capacity(), Ge(requested));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(kMaxFlatSize, requested)));
EXPECT_THAT(buffer.length(), Eq(0));
memset(buffer.data(), 0xCD, buffer.capacity());
std::string data(requested - 1, 'x');
memcpy(buffer.data(), data.c_str(), requested);
buffer.SetLength(requested);
EXPECT_THAT(buffer.length(), Eq(requested));
EXPECT_THAT(absl::string_view(buffer.data()), Eq(data));
}
TEST(CordBufferTest, CreateWithDefaultLimitAskingFor2GB) {
constexpr size_t k2GiB = 1U << 31;
CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(k2GiB);
EXPECT_THAT(buffer.capacity(), Le(2 * CordBuffer::kDefaultLimit));
EXPECT_THAT(buffer.length(), Eq(0));
EXPECT_THAT(buffer.data(), Ne(nullptr));
memset(buffer.data(), 0xCD, buffer.capacity());
}
TEST_P(CordBufferTest, MoveConstruct) {
const size_t requested = GetParam();
CordBuffer from = CordBuffer::CreateWithDefaultLimit(requested);
const size_t capacity = from.capacity();
memcpy(from.data(), "Abc", 4);
from.SetLength(4);
CordBuffer to(std::move(from));
EXPECT_THAT(to.capacity(), Eq(capacity));
EXPECT_THAT(to.length(), Eq(4));
EXPECT_THAT(absl::string_view(to.data()), Eq("Abc"));
EXPECT_THAT(from.length(), Eq(0));
}
TEST_P(CordBufferTest, MoveAssign) {
const size_t requested = GetParam();
CordBuffer from = CordBuffer::CreateWithDefaultLimit(requested);
const size_t capacity = from.capacity();
memcpy(from.data(), "Abc", 4);
from.SetLength(4);
CordBuffer to;
to = std::move(from);
EXPECT_THAT(to.capacity(), Eq(capacity));
EXPECT_THAT(to.length(), Eq(4));
EXPECT_THAT(absl::string_view(to.data()), Eq("Abc"));
EXPECT_THAT(from.length(), Eq(0));
}
TEST_P(CordBufferTest, ConsumeValue) {
const size_t requested = GetParam();
CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(requested);
memcpy(buffer.data(), "Abc", 4);
buffer.SetLength(3);
absl::string_view short_value;
if (cord_internal::CordRep* rep =
CordBufferTestPeer::ConsumeValue(buffer, short_value)) {
EXPECT_THAT(CordToString(rep), Eq("Abc"));
cord_internal::CordRep::Unref(rep);
} else {
EXPECT_THAT(short_value, Eq("Abc"));
}
EXPECT_THAT(buffer.length(), Eq(0));
}
TEST_P(CordBufferTest, CreateWithCustomLimitWithinDefaultLimit) {
const size_t requested = GetParam();
CordBuffer buffer =
CordBuffer::CreateWithCustomLimit(kMaxFlatSize, requested);
EXPECT_THAT(buffer.capacity(), Ge(requested));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(kMaxFlatSize, requested)));
EXPECT_THAT(buffer.length(), Eq(0));
memset(buffer.data(), 0xCD, buffer.capacity());
std::string data(requested - 1, 'x');
memcpy(buffer.data(), data.c_str(), requested);
buffer.SetLength(requested);
EXPECT_THAT(buffer.length(), Eq(requested));
EXPECT_THAT(absl::string_view(buffer.data()), Eq(data));
}
TEST(CordLargeBufferTest, CreateAtOrBelowDefaultLimit) {
CordBuffer buffer = CordBuffer::CreateWithCustomLimit(k64KiB, kDefaultLimit);
EXPECT_THAT(buffer.capacity(), Ge(kDefaultLimit));
EXPECT_THAT(buffer.capacity(),
Le(MaxCapacityFor(kMaxFlatSize, kDefaultLimit)));
buffer = CordBuffer::CreateWithCustomLimit(k64KiB, 3178);
EXPECT_THAT(buffer.capacity(), Ge(3178));
}
TEST(CordLargeBufferTest, CreateWithCustomLimit) {
ASSERT_THAT((kMaxFlatSize & (kMaxFlatSize - 1)) == 0, "Must be power of 2");
for (size_t size = kMaxFlatSize; size <= kCustomLimit; size *= 2) {
CordBuffer buffer = CordBuffer::CreateWithCustomLimit(size, size);
size_t expected = size - kFlatOverhead;
ASSERT_THAT(buffer.capacity(), Ge(expected));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(size, expected)));
}
}
TEST(CordLargeBufferTest, CreateWithTooLargeLimit) {
CordBuffer buffer = CordBuffer::CreateWithCustomLimit(k64KiB, k1MB);
ASSERT_THAT(buffer.capacity(), Ge(k64KiB - kFlatOverhead));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(k64KiB, k1MB)));
}
TEST(CordLargeBufferTest, CreateWithHugeValueForOverFlowHardening) {
for (size_t dist_from_max = 0; dist_from_max <= 32; ++dist_from_max) {
size_t capacity = std::numeric_limits<size_t>::max() - dist_from_max;
CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(capacity);
ASSERT_THAT(buffer.capacity(), Ge(kDefaultLimit));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(kMaxFlatSize, capacity)));
for (size_t limit = kMaxFlatSize; limit <= kCustomLimit; limit *= 2) {
CordBuffer buffer = CordBuffer::CreateWithCustomLimit(limit, capacity);
ASSERT_THAT(buffer.capacity(), Ge(limit - kFlatOverhead));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(limit, capacity)));
}
}
}
TEST(CordLargeBufferTest, CreateWithSmallLimit) {
CordBuffer buffer = CordBuffer::CreateWithCustomLimit(512, 1024);
ASSERT_THAT(buffer.capacity(), Ge(512 - kFlatOverhead));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(512, 1024)));
buffer = CordBuffer::CreateWithCustomLimit(512, 512);
ASSERT_THAT(buffer.capacity(), Ge(512 - kFlatOverhead));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(512, 512)));
buffer = CordBuffer::CreateWithCustomLimit(512, 511);
ASSERT_THAT(buffer.capacity(), Ge(512 - kFlatOverhead));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(512, 511)));
buffer = CordBuffer::CreateWithCustomLimit(512, 498);
ASSERT_THAT(buffer.capacity(), Ge(512 - kFlatOverhead));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(512, 498)));
}
TEST(CordLargeBufferTest, CreateWasteFull) {
const size_t requested = (15 << 10);
CordBuffer buffer = CordBuffer::CreateWithCustomLimit(k16KiB, requested);
ASSERT_THAT(buffer.capacity(), Ge(k8KiB - kFlatOverhead));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(k8KiB, requested)));
}
TEST(CordLargeBufferTest, CreateSmallSlop) {
const size_t requested = k16KiB - 2 * kFlatOverhead;
CordBuffer buffer = CordBuffer::CreateWithCustomLimit(k16KiB, requested);
ASSERT_THAT(buffer.capacity(), Ge(k16KiB - kFlatOverhead));
EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(k16KiB, requested)));
}
}
ABSL_NAMESPACE_END
} | 2,558 |
#ifndef ABSL_STRINGS_STR_CAT_H_
#define ABSL_STRINGS_STR_CAT_H_
#include <algorithm>
#include <array>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <initializer_list>
#include <limits>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/nullability.h"
#include "absl/base/port.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/has_absl_stringify.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/internal/stringify_sink.h"
#include "absl/strings/numbers.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
template <size_t max_size>
struct AlphaNumBuffer {
std::array<char, max_size> data;
size_t size;
};
}
enum PadSpec : uint8_t {
kNoPad = 1,
kZeroPad2,
kZeroPad3,
kZeroPad4,
kZeroPad5,
kZeroPad6,
kZeroPad7,
kZeroPad8,
kZeroPad9,
kZeroPad10,
kZeroPad11,
kZeroPad12,
kZeroPad13,
kZeroPad14,
kZeroPad15,
kZeroPad16,
kZeroPad17,
kZeroPad18,
kZeroPad19,
kZeroPad20,
kSpacePad2 = kZeroPad2 + 64,
kSpacePad3,
kSpacePad4,
kSpacePad5,
kSpacePad6,
kSpacePad7,
kSpacePad8,
kSpacePad9,
kSpacePad10,
kSpacePad11,
kSpacePad12,
kSpacePad13,
kSpacePad14,
kSpacePad15,
kSpacePad16,
kSpacePad17,
kSpacePad18,
kSpacePad19,
kSpacePad20,
};
struct Hex {
uint64_t value;
uint8_t width;
char fill;
template <typename Int>
explicit Hex(
Int v, PadSpec spec = absl::kNoPad,
typename std::enable_if<sizeof(Int) == 1 &&
!std::is_pointer<Int>::value>::type* = nullptr)
: Hex(spec, static_cast<uint8_t>(v)) {}
template <typename Int>
explicit Hex(
Int v, PadSpec spec = absl::kNoPad,
typename std::enable_if<sizeof(Int) == 2 &&
!std::is_pointer<Int>::value>::type* = nullptr)
: Hex(spec, static_cast<uint16_t>(v)) {}
template <typename Int>
explicit Hex(
Int v, PadSpec spec = absl::kNoPad,
typename std::enable_if<sizeof(Int) == 4 &&
!std::is_pointer<Int>::value>::type* = nullptr)
: Hex(spec, static_cast<uint32_t>(v)) {}
template <typename Int>
explicit Hex(
Int v, PadSpec spec = absl::kNoPad,
typename std::enable_if<sizeof(Int) == 8 &&
!std::is_pointer<Int>::value>::type* = nullptr)
: Hex(spec, static_cast<uint64_t>(v)) {}
template <typename Pointee>
explicit Hex(absl::Nullable<Pointee*> v, PadSpec spec = absl::kNoPad)
: Hex(spec, reinterpret_cast<uintptr_t>(v)) {}
template <typename S>
friend void AbslStringify(S& sink, Hex hex) {
static_assert(
numbers_internal::kFastToBufferSize >= 32,
"This function only works when output buffer >= 32 bytes long");
char buffer[numbers_internal::kFastToBufferSize];
char* const end = &buffer[numbers_internal::kFastToBufferSize];
auto real_width =
absl::numbers_internal::FastHexToBufferZeroPad16(hex.value, end - 16);
if (real_width >= hex.width) {
sink.Append(absl::string_view(end - real_width, real_width));
} else {
std::memset(end - 32, hex.fill, 16);
std::memset(end - real_width - 16, hex.fill, 16);
sink.Append(absl::string_view(end - hex.width, hex.width));
}
}
private:
Hex(PadSpec spec, uint64_t v)
: value(v),
width(spec == absl::kNoPad
? 1
: spec >= absl::kSpacePad2 ? spec - absl::kSpacePad2 + 2
: spec - absl::kZeroPad2 + 2),
fill(spec >= absl::kSpacePad2 ? ' ' : '0') {}
};
struct Dec {
uint64_t value;
uint8_t width;
char fill;
bool neg;
template <typename Int>
explicit Dec(Int v, PadSpec spec = absl::kNoPad,
typename std::enable_if<(sizeof(Int) <= 8)>::type* = nullptr)
: value(v >= 0 ? static_cast<uint64_t>(v)
: uint64_t{0} - static_cast<uint64_t>(v)),
width(spec == absl::kNoPad ? 1
: spec >= absl::kSpacePad2 ? spec - absl::kSpacePad2 + 2
: spec - absl::kZeroPad2 + 2),
fill(spec >= absl::kSpacePad2 ? ' ' : '0'),
neg(v < 0) {}
template <typename S>
friend void AbslStringify(S& sink, Dec dec) {
assert(dec.width <= numbers_internal::kFastToBufferSize);
char buffer[numbers_internal::kFastToBufferSize];
char* const end = &buffer[numbers_internal::kFastToBufferSize];
char* const minfill = end - dec.width;
char* writer = end;
uint64_t val = dec.value;
while (val > 9) {
*--writer = '0' + (val % 10);
val /= 10;
}
*--writer = '0' + static_cast<char>(val);
if (dec.neg) *--writer = '-';
ptrdiff_t fillers = writer - minfill;
if (fillers > 0) {
bool add_sign_again = false;
if (dec.neg && dec.fill == '0') {
++writer;
add_sign_again = true;
}
writer -= fillers;
std::fill_n(writer, fillers, dec.fill);
if (add_sign_again) *--writer = '-';
}
sink.Append(absl::string_view(writer, static_cast<size_t>(end - writer)));
}
};
class AlphaNum {
public:
template <typename T>
AlphaNum(std::initializer_list<T>) = delete;
AlphaNum(int x)
: piece_(digits_, static_cast<size_t>(
numbers_internal::FastIntToBuffer(x, digits_) -
&digits_[0])) {}
AlphaNum(unsigned int x)
: piece_(digits_, static_cast<size_t>(
numbers_internal::FastIntToBuffer(x, digits_) -
&digits_[0])) {}
AlphaNum(long x)
: piece_(digits_, static_cast<size_t>(
numbers_internal::FastIntToBuffer(x, digits_) -
&digits_[0])) {}
AlphaNum(unsigned long x)
: piece_(digits_, static_cast<size_t>(
numbers_internal::FastIntToBuffer(x, digits_) -
&digits_[0])) {}
AlphaNum(long long x)
: piece_(digits_, static_cast<size_t>(
numbers_internal::FastIntToBuffer(x, digits_) -
&digits_[0])) {}
AlphaNum(unsigned long long x)
: piece_(digits_, static_cast<size_t>(
numbers_internal::FastIntToBuffer(x, digits_) -
&digits_[0])) {}
AlphaNum(float f)
: piece_(digits_, numbers_internal::SixDigitsToBuffer(f, digits_)) {}
AlphaNum(double f)
: piece_(digits_, numbers_internal::SixDigitsToBuffer(f, digits_)) {}
template <size_t size>
AlphaNum(
const strings_internal::AlphaNumBuffer<size>& buf
ABSL_ATTRIBUTE_LIFETIME_BOUND)
: piece_(&buf.data[0], buf.size) {}
AlphaNum(absl::Nullable<const char*> c_str
ABSL_ATTRIBUTE_LIFETIME_BOUND)
: piece_(NullSafeStringView(c_str)) {}
AlphaNum(absl::string_view pc
ABSL_ATTRIBUTE_LIFETIME_BOUND)
: piece_(pc) {}
template <typename T, typename = typename std::enable_if<
HasAbslStringify<T>::value>::type>
AlphaNum(
const T& v ABSL_ATTRIBUTE_LIFETIME_BOUND,
strings_internal::StringifySink&& sink ABSL_ATTRIBUTE_LIFETIME_BOUND = {})
: piece_(strings_internal::ExtractStringification(sink, v)) {}
template <typename Allocator>
AlphaNum(
const std::basic_string<char, std::char_traits<char>, Allocator>& str
ABSL_ATTRIBUTE_LIFETIME_BOUND)
: piece_(str) {}
AlphaNum(char c) = delete;
AlphaNum(const AlphaNum&) = delete;
AlphaNum& operator=(const AlphaNum&) = delete;
absl::string_view::size_type size() const { return piece_.size(); }
absl::Nullable<const char*> data() const { return piece_.data(); }
absl::string_view Piece() const { return piece_; }
template <typename T,
typename = typename std::enable_if<
std::is_enum<T>{} && std::is_convertible<T, int>{} &&
!HasAbslStringify<T>::value>::type>
AlphaNum(T e)
: AlphaNum(+e) {}
template <typename T,
typename std::enable_if<std::is_enum<T>{} &&
!std::is_convertible<T, int>{} &&
!HasAbslStringify<T>::value,
char*>::type = nullptr>
AlphaNum(T e)
: AlphaNum(+static_cast<typename std::underlying_type<T>::type>(e)) {}
template <
typename T,
typename std::enable_if<
std::is_class<T>::value &&
(std::is_same<T, std::vector<bool>::reference>::value ||
std::is_same<T, std::vector<bool>::const_reference>::value)>::type* =
nullptr>
AlphaNum(T e) : AlphaNum(static_cast<bool>(e)) {}
private:
absl::string_view piece_;
char digits_[numbers_internal::kFastToBufferSize];
};
namespace strings_internal {
std::string CatPieces(std::initializer_list<absl::string_view> pieces);
void AppendPieces(absl::Nonnull<std::string*> dest,
std::initializer_list<absl::string_view> pieces);
template <typename Integer>
std::string IntegerToString(Integer i) {
constexpr size_t kMaxDigits10 = 22;
std::string result;
strings_internal::STLStringResizeUninitialized(&result, kMaxDigits10);
char* start = &result[0];
char* end = numbers_internal::FastIntToBuffer(i, start);
auto size = static_cast<size_t>(end - start);
assert((size < result.size()) &&
"StrCat(Integer) does not fit into kMaxDigits10");
result.erase(size);
return result;
}
template <typename Float>
std::string FloatToString(Float f) {
std::string result;
strings_internal::STLStringResizeUninitialized(
&result, numbers_internal::kSixDigitsToBufferSize);
char* start = &result[0];
result.erase(numbers_internal::SixDigitsToBuffer(f, start));
return result;
}
inline std::string SingleArgStrCat(int x) { return IntegerToString(x); }
inline std::string SingleArgStrCat(unsigned int x) {
return IntegerToString(x);
}
inline std::string SingleArgStrCat(long x) { return IntegerToString(x); }
inline std::string SingleArgStrCat(unsigned long x) {
return IntegerToString(x);
}
inline std::string SingleArgStrCat(long long x) { return IntegerToString(x); }
inline std::string SingleArgStrCat(unsigned long long x) {
return IntegerToString(x);
}
inline std::string SingleArgStrCat(float x) { return FloatToString(x); }
inline std::string SingleArgStrCat(double x) { return FloatToString(x); }
#ifdef _LIBCPP_VERSION
#define ABSL_INTERNAL_STRCAT_ENABLE_FAST_CASE true
#else
#define ABSL_INTERNAL_STRCAT_ENABLE_FAST_CASE false
#endif
template <typename T, typename = std::enable_if_t<
ABSL_INTERNAL_STRCAT_ENABLE_FAST_CASE &&
std::is_arithmetic<T>{} && !std::is_same<T, char>{}>>
using EnableIfFastCase = T;
#undef ABSL_INTERNAL_STRCAT_ENABLE_FAST_CASE
}
ABSL_MUST_USE_RESULT inline std::string StrCat() { return std::string(); }
template <typename T>
ABSL_MUST_USE_RESULT inline std::string StrCat(
strings_internal::EnableIfFastCase<T> a) {
return strings_internal::SingleArgStrCat(a);
}
ABSL_MUST_USE_RESULT inline std::string StrCat(const AlphaNum& a) {
return std::string(a.data(), a.size());
}
ABSL_MUST_USE_RESULT std::string StrCat(const AlphaNum& a, const AlphaNum& b);
ABSL_MUST_USE_RESULT std::string StrCat(const AlphaNum& a, const AlphaNum& b,
const AlphaNum& c);
ABSL_MUST_USE_RESULT std::string StrCat(const AlphaNum& a, const AlphaNum& b,
const AlphaNum& c, const AlphaNum& d);
template <typename... AV>
ABSL_MUST_USE_RESULT inline std::string StrCat(
const AlphaNum& a, const AlphaNum& b, const AlphaNum& c, const AlphaNum& d,
const AlphaNum& e, const AV&... args) {
return strings_internal::CatPieces(
{a.Piece(), b.Piece(), c.Piece(), d.Piece(), e.Piece(),
static_cast<const AlphaNum&>(args).Piece()...});
}
inline void StrAppend(absl::Nonnull<std::string*>) {}
void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a);
void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a,
const AlphaNum& b);
void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a,
const AlphaNum& b, const AlphaNum& c);
void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a,
const AlphaNum& b, const AlphaNum& c, const AlphaNum& d);
template <typename... AV>
inline void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a,
const AlphaNum& b, const AlphaNum& c, const AlphaNum& d,
const AlphaNum& e, const AV&... args) {
strings_internal::AppendPieces(
dest, {a.Piece(), b.Piece(), c.Piece(), d.Piece(), e.Piece(),
static_cast<const AlphaNum&>(args).Piece()...});
}
inline strings_internal::AlphaNumBuffer<
numbers_internal::kSixDigitsToBufferSize>
SixDigits(double d) {
strings_internal::AlphaNumBuffer<numbers_internal::kSixDigitsToBufferSize>
result;
result.size = numbers_internal::SixDigitsToBuffer(d, &result.data[0]);
return result;
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/str_cat.h"
#include <assert.h>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <initializer_list>
#include <limits>
#include <string>
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/nullability.h"
#include "absl/strings/internal/resize_uninitialized.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
inline absl::Nonnull<char*> Append(absl::Nonnull<char*> out,
const AlphaNum& x) {
char* after = out + x.size();
if (x.size() != 0) {
memcpy(out, x.data(), x.size());
}
return after;
}
inline void STLStringAppendUninitializedAmortized(std::string* dest,
size_t to_append) {
strings_internal::AppendUninitializedTraits<std::string>::Append(dest,
to_append);
}
}
std::string StrCat(const AlphaNum& a, const AlphaNum& b) {
std::string result;
constexpr uint64_t kMaxSize = uint64_t{std::numeric_limits<size_t>::max()};
const uint64_t result_size =
static_cast<uint64_t>(a.size()) + static_cast<uint64_t>(b.size());
ABSL_INTERNAL_CHECK(result_size <= kMaxSize, "size_t overflow");
absl::strings_internal::STLStringResizeUninitialized(
&result, static_cast<size_t>(result_size));
char* const begin = &result[0];
char* out = begin;
out = Append(out, a);
out = Append(out, b);
assert(out == begin + result.size());
return result;
}
std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c) {
std::string result;
constexpr uint64_t kMaxSize = uint64_t{std::numeric_limits<size_t>::max()};
const uint64_t result_size = static_cast<uint64_t>(a.size()) +
static_cast<uint64_t>(b.size()) +
static_cast<uint64_t>(c.size());
ABSL_INTERNAL_CHECK(result_size <= kMaxSize, "size_t overflow");
strings_internal::STLStringResizeUninitialized(
&result, static_cast<size_t>(result_size));
char* const begin = &result[0];
char* out = begin;
out = Append(out, a);
out = Append(out, b);
out = Append(out, c);
assert(out == begin + result.size());
return result;
}
std::string StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c,
const AlphaNum& d) {
std::string result;
constexpr uint64_t kMaxSize = uint64_t{std::numeric_limits<size_t>::max()};
const uint64_t result_size = static_cast<uint64_t>(a.size()) +
static_cast<uint64_t>(b.size()) +
static_cast<uint64_t>(c.size()) +
static_cast<uint64_t>(d.size());
ABSL_INTERNAL_CHECK(result_size <= kMaxSize, "size_t overflow");
strings_internal::STLStringResizeUninitialized(
&result, static_cast<size_t>(result_size));
char* const begin = &result[0];
char* out = begin;
out = Append(out, a);
out = Append(out, b);
out = Append(out, c);
out = Append(out, d);
assert(out == begin + result.size());
return result;
}
namespace strings_internal {
std::string CatPieces(std::initializer_list<absl::string_view> pieces) {
std::string result;
constexpr uint64_t kMaxSize = uint64_t{std::numeric_limits<size_t>::max()};
uint64_t total_size = 0;
for (absl::string_view piece : pieces) {
total_size += piece.size();
}
ABSL_INTERNAL_CHECK(total_size <= kMaxSize, "size_t overflow");
strings_internal::STLStringResizeUninitialized(
&result, static_cast<size_t>(total_size));
char* const begin = &result[0];
char* out = begin;
for (absl::string_view piece : pieces) {
const size_t this_size = piece.size();
if (this_size != 0) {
memcpy(out, piece.data(), this_size);
out += this_size;
}
}
assert(out == begin + result.size());
return result;
}
#define ASSERT_NO_OVERLAP(dest, src) \
assert(((src).size() == 0) || \
(uintptr_t((src).data() - (dest).data()) > uintptr_t((dest).size())))
void AppendPieces(absl::Nonnull<std::string*> dest,
std::initializer_list<absl::string_view> pieces) {
size_t old_size = dest->size();
size_t to_append = 0;
for (absl::string_view piece : pieces) {
ASSERT_NO_OVERLAP(*dest, piece);
to_append += piece.size();
}
STLStringAppendUninitializedAmortized(dest, to_append);
char* const begin = &(*dest)[0];
char* out = begin + old_size;
for (absl::string_view piece : pieces) {
const size_t this_size = piece.size();
if (this_size != 0) {
memcpy(out, piece.data(), this_size);
out += this_size;
}
}
assert(out == begin + dest->size());
}
}
void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a) {
ASSERT_NO_OVERLAP(*dest, a);
std::string::size_type old_size = dest->size();
STLStringAppendUninitializedAmortized(dest, a.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
out = Append(out, a);
assert(out == begin + dest->size());
}
void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a,
const AlphaNum& b) {
ASSERT_NO_OVERLAP(*dest, a);
ASSERT_NO_OVERLAP(*dest, b);
std::string::size_type old_size = dest->size();
STLStringAppendUninitializedAmortized(dest, a.size() + b.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
out = Append(out, a);
out = Append(out, b);
assert(out == begin + dest->size());
}
void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a,
const AlphaNum& b, const AlphaNum& c) {
ASSERT_NO_OVERLAP(*dest, a);
ASSERT_NO_OVERLAP(*dest, b);
ASSERT_NO_OVERLAP(*dest, c);
std::string::size_type old_size = dest->size();
STLStringAppendUninitializedAmortized(dest, a.size() + b.size() + c.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
out = Append(out, a);
out = Append(out, b);
out = Append(out, c);
assert(out == begin + dest->size());
}
void StrAppend(absl::Nonnull<std::string*> dest, const AlphaNum& a,
const AlphaNum& b, const AlphaNum& c, const AlphaNum& d) {
ASSERT_NO_OVERLAP(*dest, a);
ASSERT_NO_OVERLAP(*dest, b);
ASSERT_NO_OVERLAP(*dest, c);
ASSERT_NO_OVERLAP(*dest, d);
std::string::size_type old_size = dest->size();
STLStringAppendUninitializedAmortized(
dest, a.size() + b.size() + c.size() + d.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
out = Append(out, a);
out = Append(out, b);
out = Append(out, c);
out = Append(out, d);
assert(out == begin + dest->size());
}
ABSL_NAMESPACE_END
} | #include "absl/strings/str_cat.h"
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
#ifdef __ANDROID__
#define ABSL_EXPECT_DEBUG_DEATH(statement, regex) \
EXPECT_DEBUG_DEATH(statement, ".*")
#else
#define ABSL_EXPECT_DEBUG_DEATH(statement, regex) \
EXPECT_DEBUG_DEATH(statement, regex)
#endif
namespace {
TEST(StrCat, Ints) {
const short s = -1;
const uint16_t us = 2;
const int i = -3;
const unsigned int ui = 4;
const long l = -5;
const unsigned long ul = 6;
const long long ll = -7;
const unsigned long long ull = 8;
const ptrdiff_t ptrdiff = -9;
const size_t size = 10;
const intptr_t intptr = -12;
const uintptr_t uintptr = 13;
std::string answer;
answer = absl::StrCat(s, us);
EXPECT_EQ(answer, "-12");
answer = absl::StrCat(i, ui);
EXPECT_EQ(answer, "-34");
answer = absl::StrCat(l, ul);
EXPECT_EQ(answer, "-56");
answer = absl::StrCat(ll, ull);
EXPECT_EQ(answer, "-78");
answer = absl::StrCat(ptrdiff, size);
EXPECT_EQ(answer, "-910");
answer = absl::StrCat(ptrdiff, intptr);
EXPECT_EQ(answer, "-9-12");
answer = absl::StrCat(uintptr, 0);
EXPECT_EQ(answer, "130");
}
TEST(StrCat, Enums) {
enum SmallNumbers { One = 1, Ten = 10 } e = Ten;
EXPECT_EQ("10", absl::StrCat(e));
EXPECT_EQ("-5", absl::StrCat(SmallNumbers(-5)));
enum class Option { Boxers = 1, Briefs = -1 };
EXPECT_EQ("-1", absl::StrCat(Option::Briefs));
enum class Airplane : uint64_t {
Airbus = 1,
Boeing = 1000,
Canary = 10000000000
};
EXPECT_EQ("10000000000", absl::StrCat(Airplane::Canary));
enum class TwoGig : int32_t {
TwoToTheZero = 1,
TwoToTheSixteenth = 1 << 16,
TwoToTheThirtyFirst = INT32_MIN
};
EXPECT_EQ("65536", absl::StrCat(TwoGig::TwoToTheSixteenth));
EXPECT_EQ("-2147483648", absl::StrCat(TwoGig::TwoToTheThirtyFirst));
EXPECT_EQ("-1", absl::StrCat(static_cast<TwoGig>(-1)));
enum class FourGig : uint32_t {
TwoToTheZero = 1,
TwoToTheSixteenth = 1 << 16,
TwoToTheThirtyFirst = 1U << 31
};
EXPECT_EQ("65536", absl::StrCat(FourGig::TwoToTheSixteenth));
EXPECT_EQ("2147483648", absl::StrCat(FourGig::TwoToTheThirtyFirst));
EXPECT_EQ("4294967295", absl::StrCat(static_cast<FourGig>(-1)));
EXPECT_EQ("10000000000", absl::StrCat(Airplane::Canary));
}
TEST(StrCat, Basics) {
std::string result;
std::string strs[] = {"Hello", "Cruel", "World"};
std::string stdstrs[] = {
"std::Hello",
"std::Cruel",
"std::World"
};
absl::string_view pieces[] = {"Hello", "Cruel", "World"};
const char* c_strs[] = {
"Hello",
"Cruel",
"World"
};
int32_t i32s[] = {'H', 'C', 'W'};
uint64_t ui64s[] = {12345678910LL, 10987654321LL};
EXPECT_EQ(absl::StrCat(), "");
result = absl::StrCat(false, true, 2, 3);
EXPECT_EQ(result, "0123");
result = absl::StrCat(-1);
EXPECT_EQ(result, "-1");
result = absl::StrCat(absl::SixDigits(0.5));
EXPECT_EQ(result, "0.5");
result = absl::StrCat(strs[1], pieces[2]);
EXPECT_EQ(result, "CruelWorld");
result = absl::StrCat(stdstrs[1], " ", stdstrs[2]);
EXPECT_EQ(result, "std::Cruel std::World");
result = absl::StrCat(strs[0], ", ", pieces[2]);
EXPECT_EQ(result, "Hello, World");
result = absl::StrCat(strs[0], ", ", strs[1], " ", strs[2], "!");
EXPECT_EQ(result, "Hello, Cruel World!");
result = absl::StrCat(pieces[0], ", ", pieces[1], " ", pieces[2]);
EXPECT_EQ(result, "Hello, Cruel World");
result = absl::StrCat(c_strs[0], ", ", c_strs[1], " ", c_strs[2]);
EXPECT_EQ(result, "Hello, Cruel World");
result = absl::StrCat("ASCII ", i32s[0], ", ", i32s[1], " ", i32s[2], "!");
EXPECT_EQ(result, "ASCII 72, 67 87!");
result = absl::StrCat(ui64s[0], ", ", ui64s[1], "!");
EXPECT_EQ(result, "12345678910, 10987654321!");
std::string one =
"1";
result = absl::StrCat("And a ", one.size(), " and a ",
&result[2] - &result[0], " and a ", one, " 2 3 4", "!");
EXPECT_EQ(result, "And a 1 and a 2 and a 1 2 3 4!");
result =
absl::StrCat("To output a char by ASCII/numeric value, use +: ", '!' + 0);
EXPECT_EQ(result, "To output a char by ASCII/numeric value, use +: 33");
float f = 100000.5;
result = absl::StrCat("A hundred K and a half is ", absl::SixDigits(f));
EXPECT_EQ(result, "A hundred K and a half is 100000");
f = 100001.5;
result =
absl::StrCat("A hundred K and one and a half is ", absl::SixDigits(f));
EXPECT_EQ(result, "A hundred K and one and a half is 100002");
double d = 100000.5;
d *= d;
result =
absl::StrCat("A hundred K and a half squared is ", absl::SixDigits(d));
EXPECT_EQ(result, "A hundred K and a half squared is 1.00001e+10");
result = absl::StrCat(1, 2, 333, 4444, 55555, 666666, 7777777, 88888888,
999999999);
EXPECT_EQ(result, "12333444455555666666777777788888888999999999");
}
TEST(StrCat, CornerCases) {
std::string result;
result = absl::StrCat("");
EXPECT_EQ(result, "");
result = absl::StrCat("", "");
EXPECT_EQ(result, "");
result = absl::StrCat("", "", "");
EXPECT_EQ(result, "");
result = absl::StrCat("", "", "", "");
EXPECT_EQ(result, "");
result = absl::StrCat("", "", "", "", "");
EXPECT_EQ(result, "");
}
TEST(StrCat, NullConstCharPtr) {
const char* null = nullptr;
EXPECT_EQ(absl::StrCat("mon", null, "key"), "monkey");
}
template <typename T>
struct Mallocator {
typedef T value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
size_type max_size() const {
return size_t(std::numeric_limits<size_type>::max()) / sizeof(value_type);
}
template <typename U>
struct rebind {
typedef Mallocator<U> other;
};
Mallocator() = default;
template <class U>
Mallocator(const Mallocator<U>&) {}
T* allocate(size_t n) { return static_cast<T*>(std::malloc(n * sizeof(T))); }
void deallocate(T* p, size_t) { std::free(p); }
};
template <typename T, typename U>
bool operator==(const Mallocator<T>&, const Mallocator<U>&) {
return true;
}
template <typename T, typename U>
bool operator!=(const Mallocator<T>&, const Mallocator<U>&) {
return false;
}
TEST(StrCat, CustomAllocator) {
using mstring =
std::basic_string<char, std::char_traits<char>, Mallocator<char>>;
const mstring str1("PARACHUTE OFF A BLIMP INTO MOSCONE!!");
const mstring str2("Read this book about coffee tables");
std::string result = absl::StrCat(str1, str2);
EXPECT_EQ(result,
"PARACHUTE OFF A BLIMP INTO MOSCONE!!"
"Read this book about coffee tables");
}
TEST(StrCat, MaxArgs) {
std::string result;
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a");
EXPECT_EQ(result, "123456789a");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b");
EXPECT_EQ(result, "123456789ab");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c");
EXPECT_EQ(result, "123456789abc");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d");
EXPECT_EQ(result, "123456789abcd");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e");
EXPECT_EQ(result, "123456789abcde");
result =
absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f");
EXPECT_EQ(result, "123456789abcdef");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f",
"g");
EXPECT_EQ(result, "123456789abcdefg");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f",
"g", "h");
EXPECT_EQ(result, "123456789abcdefgh");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f",
"g", "h", "i");
EXPECT_EQ(result, "123456789abcdefghi");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f",
"g", "h", "i", "j");
EXPECT_EQ(result, "123456789abcdefghij");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f",
"g", "h", "i", "j", "k");
EXPECT_EQ(result, "123456789abcdefghijk");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f",
"g", "h", "i", "j", "k", "l");
EXPECT_EQ(result, "123456789abcdefghijkl");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f",
"g", "h", "i", "j", "k", "l", "m");
EXPECT_EQ(result, "123456789abcdefghijklm");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f",
"g", "h", "i", "j", "k", "l", "m", "n");
EXPECT_EQ(result, "123456789abcdefghijklmn");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f",
"g", "h", "i", "j", "k", "l", "m", "n", "o");
EXPECT_EQ(result, "123456789abcdefghijklmno");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f",
"g", "h", "i", "j", "k", "l", "m", "n", "o", "p");
EXPECT_EQ(result, "123456789abcdefghijklmnop");
result = absl::StrCat(1, 2, 3, 4, 5, 6, 7, 8, 9, "a", "b", "c", "d", "e", "f",
"g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q");
EXPECT_EQ(result, "123456789abcdefghijklmnopq");
result = absl::StrCat(
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, "a", "b", "c", "d", "e", "f", "g", "h",
"i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w",
"x", "y", "z", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L",
"M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z");
EXPECT_EQ(result,
"12345678910abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ");
}
TEST(StrAppend, Basics) {
std::string result = "existing text";
std::string strs[] = {"Hello", "Cruel", "World"};
std::string stdstrs[] = {
"std::Hello",
"std::Cruel",
"std::World"
};
absl::string_view pieces[] = {"Hello", "Cruel", "World"};
const char* c_strs[] = {
"Hello",
"Cruel",
"World"
};
int32_t i32s[] = {'H', 'C', 'W'};
uint64_t ui64s[] = {12345678910LL, 10987654321LL};
std::string::size_type old_size = result.size();
absl::StrAppend(&result);
EXPECT_EQ(result.size(), old_size);
old_size = result.size();
absl::StrAppend(&result, strs[0]);
EXPECT_EQ(result.substr(old_size), "Hello");
old_size = result.size();
absl::StrAppend(&result, strs[1], pieces[2]);
EXPECT_EQ(result.substr(old_size), "CruelWorld");
old_size = result.size();
absl::StrAppend(&result, stdstrs[0], ", ", pieces[2]);
EXPECT_EQ(result.substr(old_size), "std::Hello, World");
old_size = result.size();
absl::StrAppend(&result, strs[0], ", ", stdstrs[1], " ", strs[2], "!");
EXPECT_EQ(result.substr(old_size), "Hello, std::Cruel World!");
old_size = result.size();
absl::StrAppend(&result, pieces[0], ", ", pieces[1], " ", pieces[2]);
EXPECT_EQ(result.substr(old_size), "Hello, Cruel World");
old_size = result.size();
absl::StrAppend(&result, c_strs[0], ", ", c_strs[1], " ", c_strs[2]);
EXPECT_EQ(result.substr(old_size), "Hello, Cruel World");
old_size = result.size();
absl::StrAppend(&result, "ASCII ", i32s[0], ", ", i32s[1], " ", i32s[2], "!");
EXPECT_EQ(result.substr(old_size), "ASCII 72, 67 87!");
old_size = result.size();
absl::StrAppend(&result, ui64s[0], ", ", ui64s[1], "!");
EXPECT_EQ(result.substr(old_size), "12345678910, 10987654321!");
std::string one =
"1";
old_size = result.size();
absl::StrAppend(&result, "And a ", one.size(), " and a ",
&result[2] - &result[0], " and a ", one, " 2 3 4", "!");
EXPECT_EQ(result.substr(old_size), "And a 1 and a 2 and a 1 2 3 4!");
old_size = result.size();
absl::StrAppend(&result,
"To output a char by ASCII/numeric value, use +: ", '!' + 0);
EXPECT_EQ(result.substr(old_size),
"To output a char by ASCII/numeric value, use +: 33");
old_size = result.size();
absl::StrAppend(&result, 1, 22, 333, 4444, 55555, 666666, 7777777, 88888888,
9);
EXPECT_EQ(result.substr(old_size), "1223334444555556666667777777888888889");
old_size = result.size();
absl::StrAppend(
&result, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m",
"n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z",
"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M",
"N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z",
"No limit thanks to C++11's variadic templates");
EXPECT_EQ(result.substr(old_size),
"12345678910abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
"No limit thanks to C++11's variadic templates");
}
TEST(StrCat, VectorBoolReferenceTypes) {
std::vector<bool> v;
v.push_back(true);
v.push_back(false);
std::vector<bool> const& cv = v;
std::string result = absl::StrCat(v[0], v[1], cv[0], cv[1]);
EXPECT_EQ(result, "1010");
}
TEST(StrCat, AvoidsMemcpyWithNullptr) {
EXPECT_EQ(absl::StrCat(42, absl::string_view{}), "42");
EXPECT_EQ(absl::StrCat(1, 2, 3, 4, 5, absl::string_view{}), "12345");
std::string result;
absl::StrAppend(&result, 1, 2, 3, 4, 5, absl::string_view{});
EXPECT_EQ(result, "12345");
}
#if GTEST_HAS_DEATH_TEST
TEST(StrAppend, Death) {
std::string s = "self";
ABSL_EXPECT_DEBUG_DEATH(absl::StrAppend(&s, s.c_str() + 1),
"ssertion.*failed");
ABSL_EXPECT_DEBUG_DEATH(absl::StrAppend(&s, s), "ssertion.*failed");
}
#endif
TEST(StrAppend, CornerCases) {
std::string result;
absl::StrAppend(&result, "");
EXPECT_EQ(result, "");
absl::StrAppend(&result, "", "");
EXPECT_EQ(result, "");
absl::StrAppend(&result, "", "", "");
EXPECT_EQ(result, "");
absl::StrAppend(&result, "", "", "", "");
EXPECT_EQ(result, "");
absl::StrAppend(&result, "", "", "", "", "");
EXPECT_EQ(result, "");
}
TEST(StrAppend, CornerCasesNonEmptyAppend) {
for (std::string result : {"hello", "a string too long to fit in the SSO"}) {
const std::string expected = result;
absl::StrAppend(&result, "");
EXPECT_EQ(result, expected);
absl::StrAppend(&result, "", "");
EXPECT_EQ(result, expected);
absl::StrAppend(&result, "", "", "");
EXPECT_EQ(result, expected);
absl::StrAppend(&result, "", "", "", "");
EXPECT_EQ(result, expected);
absl::StrAppend(&result, "", "", "", "", "");
EXPECT_EQ(result, expected);
}
}
template <typename IntType>
void CheckHex(IntType v, const char* nopad_format, const char* zeropad_format,
const char* spacepad_format) {
char expected[256];
std::string actual = absl::StrCat(absl::Hex(v, absl::kNoPad));
snprintf(expected, sizeof(expected), nopad_format, v);
EXPECT_EQ(expected, actual) << " decimal value " << v;
for (int spec = absl::kZeroPad2; spec <= absl::kZeroPad20; ++spec) {
std::string actual =
absl::StrCat(absl::Hex(v, static_cast<absl::PadSpec>(spec)));
snprintf(expected, sizeof(expected), zeropad_format,
spec - absl::kZeroPad2 + 2, v);
EXPECT_EQ(expected, actual) << " decimal value " << v;
}
for (int spec = absl::kSpacePad2; spec <= absl::kSpacePad20; ++spec) {
std::string actual =
absl::StrCat(absl::Hex(v, static_cast<absl::PadSpec>(spec)));
snprintf(expected, sizeof(expected), spacepad_format,
spec - absl::kSpacePad2 + 2, v);
EXPECT_EQ(expected, actual) << " decimal value " << v;
}
}
template <typename IntType>
void CheckDec(IntType v, const char* nopad_format, const char* zeropad_format,
const char* spacepad_format) {
char expected[256];
std::string actual = absl::StrCat(absl::Dec(v, absl::kNoPad));
snprintf(expected, sizeof(expected), nopad_format, v);
EXPECT_EQ(expected, actual) << " decimal value " << v;
for (int spec = absl::kZeroPad2; spec <= absl::kZeroPad20; ++spec) {
std::string actual =
absl::StrCat(absl::Dec(v, static_cast<absl::PadSpec>(spec)));
snprintf(expected, sizeof(expected), zeropad_format,
spec - absl::kZeroPad2 + 2, v);
EXPECT_EQ(expected, actual)
<< " decimal value " << v << " format '" << zeropad_format
<< "' digits " << (spec - absl::kZeroPad2 + 2);
}
for (int spec = absl::kSpacePad2; spec <= absl::kSpacePad20; ++spec) {
std::string actual =
absl::StrCat(absl::Dec(v, static_cast<absl::PadSpec>(spec)));
snprintf(expected, sizeof(expected), spacepad_format,
spec - absl::kSpacePad2 + 2, v);
EXPECT_EQ(expected, actual)
<< " decimal value " << v << " format '" << spacepad_format
<< "' digits " << (spec - absl::kSpacePad2 + 2);
}
}
void CheckHexDec64(uint64_t v) {
unsigned long long ullv = v;
CheckHex(ullv, "%llx", "%0*llx", "%*llx");
CheckDec(ullv, "%llu", "%0*llu", "%*llu");
long long llv = static_cast<long long>(ullv);
CheckDec(llv, "%lld", "%0*lld", "%*lld");
if (sizeof(v) == sizeof(&v)) {
auto uintptr = static_cast<uintptr_t>(v);
void* ptr = reinterpret_cast<void*>(uintptr);
CheckHex(ptr, "%llx", "%0*llx", "%*llx");
}
}
void CheckHexDec32(uint32_t uv) {
CheckHex(uv, "%x", "%0*x", "%*x");
CheckDec(uv, "%u", "%0*u", "%*u");
int32_t v = static_cast<int32_t>(uv);
CheckDec(v, "%d", "%0*d", "%*d");
if (sizeof(v) == sizeof(&v)) {
auto uintptr = static_cast<uintptr_t>(v);
void* ptr = reinterpret_cast<void*>(uintptr);
CheckHex(ptr, "%x", "%0*x", "%*x");
}
}
void CheckAll(uint64_t v) {
CheckHexDec64(v);
CheckHexDec32(static_cast<uint32_t>(v));
}
void TestFastPrints() {
for (int i = 0; i < 10000; i++) {
CheckAll(i);
}
CheckAll(std::numeric_limits<uint64_t>::max());
CheckAll(std::numeric_limits<uint64_t>::max() - 1);
CheckAll(std::numeric_limits<int64_t>::min());
CheckAll(std::numeric_limits<int64_t>::min() + 1);
CheckAll(std::numeric_limits<uint32_t>::max());
CheckAll(std::numeric_limits<uint32_t>::max() - 1);
CheckAll(std::numeric_limits<int32_t>::min());
CheckAll(std::numeric_limits<int32_t>::min() + 1);
CheckAll(999999999);
CheckAll(1000000000);
CheckAll(9999999999);
CheckAll(10000000000);
CheckAll(999999999999999999);
CheckAll(9999999999999999999u);
CheckAll(1000000000000000000);
CheckAll(10000000000000000000u);
CheckAll(999999999876543210);
CheckAll(9999999999876543210u);
CheckAll(0x123456789abcdef0);
CheckAll(0x12345678);
int8_t minus_one_8bit = -1;
EXPECT_EQ("ff", absl::StrCat(absl::Hex(minus_one_8bit)));
int16_t minus_one_16bit = -1;
EXPECT_EQ("ffff", absl::StrCat(absl::Hex(minus_one_16bit)));
}
TEST(Numbers, TestFunctionsMovedOverFromNumbersMain) {
TestFastPrints();
}
struct PointStringify {
template <typename FormatSink>
friend void AbslStringify(FormatSink& sink, const PointStringify& p) {
sink.Append("(");
sink.Append(absl::StrCat(p.x));
sink.Append(", ");
sink.Append(absl::StrCat(p.y));
sink.Append(")");
}
double x = 10.0;
double y = 20.0;
};
TEST(StrCat, AbslStringifyExample) {
PointStringify p;
EXPECT_EQ(absl::StrCat(p), "(10, 20)");
EXPECT_EQ(absl::StrCat("a ", p, " z"), "a (10, 20) z");
}
struct PointStringifyUsingFormat {
template <typename FormatSink>
friend void AbslStringify(FormatSink& sink,
const PointStringifyUsingFormat& p) {
absl::Format(&sink, "(%g, %g)", p.x, p.y);
}
double x = 10.0;
double y = 20.0;
};
TEST(StrCat, AbslStringifyExampleUsingFormat) {
PointStringifyUsingFormat p;
EXPECT_EQ(absl::StrCat(p), "(10, 20)");
EXPECT_EQ(absl::StrCat("a ", p, " z"), "a (10, 20) z");
}
enum class EnumWithStringify { Many = 0, Choices = 1 };
template <typename Sink>
void AbslStringify(Sink& sink, EnumWithStringify e) {
absl::Format(&sink, "%s", e == EnumWithStringify::Many ? "Many" : "Choices");
}
TEST(StrCat, AbslStringifyWithEnum) {
const auto e = EnumWithStringify::Choices;
EXPECT_EQ(absl::StrCat(e), "Choices");
}
template <typename Integer>
void CheckSingleArgumentIntegerLimits() {
Integer max = std::numeric_limits<Integer>::max();
Integer min = std::numeric_limits<Integer>::min();
EXPECT_EQ(absl::StrCat(max), std::to_string(max));
EXPECT_EQ(absl::StrCat(min), std::to_string(min));
}
TEST(StrCat, SingleArgumentLimits) {
CheckSingleArgumentIntegerLimits<int32_t>();
CheckSingleArgumentIntegerLimits<uint32_t>();
CheckSingleArgumentIntegerLimits<int64_t>();
CheckSingleArgumentIntegerLimits<uint64_t>();
}
} | 2,559 |
#ifndef ABSL_STRINGS_STR_SPLIT_H_
#define ABSL_STRINGS_STR_SPLIT_H_
#include <algorithm>
#include <cstddef>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/strings/internal/str_split_internal.h"
#include "absl/strings/string_view.h"
#include "absl/strings/strip.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class ByString {
public:
explicit ByString(absl::string_view sp);
absl::string_view Find(absl::string_view text, size_t pos) const;
private:
const std::string delimiter_;
};
class ByAsciiWhitespace {
public:
absl::string_view Find(absl::string_view text, size_t pos) const;
};
class ByChar {
public:
explicit ByChar(char c) : c_(c) {}
absl::string_view Find(absl::string_view text, size_t pos) const;
private:
char c_;
};
class ByAnyChar {
public:
explicit ByAnyChar(absl::string_view sp);
absl::string_view Find(absl::string_view text, size_t pos) const;
private:
const std::string delimiters_;
};
class ByLength {
public:
explicit ByLength(ptrdiff_t length);
absl::string_view Find(absl::string_view text, size_t pos) const;
private:
const ptrdiff_t length_;
};
namespace strings_internal {
template <typename Delimiter>
struct SelectDelimiter {
using type = Delimiter;
};
template <>
struct SelectDelimiter<char> {
using type = ByChar;
};
template <>
struct SelectDelimiter<char*> {
using type = ByString;
};
template <>
struct SelectDelimiter<const char*> {
using type = ByString;
};
template <>
struct SelectDelimiter<absl::string_view> {
using type = ByString;
};
template <>
struct SelectDelimiter<std::string> {
using type = ByString;
};
template <typename Delimiter>
class MaxSplitsImpl {
public:
MaxSplitsImpl(Delimiter delimiter, int limit)
: delimiter_(delimiter), limit_(limit), count_(0) {}
absl::string_view Find(absl::string_view text, size_t pos) {
if (count_++ == limit_) {
return absl::string_view(text.data() + text.size(),
0);
}
return delimiter_.Find(text, pos);
}
private:
Delimiter delimiter_;
const int limit_;
int count_;
};
}
template <typename Delimiter>
inline strings_internal::MaxSplitsImpl<
typename strings_internal::SelectDelimiter<Delimiter>::type>
MaxSplits(Delimiter delimiter, int limit) {
typedef
typename strings_internal::SelectDelimiter<Delimiter>::type DelimiterType;
return strings_internal::MaxSplitsImpl<DelimiterType>(
DelimiterType(delimiter), limit);
}
struct AllowEmpty {
bool operator()(absl::string_view) const { return true; }
};
struct SkipEmpty {
bool operator()(absl::string_view sp) const { return !sp.empty(); }
};
struct SkipWhitespace {
bool operator()(absl::string_view sp) const {
sp = absl::StripAsciiWhitespace(sp);
return !sp.empty();
}
};
template <typename T>
using EnableSplitIfString =
typename std::enable_if<std::is_same<T, std::string>::value ||
std::is_same<T, const std::string>::value,
int>::type;
template <typename Delimiter>
strings_internal::Splitter<
typename strings_internal::SelectDelimiter<Delimiter>::type, AllowEmpty,
absl::string_view>
StrSplit(strings_internal::ConvertibleToStringView text, Delimiter d) {
using DelimiterType =
typename strings_internal::SelectDelimiter<Delimiter>::type;
return strings_internal::Splitter<DelimiterType, AllowEmpty,
absl::string_view>(
text.value(), DelimiterType(d), AllowEmpty());
}
template <typename Delimiter, typename StringType,
EnableSplitIfString<StringType> = 0>
strings_internal::Splitter<
typename strings_internal::SelectDelimiter<Delimiter>::type, AllowEmpty,
std::string>
StrSplit(StringType&& text, Delimiter d) {
using DelimiterType =
typename strings_internal::SelectDelimiter<Delimiter>::type;
return strings_internal::Splitter<DelimiterType, AllowEmpty, std::string>(
std::move(text), DelimiterType(d), AllowEmpty());
}
template <typename Delimiter, typename Predicate>
strings_internal::Splitter<
typename strings_internal::SelectDelimiter<Delimiter>::type, Predicate,
absl::string_view>
StrSplit(strings_internal::ConvertibleToStringView text, Delimiter d,
Predicate p) {
using DelimiterType =
typename strings_internal::SelectDelimiter<Delimiter>::type;
return strings_internal::Splitter<DelimiterType, Predicate,
absl::string_view>(
text.value(), DelimiterType(std::move(d)), std::move(p));
}
template <typename Delimiter, typename Predicate, typename StringType,
EnableSplitIfString<StringType> = 0>
strings_internal::Splitter<
typename strings_internal::SelectDelimiter<Delimiter>::type, Predicate,
std::string>
StrSplit(StringType&& text, Delimiter d, Predicate p) {
using DelimiterType =
typename strings_internal::SelectDelimiter<Delimiter>::type;
return strings_internal::Splitter<DelimiterType, Predicate, std::string>(
std::move(text), DelimiterType(d), std::move(p));
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/str_split.h"
#include <algorithm>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
template <typename FindPolicy>
absl::string_view GenericFind(absl::string_view text,
absl::string_view delimiter, size_t pos,
FindPolicy find_policy) {
if (delimiter.empty() && text.length() > 0) {
return absl::string_view(text.data() + pos + 1, 0);
}
size_t found_pos = absl::string_view::npos;
absl::string_view found(text.data() + text.size(),
0);
found_pos = find_policy.Find(text, delimiter, pos);
if (found_pos != absl::string_view::npos) {
found = absl::string_view(text.data() + found_pos,
find_policy.Length(delimiter));
}
return found;
}
struct LiteralPolicy {
static size_t Find(absl::string_view text, absl::string_view delimiter,
size_t pos) {
return text.find(delimiter, pos);
}
static size_t Length(absl::string_view delimiter) {
return delimiter.length();
}
};
struct AnyOfPolicy {
static size_t Find(absl::string_view text, absl::string_view delimiter,
size_t pos) {
return text.find_first_of(delimiter, pos);
}
static size_t Length(absl::string_view ) { return 1; }
};
}
ByString::ByString(absl::string_view sp) : delimiter_(sp) {}
absl::string_view ByString::Find(absl::string_view text, size_t pos) const {
if (delimiter_.length() == 1) {
size_t found_pos = text.find(delimiter_[0], pos);
if (found_pos == absl::string_view::npos)
return absl::string_view(text.data() + text.size(), 0);
return text.substr(found_pos, 1);
}
return GenericFind(text, delimiter_, pos, LiteralPolicy());
}
absl::string_view ByAsciiWhitespace::Find(absl::string_view text,
size_t pos) const {
return GenericFind(text, " \t\v\f\r\n", pos, AnyOfPolicy());
}
absl::string_view ByChar::Find(absl::string_view text, size_t pos) const {
size_t found_pos = text.find(c_, pos);
if (found_pos == absl::string_view::npos)
return absl::string_view(text.data() + text.size(), 0);
return text.substr(found_pos, 1);
}
ByAnyChar::ByAnyChar(absl::string_view sp) : delimiters_(sp) {}
absl::string_view ByAnyChar::Find(absl::string_view text, size_t pos) const {
return GenericFind(text, delimiters_, pos, AnyOfPolicy());
}
ByLength::ByLength(ptrdiff_t length) : length_(length) {
ABSL_RAW_CHECK(length > 0, "");
}
absl::string_view ByLength::Find(absl::string_view text, size_t pos) const {
pos = std::min(pos, text.size());
absl::string_view substr = text.substr(pos);
if (substr.length() <= static_cast<size_t>(length_))
return absl::string_view(text.data() + text.size(), 0);
return absl::string_view(substr.data() + length_, 0);
}
ABSL_NAMESPACE_END
} | #include "absl/strings/str_split.h"
#include <cstddef>
#include <cstdint>
#include <deque>
#include <initializer_list>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/macros.h"
#include "absl/container/btree_map.h"
#include "absl/container/btree_set.h"
#include "absl/container/flat_hash_map.h"
#include "absl/container/node_hash_map.h"
#include "absl/strings/string_view.h"
namespace {
using ::testing::ElementsAre;
using ::testing::IsEmpty;
using ::testing::Pair;
using ::testing::UnorderedElementsAre;
TEST(Split, TraitsTest) {
static_assert(!absl::strings_internal::SplitterIsConvertibleTo<int>::value,
"");
static_assert(
!absl::strings_internal::SplitterIsConvertibleTo<std::string>::value, "");
static_assert(absl::strings_internal::SplitterIsConvertibleTo<
std::vector<std::string>>::value,
"");
static_assert(
!absl::strings_internal::SplitterIsConvertibleTo<std::vector<int>>::value,
"");
static_assert(absl::strings_internal::SplitterIsConvertibleTo<
std::vector<absl::string_view>>::value,
"");
static_assert(absl::strings_internal::SplitterIsConvertibleTo<
std::map<std::string, std::string>>::value,
"");
static_assert(absl::strings_internal::SplitterIsConvertibleTo<
std::map<absl::string_view, absl::string_view>>::value,
"");
static_assert(!absl::strings_internal::SplitterIsConvertibleTo<
std::map<int, std::string>>::value,
"");
static_assert(!absl::strings_internal::SplitterIsConvertibleTo<
std::map<std::string, int>>::value,
"");
}
TEST(Split, APIExamples) {
{
std::vector<std::string> v = absl::StrSplit("a,b,c", ",");
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
using absl::ByString;
v = absl::StrSplit("a,b,c", ByString(","));
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
EXPECT_THAT(absl::StrSplit("a,b,c", ByString(",")),
ElementsAre("a", "b", "c"));
}
{
std::vector<std::string> v = absl::StrSplit("a,b,c", ',');
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
using absl::ByChar;
v = absl::StrSplit("a,b,c", ByChar(','));
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
}
{
const std::vector<std::string> v = absl::StrSplit("a=>b=>c", "=>");
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
}
{
std::vector<absl::string_view> v = absl::StrSplit("a,b,c", ',');
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
}
{
std::vector<std::string> v = absl::StrSplit(",a,b,c,", ',');
EXPECT_THAT(v, ElementsAre("", "a", "b", "c", ""));
}
{
std::vector<std::string> v = absl::StrSplit("abc", ',');
EXPECT_THAT(v, ElementsAre("abc"));
}
{
std::vector<std::string> v = absl::StrSplit("abc", "");
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
}
{
std::string embedded_nulls("a\0b\0c", 5);
std::string null_delim("\0", 1);
std::vector<std::string> v = absl::StrSplit(embedded_nulls, null_delim);
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
}
{
std::pair<std::string, std::string> p = absl::StrSplit("a,b,c", ',');
EXPECT_EQ("a", p.first);
EXPECT_EQ("b", p.second);
}
{
std::set<std::string> v = absl::StrSplit("a,b,c,a,b,c,a,b,c", ',');
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
}
{
char a[] = ",";
char* d = a + 0;
std::vector<std::string> v = absl::StrSplit("a,b,c", d);
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
}
{
using absl::ByAnyChar;
std::vector<std::string> v = absl::StrSplit("a,b;c", ByAnyChar(",;"));
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
}
{
using absl::SkipWhitespace;
std::vector<std::string> v =
absl::StrSplit(" a , ,,b,", ',', SkipWhitespace());
EXPECT_THAT(v, ElementsAre(" a ", "b"));
}
{
using absl::ByLength;
std::vector<std::string> v = absl::StrSplit("abcdefg", ByLength(3));
EXPECT_THAT(v, ElementsAre("abc", "def", "g"));
}
{
std::vector<std::string> v1 = absl::StrSplit("a,b,c", ',');
EXPECT_THAT(v1, ElementsAre("a", "b", "c"));
std::vector<std::string> v2(absl::StrSplit("a,b,c", ','));
EXPECT_THAT(v2, ElementsAre("a", "b", "c"));
auto v3 = std::vector<std::string>(absl::StrSplit("a,b,c", ','));
EXPECT_THAT(v3, ElementsAre("a", "b", "c"));
v3 = absl::StrSplit("a,b,c", ',');
EXPECT_THAT(v3, ElementsAre("a", "b", "c"));
}
{
std::map<std::string, std::string> m = absl::StrSplit("a,1,b,2,a,3", ',');
EXPECT_EQ(2, m.size());
EXPECT_EQ("3", m["a"]);
EXPECT_EQ("2", m["b"]);
}
{
std::multimap<std::string, std::string> m =
absl::StrSplit("a,1,b,2,a,3", ',');
EXPECT_EQ(3, m.size());
auto it = m.find("a");
EXPECT_EQ("1", it->second);
++it;
EXPECT_EQ("3", it->second);
it = m.find("b");
EXPECT_EQ("2", it->second);
}
{
std::string s = "x,x,x,x,x,x,x";
for (absl::string_view sp : absl::StrSplit(s, ',')) {
EXPECT_EQ("x", sp);
}
}
{
using absl::SkipWhitespace;
std::string s = " ,x,,x,,x,x,x,,";
for (absl::string_view sp : absl::StrSplit(s, ',', SkipWhitespace())) {
EXPECT_EQ("x", sp);
}
}
{
std::map<std::string, std::string> m;
for (absl::string_view sp : absl::StrSplit("a=b=c,d=e,f=,g", ',')) {
m.insert(absl::StrSplit(sp, absl::MaxSplits('=', 1)));
}
EXPECT_EQ("b=c", m.find("a")->second);
EXPECT_EQ("e", m.find("d")->second);
EXPECT_EQ("", m.find("f")->second);
EXPECT_EQ("", m.find("g")->second);
}
}
TEST(SplitIterator, Basics) {
auto splitter = absl::StrSplit("a,b", ',');
auto it = splitter.begin();
auto end = splitter.end();
EXPECT_NE(it, end);
EXPECT_EQ("a", *it);
++it;
EXPECT_NE(it, end);
EXPECT_EQ("b",
std::string(it->data(), it->size()));
it++;
EXPECT_EQ(it, end);
}
class Skip {
public:
explicit Skip(const std::string& s) : s_(s) {}
bool operator()(absl::string_view sp) { return sp != s_; }
private:
std::string s_;
};
TEST(SplitIterator, Predicate) {
auto splitter = absl::StrSplit("a,b,c", ',', Skip("b"));
auto it = splitter.begin();
auto end = splitter.end();
EXPECT_NE(it, end);
EXPECT_EQ("a", *it);
++it;
EXPECT_NE(it, end);
EXPECT_EQ("c",
std::string(it->data(), it->size()));
it++;
EXPECT_EQ(it, end);
}
TEST(SplitIterator, EdgeCases) {
struct {
std::string in;
std::vector<std::string> expect;
} specs[] = {
{"", {""}},
{"foo", {"foo"}},
{",", {"", ""}},
{",foo", {"", "foo"}},
{"foo,", {"foo", ""}},
{",foo,", {"", "foo", ""}},
{"foo,bar", {"foo", "bar"}},
};
for (const auto& spec : specs) {
SCOPED_TRACE(spec.in);
auto splitter = absl::StrSplit(spec.in, ',');
auto it = splitter.begin();
auto end = splitter.end();
for (const auto& expected : spec.expect) {
EXPECT_NE(it, end);
EXPECT_EQ(expected, *it++);
}
EXPECT_EQ(it, end);
}
}
TEST(Splitter, Const) {
const auto splitter = absl::StrSplit("a,b,c", ',');
EXPECT_THAT(splitter, ElementsAre("a", "b", "c"));
}
TEST(Split, EmptyAndNull) {
EXPECT_THAT(absl::StrSplit(absl::string_view(""), '-'), ElementsAre(""));
EXPECT_THAT(absl::StrSplit(absl::string_view(), '-'), ElementsAre());
}
TEST(SplitIterator, EqualityAsEndCondition) {
auto splitter = absl::StrSplit("a,b,c", ',');
auto it = splitter.begin();
auto it2 = it;
++it2;
++it2;
EXPECT_EQ("c", *it2);
std::vector<absl::string_view> v;
for (; it != it2; ++it) {
v.push_back(*it);
}
EXPECT_THAT(v, ElementsAre("a", "b"));
}
TEST(Splitter, RangeIterators) {
auto splitter = absl::StrSplit("a,b,c", ',');
std::vector<absl::string_view> output;
for (absl::string_view p : splitter) {
output.push_back(p);
}
EXPECT_THAT(output, ElementsAre("a", "b", "c"));
}
template <typename ContainerType, typename Splitter>
void TestConversionOperator(const Splitter& splitter) {
ContainerType output = splitter;
EXPECT_THAT(output, UnorderedElementsAre("a", "b", "c", "d"));
}
template <typename MapType, typename Splitter>
void TestMapConversionOperator(const Splitter& splitter) {
MapType m = splitter;
EXPECT_THAT(m, UnorderedElementsAre(Pair("a", "b"), Pair("c", "d")));
}
template <typename FirstType, typename SecondType, typename Splitter>
void TestPairConversionOperator(const Splitter& splitter) {
std::pair<FirstType, SecondType> p = splitter;
EXPECT_EQ(p, (std::pair<FirstType, SecondType>("a", "b")));
}
TEST(Splitter, ConversionOperator) {
auto splitter = absl::StrSplit("a,b,c,d", ',');
TestConversionOperator<std::vector<absl::string_view>>(splitter);
TestConversionOperator<std::vector<std::string>>(splitter);
TestConversionOperator<std::list<absl::string_view>>(splitter);
TestConversionOperator<std::list<std::string>>(splitter);
TestConversionOperator<std::deque<absl::string_view>>(splitter);
TestConversionOperator<std::deque<std::string>>(splitter);
TestConversionOperator<std::set<absl::string_view>>(splitter);
TestConversionOperator<std::set<std::string>>(splitter);
TestConversionOperator<std::multiset<absl::string_view>>(splitter);
TestConversionOperator<std::multiset<std::string>>(splitter);
TestConversionOperator<absl::btree_set<absl::string_view>>(splitter);
TestConversionOperator<absl::btree_set<std::string>>(splitter);
TestConversionOperator<absl::btree_multiset<absl::string_view>>(splitter);
TestConversionOperator<absl::btree_multiset<std::string>>(splitter);
TestConversionOperator<std::unordered_set<std::string>>(splitter);
TestMapConversionOperator<std::map<absl::string_view, absl::string_view>>(
splitter);
TestMapConversionOperator<std::map<absl::string_view, std::string>>(splitter);
TestMapConversionOperator<std::map<std::string, absl::string_view>>(splitter);
TestMapConversionOperator<std::map<std::string, std::string>>(splitter);
TestMapConversionOperator<
std::multimap<absl::string_view, absl::string_view>>(splitter);
TestMapConversionOperator<std::multimap<absl::string_view, std::string>>(
splitter);
TestMapConversionOperator<std::multimap<std::string, absl::string_view>>(
splitter);
TestMapConversionOperator<std::multimap<std::string, std::string>>(splitter);
TestMapConversionOperator<
absl::btree_map<absl::string_view, absl::string_view>>(splitter);
TestMapConversionOperator<absl::btree_map<absl::string_view, std::string>>(
splitter);
TestMapConversionOperator<absl::btree_map<std::string, absl::string_view>>(
splitter);
TestMapConversionOperator<absl::btree_map<std::string, std::string>>(
splitter);
TestMapConversionOperator<
absl::btree_multimap<absl::string_view, absl::string_view>>(splitter);
TestMapConversionOperator<
absl::btree_multimap<absl::string_view, std::string>>(splitter);
TestMapConversionOperator<
absl::btree_multimap<std::string, absl::string_view>>(splitter);
TestMapConversionOperator<absl::btree_multimap<std::string, std::string>>(
