File size: 1,743 Bytes
49764b2
 
 
 
 
 
 
244629b
49764b2
61387a1
244629b
61387a1
244629b
 
da8e782
 
 
 
49764b2
 
 
8c0649d
f3e0240
 
 
b79d581
f3e0240
 
 
 
e71fd87
b79d581
8c0649d
69bf7ae
 
 
 
 
 
 
 
 
8c0649d
6f8a934
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
dataset_info:
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 22394390
    num_examples: 67349
  - name: validation
    num_bytes: 324252
    num_examples: 872
  download_size: 4390572
  dataset_size: 22718642
task_categories:
- text-classification
language:
- en
---
# Dataset Card for "llama2-sst2-finetuning"

## Dataset Description
The Llama2-sst2-fine-tuning dataset is designed for supervised fine-tuning of the LLaMA V2 based on the GLUE SST2 for sentiment analysis classification task.  
We provide two subsets: training and validation.  
To ensure the effectiveness of fine-tuning, we convert the data into the prompt template for LLaMA V2 supervised fine-tuning, where the data will follow this format:  
```
<s>[INST] <<SYS>>  
{System prompt}  
<</SYS>>  
  
{User prompt} [/INST] {Label} </s>.  
```

The feasibility of this dataset has been tested in supervised fine-tuning on the meta-llama/Llama-2-7b-hf model.

Note. For the sake of simplicity, we have retained only one new column of data ('text').

## Other Useful Links
- [Get Llama 2 Prompt Format Right](https://www.reddit.com/r/LocalLLaMA/comments/155po2p/get_llama_2_prompt_format_right/)
- [Fine-Tune Your Own Llama 2 Model in a Colab Notebook](https://towardsdatascience.com/fine-tune-your-own-llama-2-model-in-a-colab-notebook-df9823a04a32)
- [Instruction fine-tuning Llama 2 with PEFT’s QLoRa method](https://medium.com/@ud.chandra/instruction-fine-tuning-llama-2-with-pefts-qlora-method-d6a801ebb19)
- [GLUE SST2 Dataset](https://www.tensorflow.org/datasets/catalog/glue#gluesst2)

<!--[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)-->