Datasets:

Languages:
Chinese
ArXiv:
License:
小臣子吃大橙子 commited on
Commit
776fc7a
1 Parent(s): 7a614a3

update data download script

Browse files
Files changed (2) hide show
  1. README.md +7 -6
  2. README_zh.md +6 -6
README.md CHANGED
@@ -52,17 +52,17 @@ For more details, please visit our [leaderboard]() (Coming Soon).
52
 
53
  ## ⏬ Download
54
 
55
- You can download the dataset from the [HuggingFace Page](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark). Current [version](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark/blob/main/MULTI_v1.2.2_20240212_release.zip) is `v1.2.2`. Unzip the files and put them under `data`.
56
 
57
- ```
58
- wget https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark/resolve/main/MULTI_v1.2.2_20240212_release.zip
59
- unzip MULTI_v1.2.2_20240212_release.zip -d ./data/
60
  ```
61
 
62
- The structure of `data` should be something like:
63
 
64
  ```
65
- data
66
  ├── images # folder containing images
67
  ├── problem_v1.2.2_20240212_release.json # MULTI
68
  ├── knowledge_v1.2.2_20240212_release.json # MULTI-Extend
@@ -70,6 +70,7 @@ data
70
  └── captions_v1.2.0_20231217.csv # image captions generated by BLIP-6.7b
71
  ```
72
 
 
73
  ## 📝 How to Evaluate
74
 
75
  We provide a unified evaluation framework in `eval`. Each file in `eval/models` contains an evaluator specified to one M/LLM, and implements a `generate_answer` method to receive a question as input and give out the answer of it.
 
52
 
53
  ## ⏬ Download
54
 
55
+ You can simply download data using the following command:
56
 
57
+ ```shell
58
+ cd eval
59
+ python download_data.py
60
  ```
61
 
62
+ The structure of `./data` should be something like:
63
 
64
  ```
65
+ ./data
66
  ├── images # folder containing images
67
  ├── problem_v1.2.2_20240212_release.json # MULTI
68
  ├── knowledge_v1.2.2_20240212_release.json # MULTI-Extend
 
70
  └── captions_v1.2.0_20231217.csv # image captions generated by BLIP-6.7b
71
  ```
72
 
73
+
74
  ## 📝 How to Evaluate
75
 
76
  We provide a unified evaluation framework in `eval`. Each file in `eval/models` contains an evaluator specified to one M/LLM, and implements a `generate_answer` method to receive a question as input and give out the answer of it.
README_zh.md CHANGED
@@ -52,17 +52,17 @@ viewer: False
52
 
53
  ## ⏬ 下载
54
 
55
- 您可以从[HuggingFace页面](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark)下载数据集。最新[版本](https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark/blob/main/MULTI_v1.2.2_20240212_release.zip)为`v1.2.2`。解压文件并将它们放置在`data`下。
56
 
57
- ```
58
- wget https://huggingface.co/datasets/OpenDFM/MULTI-Benchmark/resolve/main/MULTI_v1.2.2_20240212_release.zip
59
- unzip MULTI_v1.2.2_20240212_release.zip -d ./data/
60
  ```
61
 
62
- `data` 的结构应该如下所示:
63
 
64
  ```
65
- data
66
  ├── images # 包含图片的文件夹
67
  ├── problem_v1.2.2_20240212_release.json # MULTI
68
  ├── knowledge_v1.2.2_20240212_release.json # MULTI-Extend
 
52
 
53
  ## ⏬ 下载
54
 
55
+ 您只需使用以下命令即可下载数据:
56
 
57
+ ```shell
58
+ cd eval
59
+ python download_data.py
60
  ```
61
 
62
+ `./data` 的结构应该如下所示:
63
 
64
  ```
65
+ ./data
66
  ├── images # 包含图片的文件夹
67
  ├── problem_v1.2.2_20240212_release.json # MULTI
68
  ├── knowledge_v1.2.2_20240212_release.json # MULTI-Extend