splitter);
TestMapConversionOperator<std::unordered_map<std::string, std::string>>(
splitter);
TestMapConversionOperator<
absl::node_hash_map<absl::string_view, absl::string_view>>(splitter);
TestMapConversionOperator<
absl::node_hash_map<absl::string_view, std::string>>(splitter);
TestMapConversionOperator<
absl::node_hash_map<std::string, absl::string_view>>(splitter);
TestMapConversionOperator<
absl::flat_hash_map<absl::string_view, absl::string_view>>(splitter);
TestMapConversionOperator<
absl::flat_hash_map<absl::string_view, std::string>>(splitter);
TestMapConversionOperator<
absl::flat_hash_map<std::string, absl::string_view>>(splitter);
TestPairConversionOperator<absl::string_view, absl::string_view>(splitter);
TestPairConversionOperator<absl::string_view, std::string>(splitter);
TestPairConversionOperator<std::string, absl::string_view>(splitter);
TestPairConversionOperator<std::string, std::string>(splitter);
}
TEST(Splitter, ToPair) {
{
std::pair<std::string, std::string> p = absl::StrSplit("", ',');
EXPECT_EQ("", p.first);
EXPECT_EQ("", p.second);
}
{
std::pair<std::string, std::string> p = absl::StrSplit("a", ',');
EXPECT_EQ("a", p.first);
EXPECT_EQ("", p.second);
}
{
std::pair<std::string, std::string> p = absl::StrSplit(",b", ',');
EXPECT_EQ("", p.first);
EXPECT_EQ("b", p.second);
}
{
std::pair<std::string, std::string> p = absl::StrSplit("a,b", ',');
EXPECT_EQ("a", p.first);
EXPECT_EQ("b", p.second);
}
{
std::pair<std::string, std::string> p = absl::StrSplit("a,b,c", ',');
EXPECT_EQ("a", p.first);
EXPECT_EQ("b", p.second);
}
}
TEST(Splitter, Predicates) {
static const char kTestChars[] = ",a, ,b,";
using absl::AllowEmpty;
using absl::SkipEmpty;
using absl::SkipWhitespace;
{
auto splitter = absl::StrSplit(kTestChars, ',');
std::vector<std::string> v = splitter;
EXPECT_THAT(v, ElementsAre("", "a", " ", "b", ""));
}
{
auto splitter = absl::StrSplit(kTestChars, ',', AllowEmpty());
std::vector<std::string> v_allowempty = splitter;
EXPECT_THAT(v_allowempty, ElementsAre("", "a", " ", "b", ""));
auto splitter_nopredicate = absl::StrSplit(kTestChars, ',');
std::vector<std::string> v_nopredicate = splitter_nopredicate;
EXPECT_EQ(v_allowempty, v_nopredicate);
}
{
auto splitter = absl::StrSplit(kTestChars, ',', SkipEmpty());
std::vector<std::string> v = splitter;
EXPECT_THAT(v, ElementsAre("a", " ", "b"));
}
{
auto splitter = absl::StrSplit(kTestChars, ',', SkipWhitespace());
std::vector<std::string> v = splitter;
EXPECT_THAT(v, ElementsAre("a", "b"));
}
}
TEST(Split, Basics) {
{
absl::StrSplit("a,b,c", ',');
}
{
std::vector<absl::string_view> v = absl::StrSplit("a,b,c", ',');
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
}
{
std::vector<std::string> v = absl::StrSplit("a,b,c", ',');
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
}
{
std::vector<std::string> v;
v = absl::StrSplit("a,b,c", ',');
EXPECT_THAT(v, ElementsAre("a", "b", "c"));
std::map<std::string, std::string> m;
m = absl::StrSplit("a,b,c", ',');
EXPECT_EQ(2, m.size());
std::unordered_map<std::string, std::string> hm;
hm = absl::StrSplit("a,b,c", ',');
EXPECT_EQ(2, hm.size());
}
}
absl::string_view ReturnStringView() { return "Hello World"; }
const char* ReturnConstCharP() { return "Hello World"; }
char* ReturnCharP() { return const_cast<char*>("Hello World"); }
TEST(Split, AcceptsCertainTemporaries) {
std::vector<std::string> v;
v = absl::StrSplit(ReturnStringView(), ' ');
EXPECT_THAT(v, ElementsAre("Hello", "World"));
v = absl::StrSplit(ReturnConstCharP(), ' ');
EXPECT_THAT(v, ElementsAre("Hello", "World"));
v = absl::StrSplit(ReturnCharP(), ' ');
EXPECT_THAT(v, ElementsAre("Hello", "World"));
}
TEST(Split, Temporary) {
const char input[] = "a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u";
EXPECT_LT(sizeof(std::string), ABSL_ARRAYSIZE(input))
<< "Input should be larger than fits on the stack.";
auto splitter = absl::StrSplit(std::string(input), ',');
std::string expected = "a";
for (absl::string_view letter : splitter) {
EXPECT_EQ(expected, letter);
++expected[0];
}
EXPECT_EQ("v", expected);
auto std_splitter = absl::StrSplit(std::string(input), ',');
expected = "a";
for (absl::string_view letter : std_splitter) {
EXPECT_EQ(expected, letter);
++expected[0];
}
EXPECT_EQ("v", expected);
}
template <typename T>
static std::unique_ptr<T> CopyToHeap(const T& value) {
return std::unique_ptr<T>(new T(value));
}
TEST(Split, LvalueCaptureIsCopyable) {
std::string input = "a,b";
auto heap_splitter = CopyToHeap(absl::StrSplit(input, ','));
auto stack_splitter = *heap_splitter;
heap_splitter.reset();
std::vector<std::string> result = stack_splitter;
EXPECT_THAT(result, testing::ElementsAre("a", "b"));
}
TEST(Split, TemporaryCaptureIsCopyable) {
auto heap_splitter = CopyToHeap(absl::StrSplit(std::string("a,b"), ','));
auto stack_splitter = *heap_splitter;
heap_splitter.reset();
std::vector<std::string> result = stack_splitter;
EXPECT_THAT(result, testing::ElementsAre("a", "b"));
}
TEST(Split, SplitterIsCopyableAndMoveable) {
auto a = absl::StrSplit("foo", '-');
auto b = a;
auto c = std::move(a);
b = c;
c = std::move(b);
EXPECT_THAT(c, ElementsAre("foo"));
}
TEST(Split, StringDelimiter) {
{
std::vector<absl::string_view> v = absl::StrSplit("a,b", ',');
EXPECT_THAT(v, ElementsAre("a", "b"));
}
{
std::vector<absl::string_view> v = absl::StrSplit("a,b", std::string(","));
EXPECT_THAT(v, ElementsAre("a", "b"));
}
{
std::vector<absl::string_view> v =
absl::StrSplit("a,b", absl::string_view(","));
EXPECT_THAT(v, ElementsAre("a", "b"));
}
}
#if !defined(__cpp_char8_t)
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++2a-compat"
#endif
TEST(Split, UTF8) {
std::string utf8_string = u8"\u03BA\u1F79\u03C3\u03BC\u03B5";
{
std::string to_split = "a," + utf8_string;
std::vector<absl::string_view> v = absl::StrSplit(to_split, ',');
EXPECT_THAT(v, ElementsAre("a", utf8_string));
}
{
std::string to_split = "a," + utf8_string + ",b";
std::string unicode_delimiter = "," + utf8_string + ",";
std::vector<absl::string_view> v =
absl::StrSplit(to_split, unicode_delimiter);
EXPECT_THAT(v, ElementsAre("a", "b"));
}
{
std::vector<absl::string_view> v =
absl::StrSplit(u8"Foo h\u00E4llo th\u4E1Ere", absl::ByAnyChar(" \t"));
EXPECT_THAT(v, ElementsAre("Foo", u8"h\u00E4llo", u8"th\u4E1Ere"));
}
}
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
#endif
TEST(Split, EmptyStringDelimiter) {
{
std::vector<std::string> v = absl::StrSplit("", "");
EXPECT_THAT(v, ElementsAre(""));
}
{
std::vector<std::string> v = absl::StrSplit("a", "");
EXPECT_THAT(v, ElementsAre("a"));
}
{
std::vector<std::string> v = absl::StrSplit("ab", "");
EXPECT_THAT(v, ElementsAre("a", "b"));
}
{
std::vector<std::string> v = absl::StrSplit("a b", "");
EXPECT_THAT(v, ElementsAre("a", " ", "b"));
}
}
TEST(Split, SubstrDelimiter) {
std::vector<absl::string_view> results;
absl::string_view delim("
results = absl::StrSplit("", delim);
EXPECT_THAT(results, ElementsAre(""));
results = absl::StrSplit("
EXPECT_THAT(results, ElementsAre("", ""));
results = absl::StrSplit("ab", delim);
EXPECT_THAT(results, ElementsAre("ab"));
results = absl::StrSplit("ab
EXPECT_THAT(results, ElementsAre("ab", ""));
results = absl::StrSplit("ab/", delim);
EXPECT_THAT(results, ElementsAre("ab/"));
results = absl::StrSplit("a/b", delim);
EXPECT_THAT(results, ElementsAre("a/b"));
results = absl::StrSplit("a
EXPECT_THAT(results, ElementsAre("a", "b"));
results = absl::StrSplit("a
EXPECT_THAT(results, ElementsAre("a", "/b"));
results = absl::StrSplit("a
EXPECT_THAT(results, ElementsAre("a", "", "b"));
}
TEST(Split, EmptyResults) {
std::vector<absl::string_view> results;
results = absl::StrSplit("", '#');
EXPECT_THAT(results, ElementsAre(""));
results = absl::StrSplit("#", '#');
EXPECT_THAT(results, ElementsAre("", ""));
results = absl::StrSplit("#cd", '#');
EXPECT_THAT(results, ElementsAre("", "cd"));
results = absl::StrSplit("ab#cd#", '#');
EXPECT_THAT(results, ElementsAre("ab", "cd", ""));
results = absl::StrSplit("ab##cd", '#');
EXPECT_THAT(results, ElementsAre("ab", "", "cd"));
results = absl::StrSplit("ab##", '#');
EXPECT_THAT(results, ElementsAre("ab", "", ""));
results = absl::StrSplit("ab#ab#", '#');
EXPECT_THAT(results, ElementsAre("ab", "ab", ""));
results = absl::StrSplit("aaaa", 'a');
EXPECT_THAT(results, ElementsAre("", "", "", "", ""));
results = absl::StrSplit("", '#', absl::SkipEmpty());
EXPECT_THAT(results, ElementsAre());
}
template <typename Delimiter>
static bool IsFoundAtStartingPos(absl::string_view text, Delimiter d,
size_t starting_pos, int expected_pos) {
absl::string_view found = d.Find(text, starting_pos);
return found.data() != text.data() + text.size() &&
expected_pos == found.data() - text.data();
}
template <typename Delimiter>
static bool IsFoundAt(absl::string_view text, Delimiter d, int expected_pos) {
const std::string leading_text = ",x,y,z,";
return IsFoundAtStartingPos(text, d, 0, expected_pos) &&
IsFoundAtStartingPos(leading_text + std::string(text), d,
leading_text.length(),
expected_pos + leading_text.length());
}
template <typename Delimiter>
void TestComma(Delimiter d) {
EXPECT_TRUE(IsFoundAt(",", d, 0));
EXPECT_TRUE(IsFoundAt("a,", d, 1));
EXPECT_TRUE(IsFoundAt(",b", d, 0));
EXPECT_TRUE(IsFoundAt("a,b", d, 1));
EXPECT_TRUE(IsFoundAt("a,b,", d, 1));
EXPECT_TRUE(IsFoundAt("a,b,c", d, 1));
EXPECT_FALSE(IsFoundAt("", d, -1));
EXPECT_FALSE(IsFoundAt(" ", d, -1));
EXPECT_FALSE(IsFoundAt("a", d, -1));
EXPECT_FALSE(IsFoundAt("a b c", d, -1));
EXPECT_FALSE(IsFoundAt("a;b;c", d, -1));
EXPECT_FALSE(IsFoundAt(";", d, -1));
}
TEST(Delimiter, ByString) {
using absl::ByString;
TestComma(ByString(","));
ByString comma_string(",");
TestComma(comma_string);
absl::string_view abc("abc");
EXPECT_EQ(0, abc.find(""));
ByString empty("");
EXPECT_FALSE(IsFoundAt("", empty, 0));
EXPECT_FALSE(IsFoundAt("a", empty, 0));
EXPECT_TRUE(IsFoundAt("ab", empty, 1));
EXPECT_TRUE(IsFoundAt("abc", empty, 1));
}
TEST(Split, ByChar) {
using absl::ByChar;
TestComma(ByChar(','));
ByChar comma_char(',');
TestComma(comma_char);
}
TEST(Delimiter, ByAnyChar) {
using absl::ByAnyChar;
ByAnyChar one_delim(",");
EXPECT_TRUE(IsFoundAt(",", one_delim, 0));
EXPECT_TRUE(IsFoundAt("a,", one_delim, 1));
EXPECT_TRUE(IsFoundAt("a,b", one_delim, 1));
EXPECT_TRUE(IsFoundAt(",b", one_delim, 0));
EXPECT_FALSE(IsFoundAt("", one_delim, -1));
EXPECT_FALSE(IsFoundAt(" ", one_delim, -1));
EXPECT_FALSE(IsFoundAt("a", one_delim, -1));
EXPECT_FALSE(IsFoundAt("a;b;c", one_delim, -1));
EXPECT_FALSE(IsFoundAt(";", one_delim, -1));
ByAnyChar two_delims(",;");
EXPECT_TRUE(IsFoundAt(",", two_delims, 0));
EXPECT_TRUE(IsFoundAt(";", two_delims, 0));
EXPECT_TRUE(IsFoundAt(",;", two_delims, 0));
EXPECT_TRUE(IsFoundAt(";,", two_delims, 0));
EXPECT_TRUE(IsFoundAt(",;b", two_delims, 0));
EXPECT_TRUE(IsFoundAt(";,b", two_delims, 0));
EXPECT_TRUE(IsFoundAt("a;,", two_delims, 1));
EXPECT_TRUE(IsFoundAt("a,;", two_delims, 1));
EXPECT_TRUE(IsFoundAt("a;,b", two_delims, 1));
EXPECT_TRUE(IsFoundAt("a,;b", two_delims, 1));
EXPECT_FALSE(IsFoundAt("", two_delims, -1));
EXPECT_FALSE(IsFoundAt(" ", two_delims, -1));
EXPECT_FALSE(IsFoundAt("a", two_delims, -1));
EXPECT_FALSE(IsFoundAt("a=b=c", two_delims, -1));
EXPECT_FALSE(IsFoundAt("=", two_delims, -1));
ByAnyChar empty("");
EXPECT_FALSE(IsFoundAt("", empty, 0));
EXPECT_FALSE(IsFoundAt("a", empty, 0));
EXPECT_TRUE(IsFoundAt("ab", empty, 1));
EXPECT_TRUE(IsFoundAt("abc", empty, 1));
}
TEST(Split, ByAsciiWhitespace) {
using absl::ByAsciiWhitespace;
using absl::SkipEmpty;
std::vector<absl::string_view> results;
results = absl::StrSplit("aaaa\n", ByAsciiWhitespace());
EXPECT_THAT(results, ElementsAre("aaaa", ""));
results = absl::StrSplit("aaaa\n", ByAsciiWhitespace(), SkipEmpty());
EXPECT_THAT(results, ElementsAre("aaaa"));
results = absl::StrSplit(" ", ByAsciiWhitespace());
EXPECT_THAT(results, ElementsAre("", ""));
results = absl::StrSplit(" ", ByAsciiWhitespace(), SkipEmpty());
EXPECT_THAT(results, IsEmpty());
results = absl::StrSplit("a", ByAsciiWhitespace());
EXPECT_THAT(results, ElementsAre("a"));
results = absl::StrSplit("", ByAsciiWhitespace());
EXPECT_THAT(results, ElementsAre(""));
results = absl::StrSplit("", ByAsciiWhitespace(), SkipEmpty());
EXPECT_THAT(results, IsEmpty());
results = absl::StrSplit("a b\tc\n d\n", ByAsciiWhitespace());
EXPECT_THAT(results, ElementsAre("a", "b", "c", "", "", "d", ""));
results = absl::StrSplit("a b\tc\n d \n", ByAsciiWhitespace(), SkipEmpty());
EXPECT_THAT(results, ElementsAre("a", "b", "c", "d"));
results = absl::StrSplit("a\t\n\v\f\r b", ByAsciiWhitespace(), SkipEmpty());
EXPECT_THAT(results, ElementsAre("a", "b"));
}
TEST(Delimiter, ByLength) {
using absl::ByLength;
ByLength four_char_delim(4);
EXPECT_TRUE(IsFoundAt("abcde", four_char_delim, 4));
EXPECT_TRUE(IsFoundAt("abcdefghijklmnopqrstuvwxyz", four_char_delim, 4));
EXPECT_TRUE(IsFoundAt("a b,c\nd", four_char_delim, 4));
EXPECT_FALSE(IsFoundAt("", four_char_delim, 0));
EXPECT_FALSE(IsFoundAt("a", four_char_delim, 0));
EXPECT_FALSE(IsFoundAt("ab", four_char_delim, 0));
EXPECT_FALSE(IsFoundAt("abc", four_char_delim, 0));
EXPECT_FALSE(IsFoundAt("abcd", four_char_delim, 0));
}
TEST(Split, WorksWithLargeStrings) {
#if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
defined(ABSL_HAVE_MEMORY_SANITIZE | 2,560 |
#ifndef ABSL_STRINGS_NUMBERS_H_
#define ABSL_STRINGS_NUMBERS_H_
#ifdef __SSSE3__
#include <tmmintrin.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <limits>
#include <string>
#include <type_traits>
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/macros.h"
#include "absl/base/nullability.h"
#include "absl/base/port.h"
#include "absl/numeric/bits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str,
absl::Nonnull<int_type*> out);
ABSL_MUST_USE_RESULT bool SimpleAtof(absl::string_view str,
absl::Nonnull<float*> out);
ABSL_MUST_USE_RESULT bool SimpleAtod(absl::string_view str,
absl::Nonnull<double*> out);
ABSL_MUST_USE_RESULT bool SimpleAtob(absl::string_view str,
absl::Nonnull<bool*> out);
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleHexAtoi(absl::string_view str,
absl::Nonnull<int_type*> out);
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::int128*> out);
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::uint128*> out);
ABSL_NAMESPACE_END
}
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace numbers_internal {
ABSL_DLL extern const char kHexChar[17];
ABSL_DLL extern const char
kHexTable[513];
void PutTwoDigits(uint32_t i, absl::Nonnull<char*> buf);
bool safe_strto32_base(absl::string_view text, absl::Nonnull<int32_t*> value,
int base);
bool safe_strto64_base(absl::string_view text, absl::Nonnull<int64_t*> value,
int base);
bool safe_strto128_base(absl::string_view text,
absl::Nonnull<absl::int128*> value, int base);
bool safe_strtou32_base(absl::string_view text, absl::Nonnull<uint32_t*> value,
int base);
bool safe_strtou64_base(absl::string_view text, absl::Nonnull<uint64_t*> value,
int base);
bool safe_strtou128_base(absl::string_view text,
absl::Nonnull<absl::uint128*> value, int base);
static const int kFastToBufferSize = 32;
static const int kSixDigitsToBufferSize = 16;
size_t SixDigitsToBuffer(double d, absl::Nonnull<char*> buffer);
absl::Nonnull<char*> FastIntToBuffer(int32_t i, absl::Nonnull<char*> buffer)
ABSL_INTERNAL_NEED_MIN_SIZE(buffer, kFastToBufferSize);
absl::Nonnull<char*> FastIntToBuffer(uint32_t n, absl::Nonnull<char*> out_str)
ABSL_INTERNAL_NEED_MIN_SIZE(out_str, kFastToBufferSize);
absl::Nonnull<char*> FastIntToBuffer(int64_t i, absl::Nonnull<char*> buffer)
ABSL_INTERNAL_NEED_MIN_SIZE(buffer, kFastToBufferSize);
absl::Nonnull<char*> FastIntToBuffer(uint64_t i, absl::Nonnull<char*> buffer)
ABSL_INTERNAL_NEED_MIN_SIZE(buffer, kFastToBufferSize);
template <typename int_type>
absl::Nonnull<char*> FastIntToBuffer(int_type i, absl::Nonnull<char*> buffer)
ABSL_INTERNAL_NEED_MIN_SIZE(buffer, kFastToBufferSize) {
static_assert(sizeof(i) <= 64 / 8,
"FastIntToBuffer works only with 64-bit-or-less integers.");
constexpr bool kIsSigned = static_cast<int_type>(1) - 2 < 0;
constexpr bool kUse64Bit = sizeof(i) > 32 / 8;
if (kIsSigned) {
if (kUse64Bit) {
return FastIntToBuffer(static_cast<int64_t>(i), buffer);
} else {
return FastIntToBuffer(static_cast<int32_t>(i), buffer);
}
} else {
if (kUse64Bit) {
return FastIntToBuffer(static_cast<uint64_t>(i), buffer);
} else {
return FastIntToBuffer(static_cast<uint32_t>(i), buffer);
}
}
}
template <typename int_type>
ABSL_MUST_USE_RESULT bool safe_strtoi_base(absl::string_view s,
absl::Nonnull<int_type*> out,
int base) {
static_assert(sizeof(*out) == 4 || sizeof(*out) == 8,
"SimpleAtoi works only with 32-bit or 64-bit integers.");
static_assert(!std::is_floating_point<int_type>::value,
"Use SimpleAtof or SimpleAtod instead.");
bool parsed;
constexpr bool kIsSigned = static_cast<int_type>(1) - 2 < 0;
constexpr bool kUse64Bit = sizeof(*out) == 64 / 8;
if (kIsSigned) {
if (kUse64Bit) {
int64_t val;
parsed = numbers_internal::safe_strto64_base(s, &val, base);
*out = static_cast<int_type>(val);
} else {
int32_t val;
parsed = numbers_internal::safe_strto32_base(s, &val, base);
*out = static_cast<int_type>(val);
}
} else {
if (kUse64Bit) {
uint64_t val;
parsed = numbers_internal::safe_strtou64_base(s, &val, base);
*out = static_cast<int_type>(val);
} else {
uint32_t val;
parsed = numbers_internal::safe_strtou32_base(s, &val, base);
*out = static_cast<int_type>(val);
}
}
return parsed;
}
inline size_t FastHexToBufferZeroPad16(uint64_t val, absl::Nonnull<char*> out) {
#ifdef ABSL_INTERNAL_HAVE_SSSE3
uint64_t be = absl::big_endian::FromHost64(val);
const auto kNibbleMask = _mm_set1_epi8(0xf);
const auto kHexDigits = _mm_setr_epi8('0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f');
auto v = _mm_loadl_epi64(reinterpret_cast<__m128i*>(&be));
auto v4 = _mm_srli_epi64(v, 4);
auto il = _mm_unpacklo_epi8(v4, v);
auto m = _mm_and_si128(il, kNibbleMask);
auto hexchars = _mm_shuffle_epi8(kHexDigits, m);
_mm_storeu_si128(reinterpret_cast<__m128i*>(out), hexchars);
#else
for (int i = 0; i < 8; ++i) {
auto byte = (val >> (56 - 8 * i)) & 0xFF;
auto* hex = &absl::numbers_internal::kHexTable[byte * 2];
std::memcpy(out + 2 * i, hex, 2);
}
#endif
return 16 - static_cast<size_t>(countl_zero(val | 0x1) / 4);
}
}
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str,
absl::Nonnull<int_type*> out) {
return numbers_internal::safe_strtoi_base(str, out, 10);
}
ABSL_MUST_USE_RESULT inline bool SimpleAtoi(absl::string_view str,
absl::Nonnull<absl::int128*> out) {
return numbers_internal::safe_strto128_base(str, out, 10);
}
ABSL_MUST_USE_RESULT inline bool SimpleAtoi(absl::string_view str,
absl::Nonnull<absl::uint128*> out) {
return numbers_internal::safe_strtou128_base(str, out, 10);
}
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleHexAtoi(absl::string_view str,
absl::Nonnull<int_type*> out) {
return numbers_internal::safe_strtoi_base(str, out, 16);
}
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::int128*> out) {
return numbers_internal::safe_strto128_base(str, out, 16);
}
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::uint128*> out) {
return numbers_internal::safe_strtou128_base(str, out, 16);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/numbers.h"
#include <algorithm>
#include <cassert>
#include <cfloat>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iterator>
#include <limits>
#include <system_error>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/nullability.h"
#include "absl/base/optimization.h"
#include "absl/numeric/bits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/ascii.h"
#include "absl/strings/charconv.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
bool SimpleAtof(absl::string_view str, absl::Nonnull<float*> out) {
*out = 0.0;
str = StripAsciiWhitespace(str);
if (!str.empty() && str[0] == '+') {
str.remove_prefix(1);
if (!str.empty() && str[0] == '-') {
return false;
}
}
auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);
if (result.ec == std::errc::invalid_argument) {
return false;
}
if (result.ptr != str.data() + str.size()) {
return false;
}
if (result.ec == std::errc::result_out_of_range) {
if (*out > 1.0) {
*out = std::numeric_limits<float>::infinity();
} else if (*out < -1.0) {
*out = -std::numeric_limits<float>::infinity();
}
}
return true;
}
bool SimpleAtod(absl::string_view str, absl::Nonnull<double*> out) {
*out = 0.0;
str = StripAsciiWhitespace(str);
if (!str.empty() && str[0] == '+') {
str.remove_prefix(1);
if (!str.empty() && str[0] == '-') {
return false;
}
}
auto result = absl::from_chars(str.data(), str.data() + str.size(), *out);
if (result.ec == std::errc::invalid_argument) {
return false;
}
if (result.ptr != str.data() + str.size()) {
return false;
}
if (result.ec == std::errc::result_out_of_range) {
if (*out > 1.0) {
*out = std::numeric_limits<double>::infinity();
} else if (*out < -1.0) {
*out = -std::numeric_limits<double>::infinity();
}
}
return true;
}
bool SimpleAtob(absl::string_view str, absl::Nonnull<bool*> out) {
ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr.");
if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") ||
EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") ||
EqualsIgnoreCase(str, "1")) {
*out = true;
return true;
}
if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") ||
EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") ||
EqualsIgnoreCase(str, "0")) {
*out = false;
return true;
}
return false;
}
namespace {
constexpr uint32_t kTwoZeroBytes = 0x0101 * '0';
constexpr uint64_t kFourZeroBytes = 0x01010101 * '0';
constexpr uint64_t kEightZeroBytes = 0x0101010101010101ull * '0';
constexpr uint64_t kDivisionBy10Mul = 103u;
constexpr uint64_t kDivisionBy10Div = 1 << 10;
constexpr uint64_t kDivisionBy100Mul = 10486u;
constexpr uint64_t kDivisionBy100Div = 1 << 20;
inline char* EncodeHundred(uint32_t n, absl::Nonnull<char*> out_str) {
int num_digits = static_cast<int>(n - 10) >> 8;
uint32_t div10 = (n * kDivisionBy10Mul) / kDivisionBy10Div;
uint32_t mod10 = n - 10u * div10;
uint32_t base = kTwoZeroBytes + div10 + (mod10 << 8);
base >>= num_digits & 8;
little_endian::Store16(out_str, static_cast<uint16_t>(base));
return out_str + 2 + num_digits;
}
inline char* EncodeTenThousand(uint32_t n, absl::Nonnull<char*> out_str) {
uint32_t div100 = (n * kDivisionBy100Mul) / kDivisionBy100Div;
uint32_t mod100 = n - 100ull * div100;
uint32_t hundreds = (mod100 << 16) + div100;
uint32_t tens = (hundreds * kDivisionBy10Mul) / kDivisionBy10Div;
tens &= (0xFull << 16) | 0xFull;
tens += (hundreds - 10ull * tens) << 8;
ABSL_ASSUME(tens != 0);
uint32_t zeroes = static_cast<uint32_t>(absl::countr_zero(tens)) & (0 - 8u);
tens += kFourZeroBytes;
tens >>= zeroes;
little_endian::Store32(out_str, tens);
return out_str + sizeof(tens) - zeroes / 8;
}
inline uint64_t PrepareEightDigits(uint32_t i) {
ABSL_ASSUME(i < 10000'0000);
uint32_t hi = i / 10000;
uint32_t lo = i % 10000;
uint64_t merged = hi | (uint64_t{lo} << 32);
uint64_t div100 = ((merged * kDivisionBy100Mul) / kDivisionBy100Div) &
((0x7Full << 32) | 0x7Full);
uint64_t mod100 = merged - 100ull * div100;
uint64_t hundreds = (mod100 << 16) + div100;
uint64_t tens = (hundreds * kDivisionBy10Mul) / kDivisionBy10Div;
tens &= (0xFull << 48) | (0xFull << 32) | (0xFull << 16) | 0xFull;
tens += (hundreds - 10ull * tens) << 8;
return tens;
}
inline ABSL_ATTRIBUTE_ALWAYS_INLINE absl::Nonnull<char*> EncodeFullU32(
uint32_t n, absl::Nonnull<char*> out_str) {
if (n < 10) {
*out_str = static_cast<char>('0' + n);
return out_str + 1;
}
if (n < 100'000'000) {
uint64_t bottom = PrepareEightDigits(n);
ABSL_ASSUME(bottom != 0);
uint32_t zeroes =
static_cast<uint32_t>(absl::countr_zero(bottom)) & (0 - 8u);
little_endian::Store64(out_str, (bottom + kEightZeroBytes) >> zeroes);
return out_str + sizeof(bottom) - zeroes / 8;
}
uint32_t div08 = n / 100'000'000;
uint32_t mod08 = n % 100'000'000;
uint64_t bottom = PrepareEightDigits(mod08) + kEightZeroBytes;
out_str = EncodeHundred(div08, out_str);
little_endian::Store64(out_str, bottom);
return out_str + sizeof(bottom);
}
inline ABSL_ATTRIBUTE_ALWAYS_INLINE char* EncodeFullU64(uint64_t i,
char* buffer) {
if (i <= std::numeric_limits<uint32_t>::max()) {
return EncodeFullU32(static_cast<uint32_t>(i), buffer);
}
uint32_t mod08;
if (i < 1'0000'0000'0000'0000ull) {
uint32_t div08 = static_cast<uint32_t>(i / 100'000'000ull);
mod08 = static_cast<uint32_t>(i % 100'000'000ull);
buffer = EncodeFullU32(div08, buffer);
} else {
uint64_t div08 = i / 100'000'000ull;
mod08 = static_cast<uint32_t>(i % 100'000'000ull);
uint32_t div016 = static_cast<uint32_t>(div08 / 100'000'000ull);
uint32_t div08mod08 = static_cast<uint32_t>(div08 % 100'000'000ull);
uint64_t mid_result = PrepareEightDigits(div08mod08) + kEightZeroBytes;
buffer = EncodeTenThousand(div016, buffer);
little_endian::Store64(buffer, mid_result);
buffer += sizeof(mid_result);
}
uint64_t mod_result = PrepareEightDigits(mod08) + kEightZeroBytes;
little_endian::Store64(buffer, mod_result);
return buffer + sizeof(mod_result);
}
}
void numbers_internal::PutTwoDigits(uint32_t i, absl::Nonnull<char*> buf) {
assert(i < 100);
uint32_t base = kTwoZeroBytes;
uint32_t div10 = (i * kDivisionBy10Mul) / kDivisionBy10Div;
uint32_t mod10 = i - 10u * div10;
base += div10 + (mod10 << 8);
little_endian::Store16(buf, static_cast<uint16_t>(base));
}
absl::Nonnull<char*> numbers_internal::FastIntToBuffer(
uint32_t n, absl::Nonnull<char*> out_str) {
out_str = EncodeFullU32(n, out_str);
*out_str = '\0';
return out_str;
}
absl::Nonnull<char*> numbers_internal::FastIntToBuffer(
int32_t i, absl::Nonnull<char*> buffer) {
uint32_t u = static_cast<uint32_t>(i);
if (i < 0) {
*buffer++ = '-';
u = 0 - u;
}
buffer = EncodeFullU32(u, buffer);
*buffer = '\0';
return buffer;
}
absl::Nonnull<char*> numbers_internal::FastIntToBuffer(
uint64_t i, absl::Nonnull<char*> buffer) {
buffer = EncodeFullU64(i, buffer);
*buffer = '\0';
return buffer;
}
absl::Nonnull<char*> numbers_internal::FastIntToBuffer(
int64_t i, absl::Nonnull<char*> buffer) {
uint64_t u = static_cast<uint64_t>(i);
if (i < 0) {
*buffer++ = '-';
u = 0 - u;
}
buffer = EncodeFullU64(u, buffer);
*buffer = '\0';
return buffer;
}
static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num,
uint32_t mul) {
uint64_t bits0_31 = num.second & 0xFFFFFFFF;
uint64_t bits32_63 = num.second >> 32;
uint64_t bits64_95 = num.first & 0xFFFFFFFF;
uint64_t bits96_127 = num.first >> 32;
bits0_31 *= mul;
bits32_63 *= mul;
bits64_95 *= mul;
bits96_127 *= mul;
uint64_t bits0_63 = bits0_31 + (bits32_63 << 32);
uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) +
(bits0_63 < bits0_31);
uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95);
if (bits128_up == 0) return {bits64_127, bits0_63};
auto shift = static_cast<unsigned>(bit_width(bits128_up));
uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift));
uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift));
return {hi, lo};
}
static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) {
std::pair<uint64_t, uint64_t> result = {num, 0};
while (expfive >= 13) {
result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5);
expfive -= 13;
}
constexpr uint32_t powers_of_five[13] = {
1,
5,
5 * 5,
5 * 5 * 5,
5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5};
result = Mul32(result, powers_of_five[expfive & 15]);
int shift = countl_zero(result.first);
if (shift != 0) {
result.first = (result.first << shift) + (result.second >> (64 - shift));
result.second = (result.second << shift);
}
return result;
}
struct ExpDigits {
int32_t exponent;
char digits[6];
};
static ExpDigits SplitToSix(const double value) {
ExpDigits exp_dig;
int exp = 5;
double d = value;
if (d >= 999999.5) {
if (d >= 1e+261) exp += 256, d *= 1e-256;
if (d >= 1e+133) exp += 128, d *= 1e-128;
if (d >= 1e+69) exp += 64, d *= 1e-64;
if (d >= 1e+37) exp += 32, d *= 1e-32;
if (d >= 1e+21) exp += 16, d *= 1e-16;
if (d >= 1e+13) exp += 8, d *= 1e-8;
if (d >= 1e+9) exp += 4, d *= 1e-4;
if (d >= 1e+7) exp += 2, d *= 1e-2;
if (d >= 1e+6) exp += 1, d *= 1e-1;
} else {
if (d < 1e-250) exp -= 256, d *= 1e256;
if (d < 1e-122) exp -= 128, d *= 1e128;
if (d < 1e-58) exp -= 64, d *= 1e64;
if (d < 1e-26) exp -= 32, d *= 1e32;
if (d < 1e-10) exp -= 16, d *= 1e16;
if (d < 1e-2) exp -= 8, d *= 1e8;
if (d < 1e+2) exp -= 4, d *= 1e4;
if (d < 1e+4) exp -= 2, d *= 1e2;
if (d < 1e+5) exp -= 1, d *= 1e1;
}
uint64_t d64k = d * 65536;
uint32_t dddddd;
if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) {
dddddd = static_cast<uint32_t>(d64k / 65536);
int exp2;
double m = std::frexp(value, &exp2);
uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0); | #include "absl/strings/numbers.h"
#include <sys/types.h>
#include <cfenv>
#include <cfloat>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ios>
#include <limits>
#include <numeric>
#include <random>
#include <set>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/log/log.h"
#include "absl/numeric/int128.h"
#include "absl/random/distributions.h"
#include "absl/random/random.h"
#include "absl/strings/internal/numbers_test_common.h"
#include "absl/strings/internal/ostringstream.h"
#include "absl/strings/internal/pow10_helper.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
namespace {
using absl::SimpleAtoi;
using absl::SimpleHexAtoi;
using absl::numbers_internal::kSixDigitsToBufferSize;
using absl::numbers_internal::safe_strto32_base;
using absl::numbers_internal::safe_strto64_base;
using absl::numbers_internal::safe_strtou32_base;
using absl::numbers_internal::safe_strtou64_base;
using absl::numbers_internal::SixDigitsToBuffer;
using absl::strings_internal::Itoa;
using absl::strings_internal::strtouint32_test_cases;
using absl::strings_internal::strtouint64_test_cases;
using testing::Eq;
using testing::MatchesRegex;
using testing::Pointee;
const int kFloatNumCases = 5000000;
std::string PerfectDtoa(double d) {
if (d == 0) return "0";
if (d < 0) return "-" + PerfectDtoa(-d);
int64_t mantissa, exp = 0;
while (d >= 1ULL << 63) ++exp, d *= 0.5;
while ((mantissa = d) != d) --exp, d *= 2.0;
constexpr int maxlen = 1100;
char buf[maxlen + 5];
for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) {
buf[pos] = '0' + (num % 10);
num /= 10;
}
char* begin = &buf[0];
char* end = buf + maxlen;
for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) {
int carry = 0;
for (char* p = end; --p != begin;) {
int dig = *p - '0';
dig = dig * (exp > 0 ? 2 : 5) + carry;
carry = dig / 10;
dig %= 10;
*p = '0' + dig;
}
}
if (exp < 0) {
memmove(end + 1 + exp, end + exp, 1 - exp);
end[exp] = '.';
++end;
}
while (*begin == '0' && begin[1] != '.') ++begin;
return {begin, end};
}
TEST(ToString, PerfectDtoa) {
EXPECT_THAT(PerfectDtoa(1), Eq("1"));
EXPECT_THAT(PerfectDtoa(0.1),
Eq("0.1000000000000000055511151231257827021181583404541015625"));
EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784"));
EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625"));
for (int i = 0; i < 100; ++i) {
for (double multiplier :
{1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) {
double d = multiplier * i;
std::string s = PerfectDtoa(d);
EXPECT_DOUBLE_EQ(d, strtod(s.c_str(), nullptr));
}
}
}
template <typename integer>
struct MyInteger {
integer i;
explicit constexpr MyInteger(integer i) : i(i) {}
constexpr operator integer() const { return i; }
constexpr MyInteger operator+(MyInteger other) const { return i + other.i; }
constexpr MyInteger operator-(MyInteger other) const { return i - other.i; }
constexpr MyInteger operator*(MyInteger other) const { return i * other.i; }
constexpr MyInteger operator/(MyInteger other) const { return i / other.i; }
constexpr bool operator<(MyInteger other) const { return i < other.i; }
constexpr bool operator<=(MyInteger other) const { return i <= other.i; }
constexpr bool operator==(MyInteger other) const { return i == other.i; }
constexpr bool operator>=(MyInteger other) const { return i >= other.i; }
constexpr bool operator>(MyInteger other) const { return i > other.i; }
constexpr bool operator!=(MyInteger other) const { return i != other.i; }
integer as_integer() const { return i; }
};
typedef MyInteger<int64_t> MyInt64;
typedef MyInteger<uint64_t> MyUInt64;
void CheckInt32(int32_t x) {
char buffer[absl::numbers_internal::kFastToBufferSize];
char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
std::string expected = std::to_string(x);
EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
}
void CheckInt64(int64_t x) {
char buffer[absl::numbers_internal::kFastToBufferSize + 3];
buffer[0] = '*';
buffer[23] = '*';
buffer[24] = '*';
char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
std::string expected = std::to_string(x);
EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
EXPECT_EQ(buffer[0], '*');
EXPECT_EQ(buffer[23], '*');
EXPECT_EQ(buffer[24], '*');
char* my_actual =
absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]);
EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
}
void CheckUInt32(uint32_t x) {
char buffer[absl::numbers_internal::kFastToBufferSize];
char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
std::string expected = std::to_string(x);
EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
}
void CheckUInt64(uint64_t x) {
char buffer[absl::numbers_internal::kFastToBufferSize + 1];
char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
std::string expected = std::to_string(x);
EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
EXPECT_EQ(expected, std::string(&buffer[1], generic_actual))
<< " Input " << x;
char* my_actual =
absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]);
EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
}
void CheckHex64(uint64_t v) {
char expected[16 + 1];
std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16));
snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v));
EXPECT_EQ(expected, actual) << " Input " << v;
actual = absl::StrCat(absl::Hex(v, absl::kSpacePad16));
snprintf(expected, sizeof(expected), "%16" PRIx64, static_cast<uint64_t>(v));
EXPECT_EQ(expected, actual) << " Input " << v;
}
TEST(Numbers, TestFastPrints) {
for (int i = -100; i <= 100; i++) {
CheckInt32(i);
CheckInt64(i);
}
for (int i = 0; i <= 100; i++) {
CheckUInt32(i);
CheckUInt64(i);
}
CheckInt32(INT_MIN);
CheckInt32(INT_MAX);
CheckInt64(LONG_MIN);
CheckInt64(uint64_t{1000000000});
CheckInt64(uint64_t{9999999999});
CheckInt64(uint64_t{100000000000000});
CheckInt64(uint64_t{999999999999999});
CheckInt64(uint64_t{1000000000000000000});
CheckInt64(uint64_t{1199999999999999999});
CheckInt64(int64_t{-700000000000000000});
CheckInt64(LONG_MAX);
CheckUInt32(std::numeric_limits<uint32_t>::max());
CheckUInt64(uint64_t{1000000000});
CheckUInt64(uint64_t{9999999999});
CheckUInt64(uint64_t{100000000000000});
CheckUInt64(uint64_t{999999999999999});
CheckUInt64(uint64_t{1000000000000000000});
CheckUInt64(uint64_t{1199999999999999999});
CheckUInt64(std::numeric_limits<uint64_t>::max());
for (int i = 0; i < 10000; i++) {
CheckHex64(i);
}
CheckHex64(uint64_t{0x123456789abcdef0});
}
template <typename int_type, typename in_val_type>
void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) {
std::string s;
absl::strings_internal::OStringStream(&s) << in_value;
int_type x = static_cast<int_type>(~exp_value);
EXPECT_TRUE(SimpleAtoi(s, &x))
<< "in_value=" << in_value << " s=" << s << " x=" << x;
EXPECT_EQ(exp_value, x);
x = static_cast<int_type>(~exp_value);
EXPECT_TRUE(SimpleAtoi(s.c_str(), &x));
EXPECT_EQ(exp_value, x);
}
template <typename int_type, typename in_val_type>
void VerifySimpleAtoiBad(in_val_type in_value) {
std::string s;
absl::strings_internal::OStringStream(&s) << in_value;
int_type x;
EXPECT_FALSE(SimpleAtoi(s, &x));
EXPECT_FALSE(SimpleAtoi(s.c_str(), &x));
}
TEST(NumbersTest, Atoi) {
VerifySimpleAtoiGood<int32_t>(0, 0);
VerifySimpleAtoiGood<int32_t>(42, 42);
VerifySimpleAtoiGood<int32_t>(-42, -42);
VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleAtoiGood<uint32_t>(0, 0);
VerifySimpleAtoiGood<uint32_t>(42, 42);
VerifySimpleAtoiBad<uint32_t>(-42);
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min());
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max());
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max());
VerifySimpleAtoiGood<int64_t>(0, 0);
VerifySimpleAtoiGood<int64_t>(42, 42);
VerifySimpleAtoiGood<int64_t>(-42, -42);
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(),
std::numeric_limits<int64_t>::min());
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max());
VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max());
VerifySimpleAtoiGood<uint64_t>(0, 0);
VerifySimpleAtoiGood<uint64_t>(42, 42);
VerifySimpleAtoiBad<uint64_t>(-42);
VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min());
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max());
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
VerifySimpleAtoiGood<absl::uint128>(0, 0);
VerifySimpleAtoiGood<absl::uint128>(42, 42);
VerifySimpleAtoiBad<absl::uint128>(-42);
VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min());
VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max());
VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
VerifySimpleAtoiGood<absl::uint128>(
std::numeric_limits<absl::uint128>::max(),
std::numeric_limits<absl::uint128>::max());
VerifySimpleAtoiGood<absl::int128>(0, 0);
VerifySimpleAtoiGood<absl::int128>(42, 42);
VerifySimpleAtoiGood<absl::int128>(-42, -42);
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::min());
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::min(),
std::numeric_limits<int64_t>::min());
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max());
VerifySimpleAtoiGood<absl::int128>(std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
VerifySimpleAtoiGood<absl::int128>(
std::numeric_limits<absl::int128>::min(),
std::numeric_limits<absl::int128>::min());
VerifySimpleAtoiGood<absl::int128>(
std::numeric_limits<absl::int128>::max(),
std::numeric_limits<absl::int128>::max());
VerifySimpleAtoiBad<absl::int128>(std::numeric_limits<absl::uint128>::max());
VerifySimpleAtoiGood<int>(-42, -42);
VerifySimpleAtoiGood<int32_t>(-42, -42);
VerifySimpleAtoiGood<uint32_t>(42, 42);
VerifySimpleAtoiGood<unsigned int>(42, 42);
VerifySimpleAtoiGood<int64_t>(-42, -42);
VerifySimpleAtoiGood<long>(-42, -42);
VerifySimpleAtoiGood<uint64_t>(42, 42);
VerifySimpleAtoiGood<size_t>(42, 42);
VerifySimpleAtoiGood<std::string::size_type>(42, 42);
}
TEST(NumbersTest, Atod) {
#if !defined(DBL_TRUE_MIN)
static constexpr double DBL_TRUE_MIN =
4.940656458412465441765687928682213723650598026143247644255856825e-324;
#endif
#if !defined(FLT_TRUE_MIN)
static constexpr float FLT_TRUE_MIN =
1.401298464324817070923729583289916131280261941876515771757068284e-45f;
#endif
double d;
float f;
EXPECT_TRUE(absl::SimpleAtod("NaN", &d));
EXPECT_TRUE(std::isnan(d));
EXPECT_TRUE(absl::SimpleAtod("nAN", &d));
EXPECT_TRUE(std::isnan(d));
EXPECT_TRUE(absl::SimpleAtod("-nan", &d));
EXPECT_TRUE(std::isnan(d));
EXPECT_TRUE(absl::SimpleAtod("inf", &d));
EXPECT_TRUE(std::isinf(d) && (d > 0));
EXPECT_TRUE(absl::SimpleAtod("+Infinity", &d));
EXPECT_TRUE(std::isinf(d) && (d > 0));
EXPECT_TRUE(absl::SimpleAtod("-INF", &d));
EXPECT_TRUE(std::isinf(d) && (d < 0));
EXPECT_TRUE(absl::SimpleAtod("1.7976931348623157e+308", &d));
EXPECT_EQ(d, 1.7976931348623157e+308);
EXPECT_TRUE(absl::SimpleAtod("5e308", &d));
EXPECT_TRUE(std::isinf(d) && (d > 0));
EXPECT_TRUE(absl::SimpleAtof("3.4028234663852886e+38", &f));
EXPECT_EQ(f, 3.4028234663852886e+38f);
EXPECT_TRUE(absl::SimpleAtof("7e38", &f));
EXPECT_TRUE(std::isinf(f) && (f > 0));
EXPECT_TRUE(absl::SimpleAtod("1e308", &d));
EXPECT_EQ(d, 1e308);
EXPECT_FALSE(std::isinf(d));
EXPECT_TRUE(absl::SimpleAtod("1e309", &d));
EXPECT_TRUE(std::isinf(d));
EXPECT_TRUE(absl::SimpleAtof("1e38", &f));
EXPECT_EQ(f, 1e38f);
EXPECT_FALSE(std::isinf(f));
EXPECT_TRUE(absl::SimpleAtof("1e39", &f));
EXPECT_TRUE(std::isinf(f));
EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e307", &d));
EXPECT_EQ(d, 9.999999999999999999e307);
EXPECT_FALSE(std::isinf(d));
EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e308", &d));
EXPECT_TRUE(std::isinf(d));
EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e37", &f));
EXPECT_EQ(f, 9.999999999999999999e37f);
EXPECT_FALSE(std::isinf(f));
EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e38", &f));
EXPECT_TRUE(std::isinf(f));
EXPECT_TRUE(absl::SimpleAtod("2.2250738585072014e-308", &d));
EXPECT_EQ(d, 2.2250738585072014e-308);
EXPECT_TRUE(absl::SimpleAtod("4.9406564584124654e-324", &d));
EXPECT_EQ(d, 4.9406564584124654e-324);
EXPECT_TRUE(absl::SimpleAtod("4.9406564584124654e-325", &d));
EXPECT_EQ(d, 0);
EXPECT_TRUE(absl::SimpleAtof("1.1754943508222875e-38", &f));
EXPECT_EQ(f, 1.1754943508222875e-38f);
EXPECT_TRUE(absl::SimpleAtof("1.4012984643248171e-45", &f));
EXPECT_EQ(f, 1.4012984643248171e-45f);
EXPECT_TRUE(absl::SimpleAtof("1.4012984643248171e-46", &f));
EXPECT_EQ(f, 0);
EXPECT_TRUE(absl::SimpleAtod("1e-307", &d));
EXPECT_EQ(d, 1e-307);
EXPECT_GE(d, DBL_MIN);
EXPECT_LT(d, DBL_MIN * 10);
EXPECT_TRUE(absl::SimpleAtod("1e-323", &d));
EXPECT_EQ(d, 1e-323);
EXPECT_GE(d, DBL_TRUE_MIN);
EXPECT_LT(d, DBL_TRUE_MIN * 10);
EXPECT_TRUE(absl::SimpleAtod("1e-324", &d));
EXPECT_EQ(d, 0);
EXPECT_TRUE(absl::SimpleAtof("1e-37", &f));
EXPECT_EQ(f, 1e-37f);
EXPECT_GE(f, FLT_MIN);
EXPECT_LT(f, FLT_MIN * 10);
EXPECT_TRUE(absl::SimpleAtof("1e-45", &f));
EXPECT_EQ(f, 1e-45f);
EXPECT_GE(f, FLT_TRUE_MIN);
EXPECT_LT(f, FLT_TRUE_MIN * 10);
EXPECT_TRUE(absl::SimpleAtof("1e-46", &f));
EXPECT_EQ(f, 0);
EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-308", &d));
EXPECT_EQ(d, 9.999999999999999999e-308);
EXPECT_GE(d, DBL_MIN);
EXPECT_LT(d, DBL_MIN * 10);
EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-324", &d));
EXPECT_EQ(d, 9.999999999999999999e-324);
EXPECT_GE(d, DBL_TRUE_MIN);
EXPECT_LT(d, DBL_TRUE_MIN * 10);
EXPECT_TRUE(absl::SimpleAtod("9.999999999999999999e-325", &d));
EXPECT_EQ(d, 0);
EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-38", &f));
EXPECT_EQ(f, 9.999999999999999999e-38f);
EXPECT_GE(f, FLT_MIN);
EXPECT_LT(f, FLT_MIN * 10);
EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-46", &f));
EXPECT_EQ(f, 9.999999999999999999e-46f);
EXPECT_GE(f, FLT_TRUE_MIN);
EXPECT_LT(f, FLT_TRUE_MIN * 10);
EXPECT_TRUE(absl::SimpleAtof("9.999999999999999999e-47", &f));
EXPECT_EQ(f, 0);
EXPECT_TRUE(absl::SimpleAtod(" \t\r\n 2.718", &d));
EXPECT_EQ(d, 2.718);
EXPECT_TRUE(absl::SimpleAtod(" 3.141 ", &d));
EXPECT_EQ(d, 3.141);
EXPECT_FALSE(absl::SimpleAtod("n 0", &d));
EXPECT_FALSE(absl::SimpleAtod("0n ", &d));
EXPECT_TRUE(absl::SimpleAtod("000123", &d));
EXPECT_EQ(d, 123);
EXPECT_TRUE(absl::SimpleAtod("000.456", &d));
EXPECT_EQ(d, 0.456);
EXPECT_TRUE(absl::SimpleAtod(".5", &d));
EXPECT_EQ(d, 0.5);
EXPECT_TRUE(absl::SimpleAtod("-.707", &d));
EXPECT_EQ(d, -0.707);
EXPECT_TRUE(absl::SimpleAtod("+6.0221408e+23", &d));
EXPECT_EQ(d, 6.0221408e+23);
EXPECT_FALSE(absl::SimpleAtod("123_456", &d));
EXPECT_TRUE(absl::SimpleAtod("8.9", &d));
EXPECT_FALSE(absl::SimpleAtod("8,9", &d));
EXPECT_TRUE(absl::SimpleAtod("4503599627370497.5", &d));
EXPECT_EQ(d, 4503599627370497.5);
EXPECT_TRUE(absl::SimpleAtod("1e+23", &d));
EXPECT_EQ(d, 1e+23);
EXPECT_TRUE(absl::SimpleAtod("9223372036854775807", &d));
EXPECT_EQ(d, 9223372036854775807);
EXPECT_TRUE(absl::SimpleAtof("0.0625", &f));
EXPECT_EQ(f, 0.0625f);
EXPECT_TRUE(absl::SimpleAtof("20040229.0", &f));
EXPECT_EQ(f, 20040229.0f);
EXPECT_TRUE(absl::SimpleAtof("2147483647.0", &f));
EXPECT_EQ(f, 2147483647.0f);
EXPECT_TRUE(absl::SimpleAtod("122.416294033786585", &d));
EXPECT_EQ(d, 122.416294033786585);
EXPECT_TRUE(absl::SimpleAtof("122.416294033786585", &f));
EXPECT_EQ(f, 122.416294033786585f);
}
TEST(NumbersTest, Prefixes) {
double d;
EXPECT_FALSE(absl::SimpleAtod("++1", &d));
EXPECT_FALSE(absl::SimpleAtod("+-1", &d));
EXPECT_FALSE(absl::SimpleAtod("-+1", &d));
EXPECT_FALSE(absl::SimpleAtod("--1", &d));
EXPECT_TRUE(absl::SimpleAtod("-1", &d));
EXPECT_EQ(d, -1.);
EXPECT_TRUE(absl::SimpleAtod("+1", &d));
EXPECT_EQ(d, +1.);
float f;
EXPECT_FALSE(absl::SimpleAtof("++1", &f));
EXPECT_FALSE(absl::SimpleAtof("+-1", &f));
EXPECT_FALSE(absl::SimpleAtof("-+1", &f));
EXPECT_FALSE(absl::SimpleAtof("--1", &f));
EXPECT_TRUE(absl::SimpleAtof("-1", &f));
EXPECT_EQ(f, -1.f);
EXPECT_TRUE(absl::SimpleAtof("+1", &f));
EXPECT_EQ(f, +1.f);
}
TEST(NumbersTest, Atoenum) {
enum E01 {
E01_zero = 0,
E01_one = 1,
};
VerifySimpleAtoiGood<E01>(E01_zero, E01_zero);
VerifySimpleAtoiGood<E01>(E01_one, E01_one);
enum E_101 {
E_101_minusone = -1,
E_101_zero = 0,
E_101_one = 1,
};
VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone);
VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero);
VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one);
enum E_bigint {
E_bigint_zero = 0,
E_bigint_one = 1,
E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF),
};
VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero);
VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one);
VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31);
enum E_fullint {
E_fullint_zero = 0,
E_fullint_one = 1,
E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF),
E_fullint_min32 = INT32_MIN,
};
VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero);
VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one);
VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31);
VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32);
enum E_biguint {
E_biguint_zero = 0,
E_biguint_one = 1,
E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF),
E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF),
};
VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero);
VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one);
VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31);
VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32);
}
template <typename int_type, typename in_val_type>
void VerifySimpleHexAtoiGood(in_val_type in_value, int_type exp_value) {
std::string s;
absl::strings_internal::OStringStream strm(&s);
if (in_value >= 0) {
strm << std::hex << in_value;
} else {
strm << "-" << std::hex << -absl::uint128(in_value);
}
int_type x = static_cast<int_type>(~exp_value);
EXPECT_TRUE(SimpleHexAtoi(s, &x))
<< "in_value=" << std::hex << in_value << " s=" << s << " x=" << x;
EXPECT_EQ(exp_value, x);
x = static_cast<int_type>(~exp_value);
EXPECT_TRUE(SimpleHexAtoi(
s.c_str(), &x));
EXPECT_EQ(exp_value, x);
}
template <typename int_type, typename in_val_type>
void VerifySimpleHexAtoiBad(in_val_type in_value) {
std::string s;
absl::strings_internal::OStringStream strm(&s);
if (in_value >= 0) {
strm << std::hex << in_value;
} else {
strm << "-" << std::hex << -absl::uint128(in_value);
}
int_type x;
EXPECT_FALSE(SimpleHexAtoi(s, &x));
EXPECT_FALSE(SimpleHexAtoi(
s.c_str(), &x));
}
TEST(NumbersTest, HexAtoi) {
VerifySimpleHexAtoiGood<int32_t>(0, 0);
VerifySimpleHexAtoiGood<int32_t>(0x42, 0x42);
VerifySimpleHexAtoiGood<int32_t>(-0x42, -0x42);
VerifySimpleHexAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::min());
VerifySimpleHexAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleHexAtoiGood<uint32_t>(0, 0);
VerifySimpleHexAtoiGood<uint32_t>(0x42, 0x42);
VerifySimpleHexAtoiBad<uint32_t>(-0x42);
VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min());
VerifySimpleHexAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleHexAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min());
VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max());
VerifySimpleHexAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max());
VerifySimpleHexAtoiGood<int64_t>(0, 0);
VerifySimpleHexAtoiGood<int64_t>(0x42, 0x42);
VerifySimpleHexAtoiGood<int64_t>(-0x42, -0x42);
VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(),
std::numeric_limits<int32_t>::min());
VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(),
std::numeric_limits<int64_t>::min());
VerifySimpleHexAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max());
VerifySimpleHexAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max());
VerifySimpleHexAtoiGood<uint64_t>(0, 0);
VerifySimpleHexAtoiGood<uint64_t>(0x42, 0x42);
VerifySimpleHexAtoiBad<uint64_t>(-0x42);
VerifySimpleHexAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min());
VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleHexAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min());
VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max());
VerifySimpleHexAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
VerifySimpleHexAtoiGood<absl::uint128>(0, 0);
VerifySimpleHexAtoiGood<absl::uint128>(0x42, 0x42);
VerifySimpleHexAtoiBad<absl::uint128>(-0x42);
VerifySimpleHexAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min());
VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(),
std::numeric_limits<int32_t>::max());
VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(),
std::numeric_limits<uint32_t>::max());
VerifySimpleHexAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min());
VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(),
std::numeric_limits<int64_t>::max());
VerifySimpleHexAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max());
VerifySimpleHexAtoiGood<absl::uint128>(
std::numeric_limits<absl::uint128>::max(),
std::numeric_limits<absl::uint128>::max());
VerifySimpleHexAtoiGood<int>(-0x42, -0x42);
VerifySimpleHexAtoiGood<int32_t>(-0x42, -0x42);
VerifySimpleHexAtoiGood<uint32_t>(0x42, 0x42);
VerifySimpleHexAtoiGood<unsigned int>(0x42, 0x42);
VerifySimpleHexAtoiGood<int64_t>(-0x42, -0x42);
VerifySimpleHexAtoiGood<long>(-0x42, -0x42);
VerifySimpleHexAtoiGood<uint64_t>(0x42, 0x42);
VerifySimpleHexAtoiGood<size_t>(0x42, 0x42);
VerifySimpleHexAtoiGood<std::string::size_type>(0x42, 0x42);
int32_t value;
EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16));
EXPECT_EQ(0x34234324, value);
EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16));
EXPECT_EQ(0x34234324, value);
EXPECT_TRUE(safe_strto32_base(" \t\n 34234324", &value, 16));
EXPECT_EQ(0x34234324, value);
EXPECT_TRUE(safe_str | 2,561 |
#ifndef ABSL_STRINGS_STRING_VIEW_H_
#define ABSL_STRINGS_STRING_VIEW_H_
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstring>
#include <iosfwd>
#include <iterator>
#include <limits>
#include <string>
#include "absl/base/attributes.h"
#include "absl/base/nullability.h"
#include "absl/base/config.h"
#include "absl/base/internal/throw_delegate.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
#ifdef ABSL_USES_STD_STRING_VIEW
#include <string_view>
namespace absl {
ABSL_NAMESPACE_BEGIN
using string_view = std::string_view;
ABSL_NAMESPACE_END
}
#else
#if ABSL_HAVE_BUILTIN(__builtin_memcmp) || \
(defined(__GNUC__) && !defined(__clang__)) || \
(defined(_MSC_VER) && _MSC_VER >= 1928)
#define ABSL_INTERNAL_STRING_VIEW_MEMCMP __builtin_memcmp
#else
#define ABSL_INTERNAL_STRING_VIEW_MEMCMP memcmp
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
class ABSL_INTERNAL_ATTRIBUTE_VIEW string_view {
public:
using traits_type = std::char_traits<char>;
using value_type = char;
using pointer = absl::Nullable<char*>;
using const_pointer = absl::Nullable<const char*>;
using reference = char&;
using const_reference = const char&;
using const_iterator = absl::Nullable<const char*>;
using iterator = const_iterator;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using reverse_iterator = const_reverse_iterator;
using size_type = size_t;
using difference_type = std::ptrdiff_t;
using absl_internal_is_view = std::true_type;
static constexpr size_type npos = static_cast<size_type>(-1);
constexpr string_view() noexcept : ptr_(nullptr), length_(0) {}
template <typename Allocator>
string_view(
const std::basic_string<char, std::char_traits<char>, Allocator>& str
ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept
: string_view(str.data(), str.size(), SkipCheckLengthTag{}) {}
constexpr string_view(
absl::Nonnull<const char*> str)
: ptr_(str), length_(str ? StrlenInternal(str) : 0) {}
constexpr string_view(absl::Nullable<const char*> data, size_type len)
: ptr_(data), length_(CheckLengthInternal(len)) {}
constexpr const_iterator begin() const noexcept { return ptr_; }
constexpr const_iterator end() const noexcept { return ptr_ + length_; }
constexpr const_iterator cbegin() const noexcept { return begin(); }
constexpr const_iterator cend() const noexcept { return end(); }
const_reverse_iterator rbegin() const noexcept {
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const noexcept {
return const_reverse_iterator(begin());
}
const_reverse_iterator crbegin() const noexcept { return rbegin(); }
const_reverse_iterator crend() const noexcept { return rend(); }
constexpr size_type size() const noexcept { return length_; }
constexpr size_type length() const noexcept { return size(); }
constexpr size_type max_size() const noexcept { return kMaxSize; }
constexpr bool empty() const noexcept { return length_ == 0; }
constexpr const_reference operator[](size_type i) const {
return ABSL_HARDENING_ASSERT(i < size()), ptr_[i];
}
constexpr const_reference at(size_type i) const {
return ABSL_PREDICT_TRUE(i < size())
? ptr_[i]
: ((void)base_internal::ThrowStdOutOfRange(
"absl::string_view::at"),
ptr_[i]);
}
constexpr const_reference front() const {
return ABSL_HARDENING_ASSERT(!empty()), ptr_[0];
}
constexpr const_reference back() const {
return ABSL_HARDENING_ASSERT(!empty()), ptr_[size() - 1];
}
constexpr const_pointer data() const noexcept { return ptr_; }
constexpr void remove_prefix(size_type n) {
ABSL_HARDENING_ASSERT(n <= length_);
ptr_ += n;
length_ -= n;
}
constexpr void remove_suffix(size_type n) {
ABSL_HARDENING_ASSERT(n <= length_);
length_ -= n;
}
constexpr void swap(string_view& s) noexcept {
auto t = *this;
*this = s;
s = t;
}
template <typename A>
explicit operator std::basic_string<char, traits_type, A>() const {
if (!data()) return {};
return std::basic_string<char, traits_type, A>(data(), size());
}
size_type copy(char* buf, size_type n, size_type pos = 0) const {
if (ABSL_PREDICT_FALSE(pos > length_)) {
base_internal::ThrowStdOutOfRange("absl::string_view::copy");
}
size_type rlen = (std::min)(length_ - pos, n);
if (rlen > 0) {
const char* start = ptr_ + pos;
traits_type::copy(buf, start, rlen);
}
return rlen;
}
constexpr string_view substr(size_type pos = 0, size_type n = npos) const {
return ABSL_PREDICT_FALSE(pos > length_)
? (base_internal::ThrowStdOutOfRange(
"absl::string_view::substr"),
string_view())
: string_view(ptr_ + pos, Min(n, length_ - pos));
}
constexpr int compare(string_view x) const noexcept {
return CompareImpl(length_, x.length_,
Min(length_, x.length_) == 0
? 0
: ABSL_INTERNAL_STRING_VIEW_MEMCMP(
ptr_, x.ptr_, Min(length_, x.length_)));
}
constexpr int compare(size_type pos1, size_type count1, string_view v) const {
return substr(pos1, count1).compare(v);
}
constexpr int compare(size_type pos1, size_type count1, string_view v,
size_type pos2, size_type count2) const {
return substr(pos1, count1).compare(v.substr(pos2, count2));
}
constexpr int compare(absl::Nonnull<const char*> s) const {
return compare(string_view(s));
}
constexpr int compare(size_type pos1, size_type count1,
absl::Nonnull<const char*> s) const {
return substr(pos1, count1).compare(string_view(s));
}
constexpr int compare(size_type pos1, size_type count1,
absl::Nonnull<const char*> s, size_type count2) const {
return substr(pos1, count1).compare(string_view(s, count2));
}
size_type find(string_view s, size_type pos = 0) const noexcept;
size_type find(char c, size_type pos = 0) const noexcept;
size_type find(absl::Nonnull<const char*> s, size_type pos,
size_type count) const {
return find(string_view(s, count), pos);
}
size_type find(absl::Nonnull<const char *> s, size_type pos = 0) const {
return find(string_view(s), pos);
}
size_type rfind(string_view s, size_type pos = npos) const noexcept;
size_type rfind(char c, size_type pos = npos) const noexcept;
size_type rfind(absl::Nonnull<const char*> s, size_type pos,
size_type count) const {
return rfind(string_view(s, count), pos);
}
size_type rfind(absl::Nonnull<const char*> s, size_type pos = npos) const {
return rfind(string_view(s), pos);
}
size_type find_first_of(string_view s, size_type pos = 0) const noexcept;
size_type find_first_of(char c, size_type pos = 0) const noexcept {
return find(c, pos);
}
size_type find_first_of(absl::Nonnull<const char*> s, size_type pos,
size_type count) const {
return find_first_of(string_view(s, count), pos);
}
size_type find_first_of(absl::Nonnull<const char*> s,
size_type pos = 0) const {
return find_first_of(string_view(s), pos);
}
size_type find_last_of(string_view s, size_type pos = npos) const noexcept;
size_type find_last_of(char c, size_type pos = npos) const noexcept {
return rfind(c, pos);
}
size_type find_last_of(absl::Nonnull<const char*> s, size_type pos,
size_type count) const {
return find_last_of(string_view(s, count), pos);
}
size_type find_last_of(absl::Nonnull<const char*> s,
size_type pos = npos) const {
return find_last_of(string_view(s), pos);
}
size_type find_first_not_of(string_view s, size_type pos = 0) const noexcept;
size_type find_first_not_of(char c, size_type pos = 0) const noexcept;
size_type find_first_not_of(absl::Nonnull<const char*> s, size_type pos,
size_type count) const {
return find_first_not_of(string_view(s, count), pos);
}
size_type find_first_not_of(absl::Nonnull<const char*> s,
size_type pos = 0) const {
return find_first_not_of(string_view(s), pos);
}
size_type find_last_not_of(string_view s,
size_type pos = npos) const noexcept;
size_type find_last_not_of(char c, size_type pos = npos) const noexcept;
size_type find_last_not_of(absl::Nonnull<const char*> s, size_type pos,
size_type count) const {
return find_last_not_of(string_view(s, count), pos);
}
size_type find_last_not_of(absl::Nonnull<const char*> s,
size_type pos = npos) const {
return find_last_not_of(string_view(s), pos);
}
#if ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L
constexpr bool starts_with(string_view s) const noexcept {
return s.empty() ||
(size() >= s.size() &&
ABSL_INTERNAL_STRING_VIEW_MEMCMP(data(), s.data(), s.size()) == 0);
}
constexpr bool starts_with(char c) const noexcept {
return !empty() && front() == c;
}
constexpr bool starts_with(const char* s) const {
return starts_with(string_view(s));
}
constexpr bool ends_with(string_view s) const noexcept {
return s.empty() || (size() >= s.size() && ABSL_INTERNAL_STRING_VIEW_MEMCMP(
data() + (size() - s.size()),
s.data(), s.size()) == 0);
}
constexpr bool ends_with(char c) const noexcept {
return !empty() && back() == c;
}
constexpr bool ends_with(const char* s) const {
return ends_with(string_view(s));
}
#endif
private:
struct SkipCheckLengthTag {};
string_view(absl::Nullable<const char*> data, size_type len,
SkipCheckLengthTag) noexcept
: ptr_(data), length_(len) {}
static constexpr size_type kMaxSize =
(std::numeric_limits<difference_type>::max)();
static constexpr size_type CheckLengthInternal(size_type len) {
return ABSL_HARDENING_ASSERT(len <= kMaxSize), len;
}
static constexpr size_type StrlenInternal(absl::Nonnull<const char*> str) {
#if defined(_MSC_VER) && !defined(__clang__)
const char* begin = str;
while (*str != '\0') ++str;
return str - begin;
#elif ABSL_HAVE_BUILTIN(__builtin_strlen) || \
(defined(__GNUC__) && !defined(__clang__))
return __builtin_strlen(str);
#else
return str ? strlen(str) : 0;
#endif
}
static constexpr size_t Min(size_type length_a, size_type length_b) {
return length_a < length_b ? length_a : length_b;
}
static constexpr int CompareImpl(size_type length_a, size_type length_b,
int compare_result) {
return compare_result == 0 ? static_cast<int>(length_a > length_b) -
static_cast<int>(length_a < length_b)
: (compare_result < 0 ? -1 : 1);
}
absl::Nullable<const char*> ptr_;
size_type length_;
};
constexpr bool operator==(string_view x, string_view y) noexcept {
return x.size() == y.size() &&
(x.empty() ||
ABSL_INTERNAL_STRING_VIEW_MEMCMP(x.data(), y.data(), x.size()) == 0);
}
constexpr bool operator!=(string_view x, string_view y) noexcept {
return !(x == y);
}
constexpr bool operator<(string_view x, string_view y) noexcept {
return x.compare(y) < 0;
}
constexpr bool operator>(string_view x, string_view y) noexcept {
return y < x;
}
constexpr bool operator<=(string_view x, string_view y) noexcept {
return !(y < x);
}
constexpr bool operator>=(string_view x, string_view y) noexcept {
return !(x < y);
}
std::ostream& operator<<(std::ostream& o, string_view piece);
ABSL_NAMESPACE_END
}
#undef ABSL_INTERNAL_STRING_VIEW_MEMCMP
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
inline string_view ClippedSubstr(string_view s, size_t pos,
size_t n = string_view::npos) {
pos = (std::min)(pos, static_cast<size_t>(s.size()));
return s.substr(pos, n);
}
constexpr string_view NullSafeStringView(absl::Nullable<const char*> p) {
return p ? string_view(p) : string_view();
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/string_view.h"
#ifndef ABSL_USES_STD_STRING_VIEW
#include <algorithm>
#include <climits>
#include <cstring>
#include <ostream>
#include "absl/base/nullability.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
absl::Nullable<const char*> memmatch(absl::Nullable<const char*> phaystack,
size_t haylen,
absl::Nullable<const char*> pneedle,
size_t neelen) {
if (0 == neelen) {
return phaystack;
}
if (haylen < neelen) return nullptr;
const char* match;
const char* hayend = phaystack + haylen - neelen + 1;
while (
(match = static_cast<const char*>(memchr(
phaystack, pneedle[0], static_cast<size_t>(hayend - phaystack))))) {
if (memcmp(match, pneedle, neelen) == 0)
return match;
else
phaystack = match + 1;
}
return nullptr;
}
void WritePadding(std::ostream& o, size_t pad) {
char fill_buf[32];
memset(fill_buf, o.fill(), sizeof(fill_buf));
while (pad) {
size_t n = std::min(pad, sizeof(fill_buf));
o.write(fill_buf, static_cast<std::streamsize>(n));
pad -= n;
}
}
class LookupTable {
public:
explicit LookupTable(string_view wanted) {
for (char c : wanted) {
table_[Index(c)] = true;
}
}
bool operator[](char c) const { return table_[Index(c)]; }
private:
static unsigned char Index(char c) { return static_cast<unsigned char>(c); }
bool table_[UCHAR_MAX + 1] = {};
};
}
std::ostream& operator<<(std::ostream& o, string_view piece) {
std::ostream::sentry sentry(o);
if (sentry) {
size_t lpad = 0;
size_t rpad = 0;
if (static_cast<size_t>(o.width()) > piece.size()) {
size_t pad = static_cast<size_t>(o.width()) - piece.size();
if ((o.flags() & o.adjustfield) == o.left) {
rpad = pad;
} else {
lpad = pad;
}
}
if (lpad) WritePadding(o, lpad);
o.write(piece.data(), static_cast<std::streamsize>(piece.size()));
if (rpa | #include "absl/strings/string_view.h"
#include <stdlib.h>
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <ios>
#include <iterator>
#include <limits>
#include <map>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/meta/type_traits.h"
#if defined(ABSL_HAVE_STD_STRING_VIEW) || defined(__ANDROID__)
#define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \
EXPECT_DEATH_IF_SUPPORTED(statement, ".*")
#else
#define ABSL_EXPECT_DEATH_IF_SUPPORTED(statement, regex) \
EXPECT_DEATH_IF_SUPPORTED(statement, regex)
#endif
namespace {
static_assert(!absl::type_traits_internal::IsOwner<absl::string_view>::value &&
absl::type_traits_internal::IsView<absl::string_view>::value,
"string_view is a view, not an owner");
static_assert(absl::type_traits_internal::IsLifetimeBoundAssignment<
absl::string_view, std::string>::value,
"lifetimebound assignment not detected");
template <typename T>
struct Mallocator {
typedef T value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
size_type max_size() const {
return size_t(std::numeric_limits<size_type>::max()) / sizeof(value_type);
}
template <typename U>
struct rebind {
typedef Mallocator<U> other;
};
Mallocator() = default;
template <class U>
Mallocator(const Mallocator<U>&) {}
T* allocate(size_t n) { return static_cast<T*>(std::malloc(n * sizeof(T))); }
void deallocate(T* p, size_t) { std::free(p); }
};
template <typename T, typename U>
bool operator==(const Mallocator<T>&, const Mallocator<U>&) {
return true;
}
template <typename T, typename U>
bool operator!=(const Mallocator<T>&, const Mallocator<U>&) {
return false;
}
TEST(StringViewTest, Ctor) {
{
absl::string_view s10;
EXPECT_TRUE(s10.data() == nullptr);
EXPECT_EQ(0u, s10.length());
}
{
const char* hello = "hello";
absl::string_view s20(hello);
EXPECT_TRUE(s20.data() == hello);
EXPECT_EQ(5u, s20.length());
absl::string_view s21(hello, 4);
EXPECT_TRUE(s21.data() == hello);
EXPECT_EQ(4u, s21.length());
absl::string_view s22(hello, 6);
EXPECT_TRUE(s22.data() == hello);
EXPECT_EQ(6u, s22.length());
}
{
std::string hola = "hola";
absl::string_view s30(hola);
EXPECT_TRUE(s30.data() == hola.data());
EXPECT_EQ(4u, s30.length());
hola.push_back('\0');
hola.append("h2");
hola.push_back('\0');
absl::string_view s31(hola);
EXPECT_TRUE(s31.data() == hola.data());
EXPECT_EQ(8u, s31.length());
}
{
using mstring =
std::basic_string<char, std::char_traits<char>, Mallocator<char>>;
mstring str1("BUNGIE-JUMPING!");
const mstring str2("SLEEPING!");
absl::string_view s1(str1);
s1.remove_prefix(strlen("BUNGIE-JUM"));
absl::string_view s2(str2);
s2.remove_prefix(strlen("SLEE"));
EXPECT_EQ(s1, s2);
EXPECT_EQ(s1, "PING!");
}
}
TEST(StringViewTest, Swap) {
absl::string_view a("a");
absl::string_view b("bbb");
EXPECT_TRUE(noexcept(a.swap(b)));
a.swap(b);
EXPECT_EQ(a, "bbb");
EXPECT_EQ(b, "a");
a.swap(b);
EXPECT_EQ(a, "a");
EXPECT_EQ(b, "bbb");
}
TEST(StringViewTest, STLComparator) {
std::string s1("foo");
std::string s2("bar");
std::string s3("baz");
absl::string_view p1(s1);
absl::string_view p2(s2);
absl::string_view p3(s3);
typedef std::map<absl::string_view, int> TestMap;
TestMap map;
map.insert(std::make_pair(p1, 0));
map.insert(std::make_pair(p2, 1));
map.insert(std::make_pair(p3, 2));
EXPECT_EQ(map.size(), 3u);
TestMap::const_iterator iter = map.begin();
EXPECT_EQ(iter->second, 1);
++iter;
EXPECT_EQ(iter->second, 2);
++iter;
EXPECT_EQ(iter->second, 0);
++iter;
EXPECT_TRUE(iter == map.end());
TestMap::iterator new_iter = map.find("zot");
EXPECT_TRUE(new_iter == map.end());
new_iter = map.find("bar");
EXPECT_TRUE(new_iter != map.end());
map.erase(new_iter);
EXPECT_EQ(map.size(), 2u);
iter = map.begin();
EXPECT_EQ(iter->second, 2);
++iter;
EXPECT_EQ(iter->second, 0);
++iter;
EXPECT_TRUE(iter == map.end());
}
#define COMPARE(result, op, x, y) \
EXPECT_EQ(result, absl::string_view((x)) op absl::string_view((y))); \
EXPECT_EQ(result, absl::string_view((x)).compare(absl::string_view((y))) op 0)
TEST(StringViewTest, ComparisonOperators) {
COMPARE(true, ==, "", "");
COMPARE(true, ==, "", absl::string_view());
COMPARE(true, ==, absl::string_view(), "");
COMPARE(true, ==, "a", "a");
COMPARE(true, ==, "aa", "aa");
COMPARE(false, ==, "a", "");
COMPARE(false, ==, "", "a");
COMPARE(false, ==, "a", "b");
COMPARE(false, ==, "a", "aa");
COMPARE(false, ==, "aa", "a");
COMPARE(false, !=, "", "");
COMPARE(false, !=, "a", "a");
COMPARE(false, !=, "aa", "aa");
COMPARE(true, !=, "a", "");
COMPARE(true, !=, "", "a");
COMPARE(true, !=, "a", "b");
COMPARE(true, !=, "a", "aa");
COMPARE(true, !=, "aa", "a");
COMPARE(true, <, "a", "b");
COMPARE(true, <, "a", "aa");
COMPARE(true, <, "aa", "b");
COMPARE(true, <, "aa", "bb");
COMPARE(false, <, "a", "a");
COMPARE(false, <, "b", "a");
COMPARE(false, <, "aa", "a");
COMPARE(false, <, "b", "aa");
COMPARE(false, <, "bb", "aa");
COMPARE(true, <=, "a", "a");
COMPARE(true, <=, "a", "b");
COMPARE(true, <=, "a", "aa");
COMPARE(true, <=, "aa", "b");
COMPARE(true, <=, "aa", "bb");
COMPARE(false, <=, "b", "a");
COMPARE(false, <=, "aa", "a");
COMPARE(false, <=, "b", "aa");
COMPARE(false, <=, "bb", "aa");
COMPARE(false, >=, "a", "b");
COMPARE(false, >=, "a", "aa");
COMPARE(false, >=, "aa", "b");
COMPARE(false, >=, "aa", "bb");
COMPARE(true, >=, "a", "a");
COMPARE(true, >=, "b", "a");
COMPARE(true, >=, "aa", "a");
COMPARE(true, >=, "b", "aa");
COMPARE(true, >=, "bb", "aa");
COMPARE(false, >, "a", "a");
COMPARE(false, >, "a", "b");
COMPARE(false, >, "a", "aa");
COMPARE(false, >, "aa", "b");
COMPARE(false, >, "aa", "bb");
COMPARE(true, >, "b", "a");
COMPARE(true, >, "aa", "a");
COMPARE(true, >, "b", "aa");
COMPARE(true, >, "bb", "aa");
}
TEST(StringViewTest, ComparisonOperatorsByCharacterPosition) {
std::string x;
for (size_t i = 0; i < 256; i++) {
x += 'a';
std::string y = x;
COMPARE(true, ==, x, y);
for (size_t j = 0; j < i; j++) {
std::string z = x;
z[j] = 'b';
COMPARE(false, ==, x, z);
COMPARE(true, <, x, z);
COMPARE(true, >, z, x);
if (j + 1 < i) {
z[j + 1] = 'A';
COMPARE(false, ==, x, z);
COMPARE(true, <, x, z);
COMPARE(true, >, z, x);
z[j + 1] = 'z';
COMPARE(false, ==, x, z);
COMPARE(true, <, x, z);
COMPARE(true, >, z, x);
}
}
}
}
#undef COMPARE
template <typename T>
struct is_type {
template <typename U>
static bool same(U) {
return false;
}
static bool same(T) { return true; }
};
TEST(StringViewTest, NposMatchesStdStringView) {
EXPECT_EQ(absl::string_view::npos, std::string::npos);
EXPECT_TRUE(is_type<size_t>::same(absl::string_view::npos));
EXPECT_FALSE(is_type<size_t>::same(""));
char test[absl::string_view::npos & 1] = {0};
EXPECT_EQ(0, test[0]);
}
TEST(StringViewTest, STL1) {
const absl::string_view a("abcdefghijklmnopqrstuvwxyz");
const absl::string_view b("abc");
const absl::string_view c("xyz");
const absl::string_view d("foobar");
const absl::string_view e;
std::string temp("123");
temp += '\0';
temp += "456";
const absl::string_view f(temp);
EXPECT_EQ(a[6], 'g');
EXPECT_EQ(b[0], 'a');
EXPECT_EQ(c[2], 'z');
EXPECT_EQ(f[3], '\0');
EXPECT_EQ(f[5], '5');
EXPECT_EQ(*d.data(), 'f');
EXPECT_EQ(d.data()[5], 'r');
EXPECT_TRUE(e.data() == nullptr);
EXPECT_EQ(*a.begin(), 'a');
EXPECT_EQ(*(b.begin() + 2), 'c');
EXPECT_EQ(*(c.end() - 1), 'z');
EXPECT_EQ(*a.rbegin(), 'z');
EXPECT_EQ(*(b.rbegin() + 2), 'a');
EXPECT_EQ(*(c.rend() - 1), 'x');
EXPECT_TRUE(a.rbegin() + 26 == a.rend());
EXPECT_EQ(a.size(), 26u);
EXPECT_EQ(b.size(), 3u);
EXPECT_EQ(c.size(), 3u);
EXPECT_EQ(d.size(), 6u);
EXPECT_EQ(e.size(), 0u);
EXPECT_EQ(f.size(), 7u);
EXPECT_TRUE(!d.empty());
EXPECT_TRUE(d.begin() != d.end());
EXPECT_TRUE(d.begin() + 6 == d.end());
EXPECT_TRUE(e.empty());
EXPECT_TRUE(e.begin() == e.end());
char buf[4] = { '%', '%', '%', '%' };
EXPECT_EQ(a.copy(buf, 4), 4u);
EXPECT_EQ(buf[0], a[0]);
EXPECT_EQ(buf[1], a[1]);
EXPECT_EQ(buf[2], a[2]);
EXPECT_EQ(buf[3], a[3]);
EXPECT_EQ(a.copy(buf, 3, 7), 3u);
EXPECT_EQ(buf[0], a[7]);
EXPECT_EQ(buf[1], a[8]);
EXPECT_EQ(buf[2], a[9]);
EXPECT_EQ(buf[3], a[3]);
EXPECT_EQ(c.copy(buf, 99), 3u);
EXPECT_EQ(buf[0], c[0]);
EXPECT_EQ(buf[1], c[1]);
EXPECT_EQ(buf[2], c[2]);
EXPECT_EQ(buf[3], a[3]);
#ifdef ABSL_HAVE_EXCEPTIONS
EXPECT_THROW(a.copy(buf, 1, 27), std::out_of_range);
#else
ABSL_EXPECT_DEATH_IF_SUPPORTED(a.copy(buf, 1, 27), "absl::string_view::copy");
#endif
}
TEST(StringViewTest, STL2) {
const absl::string_view a("abcdefghijklmnopqrstuvwxyz");
const absl::string_view b("abc");
const absl::string_view c("xyz");
absl::string_view d("foobar");
const absl::string_view e;
const absl::string_view f(
"123"
"\0"
"456",
7);
d = absl::string_view();
EXPECT_EQ(d.size(), 0u);
EXPECT_TRUE(d.empty());
EXPECT_TRUE(d.data() == nullptr);
EXPECT_TRUE(d.begin() == d.end());
EXPECT_EQ(a.find(b), 0u);
EXPECT_EQ(a.find(b, 1), absl::string_view::npos);
EXPECT_EQ(a.find(c), 23u);
EXPECT_EQ(a.find(c, 9), 23u);
EXPECT_EQ(a.find(c, absl::string_view::npos), absl::string_view::npos);
EXPECT_EQ(b.find(c), absl::string_view::npos);
EXPECT_EQ(b.find(c, absl::string_view::npos), absl::string_view::npos);
EXPECT_EQ(a.find(d), 0u);
EXPECT_EQ(a.find(e), 0u);
EXPECT_EQ(a.find(d, 12), 12u);
EXPECT_EQ(a.find(e, 17), 17u);
absl::string_view g("xx not found bb");
EXPECT_EQ(a.find(g), absl::string_view::npos);
EXPECT_EQ(d.find(b), absl::string_view::npos);
EXPECT_EQ(e.find(b), absl::string_view::npos);
EXPECT_EQ(d.find(b, 4), absl::string_view::npos);
EXPECT_EQ(e.find(b, 7), absl::string_view::npos);
size_t empty_search_pos = std::string().find(std::string());
EXPECT_EQ(d.find(d), empty_search_pos);
EXPECT_EQ(d.find(e), empty_search_pos);
EXPECT_EQ(e.find(d), empty_search_pos);
EXPECT_EQ(e.find(e), empty_search_pos);
EXPECT_EQ(d.find(d, 4), std::string().find(std::string(), 4));
EXPECT_EQ(d.find(e, 4), std::string().find(std::string(), 4));
EXPECT_EQ(e.find(d, 4), std::string().find(std::string(), 4));
EXPECT_EQ(e.find(e, 4), std::string().find(std::string(), 4));
EXPECT_EQ(a.find('a'), 0u);
EXPECT_EQ(a.find('c'), 2u);
EXPECT_EQ(a.find('z'), 25u);
EXPECT_EQ(a.find('$'), absl::string_view::npos);
EXPECT_EQ(a.find('\0'), absl::string_view::npos);
EXPECT_EQ(f.find('\0'), 3u);
EXPECT_EQ(f.find('3'), 2u);
EXPECT_EQ(f.find('5'), 5u);
EXPECT_EQ(g.find('o'), 4u);
EXPECT_EQ(g.find('o', 4), 4u);
EXPECT_EQ(g.find('o', 5), 8u);
EXPECT_EQ(a.find('b', 5), absl::string_view::npos);
EXPECT_EQ(d.find('\0'), absl::string_view::npos);
EXPECT_EQ(e.find('\0'), absl::string_view::npos);
EXPECT_EQ(d.find('\0', 4), absl::string_view::npos);
EXPECT_EQ(e.find('\0', 7), absl::string_view::npos);
EXPECT_EQ(d.find('x'), absl::string_view::npos);
EXPECT_EQ(e.find('x'), absl::string_view::npos);
EXPECT_EQ(d.find('x', 4), absl::string_view::npos);
EXPECT_EQ(e.find('x', 7), absl::string_view::npos);
EXPECT_EQ(a.find(b.data(), 1, 0), 1u);
EXPECT_EQ(a.find(c.data(), 9, 0), 9u);
EXPECT_EQ(a.find(c.data(), absl::string_view::npos, 0),
absl::string_view::npos);
EXPECT_EQ(b.find(c.data(), absl::string_view::npos, 0),
absl::string_view::npos);
EXPECT_EQ(d.find(b.data(), 4, 0), absl::string_view::npos);
EXPECT_EQ(e.find(b.data(), 7, 0), absl::string_view::npos);
EXPECT_EQ(a.find(b.data(), 1), absl::string_view::npos);
EXPECT_EQ(a.find(c.data(), 9), 23u);
EXPECT_EQ(a.find(c.data(), absl::string_view::npos), absl::string_view::npos);
EXPECT_EQ(b.find(c.data(), absl::string_view::npos), absl::string_view::npos);
EXPECT_EQ(d.find(b.data(), 4), absl::string_view::npos);
EXPECT_EQ(e.find(b.data(), 7), absl::string_view::npos);
EXPECT_EQ(a.rfind(b), 0u);
EXPECT_EQ(a.rfind(b, 1), 0u);
EXPECT_EQ(a.rfind(c), 23u);
EXPECT_EQ(a.rfind(c, 22), absl::string_view::npos);
EXPECT_EQ(a.rfind(c, 1), absl::string_view::npos);
EXPECT_EQ(a.rfind(c, 0), absl::string_view::npos);
EXPECT_EQ(b.rfind(c), absl::string_view::npos);
EXPECT_EQ(b.rfind(c, 0), absl::string_view::npos);
EXPECT_EQ(a.rfind(d), std::string(a).rfind(std::string()));
EXPECT_EQ(a.rfind(e), std::string(a).rfind(std::string()));
EXPECT_EQ(a.rfind(d, 12), 12u);
EXPECT_EQ(a.rfind(e, 17), 17u);
EXPECT_EQ(a.rfind(g), absl::string_view::npos);
EXPECT_EQ(d.rfind(b), absl::string_view::npos);
EXPECT_EQ(e.rfind(b), absl::string_view::npos);
EXPECT_EQ(d.rfind(b, 4), absl::string_view::npos);
EXPECT_EQ(e.rfind(b, 7), absl::string_view::npos);
EXPECT_EQ(d.rfind(d, 4), std::string().rfind(std::string()));
EXPECT_EQ(e.rfind(d, 7), std::string().rfind(std::string()));
EXPECT_EQ(d.rfind(e, 4), std::string().rfind(std::string()));
EXPECT_EQ(e.rfind(e, 7), std::string().rfind(std::string()));
EXPECT_EQ(d.rfind(d), std::string().rfind(std::string()));
EXPECT_EQ(e.rfind(d), std::string().rfind(std::string()));
EXPECT_EQ(d.rfind(e), std::string().rfind(std::string()));
EXPECT_EQ(e.rfind(e), std::string().rfind(std::string()));
EXPECT_EQ(g.rfind('o'), 8u);
EXPECT_EQ(g.rfind('q'), absl::string_view::npos);
EXPECT_EQ(g.rfind('o', 8), 8u);
EXPECT_EQ(g.rfind('o', 7), 4u);
EXPECT_EQ(g.rfind('o', 3), absl::string_view::npos);
EXPECT_EQ(f.rfind('\0'), 3u);
EXPECT_EQ(f.rfind('\0', 12), 3u);
EXPECT_EQ(f.rfind('3'), 2u);
EXPECT_EQ(f.rfind('5'), 5u);
EXPECT_EQ(d.rfind('o'), absl::string_view::npos);
EXPECT_EQ(e.rfind('o'), absl::string_view::npos);
EXPECT_EQ(d.rfind('o', 4), absl::string_view::npos);
EXPECT_EQ(e.rfind('o', 7), absl::string_view::npos);
EXPECT_EQ(a.rfind(b.data(), 1, 0), 1u);
EXPECT_EQ(a.rfind(c.data(), 22, 0), 22u);
EXPECT_EQ(a.rfind(c.data(), 1, 0), 1u);
EXPECT_EQ(a.rfind(c.data(), 0, 0), 0u);
EXPECT_EQ(b.rfind(c.data(), 0, 0), 0u);
EXPECT_EQ(d.rfind(b.data(), 4, 0), 0u);
EXPECT_EQ(e.rfind(b.data(), 7, 0), 0u);
}
TEST(StringViewTest, STL2FindFirst) {
const absl::string_view a("abcdefghijklmnopqrstuvwxyz");
const absl::string_view b("abc");
const absl::string_view c("xyz");
absl::string_view d("foobar");
const absl::string_view e;
const absl::string_view f(
"123"
"\0"
"456",
7);
absl::string_view g("xx not found bb");
d = absl::string_view();
EXPECT_EQ(a.find_first_of(b), 0u);
EXPECT_EQ(a.find_first_of(b, 0), 0u);
EXPECT_EQ(a.find_first_of(b, 1), 1u);
EXPECT_EQ(a.find_first_of(b, 2), 2u);
EXPECT_EQ(a.find_first_of(b, 3), absl::string_view::npos);
EXPECT_EQ(a.find_first_of(c), 23u);
EXPECT_EQ(a.find_first_of(c, 23), 23u);
EXPECT_EQ(a.find_first_of(c, 24), 24u);
EXPECT_EQ(a.find_first_of(c, 25), 25u);
EXPECT_EQ(a.find_first_of(c, 26), absl::string_view::npos);
EXPECT_EQ(g.find_first_of(b), 13u);
EXPECT_EQ(g.find_first_of(c), 0u);
EXPECT_EQ(a.find_first_of(f), absl::string_view::npos);
EXPECT_EQ(f.find_first_of(a), absl::string_view::npos);
EXPECT_EQ(a.find_first_of(d), absl::string_view::npos);
EXPECT_EQ(a.find_first_of(e), absl::string_view::npos);
EXPECT_EQ(d.find_first_of(b), absl::string_view::npos);
EXPECT_EQ(e.find_first_of(b), absl::string_view::npos);
EXPECT_EQ(d.find_first_of(d), absl::string_view::npos);
EXPECT_EQ(e.find_first_of(d), absl::string_view::npos);
EXPECT_EQ(d.find_first_of(e), absl::string_view::npos);
EXPECT_EQ(e.find_first_of(e), absl::string_view::npos);
EXPECT_EQ(a.find_first_not_of(b), 3u);
EXPECT_EQ(a.find_first_not_of(c), 0u);
EXPECT_EQ(b.find_first_not_of(a), absl::string_view::npos);
EXPECT_EQ(c.find_first_not_of(a), absl::string_view::npos);
EXPECT_EQ(f.find_first_not_of(a), 0u);
EXPECT_EQ(a.find_first_not_of(f), 0u);
EXPECT_EQ(a.find_first_not_of(d), 0u);
EXPECT_EQ(a.find_first_not_of(e), 0u);
EXPECT_EQ(a.find_first_not_of(d), 0u);
EXPECT_EQ(a.find_first_not_of(e), 0u);
EXPECT_EQ(a.find_first_not_of(d, 1), 1u);
EXPECT_EQ(a.find_first_not_of(e, 1), 1u);
EXPECT_EQ(a.find_first_not_of(d, a.size() - 1), a.size() - 1);
EXPECT_EQ(a.find_first_not_of(e, a.size() - 1), a.size() - 1);
EXPECT_EQ(a.find_first_not_of(d, a.size()), absl::string_view::npos);
EXPECT_EQ(a.find_first_not_of(e, a.size()), absl::string_view::npos);
EXPECT_EQ(a.find_first_not_of(d, absl::string_view::npos),
absl::string_view::npos);
EXPECT_EQ(a.find_first_not_of(e, absl::string_view::npos),
absl::string_view::npos);
EXPECT_EQ(d.find_first_not_of(a), absl::string_view::npos);
EXPECT_EQ(e.find_first_not_of(a), absl::string_view::npos);
EXPECT_EQ(d.find_first_not_of(d), absl::string_view::npos);
EXPECT_EQ(e.find_first_not_of(d), absl::string_view::npos);
EXPECT_EQ(d.find_first_not_of(e), absl::string_view::npos);
EXPECT_EQ(e.find_first_not_of(e), absl::string_view::npos);
absl::string_view h("====");
EXPECT_EQ(h.find_first_not_of('='), absl::string_view::npos);
EXPECT_EQ(h.find_first_not_of('=', 3), absl::string_view::npos);
EXPECT_EQ(h.find_first_not_of('\0'), 0u);
EXPECT_EQ(g.find_first_not_of('x'), 2u);
EXPECT_EQ(f.find_first_not_of('\0'), 0u);
EXPECT_EQ(f.find_first_not_of('\0', 3), 4u);
EXPECT_EQ(f.find_first_not_of('\0', 2), 2u);
EXPECT_EQ(d.find_first_not_of('x'), absl::string_view::npos);
EXPECT_EQ(e.find_first_not_of('x'), absl::string_view::npos);
EXPECT_EQ(d.find_first_not_of('\0'), absl::string_view::npos);
EXPECT_EQ(e.find_first_not_of('\0'), absl::string_view::npos);
}
TEST(StringViewTest, STL2FindLast) {
const absl::string_view a("abcdefghijklmnopqrstuvwxyz");
const absl::string_view b("abc");
const absl::string_view c("xyz");
absl::string_view d("foobar");
const absl::string_view e;
const absl::string_view f(
"123"
"\0"
"456",
7);
absl::string_view g("xx not found bb");
absl::string_view h("====");
absl::string_view i("56");
d = absl::string_view();
EXPECT_EQ(h.find_last_of(a), absl::string_view::npos);
EXPECT_EQ(g.find_last_of(a), g.size() - 1);
EXPECT_EQ(a.find_last_of(b), 2u);
EXPECT_EQ(a.find_last_of(c), a.size() - 1);
EXPECT_EQ(f.find_last_of(i), 6u);
EXPECT_EQ(a.find_last_of('a'), 0u);
EXPECT_EQ(a.find_last_of('b'), 1u);
EXPECT_EQ(a.find_last_of('z'), 25u);
EXPECT_EQ(a.find_last_of('a', 5), 0u);
EXPECT_EQ(a.find_last_of('b', 5), 1u);
EXPECT_EQ(a.find_last_of('b', 0), absl::string_view::npos);
EXPECT_EQ(a.find_last_of('z', 25), 25u);
EXPECT_EQ(a.find_last_of('z', 24), absl::string_view::npos);
EXPECT_EQ(f.find_last_of(i, 5), 5u);
EXPECT_EQ(f.find_last_of(i, 6), 6u);
EXPECT_EQ(f.find_last_of(a, 4), absl::string_view::npos);
EXPECT_EQ(f.find_last_of(d), absl::string_view::npos);
EXPECT_EQ(f.find_last_of(e), absl::string_view::npos);
EXPECT_EQ(f.find_last_of(d, 4), absl::string_view::npos);
EXPECT_EQ(f.find_last_of(e, 4), absl::string_view::npos);
EXPECT_EQ(d.find_last_of(d), absl::string_view::npos);
EXPECT_EQ(d.find_last_of(e), absl::string_view::npos);
EXPECT_EQ(e.find_last_of(d), absl::string_view::npos);
EXPECT_EQ(e.find_last_of(e), absl::string_view::npos);
EXPECT_EQ(d.find_last_of(f), absl::string_view::npos);
EXPECT_EQ(e.find_last_of(f), absl::string_view::npos);
EXPECT_EQ(d.find_last_of(d, 4), absl::string_view::npos);
EXPECT_EQ(d.find_last_of(e, 4), absl::string_view::npos);
EXPECT_EQ(e.find_last_of(d, 4), absl::string_view::npos);
EXPECT_EQ(e.find_last_of(e, 4), absl::string_view::npos);
EXPECT_EQ(d.find_last_of(f, 4), absl::string_view::npos);
EXPECT_EQ(e.find_last_of(f, 4), absl::string_view::npos);
EXPECT_EQ(a.find_last_not_of(b), a.size() - 1);
EXPECT_EQ(a.find_last_not_of(c), 22u);
EXPECT_EQ(b.find_last_not_of(a), absl::string_view::npos);
EXPECT_EQ(b.find_last_not_of(b), absl::string_view::npos);
EXPECT_EQ(f.find_last_not_of(i), 4u);
EXPECT_EQ(a.find_last_not_of(c, 24), 22u);
EXPECT_EQ(a.find_last_not_of(b, 3), 3u);
EXPECT_EQ(a.find_last_not_of(b, 2), absl::string_view::npos);
EXPECT_EQ(f.find_last_not_of(d), f.size() - 1);
EXPECT_EQ(f.find_last_not_of(e), f.size() - 1);
EXPECT_EQ(f.find_last_not_of(d, 4), 4u);
EXPECT_EQ(f.find_last_not_of(e, 4), 4u);
EXPECT_EQ(d.find_last_not_of(d), absl::string_view::npos);
EXPECT_EQ(d.find_last_not_of(e), absl::string_view::npos);
EXPECT_EQ(e.find_last_not_of(d), absl::string_view::npos);
EXPECT_EQ(e.find_last_not_of(e), absl::string_view::npos);
EXPECT_EQ(d.find_last_not_of(f), absl::string_view::npos);
EXPECT_EQ(e.find_last_not_of(f), absl::string_view::npos);
EXPECT_EQ(d.find_last_not_of(d, 4), absl::string_view::npos);
EXPECT_EQ(d.find_last_not_of(e, 4), absl::string_view::npos);
EXPECT_EQ(e.find_last_not_of(d, 4), absl::string_view::npos);
EXPECT_EQ(e.find_last_not_of(e, 4), absl::string_view::npos);
EXPECT_EQ(d.find_last_not_of(f, 4), absl::string_view::npos);
EXPECT_EQ(e.find_last_not_of(f, 4), absl::string_view::npos);
EXPECT_EQ(h.find_last_not_of('x'), h.size() - 1);
EXPECT_EQ(h.find_last_not_of('='), absl::string_view::npos);
EXPECT_EQ(b.find_last_not_of('c'), 1u);
EXPECT_EQ(h.find_last_not_of('x', 2), 2u);
EXPECT_EQ(h.find_last_not_of('=', 2), absl::string_view::npos);
EXPECT_EQ(b.find_last_not_of('b', 1), 0u);
EXPECT_EQ(d.find_last_not_of('x'), absl::string_view::npos);
EXPECT_EQ(e.find_last_not_of('x'), absl::string_view::npos);
EXPECT_EQ(d.find_last_not_of('\0'), absl::string_view::npos);
EXPECT_EQ(e.find_last_not_of('\0'), absl::string_view::npos);
}
TEST(StringViewTest, STL2Substr) {
const absl::string_view a("abcdefghijklmnopqrstuvwxyz");
const absl::string_view b("abc");
const absl::string_view c("xyz");
absl::string_view d("foobar");
const absl::string_view e;
d = absl::string_view();
EXPECT_EQ(a.substr(0, 3), b);
EXPECT_EQ(a.substr(23), c);
EXPECT_EQ(a.substr(23, 3), c);
EXPECT_EQ(a.substr(23, 99), c);
EXPECT_EQ(a.substr(0), a);
EXPECT_EQ(a.substr(), a);
EXPECT_EQ(a.substr(3, 2), "de");
EXPECT_EQ(d.substr(0, 99), e);
EXPECT_EQ(a.substr(0, absl::string_view::npos), a);
EXPECT_EQ(a.substr(23, absl::string_view::npos), c);
#ifdef ABSL_HAVE_EXCEPTIONS
EXPECT_THROW((void)a.substr(99, 2), std::out_of_range);
#else
ABSL_EXPECT_DEATH_IF_SUPPORTED((void)a.substr(99, 2),
"absl::string_view::substr");
#endif
}
TEST(StringViewTest, TruncSubstr) {
const absl::string_view hi("hi");
EXPECT_EQ("", absl::ClippedSubstr(hi, 0, 0));
EXPECT_EQ("h", absl::ClippedSubstr(hi, 0, 1));
EXPECT_EQ("hi", absl::ClippedSubstr(hi, 0));
EXPECT_EQ("i", absl::ClippedSubstr(hi, 1));
EXPECT_EQ("", absl::ClippedSubstr(hi, 2));
EXPECT_EQ("", absl::ClippedSubstr(hi, 3));
EXPECT_EQ("", absl::ClippedSubstr(hi, 3, 2));
}
TEST(StringViewTest, UTF8) {
std::string utf8 = "\u00E1";
std::string utf8_twice = utf8 + " " + utf8;
size_t utf8_len = strlen(utf8.data());
EXPECT_EQ(utf8_len, absl::string_view(utf8_twice).find_first_of(" "));
EXPECT_EQ(utf8_len, absl::string_view(utf8_twice).find_first_of(" \t"));
}
TEST(StringViewTest, FindConformance) {
struct {
std::string haystack;
std::string needle;
} specs[] = {
{"", ""},
{"", "a"},
{"a", ""},
{"a", "a"},
{"a", "b"},
{"aa", ""},
{"aa", "a"},
{"aa", "b"},
{"ab", "a"},
{"ab", "b"},
{"abcd", ""},
{"abcd", "a"},
{"abcd", "d"},
{"abcd", "ab"},
{"abcd", "bc"},
{"abcd", "cd"},
{"abcd", "abcd"},
};
for (const auto& s : specs) {
SCOPED_TRACE(s.haystack);
SCOPED_TRACE(s.needle);
std::string st = s.haystack;
absl::string_view sp = s.haystack;
for (size_t i = 0; i <= sp.size(); ++i) {
size_t pos = (i == sp.size()) ? absl::string_view::npos : i;
SCOPED_TRACE(pos);
EXPECT_EQ(sp.find(s.needle, pos),
st.find(s.needle, pos));
EXPECT_EQ(sp.rfind(s.needle, pos),
st.rfind(s.needle, pos));
EXPECT_EQ(sp.find_first_of(s.needle, pos),
st.find_first_of(s.needle, pos));
EXPECT_EQ(sp.find_first_not_of(s.needle, pos),
st.find_first_not_of(s.needle, pos));
EXPECT_EQ(sp.find_last_of(s.needle, pos),
st.find_last_of(s.needle, pos));
EXPECT_EQ(sp.find_last_not_of(s.needle, pos),
st.find_last_not_of(s.needle, pos));
}
}
}
TEST(StringViewTest, Remove) {
absl::string_view a("foobar");
std::string s1("123");
s1 += '\0';
s1 += "456";
absl::string_view e;
std::string s2;
absl::string_view c(a);
c.remove_prefix(3);
EXPECT_EQ(c, "bar");
c = a;
c.remove_prefix(0);
EXPECT_EQ(c, a);
c.remove_prefix(c.size());
EXPECT_EQ(c, e);
c = a;
c.remove_suffix(3);
EXPECT_EQ(c, "foo");
c = a;
c.remove_suffix(0);
EXPECT_EQ(c, a);
c.remove_suffix(c.size());
EXPECT_EQ(c, e);
}
TEST(StringViewTest, Set) {
absl::string_view a("foobar");
absl::string_view empty;
absl::string_view b;
b = absl::string_view("foobar", 6);
EXPECT_EQ(b, a);
b = absl::string_view("foobar", 0);
EXPECT_EQ(b, empty);
b = absl::string_view("foobar", 7);
EXPECT_NE(b, a);
b = absl::string_view("foobar");
EXPECT_EQ(b, a);
}
TEST(StringViewTest, FrontBack) {
static const char arr[] = "abcd";
const absl::string_view csp(arr, 4);
EXPECT_EQ(&arr[0], &csp.front());
EXPECT_EQ(&arr[3], &csp.back());
}
TEST(StringViewTest, FrontBackSingleChar) {
static const char c = 'a';
const absl::string_view csp(&c, 1);
EXPECT_EQ(&c, &csp.front());
EXPECT_EQ(&c, &csp.back());
}
TEST(StringViewTest, FrontBackEmpty) {
#ifndef ABSL_USES_STD_STRING_VIEW
#if !defined(NDEBUG) || ABSL_OPTION_HARDENED
absl::string_view sv;
ABSL_EXPECT_DEATH_IF_SUPPORTED(sv.front(), "");
ABSL_EXPECT_DEATH_IF_SUPPORTED(sv.back(), "");
#endif
#endif
}
#if !defined(ABSL_USES_STD_STRING_VIEW) || \
(!(defined(_GLIBCXX_RELEASE) && _GLIBCXX_RELEASE >= 9) && \
!defined(_LIBCPP_VERSION) && !defined(_MSC_VER))
#define ABSL_HAVE_STRING_VIEW_FROM_NULLPTR 1
#endif
TEST(StringViewTest, NULLInput) {
absl::string_view s;
EXPECT_EQ(s.data(), nullptr);
EXPECT_EQ(s.size(), 0u);
#ifdef ABSL_HAVE_STRING_VIEW_FROM_NULLPTR
s = absl::string_view(nullptr);
EXPECT_EQ(s.data(), nullptr);
EXPECT_EQ(s.size(), 0u);
EXPECT_EQ("", std::string(s));
#endif
}
TEST(StringViewTest, Comparisons2) {
absl::string_view abc("abcdefghijklmnopqrstuvwxyz");
EXPECT_EQ(abc, absl::string_view("abcdefghijklmnopqrstuvwxyz"));
EXPECT_EQ(abc.compare(absl::string_view("abcdefghijklmnopqrstuvwxyz")), 0);
EXPECT_LT(abc, absl::string_view("abcdefghijklmnopqrstuvwxzz"));
EXPECT_LT(abc.compare(absl::string_view("abcdefghijklmnopqrstuvwxzz")), 0);
EXPECT_GT(abc, absl::string_view("abcdefghijklmnopqrstuvwxyy"));
EXPECT_GT(abc.compare(absl::string_view("abcdefghijklmnopqrstuvwxyy")), 0);
absl::string_view digits("0123456789");
auto npos = absl::string_view::npos;
EXPECT_EQ(digits.compare(3, npos, absl::string_view("3456789")), 0);
EXPECT_EQ(digits.compare(3, 4, absl::string_view("3456")), 0);
EXPECT_EQ(digits.compare(10, 0, absl::string_view()), 0);
EXPECT_EQ(digits.compare(3, 4, absl::string_view("0123456789"), 3, 4),
0);
EXPECT_LT(digits.compare(3, 4, absl::string_view("0123456789"), 3, 5),
0);
EXPECT_LT(digits.compare(0, npos, absl::string_view("0123456789"), 3, 5),
0);
EXPECT_EQ(digits.compare(3, 4, "3456"), 0);
EXPECT_EQ(digits.compare(3, npos, "3456789"), 0);
EXPECT_EQ(digits.compare(10, 0, ""), 0);
EXPECT_EQ(digits.compare(3, 4, "0123456789", 3, 4), 0);
EXPECT_LT(digits.compare(3, 4, "0123456789", 3, 5), 0);
EXPECT_LT(digits.compare(0, npos, "0123456789", 3, 5), 0);
}
TEST(StringViewTest, At) {
absl::string_view abc = "abc";
EXPECT_EQ(abc.at(0), 'a');
EXPECT_EQ(abc.at(1), 'b');
EXPECT_EQ(abc.at(2), 'c');
#ifdef ABSL_HAVE_EXCEPTIONS
EXPECT_THROW((void)abc.at(3), std::out_of_range);
#else
ABSL_EXPECT_DEATH_IF_SUPPORTED((void)abc.at(3), "absl::string_view::at");
#endif
}
#if ABSL_INTERNAL_CPLUSPLUS_LANG >= 202002L
TEST(St | 2,562 |
#ifndef ABSL_STRINGS_STR_REPLACE_H_
#define ABSL_STRINGS_STR_REPLACE_H_
#include <string>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/nullability.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
ABSL_MUST_USE_RESULT std::string StrReplaceAll(
absl::string_view s,
std::initializer_list<std::pair<absl::string_view, absl::string_view>>
replacements);
template <typename StrToStrMapping>
std::string StrReplaceAll(absl::string_view s,
const StrToStrMapping& replacements);
int StrReplaceAll(
std::initializer_list<std::pair<absl::string_view, absl::string_view>>
replacements,
absl::Nonnull<std::string*> target);
template <typename StrToStrMapping>
int StrReplaceAll(const StrToStrMapping& replacements,
absl::Nonnull<std::string*> target);
namespace strings_internal {
struct ViableSubstitution {
absl::string_view old;
absl::string_view replacement;
size_t offset;
ViableSubstitution(absl::string_view old_str,
absl::string_view replacement_str, size_t offset_val)
: old(old_str), replacement(replacement_str), offset(offset_val) {}
bool OccursBefore(const ViableSubstitution& y) const {
if (offset != y.offset) return offset < y.offset;
return old.size() > y.old.size();
}
};
template <typename StrToStrMapping>
std::vector<ViableSubstitution> FindSubstitutions(
absl::string_view s, const StrToStrMapping& replacements) {
std::vector<ViableSubstitution> subs;
subs.reserve(replacements.size());
for (const auto& rep : replacements) {
using std::get;
absl::string_view old(get<0>(rep));
size_t pos = s.find(old);
if (pos == s.npos) continue;
if (old.empty()) continue;
subs.emplace_back(old, get<1>(rep), pos);
size_t index = subs.size();
while (--index && subs[index - 1].OccursBefore(subs[index])) {
std::swap(subs[index], subs[index - 1]);
}
}
return subs;
}
int ApplySubstitutions(absl::string_view s,
absl::Nonnull<std::vector<ViableSubstitution>*> subs_ptr,
absl::Nonnull<std::string*> result_ptr);
}
template <typename StrToStrMapping>
std::string StrReplaceAll(absl::string_view s,
const StrToStrMapping& replacements) {
auto subs = strings_internal::FindSubstitutions(s, replacements);
std::string result;
result.reserve(s.size());
strings_internal::ApplySubstitutions(s, &subs, &result);
return result;
}
template <typename StrToStrMapping>
int StrReplaceAll(const StrToStrMapping& replacements,
absl::Nonnull<std::string*> target) {
auto subs = strings_internal::FindSubstitutions(*target, replacements);
if (subs.empty()) return 0;
std::string result;
result.reserve(target->size());
int substitutions =
strings_internal::ApplySubstitutions(*target, &subs, &result);
target->swap(result);
return substitutions;
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/str_replace.h"
#include <cstddef>
#include <initializer_list>
#include <string>
#include <utility>
#include <vector>
#include "absl/base/config.h"
#include "absl/base/nullability.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
using FixedMapping =
std::initializer_list<std::pair<absl::string_view, absl::string_view>>;
int ApplySubstitutions(
absl::string_view s,
absl::Nonnull<std::vector<strings_internal::ViableSubstitution>*> subs_ptr,
absl::Nonnull<std::string*> result_ptr) {
auto& subs = *subs_ptr;
int substitutions = 0;
size_t pos = 0;
while (!subs.empty()) {
auto& sub = subs.back();
if (sub.offset >= pos) {
if (pos <= s.size()) {
StrAppend(result_ptr, s.substr(pos, sub.offset - pos), sub.replacement);
}
pos = sub.offset + sub.old.size();
substitutions += 1;
}
sub.offset = s.find(sub.old, pos);
if (sub.offset == s.npos) {
subs.pop_back();
} else {
size_t index = subs.size();
while (--index && subs[index - 1].OccursBefore(subs[index])) {
std::swap(subs[index], subs[index - 1]);
}
}
}
result_ptr->append(s.data() + pos, s.size() - pos);
return substitutions;
}
}
std::string StrReplaceAll(absl::string_view s,
strings_internal::FixedMapping replacements) {
return StrReplaceAll<strings_internal::FixedMapping>(s, replacements);
}
int StrReplaceAll(strings_internal::FixedMapping replacements,
absl::Nonnull<std::string*> target) {
return StrReplaceAll<strings_internal::FixedMapping>(replacements, target);
}
ABSL_NAMESPACE_END
} | #include "absl/strings/str_replace.h"
#include <list>
#include <map>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
TEST(StrReplaceAll, OneReplacement) {
std::string s;
s = absl::StrReplaceAll(s, {{"", ""}});
EXPECT_EQ(s, "");
s = absl::StrReplaceAll(s, {{"x", ""}});
EXPECT_EQ(s, "");
s = absl::StrReplaceAll(s, {{"", "y"}});
EXPECT_EQ(s, "");
s = absl::StrReplaceAll(s, {{"x", "y"}});
EXPECT_EQ(s, "");
s = absl::StrReplaceAll("abc", {{"", ""}});
EXPECT_EQ(s, "abc");
s = absl::StrReplaceAll("abc", {{"", "y"}});
EXPECT_EQ(s, "abc");
s = absl::StrReplaceAll("abc", {{"x", ""}});
EXPECT_EQ(s, "abc");
s = absl::StrReplaceAll("abc", {{"xyz", "123"}});
EXPECT_EQ(s, "abc");
s = absl::StrReplaceAll("abc", {{"abc", "xyz"}});
EXPECT_EQ(s, "xyz");
s = absl::StrReplaceAll("abc", {{"a", "x"}});
EXPECT_EQ(s, "xbc");
s = absl::StrReplaceAll("abc", {{"b", "x"}});
EXPECT_EQ(s, "axc");
s = absl::StrReplaceAll("abc", {{"c", "x"}});
EXPECT_EQ(s, "abx");
s = absl::StrReplaceAll("ababa", {{"a", "xxx"}});
EXPECT_EQ(s, "xxxbxxxbxxx");
s = absl::StrReplaceAll("ababa", {{"b", "xxx"}});
EXPECT_EQ(s, "axxxaxxxa");
s = absl::StrReplaceAll("aaabaaabaaa", {{"aaa", "x"}});
EXPECT_EQ(s, "xbxbx");
s = absl::StrReplaceAll("abbbabbba", {{"bbb", "x"}});
EXPECT_EQ(s, "axaxa");
s = absl::StrReplaceAll("aaa", {{"aa", "x"}});
EXPECT_EQ(s, "xa");
s = absl::StrReplaceAll("aaa", {{"aa", "a"}});
EXPECT_EQ(s, "aa");
}
TEST(StrReplaceAll, ManyReplacements) {
std::string s;
s = absl::StrReplaceAll("", {{"", ""}, {"x", ""}, {"", "y"}, {"x", "y"}});
EXPECT_EQ(s, "");
s = absl::StrReplaceAll("abc", {{"", ""}, {"", "y"}, {"x", ""}});
EXPECT_EQ(s, "abc");
s = absl::StrReplaceAll("abc", {{"a", "x"}, {"b", "y"}, {"c", "z"}});
EXPECT_EQ(s, "xyz");
s = absl::StrReplaceAll("zxy", {{"z", "x"}, {"x", "y"}, {"y", "z"}});
EXPECT_EQ(s, "xyz");
s = absl::StrReplaceAll("abc", {{"a", "x"}, {"ab", "xy"}, {"abc", "xyz"}});
EXPECT_EQ(s, "xyz");
s = absl::StrReplaceAll(
"Abc!", {{"a", "x"}, {"ab", "xy"}, {"b", "y"}, {"bc", "yz"}, {"c", "z"}});
EXPECT_EQ(s, "Ayz!");
s = absl::StrReplaceAll(
"Abc!",
{{"a", "x"}, {"ab", "xy"}, {"b", "y"}, {"bc!", "yz?"}, {"c!", "z;"}});
EXPECT_EQ(s, "Ayz?");
s = absl::StrReplaceAll("ababa", {{"a", "xxx"}, {"b", "XXXX"}});
EXPECT_EQ(s, "xxxXXXXxxxXXXXxxx");
s = absl::StrReplaceAll("aaa", {{"aa", "x"}, {"a", "X"}});
EXPECT_EQ(s, "xX");
s = absl::StrReplaceAll("aaa", {{"a", "X"}, {"aa", "x"}});
EXPECT_EQ(s, "xX");
s = absl::StrReplaceAll("the quick brown fox jumped over the lazy dogs",
{
{"brown", "box"},
{"dogs", "jugs"},
{"fox", "with"},
{"jumped", "five"},
{"over", "dozen"},
{"quick", "my"},
{"the", "pack"},
{"the lazy", "liquor"},
});
EXPECT_EQ(s, "pack my box with five dozen liquor jugs");
}
TEST(StrReplaceAll, ManyReplacementsInMap) {
std::map<const char *, const char *> replacements;
replacements["$who"] = "Bob";
replacements["$count"] = "5";
replacements["#Noun"] = "Apples";
std::string s = absl::StrReplaceAll("$who bought $count #Noun. Thanks $who!",
replacements);
EXPECT_EQ("Bob bought 5 Apples. Thanks Bob!", s);
}
TEST(StrReplaceAll, ReplacementsInPlace) {
std::string s = std::string("$who bought $count #Noun. Thanks $who!");
int count;
count = absl::StrReplaceAll({{"$count", absl::StrCat(5)},
{"$who", "Bob"},
{"#Noun", "Apples"}}, &s);
EXPECT_EQ(count, 4);
EXPECT_EQ("Bob bought 5 Apples. Thanks Bob!", s);
}
TEST(StrReplaceAll, ReplacementsInPlaceInMap) {
std::string s = std::string("$who bought $count #Noun. Thanks $who!");
std::map<absl::string_view, absl::string_view> replacements;
replacements["$who"] = "Bob";
replacements["$count"] = "5";
replacements["#Noun"] = "Apples";
int count;
count = absl::StrReplaceAll(replacements, &s);
EXPECT_EQ(count, 4);
EXPECT_EQ("Bob bought 5 Apples. Thanks Bob!", s);
}
struct Cont {
Cont() = default;
explicit Cont(absl::string_view src) : data(src) {}
absl::string_view data;
};
template <int index>
absl::string_view get(const Cont& c) {
auto splitter = absl::StrSplit(c.data, ':');
auto it = splitter.begin();
for (int i = 0; i < index; ++i) ++it;
return *it;
}
TEST(StrReplaceAll, VariableNumber) {
std::string s;
{
std::vector<std::pair<std::string, std::string>> replacements;
s = "abc";
EXPECT_EQ(0, absl::StrReplaceAll(replacements, &s));
EXPECT_EQ("abc", s);
s = "abc";
replacements.push_back({"a", "A"});
EXPECT_EQ(1, absl::StrReplaceAll(replacements, &s));
EXPECT_EQ("Abc", s);
s = "abc";
replacements.push_back({"b", "B"});
EXPECT_EQ(2, absl::StrReplaceAll(replacements, &s));
EXPECT_EQ("ABc", s);
s = "abc";
replacements.push_back({"d", "D"});
EXPECT_EQ(2, absl::StrReplaceAll(replacements, &s));
EXPECT_EQ("ABc", s);
EXPECT_EQ("ABcABc", absl::StrReplaceAll("abcabc", replacements));
}
{
std::map<const char*, const char*> replacements;
replacements["aa"] = "x";
replacements["a"] = "X";
s = "aaa";
EXPECT_EQ(2, absl::StrReplaceAll(replacements, &s));
EXPECT_EQ("xX", s);
EXPECT_EQ("xxX", absl::StrReplaceAll("aaaaa", replacements));
}
{
std::list<std::pair<absl::string_view, absl::string_view>> replacements = {
{"a", "x"}, {"b", "y"}, {"c", "z"}};
std::string s = absl::StrReplaceAll("abc", replacements);
EXPECT_EQ(s, "xyz");
}
{
using X = std::tuple<absl::string_view, std::string, int>;
std::vector<X> replacements(3);
replacements[0] = X{"a", "x", 1};
replacements[1] = X{"b", "y", 0};
replacements[2] = X{"c", "z", -1};
std::string s = absl::StrReplaceAll("abc", replacements);
EXPECT_EQ(s, "xyz");
}
{
std::vector<Cont> replacements(3);
replacements[0] = Cont{"a:x"};
replacements[1] = Cont{"b:y"};
replacements[2] = Cont{"c:z"};
std::string s = absl::StrReplaceAll("abc", replacements);
EXPECT_EQ(s, "xyz");
}
}
TEST(StrReplaceAll, Inplace) {
std::string s;
int reps;
s = "";
reps = absl::StrReplaceAll({{"", ""}, {"x", ""}, {"", "y"}, {"x", "y"}}, &s);
EXPECT_EQ(reps, 0);
EXPECT_EQ(s, "");
s = "abc";
reps = absl::StrReplaceAll({{"", ""}, {"", "y"}, {"x", ""}}, &s);
EXPECT_EQ(reps, 0);
EXPECT_EQ(s, "abc");
s = "abc";
reps = absl::StrReplaceAll({{"a", "x"}, {"b", "y"}, {"c", "z"}}, &s);
EXPECT_EQ(reps, 3);
EXPECT_EQ(s, "xyz");
s = "zxy";
reps = absl::StrReplaceAll({{"z", "x"}, {"x", "y"}, {"y", "z"}}, &s);
EXPECT_EQ(reps, 3);
EXPECT_EQ(s, "xyz");
s = "abc";
reps = absl::StrReplaceAll({{"a", "x"}, {"ab", "xy"}, {"abc", "xyz"}}, &s);
EXPECT_EQ(reps, 1);
EXPECT_EQ(s, "xyz");
s = "Abc!";
reps = absl::StrReplaceAll(
{{"a", "x"}, {"ab", "xy"}, {"b", "y"}, {"bc", "yz"}, {"c", "z"}}, &s);
EXPECT_EQ(reps, 1);
EXPECT_EQ(s, "Ayz!");
s = "Abc!";
reps = absl::StrReplaceAll(
{{"a", "x"}, {"ab", "xy"}, {"b", "y"}, {"bc!", "yz?"}, {"c!", "z;"}}, &s);
EXPECT_EQ(reps, 1);
EXPECT_EQ(s, "Ayz?");
s = "ababa";
reps = absl::StrReplaceAll({{"a", "xxx"}, {"b", "XXXX"}}, &s);
EXPECT_EQ(reps, 5);
EXPECT_EQ(s, "xxxXXXXxxxXXXXxxx");
s = "aaa";
reps = absl::StrReplaceAll({{"aa", "x"}, {"a", "X"}}, &s);
EXPECT_EQ(reps, 2);
EXPECT_EQ(s, "xX");
s = "aaa";
reps = absl::StrReplaceAll({{"a", "X"}, {"aa", "x"}}, &s);
EXPECT_EQ(reps, 2);
EXPECT_EQ(s, "xX");
s = "the quick brown fox jumped over the lazy dogs";
reps = absl::StrReplaceAll(
{
{"brown", "box"},
{"dogs", "jugs"},
{"fox", "with"},
{"jumped", "five"},
{"over", "dozen"},
{"quick", "my"},
{"the", "pack"},
{"the lazy", "liquor"},
},
&s);
EXPECT_EQ(reps, 8);
EXPECT_EQ(s, "pack my box with five dozen liquor jugs");
} | 2,563 |
#ifndef ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
#define ABSL_STRINGS_INTERNAL_CHARCONV_BIGINT_H_
#include <algorithm>
#include <cstdint>
#include <iostream>
#include <string>
#include "absl/base/config.h"
#include "absl/strings/ascii.h"
#include "absl/strings/internal/charconv_parse.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
constexpr int kMaxSmallPowerOfFive = 13;
constexpr int kMaxSmallPowerOfTen = 9;
ABSL_DLL extern const uint32_t
kFiveToNth[kMaxSmallPowerOfFive + 1];
ABSL_DLL extern const uint32_t kTenToNth[kMaxSmallPowerOfTen + 1];
template <int max_words>
class BigUnsigned {
public:
static_assert(max_words == 4 || max_words == 84,
"unsupported max_words value");
BigUnsigned() : size_(0), words_{} {}
explicit constexpr BigUnsigned(uint64_t v)
: size_((v >> 32) ? 2 : v ? 1 : 0),
words_{static_cast<uint32_t>(v & 0xffffffffu),
static_cast<uint32_t>(v >> 32)} {}
explicit BigUnsigned(absl::string_view sv) : size_(0), words_{} {
if (std::find_if_not(sv.begin(), sv.end(), ascii_isdigit) != sv.end() ||
sv.empty()) {
return;
}
int exponent_adjust =
ReadDigits(sv.data(), sv.data() + sv.size(), Digits10() + 1);
if (exponent_adjust > 0) {
MultiplyByTenToTheNth(exponent_adjust);
}
}
int ReadFloatMantissa(const ParsedFloat& fp, int significant_digits);
static constexpr int Digits10() {
return static_cast<uint64_t>(max_words) * 9975007 / 1035508;
}
void ShiftLeft(int count) {
if (count > 0) {
const int word_shift = count / 32;
if (word_shift >= max_words) {
SetToZero();
return;
}
size_ = (std::min)(size_ + word_shift, max_words);
count %= 32;
if (count == 0) {
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(14, 0)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
std::copy_backward(words_, words_ + size_ - word_shift, words_ + size_);
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(14, 0)
#pragma GCC diagnostic pop
#endif
} else {
for (int i = (std::min)(size_, max_words - 1); i > word_shift; --i) {
words_[i] = (words_[i - word_shift] << count) |
(words_[i - word_shift - 1] >> (32 - count));
}
words_[word_shift] = words_[0] << count;
if (size_ < max_words && words_[size_]) {
++size_;
}
}
std::fill_n(words_, word_shift, 0u);
}
}
void MultiplyBy(uint32_t v) {
if (size_ == 0 || v == 1) {
return;
}
if (v == 0) {
SetToZero();
return;
}
const uint64_t factor = v;
uint64_t window = 0;
for (int i = 0; i < size_; ++i) {
window += factor * words_[i];
words_[i] = window & 0xffffffff;
window >>= 32;
}
if (window && size_ < max_words) {
words_[size_] = window & 0xffffffff;
++size_;
}
}
void MultiplyBy(uint64_t v) {
uint32_t words[2];
words[0] = static_cast<uint32_t>(v);
words[1] = static_cast<uint32_t>(v >> 32);
if (words[1] == 0) {
MultiplyBy(words[0]);
} else {
MultiplyBy(2, words);
}
}
void MultiplyByFiveToTheNth(int n) {
while (n >= kMaxSmallPowerOfFive) {
MultiplyBy(kFiveToNth[kMaxSmallPowerOfFive]);
n -= kMaxSmallPowerOfFive;
}
if (n > 0) {
MultiplyBy(kFiveToNth[n]);
}
}
void MultiplyByTenToTheNth(int n) {
if (n > kMaxSmallPowerOfTen) {
MultiplyByFiveToTheNth(n);
ShiftLeft(n);
} else if (n > 0) {
MultiplyBy(kTenToNth[n]);
}
}
static BigUnsigned FiveToTheNth(int n);
template <int M>
void MultiplyBy(const BigUnsigned<M>& other) {
MultiplyBy(other.size(), other.words());
}
void SetToZero() {
std::fill_n(words_, size_, 0u);
size_ = 0;
}
uint32_t GetWord(int index) const {
if (index < 0 || index >= size_) {
return 0;
}
return words_[index];
}
std::string ToString() const;
int size() const { return size_; }
const uint32_t* words() const { return words_; }
private:
int ReadDigits(const char* begin, const char* end, int significant_digits);
void MultiplyStep(int original_size, const uint32_t* other_words,
int other_size, int step);
void MultiplyBy(int other_size, const uint32_t* other_words) {
const int original_size = size_;
const int first_step =
(std::min)(original_size + other_size - 2, max_words - 1);
for (int step = first_step; step >= 0; --step) {
MultiplyStep(original_size, other_words, other_size, step);
}
}
void AddWithCarry(int index, uint32_t value) {
if (value) {
while (index < max_words && value > 0) {
words_[index] += value;
if (value > words_[index]) {
value = 1;
++index;
} else {
value = 0;
}
}
size_ = (std::min)(max_words, (std::max)(index + 1, size_));
}
}
void AddWithCarry(int index, uint64_t value) {
if (value && index < max_words) {
uint32_t high = value >> 32;
uint32_t low = value & 0xffffffff;
words_[index] += low;
if (words_[index] < low) {
++high;
if (high == 0) {
AddWithCarry(index + 2, static_cast<uint32_t>(1));
return;
}
}
if (high > 0) {
AddWithCarry(index + 1, high);
} else {
size_ = (std::min)(max_words, (std::max)(index + 1, size_));
}
}
}
template <uint32_t divisor>
uint32_t DivMod() {
uint64_t accumulator = 0;
for (int i = size_ - 1; i >= 0; --i) {
accumulator <<= 32;
accumulator += words_[i];
words_[i] = static_cast<uint32_t>(accumulator / divisor);
accumulator = accumulator % divisor;
}
while (size_ > 0 && words_[size_ - 1] == 0) {
--size_;
}
return static_cast<uint32_t>(accumulator);
}
int size_;
uint32_t words_[max_words];
};
template <int N, int M>
int Compare(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
int limit = (std::max)(lhs.size(), rhs.size());
for (int i = limit - 1; i >= 0; --i) {
const uint32_t lhs_word = lhs.GetWord(i);
const uint32_t rhs_word = rhs.GetWord(i);
if (lhs_word < rhs_word) {
return -1;
} else if (lhs_word > rhs_word) {
return 1;
}
}
return 0;
}
template <int N, int M>
bool operator==(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
int limit = (std::max)(lhs.size(), rhs.size());
for (int i = 0; i < limit; ++i) {
if (lhs.GetWord(i) != rhs.GetWord(i)) {
return false;
}
}
return true;
}
template <int N, int M>
bool operator!=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
return !(lhs == rhs);
}
template <int N, int M>
bool operator<(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
return Compare(lhs, rhs) == -1;
}
template <int N, int M>
bool operator>(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
return rhs < lhs;
}
template <int N, int M>
bool operator<=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
return !(rhs < lhs);
}
template <int N, int M>
bool operator>=(const BigUnsigned<N>& lhs, const BigUnsigned<M>& rhs) {
return !(lhs < rhs);
}
template <int N>
std::ostream& operator<<(std::ostream& os, const BigUnsigned<N>& num) {
return os << num.ToString();
}
extern template class BigUnsigned<4>;
extern template class BigUnsigned<84>;
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/charconv_bigint.h"
#include <algorithm>
#include <cassert>
#include <string>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
namespace {
constexpr int kLargePowerOfFiveStep = 27;
constexpr int kLargestPowerOfFiveIndex = 20;
const uint32_t kLargePowersOfFive[] = {
0xfa10079dU, 0x6765c793U,
0x97d9f649U, 0x6664242dU, 0x29939b14U, 0x29c30f10U,
0xc4f809c5U, 0x7bf3f22aU, 0x67bdae34U, 0xad340517U, 0x369d1b5fU, 0x10de1593U,
0x92b260d1U, 0x9efff7c7U, 0x81de0ec6U, 0xaeba5d56U, 0x410664a4U, 0x4f40737aU,
0x20d3846fU, 0x06d00f73U,
0xff1b172dU, 0x13a1d71cU, 0xefa07617U, 0x7f682d3dU, 0xff8c90c0U, 0x3f0131e7U,
0x3fdcb9feU, 0x917b0177U, 0x16c407a7U, 0x02c06b9dU,
0x960f7199U, 0x056667ecU, 0xe07aefd8U, 0x80f2b9ccU, 0x8273f5e3U, 0xeb9a214aU,
0x40b38005U, 0x0e477ad4U, 0x277d08e6U, 0xfa28b11eU, 0xd3f7d784U, 0x011c835bU,
0xf723d9d5U, 0x3282d3f3U, 0xe00857d1U, 0x69659d25U, 0x2cf117cfU, 0x24da6d07U,
0x954d1417U, 0x3e5d8cedU, 0x7a8bb766U, 0xfd785ae6U, 0x645436d2U, 0x40c78b34U,
0x94151217U, 0x0072e9f7U,
0x2b416aa1U, 0x7893c5a7U, 0xe37dc6d4U, 0x2bad2beaU, 0xf0fc846cU, 0x7575ae4bU,
0x62587b14U, 0x83b67a34U, 0x02110cdbU, 0xf7992f55U, 0x00deb022U, 0xa4a23becU,
0x8af5c5cdU, 0xb85b654fU, 0x818df38bU, 0x002e69d2U,
0x3518cbbdU, 0x20b0c15fU, 0x38756c2fU, 0xfb5dc3ddU, 0x22ad2d94U, 0xbf35a952U,
0xa699192aU, 0x9a613326U, 0xad2a9cedU, 0xd7f48968U, 0xe87dfb54U, 0xc8f05db6U,
0x5ef67531U, 0x31c1ab49U, 0xe202ac9fU, 0x9b2957b5U, 0xa143f6d3U, 0x0012bf07U,
0x8b971de9U, 0x21aba2e1U, 0x63944362U, 0x57172336U, 0xd9544225U, 0xfb534166U,
0x08c563eeU, 0x14640ee2U, 0x24e40d31U, 0x02b06537U, 0x03887f14U, 0x0285e533U,
0xb744ef26U, 0x8be3a6c4U, 0x266979b4U, 0x6761ece2U, 0xd9cb39e4U, 0xe67de319U,
0x0d39e796U, 0x00079250U,
0x260eb6e5U, 0xf414a796U, 0xee1a7491U, 0xdb9368ebU, 0xf50c105bU, 0x59157750U,
0x9ed2fb5cU, 0xf6e56d8bU, 0xeaee8d23U, 0x0f319f75U, 0x2aa134d6U, 0xac2908e9U,
0xd4413298U, 0x02f02a55U, 0x989d5a7aU, 0x70dde184U, 0xba8040a7U, 0x03200981U,
0xbe03b11cU, 0x3c1c2a18U, 0xd60427a1U, 0x00030ee0U,
0xce566d71U, 0xf1c4aa25U, 0x4e93ca53U, 0xa72283d0U, 0x551a73eaU, 0x3d0538e2U,
0x8da4303fU, 0x6a58de60U, 0x0e660221U, 0x49cf61a6U, 0x8d058fc1U, 0xb9d1a14cU,
0x4bab157dU, 0xc85c6932U, 0x518c8b9eU, 0x9b92b8d0U, 0x0d8a0e21U, 0xbd855df9U,
0xb3ea59a1U, 0x8da29289U, 0x4584d506U, 0x3752d80fU, 0xb72569c6U, 0x00013c33U,
0x190f354dU, 0x83695cfeU, 0xe5a4d0c7U, 0xb60fb7e8U, 0xee5bbcc4U, 0xb922054cU,
0xbb4f0d85U, 0x48394028U, 0x1d8957dbU, 0x0d7edb14U, 0x4ecc7587U, 0x505e9e02U,
0x4c87f36bU, 0x99e66bd6U, 0x44b9ed35U, 0x753037d4U, 0xe5fe5f27U, 0x2742c203U,
0x13b2ed2bU, 0xdc525d2cU, 0xe6fde59aU, 0x77ffb18fU, 0x13c5752cU, 0x08a84bccU,
0x859a4940U, 0x00007fb6U,
0x4f98cb39U, 0xa60edbbcU, 0x83b5872eU, 0xa501acffU, 0x9cc76f78U, 0xbadd4c73U,
0x43e989faU, 0xca7acf80U, 0x2e0c824fU, 0xb19f4ffcU, 0x092fd81cU, 0xe4eb645bU,
0xa1ff84c2U, 0x8a5a83baU, 0xa8a1fae9U, 0x1db43609U, 0xb0fed50bU, 0x0dd7d2bdU,
0x7d7accd8U, 0x91fa640fU, 0x37dcc6c5U, 0x1c417fd5U, 0xe4d462adU, 0xe8a43399U,
0x131bf9a5U, 0x8df54d29U, 0x36547dc1U, 0x00003395U,
0x5bd330f5U, 0x77d21967U, 0x1ac481b7U, 0x6be2f7ceU, 0x7f4792a9U, 0xe84c2c52U,
0x84592228U, 0x9dcaf829U, 0xdab44ce1U, 0x3d0c311bU, 0x532e297dU, 0x4704e8b4U,
0x9cdc32beU, 0x41e64d9dU, 0x7717bea1U, 0xa824c00dU, 0x08f50b27U, 0x0f198d77U,
0x49bbfdf0U, 0x025c6c69U, 0xd4e55cd3U, 0xf083602bU, 0xb9f0fecdU, 0xc0864aeaU,
0x9cb98681U, 0xaaf620e9U, 0xacb6df30U, 0x4faafe66U, 0x8af13c3bU, 0x000014d5U,
0x682bb941U, 0x89a9f297U, 0xcba75d7bU, 0x404217b1U, 0xb4e519e9U, 0xa1bc162bU,
0xf7f5910aU, 0x98715af5U, 0x2ff53e57U, 0xe3ef118cU, 0x490c4543U, 0xbc9b1734U,
0x2affbe4dU, 0x4cedcb4cU, 0xfb14e99eU, 0x35e34212U, 0xece39c24U, 0x07673ab3U,
0xe73115ddU, 0xd15d38e7U, 0x093eed3bU, 0xf8e7eac5U, 0x78a8cc80U, 0x25227aacU,
0x3f590551U, 0x413da1cbU, 0xdf643a55U, 0xab65ad44U, 0xd70b23d7U, 0xc672cd76U,
0x3364ea62U, 0x0000086aU,
0x22f163ddU, 0x23cf07acU, 0xbe2af6c2U, 0xf412f6f6U, 0xc3ff541eU, 0x6eeaf7deU,
0xa47047e0U, 0x408cda92U, 0x0f0eeb08U, 0x56deba9dU, 0xcfc6b090U, 0x8bbbdf04U,
0x3933cdb3U, 0x9e7bb67dU, 0x9f297035U, 0x38946244U, 0xee1d37bbU, 0xde898174U,
0x63f3559dU, 0x705b72fbU, 0x138d27d9U, 0xf8603a78U, 0x735eec44U, 0xe30987d5U,
0xc6d38070U, 0x9cfe548eU, 0x9ff01422U, 0x7c564aa8U, 0x91cc60baU, 0xcbc3565dU,
0x7550a50bU, 0x6909aeadU, 0x13234c45U, 0x00000366U,
0x17954989U, 0x3a7d7709U, 0x98042de5U, 0xa9011443U, 0x45e723c2U, 0x269ffd6fU,
0x58852a46U, 0xaaa1042aU, 0x2eee8153U, 0xb2b6c39eU, 0xaf845b65U, 0xf6c365d7U,
0xe4cffb2bU, 0xc840e90cU, 0xabea8abbU, 0x5c58f8d2U, 0x5c19fa3aU, 0x4670910aU,
0x4449f21cU, 0xefa645b3U, 0xcc427decU, 0x083c3d73U, 0x467cb413U, 0x6fe10ae4U,
0x3caffc72U, 0x9f8da55eU, 0x5e5c8ea7U, 0x490594bbU, 0xf0871b0bU, 0xdd89816cU,
0x8e931df8U, 0xe85ce1c9U, 0xcca090a5U, 0x575fa16bU, 0x6b9f106cU, 0x0000015fU,
0xee20d805U, 0x57bc3c07U, 0xcdea624eU, 0xd3f0f52dU, 0x9924b4f4U, 0xcf968640U,
0x61d41962U, 0xe87fb464U, 0xeaaf51c7U, 0x564c8b60U, 0xccda4028U, 0x529428bbU,
0x313a1fa8U, 0x96bd0f94U, 0x7a82ebaaU, 0xad99e7e9U, 0xf2668cd4U, 0xbe33a45eU,
0xfd0db669U, 0x87ee369fU, 0xd3ec20edU, 0x9c4d7db7U, 0xdedcf0d8U, 0x7cd2ca64U,
0xe25a6577U, 0x61003fd4U, 0xe56f54ccU, 0x10b7c748U, 0x40526e5eU, 0x7300ae87U,
0x5c439261U, 0x2c0ff469U, 0xbf723f12U, 0xb2379b61U, 0xbf59b4f5U, 0xc91b1c3fU,
0xf0046d27U, 0x0000008dU,
0x525c9e11U, 0xf4e0eb41U, 0xebb2895dU, 0x5da512f9U, 0x7d9b29d4U, 0x452f4edcU,
0x0b90bc37U, 0x341777cbU, 0x63d269afU, 0x1da77929U, 0x0a5c1826U, 0x77991898U,
0x5aeddf86U, 0xf853a877U, 0x538c31ccU, 0xe84896daU, 0xb7a0010bU, 0x17ef4de5U,
0xa52a2adeU, 0x029fd81cU, 0x987ce701U, 0x27fefd77U, 0xdb46c66fU, 0x5d301900U,
0x496998c0U, 0xbb6598b9U, 0x5eebb607U, 0xe547354aU, 0xdf4a2f7eU, 0xf06c4955U,
0x96242ffaU, 0x1775fb27U, 0xbecc58ceU, 0xebf2a53bU, 0x3eaad82aU, 0xf41137baU,
0x573e6fbaU, 0xfb4866b8U, 0x54002148U, 0x00000039U,
};
const uint32_t* LargePowerOfFiveData(int i) {
return kLargePowersOfFive + i * (i - 1);
}
int LargePowerOfFiveSize(int i) { return 2 * i; }
}
ABSL_DLL const uint32_t kFiveToNth[14] = {
1, 5, 25, 125, 625, 3125, 15625,
78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125,
};
ABSL_DLL const uint32_t kTenToNth[10] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000,
};
template <int max_words>
int BigUnsigned<max_words>::ReadFloatMantissa(const ParsedFloat& fp,
int significant_digits) {
SetToZero();
assert(fp.type == FloatType::kNumber);
if (fp.subrange_begin == nullptr) {
words_[0] = fp.mantissa & 0xffffffffu;
words_[1] = fp.mantissa >> 32;
if (words_[1]) {
size_ = 2;
} else if (words_[0]) {
size_ = 1;
}
return fp.exponent;
}
int exponent_adjust =
ReadDigits(fp.subrange_begin, fp.subrange_end, significant_digits);
return fp.literal_exponent + exponent_adjust;
}
template <int max_words>
int BigUnsigned<max_words>::ReadDigits(const char* begin, const char* end,
int significant_digits) {
assert(significant_digits <= Digits10() + 1);
SetToZero();
bool after_decimal_point = false;
while (begin < end && *begin == '0') {
++begin;
}
int dropped_digits = 0;
while (begin < end && *std::prev(end) == '0') {
--end;
++dropped_digits;
}
if (begin < end && *std::prev(end) == '.') {
dropped_digits = 0;
--end;
while (begin < end && *std::prev(end) == '0') {
--end;
++dropped_digits;
}
} else if (dropped_digits) {
const char* dp = std::find(begin, end, '.');
if (dp != end) {
dropped_digits = 0;
}
}
int exponent_adjust = dropped_digits;
uint32_t queued = 0;
int digits_queued = 0;
for (; begin != end && significant_digits > 0; ++begin) {
if (*begin == '.') {
after_decimal_point = true;
continue;
}
if (after_decimal_point) {
--exponent_adjust;
}
char digit = (*begin - '0');
--significant_digits;
if (significant_digits == 0 && std::next(begin) != end &&
(digit == 0 || digit == 5)) {
++digit;
}
queued = 10 * queued + static_cast<uint32_t>(digit);
++digits_queued;
if (digits_queued == kMaxSmallPowerOfTen) {
MultiplyBy(kTenToNth[kMaxSmallPowerOfTen]);
AddWithCarry(0, queued);
queued = digits_queued = 0;
}
}
if (digits_queued) {
MultiplyBy(kTenToNth[digits_queued]);
AddWithCarry(0, queued);
}
if (begin < end && !after_decimal_point) {
const char* decimal_point = std::find(begin, end, '.');
exponent_adjust += (decimal_point - begin);
}
return exponent_adjust;
}
template <int max_words>
BigUnsigned<max_words> BigUnsigned<max_words>::FiveToTheNth(
int n) {
BigUnsigned answer(1u);
bool first_pass = true;
while (n >= kLargePowerOfFiveStep) {
int big_power =
std::min(n / kLargePowerOfFiveStep, kLargestPowerOfFiveIndex);
if (first_pass) {
std::copy_n(LargePowerOfFiveData(big_power),
LargePowerOfFiveSize(big_power), answer.words_);
answer.size_ = LargePowerOfFiveSize(big_power);
first_pass = false;
} else {
answer.MultiplyBy(LargePowerOfFiveSize(big_power),
LargePowerOfFiveData(big_power));
}
n -= kLargePowerOfFiveStep * big_power;
}
answer.MultiplyByFiveToTheNth(n);
return answer;
}
template <int max_words>
void BigUnsigned<max_words>::MultiplyStep(int original_size,
const uint32_t* other_words,
int other_size, int step) {
int this_i = std::min(original_size - 1, step);
int other_i = step - this_i;
uint64_t this_word = 0;
uint64_t carry = 0;
for (; this_i >= 0 && other_i < other_size; --this_i, ++other_i) {
uint64_t product = words_[this_i];
product *= other_words[other_i];
this_word += product;
carry += (this_word >> 32);
this_word &= 0xffffffff;
}
AddWithCarry(step + 1, carry);
words_[step] = this_word & 0xffffffff;
if (this_word > 0 && size_ <= step) {
size_ = step + 1;
}
}
template <int max_words>
std::string BigUnsigned<max_words>::ToString() const {
BigUnsigned<max_words> copy = *this;
std::string result;
while (copy.size() > 0) {
uint32_t next_digit = copy.DivMod<10>();
result.push_back('0' + static_cast<char>(next_digit));
}
if (result.empty()) {
result.push_back('0');
}
std::reverse(result.begin(), result.end());
return result;
}
template class BigUnsigned<4>;
template class BigUnsigned<84>;
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/charconv_bigint.h"
#include <string>
#include "gtest/gtest.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
TEST(BigUnsigned, ShiftLeft) {
{
BigUnsigned<4> num(3u);
num.ShiftLeft(100);
EXPECT_EQ(num, BigUnsigned<4>("3802951800684688204490109616128"));
}
{
BigUnsigned<4> a(15u);
BigUnsigned<4> b(7u);
BigUnsigned<4> c(3u);
a.ShiftLeft(125);
b.ShiftLeft(125);
c.ShiftLeft(125);
EXPECT_EQ(a, b);
EXPECT_NE(a, c);
}
{
BigUnsigned<84> a(15u);
BigUnsigned<84> b(7u);
BigUnsigned<84> c(3u);
a.ShiftLeft(84 * 32 - 3);
b.ShiftLeft(84 * 32 - 3);
c.ShiftLeft(84 * 32 - 3);
EXPECT_EQ(a, b);
EXPECT_NE(a, c);
}
{
const std::string seed = "1234567890123456789012345678901234567890";
BigUnsigned<84> a(seed);
for (int i = 1; i <= 84 * 32; ++i) {
a.ShiftLeft(1);
BigUnsigned<84> b(seed);
b.ShiftLeft(i);
EXPECT_EQ(a, b);
}
EXPECT_EQ(a, BigUnsigned<84>(0u));
}
{
const BigUnsigned<84> all_bits_one(
"1474444211396924248063325089479706787923460402125687709454567433186613"
"6228083464060749874845919674257665016359189106695900028098437021384227"
"3285029708032466536084583113729486015826557532750465299832071590813090"
"2011853039837649252477307070509704043541368002938784757296893793903797"
"8180292336310543540677175225040919704702800559606097685920595947397024"
"8303316808753252115729411497720357971050627997031988036134171378490368"
"6008000778741115399296162550786288457245180872759047016734959330367829"
"5235612397427686310674725251378116268607113017720538636924549612987647"
"5767411074510311386444547332882472126067840027882117834454260409440463"
"9345147252664893456053258463203120637089916304618696601333953616715125"
"2115882482473279040772264257431663818610405673876655957323083702713344"
"4201105427930770976052393421467136557055");
const BigUnsigned<84> zero(0u);
const BigUnsigned<84> one(1u);
for (int i = 1; i < 84*32; ++i) {
BigUnsigned<84> big_shifted = all_bits_one;
big_shifted.ShiftLeft(i);
EXPECT_GT(all_bits_one, big_shifted);
BigUnsigned<84> small_shifted = one;
small_shifted.ShiftLeft(i);
EXPECT_LT(one, small_shifted);
}
for (int no_op_shift : {0, -1, -84 * 32, std::numeric_limits<int>::min()}) {
BigUnsigned<84> big_shifted = all_bits_one;
big_shifted.ShiftLeft(no_op_shift);
EXPECT_EQ(all_bits_one, big_shifted);
BigUnsigned<84> small_shifted = one;
big_shifted.ShiftLeft(no_op_shift);
EXPECT_EQ(one, small_shifted);
}
for (int out_of_bounds_shift :
{84 * 32, 84 * 32 + 1, std::numeric_limits<int>::max()}) {
BigUnsigned<84> big_shifted = all_bits_one;
big_shifted.ShiftLeft(out_of_bounds_shift);
EXPECT_EQ(zero, big_shifted);
BigUnsigned<84> small_shifted = one;
small_shifted.ShiftLeft(out_of_bounds_shift);
EXPECT_EQ(zero, small_shifted);
}
}
}
TEST(BigUnsigned, MultiplyByUint32) {
const BigUnsigned<84> factorial_100(
"933262154439441526816992388562667004907159682643816214685929638952175999"
"932299156089414639761565182862536979208272237582511852109168640000000000"
"00000000000000");
BigUnsigned<84> a(1u);
for (uint32_t i = 1; i <= 100; ++i) {
a.MultiplyBy(i);
}
EXPECT_EQ(a, BigUnsigned<84>(factorial_100));
}
TEST(BigUnsigned, MultiplyByBigUnsigned) {
{
const BigUnsigned<84> factorial_200(
"7886578673647905035523632139321850622951359776871732632947425332443594"
"4996340334292030428401198462390417721213891963883025764279024263710506"
"1926624952829931113462857270763317237396988943922445621451664240254033"
"2918641312274282948532775242424075739032403212574055795686602260319041"
"7032406235170085879617892222278962370389737472000000000000000000000000"
"0000000000000000000000000");
BigUnsigned<84> evens(1u);
BigUnsigned<84> odds(1u);
for (uint32_t i = 1; i < 200; i += 2) {
odds.MultiplyBy(i);
evens.MultiplyBy(i + 1);
}
evens.MultiplyBy(odds);
EXPECT_EQ(evens, factorial_200);
}
{
for (int a = 0 ; a < 700; a += 25) {
SCOPED_TRACE(a);
BigUnsigned<84> a_value("3" + std::string(a, '0'));
for (int b = 0; b < (700 - a); b += 25) {
SCOPED_TRACE(b);
BigUnsigned<84> b_value("2" + std::string(b, '0'));
BigUnsigned<84> expected_product("6" + std::string(a + b, '0'));
b_value.MultiplyBy(a_value);
EXPECT_EQ(b_value, expected_product);
}
}
}
}
TEST(BigUnsigned, MultiplyByOverflow) {
{
BigUnsigned<4> all_bits_on("340282366920938463463374607431768211455");
all_bits_on.MultiplyBy(all_bits_on);
EXPECT_EQ(all_bits_on, BigUnsigned<4>(1u));
}
{
BigUnsigned<4> value_1("12345678901234567890123456789012345678");
BigUnsigned<4> value_2("12345678901234567890123456789012345678");
BigUnsigned<4> two_to_fiftieth(1u);
two_to_fiftieth.ShiftLeft(50);
value_1.ShiftLeft(50);
value_2.MultiplyBy(two_to_fiftieth);
EXPECT_EQ(value_1, value_2);
}
}
TEST(BigUnsigned, FiveToTheNth) {
{
for (int i = 0; i < 1160; ++i) {
SCOPED_TRACE(i);
BigUnsigned<84> value_1(123u);
BigUnsigned<84> value_2(123u);
value_1.MultiplyByFiveToTheNth(i);
for (int j = 0; j < i; j++) {
value_2.MultiplyBy(5u);
}
EXPECT_EQ(value_1, value_2);
}
}
{
for (int i = 0; i < 1160; ++i) {
SCOPED_TRACE(i);
BigUnsigned<84> value_1(1u);
value_1.MultiplyByFiveToTheNth(i);
BigUnsigned<84> value_2 = BigUnsigned<84>::FiveToTheNth(i);
EXPECT_EQ(value_1, value_2);
}
}
}
TEST(BigUnsigned, TenToTheNth) {
{
for (int i = 0; i < 800; ++i) {
SCOPED_TRACE(i);
BigUnsigned<84> value_1(123u);
BigUnsigned<84> value_2(123u);
value_1.MultiplyByTenToTheNth(i);
for (int j = 0; j < i; j++) {
value_2.MultiplyBy(10u);
}
EXPECT_EQ(value_1, value_2);
}
}
{
for (int i = 0; i < 200; ++i) {
SCOPED_TRACE(i);
BigUnsigned<84> value_1(135u);
value_1.MultiplyByTenToTheNth(i);
BigUnsigned<84> value_2("135" + std::string(i, '0'));
EXPECT_EQ(value_1, value_2);
}
}
}
}
ABSL_NAMESPACE_END
} | 2,564 |
#ifndef ABSL_STRINGS_INTERNAL_CORDZ_FUNCTIONS_H_
#define ABSL_STRINGS_INTERNAL_CORDZ_FUNCTIONS_H_
#include <stdint.h>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/optimization.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
int32_t get_cordz_mean_interval();
void set_cordz_mean_interval(int32_t mean_interval);
#if defined(ABSL_INTERNAL_CORDZ_ENABLED)
#error ABSL_INTERNAL_CORDZ_ENABLED cannot be set directly
#elif defined(__linux__) && defined(ABSL_HAVE_THREAD_LOCAL)
#define ABSL_INTERNAL_CORDZ_ENABLED 1
#endif
#ifdef ABSL_INTERNAL_CORDZ_ENABLED
struct SamplingState {
int64_t next_sample;
int64_t sample_stride;
};
ABSL_CONST_INIT extern thread_local SamplingState cordz_next_sample;
int64_t cordz_should_profile_slow(SamplingState& state);
inline int64_t cordz_should_profile() {
if (ABSL_PREDICT_TRUE(cordz_next_sample.next_sample > 1)) {
cordz_next_sample.next_sample--;
return 0;
}
return cordz_should_profile_slow(cordz_next_sample);
}
void cordz_set_next_sample_for_testing(int64_t next_sample);
#else
inline int64_t cordz_should_profile() { return 0; }
inline void cordz_set_next_sample_for_testing(int64_t) {}
#endif
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/cordz_functions.h"
#include <atomic>
#include <cmath>
#include <limits>
#include <random>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/profiling/internal/exponential_biased.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {
std::atomic<int> g_cordz_mean_interval(50000);
}
#ifdef ABSL_INTERNAL_CORDZ_ENABLED
static constexpr int64_t kInitCordzNextSample = -1;
ABSL_CONST_INIT thread_local SamplingState cordz_next_sample = {
kInitCordzNextSample, 1};
constexpr int64_t kIntervalIfDisabled = 1 << 16;
ABSL_ATTRIBUTE_NOINLINE int64_t
cordz_should_profile_slow(SamplingState& state) {
thread_local absl::profiling_internal::ExponentialBiased
exponential_biased_generator;
int32_t mean_interval = get_cordz_mean_interval();
if (mean_interval <= 0) {
state = {kIntervalIfDisabled, kIntervalIfDisabled};
return 0;
}
if (mean_interval == 1) {
state = {1, 1};
return 1;
}
if (cordz_next_sample.next_sample <= 0) {
const bool initialized =
cordz_next_sample.next_sample != kInitCordzNextSample;
auto old_stride = state.sample_stride;
auto stride = exponential_biased_generator.GetStride(mean_interval);
state = {stride, stride};
bool should_sample = initialized || cordz_should_profile() > 0;
return should_sample ? old_stride : 0;
}
--state.next_sample;
return 0;
}
void cordz_set_next_sample_for_testing(int64_t next_sample) {
cordz_next_sample = {next_sample, next_sample};
}
#endif
int32_t get_cordz_mean_interval() {
return g_cordz_mean_interval.load(std::memory_order_acquire);
}
void set_cordz_mean_interval(int32_t mean_interval) {
g_cordz_mean_interval.store(mean_interval, std::memory_order_release);
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/cordz_functions.h"
#include <thread>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {
using ::testing::Eq;
using ::testing::Ge;
using ::testing::Le;
TEST(CordzFunctionsTest, SampleRate) {
int32_t orig_sample_rate = get_cordz_mean_interval();
int32_t expected_sample_rate = 123;
set_cordz_mean_interval(expected_sample_rate);
EXPECT_THAT(get_cordz_mean_interval(), Eq(expected_sample_rate));
set_cordz_mean_interval(orig_sample_rate);
}
#ifdef ABSL_INTERNAL_CORDZ_ENABLED
TEST(CordzFunctionsTest, ShouldProfileDisable) {
int32_t orig_sample_rate = get_cordz_mean_interval();
set_cordz_mean_interval(0);
cordz_set_next_sample_for_testing(0);
EXPECT_EQ(cordz_should_profile(), 0);
EXPECT_THAT(cordz_next_sample.next_sample, Eq(1 << 16));
set_cordz_mean_interval(orig_sample_rate);
}
TEST(CordzFunctionsTest, ShouldProfileAlways) {
int32_t orig_sample_rate = get_cordz_mean_interval();
set_cordz_mean_interval(1);
cordz_set_next_sample_for_testing(1);
EXPECT_GT(cordz_should_profile(), 0);
EXPECT_THAT(cordz_next_sample.next_sample, Le(1));
set_cordz_mean_interval(orig_sample_rate);
}
TEST(CordzFunctionsTest, DoesNotAlwaysSampleFirstCord) {
set_cordz_mean_interval(10000);
int tries = 0;
bool sampled = false;
do {
++tries;
ASSERT_THAT(tries, Le(1000));
std::thread thread([&sampled] { sampled = cordz_should_profile() > 0; });
thread.join();
} while (sampled);
}
TEST(CordzFunctionsTest, ShouldProfileRate) {
static constexpr int kDesiredMeanInterval = 1000;
static constexpr int kSamples = 10000;
int32_t orig_sample_rate = get_cordz_mean_interval();
set_cordz_mean_interval(kDesiredMeanInterval);
int64_t sum_of_intervals = 0;
for (int i = 0; i < kSamples; i++) {
cordz_set_next_sample_for_testing(0);
cordz_should_profile();
sum_of_intervals += cordz_next_sample.next_sample;
}
EXPECT_THAT(sum_of_intervals, Ge(9396115));
EXPECT_THAT(sum_of_intervals, Le(10618100));
set_cordz_mean_interval(orig_sample_rate);
}
#else
TEST(CordzFunctionsTest, ShouldProfileDisabled) {
int32_t orig_sample_rate = get_cordz_mean_interval();
set_cordz_mean_interval(1);
cordz_set_next_sample_for_testing(0);
EXPECT_FALSE(cordz_should_profile());
set_cordz_mean_interval(orig_sample_rate);
}
#endif
}
}
ABSL_NAMESPACE_END
} | 2,565 |
#ifndef ABSL_STRINGS_INTERNAL_OSTRINGSTREAM_H_
#define ABSL_STRINGS_INTERNAL_OSTRINGSTREAM_H_
#include <cassert>
#include <ios>
#include <ostream>
#include <streambuf>
#include <string>
#include <utility>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
class OStringStream final : public std::ostream {
public:
explicit OStringStream(std::string* str)
: std::ostream(&buf_), buf_(str) {}
OStringStream(OStringStream&& that)
: std::ostream(std::move(static_cast<std::ostream&>(that))),
buf_(that.buf_) {
rdbuf(&buf_);
}
OStringStream& operator=(OStringStream&& that) {
std::ostream::operator=(std::move(static_cast<std::ostream&>(that)));
buf_ = that.buf_;
rdbuf(&buf_);
return *this;
}
std::string* str() { return buf_.str(); }
const std::string* str() const { return buf_.str(); }
void str(std::string* str) { buf_.str(str); }
private:
class Streambuf final : public std::streambuf {
public:
explicit Streambuf(std::string* str) : str_(str) {}
Streambuf(const Streambuf&) = default;
Streambuf& operator=(const Streambuf&) = default;
std::string* str() { return str_; }
const std::string* str() const { return str_; }
void str(std::string* str) { str_ = str; }
protected:
int_type overflow(int c) override;
std::streamsize xsputn(const char* s, std::streamsize n) override;
private:
std::string* str_;
} buf_;
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/ostringstream.h"
#include <cassert>
#include <cstddef>
#include <ios>
#include <streambuf>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
OStringStream::Streambuf::int_type OStringStream::Streambuf::overflow(int c) {
assert(str_);
if (!std::streambuf::traits_type::eq_int_type(
c, std::streambuf::traits_type::eof()))
str_->push_back(static_cast<char>(c));
return 1;
}
std::streamsize OStringStream::Streambuf::xsputn(const char* s,
std::streamsize n) {
assert(str_);
str_->append(s, static_cast<size_t>(n));
return n;
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/ostringstream.h"
#include <ios>
#include <memory>
#include <ostream>
#include <string>
#include <type_traits>
#include <utility>
#include "gtest/gtest.h"
namespace {
TEST(OStringStream, IsOStream) {
static_assert(
std::is_base_of<std::ostream, absl::strings_internal::OStringStream>(),
"");
}
TEST(OStringStream, ConstructNullptr) {
absl::strings_internal::OStringStream strm(nullptr);
EXPECT_EQ(nullptr, strm.str());
}
TEST(OStringStream, ConstructStr) {
std::string s = "abc";
{
absl::strings_internal::OStringStream strm(&s);
EXPECT_EQ(&s, strm.str());
}
EXPECT_EQ("abc", s);
}
TEST(OStringStream, Destroy) {
std::unique_ptr<std::string> s(new std::string);
absl::strings_internal::OStringStream strm(s.get());
s.reset();
}
TEST(OStringStream, MoveConstruct) {
std::string s = "abc";
{
absl::strings_internal::OStringStream strm1(&s);
strm1 << std::hex << 16;
EXPECT_EQ(&s, strm1.str());
absl::strings_internal::OStringStream strm2(std::move(strm1));
strm2 << 16;
EXPECT_EQ(&s, strm2.str());
}
EXPECT_EQ("abc1010", s);
}
TEST(OStringStream, MoveAssign) {
std::string s = "abc";
{
absl::strings_internal::OStringStream strm1(&s);
strm1 << std::hex << 16;
EXPECT_EQ(&s, strm1.str());
absl::strings_internal::OStringStream strm2(nullptr);
strm2 = std::move(strm1);
strm2 << 16;
EXPECT_EQ(&s, strm2.str());
}
EXPECT_EQ("abc1010", s);
}
TEST(OStringStream, Str) {
std::string s1;
absl::strings_internal::OStringStream strm(&s1);
const absl::strings_internal::OStringStream& c_strm(strm);
static_assert(std::is_same<decltype(strm.str()), std::string*>(), "");
static_assert(std::is_same<decltype(c_strm.str()), const std::string*>(), "");
EXPECT_EQ(&s1, strm.str());
EXPECT_EQ(&s1, c_strm.str());
strm.str(&s1);
EXPECT_EQ(&s1, strm.str());
EXPECT_EQ(&s1, c_strm.str());
std::string s2;
strm.str(&s2);
EXPECT_EQ(&s2, strm.str());
EXPECT_EQ(&s2, c_strm.str());
strm.str(nullptr);
EXPECT_EQ(nullptr, strm.str());
EXPECT_EQ(nullptr, c_strm.str());
}
TEST(OStreamStream, WriteToLValue) {
std::string s = "abc";
{
absl::strings_internal::OStringStream strm(&s);
EXPECT_EQ("abc", s);
strm << "";
EXPECT_EQ("abc", s);
strm << 42;
EXPECT_EQ("abc42", s);
strm << 'x' << 'y';
EXPECT_EQ("abc42xy", s);
}
EXPECT_EQ("abc42xy", s);
}
TEST(OStreamStream, WriteToRValue) {
std::string s = "abc";
absl::strings_internal::OStringStream(&s) << "";
EXPECT_EQ("abc", s);
absl::strings_internal::OStringStream(&s) << 42;
EXPECT_EQ("abc42", s);
absl::strings_internal::OStringStream(&s) << 'x' << 'y';
EXPECT_EQ("abc42xy", s);
}
} | 2,566 |
#ifndef ABSL_STRINGS_INTERNAL_CORDZ_INFO_H_
#define ABSL_STRINGS_INTERNAL_CORDZ_INFO_H_
#include <atomic>
#include <cstdint>
#include <functional>
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/thread_annotations.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cordz_functions.h"
#include "absl/strings/internal/cordz_handle.h"
#include "absl/strings/internal/cordz_statistics.h"
#include "absl/strings/internal/cordz_update_tracker.h"
#include "absl/synchronization/mutex.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
class ABSL_LOCKABLE CordzInfo : public CordzHandle {
public:
using MethodIdentifier = CordzUpdateTracker::MethodIdentifier;
static void TrackCord(InlineData& cord, MethodIdentifier method,
int64_t sampling_stride);
static void TrackCord(InlineData& cord, const InlineData& src,
MethodIdentifier method);
static void MaybeTrackCord(InlineData& cord, MethodIdentifier method);
static void MaybeTrackCord(InlineData& cord, const InlineData& src,
MethodIdentifier method);
void Untrack();
static void MaybeUntrackCord(CordzInfo* info);
CordzInfo() = delete;
CordzInfo(const CordzInfo&) = delete;
CordzInfo& operator=(const CordzInfo&) = delete;
static CordzInfo* Head(const CordzSnapshot& snapshot)
ABSL_NO_THREAD_SAFETY_ANALYSIS;
CordzInfo* Next(const CordzSnapshot& snapshot) const
ABSL_NO_THREAD_SAFETY_ANALYSIS;
void Lock(MethodIdentifier method) ABSL_EXCLUSIVE_LOCK_FUNCTION(mutex_);
void Unlock() ABSL_UNLOCK_FUNCTION(mutex_);
void AssertHeld() ABSL_ASSERT_EXCLUSIVE_LOCK(mutex_);
void SetCordRep(CordRep* rep);
CordRep* RefCordRep() const ABSL_LOCKS_EXCLUDED(mutex_);
CordRep* GetCordRepForTesting() const ABSL_NO_THREAD_SAFETY_ANALYSIS {
return rep_;
}
void SetCordRepForTesting(CordRep* rep) ABSL_NO_THREAD_SAFETY_ANALYSIS {
rep_ = rep;
}
absl::Span<void* const> GetStack() const;
absl::Span<void* const> GetParentStack() const;
CordzStatistics GetCordzStatistics() const;
int64_t sampling_stride() const { return sampling_stride_; }
private:
using SpinLock = absl::base_internal::SpinLock;
using SpinLockHolder = ::absl::base_internal::SpinLockHolder;
struct List {
constexpr explicit List(absl::ConstInitType)
: mutex(absl::kConstInit,
absl::base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL) {}
SpinLock mutex;
std::atomic<CordzInfo*> head ABSL_GUARDED_BY(mutex){nullptr};
};
static constexpr size_t kMaxStackDepth = 64;
explicit CordzInfo(CordRep* rep, const CordzInfo* src,
MethodIdentifier method, int64_t weight);
~CordzInfo() override;
void UnsafeSetCordRep(CordRep* rep) ABSL_NO_THREAD_SAFETY_ANALYSIS;
void Track();
static MethodIdentifier GetParentMethod(const CordzInfo* src);
static size_t FillParentStack(const CordzInfo* src, void** stack);
void ODRCheck() const {
#ifndef NDEBUG
ABSL_RAW_CHECK(list_ == &global_list_, "ODR violation in Cord");
#endif
}
static void MaybeTrackCordImpl(InlineData& cord, const InlineData& src,
MethodIdentifier method);
ABSL_CONST_INIT static List global_list_;
List* const list_ = &global_list_;
std::atomic<CordzInfo*> ci_prev_{nullptr};
std::atomic<CordzInfo*> ci_next_{nullptr};
mutable absl::Mutex mutex_;
CordRep* rep_ ABSL_GUARDED_BY(mutex_);
void* stack_[kMaxStackDepth];
void* parent_stack_[kMaxStackDepth];
const size_t stack_depth_;
const size_t parent_stack_depth_;
const MethodIdentifier method_;
const MethodIdentifier parent_method_;
CordzUpdateTracker update_tracker_;
const absl::Time create_time_;
const int64_t sampling_stride_;
};
inline ABSL_ATTRIBUTE_ALWAYS_INLINE void CordzInfo::MaybeTrackCord(
InlineData& cord, MethodIdentifier method) {
auto stride = cordz_should_profile();
if (ABSL_PREDICT_FALSE(stride > 0)) {
TrackCord(cord, method, stride);
}
}
inline ABSL_ATTRIBUTE_ALWAYS_INLINE void CordzInfo::MaybeTrackCord(
InlineData& cord, const InlineData& src, MethodIdentifier method) {
if (ABSL_PREDICT_FALSE(InlineData::is_either_profiled(cord, src))) {
MaybeTrackCordImpl(cord, src, method);
}
}
inline ABSL_ATTRIBUTE_ALWAYS_INLINE void CordzInfo::MaybeUntrackCord(
CordzInfo* info) {
if (ABSL_PREDICT_FALSE(info)) {
info->Untrack();
}
}
inline void CordzInfo::AssertHeld() ABSL_ASSERT_EXCLUSIVE_LOCK(mutex_) {
#ifndef NDEBUG
mutex_.AssertHeld();
#endif
}
inline void CordzInfo::SetCordRep(CordRep* rep) {
AssertHeld();
rep_ = rep;
}
inline void CordzInfo::UnsafeSetCordRep(CordRep* rep) { rep_ = rep; }
inline CordRep* CordzInfo::RefCordRep() const ABSL_LOCKS_EXCLUDED(mutex_) {
MutexLock lock(&mutex_);
return rep_ ? CordRep::Ref(rep_) : nullptr;
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/cordz_info.h"
#include <cstdint>
#include "absl/base/config.h"
#include "absl/base/internal/spinlock.h"
#include "absl/container/inlined_vector.h"
#include "absl/debugging/stacktrace.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_crc.h"
#include "absl/strings/internal/cordz_handle.h"
#include "absl/strings/internal/cordz_statistics.h"
#include "absl/strings/internal/cordz_update_tracker.h"
#include "absl/synchronization/mutex.h"
#include "absl/time/clock.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr size_t CordzInfo::kMaxStackDepth;
#endif
ABSL_CONST_INIT CordzInfo::List CordzInfo::global_list_{absl::kConstInit};
namespace {
class CordRepAnalyzer {
public:
explicit CordRepAnalyzer(CordzStatistics& statistics)
: statistics_(statistics) {}
void AnalyzeCordRep(const CordRep* rep) {
ABSL_ASSERT(rep != nullptr);
size_t refcount = rep->refcount.Get();
RepRef repref{rep, (refcount > 1) ? refcount - 1 : 1};
if (repref.tag() == CRC) {
statistics_.node_count++;
statistics_.node_counts.crc++;
memory_usage_.Add(sizeof(CordRepCrc), repref.refcount);
repref = repref.Child(repref.rep->crc()->child);
}
repref = CountLinearReps(repref, memory_usage_);
switch (repref.tag()) {
case CordRepKind::BTREE:
AnalyzeBtree(repref);
break;
default:
ABSL_ASSERT(repref.tag() == CordRepKind::UNUSED_0);
break;
}
statistics_.estimated_memory_usage += memory_usage_.total;
statistics_.estimated_fair_share_memory_usage +=
static_cast<size_t>(memory_usage_.fair_share);
}
private:
struct RepRef {
const CordRep* rep;
size_t refcount;
RepRef Child(const CordRep* child) const {
if (child == nullptr) return RepRef{nullptr, 0};
return RepRef{child, refcount * child->refcount.Get()};
}
constexpr CordRepKind tag() const {
ABSL_ASSERT(rep == nullptr || rep->tag != CordRepKind::UNUSED_0);
return rep ? static_cast<CordRepKind>(rep->tag) : CordRepKind::UNUSED_0;
}
};
struct MemoryUsage {
size_t total = 0;
double fair_share = 0.0;
void Add(size_t size, size_t refcount) {
total += size;
fair_share += static_cast<double>(size) / refcount;
}
};
void CountFlat(size_t size) {
statistics_.node_count++;
statistics_.node_counts.flat++;
if (size <= 64) {
statistics_.node_counts.flat_64++;
} else if (size <= 128) {
statistics_.node_counts.flat_128++;
} else if (size <= 256) {
statistics_.node_counts.flat_256++;
} else if (size <= 512) {
statistics_.node_counts.flat_512++;
} else if (size <= 1024) {
statistics_.node_counts.flat_1k++;
}
}
RepRef CountLinearReps(RepRef rep, MemoryUsage& memory_usage) {
while (rep.tag() == SUBSTRING) {
statistics_.node_count++;
statistics_.node_counts.substring++;
memory_usage.Add(sizeof(CordRepSubstring), rep.refcount);
rep = rep.Child(rep.rep->substring()->child);
}
if (rep.tag() >= FLAT) {
size_t size = rep.rep->flat()->AllocatedSize();
CountFlat(size);
memory_usage.Add(size, rep.refcount);
return RepRef{nullptr, 0};
}
if (rep.tag() == EXTERNAL) {
statistics_.node_count++;
statistics_.node_counts.external++;
size_t size = rep.rep->length + sizeof(CordRepExternalImpl<intptr_t>);
memory_usage.Add(size, rep.refcount);
return RepRef{nullptr, 0};
}
return rep;
}
void AnalyzeBtree(RepRef rep) {
statistics_.node_count++;
statistics_.node_counts.btree++;
memory_usage_.Add(sizeof(CordRepBtree), rep.refcount);
const CordRepBtree* tree = rep.rep->btree();
if (tree->height() > 0) {
for (CordRep* edge : tree->Edges()) {
AnalyzeBtree(rep.Child(edge));
}
} else {
for (CordRep* edge : tree->Edges()) {
CountLinearReps(rep.Child(edge), memory_usage_);
}
}
}
CordzStatistics& statistics_;
MemoryUsage memory_usage_;
};
}
CordzInfo* CordzInfo::Head(const CordzSnapshot& snapshot) {
ABSL_ASSERT(snapshot.is_snapshot());
CordzInfo* head = global_list_.head.load(std::memory_order_acquire);
ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(head));
return head;
}
CordzInfo* CordzInfo::Next(const CordzSnapshot& snapshot) const {
ABSL_ASSERT(snapshot.is_snapshot());
CordzInfo* next = ci_next_.load(std::memory_order_acquire);
ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(this));
ABSL_ASSERT(snapshot.DiagnosticsHandleIsSafeToInspect(next));
return next;
}
void CordzInfo::TrackCord(InlineData& cord, MethodIdentifier method,
int64_t sampling_stride) {
assert(cord.is_tree());
assert(!cord.is_profiled());
CordzInfo* cordz_info =
new CordzInfo(cord.as_tree(), nullptr, method, sampling_stride);
cord.set_cordz_info(cordz_info);
cordz_info->Track();
}
void CordzInfo::TrackCord(InlineData& cord, const InlineData& src,
MethodIdentifier method) {
assert(cord.is_tree());
assert(src.is_tree());
CordzInfo* cordz_info = cord.cordz_info();
if (cordz_info != nullptr) cordz_info->Untrack();
cordz_info = new CordzInfo(cord.as_tree(), src.cordz_info(), method,
src.cordz_info()->sampling_stride());
cord.set_cordz_info(cordz_info);
cordz_info->Track();
}
void CordzInfo::MaybeTrackCordImpl(InlineData& cord, const InlineData& src,
MethodIdentifier method) {
if (src.is_profiled()) {
TrackCord(cord, src, method);
} else if (cord.is_profiled()) {
cord.cordz_info()->Untrack();
cord.clear_cordz_info();
}
}
CordzInfo::MethodIdentifier CordzInfo::GetParentMethod(const CordzInfo* src) {
if (src == nullptr) return MethodIdentifier::kUnknown;
return src->parent_method_ != MethodIdentifier::kUnknown ? src->parent_method_
: src->method_;
}
size_t CordzInfo::FillParentStack(const CordzInfo* src, void** stack) {
assert(stack);
if (src == nullptr) return 0;
if (src->parent_stack_depth_) {
memcpy(stack, src->parent_stack_, src->parent_stack_depth_ * sizeof(void*));
return src->parent_stack_depth_;
}
memcpy(stack, src->stack_, src->stack_depth_ * sizeof(void*));
return src->stack_depth_;
}
CordzInfo::CordzInfo(CordRep* rep, const CordzInfo* src,
MethodIdentifier method, int64_t sampling_stride)
: rep_(rep),
stack_depth_(
static_cast<size_t>(absl::GetStackTrace(stack_,
kMaxStackDepth,
1))),
parent_stack_depth_(FillParentStack(src, parent_stack_)),
method_(method),
parent_method_(GetParentMethod(src)),
create_time_(absl::Now()),
sampling_stride_(sampling_stride) {
update_tracker_.LossyAdd(method);
if (src) {
update_tracker_.LossyAdd(src->update_tracker_);
}
}
CordzInfo::~CordzInfo() {
if (ABSL_PREDICT_FALSE(rep_)) {
CordRep::Unref(rep_);
}
}
void CordzInfo::Track() {
SpinLockHolder l(&list_->mutex);
CordzInfo* const head = list_->head.load(std::memory_order_acquire);
if (head != nullptr) {
head->ci_prev_.store(this, std::memory_order_release);
}
ci_next_.store(head, std::memory_order_release);
list_->head.store(this, std::memory_order_release);
}
void CordzInfo::Untrack() {
ODRCheck();
{
SpinLockHolder l(&list_->mutex);
CordzInfo* const head = list_->head.load(std::memory_order_acquire);
CordzInfo* const next = ci_next_.load(std::memory_order_acquire);
CordzInfo* const prev = ci_prev_.load(std::memory_order_acquire);
if (next) {
ABSL_ASSERT(next->ci_prev_.load(std::memory_order_acquire) == this);
next->ci_prev_.store(prev, std::memory_order_release);
}
if (prev) {
ABSL_ASSERT(head != this);
ABSL_ASSERT(prev->ci_next_.load(std::memory_order_acquire) == this);
prev->ci_next_.store(next, std::memory_order_release);
} else {
ABSL_ASSERT(head == this);
list_->head.store(next, std::memory_order_release);
}
}
if (SafeToDelete()) {
UnsafeSetCordRep(nullptr);
delete this;
return;
}
{
absl::MutexLock lock(&mutex_);
if (rep_) CordRep::Ref(rep_);
}
CordzHandle::Delete(this);
}
void CordzInfo::Lock(MethodIdentifier method)
ABSL_EXCLUSIVE_LOCK_FUNCTION(mutex_) {
mutex_.Lock();
update_tracker_.LossyAdd(method);
assert(rep_);
}
void CordzInfo::Unlock() ABSL_UNLOCK_FUNCTION(mutex_) {
bool tracked = rep_ != nullptr;
mutex_.Unlock();
if (!tracked) {
Untrack();
}
}
absl::Span<void* const> CordzInfo::GetStack() const {
return absl::MakeConstSpan(stack_, stack_depth_);
}
absl::Span<void* const> CordzInfo::GetParentStack() const {
return absl::MakeConstSpan(parent_stack_, parent_stack_depth_);
}
CordzStatistics CordzInfo::GetCordzStatistics() const {
CordzStatistics stats;
stats.method = method_;
stats.parent_method = parent_method_;
stats.update_tracker = update_tracker_;
if (CordRep* rep = RefCordRep()) {
stats.size = rep->length;
CordRepAnalyzer analyzer(stats);
analyzer.AnalyzeCordRep(rep);
CordRep::Unref(rep);
}
return stats;
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/cordz_info.h"
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/debugging/stacktrace.h"
#include "absl/debugging/symbolize.h"
#include "absl/strings/cordz_test_helpers.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/strings/internal/cordz_handle.h"
#include "absl/strings/internal/cordz_statistics.h"
#include "absl/strings/internal/cordz_update_tracker.h"
#include "absl/strings/str_cat.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::HasSubstr;
using ::testing::Ne;
using ::testing::SizeIs;
auto constexpr kUnknownMethod = CordzUpdateTracker::kUnknown;
auto constexpr kTrackCordMethod = CordzUpdateTracker::kConstructorString;
auto constexpr kChildMethod = CordzUpdateTracker::kConstructorCord;
auto constexpr kUpdateMethod = CordzUpdateTracker::kAppendString;
std::vector<const CordzHandle*> DeleteQueue() {
return CordzHandle::DiagnosticsGetDeleteQueue();
}
std::string FormatStack(absl::Span<void* const> raw_stack) {
static constexpr size_t buf_size = 1 << 14;
std::unique_ptr<char[]> buf(new char[buf_size]);
std::string output;
for (void* stackp : raw_stack) {
if (absl::Symbolize(stackp, buf.get(), buf_size)) {
absl::StrAppend(&output, " ", buf.get(), "\n");
}
}
return output;
}
TEST(CordzInfoTest, TrackCord) {
TestCordData data;
CordzInfo::TrackCord(data.data, kTrackCordMethod, 1);
CordzInfo* info = data.data.cordz_info();
ASSERT_THAT(info, Ne(nullptr));
EXPECT_FALSE(info->is_snapshot());
EXPECT_THAT(CordzInfo::Head(CordzSnapshot()), Eq(info));
EXPECT_THAT(info->GetCordRepForTesting(), Eq(data.rep.rep));
info->Untrack();
}
TEST(CordzInfoTest, MaybeTrackChildCordWithoutSampling) {
CordzSamplingIntervalHelper sample_none(99999);
TestCordData parent, child;
CordzInfo::MaybeTrackCord(child.data, parent.data, kTrackCordMethod);
EXPECT_THAT(child.data.cordz_info(), Eq(nullptr));
}
TEST(CordzInfoTest, MaybeTrackChildCordWithSampling) {
CordzSamplingIntervalHelper sample_all(1);
TestCordData parent, child;
CordzInfo::MaybeTrackCord(child.data, parent.data, kTrackCordMethod);
EXPECT_THAT(child.data.cordz_info(), Eq(nullptr));
}
TEST(CordzInfoTest, MaybeTrackChildCordWithoutSamplingParentSampled) {
CordzSamplingIntervalHelper sample_none(99999);
TestCordData parent, child;
CordzInfo::TrackCord(parent.data, kTrackCordMethod, 1);
CordzInfo::MaybeTrackCord(child.data, parent.data, kTrackCordMethod);
CordzInfo* parent_info = parent.data.cordz_info();
CordzInfo* child_info = child.data.cordz_info();
ASSERT_THAT(child_info, Ne(nullptr));
EXPECT_THAT(child_info->GetCordRepForTesting(), Eq(child.rep.rep));
EXPECT_THAT(child_info->GetParentStack(), parent_info->GetStack());
parent_info->Untrack();
child_info->Untrack();
}
TEST(CordzInfoTest, MaybeTrackChildCordWithoutSamplingChildSampled) {
CordzSamplingIntervalHelper sample_none(99999);
TestCordData parent, child;
CordzInfo::TrackCord(child.data, kTrackCordMethod, 1);
CordzInfo::MaybeTrackCord(child.data, parent.data, kTrackCordMethod);
EXPECT_THAT(child.data.cordz_info(), Eq(nullptr));
}
TEST(CordzInfoTest, MaybeTrackChildCordWithSamplingChildSampled) {
CordzSamplingIntervalHelper sample_all(1);
TestCordData parent, child;
CordzInfo::TrackCord(child.data, kTrackCordMethod, 1);
CordzInfo::MaybeTrackCord(child.data, parent.data, kTrackCordMethod);
EXPECT_THAT(child.data.cordz_info(), Eq(nullptr));
}
TEST(CordzInfoTest, UntrackCord) {
TestCordData data;
CordzInfo::TrackCord(data.data, kTrackCordMethod, 1);
CordzInfo* info = data.data.cordz_info();
info->Untrack();
EXPECT_THAT(DeleteQueue(), SizeIs(0u));
}
TEST(CordzInfoTest, UntrackCordWithSnapshot) {
TestCordData data;
CordzInfo::TrackCord(data.data, kTrackCordMethod, 1);
CordzInfo* info = data.data.cordz_info();
CordzSnapshot snapshot;
info->Untrack();
EXPECT_THAT(CordzInfo::Head(CordzSnapshot()), Eq(nullptr));
EXPECT_THAT(info->GetCordRepForTesting(), Eq(data.rep.rep));
EXPECT_THAT(DeleteQueue(), ElementsAre(info, &snapshot));
}
TEST(CordzInfoTest, SetCordRep) {
TestCordData data;
CordzInfo::TrackCord(data.data, kTrackCordMethod, 1);
CordzInfo* info = data.data.cordz_info();
TestCordRep rep;
info->Lock(CordzUpdateTracker::kAppendCord);
info->SetCordRep(rep.rep);
info->Unlock();
EXPECT_THAT(info->GetCordRepForTesting(), Eq(rep.rep));
info->Untrack();
}
TEST(CordzInfoTest, SetCordRepNullUntracksCordOnUnlock) {
TestCordData data;
CordzInfo::TrackCord(data.data, kTrackCordMethod, 1);
CordzInfo* info = data.data.cordz_info();
info->Lock(CordzUpdateTracker::kAppendString);
info->SetCordRep(nullptr);
EXPECT_THAT(info->GetCordRepForTesting(), Eq(nullptr));
EXPECT_THAT(CordzInfo::Head(CordzSnapshot()), Eq(info));
info->Unlock();
EXPECT_THAT(CordzInfo::Head(CordzSnapshot()), Eq(nullptr));
}
TEST(CordzInfoTest, RefCordRep) {
TestCordData data;
CordzInfo::TrackCord(data.data, kTrackCordMethod, 1);
CordzInfo* info = data.data.cordz_info();
size_t refcount = data.rep.rep->refcount.Get();
EXPECT_THAT(info->RefCordRep(), Eq(data.rep.rep));
EXPECT_THAT(data.rep.rep->refcount.Get(), Eq(refcount + 1));
CordRep::Unref(data.rep.rep);
info->Untrack();
}
#if GTEST_HAS_DEATH_TEST
TEST(CordzInfoTest, SetCordRepRequiresMutex) {
TestCordData data;
CordzInfo::TrackCord(data.data, kTrackCordMethod, 1);
CordzInfo* info = data.data.cordz_info();
TestCordRep rep;
EXPECT_DEBUG_DEATH(info->SetCordRep(rep.rep), ".*");
info->Untrack();
}
#endif
TEST(CordzInfoTest, TrackUntrackHeadFirstV2) {
CordzSnapshot snapshot;
EXPECT_THAT(CordzInfo::Head(snapshot), Eq(nullptr));
TestCordData data;
CordzInfo::TrackCord(data.data, kTrackCordMethod, 1);
CordzInfo* info1 = data.data.cordz_info();
ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info1));
EXPECT_THAT(info1->Next(snapshot), Eq(nullptr));
TestCordData data2;
CordzInfo::TrackCord(data2.data, kTrackCordMethod, 1);
CordzInfo* info2 = data2.data.cordz_info();
ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info2));
EXPECT_THAT(info2->Next(snapshot), Eq(info1));
EXPECT_THAT(info1->Next(snapshot), Eq(nullptr));
info2->Untrack();
ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info1));
EXPECT_THAT(info1->Next(snapshot), Eq(nullptr));
info1->Untrack();
ASSERT_THAT(CordzInfo::Head(snapshot), Eq(nullptr));
}
TEST(CordzInfoTest, TrackUntrackTailFirstV2) {
CordzSnapshot snapshot;
EXPECT_THAT(CordzInfo::Head(snapshot), Eq(nullptr));
TestCordData data;
CordzInfo::TrackCord(data.data, kTrackCordMethod, 1);
CordzInfo* info1 = data.data.cordz_info();
ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info1));
EXPECT_THAT(info1->Next(snapshot), Eq(nullptr));
TestCordData data2;
CordzInfo::TrackCord(data2.data, kTrackCordMethod, 1);
CordzInfo* info2 = data2.data.cordz_info();
ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info2));
EXPECT_THAT(info2->Next(snapshot), Eq(info1));
EXPECT_THAT(info1->Next(snapshot), Eq(nullptr));
info1->Untrack();
ASSERT_THAT(CordzInfo::Head(snapshot), Eq(info2));
EXPECT_THAT(info2->Next(snapshot), Eq(nullptr));
info2->Untrack();
ASSERT_THAT(CordzInfo::Head(snapshot), Eq(nullptr));
}
TEST(CordzInfoTest, StackV2) {
TestCordData data;
static constexpr int kMaxStackDepth = 50;
CordzInfo::TrackCord(data.data, kTrackCordMethod, 1);
CordzInfo* info = data.data.cordz_info();
std::vector<void*> local_stack;
local_stack.resize(kMaxStackDepth);
local_stack.resize(static_cast<size_t>(
absl::GetStackTrace(local_stack.data(), kMaxStackDepth,
1)));
std::string got_stack = FormatStack(info->GetStack());
std::string expected_stack = FormatStack(local_stack);
EXPECT_THAT(got_stack, HasSubstr(expected_stack));
info->Untrack();
}
CordzInfo* TrackChildCord(InlineData& data, const InlineData& parent) {
CordzInfo::TrackCord(data, parent, kChildMethod);
return data.cordz_info();
}
CordzInfo* TrackParentCord(InlineData& data) {
CordzInfo::TrackCord(data, kTrackCordMethod, 1);
return data.cordz_info();
}
TEST(CordzInfoTest, GetStatistics) {
TestCordData data;
CordzInfo* info = TrackParentCord(data.data);
CordzStatistics statistics = info->GetCordzStatistics();
EXPECT_THAT(statistics.size, Eq(data.rep.rep->length));
EXPECT_THAT(statistics.method, Eq(kTrackCordMethod));
EXPECT_THAT(statistics.parent_method, Eq(kUnknownMethod));
EXPECT_THAT(statistics.update_tracker.Value(kTrackCordMethod), Eq(1));
info->Untrack();
}
TEST(CordzInfoTest, LockCountsMethod) {
TestCordData data;
CordzInfo* info = TrackParentCord(data.data);
info->Lock(kUpdateMethod);
info->Unlock();
info->Lock(kUpdateMethod);
info->Unlock();
CordzStatistics statistics = info->GetCordzStatistics();
EXPECT_THAT(statistics.update_tracker.Value(kUpdateMethod), Eq(2));
info->Untrack();
}
TEST(CordzInfoTest, FromParent) {
TestCordData parent;
TestCordData child;
CordzInfo* info_parent = TrackParentCord(parent.data);
CordzInfo* info_child = TrackChildCord(child.data, parent.data);
std::string stack = FormatStack(info_parent->GetStack());
std::string parent_stack = FormatStack(info_child->GetParentStack());
EXPECT_THAT(stack, Eq(parent_stack));
CordzStatistics statistics = info_child->GetCordzStatistics();
EXPECT_THAT(statistics.size, Eq(child.rep.rep->length));
EXPECT_THAT(statistics.method, Eq(kChildMethod));
EXPECT_THAT(statistics.parent_method, Eq(kTrackCordMethod));
EXPECT_THAT(statistics.update_tracker.Value(kChildMethod), Eq(1));
info_parent->Untrack();
info_child->Untrack();
}
}
}
ABSL_NAMESPACE_END
} | 2,567 |
#ifndef ABSL_STRINGS_INTERNAL_CHARCONV_PARSE_H_
#define ABSL_STRINGS_INTERNAL_CHARCONV_PARSE_H_
#include <cstdint>
#include "absl/base/config.h"
#include "absl/strings/charconv.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
enum class FloatType { kNumber, kInfinity, kNan };
struct ParsedFloat {
uint64_t mantissa = 0;
int exponent = 0;
int literal_exponent = 0;
FloatType type = FloatType::kNumber;
const char* subrange_begin = nullptr;
const char* subrange_end = nullptr;
const char* end = nullptr;
};
template <int base>
ParsedFloat ParseFloat(const char* begin, const char* end,
absl::chars_format format_flags);
extern template ParsedFloat ParseFloat<10>(const char* begin, const char* end,
absl::chars_format format_flags);
extern template ParsedFloat ParseFloat<16>(const char* begin, const char* end,
absl::chars_format format_flags);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/charconv_parse.h"
#include "absl/strings/charconv.h"
#include <cassert>
#include <cstdint>
#include <limits>
#include "absl/strings/internal/memutil.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
constexpr int kDecimalMantissaDigitsMax = 19;
static_assert(std::numeric_limits<uint64_t>::digits10 ==
kDecimalMantissaDigitsMax,
"(a) above");
static_assert(std::numeric_limits<double>::is_iec559, "IEEE double assumed");
static_assert(std::numeric_limits<double>::radix == 2, "IEEE double fact");
static_assert(std::numeric_limits<double>::digits == 53, "IEEE double fact");
static_assert(1000000000000000000u > (uint64_t{1} << (53 + 3)), "(b) above");
constexpr int kHexadecimalMantissaDigitsMax = 15;
constexpr int kGuaranteedHexadecimalMantissaBitPrecision =
4 * kHexadecimalMantissaDigitsMax - 3;
static_assert(kGuaranteedHexadecimalMantissaBitPrecision >
std::numeric_limits<double>::digits + 2,
"kHexadecimalMantissaDigitsMax too small");
constexpr int kDecimalExponentDigitsMax = 9;
static_assert(std::numeric_limits<int>::digits10 >= kDecimalExponentDigitsMax,
"int type too small");
constexpr int kDecimalDigitLimit = 50000000;
constexpr int kHexadecimalDigitLimit = kDecimalDigitLimit / 4;
static_assert(999999999 + 2 * kDecimalDigitLimit <
std::numeric_limits<int>::max(),
"int type too small");
static_assert(999999999 + 2 * (4 * kHexadecimalDigitLimit) <
std::numeric_limits<int>::max(),
"int type too small");
bool AllowExponent(chars_format flags) {
bool fixed = (flags & chars_format::fixed) == chars_format::fixed;
bool scientific =
(flags & chars_format::scientific) == chars_format::scientific;
return scientific || !fixed;
}
bool RequireExponent(chars_format flags) {
bool fixed = (flags & chars_format::fixed) == chars_format::fixed;
bool scientific =
(flags & chars_format::scientific) == chars_format::scientific;
return scientific && !fixed;
}
const int8_t kAsciiToInt[256] = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1};
template <int base>
bool IsDigit(char ch);
template <int base>
unsigned ToDigit(char ch);
template <int base>
bool IsExponentCharacter(char ch);
template <int base>
constexpr int MantissaDigitsMax();
template <int base>
constexpr int DigitLimit();
template <int base>
constexpr int DigitMagnitude();
template <>
bool IsDigit<10>(char ch) {
return ch >= '0' && ch <= '9';
}
template <>
bool IsDigit<16>(char ch) {
return kAsciiToInt[static_cast<unsigned char>(ch)] >= 0;
}
template <>
unsigned ToDigit<10>(char ch) {
return static_cast<unsigned>(ch - '0');
}
template <>
unsigned ToDigit<16>(char ch) {
return static_cast<unsigned>(kAsciiToInt[static_cast<unsigned char>(ch)]);
}
template <>
bool IsExponentCharacter<10>(char ch) {
return ch == 'e' || ch == 'E';
}
template <>
bool IsExponentCharacter<16>(char ch) {
return ch == 'p' || ch == 'P';
}
template <>
constexpr int MantissaDigitsMax<10>() {
return kDecimalMantissaDigitsMax;
}
template <>
constexpr int MantissaDigitsMax<16>() {
return kHexadecimalMantissaDigitsMax;
}
template <>
constexpr int DigitLimit<10>() {
return kDecimalDigitLimit;
}
template <>
constexpr int DigitLimit<16>() {
return kHexadecimalDigitLimit;
}
template <>
constexpr int DigitMagnitude<10>() {
return 1;
}
template <>
constexpr int DigitMagnitude<16>() {
return 4;
}
template <int base, typename T>
int ConsumeDigits(const char* begin, const char* end, int max_digits, T* out,
bool* dropped_nonzero_digit) {
if (base == 10) {
assert(max_digits <= std::numeric_limits<T>::digits10);
} else if (base == 16) {
assert(max_digits * 4 <= std::numeric_limits<T>::digits);
}
const char* const original_begin = begin;
while (!*out && end != begin && *begin == '0') ++begin;
T accumulator = *out;
const char* significant_digits_end =
(end - begin > max_digits) ? begin + max_digits : end;
while (begin < significant_digits_end && IsDigit<base>(*begin)) {
auto digit = static_cast<T>(ToDigit<base>(*begin));
assert(accumulator * base >= accumulator);
accumulator *= base;
assert(accumulator + digit >= accumulator);
accumulator += digit;
++begin;
}
bool dropped_nonzero = false;
while (begin < end && IsDigit<base>(*begin)) {
dropped_nonzero = dropped_nonzero || (*begin != '0');
++begin;
}
if (dropped_nonzero && dropped_nonzero_digit != nullptr) {
*dropped_nonzero_digit = true;
}
*out = accumulator;
return static_cast<int>(begin - original_begin);
}
bool IsNanChar(char v) {
return (v == '_') || (v >= '0' && v <= '9') || (v >= 'a' && v <= 'z') ||
(v >= 'A' && v <= 'Z');
}
bool ParseInfinityOrNan(const char* begin, const char* end,
strings_internal::ParsedFloat* out) {
if (end - begin < 3) {
return false;
}
switch (*begin) {
case 'i':
case 'I': {
if (strings_internal::memcasecmp(begin + 1, "nf", 2) != 0) {
return false;
}
out->type = strings_internal::FloatType::kInfinity;
if (end - begin >= 8 &&
strings_internal::memcasecmp(begin + 3, "inity", 5) == 0) {
out->end = begin + 8;
} else {
out->end = begin + 3;
}
return true;
}
case 'n':
case 'N': {
if (strings_internal::memcasecmp(begin + 1, "an", 2) != 0) {
return false;
}
out->type = strings_internal::FloatType::kNan;
out->end = begin + 3;
begin += 3;
if (begin < end && *begin == '(') {
const char* nan_begin = begin + 1;
while (nan_begin < end && IsNanChar(*nan_begin)) {
++nan_begin;
}
if (nan_begin < end && *nan_begin == ')') {
out->subrange_begin = begin + 1;
out->subrange_end = nan_begin;
out->end = nan_begin + 1;
}
}
return true;
}
default:
return false;
}
}
}
namespace strings_internal {
template <int base>
strings_internal::ParsedFloat ParseFloat(const char* begin, const char* end,
chars_format format_flags) {
strings_internal::ParsedFloat result;
if (begin == end) return result;
if (ParseInfinityOrNan(begin, end, &result)) {
return result;
}
const char* const mantissa_begin = begin;
while (begin < end && *begin == '0') {
++begin;
}
uint64_t mantissa = 0;
int exponent_adjustment = 0;
bool mantissa_is_inexact = false;
int pre_decimal_digits = ConsumeDigits<base>(
begin, end, MantissaDigitsMax<base>(), &mantissa, &mantissa_is_inexact);
begin += pre_decimal_digits;
int digits_left;
if (pre_decimal_digits >= DigitLimit<base>()) {
return result;
} else if (pre_decimal_digits > MantissaDigitsMax<base>()) {
exponent_adjustment =
static_cast<int>(pre_decimal_digits - MantissaDigitsMax<base>());
digits_left = 0;
} else {
digits_left =
static_cast<int>(MantissaDigitsMax<base>() - pre_decimal_digits);
}
if (begin < end && *begin == '.') {
++begin;
if (mantissa == 0) {
const char* begin_zeros = begin;
while (begin < end && *begin == '0') {
++begin;
}
int zeros_skipped = static_cast<int>(begin - begin_zeros);
if (zeros_skipped >= DigitLimit<base>()) {
return result;
}
exponent_adjustment -= static_cast<int>(zeros_skipped);
}
int post_decimal_digits = ConsumeDigits<base>(
begin, end, digits_left, &mantissa, &mantissa_is_inexact);
begin += post_decimal_digits;
if (post_decimal_digits >= DigitLimit<base>()) {
return result;
} else if (post_decimal_digits > digits_left) {
exponent_adjustment -= digits_left;
} else {
exponent_adjustment -= post_decimal_digits;
}
}
if (mantissa_begin == begin) {
return result;
}
if (begin - mantissa_begin == 1 && *mantissa_begin == '.') {
return result;
}
if (mantissa_is_inexact) {
if (base == 10) {
result.subrange_begin = mantissa_begin;
result.subrange_end = begin;
} else if (base == 16) {
mantissa |= 1;
}
}
result.mantissa = mantissa;
const char* const exponent_begin = begin;
result.literal_exponent = 0;
bool found_exponent = false;
if (AllowExponent(format_flags) && begin < end &&
IsExponentCharacter<base>(*begin)) {
bool negative_exponent = false;
++begin;
if (begin < end && *begin == '-') {
negative_exponent = true;
++begin;
} else if (begin < end && *begin == '+') {
++begin;
}
const char* const exponent_digits_begin = begin;
begin += ConsumeDigits<10>(begin, end, kDecimalExponentDigitsMax,
&result.literal_exponent, nullptr);
if (begin == exponent_digits_begin) {
found_exponent = false;
begin = exponent_begin;
} else {
found_exponent = true;
if (negative_exponent) {
result.literal_exponent = -result.literal_exponent;
}
}
}
if (!found_exponent && RequireExponent(format_flags)) {
return result;
}
result.type = strings_internal::FloatType::kNumber;
if (result.mantissa > 0) {
result.exponent = result.literal_exponent +
(DigitMagnitude<base>() * exponent_adjustment);
} else {
result.exponent = 0;
}
result.end = begin;
return result;
}
template ParsedFloat ParseFloat<10>(const char* begin, const char* end,
chars_format format_flags);
template ParsedFloat ParseFloat<16>(const char* begin, const char* end,
chars_format format_flags);
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/charconv_parse.h"
#include <string>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/log/check.h"
#include "absl/strings/str_cat.h"
using absl::chars_format;
using absl::strings_internal::FloatType;
using absl::strings_internal::ParsedFloat;
using absl::strings_internal::ParseFloat;
namespace {
template <int base>
void ExpectParsedFloat(std::string s, absl::chars_format format_flags,
FloatType expected_type, uint64_t expected_mantissa,
int expected_exponent,
int expected_literal_exponent = -999) {
SCOPED_TRACE(s);
int begin_subrange = -1;
int end_subrange = -1;
std::string::size_type open_bracket_pos = s.find('[');
if (open_bracket_pos != std::string::npos) {
begin_subrange = static_cast<int>(open_bracket_pos);
s.replace(open_bracket_pos, 1, "");
std::string::size_type close_bracket_pos = s.find(']');
CHECK_NE(close_bracket_pos, absl::string_view::npos)
<< "Test input contains [ without matching ]";
end_subrange = static_cast<int>(close_bracket_pos);
s.replace(close_bracket_pos, 1, "");
}
const std::string::size_type expected_characters_matched = s.find('$');
CHECK_NE(expected_characters_matched, std::string::npos)
<< "Input string must contain $";
s.replace(expected_characters_matched, 1, "");
ParsedFloat parsed =
ParseFloat<base>(s.data(), s.data() + s.size(), format_flags);
EXPECT_NE(parsed.end, nullptr);
if (parsed.end == nullptr) {
return;
}
EXPECT_EQ(parsed.type, expected_type);
if (begin_subrange == -1) {
EXPECT_EQ(parsed.subrange_begin, nullptr);
EXPECT_EQ(parsed.subrange_end, nullptr);
} else {
EXPECT_EQ(parsed.subrange_begin, s.data() + begin_subrange);
EXPECT_EQ(parsed.subrange_end, s.data() + end_subrange);
}
if (parsed.type == FloatType::kNumber) {
EXPECT_EQ(parsed.mantissa, expected_mantissa);
EXPECT_EQ(parsed.exponent, expected_exponent);
if (expected_literal_exponent != -999) {
EXPECT_EQ(parsed.literal_exponent, expected_literal_exponent);
}
}
auto characters_matched = static_cast<int>(parsed.end - s.data());
EXPECT_EQ(characters_matched, expected_characters_matched);
}
template <int base>
void ExpectNumber(std::string s, absl::chars_format format_flags,
uint64_t expected_mantissa, int expected_exponent,
int expected_literal_exponent = -999) {
ExpectParsedFloat<base>(std::move(s), format_flags, FloatType::kNumber,
expected_mantissa, expected_exponent,
expected_literal_exponent);
}
void ExpectSpecial(const std::string& s, absl::chars_format format_flags,
FloatType type) {
ExpectParsedFloat<10>(s, format_flags, type, 0, 0);
ExpectParsedFloat<16>(s, format_flags, type, 0, 0);
}
template <int base>
void ExpectFailedParse(absl::string_view s, absl::chars_format format_flags) {
ParsedFloat parsed =
ParseFloat<base>(s.data(), s.data() + s.size(), format_flags);
EXPECT_EQ(parsed.end, nullptr);
}
TEST(ParseFloat, SimpleValue) {
ExpectNumber<10>("1.23456789e5$", chars_format::general, 123456789, -3);
ExpectNumber<10>("1.23456789e+5$", chars_format::general, 123456789, -3);
ExpectNumber<10>("1.23456789E5$", chars_format::general, 123456789, -3);
ExpectNumber<10>("1.23456789e05$", chars_format::general, 123456789, -3);
ExpectNumber<10>("123.456789e3$", chars_format::general, 123456789, -3);
ExpectNumber<10>("0.000123456789e9$", chars_format::general, 123456789, -3);
ExpectNumber<10>("123456.789$", chars_format::general, 123456789, -3);
ExpectNumber<10>("123456789e-3$", chars_format::general, 123456789, -3);
ExpectNumber<16>("1.234abcdefp28$", chars_format::general, 0x1234abcdef, -8);
ExpectNumber<16>("1.234abcdefp+28$", chars_format::general, 0x1234abcdef, -8);
ExpectNumber<16>("1.234ABCDEFp28$", chars_format::general, 0x1234abcdef, -8);
ExpectNumber<16>("1.234AbCdEfP0028$", chars_format::general, 0x1234abcdef,
-8);
ExpectNumber<16>("123.4abcdefp20$", chars_format::general, 0x1234abcdef, -8);
ExpectNumber<16>("0.0001234abcdefp44$", chars_format::general, 0x1234abcdef,
-8);
ExpectNumber<16>("1234abcd.ef$", chars_format::general, 0x1234abcdef, -8);
ExpectNumber<16>("1234abcdefp-8$", chars_format::general, 0x1234abcdef, -8);
ExpectNumber<10>("0001.2345678900e005$", chars_format::general, 12345678900,
-5);
ExpectNumber<16>("0001.234abcdef000p28$", chars_format::general,
0x1234abcdef000, -20);
ExpectNumber<10>("1.23456789e5$ ", chars_format::general, 123456789, -3);
ExpectNumber<10>("1.23456789e5$e5e5", chars_format::general, 123456789, -3);
ExpectNumber<10>("1.23456789e5$.25", chars_format::general, 123456789, -3);
ExpectNumber<10>("1.23456789e5$-", chars_format::general, 123456789, -3);
ExpectNumber<10>("1.23456789e5$PUPPERS!!!", chars_format::general, 123456789,
-3);
ExpectNumber<10>("123456.789$efghij", chars_format::general, 123456789, -3);
ExpectNumber<10>("123456.789$e", chars_format::general, 123456789, -3);
ExpectNumber<10>("123456.789$p5", chars_format::general, 123456789, -3);
ExpectNumber<10>("123456.789$.10", chars_format::general, 123456789, -3);
ExpectNumber<16>("1.234abcdefp28$ ", chars_format::general, 0x1234abcdef,
-8);
ExpectNumber<16>("1.234abcdefp28$p28", chars_format::general, 0x1234abcdef,
-8);
ExpectNumber<16>("1.234abcdefp28$.125", chars_format::general, 0x1234abcdef,
-8);
ExpectNumber<16>("1.234abcdefp28$-", chars_format::general, 0x1234abcdef, -8);
ExpectNumber<16>("1.234abcdefp28$KITTEHS!!!", chars_format::general,
0x1234abcdef, -8);
ExpectNumber<16>("1234abcd.ef$ghijk", chars_format::general, 0x1234abcdef,
-8);
ExpectNumber<16>("1234abcd.ef$p", chars_format::general, 0x1234abcdef, -8);
ExpectNumber<16>("1234abcd.ef$.10", chars_format::general, 0x1234abcdef, -8);
ExpectNumber<10>("9999999999999999999$", chars_format::general,
9999999999999999999u, 0);
ExpectNumber<16>("fffffffffffffff$", chars_format::general,
0xfffffffffffffffu, 0);
ExpectNumber<10>("0$", chars_format::general, 0, 0);
ExpectNumber<16>("0$", chars_format::general, 0, 0);
ExpectNumber<10>("000000000000000000000000000000000000000$",
chars_format::general, 0, 0);
ExpectNumber<16>("000000000000000000000000000000000000000$",
chars_format::general, 0, 0);
ExpectNumber<10>("0000000000000000000000.000000000000000000$",
chars_format::general, 0, 0);
ExpectNumber<16>("0000000000000000000000.000000000000000000$",
chars_format::general, 0, 0);
ExpectNumber<10>("0.00000000000000000000000000000000e123456$",
chars_format::general, 0, 0);
ExpectNumber<16>("0.00000000000000000000000000000000p123456$",
chars_format::general, 0, 0);
}
TEST(ParseFloat, LargeDecimalMantissa) {
ExpectNumber<10>("100000000000000000000000000$", chars_format::general,
1000000000000000000,
8);
ExpectNumber<10>("123456789123456789100000000$", chars_format::general,
1234567891234567891,
8);
ExpectNumber<10>("[123456789123456789123456789]$", chars_format::general,
1234567891234567891,
8,
0);
ExpectNumber<10>("[123456789123456789100000009]$", chars_format::general,
1234567891234567891,
8,
0);
ExpectNumber<10>("[123456789123456789120000000]$", chars_format::general,
1234567891234567891,
8,
0);
ExpectNumber<10>("[00000000123456789123456789123456789]$",
chars_format::general, 1234567891234567891,
8,
0);
ExpectNumber<10>("00000000123456789123456789100000000$",
chars_format::general, 1234567891234567891,
8);
ExpectNumber<10>("1.234567891234567891e123$", chars_format::general,
1234567891234567891, 105);
ExpectNumber<10>("[1.23456789123456789123456789]e123$", chars_format::general,
1234567891234567891,
105,
123);
ExpectNumber<10>("[1999999999999999999999]$", chars_format::general,
1999999999999999999,
3,
0);
}
TEST(ParseFloat, LargeHexadecimalMantissa) {
ExpectNumber<16>("123456789abcdef123456789abcdef$", chars_format::general,
0x123456789abcdef, 60);
ExpectNumber<16>("000000123456789abcdef123456789abcdef$",
chars_format::general, 0x123456789abcdef, 60);
ExpectNumber<16>("1.23456789abcdefp100$", chars_format::general,
0x123456789abcdef, 44);
ExpectNumber<16>("1.23456789abcdef123456789abcdefp100$",
chars_format::general, 0x123456789abcdef, 44);
ExpectNumber<16>("123456789abcdee123456789abcdee$", chars_format::general,
0x123456789abcdef, 60);
ExpectNumber<16>("123456789abcdee000000000000001$", chars_format::general,
0x123456789abcdef, 60);
ExpectNumber<16>("123456789abcdee000000000000000$", chars_format::general,
0x123456789abcdee, 60);
}
TEST(ParseFloat, ScientificVsFixed) {
ExpectNumber<10>("1.23456789$e5", chars_format::fixed, 123456789, -8);
ExpectNumber<10>("123456.789$", chars_format::fixed, 123456789, -3);
ExpectNumber<16>("1.234abcdef$p28", chars_format::fixed, 0x1234abcdef, -36);
ExpectNumber<16>("1234abcd.ef$", chars_format::fixed, 0x1234abcdef, -8);
ExpectNumber<10>("1.23456789e5$", chars_format::scientific, 123456789, -3);
ExpectFailedParse<10>("-123456.789$", chars_format::scientific);
ExpectNumber<16>("1.234abcdefp28$", chars_format::scientific, 0x1234abcdef,
-8);
ExpectFailedParse<16>("1234abcd.ef$", chars_format::scientific);
}
TEST(ParseFloat, Infinity) {
ExpectFailedParse<10>("in", chars_format::general);
ExpectFailedParse<16>("in", chars_format::general);
ExpectFailedParse<10>("inx", chars_format::general);
ExpectFailedParse<16>("inx", chars_format::general);
ExpectSpecial("inf$", chars_format::general, FloatType::kInfinity);
ExpectSpecial("Inf$", chars_format::general, FloatType::kInfinity);
ExpectSpecial("INF$", chars_format::general, FloatType::kInfinity);
ExpectSpecial("inf$inite", chars_format::general, FloatType::kInfinity);
ExpectSpecial("iNfInItY$", chars_format::general, FloatType::kInfinity);
ExpectSpecial("infinity$!!!", chars_format::general, FloatType::kInfinity);
}
TEST(ParseFloat, NaN) {
ExpectFailedParse<10>("na", chars_format::general);
ExpectFailedParse<16>("na", chars_format::general);
ExpectFailedParse<10>("nah", chars_format::general);
ExpectFailedParse<16>("nah", chars_format::general);
ExpectSpecial("nan$", chars_format::general, FloatType::kNan);
ExpectSpecial("NaN$", chars_format::general, FloatType::kNan);
ExpectSpecial("nAn$", chars_format::general, FloatType::kNan);
ExpectSpecial("NAN$", chars_format::general, FloatType::kNan);
ExpectSpecial("NaN$aNaNaNaNaBatman!", chars_format::general, FloatType::kNan);
ExpectSpecial("nan([0xabcdef])$", chars_format::general, FloatType::kNan);
ExpectSpecial("nan([0xabcdef])$...", chars_format::general, FloatType::kNan);
ExpectSpecial("nan([0xabcdef])$)...", chars_format::general, FloatType::kNan);
ExpectSpecial("nan([])$", chars_format::general, FloatType::kNan);
ExpectSpecial("nan([aAzZ09_])$", chars_format::general, FloatType::kNan);
ExpectSpecial("nan$(bad-char)", chars_format::general, FloatType::kNan);
ExpectSpecial("nan$(0xabcdef", chars_format::general, FloatType::kNan);
}
} | 2,568 |
#ifndef ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_H_
#define ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_H_
#include <cassert>
#include <cstdint>
#include <iosfwd>
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/base/optimization.h"
#include "absl/strings/internal/cord_data_edge.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
void SetCordBtreeExhaustiveValidation(bool do_exaustive_validation);
bool IsCordBtreeExhaustiveValidationEnabled();
class CordRepBtreeNavigator;
class CordRepBtree : public CordRep {
public:
enum class EdgeType { kFront, kBack };
static constexpr EdgeType kFront = EdgeType::kFront;
static constexpr EdgeType kBack = EdgeType::kBack;
static constexpr size_t kMaxCapacity = 6;
static constexpr size_t kMaxDepth = 12;
static constexpr int kMaxHeight = static_cast<int>(kMaxDepth - 1);
enum Action { kSelf, kCopied, kPopped };
struct OpResult {
CordRepBtree* tree;
Action action;
};
struct CopyResult {
CordRep* edge;
int height;
};
struct Position {
size_t index;
size_t n;
};
static CordRepBtree* Create(CordRep* rep);
static void Destroy(CordRepBtree* tree);
static void Delete(CordRepBtree* tree) { delete tree; }
using CordRep::Unref;
static void Unref(absl::Span<CordRep* const> edges);
static CordRepBtree* Append(CordRepBtree* tree, CordRep* rep);
static CordRepBtree* Prepend(CordRepBtree* tree, CordRep* rep);
static CordRepBtree* Append(CordRepBtree* tree, string_view data,
size_t extra = 0);
static CordRepBtree* Prepend(CordRepBtree* tree, string_view data,
size_t extra = 0);
CordRep* SubTree(size_t offset, size_t n);
static CordRep* RemoveSuffix(CordRepBtree* tree, size_t n);
char GetCharacter(size_t offset) const;
bool IsFlat(absl::string_view* fragment) const;
bool IsFlat(size_t offset, size_t n, absl::string_view* fragment) const;
Span<char> GetAppendBuffer(size_t size);
static ExtractResult ExtractAppendBuffer(CordRepBtree* tree,
size_t extra_capacity = 1);
int height() const { return static_cast<int>(storage[0]); }
size_t begin() const { return static_cast<size_t>(storage[1]); }
size_t back() const { return static_cast<size_t>(storage[2]) - 1; }
size_t end() const { return static_cast<size_t>(storage[2]); }
size_t index(EdgeType edge) const {
return edge == kFront ? begin() : back();
}
size_t size() const { return end() - begin(); }
size_t capacity() const { return kMaxCapacity; }
inline CordRep* Edge(size_t index) const;
inline CordRep* Edge(EdgeType edge_type) const;
inline absl::Span<CordRep* const> Edges() const;
inline absl::Span<CordRep* const> Edges(size_t begin, size_t end) const;
inline absl::string_view Data(size_t index) const;
static bool IsValid(const CordRepBtree* tree, bool shallow = false);
static CordRepBtree* AssertValid(CordRepBtree* tree, bool shallow = true);
static const CordRepBtree* AssertValid(const CordRepBtree* tree,
bool shallow = true);
static void Dump(const CordRep* rep, std::ostream& stream);
static void Dump(const CordRep* rep, absl::string_view label,
std::ostream& stream);
static void Dump(const CordRep* rep, absl::string_view label,
bool include_contents, std::ostream& stream);
template <EdgeType edge_type>
inline OpResult AddEdge(bool owned, CordRep* edge, size_t delta);
template <EdgeType edge_type>
OpResult SetEdge(bool owned, CordRep* edge, size_t delta);
static CordRepBtree* New(int height = 0);
static CordRepBtree* New(CordRep* rep);
static CordRepBtree* New(CordRepBtree* front, CordRepBtree* back);
static CordRepBtree* Rebuild(CordRepBtree* tree);
private:
CordRepBtree() = default;
~CordRepBtree() = default;
inline void InitInstance(int height, size_t begin = 0, size_t end = 0);
void set_begin(size_t begin) { storage[1] = static_cast<uint8_t>(begin); }
void set_end(size_t end) { storage[2] = static_cast<uint8_t>(end); }
size_t sub_fetch_begin(size_t n) {
storage[1] -= static_cast<uint8_t>(n);
return storage[1];
}
size_t fetch_add_end(size_t n) {
const uint8_t current = storage[2];
storage[2] = static_cast<uint8_t>(current + n);
return current;
}
Position IndexOf(size_t offset) const;
Position IndexBefore(size_t offset) const;
Position IndexOfLength(size_t n) const;
Position IndexBefore(Position front, size_t offset) const;
Position IndexBeyond(size_t offset) const;
template <EdgeType edge_type>
static CordRepBtree* NewLeaf(absl::string_view data, size_t extra);
CordRepBtree* CopyRaw(size_t new_length) const;
CordRepBtree* Copy() const;
CordRepBtree* CopyBeginTo(size_t end, size_t new_length) const;
static CordRepBtree* ConsumeBeginTo(CordRepBtree* tree, size_t end,
size_t new_length);
CordRepBtree* CopyToEndFrom(size_t begin, size_t new_length) const;
static CordRep* ExtractFront(CordRepBtree* tree);
static CordRepBtree* MergeTrees(CordRepBtree* left, CordRepBtree* right);
static CordRepBtree* CreateSlow(CordRep* rep);
static CordRepBtree* AppendSlow(CordRepBtree*, CordRep* rep);
static CordRepBtree* PrependSlow(CordRepBtree*, CordRep* rep);
static void Rebuild(CordRepBtree** stack, CordRepBtree* tree, bool consume);
inline void AlignBegin();
inline void AlignEnd();
template <EdgeType edge_type>
inline void Add(CordRep* rep);
template <EdgeType edge_type>
inline void Add(absl::Span<CordRep* const>);
template <EdgeType edge_type>
absl::string_view AddData(absl::string_view data, size_t extra);
template <EdgeType edge_type>
inline void SetEdge(CordRep* edge);
CopyResult CopyPrefix(size_t n, bool allow_folding = true);
CopyResult CopySuffix(size_t offset);
inline OpResult ToOpResult(bool owned);
template <EdgeType edge_type>
static CordRepBtree* AddCordRep(CordRepBtree* tree, CordRep* rep);
template <EdgeType edge_type>
static CordRepBtree* AddData(CordRepBtree* tree, absl::string_view data,
size_t extra = 0);
template <EdgeType edge_type>
static CordRepBtree* Merge(CordRepBtree* dst, CordRepBtree* src);
Span<char> GetAppendBufferSlow(size_t size);
CordRep* edges_[kMaxCapacity];
friend class CordRepBtreeTestPeer;
friend class CordRepBtreeNavigator;
};
inline CordRepBtree* CordRep::btree() {
assert(IsBtree());
return static_cast<CordRepBtree*>(this);
}
inline const CordRepBtree* CordRep::btree() const {
assert(IsBtree());
return static_cast<const CordRepBtree*>(this);
}
inline void CordRepBtree::InitInstance(int height, size_t begin, size_t end) {
tag = BTREE;
storage[0] = static_cast<uint8_t>(height);
storage[1] = static_cast<uint8_t>(begin);
storage[2] = static_cast<uint8_t>(end);
}
inline CordRep* CordRepBtree::Edge(size_t index) const {
assert(index >= begin());
assert(index < end());
return edges_[index];
}
inline CordRep* CordRepBtree::Edge(EdgeType edge_type) const {
return edges_[edge_type == kFront ? begin() : back()];
}
inline absl::Span<CordRep* const> CordRepBtree::Edges() const {
return {edges_ + begin(), size()};
}
inline absl::Span<CordRep* const> CordRepBtree::Edges(size_t begin,
size_t end) const {
assert(begin <= end);
assert(begin >= this->begin());
assert(end <= this->end());
return {edges_ + begin, static_cast<size_t>(end - begin)};
}
inline absl::string_view CordRepBtree::Data(size_t index) const {
assert(height() == 0);
return EdgeData(Edge(index));
}
inline CordRepBtree* CordRepBtree::New(int height) {
CordRepBtree* tree = new CordRepBtree;
tree->length = 0;
tree->InitInstance(height);
return tree;
}
inline CordRepBtree* CordRepBtree::New(CordRep* rep) {
CordRepBtree* tree = new CordRepBtree;
int height = rep->IsBtree() ? rep->btree()->height() + 1 : 0;
tree->length = rep->length;
tree->InitInstance(height, 0, 1);
tree->edges_[0] = rep;
return tree;
}
inline CordRepBtree* CordRepBtree::New(CordRepBtree* front,
CordRepBtree* back) {
assert(front->height() == back->height());
CordRepBtree* tree = new CordRepBtree;
tree->length = front->length + back->length;
tree->InitInstance(front->height() + 1, 0, 2);
tree->edges_[0] = front;
tree->edges_[1] = back;
return tree;
}
inline void CordRepBtree::Unref(absl::Span<CordRep* const> edges) {
for (CordRep* edge : edges) {
if (ABSL_PREDICT_FALSE(!edge->refcount.Decrement())) {
CordRep::Destroy(edge);
}
}
}
inline CordRepBtree* CordRepBtree::CopyRaw(size_t new_length) const {
CordRepBtree* tree = new CordRepBtree; | #include "absl/strings/internal/cord_rep_btree.h"
#include <cmath>
#include <deque>
#include <iostream>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/cleanup/cleanup.h"
#include "absl/strings/internal/cord_data_edge.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_test_util.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
class CordRepBtreeTestPeer {
public:
static void SetEdge(CordRepBtree* node, size_t idx, CordRep* edge) {
node->edges_[idx] = edge;
}
static void AddEdge(CordRepBtree* node, CordRep* edge) {
node->edges_[node->fetch_add_end(1)] = edge;
}
};
namespace {
using ::absl::cordrep_testing::AutoUnref;
using ::absl::cordrep_testing::CordCollectRepsIf;
using ::absl::cordrep_testing::CordToString;
using ::absl::cordrep_testing::CordVisitReps;
using ::absl::cordrep_testing::CreateFlatsFromString;
using ::absl::cordrep_testing::CreateRandomString;
using ::absl::cordrep_testing::MakeExternal;
using ::absl::cordrep_testing::MakeFlat;
using ::absl::cordrep_testing::MakeSubstring;
using ::testing::_;
using ::testing::AllOf;
using ::testing::AnyOf;
using ::testing::Conditional;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::Eq;
using ::testing::HasSubstr;
using ::testing::Le;
using ::testing::Ne;
using ::testing::Not;
using ::testing::SizeIs;
using ::testing::TypedEq;
MATCHER_P(EqFlatHolding, data, "Equals flat holding data") {
if (arg->tag < FLAT) {
*result_listener << "Expected FLAT, got tag " << static_cast<int>(arg->tag);
return false;
}
std::string actual = CordToString(arg);
if (actual != data) {
*result_listener << "Expected flat holding \"" << data
<< "\", got flat holding \"" << actual << "\"";
return false;
}
return true;
}
MATCHER_P(IsNode, height, absl::StrCat("Is a valid node of height ", height)) {
if (arg == nullptr) {
*result_listener << "Expected NODE, got nullptr";
return false;
}
if (arg->tag != BTREE) {
*result_listener << "Expected NODE, got " << static_cast<int>(arg->tag);
return false;
}
if (!CordRepBtree::IsValid(arg->btree())) {
CordRepBtree::Dump(arg->btree(), "Expected valid NODE, got:", false,
*result_listener->stream());
return false;
}
if (arg->btree()->height() != height) {
*result_listener << "Expected NODE of height " << height << ", got "
<< arg->btree()->height();
return false;
}
return true;
}
MATCHER_P2(IsSubstring, start, length,
absl::StrCat("Is a substring(start = ", start, ", length = ", length,
")")) {
if (arg == nullptr) {
*result_listener << "Expected substring, got nullptr";
return false;
}
if (arg->tag != SUBSTRING) {
*result_listener << "Expected SUBSTRING, got "
<< static_cast<int>(arg->tag);
return false;
}
const CordRepSubstring* const substr = arg->substring();
if (substr->start != start || substr->length != length) {
*result_listener << "Expected substring(" << start << ", " << length
<< "), got substring(" << substr->start << ", "
<< substr->length << ")";
return false;
}
return true;
}
MATCHER_P2(EqExtractResult, tree, rep, "Equals ExtractResult") {
if (arg.tree != tree || arg.extracted != rep) {
*result_listener << "Expected {" << static_cast<const void*>(tree) << ", "
<< static_cast<const void*>(rep) << "}, got {" << arg.tree
<< ", " << arg.extracted << "}";
return false;
}
return true;
}
class DataConsumer {
public:
DataConsumer(absl::string_view data, bool forward)
: data_(data), forward_(forward) {}
absl::string_view Next(size_t n) {
assert(n <= data_.size() - consumed_);
consumed_ += n;
return data_.substr(forward_ ? consumed_ - n : data_.size() - consumed_, n);
}
absl::string_view Consumed() const {
return forward_ ? data_.substr(0, consumed_)
: data_.substr(data_.size() - consumed_);
}
private:
absl::string_view data_;
size_t consumed_ = 0;
bool forward_;
};
CordRepBtree* BtreeAdd(CordRepBtree* node, bool append,
absl::string_view data) {
return append ? CordRepBtree::Append(node, data)
: CordRepBtree::Prepend(node, data);
}
void GetLeafEdges(const CordRepBtree* tree, std::vector<CordRep*>& edges) {
if (tree->height() == 0) {
for (CordRep* edge : tree->Edges()) {
edges.push_back(edge);
}
} else {
for (CordRep* edge : tree->Edges()) {
GetLeafEdges(edge->btree(), edges);
}
}
}
std::vector<CordRep*> GetLeafEdges(const CordRepBtree* tree) {
std::vector<CordRep*> edges;
GetLeafEdges(tree, edges);
return edges;
}
CordRepFlat* MakeHexFlat(size_t i) {
return MakeFlat(absl::StrCat("0x", absl::Hex(i, absl::kZeroPad4)));
}
CordRepBtree* MakeLeaf(size_t size = CordRepBtree::kMaxCapacity) {
assert(size <= CordRepBtree::kMaxCapacity);
CordRepBtree* leaf = CordRepBtree::Create(MakeHexFlat(0));
for (size_t i = 1; i < size; ++i) {
leaf = CordRepBtree::Append(leaf, MakeHexFlat(i));
}
return leaf;
}
CordRepBtree* MakeTree(size_t size, bool append = true) {
CordRepBtree* tree = CordRepBtree::Create(MakeHexFlat(0));
for (size_t i = 1; i < size; ++i) {
tree = append ? CordRepBtree::Append(tree, MakeHexFlat(i))
: CordRepBtree::Prepend(tree, MakeHexFlat(i));
}
return tree;
}
CordRepBtree* CreateTree(absl::Span<CordRep* const> reps) {
auto it = reps.begin();
CordRepBtree* tree = CordRepBtree::Create(*it);
while (++it != reps.end()) tree = CordRepBtree::Append(tree, *it);
return tree;
}
CordRepBtree* CreateTree(absl::string_view data, size_t chunk_size) {
return CreateTree(CreateFlatsFromString(data, chunk_size));
}
CordRepBtree* CreateTreeReverse(absl::string_view data, size_t chunk_size) {
std::vector<CordRep*> flats = CreateFlatsFromString(data, chunk_size);
auto rit = flats.rbegin();
CordRepBtree* tree = CordRepBtree::Create(*rit);
while (++rit != flats.rend()) tree = CordRepBtree::Prepend(tree, *rit);
return tree;
}
class CordRepBtreeTest : public testing::TestWithParam<bool> {
public:
bool shared() const { return GetParam(); }
static std::string ToString(testing::TestParamInfo<bool> param) {
return param.param ? "Shared" : "Private";
}
};
INSTANTIATE_TEST_SUITE_P(WithParam, CordRepBtreeTest, testing::Bool(),
CordRepBtreeTest::ToString);
class CordRepBtreeHeightTest : public testing::TestWithParam<int> {
public:
int height() const { return GetParam(); }
static std::string ToString(testing::TestParamInfo<int> param) {
return absl::StrCat(param.param);
}
};
INSTANTIATE_TEST_SUITE_P(WithHeights, CordRepBtreeHeightTest,
testing::Range(0, CordRepBtree::kMaxHeight),
CordRepBtreeHeightTest::ToString);
using TwoBools = testing::tuple<bool, bool>;
class CordRepBtreeDualTest : public testing::TestWithParam<TwoBools> {
public:
bool first_shared() const { return std::get<0>(GetParam()); }
bool second_shared() const { return std::get<1>(GetParam()); }
static std::string ToString(testing::TestParamInfo<TwoBools> param) {
if (std::get<0>(param.param)) {
return std::get<1>(param.param) ? "BothShared" : "FirstShared";
}
return std::get<1>(param.param) ? "SecondShared" : "Private";
}
};
INSTANTIATE_TEST_SUITE_P(WithParam, CordRepBtreeDualTest,
testing::Combine(testing::Bool(), testing::Bool()),
CordRepBtreeDualTest::ToString);
TEST(CordRepBtreeTest, SizeIsMultipleOf64) {
if (sizeof(size_t) == 8 && sizeof(void*) == 8) {
EXPECT_THAT(sizeof(CordRepBtree) % 64, Eq(0u))
<< "Should be multiple of 64";
}
}
TEST(CordRepBtreeTest, NewDestroyEmptyTree) {
auto* tree = CordRepBtree::New();
EXPECT_THAT(tree->size(), Eq(0u));
EXPECT_THAT(tree->height(), Eq(0));
EXPECT_THAT(tree->Edges(), ElementsAre());
CordRepBtree::Destroy(tree);
}
TEST(CordRepBtreeTest, NewDestroyEmptyTreeAtHeight) {
auto* tree = CordRepBtree::New(3);
EXPECT_THAT(tree->size(), Eq(0u));
EXPECT_THAT(tree->height(), Eq(3));
EXPECT_THAT(tree->Edges(), ElementsAre());
CordRepBtree::Destroy(tree);
}
TEST(CordRepBtreeTest, Btree) {
CordRep* rep = CordRepBtree::New();
EXPECT_THAT(rep->btree(), Eq(rep));
EXPECT_THAT(static_cast<const CordRep*>(rep)->btree(), Eq(rep));
CordRep::Unref(rep);
#if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG)
rep = MakeFlat("Hello world");
EXPECT_DEATH(rep->btree(), ".*");
EXPECT_DEATH(static_cast<const CordRep*>(rep)->btree(), ".*");
CordRep::Unref(rep);
#endif
}
TEST(CordRepBtreeTest, EdgeData) {
CordRepFlat* flat = MakeFlat("Hello world");
CordRepExternal* external = MakeExternal("Hello external");
CordRep* substr1 = MakeSubstring(1, 6, CordRep::Ref(flat));
CordRep* substr2 = MakeSubstring(1, 6, CordRep::Ref(external));
CordRep* bad_substr = MakeSubstring(1, 2, CordRep::Ref(substr1));
EXPECT_TRUE(IsDataEdge(flat));
EXPECT_THAT(EdgeData(flat).data(), TypedEq<const void*>(flat->Data()));
EXPECT_THAT(EdgeData(flat), Eq("Hello world"));
EXPECT_TRUE(IsDataEdge(external));
EXPECT_THAT(EdgeData(external).data(), TypedEq<const void*>(external->base));
EXPECT_THAT(EdgeData(external), Eq("Hello external"));
EXPECT_TRUE(IsDataEdge(substr1));
EXPECT_THAT(EdgeData(substr1).data(), TypedEq<const void*>(flat->Data() + 1));
EXPECT_THAT(EdgeData(substr1), Eq("ello w"));
EXPECT_TRUE(IsDataEdge(substr2));
EXPECT_THAT(EdgeData(substr2).data(),
TypedEq<const void*>(external->base + 1));
EXPECT_THAT(EdgeData(substr2), Eq("ello e"));
EXPECT_FALSE(IsDataEdge(bad_substr));
#if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG)
EXPECT_DEATH(EdgeData(bad_substr), ".*");
#endif
CordRep::Unref(bad_substr);
CordRep::Unref(substr2);
CordRep::Unref(substr1);
CordRep::Unref(external);
CordRep::Unref(flat);
}
TEST(CordRepBtreeTest, CreateUnrefLeaf) {
auto* flat = MakeFlat("a");
auto* leaf = CordRepBtree::Create(flat);
EXPECT_THAT(leaf->size(), Eq(1u));
EXPECT_THAT(leaf->height(), Eq(0));
EXPECT_THAT(leaf->Edges(), ElementsAre(flat));
CordRepBtree::Unref(leaf);
}
TEST(CordRepBtreeTest, NewUnrefNode) {
auto* leaf = CordRepBtree::Create(MakeFlat("a"));
CordRepBtree* tree = CordRepBtree::New(leaf);
EXPECT_THAT(tree->size(), Eq(1u));
EXPECT_THAT(tree->height(), Eq(1));
EXPECT_THAT(tree->Edges(), ElementsAre(leaf));
CordRepBtree::Unref(tree);
}
TEST_P(CordRepBtreeTest, AppendToLeafToCapacity) {
AutoUnref refs;
std::vector<CordRep*> flats;
flats.push_back(MakeHexFlat(0));
auto* leaf = CordRepBtree::Create(flats.back());
for (size_t i = 1; i < CordRepBtree::kMaxCapacity; ++i) {
refs.RefIf(shared(), leaf);
flats.push_back(MakeHexFlat(i));
auto* result = CordRepBtree::Append(leaf, flats.back());
EXPECT_THAT(result->height(), Eq(0));
EXPECT_THAT(result, Conditional(shared(), Ne(leaf), Eq(leaf)));
EXPECT_THAT(result->Edges(), ElementsAreArray(flats));
leaf = result;
}
CordRep::Unref(leaf);
}
TEST_P(CordRepBtreeTest, PrependToLeafToCapacity) {
AutoUnref refs;
std::deque<CordRep*> flats;
flats.push_front(MakeHexFlat(0));
auto* leaf = CordRepBtree::Create(flats.front());
for (size_t i = 1; i < CordRepBtree::kMaxCapacity; ++i) {
refs.RefIf(shared(), leaf);
flats.push_front(MakeHexFlat(i));
auto* result = CordRepBtree::Prepend(leaf, flats.front());
EXPECT_THAT(result->height(), Eq(0));
EXPECT_THAT(result, Conditional(shared(), Ne(leaf), Eq(leaf)));
EXPECT_THAT(result->Edges(), ElementsAreArray(flats));
leaf = result;
}
CordRep::Unref(leaf);
}
TEST_P(CordRepBtreeTest, AppendPrependToLeafToCapacity) {
AutoUnref refs;
std::deque<CordRep*> flats;
flats.push_front(MakeHexFlat(0));
auto* leaf = CordRepBtree::Create(flats.front());
for (size_t i = 1; i < CordRepBtree::kMaxCapacity; ++i) {
refs.RefIf(shared(), leaf);
CordRepBtree* result;
if (i % 2 != 0) {
flats.push_front(MakeHexFlat(i));
result = CordRepBtree::Prepend(leaf, flats.front());
} else {
flats.push_back(MakeHexFlat(i));
result = CordRepBtree::Append(leaf, flats.back());
}
EXPECT_THAT(result->height(), Eq(0));
EXPECT_THAT(result, Conditional(shared(), Ne(leaf), Eq(leaf)));
EXPECT_THAT(result->Edges(), ElementsAreArray(flats));
leaf = result;
}
CordRep::Unref(leaf);
}
TEST_P(CordRepBtreeTest, AppendToLeafBeyondCapacity) {
AutoUnref refs;
auto* leaf = MakeLeaf();
refs.RefIf(shared(), leaf);
CordRep* flat = MakeFlat("abc");
auto* result = CordRepBtree::Append(leaf, flat);
ASSERT_THAT(result, IsNode(1));
EXPECT_THAT(result, Ne(leaf));
absl::Span<CordRep* const> edges = result->Edges();
ASSERT_THAT(edges, ElementsAre(leaf, IsNode(0)));
EXPECT_THAT(edges[1]->btree()->Edges(), ElementsAre(flat));
CordRep::Unref(result);
}
TEST_P(CordRepBtreeTest, PrependToLeafBeyondCapacity) {
AutoUnref refs;
auto* leaf = MakeLeaf();
refs.RefIf(shared(), leaf);
CordRep* flat = MakeFlat("abc");
auto* result = CordRepBtree::Prepend(leaf, flat);
ASSERT_THAT(result, IsNode(1));
EXPECT_THAT(result, Ne(leaf));
absl::Span<CordRep* const> edges = result->Edges();
ASSERT_THAT(edges, ElementsAre(IsNode(0), leaf));
EXPECT_THAT(edges[0]->btree()->Edges(), ElementsAre(flat));
CordRep::Unref(result);
}
TEST_P(CordRepBtreeTest, AppendToTreeOneDeep) {
constexpr size_t max_cap = CordRepBtree::kMaxCapacity;
AutoUnref refs;
std::vector<CordRep*> flats;
flats.push_back(MakeHexFlat(0));
CordRepBtree* tree = CordRepBtree::Create(flats.back());
for (size_t i = 1; i <= max_cap; ++i) {
flats.push_back(MakeHexFlat(i));
tree = CordRepBtree::Append(tree, flats.back());
}
ASSERT_THAT(tree, IsNode(1));
for (size_t i = max_cap + 1; i < max_cap * max_cap; ++i) {
refs.RefIf(shared(), tree);
refs.RefIf(i % 4 == 0, tree->Edges().back());
flats.push_back(MakeHexFlat(i));
CordRepBtree* result = CordRepBtree::Append(tree, flats.back());
ASSERT_THAT(result, IsNode(1));
ASSERT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree)));
std::vector<CordRep*> edges = GetLeafEdges(result);
ASSERT_THAT(edges, ElementsAreArray(flats));
tree = result;
}
CordRep::Unref(tree);
}
TEST_P(CordRepBtreeTest, AppendToTreeTwoDeep) {
constexpr size_t max_cap = CordRepBtree::kMaxCapacity;
AutoUnref refs;
std::vector<CordRep*> flats;
flats.push_back(MakeHexFlat(0));
CordRepBtree* tree = CordRepBtree::Create(flats.back());
for (size_t i = 1; i <= max_cap * max_cap; ++i) {
flats.push_back(MakeHexFlat(i));
tree = CordRepBtree::Append(tree, flats.back());
}
ASSERT_THAT(tree, IsNode(2));
for (size_t i = max_cap * max_cap + 1; i < max_cap * max_cap * max_cap; ++i) {
refs.RefIf(shared(), tree);
refs.RefIf(i % 16 == 0, tree->Edges().back());
refs.RefIf(i % 4 == 0, tree->Edges().back()->btree()->Edges().back());
flats.push_back(MakeHexFlat(i));
CordRepBtree* result = CordRepBtree::Append(tree, flats.back());
ASSERT_THAT(result, IsNode(2));
ASSERT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree)));
std::vector<CordRep*> edges = GetLeafEdges(result);
ASSERT_THAT(edges, ElementsAreArray(flats));
tree = result;
}
CordRep::Unref(tree);
}
TEST_P(CordRepBtreeTest, PrependToTreeOneDeep) {
constexpr size_t max_cap = CordRepBtree::kMaxCapacity;
AutoUnref refs;
std::deque<CordRep*> flats;
flats.push_back(MakeHexFlat(0));
CordRepBtree* tree = CordRepBtree::Create(flats.back());
for (size_t i = 1; i <= max_cap; ++i) {
flats.push_front(MakeHexFlat(i));
tree = CordRepBtree::Prepend(tree, flats.front());
}
ASSERT_THAT(tree, IsNode(1));
for (size_t i = max_cap + 1; i < max_cap * max_cap; ++i) {
refs.RefIf(shared(), tree);
refs.RefIf(i % 4 == 0, tree->Edges().back());
flats.push_front(MakeHexFlat(i));
CordRepBtree* result = CordRepBtree::Prepend(tree, flats.front());
ASSERT_THAT(result, IsNode(1));
ASSERT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree)));
std::vector<CordRep*> edges = GetLeafEdges(result);
ASSERT_THAT(edges, ElementsAreArray(flats));
tree = result;
}
CordRep::Unref(tree);
}
TEST_P(CordRepBtreeTest, PrependToTreeTwoDeep) {
constexpr size_t max_cap = CordRepBtree::kMaxCapacity;
AutoUnref refs;
std::deque<CordRep*> flats;
flats.push_back(MakeHexFlat(0));
CordRepBtree* tree = CordRepBtree::Create(flats.back());
for (size_t i = 1; i <= max_cap * max_cap; ++i) {
flats.push_front(MakeHexFlat(i));
tree = CordRepBtree::Prepend(tree, flats.front());
}
ASSERT_THAT(tree, IsNode(2));
for (size_t i = max_cap * max_cap + 1; i < max_cap * max_cap * max_cap; ++i) {
refs.RefIf(shared(), tree);
refs.RefIf(i % 16 == 0, tree->Edges().back());
refs.RefIf(i % 4 == 0, tree->Edges().back()->btree()->Edges().back());
flats.push_front(MakeHexFlat(i));
CordRepBtree* result = CordRepBtree::Prepend(tree, flats.front());
ASSERT_THAT(result, IsNode(2));
ASSERT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree)));
std::vector<CordRep*> edges = GetLeafEdges(result);
ASSERT_THAT(edges, ElementsAreArray(flats));
tree = result;
}
CordRep::Unref(tree);
}
TEST_P(CordRepBtreeDualTest, MergeLeafsNotExceedingCapacity) {
for (bool use_append : {false, true}) {
SCOPED_TRACE(use_append ? "Using Append" : "Using Prepend");
AutoUnref refs;
std::vector<CordRep*> flats;
CordRepBtree* left = MakeLeaf(3);
GetLeafEdges(left, flats);
refs.RefIf(first_shared(), left);
CordRepBtree* right = MakeLeaf(2);
GetLeafEdges(right, flats);
refs.RefIf(second_shared(), right);
CordRepBtree* tree = use_append ? CordRepBtree::Append(left, right)
: CordRepBtree::Prepend(right, left);
EXPECT_THAT(tree, IsNode(0));
EXPECT_THAT(tree->Edges(), ElementsAreArray(flats));
CordRepBtree::Unref(tree);
}
}
TEST_P(CordRepBtreeDualTest, MergeLeafsExceedingCapacity) {
for (bool use_append : {false, true}) {
SCOPED_TRACE(use_append ? "Using Append" : "Using Prepend");
AutoUnref refs;
CordRepBtree* left = MakeLeaf(CordRepBtree::kMaxCapacity - 2);
refs.RefIf(first_shared(), left);
CordRepBtree* right = MakeLeaf(CordRepBtree::kMaxCapacity - 1);
refs.RefIf(second_shared(), right);
CordRepBtree* tree = use_append ? CordRepBtree::Append(left, right)
: CordRepBtree::Prepend(right, left);
EXPECT_THAT(tree, IsNode(1));
EXPECT_THAT(tree->Edges(), ElementsAre(left, right));
CordRepBtree::Unref(tree);
}
}
TEST_P(CordRepBtreeDualTest, MergeEqualHeightTrees) {
for (bool use_append : {false, true}) {
SCOPED_TRACE(use_append ? "Using Append" : "Using Prepend");
AutoUnref refs;
std::vector<CordRep*> flats;
CordRepBtree* left = MakeTree(CordRepBtree::kMaxCapacity * 3);
GetLeafEdges(left, flats);
refs.RefIf(first_shared(), left);
CordRepBtree* right = MakeTree(CordRepBtree::kMaxCapacity * 2);
GetLeafEdges(right, flats);
refs.RefIf(second_shared(), right);
CordRepBtree* tree = use_append ? CordRepBtree::Append(left, right)
: CordRepBtree::Prepend(right, left);
EXPECT_THAT(tree, IsNode(1));
EXPECT_THAT(tree->Edges(), SizeIs(5u));
EXPECT_THAT(GetLeafEdges(tree), ElementsAreArray(flats));
CordRepBtree::Unref(tree);
}
}
TEST_P(CordRepBtreeDualTest, MergeLeafWithTreeNotExceedingLeafCapacity) {
for (bool use_append : {false, true}) {
SCOPED_TRACE(use_append ? "Using Append" : "Using Prepend");
AutoUnref refs;
std::vector<CordRep*> flats;
CordRepBtree* left = MakeTree(CordRepBtree::kMaxCapacity * 2 + 2);
GetLeafEdges(left, flats);
refs.RefIf(first_shared(), left);
CordRepBtree* right = MakeTree(3);
GetLeafEdges(right, flats);
refs.RefIf(second_shared(), right);
CordRepBtree* tree = use_append ? CordRepBtree::Append(left, right)
: CordRepBtree::Prepend(right, left);
EXPECT_THAT(tree, IsNode(1));
EXPECT_THAT(tree->Edges(), SizeIs(3u));
EXPECT_THAT(GetLeafEdges(tree), ElementsAreArray(flats));
CordRepBtree::Unref(tree);
}
}
TEST_P(CordRepBtreeDualTest, MergeLeafWithTreeExceedingLeafCapacity) {
for (bool use_append : {false, true}) {
SCOPED_TRACE(use_append ? "Using Append" : "Using Prepend");
AutoUnref refs;
std::vector<CordRep*> flats;
CordRepBtree* left = MakeTree(CordRepBtree::kMaxCapacity * 3 - 2);
GetLeafEdges(left, flats);
refs.RefIf(first_shared(), left);
CordRepBtree* right = MakeTree(3);
GetLeafEdges(right, flats);
refs.RefIf(second_shared(), right);
CordRepBtree* tree = use_append ? CordRepBtree::Append(left, right)
: CordRepBtree::Prepend(right, left);
EXPECT_THAT(tree, IsNode(1));
EXPECT_THAT(tree->Edges(), SizeIs(4u));
EXPECT_THAT(GetLeafEdges(tree), ElementsAreArray(flats));
CordRepBtree::Unref(tree);
}
}
void RefEdgesAt(size_t depth, AutoUnref& refs, CordRepBtree* tree) {
absl::Span<CordRep* const> edges = tree->Edges();
if (depth == 0) {
refs.Ref(edges.front());
refs.Ref(edges.back());
} else {
assert(tree->height() > 0);
RefEdgesAt(depth - 1, refs, edges.front()->btree());
RefEdgesAt(depth - 1, refs, edges.back()->btree());
}
}
TEST(CordRepBtreeTest, MergeFuzzTest) {
constexpr size_t max_cap = CordRepBtree::kMaxCapacity;
std::minstd_rand rnd;
std::uniform_int_distribution<int> coin_flip(0, 1);
std::uniform_int_distribution<int> dice_throw(1, 6);
auto random_leaf_count = [&]() {
std::uniform_int_distribution<int> dist_height(0, 3);
std::uniform_int_distribution<int> dist_leaf(0, max_cap - 1);
const int height = dist_height(rnd);
return (height ? pow(max_cap, height) : 0) + dist_leaf(rnd);
};
for (int i = 0; i < 10000; ++i) {
AutoUnref refs;
std::vector<CordRep*> flats;
CordRepBtree* left = MakeTree(random_leaf_count(), coin_flip(rnd));
GetLeafEdges(left, flats);
if (dice_throw(rnd) == 1) {
std::uniform_int_distribution<size_t> dist(
0, static_cast<size_t>(left->height()));
RefEdgesAt(dist(rnd), refs, left);
}
CordRepBtree* right = MakeTree(random_leaf_count(), coin_flip(rnd));
GetLeafEdges(right, flats);
if (dice_throw(rnd) == 1) {
std::uniform_int_distribution<size_t> dist(
0, static_cast<size_t>(right->height()));
RefEdgesAt(dist(rnd), refs, right);
}
CordRepBtree* tree = CordRepBtree::Append(left, right);
EXPECT_THAT(GetLeafEdges(tree), ElementsAreArray(flats));
CordRepBtree::Unref(tree);
}
}
TEST_P(CordRepBtreeTest, RemoveSuffix) {
constexpr size_t max_cap = CordRepBtree::kMaxCapacity;
for (size_t cap : {max_cap - 1, max_cap * 2, max_cap * max_cap * 2}) {
const std::string data = CreateRandomString(cap * 512);
{
AutoUnref refs;
CordRepBtree* node = refs.RefIf(shared(), CreateTree(data, 512));
EXPECT_THAT(CordRepBtree::RemoveSuffix(node, data.length()), Eq(nullptr));
node = refs.RefIf(shared(), CreateTree(data, 512));
EXPECT_THAT(CordRepBtree::RemoveSuffix(node, 0), Eq(node));
CordRep::Unref(node);
}
for (size_t n = 1; n < data.length(); ++n) {
AutoUnref refs;
auto flats = CreateFlatsFromString(data, 512);
CordRepBtree* node = refs.RefIf(shared(), CreateTree(flats));
CordRep* rep = refs.Add(CordRepBtree::RemoveSuffix(node, n));
EXPECT_THAT(CordToString(rep), Eq(data.substr(0, data.length() - n)));
auto is_flat = [](CordRep* rep) { return rep->tag >= FLAT; };
std::vector<CordRep*> edges = CordCollectRepsIf(is_flat, rep);
ASSERT_THAT(edges.size(), Le(flats.size()));
CordRep* last_edge = edges.back();
edges.pop_back();
const size_t last_length = rep->length - edges.size() * 512;
size_t index = 0;
for (CordRep* edge : edges) {
ASSERT_THAT(edge, Eq(flats[index++]));
ASSERT_THAT(edge->length, Eq(512u));
}
if (last_length >= 500) {
EXPECT_THAT(last_edge, Eq(flats[index++]));
if (shared()) {
EXPECT_THAT(last_edge->length, Eq(512u));
} else {
EXPECT_TRUE(last_edge->refcount.IsOne());
EXPECT_THAT(last_edge->length, Eq(last_length));
}
}
}
}
}
TEST(CordRepBtreeTest, SubTree) {
constexpr size_t max_cap = CordRepBtree::kMaxCapacity;
const size_t n = max_cap * max_cap * 2;
const std::string data = CreateRandomString(n * 3);
std::vector<CordRep*> flats;
for (absl::string_view s = data; !s.empty(); s.remove_prefix(3)) {
flats.push_back(MakeFlat(s.substr(0, 3)));
}
CordRepBtree* node = CordRepBtree::Create(CordRep::Ref(flats[0]));
for (size_t i = 1; i < flats.size(); ++i) {
node = CordRepBtree::Append(node, CordRep::Ref(flats[i]));
}
for (size_t offset = 0; offset < data.length(); ++offset) {
for (size_t length = 1; length <= data.length() - offset; ++length) {
CordRep* rep = node->SubTree(offset, length);
EXPECT_THAT(CordToString(rep), Eq(data.substr(offset, length)));
CordRep::Unref(rep);
}
}
CordRepBtree::Unref(node);
for (CordRep* rep : flats) {
CordRep::Unref(rep);
}
}
TEST(CordRepBtreeTest, SubTreeOnExistingSubstring) {
AutoUnref refs;
std::string data = CreateRandomString(1000);
CordRepBtree* leaf = CordRepBtree::Create(MakeFlat("abc"));
CordRep* flat = MakeFlat(data);
leaf = CordRepBtree::Append(leaf, flat);
CordRep* result = leaf->SubTree(0, 3 + 990);
ASSERT_THAT(result->tag, Eq(BTREE));
CordRep::Unref(leaf);
leaf = result->btree();
ASSERT_THAT(leaf->Edges(), ElementsAre(_, IsSubstring(0u, 990u)));
EXPECT_THAT(leaf->Edges()[1]->substring()->child, Eq(flat));
result = leaf->SubTree(3 + 5, 970);
ASSERT_THAT(result, IsSubstring(5u, 970u));
EXPECT_THAT(result->substring()->child, Eq(flat));
CordRep::Unref(result);
CordRep::Unref(leaf);
}
TEST_P(CordRepBtreeTest, AddDataToLeaf) {
const size_t n = CordRepBtree::kMaxCapacity;
const std::string data = CreateRandomString(n * 3);
for (bool append : {true, false}) {
AutoUnref refs;
DataConsumer consumer(data, append);
SCOPED_TRACE(append ? "Append" : "Prepend");
CordRepBtree* leaf = CordRepBtree::Create(MakeFlat(consumer.Next(3)));
for (size_t i = 1; i < n; ++i) {
refs.RefIf(shared(), leaf);
CordRepBtree* result = BtreeAdd(leaf, append, consumer.Next(3));
EXPECT_THAT(result, Conditional(shared(), Ne(leaf), Eq(leaf)));
EXPECT_THAT(CordToString(result), Eq(consumer.Consumed()));
leaf = result;
}
CordRep::Unref(leaf);
}
}
TEST_P(CordRepBtreeTest, AppendDataToTree) {
AutoUnref refs;
size_t n = CordRepBtree::kMaxCapacity + CordRepBtree::kMaxCapacity / 2;
std::string data = CreateRandomString(n * 3);
CordRepBtree* tree = refs.RefIf(shared(), CreateTree(data, 3));
CordRepBtree* leaf0 = tree->Edges()[0]->btree();
CordRepBtree* leaf1 = tree->Edges()[1]->btree();
CordRepBtree* result = CordRepBtree::Append(tree, "123456789");
EXPECT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree)));
EXPECT_THAT(result->Edges(),
ElementsAre(leaf0, Conditional(shared(), Ne(leaf1), Eq(leaf1))));
EXPECT_THAT(CordToString(result), Eq(data + "123456789"));
CordRep::Unref(result);
}
TEST_P(CordRepBtreeTest, PrependDataToTree) {
AutoUnref refs;
size_t n = CordRepBtree::kMaxCapacity + CordRepBtree::kMaxCapacity / 2;
std::string data = CreateRandomString(n * 3);
CordRepBtree* tree = refs.RefIf(shared(), CreateTreeReverse(data, 3));
CordRepBtree* leaf0 = tree->Edges()[0]->btree();
CordRepBtree* leaf1 = tree->Edges()[1]->btree();
CordRepBtree* result = CordRepBtree::Prepend(tree, "123456789");
EXPECT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree)));
EXPECT_THAT(result->Edges(), | 2,569 |
#ifndef ABSL_STRINGS_INTERNAL_DAMERAU_LEVENSHTEIN_DISTANCE_H_
#define ABSL_STRINGS_INTERNAL_DAMERAU_LEVENSHTEIN_DISTANCE_H_
#include <cstdint>
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
uint8_t CappedDamerauLevenshteinDistance(absl::string_view s1,
absl::string_view s2, uint8_t cutoff);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/damerau_levenshtein_distance.h"
#include <algorithm>
#include <array>
#include <numeric>
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
uint8_t CappedDamerauLevenshteinDistance(absl::string_view s1,
absl::string_view s2, uint8_t cutoff) {
const uint8_t MAX_SIZE = 100;
const uint8_t _cutoff = std::min(MAX_SIZE, cutoff);
const uint8_t cutoff_plus_1 = static_cast<uint8_t>(_cutoff + 1);
if (s1.size() > s2.size()) std::swap(s1, s2);
if (s1.size() + _cutoff < s2.size() || s2.size() > MAX_SIZE)
return cutoff_plus_1;
if (s1.empty())
return static_cast<uint8_t>(s2.size());
const uint8_t lower_diag =
_cutoff - static_cast<uint8_t>(s2.size() - s1.size());
const uint8_t upper_diag = _cutoff;
std::array<std::array<uint8_t, MAX_SIZE + 2>, MAX_SIZE + 2> d;
std::iota(d[0].begin(), d[0].begin() + upper_diag + 1, 0);
d[0][cutoff_plus_1] = cutoff_plus_1;
for (size_t i = 1; i <= s1.size(); ++i) {
size_t j_begin = 1;
if (i > lower_diag) {
j_begin = i - lower_diag;
d[i][j_begin - 1] = cutoff_plus_1;
} else {
d[i][0] = static_cast<uint8_t>(i);
}
size_t j_end = i + upper_diag;
if (j_end > s2.size()) {
j_end = s2.size();
} else {
d[i][j_end + 1] = cutoff_plus_1;
}
for (size_t j = j_begin; j <= j_end; ++j) {
const uint8_t deletion_distance = d[i - 1][j] + 1;
const uint8_t insertion_distance = d[i][j - 1] + 1;
const uint8_t mismatched_tail_cost = s1[i - 1] == s2[j - 1] ? 0 : 1;
const uint8_t mismatch_distance = d[i - 1][j - 1] + mismatched_tail_cost;
uint8_t transposition_distance = _cutoff + 1;
if (i > 1 && j > 1 && s1[i - 1] == s2[j - 2] && s1[i - 2] == s2[j - 1])
transposition_distance = d[i - 2][j - 2] + 1;
d[i][j] = std::min({cutoff_plus_1, deletion_distance, insertion_distance,
mismatch_distance, transposition_distance});
}
}
return d[s1.size()][s2.size()];
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/damerau_levenshtein_distance.h"
#include <cstdint>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace {
using absl::strings_internal::CappedDamerauLevenshteinDistance;
TEST(Distance, TestDistances) {
EXPECT_THAT(CappedDamerauLevenshteinDistance("ab", "ab", 6), uint8_t{0});
EXPECT_THAT(CappedDamerauLevenshteinDistance("a", "b", 6), uint8_t{1});
EXPECT_THAT(CappedDamerauLevenshteinDistance("ca", "abc", 6), uint8_t{3});
EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "ad", 6), uint8_t{2});
EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "cadb", 6), uint8_t{4});
EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "bdac", 6), uint8_t{4});
EXPECT_THAT(CappedDamerauLevenshteinDistance("ab", "ab", 0), uint8_t{0});
EXPECT_THAT(CappedDamerauLevenshteinDistance("", "", 0), uint8_t{0});
EXPECT_THAT(CappedDamerauLevenshteinDistance("abc", "abc", 6), uint8_t{0});
for (auto res :
{"", "ca", "efg", "ea", "ce", "ceb", "eca", "cae", "cea", "bea"}) {
EXPECT_THAT(CappedDamerauLevenshteinDistance("abc", res, 6), uint8_t{3});
EXPECT_THAT(CappedDamerauLevenshteinDistance(res, "abc", 6), uint8_t{3});
}
for (auto res :
{"a", "b", "c", "ba", "cb", "bca", "cab", "cba", "ace",
"efc", "ebf", "aef", "ae", "be", "eb", "ec", "ecb", "bec",
"bce", "cbe", "ace", "eac", "aeb", "bae", "eab", "eba"}) {
EXPECT_THAT(CappedDamerauLevenshteinDistance("abc", res, 6), uint8_t{2});
EXPECT_THAT(CappedDamerauLevenshteinDistance(res, "abc", 6), uint8_t{2});
}
for (auto res : {"ab", "ac", "bc", "acb", "bac", "ebc", "aec", "abe"}) {
EXPECT_THAT(CappedDamerauLevenshteinDistance("abc", res, 6), uint8_t{1});
EXPECT_THAT(CappedDamerauLevenshteinDistance(res, "abc", 6), uint8_t{1});
}
}
TEST(Distance, TestCutoff) {
EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "a", 3), uint8_t{3});
EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "a", 2), uint8_t{3});
EXPECT_THAT(CappedDamerauLevenshteinDistance("abcd", "a", 1), uint8_t{2});
EXPECT_THAT(CappedDamerauLevenshteinDistance("abcdefg", "a", 2), uint8_t{3});
EXPECT_THAT(CappedDamerauLevenshteinDistance("a", "abcde", 2), uint8_t{3});
EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(102, 'a'),
std::string(102, 'a'), 105),
uint8_t{101});
EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(100, 'a'),
std::string(100, 'a'), 100),
uint8_t{0});
EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(100, 'a'),
std::string(100, 'b'), 100),
uint8_t{100});
EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(100, 'a'),
std::string(99, 'a'), 2),
uint8_t{1});
EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(100, 'a'),
std::string(101, 'a'), 2),
uint8_t{3});
EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(100, 'a'),
std::string(101, 'a'), 2),
uint8_t{3});
EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(UINT8_MAX + 1, 'a'),
std::string(UINT8_MAX + 1, 'b'),
UINT8_MAX),
uint8_t{101});
EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(UINT8_MAX - 1, 'a'),
std::string(UINT8_MAX - 1, 'b'),
UINT8_MAX),
uint8_t{101});
EXPECT_THAT(
CappedDamerauLevenshteinDistance(std::string(UINT8_MAX, 'a'),
std::string(UINT8_MAX, 'b'), UINT8_MAX),
uint8_t{101});
EXPECT_THAT(CappedDamerauLevenshteinDistance(std::string(UINT8_MAX - 1, 'a'),
std::string(UINT8_MAX - 1, 'a'),
UINT8_MAX),
uint8_t{101});
}
} | 2,570 |
#ifndef ABSL_STRINGS_INTERNAL_MEMUTIL_H_
#define ABSL_STRINGS_INTERNAL_MEMUTIL_H_
#include <cstddef>
#include <cstring>
#include "absl/base/port.h"
#include "absl/strings/ascii.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
int memcasecmp(const char* s1, const char* s2, size_t len);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/memutil.h"
#include <cstdlib>
#include "absl/strings/ascii.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
int memcasecmp(const char* s1, const char* s2, size_t len) {
const unsigned char* us1 = reinterpret_cast<const unsigned char*>(s1);
const unsigned char* us2 = reinterpret_cast<const unsigned char*>(s2);
for (size_t i = 0; i < len; i++) {
unsigned char c1 = us1[i];
unsigned char c2 = us2[i];
if (c1 != c2) {
c1 = c1 >= 'A' && c1 <= 'Z' ? c1 - 'A' + 'a' : c1;
c2 = c2 >= 'A' && c2 <= 'Z' ? c2 - 'A' + 'a' : c2;
const int diff = int{c1} - int{c2};
if (diff != 0) return diff;
}
}
return 0;
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/memutil.h"
#include <cstdlib>
#include "gtest/gtest.h"
namespace {
TEST(MemUtil, memcasecmp) {
const char a[] = "hello there";
EXPECT_EQ(absl::strings_internal::memcasecmp(a, "heLLO there",
sizeof("hello there") - 1),
0);
EXPECT_EQ(absl::strings_internal::memcasecmp(a, "heLLO therf",
sizeof("hello there") - 1),
-1);
EXPECT_EQ(absl::strings_internal::memcasecmp(a, "heLLO therf",
sizeof("hello there") - 2),
0);
EXPECT_EQ(absl::strings_internal::memcasecmp(a, "whatever", 0), 0);
}
} | 2,571 |
#include "absl/base/config.h"
#include "absl/strings/internal/cordz_handle.h"
#include "absl/strings/internal/cordz_info.h"
#ifndef ABSL_STRINGS_INTERNAL_CORDZ_SAMPLE_TOKEN_H_
#define ABSL_STRINGS_INTERNAL_CORDZ_SAMPLE_TOKEN_H_
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
class CordzSampleToken : public CordzSnapshot {
public:
class Iterator {
public:
using iterator_category = std::input_iterator_tag;
using value_type = const CordzInfo&;
using difference_type = ptrdiff_t;
using pointer = const CordzInfo*;
using reference = value_type;
Iterator() = default;
Iterator& operator++();
Iterator operator++(int);
friend bool operator==(const Iterator& lhs, const Iterator& rhs);
friend bool operator!=(const Iterator& lhs, const Iterator& rhs);
reference operator*() const;
pointer operator->() const;
private:
friend class CordzSampleToken;
explicit Iterator(const CordzSampleToken* token);
const CordzSampleToken* token_ = nullptr;
pointer current_ = nullptr;
};
CordzSampleToken() = default;
CordzSampleToken(const CordzSampleToken&) = delete;
CordzSampleToken& operator=(const CordzSampleToken&) = delete;
Iterator begin() { return Iterator(this); }
Iterator end() { return Iterator(); }
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/cordz_sample_token.h"
#include "absl/base/config.h"
#include "absl/strings/internal/cordz_handle.h"
#include "absl/strings/internal/cordz_info.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
CordzSampleToken::Iterator& CordzSampleToken::Iterator::operator++() {
if (current_) {
current_ = current_->Next(*token_);
}
return *this;
}
CordzSampleToken::Iterator CordzSampleToken::Iterator::operator++(int) {
Iterator it(*this);
operator++();
return it;
}
bool operator==(const CordzSampleToken::Iterator& lhs,
const CordzSampleToken::Iterator& rhs) {
return lhs.current_ == rhs.current_ &&
(lhs.current_ == nullptr || lhs.token_ == rhs.token_);
}
bool operator!=(const CordzSampleToken::Iterator& lhs,
const CordzSampleToken::Iterator& rhs) {
return !(lhs == rhs);
}
CordzSampleToken::Iterator::reference CordzSampleToken::Iterator::operator*()
const {
return *current_;
}
CordzSampleToken::Iterator::pointer CordzSampleToken::Iterator::operator->()
const {
return current_;
}
CordzSampleToken::Iterator::Iterator(const CordzSampleToken* token)
: token_(token), current_(CordzInfo::Head(*token)) {}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/cordz_sample_token.h"
#include <memory>
#include <type_traits>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/memory/memory.h"
#include "absl/random/random.h"
#include "absl/strings/cordz_test_helpers.h"
#include "absl/strings/internal/cord_rep_flat.h"
#include "absl/strings/internal/cordz_handle.h"
#include "absl/strings/internal/cordz_info.h"
#include "absl/synchronization/internal/thread_pool.h"
#include "absl/synchronization/notification.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::Ne;
auto constexpr kTrackCordMethod = CordzUpdateTracker::kConstructorString;
TEST(CordzSampleTokenTest, IteratorTraits) {
static_assert(std::is_copy_constructible<CordzSampleToken::Iterator>::value,
"");
static_assert(std::is_copy_assignable<CordzSampleToken::Iterator>::value, "");
static_assert(std::is_move_constructible<CordzSampleToken::Iterator>::value,
"");
static_assert(std::is_move_assignable<CordzSampleToken::Iterator>::value, "");
static_assert(
std::is_same<
std::iterator_traits<CordzSampleToken::Iterator>::iterator_category,
std::input_iterator_tag>::value,
"");
static_assert(
std::is_same<std::iterator_traits<CordzSampleToken::Iterator>::value_type,
const CordzInfo&>::value,
"");
static_assert(
std::is_same<
std::iterator_traits<CordzSampleToken::Iterator>::difference_type,
ptrdiff_t>::value,
"");
static_assert(
std::is_same<std::iterator_traits<CordzSampleToken::Iterator>::pointer,
const CordzInfo*>::value,
"");
static_assert(
std::is_same<std::iterator_traits<CordzSampleToken::Iterator>::reference,
const CordzInfo&>::value,
"");
}
TEST(CordzSampleTokenTest, IteratorEmpty) {
CordzSampleToken token;
EXPECT_THAT(token.begin(), Eq(token.end()));
}
TEST(CordzSampleTokenTest, Iterator) {
TestCordData cord1, cord2, cord3;
CordzInfo::TrackCord(cord1.data, kTrackCordMethod, 1);
CordzInfo* info1 = cord1.data.cordz_info();
CordzInfo::TrackCord(cord2.data, kTrackCordMethod, 1);
CordzInfo* info2 = cord2.data.cordz_info();
CordzInfo::TrackCord(cord3.data, kTrackCordMethod, 1);
CordzInfo* info3 = cord3.data.cordz_info();
CordzSampleToken token;
std::vector<const CordzInfo*> found;
for (const CordzInfo& cord_info : token) {
found.push_back(&cord_info);
}
EXPECT_THAT(found, ElementsAre(info3, info2, info1));
info1->Untrack();
info2->Untrack();
info3->Untrack();
}
TEST(CordzSampleTokenTest, IteratorEquality) {
TestCordData cord1;
TestCordData cord2;
TestCordData cord3;
CordzInfo::TrackCord(cord1.data, kTrackCordMethod, 1);
CordzInfo* info1 = cord1.data.cordz_info();
CordzSampleToken token1;
CordzSampleToken::Iterator lhs = token1.begin();
CordzInfo::TrackCord(cord2.data, kTrackCordMethod, 1);
CordzInfo* info2 = cord2.data.cordz_info();
CordzSampleToken token2;
CordzSampleToken::Iterator rhs = token2.begin();
CordzInfo::TrackCord(cord3.data, kTrackCordMethod, 1);
CordzInfo* info3 = cord3.data.cordz_info();
EXPECT_THAT(lhs, Ne(rhs));
rhs++;
EXPECT_THAT(lhs, Ne(rhs));
lhs++;
rhs++;
EXPECT_THAT(lhs, Eq(rhs));
info1->Untrack();
info2->Untrack();
info3->Untrack();
}
TEST(CordzSampleTokenTest, MultiThreaded) {
Notification stop;
static constexpr int kNumThreads = 4;
static constexpr int kNumCords = 3;
static constexpr int kNumTokens = 3;
absl::synchronization_internal::ThreadPool pool(kNumThreads);
for (int i = 0; i < kNumThreads; ++i) {
pool.Schedule([&stop]() {
absl::BitGen gen;
TestCordData cords[kNumCords];
std::unique_ptr<CordzSampleToken> tokens[kNumTokens];
while (!stop.HasBeenNotified()) {
int index = absl::Uniform(gen, 0, kNumCords);
if (absl::Bernoulli(gen, 0.5)) {
TestCordData& cord = cords[index];
if (cord.data.is_profiled()) {
cord.data.cordz_info()->Untrack();
cord.data.clear_cordz_info();
} else {
CordzInfo::TrackCord(cord.data, kTrackCordMethod, 1);
}
} else {
std::unique_ptr<CordzSampleToken>& token = tokens[index];
if (token) {
if (absl::Bernoulli(gen, 0.5)) {
for (const CordzInfo& info : *token) {
EXPECT_THAT(info.Next(*token), Ne(&info));
}
} else {
token = nullptr;
}
} else {
token = absl::make_unique<CordzSampleToken>();
}
}
}
for (TestCordData& cord : cords) {
CordzInfo::MaybeUntrackCord(cord.data.cordz_info());
}
});
}
absl::SleepFor(absl::Seconds(3));
stop.Notify();
}
}
}
ABSL_NAMESPACE_END
} | 2,572 |
#ifndef ABSL_STRINGS_INTERNAL_CORDZ_HANDLE_H_
#define ABSL_STRINGS_INTERNAL_CORDZ_HANDLE_H_
#include <atomic>
#include <vector>
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
class ABSL_DLL CordzHandle {
public:
CordzHandle() : CordzHandle(false) {}
bool is_snapshot() const { return is_snapshot_; }
bool SafeToDelete() const;
static void Delete(CordzHandle* handle);
static std::vector<const CordzHandle*> DiagnosticsGetDeleteQueue();
bool DiagnosticsHandleIsSafeToInspect(const CordzHandle* handle) const;
std::vector<const CordzHandle*> DiagnosticsGetSafeToInspectDeletedHandles();
protected:
explicit CordzHandle(bool is_snapshot);
virtual ~CordzHandle();
private:
const bool is_snapshot_;
CordzHandle* dq_prev_ = nullptr;
CordzHandle* dq_next_ = nullptr;
};
class CordzSnapshot : public CordzHandle {
public:
CordzSnapshot() : CordzHandle(true) {}
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/cordz_handle.h"
#include <atomic>
#include "absl/base/internal/raw_logging.h"
#include "absl/base/no_destructor.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {
struct Queue {
Queue() = default;
absl::Mutex mutex;
std::atomic<CordzHandle*> dq_tail ABSL_GUARDED_BY(mutex){nullptr};
bool IsEmpty() const ABSL_NO_THREAD_SAFETY_ANALYSIS {
return dq_tail.load(std::memory_order_acquire) == nullptr;
}
};
static Queue& GlobalQueue() {
static absl::NoDestructor<Queue> global_queue;
return *global_queue;
}
}
CordzHandle::CordzHandle(bool is_snapshot) : is_snapshot_(is_snapshot) {
Queue& global_queue = GlobalQueue();
if (is_snapshot) {
MutexLock lock(&global_queue.mutex);
CordzHandle* dq_tail = global_queue.dq_tail.load(std::memory_order_acquire);
if (dq_tail != nullptr) {
dq_prev_ = dq_tail;
dq_tail->dq_next_ = this;
}
global_queue.dq_tail.store(this, std::memory_order_release);
}
}
CordzHandle::~CordzHandle() {
Queue& global_queue = GlobalQueue();
if (is_snapshot_) {
std::vector<CordzHandle*> to_delete;
{
MutexLock lock(&global_queue.mutex);
CordzHandle* next = dq_next_;
if (dq_prev_ == nullptr) {
while (next && !next->is_snapshot_) {
to_delete.push_back(next);
next = next->dq_next_;
}
} else {
dq_prev_->dq_next_ = next;
}
if (next) {
next->dq_prev_ = dq_prev_;
} else {
global_queue.dq_tail.store(dq_prev_, std::memory_order_release);
}
}
for (CordzHandle* handle : to_delete) {
delete handle;
}
}
}
bool CordzHandle::SafeToDelete() const {
return is_snapshot_ || GlobalQueue().IsEmpty();
}
void CordzHandle::Delete(CordzHandle* handle) {
assert(handle);
if (handle) {
Queue& queue = GlobalQueue();
if (!handle->SafeToDelete()) {
MutexLock lock(&queue.mutex);
CordzHandle* dq_tail = queue.dq_tail.load(std::memory_order_acquire);
if (dq_tail != nullptr) {
handle->dq_prev_ = dq_tail;
dq_tail->dq_next_ = handle;
queue.dq_tail.store(handle, std::memory_order_release);
return;
}
}
delete handle;
}
}
std::vector<const CordzHandle*> CordzHandle::DiagnosticsGetDeleteQueue() {
std::vector<const CordzHandle*> handles;
Queue& global_queue = GlobalQueue();
MutexLock lock(&global_queue.mutex);
CordzHandle* dq_tail = global_queue.dq_tail.load(std::memory_order_acquire);
for (const CordzHandle* p = dq_tail; p; p = p->dq_prev_) {
handles.push_back(p);
}
return handles;
}
bool CordzHandle::DiagnosticsHandleIsSafeToInspect(
const CordzHandle* handle) const {
if (!is_snapshot_) return false;
if (handle == nullptr) return true;
if (handle->is_snapshot_) return false;
bool snapshot_found = false;
Queue& global_queue = GlobalQueue();
MutexLock lock(&global_queue.mutex);
for (const CordzHandle* p = global_queue.dq_tail; p; p = p->dq_prev_) {
if (p == handle) return !snapshot_found;
if (p == this) snapshot_found = true;
}
ABSL_ASSERT(snapshot_found);
return true;
}
std::vector<const CordzHandle*>
CordzHandle::DiagnosticsGetSafeToInspectDeletedHandles() {
std::vector<const CordzHandle*> handles;
if (!is_snapshot()) {
return handles;
}
Queue& global_queue = GlobalQueue();
MutexLock lock(&global_queue.mutex);
for (const CordzHandle* p = dq_next_; p != nullptr; p = p->dq_next_) {
if (!p->is_snapshot()) {
handles.push_back(p);
}
}
return handles;
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/cordz_handle.h"
#include <random>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/memory/memory.h"
#include "absl/synchronization/internal/thread_pool.h"
#include "absl/synchronization/notification.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {
using ::testing::ElementsAre;
using ::testing::Gt;
using ::testing::IsEmpty;
using ::testing::SizeIs;
std::vector<const CordzHandle*> DeleteQueue() {
return CordzHandle::DiagnosticsGetDeleteQueue();
}
struct CordzHandleDeleteTracker : public CordzHandle {
bool* deleted;
explicit CordzHandleDeleteTracker(bool* deleted) : deleted(deleted) {}
~CordzHandleDeleteTracker() override { *deleted = true; }
};
TEST(CordzHandleTest, DeleteQueueIsEmpty) {
EXPECT_THAT(DeleteQueue(), SizeIs(0));
}
TEST(CordzHandleTest, CordzHandleCreateDelete) {
bool deleted = false;
auto* handle = new CordzHandleDeleteTracker(&deleted);
EXPECT_FALSE(handle->is_snapshot());
EXPECT_TRUE(handle->SafeToDelete());
EXPECT_THAT(DeleteQueue(), SizeIs(0));
CordzHandle::Delete(handle);
EXPECT_THAT(DeleteQueue(), SizeIs(0));
EXPECT_TRUE(deleted);
}
TEST(CordzHandleTest, CordzSnapshotCreateDelete) {
auto* snapshot = new CordzSnapshot();
EXPECT_TRUE(snapshot->is_snapshot());
EXPECT_TRUE(snapshot->SafeToDelete());
EXPECT_THAT(DeleteQueue(), ElementsAre(snapshot));
delete snapshot;
EXPECT_THAT(DeleteQueue(), SizeIs(0));
}
TEST(CordzHandleTest, CordzHandleCreateDeleteWithSnapshot) {
bool deleted = false;
auto* snapshot = new CordzSnapshot();
auto* handle = new CordzHandleDeleteTracker(&deleted);
EXPECT_FALSE(handle->SafeToDelete());
CordzHandle::Delete(handle);
EXPECT_THAT(DeleteQueue(), ElementsAre(handle, snapshot));
EXPECT_FALSE(deleted);
EXPECT_FALSE(handle->SafeToDelete());
delete snapshot;
EXPECT_THAT(DeleteQueue(), SizeIs(0));
EXPECT_TRUE(deleted);
}
TEST(CordzHandleTest, MultiSnapshot) {
bool deleted[3] = {false, false, false};
CordzSnapshot* snapshot[3];
CordzHandleDeleteTracker* handle[3];
for (int i = 0; i < 3; ++i) {
snapshot[i] = new CordzSnapshot();
handle[i] = new CordzHandleDeleteTracker(&deleted[i]);
CordzHandle::Delete(handle[i]);
}
EXPECT_THAT(DeleteQueue(), ElementsAre(handle[2], snapshot[2], handle[1],
snapshot[1], handle[0], snapshot[0]));
EXPECT_THAT(deleted, ElementsAre(false, false, false));
delete snapshot[1];
EXPECT_THAT(DeleteQueue(), ElementsAre(handle[2], snapshot[2], handle[1],
handle[0], snapshot[0]));
EXPECT_THAT(deleted, ElementsAre(false, false, false));
delete snapshot[0];
EXPECT_THAT(DeleteQueue(), ElementsAre(handle[2], snapshot[2]));
EXPECT_THAT(deleted, ElementsAre(true, true, false));
delete snapshot[2];
EXPECT_THAT(DeleteQueue(), SizeIs(0));
EXPECT_THAT(deleted, ElementsAre(true, true, deleted));
}
TEST(CordzHandleTest, DiagnosticsHandleIsSafeToInspect) {
CordzSnapshot snapshot1;
EXPECT_TRUE(snapshot1.DiagnosticsHandleIsSafeToInspect(nullptr));
auto* handle1 = new CordzHandle();
EXPECT_TRUE(snapshot1.DiagnosticsHandleIsSafeToInspect(handle1));
CordzHandle::Delete(handle1);
EXPECT_TRUE(snapshot1.DiagnosticsHandleIsSafeToInspect(handle1));
CordzSnapshot snapshot2;
auto* handle2 = new CordzHandle();
EXPECT_TRUE(snapshot1.DiagnosticsHandleIsSafeToInspect(handle1));
EXPECT_TRUE(snapshot1.DiagnosticsHandleIsSafeToInspect(handle2));
EXPECT_FALSE(snapshot2.DiagnosticsHandleIsSafeToInspect(handle1));
EXPECT_TRUE(snapshot2.DiagnosticsHandleIsSafeToInspect(handle2));
CordzHandle::Delete(handle2);
EXPECT_TRUE(snapshot1.DiagnosticsHandleIsSafeToInspect(handle1));
}
TEST(CordzHandleTest, DiagnosticsGetSafeToInspectDeletedHandles) {
EXPECT_THAT(DeleteQueue(), IsEmpty());
auto* handle = new CordzHandle();
auto* snapshot1 = new CordzSnapshot();
EXPECT_THAT(DeleteQueue(), ElementsAre(snapshot1));
EXPECT_TRUE(snapshot1->DiagnosticsHandleIsSafeToInspect(handle));
EXPECT_THAT(snapshot1->DiagnosticsGetSafeToInspectDeletedHandles(),
IsEmpty());
CordzHandle::Delete(handle);
auto* snapshot2 = new CordzSnapshot();
EXPECT_THAT(DeleteQueue(), ElementsAre(snapshot2, handle, snapshot1));
EXPECT_TRUE(snapshot1->DiagnosticsHandleIsSafeToInspect(handle));
EXPECT_FALSE(snapshot2->DiagnosticsHandleIsSafeToInspect(handle));
EXPECT_THAT(snapshot1->DiagnosticsGetSafeToInspectDeletedHandles(),
ElementsAre(handle));
EXPECT_THAT(snapshot2->DiagnosticsGetSafeToInspectDeletedHandles(),
IsEmpty());
CordzHandle::Delete(snapshot1);
EXPECT_THAT(DeleteQueue(), ElementsAre(snapshot2));
CordzHandle::Delete(snapshot2);
EXPECT_THAT(DeleteQueue(), IsEmpty());
}
TEST(CordzHandleTest, MultiThreaded) {
Notification stop;
static constexpr int kNumThreads = 4;
static constexpr int kNumHandles = 10;
std::vector<std::atomic<CordzHandle*>> handles(kNumHandles);
std::atomic<bool> found_safe_to_inspect(false);
{
absl::synchronization_internal::ThreadPool pool(kNumThreads);
for (int i = 0; i < kNumThreads; ++i) {
pool.Schedule([&stop, &handles, &found_safe_to_inspect]() {
std::minstd_rand gen;
std::uniform_int_distribution<int> dist_type(0, 2);
std::uniform_int_distribution<int> dist_handle(0, kNumHandles - 1);
while (!stop.HasBeenNotified()) {
CordzHandle* handle;
switch (dist_type(gen)) {
case 0:
handle = new CordzHandle();
break;
case 1:
handle = new CordzSnapshot();
break;
default:
handle = nullptr;
break;
}
CordzHandle* old_handle = handles[dist_handle(gen)].exchange(handle);
if (old_handle != nullptr) {
std::vector<const CordzHandle*> safe_to_inspect =
old_handle->DiagnosticsGetSafeToInspectDeletedHandles();
for (const CordzHandle* handle : safe_to_inspect) {
ASSERT_FALSE(handle->is_snapshot());
}
if (!safe_to_inspect.empty()) {
found_safe_to_inspect.store(true);
}
CordzHandle::Delete(old_handle);
}
}
for (auto& h : handles) {
if (CordzHandle* handle = h.exchange(nullptr)) {
CordzHandle::Delete(handle);
}
}
});
}
absl::SleepFor(absl::Seconds(3));
stop.Notify();
}
EXPECT_TRUE(found_safe_to_inspect.load());
}
}
}
ABSL_NAMESPACE_END
} | 2,573 |
#ifndef ABSL_STRINGS_INTERNAL_POW10_HELPER_H_
#define ABSL_STRINGS_INTERNAL_POW10_HELPER_H_
#include <vector>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
double Pow10(int exp);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/pow10_helper.h"
#include <cmath>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
namespace {
constexpr double k1e23 = 9999999999999999e7;
constexpr double kPowersOfTen[] = {
0.0, 1e-323, 1e-322, 1e-321, 1e-320, 1e-319, 1e-318, 1e-317, 1e-316,
1e-315, 1e-314, 1e-313, 1e-312, 1e-311, 1e-310, 1e-309, 1e-308, 1e-307,
1e-306, 1e-305, 1e-304, 1e-303, 1e-302, 1e-301, 1e-300, 1e-299, 1e-298,
1e-297, 1e-296, 1e-295, 1e-294, 1e-293, 1e-292, 1e-291, 1e-290, 1e-289,
1e-288, 1e-287, 1e-286, 1e-285, 1e-284, 1e-283, 1e-282, 1e-281, 1e-280,
1e-279, 1e-278, 1e-277, 1e-276, 1e-275, 1e-274, 1e-273, 1e-272, 1e-271,
1e-270, 1e-269, 1e-268, 1e-267, 1e-266, 1e-265, 1e-264, 1e-263, 1e-262,
1e-261, 1e-260, 1e-259, 1e-258, 1e-257, 1e-256, 1e-255, 1e-254, 1e-253,
1e-252, 1e-251, 1e-250, 1e-249, 1e-248, 1e-247, 1e-246, 1e-245, 1e-244,
1e-243, 1e-242, 1e-241, 1e-240, 1e-239, 1e-238, 1e-237, 1e-236, 1e-235,
1e-234, 1e-233, 1e-232, 1e-231, 1e-230, 1e-229, 1e-228, 1e-227, 1e-226,
1e-225, 1e-224, 1e-223, 1e-222, 1e-221, 1e-220, 1e-219, 1e-218, 1e-217,
1e-216, 1e-215, 1e-214, 1e-213, 1e-212, 1e-211, 1e-210, 1e-209, 1e-208,
1e-207, 1e-206, 1e-205, 1e-204, 1e-203, 1e-202, 1e-201, 1e-200, 1e-199,
1e-198, 1e-197, 1e-196, 1e-195, 1e-194, 1e-193, 1e-192, 1e-191, 1e-190,
1e-189, 1e-188, 1e-187, 1e-186, 1e-185, 1e-184, 1e-183, 1e-182, 1e-181,
1e-180, 1e-179, 1e-178, 1e-177, 1e-176, 1e-175, 1e-174, 1e-173, 1e-172,
1e-171, 1e-170, 1e-169, 1e-168, 1e-167, 1e-166, 1e-165, 1e-164, 1e-163,
1e-162, 1e-161, 1e-160, 1e-159, 1e-158, 1e-157, 1e-156, 1e-155, 1e-154,
1e-153, 1e-152, 1e-151, 1e-150, 1e-149, 1e-148, 1e-147, 1e-146, 1e-145,
1e-144, 1e-143, 1e-142, 1e-141, 1e-140, 1e-139, 1e-138, 1e-137, 1e-136,
1e-135, 1e-134, 1e-133, 1e-132, 1e-131, 1e-130, 1e-129, 1e-128, 1e-127,
1e-126, 1e-125, 1e-124, 1e-123, 1e-122, 1e-121, 1e-120, 1e-119, 1e-118,
1e-117, 1e-116, 1e-115, 1e-114, 1e-113, 1e-112, 1e-111, 1e-110, 1e-109,
1e-108, 1e-107, 1e-106, 1e-105, 1e-104, 1e-103, 1e-102, 1e-101, 1e-100,
1e-99, 1e-98, 1e-97, 1e-96, 1e-95, 1e-94, 1e-93, 1e-92, 1e-91,
1e-90, 1e-89, 1e-88, 1e-87, 1e-86, 1e-85, 1e-84, 1e-83, 1e-82,
1e-81, 1e-80, 1e-79, 1e-78, 1e-77, 1e-76, 1e-75, 1e-74, 1e-73,
1e-72, 1e-71, 1e-70, 1e-69, 1e-68, 1e-67, 1e-66, 1e-65, 1e-64,
1e-63, 1e-62, 1e-61, 1e-60, 1e-59, 1e-58, 1e-57, 1e-56, 1e-55,
1e-54, 1e-53, 1e-52, 1e-51, 1e-50, 1e-49, 1e-48, 1e-47, 1e-46,
1e-45, 1e-44, 1e-43, 1e-42, 1e-41, 1e-40, 1e-39, 1e-38, 1e-37,
1e-36, 1e-35, 1e-34, 1e-33, 1e-32, 1e-31, 1e-30, 1e-29, 1e-28,
1e-27, 1e-26, 1e-25, 1e-24, 1e-23, 1e-22, 1e-21, 1e-20, 1e-19,
1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10,
1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1,
1e+0, 1e+1, 1e+2, 1e+3, 1e+4, 1e+5, 1e+6, 1e+7, 1e+8,
1e+9, 1e+10, 1e+11, 1e+12, 1e+13, 1e+14, 1e+15, 1e+16, 1e+17,
1e+18, 1e+19, 1e+20, 1e+21, 1e+22, k1e23, 1e+24, 1e+25, 1e+26,
1e+27, 1e+28, 1e+29, 1e+30, 1e+31, 1e+32, 1e+33, 1e+34, 1e+35,
1e+36, 1e+37, 1e+38, 1e+39, 1e+40, 1e+41, 1e+42, 1e+43, 1e+44,
1e+45, 1e+46, 1e+47, 1e+48, 1e+49, 1e+50, 1e+51, 1e+52, 1e+53,
1e+54, 1e+55, 1e+56, 1e+57, 1e+58, 1e+59, 1e+60, 1e+61, 1e+62,
1e+63, 1e+64, 1e+65, 1e+66, 1e+67, 1e+68, 1e+69, 1e+70, 1e+71,
1e+72, 1e+73, 1e+74, 1e+75, 1e+76, 1e+77, 1e+78, 1e+79, 1e+80,
1e+81, 1e+82, 1e+83, 1e+84, 1e+85, 1e+86, 1e+87, 1e+88, 1e+89,
1e+90, 1e+91, 1e+92, 1e+93, 1e+94, 1e+95, 1e+96, 1e+97, 1e+98,
1e+99, 1e+100, 1e+101, 1e+102, 1e+103, 1e+104, 1e+105, 1e+106, 1e+107,
1e+108, 1e+109, 1e+110, 1e+111, 1e+112, 1e+113, 1e+114, 1e+115, 1e+116,
1e+117, 1e+118, 1e+119, 1e+120, 1e+121, 1e+122, 1e+123, 1e+124, 1e+125,
1e+126, 1e+127, 1e+128, 1e+129, 1e+130, 1e+131, 1e+132, 1e+133, 1e+134,
1e+135, 1e+136, 1e+137, 1e+138, 1e+139, 1e+140, 1e+141, 1e+142, 1e+143,
1e+144, 1e+145, 1e+146, 1e+147, 1e+148, 1e+149, 1e+150, 1e+151, 1e+152,
1e+153, 1e+154, 1e+155, 1e+156, 1e+157, 1e+158, 1e+159, 1e+160, 1e+161,
1e+162, 1e+163, 1e+164, 1e+165, 1e+166, 1e+167, 1e+168, 1e+169, 1e+170,
1e+171, 1e+172, 1e+173, 1e+174, 1e+175, 1e+176, 1e+177, 1e+178, 1e+179,
1e+180, 1e+181, 1e+182, 1e+183, 1e+184, 1e+185, 1e+186, 1e+187, 1e+188,
1e+189, 1e+190, 1e+191, 1e+192, 1e+193, 1e+194, 1e+195, 1e+196, 1e+197,
1e+198, 1e+199, 1e+200, 1e+201, 1e+202, 1e+203, 1e+204, 1e+205, 1e+206,
1e+207, 1e+208, 1e+209, 1e+210, 1e+211, 1e+212, 1e+213, 1e+214, 1e+215,
1e+216, 1e+217, 1e+218, 1e+219, 1e+220, 1e+221, 1e+222, 1e+223, 1e+224,
1e+225, 1e+226, 1e+227, 1e+228, 1e+229, 1e+230, 1e+231, 1e+232, 1e+233,
1e+234, 1e+235, 1e+236, 1e+237, 1e+238, 1e+239, 1e+240, 1e+241, 1e+242,
1e+243, 1e+244, 1e+245, 1e+246, 1e+247, 1e+248, 1e+249, 1e+250, 1e+251,
1e+252, 1e+253, 1e+254, 1e+255, 1e+256, 1e+257, 1e+258, 1e+259, 1e+260,
1e+261, 1e+262, 1e+263, 1e+264, 1e+265, 1e+266, 1e+267, 1e+268, 1e+269,
1e+270, 1e+271, 1e+272, 1e+273, 1e+274, 1e+275, 1e+276, 1e+277, 1e+278,
1e+279, 1e+280, 1e+281, 1e+282, 1e+283, 1e+284, 1e+285, 1e+286, 1e+287,
1e+288, 1e+289, 1e+290, 1e+291, 1e+292, 1e+293, 1e+294, 1e+295, 1e+296,
1e+297, 1e+298, 1e+299, 1e+300, 1e+301, 1e+302, 1e+303, 1e+304, 1e+305,
1e+306, 1e+307, 1e+308,
};
}
double Pow10(int exp) {
if (exp < -324) {
return 0.0;
} else if (exp > 308) {
return INFINITY;
} else {
return kPowersOfTen[exp + 324];
}
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/pow10_helper.h"
#include <cmath>
#include "gtest/gtest.h"
#include "absl/strings/str_format.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
namespace {
struct TestCase {
int power;
uint64_t significand;
int radix;
};
TEST(Pow10HelperTest, Works) {
constexpr TestCase kTestCases[] = {
{-323, 0x2, -1074},
{-322, 0x14, -1074},
{-321, 0xca, -1074},
{-320, 0x7e8, -1074},
{-319, 0x4f10, -1074},
{-318, 0x316a2, -1074},
{-317, 0x1ee257, -1074},
{-316, 0x134d761, -1074},
{-315, 0xc1069cd, -1074},
{-314, 0x78a42205, -1074},
{-313, 0x4b6695433, -1074},
{-312, 0x2f201d49fb, -1074},
{-311, 0x1d74124e3d1, -1074},
{-310, 0x12688b70e62b, -1074},
{-309, 0xb8157268fdaf, -1074},
{-308, 0x730d67819e8d2, -1074},
{-307, 0x11fa182c40c60d, -1072},
{-290, 0x18f2b061aea072, -1016},
{-276, 0x11BA03F5B21000, -969},
{-259, 0x1899C2F6732210, -913},
{-252, 0x1D53844EE47DD1, -890},
{-227, 0x1E5297287C2F45, -807},
{-198, 0x1322E220A5B17E, -710},
{-195, 0x12B010D3E1CF56, -700},
{-192, 0x123FF06EEA847A, -690},
{-163, 0x1708D0F84D3DE7, -594},
{-145, 0x13FAAC3E3FA1F3, -534},
{-111, 0x133D4032C2C7F5, -421},
{-106, 0x1D5B561574765B, -405},
{-104, 0x16EF5B40C2FC77, -398},
{-88, 0x197683DF2F268D, -345},
{-86, 0x13E497065CD61F, -338},
{-76, 0x17288E1271F513, -305},
{-63, 0x1A53FC9631D10D, -262},
{-30, 0x14484BFEEBC2A0, -152},
{-21, 0x12E3B40A0E9B4F, -122},
{-5, 0x14F8B588E368F1, -69},
{23, 0x152D02C7E14AF6, 24},
{29, 0x1431E0FAE6D721, 44},
{34, 0x1ED09BEAD87C03, 60},
{70, 0x172EBAD6DDC73D, 180},
{105, 0x1BE7ABD3781ECA, 296},
{126, 0x17A2ECC414A03F, 366},
{130, 0x1CDA62055B2D9E, 379},
{165, 0x115D847AD00087, 496},
{172, 0x14B378469B6732, 519},
{187, 0x1262DFEEBBB0F9, 569},
{210, 0x18557F31326BBB, 645},
{212, 0x1302CB5E6F642A, 652},
{215, 0x1290BA9A38C7D1, 662},
{236, 0x1F736F9B3494E9, 731},
{244, 0x176EC98994F489, 758},
{250, 0x1658E3AB795204, 778},
{252, 0x117571DDF6C814, 785},
{254, 0x1B4781EAD1989E, 791},
{260, 0x1A03FDE214CAF1, 811},
{284, 0x1585041B2C477F, 891},
{304, 0x1D2A1BE4048F90, 957},
{-324, 0x0, 0},
{-325, 0x0, 0},
{-326, 0x0, 0},
{309, 1, 2000},
{310, 1, 2000},
{311, 1, 2000},
};
for (const TestCase& test_case : kTestCases) {
EXPECT_EQ(Pow10(test_case.power),
std::ldexp(test_case.significand, test_case.radix))
<< absl::StrFormat("Failure for Pow10(%d): %a vs %a", test_case.power,
Pow10(test_case.power),
std::ldexp(test_case.significand, test_case.radix));
}
}
}
}
ABSL_NAMESPACE_END
} | 2,574 |
#ifndef ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_READER_H_
#define ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_READER_H_
#include <cassert>
#include "absl/base/config.h"
#include "absl/strings/internal/cord_data_edge.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_btree_navigator.h"
#include "absl/strings/internal/cord_rep_flat.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
class CordRepBtreeReader {
public:
using ReadResult = CordRepBtreeNavigator::ReadResult;
using Position = CordRepBtreeNavigator::Position;
explicit operator bool() const { return navigator_.btree() != nullptr; }
CordRepBtree* btree() const { return navigator_.btree(); }
CordRep* node() const { return navigator_.Current(); }
size_t length() const;
size_t remaining() const { return remaining_; }
void Reset() { navigator_.Reset(); }
absl::string_view Init(CordRepBtree* tree);
absl::string_view Next();
absl::string_view Skip(size_t skip);
absl::string_view Read(size_t n, size_t chunk_size, CordRep*& tree);
absl::string_view Seek(size_t offset);
private:
size_t remaining_ = 0;
CordRepBtreeNavigator navigator_;
};
inline size_t CordRepBtreeReader::length() const {
assert(btree() != nullptr);
return btree()->length;
}
inline absl::string_view CordRepBtreeReader::Init(CordRepBtree* tree) {
assert(tree != nullptr);
const CordRep* edge = navigator_.InitFirst(tree);
remaining_ = tree->length - edge->length;
return EdgeData(edge);
}
inline absl::string_view CordRepBtreeReader::Next() {
if (remaining_ == 0) return {};
const CordRep* edge = navigator_.Next();
assert(edge != nullptr);
remaining_ -= edge->length;
return EdgeData(edge);
}
inline absl::string_view CordRepBtreeReader::Skip(size_t skip) {
const size_t edge_length = navigator_.Current()->length;
CordRepBtreeNavigator::Position pos = navigator_.Skip(skip + edge_length);
if (ABSL_PREDICT_FALSE(pos.edge == nullptr)) {
remaining_ = 0;
return {};
}
remaining_ -= skip - pos.offset + pos.edge->length;
return EdgeData(pos.edge).substr(pos.offset);
}
inline absl::string_view CordRepBtreeReader::Seek(size_t offset) {
const CordRepBtreeNavigator::Position pos = navigator_.Seek(offset);
if (ABSL_PREDICT_FALSE(pos.edge == nullptr)) {
remaining_ = 0;
return {};
}
absl::string_view chunk = EdgeData(pos.edge).substr(pos.offset);
remaining_ = length() - offset - chunk.length();
return chunk;
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/cord_rep_btree_reader.h"
#include <cassert>
#include "absl/base/config.h"
#include "absl/strings/internal/cord_data_edge.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_btree_navigator.h"
#include "absl/strings/internal/cord_rep_flat.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
absl::string_view CordRepBtreeReader::Read(size_t n, size_t chunk_size,
CordRep*& tree) {
assert(chunk_size <= navigator_.Current()->length);
CordRep* edge = chunk_size ? navigator_.Current() : navigator_.Next();
const size_t offset = chunk_size ? edge->length - chunk_size : 0;
ReadResult result = navigator_.Read(offset, n);
tree = result.tree;
if (n < chunk_size) return EdgeData(edge).substr(result.n);
const size_t consumed_by_read = n - chunk_size - result.n;
if (consumed_by_read >= remaining_) {
remaining_ = 0;
return {};
}
edge = navigator_.Current();
remaining_ -= consumed_by_read + edge->length;
return EdgeData(edge).substr(result.n);
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/cord_rep_btree_reader.h"
#include <iostream>
#include <random>
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/strings/cord.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_test_util.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {
using ::testing::Eq;
using ::testing::IsEmpty;
using ::testing::Ne;
using ::testing::Not;
using ::absl::cordrep_testing::CordRepBtreeFromFlats;
using ::absl::cordrep_testing::MakeFlat;
using ::absl::cordrep_testing::CordToString;
using ::absl::cordrep_testing::CreateFlatsFromString;
using ::absl::cordrep_testing::CreateRandomString;
using ReadResult = CordRepBtreeReader::ReadResult;
TEST(CordRepBtreeReaderTest, Next) {
constexpr size_t kChars = 3;
const size_t cap = CordRepBtree::kMaxCapacity;
size_t counts[] = {1, 2, cap, cap * cap, cap * cap + 1, cap * cap * 2 + 17};
for (size_t count : counts) {
std::string data = CreateRandomString(count * kChars);
std::vector<CordRep*> flats = CreateFlatsFromString(data, kChars);
CordRepBtree* node = CordRepBtreeFromFlats(flats);
CordRepBtreeReader reader;
size_t remaining = data.length();
absl::string_view chunk = reader.Init(node);
EXPECT_THAT(chunk, Eq(data.substr(0, chunk.length())));
remaining -= chunk.length();
EXPECT_THAT(reader.remaining(), Eq(remaining));
while (remaining > 0) {
const size_t offset = data.length() - remaining;
chunk = reader.Next();
EXPECT_THAT(chunk, Eq(data.substr(offset, chunk.length())));
remaining -= chunk.length();
EXPECT_THAT(reader.remaining(), Eq(remaining));
}
EXPECT_THAT(reader.remaining(), Eq(0u));
EXPECT_THAT(reader.Next(), testing::IsEmpty());
CordRep::Unref(node);
}
}
TEST(CordRepBtreeReaderTest, Skip) {
constexpr size_t kChars = 3;
const size_t cap = CordRepBtree::kMaxCapacity;
size_t counts[] = {1, 2, cap, cap * cap, cap * cap + 1, cap * cap * 2 + 17};
for (size_t count : counts) {
std::string data = CreateRandomString(count * kChars);
std::vector<CordRep*> flats = CreateFlatsFromString(data, kChars);
CordRepBtree* node = CordRepBtreeFromFlats(flats);
for (size_t skip1 = 0; skip1 < data.length() - kChars; ++skip1) {
for (size_t skip2 = 0; skip2 < data.length() - kChars; ++skip2) {
CordRepBtreeReader reader;
size_t remaining = data.length();
absl::string_view chunk = reader.Init(node);
remaining -= chunk.length();
chunk = reader.Skip(skip1);
size_t offset = data.length() - remaining;
ASSERT_THAT(chunk, Eq(data.substr(offset + skip1, chunk.length())));
remaining -= chunk.length() + skip1;
ASSERT_THAT(reader.remaining(), Eq(remaining));
if (remaining == 0) continue;
size_t skip = std::min(remaining - 1, skip2);
chunk = reader.Skip(skip);
offset = data.length() - remaining;
ASSERT_THAT(chunk, Eq(data.substr(offset + skip, chunk.length())));
}
}
CordRep::Unref(node);
}
}
TEST(CordRepBtreeReaderTest, SkipBeyondLength) {
CordRepBtree* tree = CordRepBtree::Create(MakeFlat("abc"));
tree = CordRepBtree::Append(tree, MakeFlat("def"));
CordRepBtreeReader reader;
reader.Init(tree);
EXPECT_THAT(reader.Skip(100), IsEmpty());
EXPECT_THAT(reader.remaining(), Eq(0u));
CordRep::Unref(tree);
}
TEST(CordRepBtreeReaderTest, Seek) {
constexpr size_t kChars = 3;
const size_t cap = CordRepBtree::kMaxCapacity;
size_t counts[] = {1, 2, cap, cap * cap, cap * cap + 1, cap * cap * 2 + 17};
for (size_t count : counts) {
std::string data = CreateRandomString(count * kChars);
std::vector<CordRep*> flats = CreateFlatsFromString(data, kChars);
CordRepBtree* node = CordRepBtreeFromFlats(flats);
for (size_t seek = 0; seek < data.length() - 1; ++seek) {
CordRepBtreeReader reader;
reader.Init(node);
absl::string_view chunk = reader.Seek(seek);
ASSERT_THAT(chunk, Not(IsEmpty()));
ASSERT_THAT(chunk, Eq(data.substr(seek, chunk.length())));
ASSERT_THAT(reader.remaining(),
Eq(data.length() - seek - chunk.length()));
}
CordRep::Unref(node);
}
}
TEST(CordRepBtreeReaderTest, SeekBeyondLength) {
CordRepBtree* tree = CordRepBtree::Create(MakeFlat("abc"));
tree = CordRepBtree::Append(tree, MakeFlat("def"));
CordRepBtreeReader reader;
reader.Init(tree);
EXPECT_THAT(reader.Seek(6), IsEmpty());
EXPECT_THAT(reader.remaining(), Eq(0u));
EXPECT_THAT(reader.Seek(100), IsEmpty());
EXPECT_THAT(reader.remaining(), Eq(0u));
CordRep::Unref(tree);
}
TEST(CordRepBtreeReaderTest, Read) {
std::string data = "abcdefghijklmno";
std::vector<CordRep*> flats = CreateFlatsFromString(data, 5);
CordRepBtree* node = CordRepBtreeFromFlats(flats);
CordRep* tree;
CordRepBtreeReader reader;
absl::string_view chunk;
chunk = reader.Init(node);
chunk = reader.Read(0, chunk.length(), tree);
EXPECT_THAT(tree, Eq(nullptr));
EXPECT_THAT(chunk, Eq("abcde"));
EXPECT_THAT(reader.remaining(), Eq(10u));
EXPECT_THAT(reader.Next(), Eq("fghij"));
chunk = reader.Init(node);
chunk = reader.Read(15, chunk.length(), tree);
EXPECT_THAT(tree, Ne(nullptr));
EXPECT_THAT(CordToString(tree), Eq("abcdefghijklmno"));
EXPECT_THAT(chunk, Eq(""));
EXPECT_THAT(reader.remaining(), Eq(0u));
CordRep::Unref(tree);
chunk = reader.Init(node);
chunk = reader.Read(3, chunk.length(), tree);
ASSERT_THAT(tree, Ne(nullptr));
EXPECT_THAT(CordToString(tree), Eq("abc"));
EXPECT_THAT(chunk, Eq("de"));
EXPECT_THAT(reader.remaining(), Eq(10u));
EXPECT_THAT(reader.Next(), Eq("fghij"));
CordRep::Unref(tree);
chunk = reader.Init(node);
chunk = reader.Read(2, chunk.length() - 2, tree);
ASSERT_THAT(tree, Ne(nullptr));
EXPECT_THAT(CordToString(tree), Eq("cd"));
EXPECT_THAT(chunk, Eq("e"));
EXPECT_THAT(reader.remaining(), Eq(10u));
EXPECT_THAT(reader.Next(), Eq("fghij"));
CordRep::Unref(tree);
chunk = reader.Init(node);
chunk = reader.Read(3, 0, tree);
ASSERT_THAT(tree, Ne(nullptr));
EXPECT_THAT(CordToString(tree), Eq("fgh"));
EXPECT_THAT(chunk, Eq("ij"));
EXPECT_THAT(reader.remaining(), Eq(5u));
EXPECT_THAT(reader.Next(), Eq("klmno"));
CordRep::Unref(tree);
chunk = reader.Init(node);
chunk = reader.Read(12, chunk.length() - 2, tree);
ASSERT_THAT(tree, Ne(nullptr));
EXPECT_THAT(CordToString(tree), Eq("cdefghijklmn"));
EXPECT_THAT(chunk, Eq("o"));
EXPECT_THAT(reader.remaining(), Eq(0u));
CordRep::Unref(tree);
chunk = reader.Init(node);
chunk = reader.Read(10 - 2, chunk.length() - 2, tree);
ASSERT_THAT(tree, Ne(nullptr));
EXPECT_THAT(CordToString(tree), Eq("cdefghij"));
EXPECT_THAT(chunk, Eq("klmno"));
EXPECT_THAT(reader.remaining(), Eq(0u));
CordRep::Unref(tree);
CordRep::Unref(node);
}
TEST(CordRepBtreeReaderTest, ReadExhaustive) {
constexpr size_t kChars = 3;
const size_t cap = CordRepBtree::kMaxCapacity;
size_t counts[] = {1, 2, cap, cap * cap + 1, cap * cap * cap * 2 + 17};
for (size_t count : counts) {
std::string data = CreateRandomString(count * kChars);
std::vector<CordRep*> flats = CreateFlatsFromString(data, kChars);
CordRepBtree* node = CordRepBtreeFromFlats(flats);
for (size_t read_size : {kChars - 1, kChars, kChars + 7, cap * cap}) {
CordRepBtreeReader reader;
absl::string_view chunk = reader.Init(node);
size_t consumed = 0;
size_t remaining = data.length();
while (remaining > 0) {
CordRep* tree;
size_t n = (std::min)(remaining, read_size);
chunk = reader.Read(n, chunk.length(), tree);
EXPECT_THAT(tree, Ne(nullptr));
if (tree) {
EXPECT_THAT(CordToString(tree), Eq(data.substr(consumed, n)));
CordRep::Unref(tree);
}
consumed += n;
remaining -= n;
EXPECT_THAT(reader.remaining(), Eq(remaining - chunk.length()));
if (remaining > 0) {
ASSERT_FALSE(chunk.empty());
ASSERT_THAT(chunk, Eq(data.substr(consumed, chunk.length())));
} else {
ASSERT_TRUE(chunk.empty()) << chunk;
}
}
}
CordRep::Unref(node);
}
}
}
}
ABSL_NAMESPACE_END
} | 2,575 |
#ifndef ABSL_STRINGS_INTERNAL_UTF8_H_
#define ABSL_STRINGS_INTERNAL_UTF8_H_
#include <cstddef>
#include <cstdint>
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
enum { kMaxEncodedUTF8Size = 4 };
size_t EncodeUTF8Char(char *buffer, char32_t utf8_char);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/utf8.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
size_t EncodeUTF8Char(char *buffer, char32_t utf8_char) {
if (utf8_char <= 0x7F) {
*buffer = static_cast<char>(utf8_char);
return 1;
} else if (utf8_char <= 0x7FF) {
buffer[1] = static_cast<char>(0x80 | (utf8_char & 0x3F));
utf8_char >>= 6;
buffer[0] = static_cast<char>(0xC0 | utf8_char);
return 2;
} else if (utf8_char <= 0xFFFF) {
buffer[2] = static_cast<char>(0x80 | (utf8_char & 0x3F));
utf8_char >>= 6;
buffer[1] = static_cast<char>(0x80 | (utf8_char & 0x3F));
utf8_char >>= 6;
buffer[0] = static_cast<char>(0xE0 | utf8_char);
return 3;
} else {
buffer[3] = static_cast<char>(0x80 | (utf8_char & 0x3F));
utf8_char >>= 6;
buffer[2] = static_cast<char>(0x80 | (utf8_char & 0x3F));
utf8_char >>= 6;
buffer[1] = static_cast<char>(0x80 | (utf8_char & 0x3F));
utf8_char >>= 6;
buffer[0] = static_cast<char>(0xF0 | utf8_char);
return 4;
}
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/utf8.h"
#include <cstdint>
#include <utility>
#include "gtest/gtest.h"
#include "absl/base/port.h"
namespace {
#if !defined(__cpp_char8_t)
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wc++2a-compat"
#endif
TEST(EncodeUTF8Char, BasicFunction) {
std::pair<char32_t, std::string> tests[] = {{0x0030, u8"\u0030"},
{0x00A3, u8"\u00A3"},
{0x00010000, u8"\U00010000"},
{0x0000FFFF, u8"\U0000FFFF"},
{0x0010FFFD, u8"\U0010FFFD"}};
for (auto &test : tests) {
char buf0[7] = {'\x00', '\x00', '\x00', '\x00', '\x00', '\x00', '\x00'};
char buf1[7] = {'\xFF', '\xFF', '\xFF', '\xFF', '\xFF', '\xFF', '\xFF'};
char *buf0_written =
&buf0[absl::strings_internal::EncodeUTF8Char(buf0, test.first)];
char *buf1_written =
&buf1[absl::strings_internal::EncodeUTF8Char(buf1, test.first)];
int apparent_length = 7;
while (buf0[apparent_length - 1] == '\x00' &&
buf1[apparent_length - 1] == '\xFF') {
if (--apparent_length == 0) break;
}
EXPECT_EQ(apparent_length, buf0_written - buf0);
EXPECT_EQ(apparent_length, buf1_written - buf1);
EXPECT_EQ(apparent_length, test.second.length());
EXPECT_EQ(std::string(buf0, apparent_length), test.second);
EXPECT_EQ(std::string(buf1, apparent_length), test.second);
}
char buf[32] = "Don't Tread On Me";
EXPECT_LE(absl::strings_internal::EncodeUTF8Char(buf, 0x00110000),
absl::strings_internal::kMaxEncodedUTF8Size);
char buf2[32] = "Negative is invalid but sane";
EXPECT_LE(absl::strings_internal::EncodeUTF8Char(buf2, -1),
absl::strings_internal::kMaxEncodedUTF8Size);
}
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
#endif
} | 2,576 |
#ifndef ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_NAVIGATOR_H_
#define ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_NAVIGATOR_H_
#include <cassert>
#include <iostream>
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
class CordRepBtreeNavigator {
public:
struct Position {
CordRep* edge;
size_t offset;
};
struct ReadResult {
CordRep* tree;
size_t n;
};
explicit operator bool() const;
CordRepBtree* btree() const;
CordRep* Current() const;
CordRep* InitFirst(CordRepBtree* tree);
CordRep* InitLast(CordRepBtree* tree);
Position InitOffset(CordRepBtree* tree, size_t offset);
CordRep* Next();
CordRep* Previous();
Position Seek(size_t offset);
ReadResult Read(size_t edge_offset, size_t n);
Position Skip(size_t n);
void Reset();
private:
CordRep* NextUp();
CordRep* PreviousUp();
template <CordRepBtree::EdgeType edge_type>
CordRep* Init(CordRepBtree* tree);
int height_ = -1;
uint8_t index_[CordRepBtree::kMaxDepth];
CordRepBtree* node_[CordRepBtree::kMaxDepth];
};
inline CordRepBtreeNavigator::operator bool() const { return height_ >= 0; }
inline CordRepBtree* CordRepBtreeNavigator::btree() const {
return height_ >= 0 ? node_[height_] : nullptr;
}
inline CordRep* CordRepBtreeNavigator::Current() const {
assert(height_ >= 0);
return node_[0]->Edge(index_[0]);
}
inline void CordRepBtreeNavigator::Reset() { height_ = -1; }
inline CordRep* CordRepBtreeNavigator::InitFirst(CordRepBtree* tree) {
return Init<CordRepBtree::kFront>(tree);
}
inline CordRep* CordRepBtreeNavigator::InitLast(CordRepBtree* tree) {
return Init<CordRepBtree::kBack>(tree);
}
template <CordRepBtree::EdgeType edge_type>
inline CordRep* CordRepBtreeNavigator::Init(CordRepBtree* tree) {
assert(tree != nullptr);
assert(tree->size() > 0);
assert(tree->height() <= CordRepBtree::kMaxHeight);
int height = height_ = tree->height();
size_t index = tree->index(edge_type);
node_[height] = tree;
index_[height] = static_cast<uint8_t>(index);
while (--height >= 0) {
tree = tree->Edge(index)->btree();
node_[height] = tree;
index = tree->index(edge_type);
index_[height] = static_cast<uint8_t>(index);
}
return node_[0]->Edge(index);
}
inline CordRepBtreeNavigator::Position CordRepBtreeNavigator::Seek(
size_t offset) {
assert(btree() != nullptr);
int height = height_;
CordRepBtree* edge = node_[height];
if (ABSL_PREDICT_FALSE(offset >= edge->length)) return {nullptr, 0};
CordRepBtree::Position index = edge->IndexOf(offset);
index_[height] = static_cast<uint8_t>(index.index);
while (--height >= 0) {
edge = edge->Edge(index.index)->btree();
node_[height] = edge;
index = edge->IndexOf(index.n);
index_[height] = static_cast<uint8_t>(index.index);
}
return {edge->Edge(index.index), index.n};
}
inline CordRepBtreeNavigator::Position CordRepBtreeNavigator::InitOffset(
CordRepBtree* tree, size_t offset) {
assert(tree != nullptr);
assert(tree->height() <= CordRepBtree::kMaxHeight);
if (ABSL_PREDICT_FALSE(offset >= tree->length)) return {nullptr, 0};
height_ = tree->height();
node_[height_] = tree;
return Seek(offset);
}
inline CordRep* CordRepBtreeNavigator::Next() {
CordRepBtree* edge = node_[0];
return index_[0] == edge->back() ? NextUp() : edge->Edge(++index_[0]);
}
inline CordRep* CordRepBtreeNavigator::Previous() {
CordRepBtree* edge = node_[0];
return index_[0] == edge->begin() ? PreviousUp() : edge->Edge(--index_[0]);
}
inline CordRep* CordRepBtreeNavigator::NextUp() {
assert(index_[0] == node_[0]->back());
CordRepBtree* edge;
size_t index;
int height = 0;
do {
if (++height > height_) return nullptr;
edge = node_[height];
index = index_[height] + 1;
} while (index == edge->end());
index_[height] = static_cast<uint8_t>(index);
do {
node_[--height] = edge = edge->Edge(index)->btree();
index_[height] = static_cast<uint8_t>(index = edge->begin());
} while (height > 0);
return edge->Edge(index);
}
inline CordRep* CordRepBtreeNavigator::PreviousUp() {
assert(index_[0] == node_[0]->begin());
CordRepBtree* edge;
size_t index;
int height = 0;
do {
if (++height > height_) return nullptr;
edge = node_[height];
index = index_[height];
} while (index == edge->begin());
index_[height] = static_cast<uint8_t>(--index);
do {
node_[--height] = edge = edge->Edge(index)->btree();
index_[height] = static_cast<uint8_t>(index = edge->back());
} while (height > 0);
return edge->Edge(index);
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/cord_rep_btree_navigator.h"
#include <cassert>
#include "absl/strings/internal/cord_data_edge.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
using ReadResult = CordRepBtreeNavigator::ReadResult;
namespace {
inline CordRep* Substring(CordRep* rep, size_t offset, size_t n) {
assert(n <= rep->length);
assert(offset < rep->length);
assert(offset <= rep->length - n);
assert(IsDataEdge(rep));
if (n == 0) return nullptr;
if (n == rep->length) return CordRep::Ref(rep);
if (rep->tag == SUBSTRING) {
offset += rep->substring()->start;
rep = rep->substring()->child;
}
assert(rep->IsExternal() || rep->IsFlat());
CordRepSubstring* substring = new CordRepSubstring();
substring->length = n;
substring->tag = SUBSTRING;
substring->start = offset;
substring->child = CordRep::Ref(rep);
return substring;
}
inline CordRep* Substring(CordRep* rep, size_t offset) {
return Substring(rep, offset, rep->length - offset);
}
}
CordRepBtreeNavigator::Position CordRepBtreeNavigator::Skip(size_t n) {
int height = 0;
size_t index = index_[0];
CordRepBtree* node = node_[0];
CordRep* edge = node->Edge(index);
while (n >= edge->length) {
n -= edge->length;
while (++index == node->end()) {
if (++height > height_) return {nullptr, n};
node = node_[height];
index = index_[height];
}
edge = node->Edge(index);
}
while (height > 0) {
node = edge->btree();
index_[height] = static_cast<uint8_t>(index);
node_[--height] = node;
index = node->begin();
edge = node->Edge(index);
while (n >= edge->length) {
n -= edge->length;
++index;
assert(index != node->end());
edge = node->Edge(index);
}
}
index_[0] = static_cast<uint8_t>(index);
return {edge, n};
}
ReadResult CordRepBtreeNavigator::Read(size_t edge_offset, size_t n) {
int height = 0;
size_t length = edge_offset + n;
size_t index = index_[0];
CordRepBtree* node = node_[0];
CordRep* edge = node->Edge(index);
assert(edge_offset < edge->length);
if (length < edge->length) {
return {Substring(edge, edge_offset, n), length};
}
CordRepBtree* subtree = CordRepBtree::New(Substring(edge, edge_offset));
size_t subtree_end = 1;
do {
length -= edge->length;
while (++index == node->end()) {
index_[height] = static_cast<uint8_t>(index);
if (++height > height_) {
subtree->set_end(subtree_end);
if (length == 0) return {subtree, 0};
CordRep::Unref(subtree);
return {nullptr, length};
}
if (length != 0) {
subtree->set_end(subtree_end);
subtree = CordRepBtree::New(subtree);
subtree_end = 1;
}
node = node_[height];
index = index_[height];
}
edge = node->Edge(index);
if (length >= edge->length) {
subtree->length += edge->length;
subtree->edges_[subtree_end++] = CordRep::Ref(edge);
}
} while (length >= edge->length);
CordRepBtree* tree = subtree;
subtree->length += length;
while (height > 0) {
node = edge->btree();
index_[height] = static_cast<uint8_t>(index);
node_[--height] = node;
index = node->begin();
edge = node->Edge(index);
if (length != 0) {
CordRepBtree* right = CordRepBtree::New(height);
right->length = length;
subtree->edges_[subtree_end++] = right;
subtree->set_end(subtree_end);
subtree = right;
subtree_end = 0;
while (length >= edge->length) {
subtree->edges_[subtree_end++] = CordRep::Ref(edge);
length -= edge->length;
edge = node->Edge(++index);
}
}
}
if (length != 0) {
subtree->edges_[subtree_end++] = Substring(edge, 0, length);
}
subtree->set_end(subtree_end);
index_[0] = static_cast<uint8_t>(index);
return {tree, length};
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/cord_rep_btree_navigator.h"
#include <string>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_btree.h"
#include "absl/strings/internal/cord_rep_test_util.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {
using ::testing::Eq;
using ::testing::Ne;
using ::absl::cordrep_testing::CordRepBtreeFromFlats;
using ::absl::cordrep_testing::CordToString;
using ::absl::cordrep_testing::CreateFlatsFromString;
using ::absl::cordrep_testing::CreateRandomString;
using ::absl::cordrep_testing::MakeFlat;
using ::absl::cordrep_testing::MakeSubstring;
using ReadResult = CordRepBtreeNavigator::ReadResult;
using Position = CordRepBtreeNavigator::Position;
class CordRepBtreeNavigatorTest : public testing::TestWithParam<size_t> {
public:
using Flats = std::vector<CordRep*>;
static constexpr size_t kCharsPerFlat = 3;
CordRepBtreeNavigatorTest() {
data_ = CreateRandomString(count() * kCharsPerFlat);
flats_ = CreateFlatsFromString(data_, kCharsPerFlat);
if (count() > 1) {
CordRep::Unref(flats_[1]);
flats_[1] = MakeSubstring(kCharsPerFlat, kCharsPerFlat, MakeFlat(data_));
} else {
CordRep::Unref(flats_[0]);
flats_[0] = MakeSubstring(0, kCharsPerFlat, MakeFlat(data_));
}
tree_ = CordRepBtreeFromFlats(flats_);
}
~CordRepBtreeNavigatorTest() override { CordRep::Unref(tree_); }
size_t count() const { return GetParam(); }
CordRepBtree* tree() { return tree_; }
const std::string& data() const { return data_; }
const std::vector<CordRep*>& flats() const { return flats_; }
static std::string ToString(testing::TestParamInfo<size_t> param) {
return absl::StrCat(param.param, "_Flats");
}
private:
std::string data_;
Flats flats_;
CordRepBtree* tree_;
};
INSTANTIATE_TEST_SUITE_P(
WithParam, CordRepBtreeNavigatorTest,
testing::Values(1, CordRepBtree::kMaxCapacity - 1,
CordRepBtree::kMaxCapacity,
CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity - 1,
CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity,
CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity + 1,
CordRepBtree::kMaxCapacity* CordRepBtree::kMaxCapacity * 2 +
17),
CordRepBtreeNavigatorTest::ToString);
TEST(CordRepBtreeNavigatorTest, Uninitialized) {
CordRepBtreeNavigator nav;
EXPECT_FALSE(nav);
EXPECT_THAT(nav.btree(), Eq(nullptr));
#if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG)
EXPECT_DEATH(nav.Current(), ".*");
#endif
}
TEST_P(CordRepBtreeNavigatorTest, InitFirst) {
CordRepBtreeNavigator nav;
CordRep* edge = nav.InitFirst(tree());
EXPECT_TRUE(nav);
EXPECT_THAT(nav.btree(), Eq(tree()));
EXPECT_THAT(nav.Current(), Eq(flats().front()));
EXPECT_THAT(edge, Eq(flats().front()));
}
TEST_P(CordRepBtreeNavigatorTest, InitLast) {
CordRepBtreeNavigator nav;
CordRep* edge = nav.InitLast(tree());
EXPECT_TRUE(nav);
EXPECT_THAT(nav.btree(), Eq(tree()));
EXPECT_THAT(nav.Current(), Eq(flats().back()));
EXPECT_THAT(edge, Eq(flats().back()));
}
TEST_P(CordRepBtreeNavigatorTest, NextPrev) {
CordRepBtreeNavigator nav;
nav.InitFirst(tree());
const Flats& flats = this->flats();
EXPECT_THAT(nav.Previous(), Eq(nullptr));
EXPECT_THAT(nav.Current(), Eq(flats.front()));
for (size_t i = 1; i < flats.size(); ++i) {
ASSERT_THAT(nav.Next(), Eq(flats[i]));
EXPECT_THAT(nav.Current(), Eq(flats[i]));
}
EXPECT_THAT(nav.Next(), Eq(nullptr));
EXPECT_THAT(nav.Current(), Eq(flats.back()));
for (size_t i = flats.size() - 1; i > 0; --i) {
ASSERT_THAT(nav.Previous(), Eq(flats[i - 1]));
EXPECT_THAT(nav.Current(), Eq(flats[i - 1]));
}
EXPECT_THAT(nav.Previous(), Eq(nullptr));
EXPECT_THAT(nav.Current(), Eq(flats.front()));
}
TEST_P(CordRepBtreeNavigatorTest, PrevNext) {
CordRepBtreeNavigator nav;
nav.InitLast(tree());
const Flats& flats = this->flats();
EXPECT_THAT(nav.Next(), Eq(nullptr));
EXPECT_THAT(nav.Current(), Eq(flats.back()));
for (size_t i = flats.size() - 1; i > 0; --i) {
ASSERT_THAT(nav.Previous(), Eq(flats[i - 1]));
EXPECT_THAT(nav.Current(), Eq(flats[i - 1]));
}
EXPECT_THAT(nav.Previous(), Eq(nullptr));
EXPECT_THAT(nav.Current(), Eq(flats.front()));
for (size_t i = 1; i < flats.size(); ++i) {
ASSERT_THAT(nav.Next(), Eq(flats[i]));
EXPECT_THAT(nav.Current(), Eq(flats[i]));
}
EXPECT_THAT(nav.Next(), Eq(nullptr));
EXPECT_THAT(nav.Current(), Eq(flats.back()));
}
TEST(CordRepBtreeNavigatorTest, Reset) {
CordRepBtree* tree = CordRepBtree::Create(MakeFlat("abc"));
CordRepBtreeNavigator nav;
nav.InitFirst(tree);
nav.Reset();
EXPECT_FALSE(nav);
EXPECT_THAT(nav.btree(), Eq(nullptr));
#if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG)
EXPECT_DEATH(nav.Current(), ".*");
#endif
CordRep::Unref(tree);
}
TEST_P(CordRepBtreeNavigatorTest, Skip) {
size_t count = this->count();
const Flats& flats = this->flats();
CordRepBtreeNavigator nav;
nav.InitFirst(tree());
for (size_t char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) {
Position pos = nav.Skip(char_offset);
EXPECT_THAT(pos.edge, Eq(nav.Current()));
EXPECT_THAT(pos.edge, Eq(flats[0]));
EXPECT_THAT(pos.offset, Eq(char_offset));
}
for (size_t index1 = 0; index1 < count; ++index1) {
for (size_t index2 = index1; index2 < count; ++index2) {
for (size_t char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) {
CordRepBtreeNavigator nav;
nav.InitFirst(tree());
size_t length1 = index1 * kCharsPerFlat;
Position pos1 = nav.Skip(length1 + char_offset);
ASSERT_THAT(pos1.edge, Eq(flats[index1]));
ASSERT_THAT(pos1.edge, Eq(nav.Current()));
ASSERT_THAT(pos1.offset, Eq(char_offset));
size_t length2 = index2 * kCharsPerFlat;
Position pos2 = nav.Skip(length2 - length1 + char_offset);
ASSERT_THAT(pos2.edge, Eq(flats[index2]));
ASSERT_THAT(pos2.edge, Eq(nav.Current()));
ASSERT_THAT(pos2.offset, Eq(char_offset));
}
}
}
}
TEST_P(CordRepBtreeNavigatorTest, Seek) {
size_t count = this->count();
const Flats& flats = this->flats();
CordRepBtreeNavigator nav;
nav.InitFirst(tree());
for (size_t char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) {
Position pos = nav.Seek(char_offset);
EXPECT_THAT(pos.edge, Eq(nav.Current()));
EXPECT_THAT(pos.edge, Eq(flats[0]));
EXPECT_THAT(pos.offset, Eq(char_offset));
}
for (size_t index = 0; index < count; ++index) {
for (size_t char_offset = 0; char_offset < kCharsPerFlat; ++char_offset) {
size_t offset = index * kCharsPerFlat + char_offset;
Position pos1 = nav.Seek(offset);
ASSERT_THAT(pos1.edge, Eq(flats[index]));
ASSERT_THAT(pos1.edge, Eq(nav.Current()));
ASSERT_THAT(pos1.offset, Eq(char_offset));
}
}
}
TEST(CordRepBtreeNavigatorTest, InitOffset) {
CordRepBtree* tree = CordRepBtree::Create(MakeFlat("abc"));
tree = CordRepBtree::Append(tree, MakeFlat("def"));
CordRepBtreeNavigator nav;
Position pos = nav.InitOffset(tree, 5);
EXPECT_TRUE(nav);
EXPECT_THAT(nav.btree(), Eq(tree));
EXPECT_THAT(pos.edge, Eq(tree->Edges()[1]));
EXPECT_THAT(pos.edge, Eq(nav.Current()));
EXPECT_THAT(pos.offset, Eq(2u));
CordRep::Unref(tree);
}
TEST(CordRepBtreeNavigatorTest, InitOffsetAndSeekBeyondLength) {
CordRepBtree* tree1 = CordRepBtree::Create(MakeFlat("abc"));
CordRepBtree* tree2 = CordRepBtree::Create(MakeFlat("def"));
CordRepBtreeNavigator nav;
nav.InitFirst(tree1);
EXPECT_THAT(nav.Seek(3).edge, Eq(nullptr));
EXPECT_THAT(nav.Seek(100).edge, Eq(nullptr));
EXPECT_THAT(nav.btree(), Eq(tree1));
EXPECT_THAT(nav.Current(), Eq(tree1->Edges().front()));
EXPECT_THAT(nav.InitOffset(tree2, 3).edge, Eq(nullptr));
EXPECT_THAT(nav.InitOffset(tree2, 100).edge, Eq(nullptr));
EXPECT_THAT(nav.btree(), Eq(tree1));
EXPECT_THAT(nav.Current(), Eq(tree1->Edges().front()));
CordRep::Unref(tree1);
CordRep::Unref(tree2);
}
TEST_P(CordRepBtreeNavigatorTest, Read) {
const Flats& flats = this->flats();
const std::string& data = this->data();
for (size_t offset = 0; offset < data.size(); ++offset) {
for (size_t length = 1; length <= data.size() - offset; ++length) {
CordRepBtreeNavigator nav;
nav.InitFirst(tree());
size_t edge_offset = nav.Skip(offset).offset;
ReadResult result = nav.Read(edge_offset, length);
ASSERT_THAT(result.tree, Ne(nullptr));
EXPECT_THAT(result.tree->length, Eq(length));
if (result.tree->tag == BTREE) {
ASSERT_TRUE(CordRepBtree::IsValid(result.tree->btree()));
}
std::string value = CordToString(result.tree);
EXPECT_THAT(value, Eq(data.substr(offset, length)));
size_t partial = (offset + length) % kCharsPerFlat;
ASSERT_THAT(result.n, Eq(partial));
if (offset + length < data.size()) {
size_t index = (offset + length) / kCharsPerFlat;
EXPECT_THAT(nav.Current(), Eq(flats[index]));
}
CordRep::Unref(result.tree);
}
}
}
TEST_P(CordRepBtreeNavigatorTest, ReadBeyondLengthOfTree) {
CordRepBtreeNavigator nav;
nav.InitFirst(tree());
ReadResult result = nav.Read(2, tree()->length);
ASSERT_THAT(result.tree, Eq(nullptr));
}
TEST(CordRepBtreeNavigatorTest, NavigateMaximumTreeDepth) {
CordRepFlat* flat1 = MakeFlat("Hello world");
CordRepFlat* flat2 = MakeFlat("World Hello");
CordRepBtree* node = CordRepBtree::Create(flat1);
node = CordRepBtree::Append(node, flat2);
while (node->height() < CordRepBtree::kMaxHeight) {
node = CordRepBtree::New(node);
}
CordRepBtreeNavigator nav;
CordRep* edge = nav.InitFirst(node);
EXPECT_THAT(edge, Eq(flat1));
EXPECT_THAT(nav.Next(), Eq(flat2));
EXPECT_THAT(nav.Next(), Eq(nullptr));
EXPECT_THAT(nav.Previous(), Eq(flat1));
EXPECT_THAT(nav.Previous(), Eq(nullptr));
CordRep::Unref(node);
}
}
}
ABSL_NAMESPACE_END
} | 2,577 |
#ifndef ABSL_STRINGS_INTERNAL_CORD_REP_CRC_H_
#define ABSL_STRINGS_INTERNAL_CORD_REP_CRC_H_
#include <cassert>
#include <cstdint>
#include "absl/base/config.h"
#include "absl/base/optimization.h"
#include "absl/crc/internal/crc_cord_state.h"
#include "absl/strings/internal/cord_internal.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
struct CordRepCrc : public CordRep {
CordRep* child;
absl::crc_internal::CrcCordState crc_cord_state;
static CordRepCrc* New(CordRep* child, crc_internal::CrcCordState state);
static void Destroy(CordRepCrc* node);
};
inline CordRep* RemoveCrcNode(CordRep* rep) {
assert(rep != nullptr);
if (ABSL_PREDICT_FALSE(rep->IsCrc())) {
CordRep* child = rep->crc()->child;
if (rep->refcount.IsOne()) {
delete rep->crc();
} else {
CordRep::Ref(child);
CordRep::Unref(rep);
}
return child;
}
return rep;
}
inline CordRep* SkipCrcNode(CordRep* rep) {
assert(rep != nullptr);
if (ABSL_PREDICT_FALSE(rep->IsCrc())) {
return rep->crc()->child;
} else {
return rep;
}
}
inline const CordRep* SkipCrcNode(const CordRep* rep) {
assert(rep != nullptr);
if (ABSL_PREDICT_FALSE(rep->IsCrc())) {
return rep->crc()->child;
} else {
return rep;
}
}
inline CordRepCrc* CordRep::crc() {
assert(IsCrc());
return static_cast<CordRepCrc*>(this);
}
inline const CordRepCrc* CordRep::crc() const {
assert(IsCrc());
return static_cast<const CordRepCrc*>(this);
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/cord_rep_crc.h"
#include <cassert>
#include <cstdint>
#include <utility>
#include "absl/base/config.h"
#include "absl/strings/internal/cord_internal.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
CordRepCrc* CordRepCrc::New(CordRep* child, crc_internal::CrcCordState state) {
if (child != nullptr && child->IsCrc()) {
if (child->refcount.IsOne()) {
child->crc()->crc_cord_state = std::move(state);
return child->crc();
}
CordRep* old = child;
child = old->crc()->child;
CordRep::Ref(child);
CordRep::Unref(old);
}
auto* new_cordrep = new CordRepCrc;
new_cordrep->length = child != nullptr ? child->length : 0;
new_cordrep->tag = cord_internal::CRC;
new_cordrep->child = child;
new_cordrep->crc_cord_state = std::move(state);
return new_cordrep;
}
void CordRepCrc::Destroy(CordRepCrc* node) {
if (node->child != nullptr) {
CordRep::Unref(node->child);
}
delete node;
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/cord_rep_crc.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/crc/internal/crc_cord_state.h"
#include "absl/strings/internal/cord_internal.h"
#include "absl/strings/internal/cord_rep_test_util.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
namespace {
using ::absl::cordrep_testing::MakeFlat;
using ::testing::Eq;
using ::testing::IsNull;
using ::testing::Ne;
#if !defined(NDEBUG) && GTEST_HAS_DEATH_TEST
TEST(CordRepCrc, RemoveCrcWithNullptr) {
EXPECT_DEATH(RemoveCrcNode(nullptr), "");
}
#endif
absl::crc_internal::CrcCordState MakeCrcCordState(uint32_t crc) {
crc_internal::CrcCordState state;
state.mutable_rep()->prefix_crc.push_back(
crc_internal::CrcCordState::PrefixCrc(42, crc32c_t{crc}));
return state;
}
TEST(CordRepCrc, NewDestroy) {
CordRep* rep = cordrep_testing::MakeFlat("Hello world");
CordRepCrc* crc = CordRepCrc::New(rep, MakeCrcCordState(12345));
EXPECT_TRUE(crc->refcount.IsOne());
EXPECT_THAT(crc->child, Eq(rep));
EXPECT_THAT(crc->crc_cord_state.Checksum(), Eq(crc32c_t{12345u}));
EXPECT_TRUE(rep->refcount.IsOne());
CordRepCrc::Destroy(crc);
}
TEST(CordRepCrc, NewExistingCrcNotShared) {
CordRep* rep = cordrep_testing::MakeFlat("Hello world");
CordRepCrc* crc = CordRepCrc::New(rep, MakeCrcCordState(12345));
CordRepCrc* new_crc = CordRepCrc::New(crc, MakeCrcCordState(54321));
EXPECT_THAT(new_crc, Eq(crc));
EXPECT_TRUE(new_crc->refcount.IsOne());
EXPECT_THAT(new_crc->child, Eq(rep));
EXPECT_THAT(new_crc->crc_cord_state.Checksum(), Eq(crc32c_t{54321u}));
EXPECT_TRUE(rep->refcount.IsOne());
CordRepCrc::Destroy(new_crc);
}
TEST(CordRepCrc, NewExistingCrcShared) {
CordRep* rep = cordrep_testing::MakeFlat("Hello world");
CordRepCrc* crc = CordRepCrc::New(rep, MakeCrcCordState(12345));
CordRep::Ref(crc);
CordRepCrc* new_crc = CordRepCrc::New(crc, MakeCrcCordState(54321));
EXPECT_THAT(new_crc, Ne(crc));
EXPECT_TRUE(new_crc->refcount.IsOne());
EXPECT_TRUE(crc->refcount.IsOne());
EXPECT_FALSE(rep->refcount.IsOne());
EXPECT_THAT(crc->child, Eq(rep));
EXPECT_THAT(new_crc->child, Eq(rep));
EXPECT_THAT(crc->crc_cord_state.Checksum(), Eq(crc32c_t{12345u}));
EXPECT_THAT(new_crc->crc_cord_state.Checksum(), Eq(crc32c_t{54321u}));
CordRep::Unref(crc);
CordRep::Unref(new_crc);
}
TEST(CordRepCrc, NewEmpty) {
CordRepCrc* crc = CordRepCrc::New(nullptr, MakeCrcCordState(12345));
EXPECT_TRUE(crc->refcount.IsOne());
EXPECT_THAT(crc->child, IsNull());
EXPECT_THAT(crc->length, Eq(0u));
EXPECT_THAT(crc->crc_cord_state.Checksum(), Eq(crc32c_t{12345u}));
EXPECT_TRUE(crc->refcount.IsOne());
CordRepCrc::Destroy(crc);
}
TEST(CordRepCrc, RemoveCrcNotCrc) {
CordRep* rep = cordrep_testing::MakeFlat("Hello world");
CordRep* nocrc = RemoveCrcNode(rep);
EXPECT_THAT(nocrc, Eq(rep));
CordRep::Unref(nocrc);
}
TEST(CordRepCrc, RemoveCrcNotShared) {
CordRep* rep = cordrep_testing::MakeFlat("Hello world");
CordRepCrc* crc = CordRepCrc::New(rep, MakeCrcCordState(12345));
CordRep* nocrc = RemoveCrcNode(crc);
EXPECT_THAT(nocrc, Eq(rep));
EXPECT_TRUE(rep->refcount.IsOne());
CordRep::Unref(nocrc);
}
TEST(CordRepCrc, RemoveCrcShared) {
CordRep* rep = cordrep_testing::MakeFlat("Hello world");
CordRepCrc* crc = CordRepCrc::New(rep, MakeCrcCordState(12345));
CordRep::Ref(crc);
CordRep* nocrc = RemoveCrcNode(crc);
EXPECT_THAT(nocrc, Eq(rep));
EXPECT_FALSE(rep->refcount.IsOne());
CordRep::Unref(nocrc);
CordRep::Unref(crc);
}
}
}
ABSL_NAMESPACE_END
} | 2,578 |
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_EXTENSION_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_EXTENSION_H_
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <ostream>
#include <string>
#include "absl/base/config.h"
#include "absl/strings/internal/str_format/output.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
enum class FormatConversionChar : uint8_t;
enum class FormatConversionCharSet : uint64_t;
enum class LengthMod : std::uint8_t { h, hh, l, ll, L, j, z, t, q, none };
namespace str_format_internal {
class FormatRawSinkImpl {
public:
template <typename T, decltype(str_format_internal::InvokeFlush(
std::declval<T*>(), string_view()))* = nullptr>
FormatRawSinkImpl(T* raw)
: sink_(raw), write_(&FormatRawSinkImpl::Flush<T>) {}
void Write(string_view s) { write_(sink_, s); }
template <typename T>
static FormatRawSinkImpl Extract(T s) {
return s.sink_;
}
private:
template <typename T>
static void Flush(void* r, string_view s) {
str_format_internal::InvokeFlush(static_cast<T*>(r), s);
}
void* sink_;
void (*write_)(void*, string_view);
};
class FormatSinkImpl {
public:
explicit FormatSinkImpl(FormatRawSinkImpl raw) : raw_(raw) {}
~FormatSinkImpl() { Flush(); }
void Flush() {
raw_.Write(string_view(buf_, static_cast<size_t>(pos_ - buf_)));
pos_ = buf_;
}
void Append(size_t n, char c) {
if (n == 0) return;
size_ += n;
auto raw_append = [&](size_t count) {
memset(pos_, c, count);
pos_ += count;
};
while (n > Avail()) {
n -= Avail();
if (Avail() > 0) {
raw_append(Avail());
}
Flush();
}
raw_append(n);
}
void Append(string_view v) {
size_t n = v.size();
if (n == 0) return;
size_ += n;
if (n >= Avail()) {
Flush();
raw_.Write(v);
return;
}
memcpy(pos_, v.data(), n);
pos_ += n;
}
size_t size() const { return size_; }
bool PutPaddedString(string_view v, int width, int precision, bool left);
template <typename T>
T Wrap() {
return T(this);
}
template <typename T>
static FormatSinkImpl* Extract(T* s) {
return s->sink_;
}
private:
size_t Avail() const {
return static_cast<size_t>(buf_ + sizeof(buf_) - pos_);
}
FormatRawSinkImpl raw_;
size_t size_ = 0;
char* pos_ = buf_;
char buf_[1024];
};
enum class Flags : uint8_t {
kBasic = 0,
kLeft = 1 << 0,
kShowPos = 1 << 1,
kSignCol = 1 << 2,
kAlt = 1 << 3,
kZero = 1 << 4,
kNonBasic = 1 << 5,
};
constexpr Flags operator|(Flags a, Flags b) {
return static_cast<Flags>(static_cast<uint8_t>(a) | static_cast<uint8_t>(b));
}
constexpr bool FlagsContains(Flags haystack, Flags needle) {
return (static_cast<uint8_t>(haystack) & static_cast<uint8_t>(needle)) ==
static_cast<uint8_t>(needle);
}
std::string FlagsToString(Flags v);
inline std::ostream& operator<<(std::ostream& os, Flags v) {
return os << FlagsToString(v);
}
#define ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(X_VAL, X_SEP) \
\
X_VAL(c) X_SEP X_VAL(s) X_SEP \
\
X_VAL(d) X_SEP X_VAL(i) X_SEP X_VAL(o) X_SEP \
X_VAL(u) X_SEP X_VAL(x) X_SEP X_VAL(X) X_SEP \
\
X_VAL(f) X_SEP X_VAL(F) X_SEP X_VAL(e) X_SEP X_VAL(E) X_SEP \
X_VAL(g) X_SEP X_VAL(G) X_SEP X_VAL(a) X_SEP X_VAL(A) X_SEP \
\
X_VAL(n) X_SEP X_VAL(p) X_SEP X_VAL(v)
struct FormatConversionCharInternal {
FormatConversionCharInternal() = delete;
private:
enum class Enum : uint8_t {
c, s,
d, i, o, u, x, X,
f, F, e, E, g, G, a, A,
n, p, v,
kNone
};
public:
#define ABSL_INTERNAL_X_VAL(id) \
static constexpr FormatConversionChar id = \
static_cast<FormatConversionChar>(Enum::id);
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_X_VAL, )
#undef ABSL_INTERNAL_X_VAL
static constexpr FormatConversionChar kNone =
static_cast<FormatConversionChar>(Enum::kNone);
};
inline FormatConversionChar FormatConversionCharFromChar(char c) {
switch (c) {
#define ABSL_INTERNAL_X_VAL(id) \
case #id[0]: \
return FormatConversionCharInternal::id;
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_X_VAL, )
#undef ABSL_INTERNAL_X_VAL
}
return FormatConversionCharInternal::kNone;
}
inline bool FormatConversionCharIsUpper(FormatConversionChar c) {
if (c == FormatConversionCharInternal::X ||
c == FormatConversionCharInternal::F ||
c == FormatConversionCharInternal::E ||
c == FormatConversionCharInternal::G ||
c == FormatConversionCharInternal::A) {
return true;
} else {
return false;
}
}
inline bool FormatConversionCharIsFloat(FormatConversionChar c) {
if (c == FormatConversionCharInternal::a ||
c == FormatConversionCharInternal::e ||
c == FormatConversionCharInternal::f ||
c == FormatConversionCharInternal::g ||
c == FormatConversionCharInternal::A ||
c == FormatConversionCharInternal::E ||
c == FormatConversionCharInternal::F ||
c == FormatConversionCharInternal::G) {
return true;
} else {
return false;
}
}
inline char FormatConversionCharToChar(FormatConversionChar c) {
if (c == FormatConversionCharInternal::kNone) {
return '\0';
#define ABSL_INTERNAL_X_VAL(e) \
} else if (c == FormatConversionCharInternal::e) { \
return #e[0];
#define ABSL_INTERNAL_X_SEP
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_X_VAL,
ABSL_INTERNAL_X_SEP)
} else {
return '\0';
}
#undef ABSL_INTERNAL_X_VAL
#undef ABSL_INTERNAL_X_SEP
}
inline std::ostream& operator<<(std::ostream& os, FormatConversionChar v) {
char c = FormatConversionCharToChar(v);
if (!c) c = '?';
return os << c;
}
struct FormatConversionSpecImplFriend;
class FormatConversionSpecImpl {
public:
bool is_basic() const { return flags_ == Flags::kBasic; }
bool has_left_flag() const { return FlagsContains(flags_, Flags::kLeft); }
bool has_show_pos_flag() const {
return FlagsContains(flags_, Flags::kShowPos);
}
bool has_sign_col_flag() const {
return FlagsContains(flags_, Flags::kSignCol);
}
bool has_alt_flag() const { return FlagsContains(flags_, Flags::kAlt); }
bool has_zero_flag() const { return FlagsContains(flags_, Flags::kZero); }
LengthMod length_mod() const { return length_mod_; }
FormatConversionChar conversion_char() const {
static_assert(offsetof(FormatConversionSpecImpl, conv_) == 0, "");
return conv_;
}
void set_conversion_char(FormatConversionChar c) { conv_ = c; }
int width() const { return width_; }
int precision() const { return precision_; }
template <typename T>
T Wrap() {
return T(*this);
}
private:
friend struct str_format_internal::FormatConversionSpecImplFriend;
FormatConversionChar conv_ = FormatConversionCharInternal::kNone;
Flags flags_;
LengthMod length_mod_ = LengthMod::none;
int width_;
int precision_;
};
struct FormatConversionSpecImplFriend final {
static void SetFlags(Flags f, FormatConversionSpecImpl* conv) {
conv->flags_ = f;
}
static void SetLengthMod(LengthMod l, FormatConversionSpecImpl* conv) {
conv->length_mod_ = l;
}
static void SetConversionChar(FormatConversionChar c,
FormatConversionSpecImpl* conv) {
conv->conv_ = c;
}
static void SetWidth(int w, FormatConversionSpecImpl* conv) {
conv->width_ = w;
}
static void SetPrecision(int p, FormatConversionSpecImpl* conv) {
conv->precision_ = p;
}
static std::string FlagsToString(const FormatConversionSpecImpl& spec) {
return str_format_internal::FlagsToString(spec.flags_);
}
};
constexpr FormatConversionCharSet FormatConversionCharSetUnion(
FormatConversionCharSet a) {
return a;
}
template <typename... CharSet>
constexpr FormatConversionCharSet FormatConversionCharSetUnion(
FormatConversionCharSet a, CharSet... rest) {
return static_cast<FormatConversionCharSet>(
static_cast<uint64_t>(a) |
static_cast<uint64_t>(FormatConversionCharSetUnion(rest...)));
}
constexpr uint64_t FormatConversionCharToConvInt(FormatConversionChar c) {
return uint64_t{1} << (1 + static_cast<uint8_t>(c));
}
constexpr uint64_t FormatConversionCharToConvInt(char conv) {
return
#define ABSL_INTERNAL_CHAR_SET_CASE(c) \
conv == #c[0] \
? FormatConversionCharToConvInt(FormatConversionCharInternal::c) \
:
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_CHAR_SET_CASE, )
#undef ABSL_INTERNAL_CHAR_SET_CASE
conv == '*'
? 1
: 0;
}
constexpr FormatConversionCharSet FormatConversionCharToConvValue(char conv) {
return static_cast<FormatConversionCharSet>(
FormatConversionCharToConvInt(conv));
}
struct FormatConversionCharSetInternal {
#define ABSL_INTERNAL_CHAR_SET_CASE(c) \
static constexpr FormatConversionCharSet c = \
FormatConversionCharToConvValue(#c[0]);
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_CHAR_SET_CASE, )
#undef ABSL_INTERNAL_CHAR_SET_CASE
static constexpr FormatConversionCharSet kStar =
FormatConversionCharToConvValue('*');
static constexpr FormatConversionCharSet kIntegral =
FormatConversionCharSetUnion(d, i, u, o, x, X);
static constexpr FormatConversionCharSet kFloating =
FormatConversionCharSetUnion(a, e, f, g, A, E, F, G);
static constexpr FormatConversionCharSet kNumeric =
FormatConversionCharSetUnion(kIntegral, kFloating);
static constexpr FormatConversionCharSet kPointer = p;
};
constexpr FormatConversionCharSet operator|(FormatConversionCharSet a,
FormatConversionCharSet b) {
return FormatConversionCharSetUnion(a, b);
}
constexpr FormatConversionCharSet ToFormatConversionCharSet(char c) {
return static_cast<FormatConversionCharSet>(
FormatConversionCharToConvValue(c));
}
constexpr FormatConversionCharSet ToFormatConversionCharSet(
FormatConversionCharSet c) {
return c;
}
template <typename T>
void ToFormatConversionCharSet(T) = delete;
constexpr bool Contains(FormatConversionCharSet set, char c) {
return (static_cast<uint64_t>(set) &
static_cast<uint64_t>(FormatConversionCharToConvValue(c))) != 0;
}
constexpr bool Contains(FormatConversionCharSet set,
FormatConversionCharSet c) {
return (static_cast<uint64_t>(set) & static_cast<uint64_t>(c)) ==
static_cast<uint64_t>(c);
}
constexpr bool Contains(FormatConversionCharSet set, FormatConversionChar c) {
return (static_cast<uint64_t>(set) & FormatConversionCharToConvInt(c)) != 0;
}
inline size_t Excess(size_t used, size_t capacity) {
return used < capacity ? capacity - used : 0;
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/str_format/extension.h"
#include <errno.h>
#include <algorithm>
#include <string>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
std::string FlagsToString(Flags v) {
std::string s;
s.append(FlagsContains(v, Flags::kLeft) ? "-" : "");
s.append(FlagsContains(v, Flags::kShowPos) ? "+" : "");
s.append(FlagsContains(v, Flags::kSignCol) ? " " : "");
s.append(FlagsContains(v, Flags::kAlt) ? "#" : "");
s.append(FlagsContains(v, Flags::kZero) ? "0" : "");
return s;
}
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
#define ABSL_INTERNAL_X_VAL(id) \
constexpr absl::FormatConversionChar FormatConversionCharInternal::id;
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_X_VAL, )
#undef ABSL_INTERNAL_X_VAL
constexpr absl::FormatConversionChar FormatConversionCharInternal::kNone;
#define ABSL_INTERNAL_CHAR_SET_CASE(c) \
constexpr FormatConversionCharSet FormatConversionCharSetInternal::c;
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(ABSL_INTERNAL_CHAR_SET_CASE, )
#undef ABSL_INTERNAL_CHAR_SET_CASE
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kStar;
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kIntegral;
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kFloating;
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kNumeric;
constexpr FormatConversionCharSet FormatConversionCharSetInternal::kPointer;
#endif
bool FormatSinkImpl::PutPaddedString(string_view value, int width,
int precision, bool left) {
size_t space_remaining = 0;
if (width >= 0)
space_remaining = static_cast<size_t>(width);
size_t n = value.size();
if (precision >= 0) n = std::min(n, static_cast<size_t>(precision));
string_view shown(value.data(), n);
space_remaining = Excess(shown.size(), space_remaining);
if (!left) Append(space_remaining, ' ');
Append(shown);
if (left) Append(space_remaining, ' ');
return true;
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/str_format/extension.h"
#include <random>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/str_format.h"
#include "absl/strings/string_view.h"
namespace my_namespace {
class UserDefinedType {
public:
UserDefinedType() = default;
void Append(absl::string_view str) { value_.append(str.data(), str.size()); }
const std::string& Value() const { return value_; }
friend void AbslFormatFlush(UserDefinedType* x, absl::string_view str) {
x->Append(str);
}
private:
std::string value_;
};
}
namespace {
std::string MakeRandomString(size_t len) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis('a', 'z');
std::string s(len, '0');
for (char& c : s) {
c = dis(gen);
}
return s;
}
TEST(FormatExtensionTest, SinkAppendSubstring) {
for (size_t chunk_size : {1, 10, 100, 1000, 10000}) {
std::string expected, actual;
absl::str_format_internal::FormatSinkImpl sink(&actual);
for (size_t chunks = 0; chunks < 10; ++chunks) {
std::string rand = MakeRandomString(chunk_size);
expected += rand;
sink.Append(rand);
}
sink.Flush();
EXPECT_EQ(actual, expected);
}
}
TEST(FormatExtensionTest, SinkAppendChars) {
for (size_t chunk_size : {1, 10, 100, 1000, 10000}) {
std::string expected, actual;
absl::str_format_internal::FormatSinkImpl sink(&actual);
for (size_t chunks = 0; chunks < 10; ++chunks) {
std::string rand = MakeRandomString(1);
expected.append(chunk_size, rand[0]);
sink.Append(chunk_size, rand[0]);
}
sink.Flush();
EXPECT_EQ(actual, expected);
}
}
TEST(FormatExtensionTest, VerifyEnumEquality) {
#define X_VAL(id) \
EXPECT_EQ(absl::FormatConversionChar::id, \
absl::str_format_internal::FormatConversionCharInternal::id);
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(X_VAL, );
#undef X_VAL
#define X_VAL(id) \
EXPECT_EQ(absl::FormatConversionCharSet::id, \
absl::str_format_internal::FormatConversionCharSetInternal::id);
ABSL_INTERNAL_CONVERSION_CHARS_EXPAND_(X_VAL, );
#undef X_VAL
}
TEST(FormatExtensionTest, SetConversionChar) {
absl::str_format_internal::FormatConversionSpecImpl spec;
EXPECT_EQ(spec.conversion_char(),
absl::str_format_internal::FormatConversionCharInternal::kNone);
spec.set_conversion_char(
absl::str_format_internal::FormatConversionCharInternal::d);
EXPECT_EQ(spec.conversion_char(),
absl::str_format_internal::FormatConversionCharInternal::d);
}
} | 2,579 |
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_BIND_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_BIND_H_
#include <cassert>
#include <cstdio>
#include <ostream>
#include <string>
#include "absl/base/config.h"
#include "absl/container/inlined_vector.h"
#include "absl/strings/internal/str_format/arg.h"
#include "absl/strings/internal/str_format/checker.h"
#include "absl/strings/internal/str_format/constexpr_parser.h"
#include "absl/strings/internal/str_format/extension.h"
#include "absl/strings/internal/str_format/parser.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
#include "absl/utility/utility.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class UntypedFormatSpec;
namespace str_format_internal {
class BoundConversion : public FormatConversionSpecImpl {
public:
const FormatArgImpl* arg() const { return arg_; }
void set_arg(const FormatArgImpl* a) { arg_ = a; }
private:
const FormatArgImpl* arg_;
};
class UntypedFormatSpecImpl {
public:
UntypedFormatSpecImpl() = delete;
explicit UntypedFormatSpecImpl(string_view s)
: data_(s.data()), size_(s.size()) {}
explicit UntypedFormatSpecImpl(
const str_format_internal::ParsedFormatBase* pc)
: data_(pc), size_(~size_t{}) {}
bool has_parsed_conversion() const { return size_ == ~size_t{}; }
string_view str() const {
assert(!has_parsed_conversion());
return string_view(static_cast<const char*>(data_), size_);
}
const str_format_internal::ParsedFormatBase* parsed_conversion() const {
assert(has_parsed_conversion());
return static_cast<const str_format_internal::ParsedFormatBase*>(data_);
}
template <typename T>
static const UntypedFormatSpecImpl& Extract(const T& s) {
return s.spec_;
}
private:
const void* data_;
size_t size_;
};
template <typename T, FormatConversionCharSet...>
struct MakeDependent {
using type = T;
};
template <FormatConversionCharSet... Args>
class FormatSpecTemplate
: public MakeDependent<UntypedFormatSpec, Args...>::type {
using Base = typename MakeDependent<UntypedFormatSpec, Args...>::type;
template <bool res>
struct ErrorMaker {
constexpr bool operator()(int) const { return res; }
};
template <int i, int j>
static constexpr bool CheckArity(ErrorMaker<true> SpecifierCount = {},
ErrorMaker<i == j> ParametersPassed = {}) {
static_assert(SpecifierCount(i) == ParametersPassed(j),
"Number of arguments passed must match the number of "
"conversion specifiers.");
return true;
}
template <FormatConversionCharSet specified, FormatConversionCharSet passed,
int arg>
static constexpr bool CheckMatch(
ErrorMaker<Contains(specified, passed)> MismatchedArgumentNumber = {}) {
static_assert(MismatchedArgumentNumber(arg),
"Passed argument must match specified format.");
return true;
}
template <FormatConversionCharSet... C, size_t... I>
static bool CheckMatches(absl::index_sequence<I...>) {
bool res[] = {true, CheckMatch<Args, C, I + 1>()...};
(void)res;
return true;
}
public:
#ifdef ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
FormatSpecTemplate(...)
__attribute__((unavailable("Format string is not constexpr.")));
template <typename = void>
FormatSpecTemplate(const char* s)
__attribute__((
enable_if(str_format_internal::EnsureConstexpr(s), "constexpr trap"),
unavailable(
"Format specified does not match the arguments passed.")));
template <typename T = void>
FormatSpecTemplate(string_view s)
__attribute__((enable_if(str_format_internal::EnsureConstexpr(s),
"constexpr trap")))
: Base("to avoid noise in the compiler error") {
static_assert(sizeof(T*) == 0,
"Format specified does not match the arguments passed.");
}
FormatSpecTemplate(const char* s)
__attribute__((enable_if(ValidFormatImpl<Args...>(s), "bad format trap")))
: Base(s) {}
FormatSpecTemplate(string_view s)
__attribute__((enable_if(ValidFormatImpl<Args...>(s), "bad format trap")))
: Base(s) {}
#else
FormatSpecTemplate(const char* s) : Base(s) {}
FormatSpecTemplate(string_view s) : Base(s) {}
#endif
template <FormatConversionCharSet... C>
FormatSpecTemplate(const ExtendedParsedFormat<C...>& pc)
: Base(&pc) {
CheckArity<sizeof...(C), sizeof...(Args)>();
CheckMatches<C...>(absl::make_index_sequence<sizeof...(C)>{});
}
};
class Streamable {
public:
Streamable(const UntypedFormatSpecImpl& format,
absl::Span<const FormatArgImpl> args)
: format_(format), args_(args.begin(), args.end()) {}
std::ostream& Print(std::ostream& os) const;
friend std::ostream& operator<<(std::ostream& os, const Streamable& l) {
return l.Print(os);
}
private:
const UntypedFormatSpecImpl& format_;
absl::InlinedVector<FormatArgImpl, 4> args_;
};
std::string Summarize(UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
bool BindWithPack(const UnboundConversion* props,
absl::Span<const FormatArgImpl> pack, BoundConversion* bound);
bool FormatUntyped(FormatRawSinkImpl raw_sink, UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
std::string& AppendPack(std::string* out, UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
std::string FormatPack(UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
int FprintF(std::FILE* output, UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
int SnprintF(char* output, size_t size, UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args);
template <typename T>
class StreamedWrapper {
public:
explicit StreamedWrapper(const T& v) : v_(v) {}
private:
template <typename S>
friend ArgConvertResult<FormatConversionCharSetUnion(
FormatConversionCharSetInternal::s, FormatConversionCharSetInternal::v)>
FormatConvertImpl(const StreamedWrapper<S>& v, FormatConversionSpecImpl conv,
FormatSinkImpl* out);
const T& v_;
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/str_format/bind.h"
#include <algorithm>
#include <cassert>
#include <cerrno>
#include <cstddef>
#include <cstdio>
#include <ios>
#include <limits>
#include <ostream>
#include <sstream>
#include <string>
#include "absl/base/config.h"
#include "absl/base/optimization.h"
#include "absl/strings/internal/str_format/arg.h"
#include "absl/strings/internal/str_format/constexpr_parser.h"
#include "absl/strings/internal/str_format/extension.h"
#include "absl/strings/internal/str_format/output.h"
#include "absl/strings/string_view.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
inline bool BindFromPosition(int position, int* value,
absl::Span<const FormatArgImpl> pack) {
assert(position > 0);
if (static_cast<size_t>(position) > pack.size()) {
return false;
}
return FormatArgImplFriend::ToInt(pack[static_cast<size_t>(position) - 1],
value);
}
class ArgContext {
public:
explicit ArgContext(absl::Span<const FormatArgImpl> pack) : pack_(pack) {}
bool Bind(const UnboundConversion* unbound, BoundConversion* bound);
private:
absl::Span<const FormatArgImpl> pack_;
};
inline bool ArgContext::Bind(const UnboundConversion* unbound,
BoundConversion* bound) {
const FormatArgImpl* arg = nullptr;
int arg_position = unbound->arg_position;
if (static_cast<size_t>(arg_position - 1) >= pack_.size()) return false;
arg = &pack_[static_cast<size_t>(arg_position - 1)];
if (unbound->flags != Flags::kBasic) {
int width = unbound->width.value();
bool force_left = false;
if (unbound->width.is_from_arg()) {
if (!BindFromPosition(unbound->width.get_from_arg(), &width, pack_))
return false;
if (width < 0) {
force_left = true;
width = -std::max(width, -std::numeric_limits<int>::max());
}
}
int precision = unbound->precision.value();
if (unbound->precision.is_from_arg()) {
if (!BindFromPosition(unbound->precision.get_from_arg(), &precision,
pack_))
return false;
}
FormatConversionSpecImplFriend::SetWidth(width, bound);
FormatConversionSpecImplFriend::SetPrecision(precision, bound);
if (force_left) {
FormatConversionSpecImplFriend::SetFlags(unbound->flags | Flags::kLeft,
bound);
} else {
FormatConversionSpecImplFriend::SetFlags(unbound->flags, bound);
}
FormatConversionSpecImplFriend::SetLengthMod(unbound->length_mod, bound);
} else {
FormatConversionSpecImplFriend::SetFlags(unbound->flags, bound);
FormatConversionSpecImplFriend::SetWidth(-1, bound);
FormatConversionSpecImplFriend::SetPrecision(-1, bound);
}
FormatConversionSpecImplFriend::SetConversionChar(unbound->conv, bound);
bound->set_arg(arg);
return true;
}
template <typename Converter>
class ConverterConsumer {
public:
ConverterConsumer(Converter converter, absl::Span<const FormatArgImpl> pack)
: converter_(converter), arg_context_(pack) {}
bool Append(string_view s) {
converter_.Append(s);
return true;
}
bool ConvertOne(const UnboundConversion& conv, string_view conv_string) {
BoundConversion bound;
if (!arg_context_.Bind(&conv, &bound)) return false;
return converter_.ConvertOne(bound, conv_string);
}
private:
Converter converter_;
ArgContext arg_context_;
};
template <typename Converter>
bool ConvertAll(const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args, Converter converter) {
if (format.has_parsed_conversion()) {
return format.parsed_conversion()->ProcessFormat(
ConverterConsumer<Converter>(converter, args));
} else {
return ParseFormatString(format.str(),
ConverterConsumer<Converter>(converter, args));
}
}
class DefaultConverter {
public:
explicit DefaultConverter(FormatSinkImpl* sink) : sink_(sink) {}
void Append(string_view s) const { sink_->Append(s); }
bool ConvertOne(const BoundConversion& bound, string_view ) const {
return FormatArgImplFriend::Convert(*bound.arg(), bound, sink_);
}
private:
FormatSinkImpl* sink_;
};
class SummarizingConverter {
public:
explicit SummarizingConverter(FormatSinkImpl* sink) : sink_(sink) {}
void Append(string_view s) const { sink_->Append(s); }
bool ConvertOne(const BoundConversion& bound, string_view ) const {
UntypedFormatSpecImpl spec("%d");
std::ostringstream ss;
ss << "{" << Streamable(spec, {*bound.arg()}) << ":"
<< FormatConversionSpecImplFriend::FlagsToString(bound);
if (bound.width() >= 0) ss << bound.width();
if (bound.precision() >= 0) ss << "." << bound.precision();
ss << bound.conversion_char() << "}";
Append(ss.str());
return true;
}
private:
FormatSinkImpl* sink_;
};
}
bool BindWithPack(const UnboundConversion* props,
absl::Span<const FormatArgImpl> pack,
BoundConversion* bound) {
return ArgContext(pack).Bind(props, bound);
}
std::string Summarize(const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
typedef SummarizingConverter Converter;
std::string out;
{
FormatSinkImpl sink(&out);
if (!ConvertAll(format, args, Converter(&sink))) {
return "";
}
}
return out;
}
bool FormatUntyped(FormatRawSinkImpl raw_sink,
const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
FormatSinkImpl sink(raw_sink);
using Converter = DefaultConverter;
return ConvertAll(format, args, Converter(&sink));
}
std::ostream& Streamable::Print(std::ostream& os) const {
if (!FormatUntyped(&os, format_, args_)) os.setstate(std::ios::failbit);
return os;
}
std::string& AppendPack(std::string* out, const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
size_t orig = out->size();
if (ABSL_PREDICT_FALSE(!FormatUntyped(out, format, args))) {
out->erase(orig);
}
return *out;
}
std::string FormatPack(UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
std::string out;
if (ABSL_PREDICT_FALSE(!FormatUntyped(&out, format, args))) {
out.clear();
}
return out;
}
int FprintF(std::FILE* output, const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
FILERawSink sink(output);
if (!FormatUntyped(&sink, format, args)) {
errno = EINVAL;
return -1;
}
if (sink.error()) {
errno = sink.error();
return -1;
}
if (sink.count() > static_cast<size_t>(std::numeric_limits<int>::max())) {
errno = EFBIG;
return -1;
}
return static_cast<int>(sink.count());
}
int SnprintF(char* output, size_t size, const UntypedFormatSpecImpl format,
absl::Span<const FormatArgImpl> args) {
BufferRawSink sink(output, size ? size - 1 : 0);
if (!FormatUntyped(&sink, format, args)) {
errno = EINVAL;
return -1;
}
size_t total = sink.total_written();
if (size) output[std::min(total, size - 1)] = 0;
return static_cast<int>(total);
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/str_format/bind.h"
#include <string.h>
#include <limits>
#include "gtest/gtest.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
class FormatBindTest : public ::testing::Test {
public:
bool Extract(const char *s, UnboundConversion *props, int *next) const {
return ConsumeUnboundConversion(s, s + strlen(s), props, next) ==
s + strlen(s);
}
};
TEST_F(FormatBindTest, BindSingle) {
struct Expectation {
int line;
const char *fmt;
int ok_phases;
const FormatArgImpl *arg;
int width;
int precision;
int next_arg;
};
const int no = -1;
const int ia[] = { 10, 20, 30, 40};
const FormatArgImpl args[] = {FormatArgImpl(ia[0]), FormatArgImpl(ia[1]),
FormatArgImpl(ia[2]), FormatArgImpl(ia[3])};
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
const Expectation kExpect[] = {
{__LINE__, "d", 2, &args[0], no, no, 2},
{__LINE__, "4d", 2, &args[0], 4, no, 2},
{__LINE__, ".5d", 2, &args[0], no, 5, 2},
{__LINE__, "4.5d", 2, &args[0], 4, 5, 2},
{__LINE__, "*d", 2, &args[1], 10, no, 3},
{__LINE__, ".*d", 2, &args[1], no, 10, 3},
{__LINE__, "*.*d", 2, &args[2], 10, 20, 4},
{__LINE__, "1$d", 2, &args[0], no, no, 0},
{__LINE__, "2$d", 2, &args[1], no, no, 0},
{__LINE__, "3$d", 2, &args[2], no, no, 0},
{__LINE__, "4$d", 2, &args[3], no, no, 0},
{__LINE__, "2$*1$d", 2, &args[1], 10, no, 0},
{__LINE__, "2$*2$d", 2, &args[1], 20, no, 0},
{__LINE__, "2$*3$d", 2, &args[1], 30, no, 0},
{__LINE__, "2$.*1$d", 2, &args[1], no, 10, 0},
{__LINE__, "2$.*2$d", 2, &args[1], no, 20, 0},
{__LINE__, "2$.*3$d", 2, &args[1], no, 30, 0},
{__LINE__, "2$*3$.*1$d", 2, &args[1], 30, 10, 0},
{__LINE__, "2$*2$.*2$d", 2, &args[1], 20, 20, 0},
{__LINE__, "2$*1$.*3$d", 2, &args[1], 10, 30, 0},
{__LINE__, "2$*3$.*1$d", 2, &args[1], 30, 10, 0},
{__LINE__, "1$*d", 0},
{__LINE__, "*2$d", 0},
{__LINE__, "6$d", 1},
{__LINE__, "1$6$d", 0},
{__LINE__, "1$.6$d", 0},
{__LINE__, "1$*6$d", 1},
{__LINE__, "1$.*6$d", 1},
};
#pragma GCC diagnostic pop
for (const Expectation &e : kExpect) {
SCOPED_TRACE(e.line);
SCOPED_TRACE(e.fmt);
UnboundConversion props;
BoundConversion bound;
int ok_phases = 0;
int next = 0;
if (Extract(e.fmt, &props, &next)) {
++ok_phases;
if (BindWithPack(&props, args, &bound)) {
++ok_phases;
}
}
EXPECT_EQ(e.ok_phases, ok_phases);
if (e.ok_phases < 2) continue;
if (e.arg != nullptr) {
EXPECT_EQ(e.arg, bound.arg());
}
EXPECT_EQ(e.width, bound.width());
EXPECT_EQ(e.precision, bound.precision());
}
}
TEST_F(FormatBindTest, WidthUnderflowRegression) {
UnboundConversion props;
BoundConversion bound;
int next = 0;
const int args_i[] = {std::numeric_limits<int>::min(), 17};
const FormatArgImpl args[] = {FormatArgImpl(args_i[0]),
FormatArgImpl(args_i[1])};
ASSERT_TRUE(Extract("*d", &props, &next));
ASSERT_TRUE(BindWithPack(&props, args, &bound));
EXPECT_EQ(bound.width(), std::numeric_limits<int>::max());
EXPECT_EQ(bound.arg(), args + 1);
}
TEST_F(FormatBindTest, FormatPack) {
struct Expectation {
int line;
const char *fmt;
const char *summary;
};
const int ia[] = { 10, 20, 30, 40, -10 };
const FormatArgImpl args[] = {FormatArgImpl(ia[0]), FormatArgImpl(ia[1]),
FormatArgImpl(ia[2]), FormatArgImpl(ia[3]),
FormatArgImpl(ia[4])};
const Expectation kExpect[] = {
{__LINE__, "a%4db%dc", "a{10:4d}b{20:d}c"},
{__LINE__, "a%.4db%dc", "a{10:.4d}b{20:d}c"},
{__LINE__, "a%4.5db%dc", "a{10:4.5d}b{20:d}c"},
{__LINE__, "a%db%4.5dc", "a{10:d}b{20:4.5d}c"},
{__LINE__, "a%db%*.*dc", "a{10:d}b{40:20.30d}c"},
{__LINE__, "a%.*fb", "a{20:.10f}b"},
{__LINE__, "a%1$db%2$*3$.*4$dc", "a{10:d}b{20:30.40d}c"},
{__LINE__, "a%4$db%3$*2$.*1$dc", "a{40:d}b{30:20.10d}c"},
{__LINE__, "a%04ldb", "a{10:04d}b"},
{__LINE__, "a%-#04lldb", "a{10:-#04d}b"},
{__LINE__, "a%1$*5$db", "a{10:-10d}b"},
{__LINE__, "a%1$.*5$db", "a{10:d}b"},
};
for (const Expectation &e : kExpect) {
absl::string_view fmt = e.fmt;
SCOPED_TRACE(e.line);
SCOPED_TRACE(e.fmt);
UntypedFormatSpecImpl format(fmt);
EXPECT_EQ(e.summary,
str_format_internal::Summarize(format, absl::MakeSpan(args)))
<< "line:" << e.line;
}
}
}
}
ABSL_NAMESPACE_END
} | 2,580 |
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_ARG_H_
#include <string.h>
#include <wchar.h>
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <utility>
#include "absl/base/config.h"
#include "absl/base/optimization.h"
#include "absl/meta/type_traits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/has_absl_stringify.h"
#include "absl/strings/internal/str_format/extension.h"
#include "absl/strings/string_view.h"
#if defined(ABSL_HAVE_STD_STRING_VIEW)
#include <string_view>
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
class Cord;
class FormatCountCapture;
class FormatSink;
template <absl::FormatConversionCharSet C>
struct FormatConvertResult;
class FormatConversionSpec;
namespace str_format_internal {
template <FormatConversionCharSet C>
struct ArgConvertResult {
bool value;
};
using IntegralConvertResult = ArgConvertResult<FormatConversionCharSetUnion(
FormatConversionCharSetInternal::c,
FormatConversionCharSetInternal::kNumeric,
FormatConversionCharSetInternal::kStar,
FormatConversionCharSetInternal::v)>;
using FloatingConvertResult = ArgConvertResult<FormatConversionCharSetUnion(
FormatConversionCharSetInternal::kFloating,
FormatConversionCharSetInternal::v)>;
using CharConvertResult = ArgConvertResult<FormatConversionCharSetUnion(
FormatConversionCharSetInternal::c,
FormatConversionCharSetInternal::kNumeric,
FormatConversionCharSetInternal::kStar)>;
template <typename T, typename = void>
struct HasUserDefinedConvert : std::false_type {};
template <typename T>
struct HasUserDefinedConvert<T, void_t<decltype(AbslFormatConvert(
std::declval<const T&>(),
std::declval<const FormatConversionSpec&>(),
std::declval<FormatSink*>()))>>
: std::true_type {};
void AbslFormatConvert();
void AbslStringify();
template <typename T>
bool ConvertIntArg(T v, FormatConversionSpecImpl conv, FormatSinkImpl* sink);
extern template bool ConvertIntArg<char>(char v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
extern template bool ConvertIntArg<signed char>(signed char v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
extern template bool ConvertIntArg<unsigned char>(unsigned char v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
extern template bool ConvertIntArg<wchar_t>(wchar_t v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
extern template bool ConvertIntArg<short>(short v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
extern template bool ConvertIntArg<unsigned short>(
unsigned short v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
extern template bool ConvertIntArg<int>(int v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
extern template bool ConvertIntArg<unsigned int>(unsigned int v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
extern template bool ConvertIntArg<long>(
long v, FormatConversionSpecImpl conv, FormatSinkImpl* sink);
extern template bool ConvertIntArg<unsigned long>(unsigned long v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
extern template bool ConvertIntArg<long long>(long long v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
extern template bool ConvertIntArg<unsigned long long>(
unsigned long long v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
template <typename T>
auto FormatConvertImpl(const T& v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink)
-> decltype(AbslFormatConvert(v,
std::declval<const FormatConversionSpec&>(),
std::declval<FormatSink*>())) {
using FormatConversionSpecT =
absl::enable_if_t<sizeof(const T& (*)()) != 0, FormatConversionSpec>;
using FormatSinkT =
absl::enable_if_t<sizeof(const T& (*)()) != 0, FormatSink>;
auto fcs = conv.Wrap<FormatConversionSpecT>();
auto fs = sink->Wrap<FormatSinkT>();
return AbslFormatConvert(v, fcs, &fs);
}
template <typename T>
auto FormatConvertImpl(const T& v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink)
-> std::enable_if_t<std::is_enum<T>::value &&
std::is_void<decltype(AbslStringify(
std::declval<FormatSink&>(), v))>::value,
IntegralConvertResult> {
if (conv.conversion_char() == FormatConversionCharInternal::v) {
using FormatSinkT =
absl::enable_if_t<sizeof(const T& (*)()) != 0, FormatSink>;
auto fs = sink->Wrap<FormatSinkT>();
AbslStringify(fs, v);
return {true};
} else {
return {ConvertIntArg(
static_cast<typename std::underlying_type<T>::type>(v), conv, sink)};
}
}
template <typename T>
auto FormatConvertImpl(const T& v, FormatConversionSpecImpl,
FormatSinkImpl* sink)
-> std::enable_if_t<!std::is_enum<T>::value &&
!std::is_same<T, absl::Cord>::value &&
std::is_void<decltype(AbslStringify(
std::declval<FormatSink&>(), v))>::value,
ArgConvertResult<FormatConversionCharSetInternal::v>> {
using FormatSinkT =
absl::enable_if_t<sizeof(const T& (*)()) != 0, FormatSink>;
auto fs = sink->Wrap<FormatSinkT>();
AbslStringify(fs, v);
return {true};
}
template <typename T>
class StreamedWrapper;
struct VoidPtr {
VoidPtr() = default;
template <typename T,
decltype(reinterpret_cast<uintptr_t>(std::declval<T*>())) = 0>
VoidPtr(T* ptr)
: value(ptr ? reinterpret_cast<uintptr_t>(ptr) : 0) {}
uintptr_t value;
};
template <FormatConversionCharSet C>
constexpr FormatConversionCharSet ExtractCharSet(FormatConvertResult<C>) {
return C;
}
template <FormatConversionCharSet C>
constexpr FormatConversionCharSet ExtractCharSet(ArgConvertResult<C>) {
return C;
}
ArgConvertResult<FormatConversionCharSetInternal::p> FormatConvertImpl(
VoidPtr v, FormatConversionSpecImpl conv, FormatSinkImpl* sink);
using StringConvertResult = ArgConvertResult<FormatConversionCharSetUnion(
FormatConversionCharSetInternal::s,
FormatConversionCharSetInternal::v)>;
StringConvertResult FormatConvertImpl(const std::string& v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
StringConvertResult FormatConvertImpl(const std::wstring& v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
StringConvertResult FormatConvertImpl(string_view v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
#if defined(ABSL_HAVE_STD_STRING_VIEW)
StringConvertResult FormatConvertImpl(std::wstring_view v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
#if !defined(ABSL_USES_STD_STRING_VIEW)
inline StringConvertResult FormatConvertImpl(std::string_view v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink) {
return FormatConvertImpl(absl::string_view(v.data(), v.size()), conv, sink);
}
#endif
#endif
using StringPtrConvertResult = ArgConvertResult<FormatConversionCharSetUnion(
FormatConversionCharSetInternal::s,
FormatConversionCharSetInternal::p)>;
StringPtrConvertResult FormatConvertImpl(const char* v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
StringPtrConvertResult FormatConvertImpl(const wchar_t* v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
StringPtrConvertResult FormatConvertImpl(std::nullptr_t,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
template <class AbslCord, typename std::enable_if<std::is_same<
AbslCord, absl::Cord>::value>::type* = nullptr>
StringConvertResult FormatConvertImpl(const AbslCord& value,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink) {
bool is_left = conv.has_left_flag();
size_t space_remaining = 0;
int width = conv.width();
if (width >= 0) space_remaining = static_cast<size_t>(width);
size_t to_write = value.size();
int precision = conv.precision();
if (precision >= 0)
to_write = (std::min)(to_write, static_cast<size_t>(precision));
space_remaining = Excess(to_write, space_remaining);
if (space_remaining > 0 && !is_left) sink->Append(space_remaining, ' ');
for (string_view piece : value.Chunks()) {
if (piece.size() > to_write) {
piece.remove_suffix(piece.size() - to_write);
to_write = 0;
} else {
to_write -= piece.size();
}
sink->Append(piece);
if (to_write == 0) {
break;
}
}
if (space_remaining > 0 && is_left) sink->Append(space_remaining, ' ');
return {true};
}
bool ConvertBoolArg(bool v, FormatSinkImpl* sink);
FloatingConvertResult FormatConvertImpl(float v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
FloatingConvertResult FormatConvertImpl(double v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
FloatingConvertResult FormatConvertImpl(long double v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
CharConvertResult FormatConvertImpl(char v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
CharConvertResult FormatConvertImpl(wchar_t v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(signed char v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned char v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(short v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned short v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(int v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(long v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned long v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(long long v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(unsigned long long v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(int128 v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
IntegralConvertResult FormatConvertImpl(uint128 v,
FormatConversionSpecImpl conv,
FormatSinkImpl* sink);
template <typename T, enable_if_t<std::is_same<T, bool>::value, int> = 0>
IntegralConvertResult FormatConvertImpl(T v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink) {
if (conv.conversion_char() == FormatConversionCharInternal::v) {
return {ConvertBoolArg(v, sink)};
}
return FormatConvertImpl(static_cast<int>(v), conv, sink);
}
template <typename T>
typename std::enable_if<std::is_enum<T>::value &&
!HasUserDefinedConvert<T>::value &&
!HasAbslStringify<T>::value,
IntegralConvertResult>::type
FormatConvertImpl(T v, FormatConversionSpecImpl conv, FormatSinkImpl* sink);
template <typename T>
StringConvertResult FormatConvertImpl(const StreamedWrapper<T>& v,
FormatConversionSpecImpl conv,
FormatSinkImpl* out) {
std::ostringstream oss;
oss << v.v_;
if (!oss) return {false};
return str_format_internal::FormatConvertImpl(oss.str(), conv, out);
}
struct FormatCountCaptureHelper {
template <class T = int>
static ArgConvertResult<FormatConversionCharSetInternal::n> ConvertHelper(
const FormatCountCapture& v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink) {
const absl::enable_if_t<sizeof(T) != 0, FormatCountCapture>& v2 = v;
if (conv.conversion_char() !=
str_format_internal::FormatConversionCharInternal::n) {
return {false};
}
*v2.p_ = static_cast<int>(sink->size());
return {true};
}
};
template <class T = int>
ArgConvertResult<FormatConversionCharSetInternal::n> FormatConvertImpl(
const FormatCountCapture& v, FormatConversionSpecImpl conv,
FormatSinkImpl* sink) {
return FormatCountCaptureHelper::ConvertHelper(v, conv, sink);
}
struct FormatArgImplFriend {
template <typename Arg>
static bool ToInt(Arg arg, int* out) {
return arg.dispatcher_(arg.data_, {}, out);
}
template <typename Arg>
static bool Convert(Arg arg, FormatConversionSpecImpl conv,
FormatSinkImpl* out) {
return arg.dispatcher_(arg.data_, conv, out);
}
template <typename Arg>
static typename Arg::Dispatcher GetVTablePtrForTest(Arg arg) {
return arg.dispatcher_;
}
};
template <typename Arg>
constexpr FormatConversionCharSet ArgumentToConv() {
using ConvResult = decltype(str_format_internal::FormatConvertImpl(
std::declval<const Arg&>(),
std::declval<const FormatConversionSpecImpl&>(),
std::declval<FormatSinkImpl*>()));
return absl::str_format_internal::ExtractCharSet(ConvResult{});
}
class FormatArgImpl {
private:
enum { kInlinedSpace = 8 };
using VoidPtr = str_format_internal::VoidPtr;
union Data {
const void* ptr;
const volatile void* volatile_ptr;
char buf[kInlinedSpace];
};
using Dispatcher = bool (*)(Data, FormatConversionSpecImpl, void* out);
template <typename T>
struct store_by_value
: std::integral_constant<bool, (sizeof(T) <= kInlinedSpace) &&
(std::is_integral<T>::value ||
std::is_floating_point<T>::value ||
std::is_pointer<T>::value ||
std::is_same<VoidPtr, T>::value)> {};
enum StoragePolicy { ByPointer, ByVolatilePointer, ByValue };
template <typename T>
struct storage_policy
: std::integral_constant<StoragePolicy,
(std::is_volatile<T>::value
? ByVolatilePointer
: (store_by_value<T>::value ? ByValue
: ByPointer))> {
};
template <typename T, typename = void>
struct DecayType {
static constexpr bool kHasUserDefined =
str_format_internal::HasUserDefinedConvert<T>::value ||
HasAbslStringify<T>::value;
using type = typename std::conditional<
!kHasUserDefined && std::is_convertible<T, const char*>::value,
const char*,
typename std::conditional<
!kHasUserDefined && std::is_convertible<T, const wchar_t*>::value,
const wchar_t*,
typename std::conditional<
!kHasUserDefined && std::is_convertible<T, VoidPtr>::value,
VoidPtr,
const T&>::type>::type>::type;
};
template <typename T>
struct DecayType<
T, typename std::enable_if<
!str_format_internal::HasUserDefinedConvert<T>::value &&
!HasAbslStringify<T>::value && std::is_enum<T>::value>::type> {
using type = decltype(+typename std::underlying_type<T>::type());
};
public:
template <typename T>
explicit FormatArgImpl(const T& value) {
using D = typename DecayType<T>::type;
static_assert(
std::is_same<D, const T&>::value || storage_policy<D>::value == ByValue,
"Decayed types must be stored by value");
Init(static_cast<D>(value));
}
private:
friend struct str_format_internal::FormatArgImplFriend;
template <typename T, StoragePolicy = storage_policy<T>::value>
struct Manager;
template <typename T>
struct Manager<T, ByPointer> {
static Data SetValue(const T& value) {
Data data;
data.ptr = std::addressof(value);
return data;
}
static const T& Value(Data arg) { return *static_cast<const T*>(arg.ptr); }
};
template <typename T>
struct Manager<T, ByVolatilePointer> {
static Data SetValue(const T& value) {
Data data;
data.volatile_ptr = &value;
return data;
}
static const T& Value(Data arg) {
return *static_cast<const T*>(arg.volatile_ptr);
}
};
template <typename T>
struct Manager<T, ByValue> {
static Data SetValue(const T& value) {
Data data;
memcpy(data.buf, &value, sizeof(value));
return data;
}
static T Value(Data arg) {
T value;
memcpy(&value, arg.buf, sizeof(T));
return value;
}
};
template <typename T>
void Init(const T& value) {
data_ = Manager<T>::SetValue(value);
dispatcher_ = &Dispatch<T>;
}
template <typename T>
static int ToIntVal(const T& val) {
using CommonType = typename std::conditional<std::is_signed<T>::value,
int64_t, uint64_t>::type;
if (static_cast<CommonType>(val) >
static_cast<CommonType>((std::numeric_limits<int>::max)())) {
return (std::numeric_limits<int>::max)();
} else if (std::is_signed<T>::value &&
static_cast<CommonType>(val) <
static_cast<CommonType>((std::numeric_limits<int>::min)())) {
return (std::numeric_limits<int>::min)();
}
return static_cast<int>(val);
}
template <typename T>
static bool ToInt(Data arg, int* out, std::true_type ,
std::false_type) {
*out = ToIntVal(Manager<T>::Value(arg));
return true;
}
template <typename T>
static bool ToInt(Data arg, int* out, std::false_type,
std::true_type ) {
*out = ToIntVal(static_cast<typename std::underlying_type<T>::type>(
Manager<T>::Value(arg)));
return true;
}
template <typename T>
static bool ToInt(Data, int*, std::false_type, std::false_type) {
return false;
}
template <typename T>
static bool Dispatch(Data arg, FormatConversionSpecImpl spec, void* out) {
if (ABSL_PREDICT_FALSE(spec.conversion_char() ==
FormatConversionCharInternal::kNone)) {
return ToInt<T>(arg, static_cast<int*>(out), std::is_integral<T>(),
std::is_enum<T>());
}
if (ABSL_PREDICT_FALSE(!Contains(ArgumentToConv<T>(),
spec.conversion_char()))) {
return false;
}
return str_format_internal::FormatConvertImpl(
Manager<T>::Value(arg), spec,
static_cast<FormatSinkImpl*>(out))
.value;
}
Data data_;
Dispatcher dispatcher_;
};
#define ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(T, E) \
E template bool FormatArgImpl::Dispatch<T>(Data, FormatConversionSpecImpl, \
void*)
#define ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_NO_WSTRING_VIEW_(...) \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(str_format_internal::VoidPtr, \
__VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(bool, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(char, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(signed char, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned char, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(short, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned short, \
__VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(int, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned int, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(long, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned long, \
__VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(long long, \
__VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(unsigned long long, \
__VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(int128, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(uint128, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(float, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(double, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(long double, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(const char*, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(std::string, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(string_view, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(const wchar_t*, __VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(std::wstring, __VA_ARGS__)
#if defined(ABSL_HAVE_STD_STRING_VIEW)
#define ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_(...) \
ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_NO_WSTRING_VIEW_( \
__VA_ARGS__); \
ABSL_INTERNAL_FORMAT_DISPATCH_INSTANTIATE_(std::wstring_view, __VA_ARGS__)
#else
#define ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_(...) \
ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_NO_WSTRING_VIEW_(__VA_ARGS__)
#endif
ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_(extern);
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/str_format/arg.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <cwchar>
#include <string>
#include <type_traits>
#include "absl/base/config.h"
#include "absl/base/optimization.h"
#include "absl/container/fixed_array.h"
#include "absl/numeric/int128.h"
#include "absl/strings/internal/str_format/extension.h"
#include "absl/strings/internal/str_format/float_conversion.h"
#include "absl/strings/numbers.h"
#include "absl/strings/string_view.h"
#if defined(ABSL_HAVE_STD_STRING_VIEW)
#include <string_view>
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
void ReducePadding(string_view s, size_t *capacity) {
*capacity = Excess(s.size(), *capacity);
}
void ReducePadding(size_t n, size_t *capacity) {
*capacity = Excess(n, *capacity);
}
template <typename T>
struct MakeUnsigned : std::make_unsigned<T> {};
template <>
struct MakeUnsigned<absl::int128> {
using type = absl::uint128;
};
template <>
struct MakeUnsigned<absl::uint128> {
using type = absl::uint128;
};
template <typename T>
struct IsSigned : std::is_signed<T> {};
template <>
struct IsSigned<absl::int128> : std::true_type {};
template <>
struct IsSigned<absl::uint128> : std::false_type {};
class IntDigits {
public:
template <typename T>
void PrintAsOct(T v) {
static_assert(!IsSigned<T>::value, "");
char *p = storage_ + sizeof(storage_);
do {
*--p = static_cast<char>('0' + (static_cast<size_t>(v) & 7));
v >>= 3;
} while (v);
start_ = p;
size_ = static_cast<size_t>(storage_ + sizeof(storage_) - p);
}
template <typename T>
void PrintAsDec(T v) {
static_assert(std::is_integral<T>::value, "");
start_ = storage_;
size_ = static_cast<size_t>(numbers_internal::FastIntToBuffer(v, storage_) -
storage_);
}
void PrintAsDec(int128 v) {
auto u = static_cast<uint128>(v);
bool add_neg = false;
if (v < 0) {
add_neg = true;
u = uint128{} - u;
}
PrintAsDec(u, add_neg);
}
void PrintAsDec(uint128 v, bool add_neg = false) {
char *p = storage_ + sizeof(storage_);
do {
p -= 2;
numbers_internal::PutTwoDigits(static_cast<uint32_t>(v % 100), p);
v /= 100;
} while (v);
if (p[0] == '0') {
++p;
}
if (add_neg) {
*--p = '-';
}
size_ = static_cast<size_t>(storage_ + sizeof(storage_) - p);
start_ = p;
}
template <typename T>
void PrintAsHexLower(T v) {
static_assert(!IsSigned<T>::value, "");
char *p = storage_ + sizeof(storage_);
do {
p -= 2;
constexpr const char* table = numbers_internal::kHexTable;
std::memcpy(p, table + 2 * (static_cast<size_t>(v) & 0xFF), 2);
if (sizeof(T) == 1) break;
v >>= 8;
} while (v);
if (p[0] == '0') {
++p;
}
start_ = p;
size_ = static_cast<size_t>(storage_ + sizeof(storage_) - p);
}
template <typename T>
void PrintAsHexUpper(T v) {
static_assert(!IsSigned<T>::value, "");
char *p = storage_ + sizeof(storage_);
do {
*--p = "0123456789ABCDEF"[static_cast<size_t>(v) & 15];
v >>= 4;
} while (v);
start_ = p;
size_ = static_cast<size_t>(storage_ + sizeof | #include "absl/strings/internal/str_format/arg.h"
#include <limits>
#include <string>
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/strings/str_format.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
class FormatArgImplTest : public ::testing::Test {
public:
enum Color { kRed, kGreen, kBlue };
static const char *hi() { return "hi"; }
struct X {};
X x_;
};
inline FormatConvertResult<FormatConversionCharSet{}> AbslFormatConvert(
const FormatArgImplTest::X &, const FormatConversionSpec &, FormatSink *) {
return {false};
}
TEST_F(FormatArgImplTest, ToInt) {
int out = 0;
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(1), &out));
EXPECT_EQ(1, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(-1), &out));
EXPECT_EQ(-1, out);
EXPECT_TRUE(
FormatArgImplFriend::ToInt(FormatArgImpl(static_cast<char>(64)), &out));
EXPECT_EQ(64, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<unsigned long long>(123456)), &out));
EXPECT_EQ(123456, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<unsigned long long>(
std::numeric_limits<int>::max()) +
1),
&out));
EXPECT_EQ(std::numeric_limits<int>::max(), out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<long long>(
std::numeric_limits<int>::min()) -
10),
&out));
EXPECT_EQ(std::numeric_limits<int>::min(), out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(false), &out));
EXPECT_EQ(0, out);
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(true), &out));
EXPECT_EQ(1, out);
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(2.2), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(3.2f), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(
FormatArgImpl(static_cast<int *>(nullptr)), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(hi()), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl("hi"), &out));
EXPECT_FALSE(FormatArgImplFriend::ToInt(FormatArgImpl(x_), &out));
EXPECT_TRUE(FormatArgImplFriend::ToInt(FormatArgImpl(kBlue), &out));
EXPECT_EQ(2, out);
}
extern const char kMyArray[];
TEST_F(FormatArgImplTest, CharArraysDecayToCharPtr) {
const char* a = "";
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl("")));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl("A")));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl("ABC")));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(kMyArray)));
}
extern const wchar_t kMyWCharTArray[];
TEST_F(FormatArgImplTest, WCharTArraysDecayToWCharTPtr) {
const wchar_t* a = L"";
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(L"")));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(L"A")));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(L"ABC")));
EXPECT_EQ(
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(a)),
FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(kMyWCharTArray)));
}
TEST_F(FormatArgImplTest, OtherPtrDecayToVoidPtr) {
auto expected = FormatArgImplFriend::GetVTablePtrForTest(
FormatArgImpl(static_cast<void *>(nullptr)));
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(
FormatArgImpl(static_cast<int *>(nullptr))),
expected);
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(
FormatArgImpl(static_cast<volatile int *>(nullptr))),
expected);
auto p = static_cast<void (*)()>([] {});
EXPECT_EQ(FormatArgImplFriend::GetVTablePtrForTest(FormatArgImpl(p)),
expected);
}
TEST_F(FormatArgImplTest, WorksWithCharArraysOfUnknownSize) {
std::string s;
FormatSinkImpl sink(&s);
FormatConversionSpecImpl conv;
FormatConversionSpecImplFriend::SetConversionChar(
FormatConversionCharInternal::s, &conv);
FormatConversionSpecImplFriend::SetFlags(Flags(), &conv);
FormatConversionSpecImplFriend::SetWidth(-1, &conv);
FormatConversionSpecImplFriend::SetPrecision(-1, &conv);
EXPECT_TRUE(
FormatArgImplFriend::Convert(FormatArgImpl(kMyArray), conv, &sink));
sink.Flush();
EXPECT_EQ("ABCDE", s);
}
const char kMyArray[] = "ABCDE";
TEST_F(FormatArgImplTest, WorksWithWCharTArraysOfUnknownSize) {
std::string s;
FormatSinkImpl sink(&s);
FormatConversionSpecImpl conv;
FormatConversionSpecImplFriend::SetConversionChar(
FormatConversionCharInternal::s, &conv);
FormatConversionSpecImplFriend::SetFlags(Flags(), &conv);
FormatConversionSpecImplFriend::SetWidth(-1, &conv);
FormatConversionSpecImplFriend::SetPrecision(-1, &conv);
EXPECT_TRUE(
FormatArgImplFriend::Convert(FormatArgImpl(kMyWCharTArray), conv, &sink));
sink.Flush();
EXPECT_EQ("ABCDE", s);
}
const wchar_t kMyWCharTArray[] = L"ABCDE";
}
}
ABSL_NAMESPACE_END
} | 2,581 |
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_OUTPUT_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_OUTPUT_H_
#include <cstdio>
#include <ios>
#include <ostream>
#include <string>
#include "absl/base/port.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
class BufferRawSink {
public:
BufferRawSink(char* buffer, size_t size) : buffer_(buffer), size_(size) {}
size_t total_written() const { return total_written_; }
void Write(string_view v);
private:
char* buffer_;
size_t size_;
size_t total_written_ = 0;
};
class FILERawSink {
public:
explicit FILERawSink(std::FILE* output) : output_(output) {}
void Write(string_view v);
size_t count() const { return count_; }
int error() const { return error_; }
private:
std::FILE* output_;
int error_ = 0;
size_t count_ = 0;
};
inline void AbslFormatFlush(std::string* out, string_view s) {
out->append(s.data(), s.size());
}
inline void AbslFormatFlush(std::ostream* out, string_view s) {
out->write(s.data(), static_cast<std::streamsize>(s.size()));
}
inline void AbslFormatFlush(FILERawSink* sink, string_view v) {
sink->Write(v);
}
inline void AbslFormatFlush(BufferRawSink* sink, string_view v) {
sink->Write(v);
}
template <typename T>
auto InvokeFlush(T* out, string_view s) -> decltype(AbslFormatFlush(out, s)) {
AbslFormatFlush(out, s);
}
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/str_format/output.h"
#include <errno.h>
#include <cstring>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
struct ClearErrnoGuard {
ClearErrnoGuard() : old_value(errno) { errno = 0; }
~ClearErrnoGuard() {
if (!errno) errno = old_value;
}
int old_value;
};
}
void BufferRawSink::Write(string_view v) {
size_t to_write = std::min(v.size(), size_);
std::memcpy(buffer_, v.data(), to_write);
buffer_ += to_write;
size_ -= to_write;
total_written_ += v.size();
}
void FILERawSink::Write(string_view v) {
while (!v.empty() && !error_) {
ClearErrnoGuard guard;
if (size_t result = std::fwrite(v.data(), 1, v.size(), output_)) {
count_ += result;
v.remove_prefix(result);
} else {
if (errno == EINTR) {
continue;
} else if (errno) {
error_ = errno;
} else if (std::ferror(output_)) {
error_ = EBADF;
} else {
continue;
}
}
}
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/str_format/output.h"
#include <sstream>
#include <string>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/strings/cord.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
TEST(InvokeFlush, String) {
std::string str = "ABC";
str_format_internal::InvokeFlush(&str, "DEF");
EXPECT_EQ(str, "ABCDEF");
}
TEST(InvokeFlush, Stream) {
std::stringstream str;
str << "ABC";
str_format_internal::InvokeFlush(&str, "DEF");
EXPECT_EQ(str.str(), "ABCDEF");
}
TEST(InvokeFlush, Cord) {
absl::Cord str("ABC");
str_format_internal::InvokeFlush(&str, "DEF");
EXPECT_EQ(str, "ABCDEF");
}
TEST(BufferRawSink, Limits) {
char buf[16];
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World237xx");
}
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World237237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World2372x");
}
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World");
str_format_internal::InvokeFlush(&bufsink, "237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World237xx");
}
{
std::fill(std::begin(buf), std::end(buf), 'x');
str_format_internal::BufferRawSink bufsink(buf, sizeof(buf) - 1);
str_format_internal::InvokeFlush(&bufsink, "Hello World");
str_format_internal::InvokeFlush(&bufsink, "237237");
EXPECT_EQ(std::string(buf, sizeof(buf)), "Hello World2372x");
}
}
}
ABSL_NAMESPACE_END
} | 2,582 |
#ifndef ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_
#define ABSL_STRINGS_INTERNAL_STR_FORMAT_PARSER_H_
#include <stddef.h>
#include <stdlib.h>
#include <cassert>
#include <cstring>
#include <initializer_list>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/base/config.h"
#include "absl/base/optimization.h"
#include "absl/strings/internal/str_format/checker.h"
#include "absl/strings/internal/str_format/constexpr_parser.h"
#include "absl/strings/internal/str_format/extension.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
std::string LengthModToString(LengthMod v);
const char* ConsumeUnboundConversionNoInline(const char* p, const char* end,
UnboundConversion* conv,
int* next_arg);
template <typename Consumer>
bool ParseFormatString(string_view src, Consumer consumer) {
int next_arg = 0;
const char* p = src.data();
const char* const end = p + src.size();
while (p != end) {
const char* percent =
static_cast<const char*>(memchr(p, '%', static_cast<size_t>(end - p)));
if (!percent) {
return consumer.Append(string_view(p, static_cast<size_t>(end - p)));
}
if (ABSL_PREDICT_FALSE(!consumer.Append(
string_view(p, static_cast<size_t>(percent - p))))) {
return false;
}
if (ABSL_PREDICT_FALSE(percent + 1 >= end)) return false;
auto tag = GetTagForChar(percent[1]);
if (tag.is_conv()) {
if (ABSL_PREDICT_FALSE(next_arg < 0)) {
return false;
}
p = percent + 2;
UnboundConversion conv;
conv.conv = tag.as_conv();
conv.arg_position = ++next_arg;
if (ABSL_PREDICT_FALSE(
!consumer.ConvertOne(conv, string_view(percent + 1, 1)))) {
return false;
}
} else if (percent[1] != '%') {
UnboundConversion conv;
p = ConsumeUnboundConversionNoInline(percent + 1, end, &conv, &next_arg);
if (ABSL_PREDICT_FALSE(p == nullptr)) return false;
if (ABSL_PREDICT_FALSE(!consumer.ConvertOne(
conv, string_view(percent + 1,
static_cast<size_t>(p - (percent + 1)))))) {
return false;
}
} else {
if (ABSL_PREDICT_FALSE(!consumer.Append("%"))) return false;
p = percent + 2;
continue;
}
}
return true;
}
constexpr bool EnsureConstexpr(string_view s) {
return s.empty() || s[0] == s[0];
}
class ParsedFormatBase {
public:
explicit ParsedFormatBase(
string_view format, bool allow_ignored,
std::initializer_list<FormatConversionCharSet> convs);
ParsedFormatBase(const ParsedFormatBase& other) { *this = other; }
ParsedFormatBase(ParsedFormatBase&& other) { *this = std::move(other); }
ParsedFormatBase& operator=(const ParsedFormatBase& other) {
if (this == &other) return *this;
has_error_ = other.has_error_;
items_ = other.items_;
size_t text_size = items_.empty() ? 0 : items_.back().text_end;
data_.reset(new char[text_size]);
memcpy(data_.get(), other.data_.get(), text_size);
return *this;
}
ParsedFormatBase& operator=(ParsedFormatBase&& other) {
if (this == &other) return *this;
has_error_ = other.has_error_;
data_ = std::move(other.data_);
items_ = std::move(other.items_);
other.items_.clear();
return *this;
}
template <typename Consumer>
bool ProcessFormat(Consumer consumer) const {
const char* const base = data_.get();
string_view text(base, 0);
for (const auto& item : items_) {
const char* const end = text.data() + text.size();
text =
string_view(end, static_cast<size_t>((base + item.text_end) - end));
if (item.is_conversion) {
if (!consumer.ConvertOne(item.conv, text)) return false;
} else {
if (!consumer.Append(text)) return false;
}
}
return !has_error_;
}
bool has_error() const { return has_error_; }
private:
bool MatchesConversions(
bool allow_ignored,
std::initializer_list<FormatConversionCharSet> convs) const;
struct ParsedFormatConsumer;
struct ConversionItem {
bool is_conversion;
size_t text_end;
UnboundConversion conv;
};
bool has_error_;
std::unique_ptr<char[]> data_;
std::vector<ConversionItem> items_;
};
template <FormatConversionCharSet... C>
class ExtendedParsedFormat : public str_format_internal::ParsedFormatBase {
public:
explicit ExtendedParsedFormat(string_view format)
#ifdef ABSL_INTERNAL_ENABLE_FORMAT_CHECKER
__attribute__((
enable_if(str_format_internal::EnsureConstexpr(format),
"Format string is not constexpr."),
enable_if(str_format_internal::ValidFormatImpl<C...>(format),
"Format specified does not match the template arguments.")))
#endif
: ExtendedParsedFormat(format, false) {
}
static std::unique_ptr<ExtendedParsedFormat> New(string_view format) {
return New(format, false);
}
static std::unique_ptr<ExtendedParsedFormat> NewAllowIgnored(
string_view format) {
return New(format, true);
}
private:
static std::unique_ptr<ExtendedParsedFormat> New(string_view format,
bool allow_ignored) {
std::unique_ptr<ExtendedParsedFormat> conv(
new ExtendedParsedFormat(format, allow_ignored));
if (conv->has_error()) return nullptr;
return conv;
}
ExtendedParsedFormat(string_view s, bool allow_ignored)
: ParsedFormatBase(s, allow_ignored, {C...}) {}
};
}
ABSL_NAMESPACE_END
}
#endif
#include "absl/strings/internal/str_format/parser.h"
#include <assert.h>
#include <string.h>
#include <wchar.h>
#include <cctype>
#include <cstdint>
#include <algorithm>
#include <initializer_list>
#include <limits>
#include <ostream>
#include <string>
#include <unordered_set>
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
constexpr ConvTag ConvTagHolder::value[256];
ABSL_ATTRIBUTE_NOINLINE const char* ConsumeUnboundConversionNoInline(
const char* p, const char* end, UnboundConversion* conv, int* next_arg) {
return ConsumeUnboundConversion(p, end, conv, next_arg);
}
std::string LengthModToString(LengthMod v) {
switch (v) {
case LengthMod::h:
return "h";
case LengthMod::hh:
return "hh";
case LengthMod::l:
return "l";
case LengthMod::ll:
return "ll";
case LengthMod::L:
return "L";
case LengthMod::j:
return "j";
case LengthMod::z:
return "z";
case LengthMod::t:
return "t";
case LengthMod::q:
return "q";
case LengthMod::none:
return "";
}
return "";
}
struct ParsedFormatBase::ParsedFormatConsumer {
explicit ParsedFormatConsumer(ParsedFormatBase *parsedformat)
: parsed(parsedformat), data_pos(parsedformat->data_.get()) {}
bool Append(string_view s) {
if (s.empty()) return true;
size_t text_end = AppendText(s);
if (!parsed->items_.empty() && !parsed->items_.back().is_conversion) {
parsed->items_.back().text_end = text_end;
} else {
parsed->items_.push_back({false, text_end, {}});
}
return true;
}
bool ConvertOne(const UnboundConversion &conv, string_view s) {
size_t text_end = AppendText(s);
parsed->items_.push_back({true, text_end, conv});
return true;
}
size_t AppendText(string_view s) {
memcpy(data_pos, s.data(), s.size());
data_pos += s.size();
return static_cast<size_t>(data_pos - parsed->data_.get());
}
ParsedFormatBase *parsed;
char* data_pos;
};
ParsedFormatBase::ParsedFormatBase(
string_view format, bool allow_ignored,
std::initializer_list<FormatConversionCharSet> convs)
: data_(format.empty() ? nullptr : new char[format.size()]) {
has_error_ = !ParseFormatString(format, ParsedFormatConsumer(this)) ||
!MatchesConversions(allow_ignored, convs);
}
bool ParsedFormatBase::MatchesConversions(
bool allow_ignored,
std::initializer_list<FormatConversionCharSet> convs) const {
std::unordered_set<int> used;
auto add_if_valid_conv = [&](int pos, char c) {
if (static_cast<size_t>(pos) > convs.size() ||
!Contains(convs.begin()[pos - 1], c))
return false;
used.insert(pos);
return true;
};
for (const ConversionItem &item : items_) {
if (!item.is_conversion) continue;
auto &conv = item.conv;
if (conv.precision.is_from_arg() &&
!add_if_valid_conv(conv.precision.get_from_arg(), '*'))
return false;
if (conv.width.is_from_arg() &&
!add_if_valid_conv(conv.width.get_from_arg(), '*'))
return false;
if (!add_if_valid_conv(conv.arg_position,
FormatConversionCharToChar(conv.conv)))
return false;
}
return used.size() == convs.size() || allow_ignored;
}
}
ABSL_NAMESPACE_END
} | #include "absl/strings/internal/str_format/parser.h"
#include <string.h>
#include <algorithm>
#include <initializer_list>
#include <string>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/config.h"
#include "absl/base/macros.h"
#include "absl/strings/internal/str_format/constexpr_parser.h"
#include "absl/strings/internal/str_format/extension.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace str_format_internal {
namespace {
using testing::Pair;
TEST(LengthModTest, Names) {
struct Expectation {
int line;
LengthMod mod;
const char *name;
};
const Expectation kExpect[] = {
{__LINE__, LengthMod::none, "" },
{__LINE__, LengthMod::h, "h" },
{__LINE__, LengthMod::hh, "hh"},
{__LINE__, LengthMod::l, "l" },
{__LINE__, LengthMod::ll, "ll"},
{__LINE__, LengthMod::L, "L" },
{__LINE__, LengthMod::j, "j" },
{__LINE__, LengthMod::z, "z" },
{__LINE__, LengthMod::t, "t" },
{__LINE__, LengthMod::q, "q" },
};
EXPECT_EQ(ABSL_ARRAYSIZE(kExpect), 10);
for (auto e : kExpect) {
SCOPED_TRACE(e.line);
EXPECT_EQ(e.name, LengthModToString(e.mod));
}
}
TEST(ConversionCharTest, Names) {
struct Expectation {
FormatConversionChar id;
char name;
};
const Expectation kExpect[] = {
#define X(c) {FormatConversionCharInternal::c, #c[0]}
X(c), X(s),
X(d), X(i), X(o), X(u), X(x), X(X),
X(f), X(F), X(e), X(E), X(g), X(G), X(a), X(A),
X(n), X(p),
#undef X
{FormatConversionCharInternal::kNone, '\0'},
};
for (auto e : kExpect) {
SCOPED_TRACE(e.name);
FormatConversionChar v = e.id;
EXPECT_EQ(e.name, FormatConversionCharToChar(v));
}
}
class ConsumeUnboundConversionTest : public ::testing::Test {
public:
std::pair<string_view, string_view> Consume(string_view src) {
int next = 0;
o = UnboundConversion();
const char* p = ConsumeUnboundConversion(
src.data(), src.data() + src.size(), &o, &next);
if (!p) return {{}, src};
return {string_view(src.data(), p - src.data()),
string_view(p, src.data() + src.size() - p)};
}
bool Run(const char *fmt, bool force_positional = false) {
int next = force_positional ? -1 : 0;
o = UnboundConversion();
return ConsumeUnboundConversion(fmt, fmt + strlen(fmt), &o, &next) ==
fmt + strlen(fmt);
}
UnboundConversion o;
};
TEST_F(ConsumeUnboundConversionTest, ConsumeSpecification) {
struct Expectation {
int line;
string_view src;
string_view out;
string_view src_post;
};
const Expectation kExpect[] = {
{__LINE__, "", "", "" },
{__LINE__, "b", "", "b" },
{__LINE__, "ba", "", "ba"},
{__LINE__, "l", "", "l" },
{__LINE__, "d", "d", "" },
{__LINE__, "v", "v", "" },
{__LINE__, "d ", "d", " " },
{__LINE__, "dd", "d", "d" },
{__LINE__, "d9", "d", "9" },
{__LINE__, "dzz", "d", "zz"},
{__LINE__, "3v", "", "3v"},
{__LINE__, "hv", "", "hv"},
{__LINE__, "1$v", "1$v", ""},
{__LINE__, "1$*2$d", "1$*2$d", "" },
{__LINE__, "0-14.3hhd", "0-14.3hhd", ""},
{__LINE__, " 0-+#14.3hhd", " 0-+#14.3hhd", ""},
};
for (const auto& e : kExpect) {
SCOPED_TRACE(e.line);
EXPECT_THAT(Consume(e.src), Pair(e.out, e.src_post));
}
}
TEST_F(ConsumeUnboundConversionTest, BasicConversion) {
EXPECT_FALSE(Run(""));
EXPECT_FALSE(Run("z"));
EXPECT_FALSE(Run("dd"));
EXPECT_TRUE(Run("d"));
EXPECT_EQ('d', FormatConversionCharToChar(o.conv));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_LT(o.precision.value(), 0);
EXPECT_EQ(1, o.arg_position);
}
TEST_F(ConsumeUnboundConversionTest, ArgPosition) {
EXPECT_TRUE(Run("d"));
EXPECT_EQ(1, o.arg_position);
EXPECT_TRUE(Run("3$d"));
EXPECT_EQ(3, o.arg_position);
EXPECT_TRUE(Run("1$d"));
EXPECT_EQ(1, o.arg_position);
EXPECT_TRUE(Run("1$d", true));
EXPECT_EQ(1, o.arg_position);
EXPECT_TRUE(Run("123$d"));
EXPECT_EQ(123, o.arg_position);
EXPECT_TRUE(Run("123$d", true));
EXPECT_EQ(123, o.arg_position);
EXPECT_TRUE(Run("10$d"));
EXPECT_EQ(10, o.arg_position);
EXPECT_TRUE(Run("10$d", true));
EXPECT_EQ(10, o.arg_position);
EXPECT_FALSE(Run("0$d"));
EXPECT_FALSE(Run("0$d", true));
EXPECT_FALSE(Run("1$*0$d"));
EXPECT_FALSE(Run("1$.*0$d"));
EXPECT_FALSE(Run("01$p"));
EXPECT_FALSE(Run("01$p", true));
EXPECT_FALSE(Run("1$*01$p"));
EXPECT_FALSE(Run("1$.*01$p"));
}
TEST_F(ConsumeUnboundConversionTest, WidthAndPrecision) {
EXPECT_TRUE(Run("14d"));
EXPECT_EQ('d', FormatConversionCharToChar(o.conv));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_EQ(14, o.width.value());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_LT(o.precision.value(), 0);
EXPECT_TRUE(Run("14.d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(14, o.width.value());
EXPECT_EQ(0, o.precision.value());
EXPECT_TRUE(Run(".d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(0, o.precision.value());
EXPECT_TRUE(Run(".5d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(5, o.precision.value());
EXPECT_TRUE(Run(".0d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(0, o.precision.value());
EXPECT_TRUE(Run("14.5d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(14, o.width.value());
EXPECT_EQ(5, o.precision.value());
EXPECT_TRUE(Run("*.*d"));
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(1, o.width.get_from_arg());
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(2, o.precision.get_from_arg());
EXPECT_EQ(3, o.arg_position);
EXPECT_TRUE(Run("*d"));
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(1, o.width.get_from_arg());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_LT(o.precision.value(), 0);
EXPECT_EQ(2, o.arg_position);
EXPECT_TRUE(Run(".*d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_LT(o.width.value(), 0);
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(1, o.precision.get_from_arg());
EXPECT_EQ(2, o.arg_position);
EXPECT_FALSE(Run("*23$.*34$d"));
EXPECT_TRUE(Run("12$*23$.*34$d"));
EXPECT_EQ(12, o.arg_position);
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(23, o.width.get_from_arg());
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(34, o.precision.get_from_arg());
EXPECT_TRUE(Run("2$*5$.*9$d"));
EXPECT_EQ(2, o.arg_position);
EXPECT_TRUE(o.width.is_from_arg());
EXPECT_EQ(5, o.width.get_from_arg());
EXPECT_TRUE(o.precision.is_from_arg());
EXPECT_EQ(9, o.precision.get_from_arg());
EXPECT_FALSE(Run(".*0$d")) << "no arg 0";
EXPECT_TRUE(Run("999999999.999999999d"));
EXPECT_FALSE(o.width.is_from_arg());
EXPECT_EQ(999999999, o.width.value());
EXPECT_FALSE(o.precision.is_from_arg());
EXPECT_EQ(999999999, o.precision.value());
EXPECT_FALSE(Run("1000000000.999999999d"));
EXPECT_FALSE(Run("999999999.1000000000d"));
EXPECT_FALSE(Run("9999999999d"));
EXPECT_FALSE(Run(".9999999999d"));
}
TEST_F(ConsumeUnboundConversionTest, Flags) {
static const char kAllFlags[] = "-+ #0";
static const int kNumFlags = ABSL_ARRAYSIZE(kAllFlags) - 1;
for (int rev = 0; rev < 2; ++rev) {
for (int i = 0; i < 1 << kNumFlags; ++i) {
std::string fmt;
for (int k = 0; k < kNumFlags; ++k)
if ((i >> k) & 1) fmt += kAllFlags[k];
if (rev == 1) {
std::reverse(fmt.begin(), fmt.end());
}
fmt += 'd';
SCOPED_TRACE(fmt);
EXPECT_TRUE(Run(fmt.c_str()));
EXPECT_EQ(fmt.find('-') == std::string::npos,
!FlagsContains(o.flags, Flags::kLeft));
EXPECT_EQ(fmt.find('+') == std::string::npos,
!FlagsContains(o.flags, Flags::kShowPos));
EXPECT_EQ(fmt.find(' ') == std::string::npos,
!FlagsContains(o.flags, Flags::kSignCol));
EXPECT_EQ(fmt.find('#') == std::string::npos,
!FlagsContains(o.flags, Flags::kAlt));
EXPECT_EQ(fmt.find('0') == std::string::npos,
!FlagsContains(o.flags, Flags::kZero));
}
}
}
TEST_F(ConsumeUnboundConversionTest, BasicFlag) {
for (const char* fmt : {"d", "llx", "G", "1$X"}) {
SCOPED_TRACE(fmt);
EXPECT_TRUE(Run(fmt));
EXPECT_EQ(o.flags, Flags::kBasic);
}
for (const char* fmt : {"3d", ".llx", "-G", "1$#X", "lc"}) {
SCOPED_TRACE(fmt);
EXPECT_TRUE(Run(fmt));
EXPECT_NE(o.flags, Flags::kBasic);
}
}
TEST_F(ConsumeUnboundConversionTest, LengthMod) {
EXPECT_TRUE(Run("d"));
EXPECT_EQ(LengthMod::none, o.length_mod);
EXPECT_TRUE(Run("hd"));
EXPECT_EQ(LengthMod::h, o.length_mod);
EXPECT_TRUE(Run("hhd"));
EXPECT_EQ(LengthMod::hh, o.length_mod);
EXPECT_TRUE(Run("ld"));
EXPECT_EQ(LengthMod::l, o.length_mod);
EXPECT_TRUE(Run("lld"));
EXPECT_EQ(LengthMod::ll, o.length_mod);
EXPECT_TRUE(Run("Lf"));
EXPECT_EQ(LengthMod::L, o.length_mod);
EXPECT_TRUE(Run("qf"));
EXPECT_EQ(LengthMod::q, o.length_mod);
EXPECT_TRUE(Run("jd"));
EXPECT_EQ(LengthMod::j, o.length_mod);
EXPECT_TRUE(Run("zd"));
EXPECT_EQ(LengthMod::z, o.length_mod);
EXPECT_TRUE(Run("td"));
EXPECT_EQ(LengthMod::t, o.length_mod);
}
struct SummarizeConsumer {
std::string* out;
explicit SummarizeConsumer(std::string* out) : out(out) {}
bool Append(string_view s) {
*out += "[" + std::string(s) + "]";
return true;
}
bool ConvertOne(const UnboundConversion& conv, string_view s) {
*out += "{";
*out += std::string(s);
*out += ":";
*out += std::to_string(conv.arg_position) + "$";
if (conv.width.is_from_arg()) {
*out += std::to_string(conv.width.get_from_arg()) + "$*";
}
if (conv.precision.is_from_arg()) {
*out += "." + std::to_string(conv.precision.get_from_arg()) + "$*";
}
*out += FormatConversionCharToChar(conv.conv);
*out += "}";
return true;
}
};
std::string SummarizeParsedFormat(const ParsedFormatBase& pc) {
std::string out;
if (!pc.ProcessFormat(SummarizeConsumer(&out))) out += "!";
return out;
}
class ParsedFormatTest : public testing::Test {};
TEST_F(ParsedFormatTest, ValueSemantics) {
ParsedFormatBase p1({}, true, {});
EXPECT_EQ("", SummarizeParsedFormat(p1));
ParsedFormatBase p2 = p1;
EXPECT_EQ(SummarizeParsedFormat(p1), SummarizeParsedFormat(p2));
p1 = ParsedFormatBase("hello%s", true,
{FormatConversionCharSetInternal::s});
EXPECT_EQ("[hello]{s:1$s}", SummarizeParsedFormat(p1));
ParsedFormatBase p3 = p1;
EXPECT_EQ(SummarizeParsedFormat(p1), SummarizeParsedFormat(p3));
using std::swap;
swap(p1, p2);
EXPECT_EQ("", SummarizeParsedFormat(p1));
EXPECT_EQ("[hello]{s:1$s}", SummarizeParsedFormat(p2));
swap(p1, p2);
p2 = p1;
EXPECT_EQ(SummarizeParsedFormat(p1), SummarizeParsedFormat(p2));
}
struct ExpectParse {
const char* in;
std::initializer_list<FormatConversionCharSet> conv_set;
const char* out;
};
TEST_F(ParsedFormatTest, Parsing) {
const ExpectParse kExpect[] = {
{"", {}, ""},
{"ab", {}, "[ab]"},
{"a%d", {FormatConversionCharSetInternal::d}, "[a]{d:1$d}"},
{"a%+d", {FormatConversionCharSetInternal::d}, "[a]{+d:1$d}"},
{"a% d", {FormatConversionCharSetInternal::d}, "[a]{ d:1$d}"},
{"a%b %d", {}, "[a]!"},
};
for (const auto& e : kExpect) {
SCOPED_TRACE(e.in);
EXPECT_EQ(e.out,
SummarizeParsedFormat(ParsedFormatBase(e.in, false, e.conv_set)));
}
}
TEST_F(ParsedFormatTest, ParsingFlagOrder) {
const ExpectParse kExpect[] = {
{"a%+ 0d", {FormatConversionCharSetInternal::d}, "[a]{+ 0d:1$d}"},
{"a%+0 d", {FormatConversionCharSetInternal::d}, "[a]{+0 d:1$d}"},
{"a%0+ d", {FormatConversionCharSetInternal::d}, "[a]{0+ d:1$d}"},
{"a% +0d", {FormatConversionCharSetInternal::d}, "[a]{ +0d:1$d}"},
{"a%0 +d", {FormatConversionCharSetInternal::d}, "[a]{0 +d:1$d}"},
{"a% 0+d", {FormatConversionCharSetInternal::d}, "[a]{ 0+d:1$d}"},
{"a%+ 0+d", {FormatConversionCharSetInternal::d}, "[a]{+ 0+d:1$d}"},
};
for (const auto& e : kExpect) {
SCOPED_TRACE(e.in);
EXPECT_EQ(e.out,
SummarizeParsedFormat(ParsedFormatBase(e.in, false, e.conv_set)));
}
}
}
}
ABSL_NAMESPACE_END
} | 2,583 |
#ifndef ABSL_NUMERIC_INT128_H_
#define ABSL_NUMERIC_INT128_H_
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <iosfwd>
#include <limits>
#include <string>
#include <utility>
#include "absl/base/config.h"
#include "absl/base/macros.h"
#include "absl/base/port.h"
#include "absl/types/compare.h"
#if defined(_MSC_VER)
#define ABSL_INTERNAL_WCHAR_T __wchar_t
#if defined(_M_X64) && !defined(_M_ARM64EC)
#include <intrin.h>
#pragma intrinsic(_umul128)
#endif
#else
#define ABSL_INTERNAL_WCHAR_T wchar_t
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
class int128;
class
#if defined(ABSL_HAVE_INTRINSIC_INT128)
alignas(unsigned __int128)
#endif
uint128 {
public:
uint128() = default;
constexpr uint128(int v);
constexpr uint128(unsigned int v);
constexpr uint128(long v);
constexpr uint128(unsigned long v);
constexpr uint128(long long v);
constexpr uint128(unsigned long long v);
#ifdef ABSL_HAVE_INTRINSIC_INT128
constexpr uint128(__int128 v);
constexpr uint128(unsigned __int128 v);
#endif
constexpr uint128(int128 v);
explicit uint128(float v);
explicit uint128(double v);
explicit uint128(long double v);
uint128& operator=(int v);
uint128& operator=(unsigned int v);
uint128& operator=(long v);
uint128& operator=(unsigned long v);
uint128& operator=(long long v);
uint128& operator=(unsigned long long v);
#ifdef ABSL_HAVE_INTRINSIC_INT128
uint128& operator=(__int128 v);
uint128& operator=(unsigned __int128 v);
#endif
uint128& operator=(int128 v);
constexpr explicit operator bool() const;
constexpr explicit operator char() const;
constexpr explicit operator signed char() const;
constexpr explicit operator unsigned char() const;
constexpr explicit operator char16_t() const;
constexpr explicit operator char32_t() const;
constexpr explicit operator ABSL_INTERNAL_WCHAR_T() const;
constexpr explicit operator short() const;
constexpr explicit operator unsigned short() const;
constexpr explicit operator int() const;
constexpr explicit operator unsigned int() const;
constexpr explicit operator long() const;
constexpr explicit operator unsigned long() const;
constexpr explicit operator long long() const;
constexpr explicit operator unsigned long long() const;
#ifdef ABSL_HAVE_INTRINSIC_INT128
constexpr explicit operator __int128() const;
constexpr explicit operator unsigned __int128() const;
#endif
explicit operator float() const;
explicit operator double() const;
explicit operator long double() const;
uint128& operator+=(uint128 other);
uint128& operator-=(uint128 other);
uint128& operator*=(uint128 other);
uint128& operator/=(uint128 other);
uint128& operator%=(uint128 other);
uint128 operator++(int);
uint128 operator--(int);
uint128& operator<<=(int);
uint128& operator>>=(int);
uint128& operator&=(uint128 other);
uint128& operator|=(uint128 other);
uint128& operator^=(uint128 other);
uint128& operator++();
uint128& operator--();
friend constexpr uint64_t Uint128Low64(uint128 v);
friend constexpr uint64_t Uint128High64(uint128 v);
friend constexpr uint128 MakeUint128(uint64_t high, uint64_t low);
friend constexpr uint128 Uint128Max();
template <typename H>
friend H AbslHashValue(H h, uint128 v) {
return H::combine(std::move(h), Uint128High64(v), Uint128Low64(v));
}
template <typename Sink>
friend void AbslStringify(Sink& sink, uint128 v) {
sink.Append(v.ToString());
}
private:
constexpr uint128(uint64_t high, uint64_t low);
std::string ToString() const;
#if defined(ABSL_IS_LITTLE_ENDIAN)
uint64_t lo_;
uint64_t hi_;
#elif defined(ABSL_IS_BIG_ENDIAN)
uint64_t hi_;
uint64_t lo_;
#else
#error "Unsupported byte order: must be little-endian or big-endian."
#endif
};
std::ostream& operator<<(std::ostream& os, uint128 v);
constexpr uint128 Uint128Max() {
return uint128((std::numeric_limits<uint64_t>::max)(),
(std::numeric_limits<uint64_t>::max)());
}
ABSL_NAMESPACE_END
}
namespace std {
template <>
class numeric_limits<absl::uint128> {
public:
static constexpr bool is_specialized = true;
static constexpr bool is_signed = false;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
ABSL_INTERNAL_DISABLE_DEPRECATED_DECLARATION_WARNING
static constexpr float_denorm_style has_denorm = denorm_absent;
ABSL_INTERNAL_RESTORE_DEPRECATED_DECLARATION_WARNING
static constexpr bool has_denorm_loss = false;
static constexpr float_round_style round_style = round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = true;
static constexpr int digits = 128;
static constexpr int digits10 = 38;
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
#ifdef ABSL_HAVE_INTRINSIC_INT128
static constexpr bool traps = numeric_limits<unsigned __int128>::traps;
#else
static constexpr bool traps = numeric_limits<uint64_t>::traps;
#endif
static constexpr bool tinyness_before = false;
static constexpr absl::uint128(min)() { return 0; }
static constexpr absl::uint128 lowest() { return 0; }
static constexpr absl::uint128(max)() { return absl::Uint128Max(); }
static constexpr absl::uint128 epsilon() { return 0; }
static constexpr absl::uint128 round_error() { return 0; }
static constexpr absl::uint128 infinity() { return 0; }
static constexpr absl::uint128 quiet_NaN() { return 0; }
static constexpr absl::uint128 signaling_NaN() { return 0; }
static constexpr absl::uint128 denorm_min() { return 0; }
};
}
namespace absl {
ABSL_NAMESPACE_BEGIN
class int128 {
public:
int128() = default;
constexpr int128(int v);
constexpr int128(unsigned int v);
constexpr int128(long v);
constexpr int128(unsigned long v);
constexpr int128(long long v);
constexpr int128(unsigned long long v);
#ifdef ABSL_HAVE_INTRINSIC_INT128
constexpr int128(__int128 v);
constexpr explicit int128(unsigned __int128 v);
#endif
constexpr explicit int128(uint128 v);
explicit int128(float v);
explicit int128(double v);
explicit int128(long double v);
int128& operator=(int v);
int128& operator=(unsigned int v);
int128& operator=(long v);
int128& operator=(unsigned long v);
int128& operator=(long long v);
int128& operator=(unsigned long long v);
#ifdef ABSL_HAVE_INTRINSIC_INT128
int128& operator=(__int128 v);
#endif
constexpr explicit operator bool() const;
constexpr explicit operator char() const;
constexpr explicit operator signed char() const;
constexpr explicit operator unsigned char() const;
constexpr explicit operator char16_t() const;
constexpr explicit operator char32_t() const;
constexpr explicit operator ABSL_INTERNAL_WCHAR_T() const;
constexpr explicit operator short() const;
constexpr explicit operator unsigned short() const;
constexpr explicit operator int() const;
constexpr explicit operator unsigned int() const;
constexpr explicit operator long() const;
constexpr explicit operator unsigned long() const;
constexpr explicit operator long long() const;
constexpr explicit operator unsigned long long() const;
#ifdef ABSL_HAVE_INTRINSIC_INT128
constexpr explicit operator __int128() const;
constexpr explicit operator unsigned __int128() const;
#endif
explicit operator float() const;
explicit operator double() const;
explicit operator long double() const;
int128& operator+=(int128 other);
int128& operator-=(int128 other);
int128& operator*=(int128 other);
int128& operator/=(int128 other);
int128& operator%=(int128 other);
int128 operator++(int);
int128 operator--(int);
int128& operator++();
int128& operator--();
int128& operator&=(int128 other);
int128& operator|=(int128 other);
int128& operator^=(int128 other);
int128& operator<<=(int amount);
int128& operator>>=(int amount);
friend constexpr uint64_t Int128Low64(int128 v);
friend constexpr int64_t Int128High64(int128 v);
friend constexpr int128 MakeInt128(int64_t high, uint64_t low);
friend constexpr int128 Int128Max();
friend constexpr int128 Int128Min();
template <typename H>
friend H AbslHashValue(H h, int128 v) {
return H::combine(std::move(h), Int128High64(v), Int128Low64(v));
}
template <typename Sink>
friend void AbslStringify(Sink& sink, int128 v) {
sink.Append(v.ToString());
}
private:
constexpr int128(int64_t high, uint64_t low);
std::string ToString() const;
#if defined(ABSL_HAVE_INTRINSIC_INT128)
__int128 v_;
#else
#if defined(ABSL_IS_LITTLE_ENDIAN)
uint64_t lo_;
int64_t hi_;
#elif defined(ABSL_IS_BIG_ENDIAN)
int64_t hi_;
uint64_t lo_;
#else
#error "Unsupported byte order: must be little-endian or big-endian."
#endif
#endif
};
std::ostream& operator<<(std::ostream& os, int128 v);
constexpr int128 Int128Max() {
return int128((std::numeric_limits<int64_t>::max)(),
(std::numeric_limits<uint64_t>::max)());
}
constexpr int128 Int128Min() {
return int128((std::numeric_limits<int64_t>::min)(), 0);
}
ABSL_NAMESPACE_END
}
namespace std {
template <>
class numeric_limits<absl::int128> {
public:
static constexpr bool is_specialized = true;
static constexpr bool is_signed = true;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
ABSL_INTERNAL_DISABLE_DEPRECATED_DECLARATION_WARNING
static constexpr float_denorm_style has_denorm = denorm_absent;
ABSL_INTERNAL_RESTORE_DEPRECATED_DECLARATION_WARNING
static constexpr bool has_denorm_loss = false;
static constexpr float_round_style round_style = round_toward_zero;
static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = true;
static constexpr bool is_modulo = false;
static constexpr int digits = 127;
static constexpr int digits10 = 38;
static constexpr int max_digits10 = 0;
static constexpr int radix = 2;
static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;
#ifdef ABSL_HAVE_INTRINSIC_INT128
static constexpr bool traps = numeric_limits<__int128>::traps;
#else
static constexpr bool traps = numeric_limits<uint64_t>::traps;
#endif
static constexpr bool tinyness_before = false;
static constexpr absl::int128(min)() { return absl::Int128Min(); }
static constexpr absl::int128 lowest() { return absl::Int128Min(); }
static constexpr absl::int128(max)() { return absl::Int128Max(); }
static constexpr absl::int128 epsilon() { return 0; }
static constexpr absl::int128 round_error() { return 0; }
static constexpr absl::int128 infinity() { return 0; }
static constexpr absl::int128 quiet_NaN() { return 0; }
static constexpr absl::int128 signaling_NaN() { return 0; }
static constexpr absl::int128 denorm_min() { return 0; }
};
}
namespace absl {
ABSL_NAMESPACE_BEGIN
constexpr uint128 MakeUint128(uint64_t high, uint64_t low) {
return uint128(high, low);
}
inline uint128& uint128::operator=(int v) { return *this = uint128(v); }
inline uint128& uint128::operator=(unsigned int v) {
return *this = uint128(v);
}
inline uint128& uint128::operator=(long v) {
return *this = uint128(v);
}
inline uint128& uint128::operator=(unsigned long v) {
return *this = uint128(v);
}
inline uint128& uint128::operator=(long long v) { return *this = uint128(v); }
inline uint128& uint128::operator=(unsigned long long v) {
return *this = uint128(v);
}
#ifdef ABSL_HAVE_INTRINSIC_INT128
inline uint128& uint128::operator=(__int128 v) { return *this = uint128(v); }
inline uint128& uint128::operator=(unsigned __int128 v) {
return *this = uint128(v);
}
#endif
inline uint128& uint128::operator=(int128 v) { return *this = uint128(v); }
constexpr uint128 operator<<(uint128 lhs, int amount);
constexpr uint128 operator>>(uint128 lhs, int amount);
constexpr uint128 operator+(uint128 lhs, uint128 rhs);
constexpr uint128 operator-(uint128 lhs, uint128 rhs);
uint128 operator*(uint128 lhs, uint128 rhs);
uint128 operator/(uint128 lhs, uint128 rhs);
uint128 operator%(uint128 lhs, uint128 rhs);
inline uint128& uint128::operator<<=(int amount) {
*this = *this << amount;
return *this;
}
inline uint128& uint128::operator>>=(int amount) {
*this = *this >> amount;
return *this;
}
inline uint128& uint128::operator+=(uint128 other) {
*this = *this + other;
return *this;
}
inline uint128& uint128::operator-=(uint128 other) {
*this = *this - other;
return *this;
}
inline uint128& uint128::operator*=(uint128 other) {
*this = *this * other;
return *this;
}
inline uint128& uint128::operator/=(uint128 other) {
*this = *this / other;
return *this;
}
inline uint128& uint128::operator%=(uint128 other) {
*this = *this % other;
return *this;
}
constexpr uint64_t Uint128Low64(uint128 v) { return v.lo_; }
constexpr uint64_t Uint128High64(uint128 v) { return v.hi_; }
#if defined(ABSL_IS_LITTLE_ENDIAN)
constexpr uint128::uint128(uint64_t high, uint64_t low) : lo_{low}, hi_{high} {}
constexpr uint128::uint128(int v)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr uint128::uint128(long v)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr uint128::uint128(long long v)
: lo_{static_cast<uint64_t>(v)},
hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0} {}
constexpr uint128::uint128(unsigned int v) : lo_{v}, hi_{0} {}
constexpr uint128::uint128(unsigned long v) : lo_{v}, hi_{0} {}
constexpr uint128::uint128(unsigned long long v) : lo_{v}, hi_{0} {}
#ifdef ABSL_HAVE_INTRINSIC_INT128
constexpr uint128::uint128(__int128 v)
: lo_{static_cast<uint64_t>(v & ~uint64_t{0})},
hi_{static_cast<uint64_t>(static_cast<unsigned __int128>(v) >> 64)} {}
constexpr uint128::uint128(unsigned __int128 v)
: lo_{static_cast<uint64_t>(v & ~uint64_t{0})},
hi_{static_cast<uint64_t>(v >> 64)} {}
#endif
constexpr uint128::uint128(int128 v)
: lo_{Int128Low64(v)}, hi_{static_cast<uint64_t>(Int128High64(v))} {}
#elif defined(ABSL_IS_BIG_ENDIAN)
constexpr uint128::uint128(uint64_t high, uint64_t low) : hi_{high}, lo_{low} {}
constexpr uint128::uint128(int v)
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr uint128::uint128(long v)
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr uint128::uint128(long long v)
: hi_{v < 0 ? (std::numeric_limits<uint64_t>::max)() : 0},
lo_{static_cast<uint64_t>(v)} {}
constexpr uint128::uint128(unsigned int v) : hi_{0}, lo_{v} {}
constexpr uint128::uint128(unsigned long v) : hi_{0}, lo_{v} {}
constexpr uint128::uint128(unsigned long long v) : hi_{0}, lo_{v} {}
#ifdef ABSL_HAVE_INTRINSIC_INT128
constexpr uint128::uint128(__int128 v)
: hi_{static_cast<uint64_t>(static_cast<unsigned __int128>(v) >> 64)},
lo_{static_cast<uint64_t>(v & ~uint64_t{0})} {}
constexpr uint128::uint128(unsigned __int128 v)
: hi_{static_cast<uint64_t>(v >> 64)},
lo_{static_cast<uint64_t>(v & ~uint64_t{0})} {}
#endif
constexpr uint128::uint128(int128 v)
: hi_{static_cast<uint64_t>(Int128High64(v))}, lo_{Int128Low64(v)} {}
#else
#error "Unsupported byte order: must be little-endian or big-endian."
#endif
constexpr uint128::operator bool() const { return lo_ || hi_; }
constexpr uint128::operator char() const { return static_cast<char>(lo_); }
constexpr uint128::operator signed char() const {
return static_cast<signed char>(lo_);
}
constexpr uint128::operator unsigned char() const {
return static_cast<unsigned char>(lo_);
}
constexpr uint128::operator char16_t() const {
return static_cast<char16_t>(lo_);
}
constexpr uint128::operator char32_t() const {
return static_cast<char32_t>(lo_);
}
constexpr uint128::operator ABSL_INTERNAL_WCHAR_T() const {
return static_cast<ABSL_INTERNAL_WCHAR_T>(lo_);
}
constexpr uint128::operator short() const { return static_cast<short>(lo_); }
constexpr uint128::operator unsigned short() const {
return static_cast<unsigned short>(lo_);
}
constexpr uint128::operator int() const { return static_cast<int>(lo_); }
constexpr uint128::operator unsigned int() const {
return static_cast<unsigned int>(lo_);
}
constexpr uint128::operator long() const { return static_cast<long>(lo_); }
constexpr uint128::operator unsigned long() const {
return static_cast<unsigned long>(lo_);
}
constexpr uint128::operator long long() const {
return static_cast<long long>(lo_);
}
constexpr uint128::operator unsigned long long() const {
return static_cast<unsigned long long>(lo_);
}
#ifdef ABSL_HAVE_INTRINSIC_INT128
constexpr uint128::operator __int128() const {
return (static_cast<__int128>(hi_) << 64) + lo_;
}
constexpr uint128::operator unsigned __int128() const {
return (static_cast<unsigned __int128>(hi_) << 64) + lo_;
}
#endif
inline uint128::operator float() const {
return static_cast<float>(lo_) + std::ldexp(static_cast<float>(hi_), 64);
}
inline uint128::operator double() const {
return static_cast<double>(lo_) + std::ldexp(static_cast<double>(hi_), 64);
}
inline uint128::operator long double() const {
return static_cast<long double>(lo_) +
std::ldexp(static_cast<long double>(hi_), 64);
}
constexpr bool operator==(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) ==
static_cast<unsigned __int128>(rhs);
#else
return (Uint128Low64(lhs) == Uint128Low64(rhs) &&
Uint128High64(lhs) == Uint128High64(rhs));
#endif
}
constexpr bool operator!=(uint128 lhs, uint128 rhs) { return !(lhs == rhs); }
constexpr bool operator<(uint128 lhs, uint128 rhs) {
#ifdef ABSL_HAVE_INTRINSIC_INT128
return static_cast<unsigned __int128>(lhs) <
static_cast<unsigned __int128>(rhs);
#else
return (Uint128High64(lhs) == Uint128High64(rhs))
? (Uint128Low64(lhs) < Uint128Low64(rhs))
: (Uint128High64(lhs) < Uint128High64(rhs));
#endif
}
constexpr bool operator>(uint128 lhs, uint128 rhs) { return rhs < lhs; }
constexpr bool operator<=(uint128 lhs, uint128 rhs) { return !(rhs < lhs); }
constexpr bool operator>=(uint128 lhs, uint128 rhs) { return !(lhs < rhs); }
#ifdef __cpp_impl_three_way_comparison
constexpr absl::strong_ordering operator<=>(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
if (auto lhs_128 = static_cast<unsigned __int128>(lhs),
rhs_128 = static_cast<unsigned __int128>(rhs);
lhs_128 < rhs_128) {
return absl::strong_ordering::less;
} else if (lhs_128 > rhs_128) {
return absl::strong_ordering::greater;
} else {
return absl::strong_ordering::equal;
}
#else
if (uint64_t lhs_high = Uint128High64(lhs), rhs_high = Uint128High64(rhs);
lhs_high < rhs_high) {
return absl::strong_ordering::less;
} else if (lhs_high > rhs_high) {
return absl::strong_ordering::greater;
} else if (uint64_t lhs_low = Uint128Low64(lhs), rhs_low = Uint128Low64(rhs);
lhs_low < rhs_low) {
return absl::strong_ordering::less;
} else if (lhs_low > rhs_low) {
return absl::strong_ordering::greater;
} else {
return absl::strong_ordering::equal;
}
#endif
}
#endif
constexpr inline uint128 operator+(uint128 val) { return val; }
constexpr inline int128 operator+(int128 val) { return val; }
constexpr uint128 operator-(uint128 val) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return -static_cast<unsigned __int128>(val);
#else
return MakeUint128(
~Uint128High64(val) + static_cast<unsigned long>(Uint128Low64(val) == 0),
~Uint128Low64(val) + 1);
#endif
}
constexpr inline bool operator!(uint128 val) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return !static_cast<unsigned __int128>(val);
#else
return !Uint128High64(val) && !Uint128Low64(val);
#endif
}
constexpr inline uint128 operator~(uint128 val) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return ~static_cast<unsigned __int128>(val);
#else
return MakeUint128(~Uint128High64(val), ~Uint128Low64(val));
#endif
}
constexpr inline uint128 operator|(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) |
static_cast<unsigned __int128>(rhs);
#else
return MakeUint128(Uint128High64(lhs) | Uint128High64(rhs),
Uint128Low64(lhs) | Uint128Low64(rhs));
#endif
}
constexpr inline uint128 operator&(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) &
static_cast<unsigned __int128>(rhs);
#else
return MakeUint128(Uint128High64(lhs) & Uint128High64(rhs),
Uint128Low64(lhs) & Uint128Low64(rhs));
#endif
}
constexpr inline uint128 operator^(uint128 lhs, uint128 rhs) {
#if defined(ABSL_HAVE_INTRINSIC_INT128)
return static_cast<unsigned __int128>(lhs) ^
static_cast<unsigned __int128>(rhs);
#else
return MakeUint128(Uint128High64(lhs) ^ Uint128High64(rhs),
Uint128Low64(lhs) ^ Uint128Low64(rhs));
#endif
}
inline uint128& uint128::operator|=(uint128 other) {
*this = *this | other;
return *this;
}
inline uint128& uint128::operator&=(uint128 other) {
*this = *this & other;
return *this;
}
inline uint128& uint128::operator^=(uint128 other) {
*this = *this ^ other;
return *this;
}
constexpr uint128 operator<<(uint128 lhs, int amount) {
#ifdef ABSL_HAVE_INTRINSIC_INT128
return static_cast<unsigned __int128>(lhs) << amount;
#else
return amount >= 64 ? MakeUint128(Uint128Low64(lhs) << (amount - 64), 0)
: amount == 0 ? lhs
: MakeUint128((Uint128High64(lhs) << amount) |
(Uint128Low64(lhs) >> (64 - amount)),
Uint128Low64(lhs) << amount);
#endif
}
constexpr uint128 operator>>(uint128 lhs, int amount) {
#ifdef ABSL_HAVE_INTRINSIC_INT128
return | #include "absl/numeric/int128.h"
#include <algorithm>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
#include "gtest/gtest.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/hash/hash_testing.h"
#include "absl/meta/type_traits.h"
#include "absl/types/compare.h"
#define MAKE_INT128(HI, LO) absl::MakeInt128(static_cast<int64_t>(HI), LO)
namespace {
template <typename T>
class Uint128IntegerTraitsTest : public ::testing::Test {};
typedef ::testing::Types<bool, char, signed char, unsigned char, char16_t,
char32_t, wchar_t,
short,
unsigned short,
int, unsigned int,
long,
unsigned long,
long long,
unsigned long long>
IntegerTypes;
template <typename T>
class Uint128FloatTraitsTest : public ::testing::Test {};
typedef ::testing::Types<float, double, long double> FloatingPointTypes;
TYPED_TEST_SUITE(Uint128IntegerTraitsTest, IntegerTypes);
TYPED_TEST(Uint128IntegerTraitsTest, ConstructAssignTest) {
static_assert(std::is_constructible<absl::uint128, TypeParam>::value,
"absl::uint128 must be constructible from TypeParam");
static_assert(std::is_assignable<absl::uint128&, TypeParam>::value,
"absl::uint128 must be assignable from TypeParam");
static_assert(!std::is_assignable<TypeParam&, absl::uint128>::value,
"TypeParam must not be assignable from absl::uint128");
}
TYPED_TEST_SUITE(Uint128FloatTraitsTest, FloatingPointTypes);
TYPED_TEST(Uint128FloatTraitsTest, ConstructAssignTest) {
static_assert(std::is_constructible<absl::uint128, TypeParam>::value,
"absl::uint128 must be constructible from TypeParam");
static_assert(!std::is_assignable<absl::uint128&, TypeParam>::value,
"absl::uint128 must not be assignable from TypeParam");
static_assert(!std::is_assignable<TypeParam&, absl::uint128>::value,
"TypeParam must not be assignable from absl::uint128");
}
#ifdef ABSL_HAVE_INTRINSIC_INT128
TEST(Uint128, IntrinsicTypeTraitsTest) {
static_assert(std::is_constructible<absl::uint128, __int128>::value,
"absl::uint128 must be constructible from __int128");
static_assert(std::is_assignable<absl::uint128&, __int128>::value,
"absl::uint128 must be assignable from __int128");
static_assert(!std::is_assignable<__int128&, absl::uint128>::value,
"__int128 must not be assignable from absl::uint128");
static_assert(std::is_constructible<absl::uint128, unsigned __int128>::value,
"absl::uint128 must be constructible from unsigned __int128");
static_assert(std::is_assignable<absl::uint128&, unsigned __int128>::value,
"absl::uint128 must be assignable from unsigned __int128");
static_assert(!std::is_assignable<unsigned __int128&, absl::uint128>::value,
"unsigned __int128 must not be assignable from absl::uint128");
}
#endif
TEST(Uint128, TrivialTraitsTest) {
static_assert(absl::is_trivially_default_constructible<absl::uint128>::value,
"");
static_assert(absl::is_trivially_copy_constructible<absl::uint128>::value,
"");
static_assert(absl::is_trivially_copy_assignable<absl::uint128>::value, "");
static_assert(std::is_trivially_destructible<absl::uint128>::value, "");
}
TEST(Uint128, AllTests) {
absl::uint128 zero = 0;
absl::uint128 one = 1;
absl::uint128 one_2arg = absl::MakeUint128(0, 1);
absl::uint128 two = 2;
absl::uint128 three = 3;
absl::uint128 big = absl::MakeUint128(2000, 2);
absl::uint128 big_minus_one = absl::MakeUint128(2000, 1);
absl::uint128 bigger = absl::MakeUint128(2001, 1);
absl::uint128 biggest = absl::Uint128Max();
absl::uint128 high_low = absl::MakeUint128(1, 0);
absl::uint128 low_high =
absl::MakeUint128(0, std::numeric_limits<uint64_t>::max());
EXPECT_LT(one, two);
EXPECT_GT(two, one);
EXPECT_LT(one, big);
EXPECT_LT(one, big);
EXPECT_EQ(one, one_2arg);
EXPECT_NE(one, two);
EXPECT_GT(big, one);
EXPECT_GE(big, two);
EXPECT_GE(big, big_minus_one);
EXPECT_GT(big, big_minus_one);
EXPECT_LT(big_minus_one, big);
EXPECT_LE(big_minus_one, big);
EXPECT_NE(big_minus_one, big);
EXPECT_LT(big, biggest);
EXPECT_LE(big, biggest);
EXPECT_GT(biggest, big);
EXPECT_GE(biggest, big);
EXPECT_EQ(big, ~~big);
EXPECT_EQ(one, one | one);
EXPECT_EQ(big, big | big);
EXPECT_EQ(one, one | zero);
EXPECT_EQ(one, one & one);
EXPECT_EQ(big, big & big);
EXPECT_EQ(zero, one & zero);
EXPECT_EQ(zero, big & ~big);
EXPECT_EQ(zero, one ^ one);
EXPECT_EQ(zero, big ^ big);
EXPECT_EQ(one, one ^ zero);
EXPECT_EQ(big, big << 0);
EXPECT_EQ(big, big >> 0);
EXPECT_GT(big << 1, big);
EXPECT_LT(big >> 1, big);
EXPECT_EQ(big, (big << 10) >> 10);
EXPECT_EQ(big, (big >> 1) << 1);
EXPECT_EQ(one, (one << 80) >> 80);
EXPECT_EQ(zero, (one >> 80) << 80);
absl::uint128 big_copy = big;
EXPECT_EQ(big << 0, big_copy <<= 0);
big_copy = big;
EXPECT_EQ(big >> 0, big_copy >>= 0);
big_copy = big;
EXPECT_EQ(big << 1, big_copy <<= 1);
big_copy = big;
EXPECT_EQ(big >> 1, big_copy >>= 1);
big_copy = big;
EXPECT_EQ(big << 10, big_copy <<= 10);
big_copy = big;
EXPECT_EQ(big >> 10, big_copy >>= 10);
big_copy = big;
EXPECT_EQ(big << 64, big_copy <<= 64);
big_copy = big;
EXPECT_EQ(big >> 64, big_copy >>= 64);
big_copy = big;
EXPECT_EQ(big << 73, big_copy <<= 73);
big_copy = big;
EXPECT_EQ(big >> 73, big_copy >>= 73);
EXPECT_EQ(absl::Uint128High64(biggest), std::numeric_limits<uint64_t>::max());
EXPECT_EQ(absl::Uint128Low64(biggest), std::numeric_limits<uint64_t>::max());
EXPECT_EQ(zero + one, one);
EXPECT_EQ(one + one, two);
EXPECT_EQ(big_minus_one + one, big);
EXPECT_EQ(one - one, zero);
EXPECT_EQ(one - zero, one);
EXPECT_EQ(zero - one, biggest);
EXPECT_EQ(big - big, zero);
EXPECT_EQ(big - one, big_minus_one);
EXPECT_EQ(big + std::numeric_limits<uint64_t>::max(), bigger);
EXPECT_EQ(biggest + 1, zero);
EXPECT_EQ(zero - 1, biggest);
EXPECT_EQ(high_low - one, low_high);
EXPECT_EQ(low_high + one, high_low);
EXPECT_EQ(absl::Uint128High64((absl::uint128(1) << 64) - 1), 0);
EXPECT_EQ(absl::Uint128Low64((absl::uint128(1) << 64) - 1),
std::numeric_limits<uint64_t>::max());
EXPECT_TRUE(!!one);
EXPECT_TRUE(!!high_low);
EXPECT_FALSE(!!zero);
EXPECT_FALSE(!one);
EXPECT_FALSE(!high_low);
EXPECT_TRUE(!zero);
EXPECT_TRUE(zero == 0);
EXPECT_FALSE(zero != 0);
EXPECT_FALSE(one == 0);
EXPECT_TRUE(one != 0);
EXPECT_FALSE(high_low == 0);
EXPECT_TRUE(high_low != 0);
absl::uint128 test = zero;
EXPECT_EQ(++test, one);
EXPECT_EQ(test, one);
EXPECT_EQ(test++, one);
EXPECT_EQ(test, two);
EXPECT_EQ(test -= 2, zero);
EXPECT_EQ(test, zero);
EXPECT_EQ(test += 2, two);
EXPECT_EQ(test, two);
EXPECT_EQ(--test, one);
EXPECT_EQ(test, one);
EXPECT_EQ(test--, one);
EXPECT_EQ(test, zero);
EXPECT_EQ(test |= three, three);
EXPECT_EQ(test &= one, one);
EXPECT_EQ(test ^= three, two);
EXPECT_EQ(test >>= 1, one);
EXPECT_EQ(test <<= 1, two);
EXPECT_EQ(big, +big);
EXPECT_EQ(two, +two);
EXPECT_EQ(absl::Uint128Max(), +absl::Uint128Max());
EXPECT_EQ(zero, +zero);
EXPECT_EQ(big, -(-big));
EXPECT_EQ(two, -((-one) - 1));
EXPECT_EQ(absl::Uint128Max(), -one);
EXPECT_EQ(zero, -zero);
}
TEST(Int128, RightShiftOfNegativeNumbers) {
absl::int128 minus_six = -6;
absl::int128 minus_three = -3;
absl::int128 minus_two = -2;
absl::int128 minus_one = -1;
if ((-6 >> 1) == -3) {
EXPECT_EQ(minus_six >> 1, minus_three);
EXPECT_EQ(minus_six >> 2, minus_two);
EXPECT_EQ(minus_six >> 65, minus_one);
} else {
EXPECT_EQ(minus_six >> 1, absl::int128(absl::uint128(minus_six) >> 1));
EXPECT_EQ(minus_six >> 2, absl::int128(absl::uint128(minus_six) >> 2));
EXPECT_EQ(minus_six >> 65, absl::int128(absl::uint128(minus_six) >> 65));
}
}
TEST(Uint128, ConversionTests) {
EXPECT_TRUE(absl::MakeUint128(1, 0));
#ifdef ABSL_HAVE_INTRINSIC_INT128
unsigned __int128 intrinsic =
(static_cast<unsigned __int128>(0x3a5b76c209de76f6) << 64) +
0x1f25e1d63a2b46c5;
absl::uint128 custom =
absl::MakeUint128(0x3a5b76c209de76f6, 0x1f25e1d63a2b46c5);
EXPECT_EQ(custom, absl::uint128(intrinsic));
EXPECT_EQ(custom, absl::uint128(static_cast<__int128>(intrinsic)));
EXPECT_EQ(intrinsic, static_cast<unsigned __int128>(custom));
EXPECT_EQ(intrinsic, static_cast<__int128>(custom));
#endif
double precise_double = 0x530e * std::pow(2.0, 64.0) + 0xda74000000000000;
absl::uint128 from_precise_double(precise_double);
absl::uint128 from_precise_ints =
absl::MakeUint128(0x530e, 0xda74000000000000);
EXPECT_EQ(from_precise_double, from_precise_ints);
EXPECT_DOUBLE_EQ(static_cast<double>(from_precise_ints), precise_double);
double approx_double =
static_cast<double>(0xffffeeeeddddcccc) * std::pow(2.0, 64.0) +
static_cast<double>(0xbbbbaaaa99998888);
absl::uint128 from_approx_double(approx_double);
EXPECT_DOUBLE_EQ(static_cast<double>(from_approx_double), approx_double);
double round_to_zero = 0.7;
double round_to_five = 5.8;
double round_to_nine = 9.3;
EXPECT_EQ(static_cast<absl::uint128>(round_to_zero), 0);
EXPECT_EQ(static_cast<absl::uint128>(round_to_five), 5);
EXPECT_EQ(static_cast<absl::uint128>(round_to_nine), 9);
absl::uint128 highest_precision_in_long_double =
~absl::uint128{} >> (128 - std::numeric_limits<long double>::digits);
EXPECT_EQ(highest_precision_in_long_double,
static_cast<absl::uint128>(
static_cast<long double>(highest_precision_in_long_double)));
const absl::uint128 arbitrary_mask =
absl::MakeUint128(0xa29f622677ded751, 0xf8ca66add076f468);
EXPECT_EQ(highest_precision_in_long_double & arbitrary_mask,
static_cast<absl::uint128>(static_cast<long double>(
highest_precision_in_long_double & arbitrary_mask)));
EXPECT_EQ(static_cast<absl::uint128>(-0.1L), 0);
}
TEST(Uint128, OperatorAssignReturnRef) {
absl::uint128 v(1);
(v += 4) -= 3;
EXPECT_EQ(2, v);
}
TEST(Uint128, Multiply) {
absl::uint128 a, b, c;
a = 0;
b = 0;
c = a * b;
EXPECT_EQ(0, c);
a = absl::uint128(0) - 1;
b = absl::uint128(0) - 1;
c = a * b;
EXPECT_EQ(1, c);
c = absl::uint128(0) - 1;
c *= c;
EXPECT_EQ(1, c);
for (int i = 0; i < 64; ++i) {
for (int j = 0; j < 64; ++j) {
a = absl::uint128(1) << i;
b = absl::uint128(1) << j;
c = a * b;
EXPECT_EQ(absl::uint128(1) << (i + j), c);
}
}
a = absl::MakeUint128(0xffffeeeeddddcccc, 0xbbbbaaaa99998888);
b = absl::MakeUint128(0x7777666655554444, 0x3333222211110000);
c = a * b;
EXPECT_EQ(absl::MakeUint128(0x530EDA741C71D4C3, 0xBF25975319080000), c);
EXPECT_EQ(0, c - b * a);
EXPECT_EQ(a*a - b*b, (a+b) * (a-b));
a = absl::MakeUint128(0x0123456789abcdef, 0xfedcba9876543210);
b = absl::MakeUint128(0x02468ace13579bdf, 0xfdb97531eca86420);
c = a * b;
EXPECT_EQ(absl::MakeUint128(0x97a87f4f261ba3f2, 0x342d0bbf48948200), c);
EXPECT_EQ(0, c - b * a);
EXPECT_EQ(a*a - b*b, (a+b) * (a-b));
}
TEST(Uint128, AliasTests) {
absl::uint128 x1 = absl::MakeUint128(1, 2);
absl::uint128 x2 = absl::MakeUint128(2, 4);
x1 += x1;
EXPECT_EQ(x2, x1);
absl::uint128 x3 = absl::MakeUint128(1, static_cast<uint64_t>(1) << 63);
absl::uint128 x4 = absl::MakeUint128(3, 0);
x3 += x3;
EXPECT_EQ(x4, x3);
}
TEST(Uint128, DivideAndMod) {
using std::swap;
absl::uint128 a, b, q, r;
a = 0;
b = 123;
q = a / b;
r = a % b;
EXPECT_EQ(0, q);
EXPECT_EQ(0, r);
a = absl::MakeUint128(0x530eda741c71d4c3, 0xbf25975319080000);
q = absl::MakeUint128(0x4de2cab081, 0x14c34ab4676e4bab);
b = absl::uint128(0x1110001);
r = absl::uint128(0x3eb455);
ASSERT_EQ(a, q * b + r);
absl::uint128 result_q, result_r;
result_q = a / b;
result_r = a % b;
EXPECT_EQ(q, result_q);
EXPECT_EQ(r, result_r);
swap(q, b);
result_q = a / b;
result_r = a % b;
EXPECT_EQ(q, result_q);
EXPECT_EQ(r, result_r);
swap(b, q);
swap(a, b);
result_q = a / b;
result_r = a % b;
EXPECT_EQ(0, result_q);
EXPECT_EQ(a, result_r);
swap(a, q);
result_q = a / b;
result_r = a % b;
EXPECT_EQ(0, result_q);
EXPECT_EQ(a, result_r);
swap(q, a);
swap(b, a);
b = a / 2 + 1;
absl::uint128 expected_r =
absl::MakeUint128(0x29876d3a0e38ea61, 0xdf92cba98c83ffff);
ASSERT_EQ(a / 2 - 1, expected_r);
ASSERT_EQ(a, b + expected_r);
result_q = a / b;
result_r = a % b;
EXPECT_EQ(1, result_q);
EXPECT_EQ(expected_r, result_r);
}
TEST(Uint128, DivideAndModRandomInputs) {
const int kNumIters = 1 << 18;
std::minstd_rand random(testing::UnitTest::GetInstance()->random_seed());
std::uniform_int_distribution<uint64_t> uniform_uint64;
for (int i = 0; i < kNumIters; ++i) {
const absl::uint128 a =
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
const absl::uint128 b =
absl::MakeUint128(uniform_uint64(random), uniform_uint64(random));
if (b == 0) {
continue;
}
const absl::uint128 q = a / b;
const absl::uint128 r = a % b;
ASSERT_EQ(a, b * q + r);
}
}
TEST(Uint128, ConstexprTest) {
constexpr absl::uint128 zero = absl::uint128();
constexpr absl::uint128 one = 1;
constexpr absl::uint128 minus_two = -2;
EXPECT_EQ(zero, absl::uint128(0));
EXPECT_EQ(one, absl::uint128(1));
EXPECT_EQ(minus_two, absl::MakeUint128(-1, -2));
}
TEST(Uint128, NumericLimitsTest) {
static_assert(std::numeric_limits<absl::uint128>::is_specialized, "");
static_assert(!std::numeric_limits<absl::uint128>::is_signed, "");
static_assert(std::numeric_limits<absl::uint128>::is_integer, "");
EXPECT_EQ(static_cast<int>(128 * std::log10(2)),
std::numeric_limits<absl::uint128>::digits10);
EXPECT_EQ(0, std::numeric_limits<absl::uint128>::min());
EXPECT_EQ(0, std::numeric_limits<absl::uint128>::lowest());
EXPECT_EQ(absl::Uint128Max(), std::numeric_limits<absl::uint128>::max());
}
TEST(Uint128, Hash) {
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({
absl::uint128{0},
absl::uint128{1},
~absl::uint128{},
absl::uint128{std::numeric_limits<int64_t>::max()},
absl::uint128{std::numeric_limits<uint64_t>::max()} + 0,
absl::uint128{std::numeric_limits<uint64_t>::max()} + 1,
absl::uint128{std::numeric_limits<uint64_t>::max()} + 2,
absl::uint128{1} << 62,
absl::uint128{1} << 63,
absl::uint128{1} << 64,
absl::uint128{1} << 65,
std::numeric_limits<absl::uint128>::max(),
std::numeric_limits<absl::uint128>::max() - 1,
std::numeric_limits<absl::uint128>::min() + 1,
std::numeric_limits<absl::uint128>::min(),
}));
}
TEST(Int128Uint128, ConversionTest) {
absl::int128 nonnegative_signed_values[] = {
0,
1,
0xffeeddccbbaa9988,
absl::MakeInt128(0x7766554433221100, 0),
absl::MakeInt128(0x1234567890abcdef, 0xfedcba0987654321),
absl::Int128Max()};
for (absl::int128 value : nonnegative_signed_values) {
EXPECT_EQ(value, absl::int128(absl::uint128(value)));
absl::uint128 assigned_value;
assigned_value = value;
EXPECT_EQ(value, absl::int128(assigned_value));
}
absl::int128 negative_values[] = {
-1, -0x1234567890abcdef,
absl::MakeInt128(-0x5544332211ffeedd, 0),
-absl::MakeInt128(0x76543210fedcba98, 0xabcdef0123456789)};
for (absl::int128 value : negative_values) {
EXPECT_EQ(absl::uint128(-value), -absl::uint128(value));
absl::uint128 assigned_value;
assigned_value = value;
EXPECT_EQ(absl::uint128(-value), -assigned_value);
}
}
template <typename T>
class Int128IntegerTraitsTest : public ::testing::Test {};
TYPED_TEST_SUITE(Int128IntegerTraitsTest, IntegerTypes);
TYPED_TEST(Int128IntegerTraitsTest, ConstructAssignTest) {
static_assert(std::is_constructible<absl::int128, TypeParam>::value,
"absl::int128 must be constructible from TypeParam");
static_assert(std::is_assignable<absl::int128&, TypeParam>::value,
"absl::int128 must be assignable from TypeParam");
static_assert(!std::is_assignable<TypeParam&, absl::int128>::value,
"TypeParam must not be assignable from absl::int128");
}
template <typename T>
class Int128FloatTraitsTest : public ::testing::Test {};
TYPED_TEST_SUITE(Int128FloatTraitsTest, FloatingPointTypes);
TYPED_TEST(Int128FloatTraitsTest, ConstructAssignTest) {
static_assert(std::is_constructible<absl::int128, TypeParam>::value,
"absl::int128 must be constructible from TypeParam");
static_assert(!std::is_assignable<absl::int128&, TypeParam>::value,
"absl::int128 must not be assignable from TypeParam");
static_assert(!std::is_assignable<TypeParam&, absl::int128>::value,
"TypeParam must not be assignable from absl::int128");
}
#ifdef ABSL_HAVE_INTRINSIC_INT128
TEST(Int128, IntrinsicTypeTraitsTest) {
static_assert(std::is_constructible<absl::int128, __int128>::value,
"absl::int128 must be constructible from __int128");
static_assert(std::is_assignable<absl::int128&, __int128>::value,
"absl::int128 must be assignable from __int128");
static_assert(!std::is_assignable<__int128&, absl::int128>::value,
"__int128 must not be assignable from absl::int128");
static_assert(std::is_constructible<absl::int128, unsigned __int128>::value,
"absl::int128 must be constructible from unsigned __int128");
static_assert(!std::is_assignable<absl::int128&, unsigned __int128>::value,
"absl::int128 must be assignable from unsigned __int128");
static_assert(!std::is_assignable<unsigned __int128&, absl::int128>::value,
"unsigned __int128 must not be assignable from absl::int128");
}
#endif
TEST(Int128, TrivialTraitsTest) {
static_assert(absl::is_trivially_default_constructible<absl::int128>::value,
"");
static_assert(absl::is_trivially_copy_constructible<absl::int128>::value, "");
static_assert(absl::is_trivially_copy_assignable<absl::int128>::value, "");
static_assert(std::is_trivially_destructible<absl::int128>::value, "");
}
TEST(Int128, BoolConversionTest) {
EXPECT_FALSE(absl::int128(0));
for (int i = 0; i < 64; ++i) {
EXPECT_TRUE(absl::MakeInt128(0, uint64_t{1} << i));
}
for (int i = 0; i < 63; ++i) {
EXPECT_TRUE(absl::MakeInt128(int64_t{1} << i, 0));
}
EXPECT_TRUE(absl::Int128Min());
EXPECT_EQ(absl::int128(1), absl::int128(true));
EXPECT_EQ(absl::int128(0), absl::int128(false));
}
template <typename T>
class Int128IntegerConversionTest : public ::testing::Test {};
TYPED_TEST_SUITE(Int128IntegerConversionTest, IntegerTypes);
TYPED_TEST(Int128IntegerConversionTest, RoundTripTest) {
EXPECT_EQ(TypeParam{0}, static_cast<TypeParam>(absl::int128(0)));
EXPECT_EQ(std::numeric_limits<TypeParam>::min(),
static_cast<TypeParam>(
absl::int128(std::numeric_limits<TypeParam>::min())));
EXPECT_EQ(std::numeric_limits<TypeParam>::max(),
static_cast<TypeParam>(
absl::int128(std::numeric_limits<TypeParam>::max())));
}
template <typename T>
class Int128FloatConversionTest : public ::testing::Test {};
TYPED_TEST_SUITE(Int128FloatConversionTest, FloatingPointTypes);
TYPED_TEST(Int128FloatConversionTest, ConstructAndCastTest) {
for (int i = 0; i < 110; ++i) {
SCOPED_TRACE(::testing::Message() << "i = " << i);
TypeParam float_value = std::ldexp(static_cast<TypeParam>(0x9f5b), i);
absl::int128 int_value = absl::int128(0x9f5b) << i;
EXPECT_EQ(float_value, static_cast<TypeParam>(int_value));
EXPECT_EQ(-float_value, static_cast<TypeParam>(-int_value));
EXPECT_EQ(int_value, absl::int128(float_value));
EXPECT_EQ(-int_value, absl::int128(-float_value));
}
uint64_t values[] = {0x6d4492c24fb86199, 0x26ead65e4cb359b5,
0x2c43407433ba3fd1, 0x3b574ec668df6b55,
0x1c750e55a29f4f0f};
for (uint64_t value : values) {
for (int i = 0; i <= 64; ++i) {
SCOPED_TRACE(::testing::Message()
<< "value = " << value << "; i = " << i);
TypeParam fvalue = std::ldexp(static_cast<TypeParam>(value), i);
EXPECT_DOUBLE_EQ(fvalue, static_cast<TypeParam>(absl::int128(fvalue)));
EXPECT_DOUBLE_EQ(-fvalue, static_cast<TypeParam>(-absl::int128(fvalue)));
EXPECT_DOUBLE_EQ(-fvalue, static_cast<TypeParam>(absl::int128(-fvalue)));
EXPECT_DOUBLE_EQ(fvalue, static_cast<TypeParam>(-absl::int128(-fvalue)));
}
}
absl::int128 large_values[] = {
absl::MakeInt128(0x5b0640d96c7b3d9f, 0xb7a7189e51d18622),
absl::MakeInt128(0x34bed042c6f65270, 0x73b236570669a089),
absl::MakeInt128(0x43deba9e6da12724, 0xf7f0f83da686797d),
absl::MakeInt128(0x71e8d383be4e5589, 0x75c3f96fb00752b6)};
for (absl::int128 value : large_values) {
value >>= (127 - std::numeric_limits<TypeParam>::digits);
value |= absl::int128(1) << (std::numeric_limits<TypeParam>::digits - 1);
value |= 1;
for (int i = 0; i < 127 - std::numeric_limits<TypeParam>::digits; ++i) {
absl::int128 int_value = value << i;
EXPECT_EQ(int_value,
static_cast<absl::int128>(static_cast<TypeParam>(int_value)));
EXPECT_EQ(-int_value,
static_cast<absl::int128>(static_cast<TypeParam>(-int_value)));
}
}
EXPECT_EQ(0, absl::int128(TypeParam(0.1)));
EXPECT_EQ(17, absl::int128(TypeParam(17.8)));
EXPECT_EQ(0, absl::int128(TypeParam(-0.8)));
EXPECT_EQ(-53, absl::int128(TypeParam(-53.1)));
EXPECT_EQ(0, absl::int128(TypeParam(0.5)));
EXPECT_EQ(0, absl::int128(TypeParam(-0.5)));
TypeParam just_lt_one = std::nexttoward(TypeParam(1), TypeParam(0));
EXPECT_EQ(0, absl::int128(just_lt_one));
TypeParam just_gt_minus_one = std::nexttoward(TypeParam(-1), TypeParam(0));
EXPECT_EQ(0, absl::int128(just_gt_minus_one));
EXPECT_DOUBLE_EQ(std::ldexp(static_cast<TypeParam>(1), 127),
static_cast<TypeParam>(absl::Int128Max()));
EXPECT_DOUBLE_EQ(-std::ldexp(static_cast<TypeParam>(1), 127),
static_cast<TypeParam>(absl::Int128Min()));
}
TEST(Int128, FactoryTest) {
EXPECT_EQ(absl::int128(-1), absl::MakeInt128(-1, -1));
EXPECT_EQ(absl::int128(-31), absl::MakeInt128(-1, -31));
EXPECT_EQ(absl::int128(std::numeric_limits<int64_t>::min()),
absl::MakeInt128(-1, std::numeric_limits<int64_t>::min()));
EXPECT_EQ(absl::int128(0), absl::MakeInt128(0, 0));
EXPECT_EQ(absl::int128(1), absl::MakeInt128(0, 1));
EXPECT_EQ(absl::int128(std::numeric_limits<int64_t>::max()),
absl::MakeInt128(0, std::numeric_limits<int64_t>::max()));
}
TEST(Int128, HighLowTest) {
struct HighLowPair {
int64_t high;
uint64_t low;
};
HighLowPair values[]{{0, 0}, {0, 1}, {1, 0}, {123, 456}, {-654, 321}};
for (const HighLowPair& pair : values) {
absl::int128 value = absl::MakeInt128(pair.high, pair.low);
EXPECT_EQ(pair.low, absl::Int128Low64(value));
EXPECT_EQ(pair.high, absl::Int128High64(value));
}
}
TEST(Int128, LimitsTest) {
EXPECT_EQ(absl::MakeInt128(0x7fffffffffffffff, 0xffffffffffffffff),
absl::Int128Max());
EXPECT_EQ(absl::Int128Max(), ~absl::Int128Min());
}
#if defined(ABSL_HAVE_INTRINSIC_INT128)
TEST(Int128, IntrinsicConversionTest) {
__int128 intrinsic =
(static_cast<__int128>(0x3a5b76c209de76f6) << 64) + 0x1f25e1d63a2b46c5;
absl::int128 custom =
absl::MakeInt128(0x3a5b76c209de76f6, 0x1f25e1d63a2b46c5);
EXPECT_EQ(custom, absl::int128(intrinsic));
EXPECT_EQ(intrinsic, static_cast<__int128>(custom));
}
#endif
TEST(Int128, ConstexprTest) {
constexpr absl::int128 zero = absl::int128();
constexpr absl::int128 one = 1;
constexpr absl::int128 minus_two = -2;
constexpr absl::int128 min = absl::Int128Min();
constexpr absl::int128 max = absl::Int128Max();
EXPECT_EQ(zero, absl::int128(0));
EXPECT_EQ(one, absl::int128(1));
EXPECT_EQ(minus_two, absl::MakeInt128(-1, -2));
EXPECT_GT(max, one);
EXPECT_LT(min, minus_two);
}
TEST(Int128, ComparisonTest) {
struct TestCase {
absl::int128 smaller;
absl::int128 larger;
};
TestCase cases[] = {
{absl::int128(0), absl::int128(123)},
{absl::MakeInt128(-12, 34), absl::MakeInt128(12, 34)},
{absl::MakeInt128(1, 1000), absl::MakeInt128(1000, 1)},
{absl::MakeInt128(-1000, 1000), absl::MakeInt128(-1, 1)},
};
for (const TestCase& pair : cases) {
SCOPED_TRACE(::testing::Message() << "pair.smaller = " << pair.smaller
<< "; pair.larger = " << pair.larger);
EXPECT_TRUE(pair.smaller == pair.smaller);
EXPECT_TRUE(pair.larger == pair.larger);
EXPECT_FALSE(pair.smaller == pair.larger);
EXPECT_TRUE(pair.smaller != pair.larger);
EXPECT_FALSE(pair.smaller != pair.smaller);
EXPECT_FALSE(pair.larger != pair.larger);
EXPECT_TRUE(pair.smaller < pair.larger);
EXPECT_FALSE(pair.larger < pair.smaller);
EXPECT_TRUE(pair.larger > pair.smaller);
EXPECT_FALSE(pair.smaller > pair.larger);
EXPECT_TRUE(pair.smaller <= pair.larger);
EXPECT_FALSE(pair.larger <= pair.smaller);
EXPECT_TRUE(pair.smaller <= pair.smaller);
EXPECT_TRUE(pair.larger <= pair.larger);
EXPECT_TRUE(pair.larger >= pair.smaller);
EXPECT_FALSE(pair.smaller >= pair.larger);
EXPECT_TRUE(pair.smaller >= pair.smaller);
EXPECT_TRUE(pair.larger >= pair.larger);
#ifdef __cpp_impl_three_way_comparison
EXPECT_EQ(pair.smaller <=> pair.larger, absl::strong_ordering::less);
EXPECT_EQ(pair.larger <=> pair.smaller, absl::strong_ordering::greater);
EXPECT_EQ(pair.smaller <=> pair.smaller, absl::strong_ordering::equal);
EXPECT_EQ(pair.larger <=> pair.larger, absl::strong_ordering::equal);
#endif
}
}
TEST(Int128, UnaryPlusTest) {
int64_t values64[] = {0, 1, 12345, 0x4000000000000000,
std::numeric_limits<int64_t>::max()};
for (int64_t value : values64) {
SCOPED_TRACE(::testing::Message() << "value = " << value);
EXPECT_EQ(absl::int128(value), +absl::int128(value));
EXPECT_EQ(absl::int128(-value), +absl::int128(-value));
EXPECT_EQ(absl::MakeInt128(value, 0), +absl::MakeInt128(value, 0));
EXPECT_EQ(absl::MakeInt128(-value, 0), +absl::MakeInt128(-value, 0));
}
}
TEST(Int128, UnaryNegationTest) {
int64_t values64[] = {0, 1, 12345, 0x4000000000000000,
std::numeric_limits<int64_t>::max()};
for (int64_t value : values64) {
SCOPED_TRACE(::testing::Message() << "value = " << value);
EXPECT_EQ(absl::int128(-value), -absl::int128(value));
EXPECT_EQ(absl::int128(value), -absl::int128(-value));
EXPECT_EQ(absl::MakeInt128(-value, 0), -absl::MakeInt128(value, 0));
EXPECT_EQ(absl::MakeInt128(value, 0), -absl::MakeInt128(-value, 0));
}
}
TEST(Int128, LogicalNotTest) {
EXPECT_TRUE(!absl::int128(0));
for (int i = 0; i < 64; ++i) {
EXPECT_FALSE(!absl::MakeInt128(0, uint64_t{1} << i));
}
for (int i = 0; i < 63; ++i) {
EXPECT_FALSE(!absl::MakeInt128(int64_t{1} << i, 0));
}
}
TEST(Int128, AdditionSubtractionTest) {
std::pair<int64_t, int64_t> cases[]{
{0, 0},
{0, 2945781290834},
{1908357619234, 0},
{0, -1204895918245},
{-2957928523560, 0},
{89023982312461, 98346012567134},
{-63454234568239, -23456235230773},
{98263457263502, -21428561935925},
{-88235237438467, 15923659234573},
};
for (const auto& pair : cases) {
SCOPED_TRACE(::testing::Message()
<< "pair = {" << pair.first << ", " << pair.second << '}');
EXPECT_EQ(absl::int128(pair.first + pair.second),
absl::int128(pair.first) + absl::int128(pair.second));
EXPECT_EQ(absl::int128(pair.second + pair.first),
absl::int128(pair.second) += absl::int128(pair.first));
EXPECT_EQ(absl::int128(pair.first - pair.second),
absl::int128(pair.first) - absl::int128(pair.second));
EXPECT_EQ(absl::int128(pair.second - pair.first),
absl::int128(pair.second) -= absl::int128(pair.first));
EXPECT_EQ(
absl::MakeInt128(pair.second + pair.first, 0),
absl::MakeInt128(pair.second, 0) + absl::MakeInt128(pair.first, 0));
EXPECT_EQ(
absl::MakeInt128(pair.first + pair.second, 0),
absl::MakeInt128(pair.first, 0) += absl::MakeInt128(pair.second, 0));
EXPECT_EQ(
absl::MakeInt128(pair.second - pair.first, 0),
absl::MakeInt128(pair.second, 0) - absl::MakeInt128(pair | 2,584 |
#ifndef ABSL_SYNCHRONIZATION_BLOCKING_COUNTER_H_
#define ABSL_SYNCHRONIZATION_BLOCKING_COUNTER_H_
#include <atomic>
#include "absl/base/thread_annotations.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class BlockingCounter {
public:
explicit BlockingCounter(int initial_count);
BlockingCounter(const BlockingCounter&) = delete;
BlockingCounter& operator=(const BlockingCounter&) = delete;
bool DecrementCount();
void Wait();
private:
Mutex lock_;
std::atomic<int> count_;
int num_waiting_ ABSL_GUARDED_BY(lock_);
bool done_ ABSL_GUARDED_BY(lock_);
};
ABSL_NAMESPACE_END
}
#endif
#include "absl/synchronization/blocking_counter.h"
#include <atomic>
#include "absl/base/internal/raw_logging.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
bool IsDone(void *arg) { return *reinterpret_cast<bool *>(arg); }
}
BlockingCounter::BlockingCounter(int initial_count)
: count_(initial_count),
num_waiting_(0),
done_{initial_count == 0 ? true : false} {
ABSL_RAW_CHECK(initial_count >= 0, "BlockingCounter initial_count negative");
}
bool BlockingCounter::DecrementCount() {
int count = count_.fetch_sub(1, std::memory_order_acq_rel) - 1;
ABSL_RAW_CHECK(count >= 0,
"BlockingCounter::DecrementCount() called too many times");
if (count == 0) {
MutexLock l(&lock_);
done_ = true;
return true;
}
return false;
}
void BlockingCounter::Wait() {
MutexLock l(&this->lock_);
ABSL_RAW_CHECK(num_waiting_ == 0, "multiple threads called Wait()");
num_waiting_++;
this->lock_.Await(Condition(IsDone, &this->done_));
}
ABSL_NAMESPACE_END
} | #include "absl/synchronization/blocking_counter.h"
#include <thread>
#include <vector>
#include "gtest/gtest.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
void PauseAndDecreaseCounter(BlockingCounter* counter, int* done) {
absl::SleepFor(absl::Seconds(1));
*done = 1;
counter->DecrementCount();
}
TEST(BlockingCounterTest, BasicFunctionality) {
const int num_workers = 10;
BlockingCounter counter(num_workers);
std::vector<std::thread> workers;
std::vector<int> done(num_workers, 0);
workers.reserve(num_workers);
for (int k = 0; k < num_workers; k++) {
workers.emplace_back(
[&counter, &done, k] { PauseAndDecreaseCounter(&counter, &done[k]); });
}
counter.Wait();
for (int k = 0; k < num_workers; k++) {
EXPECT_EQ(1, done[k]);
}
for (std::thread& w : workers) {
w.join();
}
}
TEST(BlockingCounterTest, WaitZeroInitialCount) {
BlockingCounter counter(0);
counter.Wait();
}
#if GTEST_HAS_DEATH_TEST
TEST(BlockingCounterTest, WaitNegativeInitialCount) {
EXPECT_DEATH(BlockingCounter counter(-1),
"BlockingCounter initial_count negative");
}
#endif
}
ABSL_NAMESPACE_END
} | 2,585 |
#ifndef ABSL_SYNCHRONIZATION_BARRIER_H_
#define ABSL_SYNCHRONIZATION_BARRIER_H_
#include "absl/base/thread_annotations.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
class Barrier {
public:
explicit Barrier(int num_threads)
: num_to_block_(num_threads), num_to_exit_(num_threads) {}
Barrier(const Barrier&) = delete;
Barrier& operator=(const Barrier&) = delete;
bool Block();
private:
Mutex lock_;
int num_to_block_ ABSL_GUARDED_BY(lock_);
int num_to_exit_ ABSL_GUARDED_BY(lock_);
};
ABSL_NAMESPACE_END
}
#endif
#include "absl/synchronization/barrier.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/synchronization/mutex.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
static bool IsZero(void *arg) {
return 0 == *reinterpret_cast<int *>(arg);
}
bool Barrier::Block() {
MutexLock l(&this->lock_);
this->num_to_block_--;
if (this->num_to_block_ < 0) {
ABSL_RAW_LOG(
FATAL,
"Block() called too many times. num_to_block_=%d out of total=%d",
this->num_to_block_, this->num_to_exit_);
}
this->lock_.Await(Condition(IsZero, &this->num_to_block_));
this->num_to_exit_--;
ABSL_RAW_CHECK(this->num_to_exit_ >= 0, "barrier underflow");
return this->num_to_exit_ == 0;
}
ABSL_NAMESPACE_END
} | #include "absl/synchronization/barrier.h"
#include <thread>
#include <vector>
#include "gtest/gtest.h"
#include "absl/synchronization/mutex.h"
#include "absl/time/clock.h"
TEST(Barrier, SanityTest) {
constexpr int kNumThreads = 10;
absl::Barrier* barrier = new absl::Barrier(kNumThreads);
absl::Mutex mutex;
int counter = 0;
auto thread_func = [&] {
if (barrier->Block()) {
delete barrier;
}
absl::MutexLock lock(&mutex);
++counter;
};
std::vector<std::thread> threads;
for (int i = 0; i < kNumThreads - 1; ++i) {
threads.push_back(std::thread(thread_func));
}
absl::SleepFor(absl::Seconds(1));
{
absl::MutexLock lock(&mutex);
EXPECT_EQ(counter, 0);
}
threads.push_back(std::thread(thread_func));
for (auto& thread : threads) {
thread.join();
}
absl::MutexLock lock(&mutex);
EXPECT_EQ(counter, kNumThreads);
} | 2,586 |