|
import json |
|
import argparse |
|
from nltk.translate.bleu_score import sentence_bleu |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--category", required=True, type=str, choices=["chemistry", "physics"]) |
|
parser.add_argument("--file", required=True, type=str) |
|
|
|
args = parser.parse_args() |
|
with open(args.file, 'r') as reader: |
|
data = json.load(reader) |
|
|
|
|
|
def extract_float(pred_str): |
|
flag = False |
|
answer_str = "" |
|
for s in pred_str: |
|
if (s >= "0" and s <= "9") or s == ".": |
|
answer_str += s |
|
if flag == False: |
|
flag = True |
|
else: |
|
if flag == True: |
|
break |
|
if len(answer_str) == 0 or answer_str == ".": |
|
return 0 |
|
if answer_str[-1] == ".": |
|
answer_str = answer_str[:-1] |
|
|
|
return float(answer_str) |
|
|
|
|
|
def split_IUPAC_name(name_str): |
|
special_strs = [",", "[", "]", "-", "(", ")"] |
|
name_list = [name_str] |
|
for special_str in special_strs: |
|
new_name_list = [] |
|
for name in name_list: |
|
name_split = name.split(special_str) |
|
name_split = [s for s in name_split if len(s) != 0] |
|
new_name_list += name_split |
|
name_list = new_name_list.copy() |
|
|
|
return name_list |
|
|
|
|
|
if args.category == "chemistry": |
|
bleu_scores = [] |
|
mse_scores = [] |
|
acc_cnt = 0 |
|
for d in data: |
|
if f"{d['answer'][0]}".lower() in d["pred"]: |
|
acc_cnt += 1 |
|
if "What is the SMILES expression of " in d["question"]: |
|
answer = [a for a in d["answer"][0].lower()] |
|
pred_split = d["pred"].split(" ") |
|
max_bleu = 0 |
|
for pred in pred_split: |
|
pred = [a for a in pred.lower()] |
|
reference = [answer] |
|
score = sentence_bleu(reference, pred, weights=(0.25, 0.25, 0.25, 0.25)) |
|
if score > max_bleu: |
|
max_bleu = score |
|
bleu_scores.append(max_bleu) |
|
elif "What is the molecular formula of" in d["question"]: |
|
answer = [a for a in d["answer"][0].lower()] |
|
pred_split = d["pred"].split(" ") |
|
max_bleu = 0 |
|
for pred in pred_split: |
|
pred = [a for a in pred.lower()] |
|
reference = [answer] |
|
score = sentence_bleu(reference, pred, weights=(0.25, 0.25, 0.25, 0.25)) |
|
if score > max_bleu: |
|
max_bleu = score |
|
bleu_scores.append(max_bleu) |
|
elif "What is the molecular weight of " in d["question"]: |
|
answer = float(d["answer"][0]) |
|
min_mse = 1e10 |
|
pred_split = d["pred"].split(" ") |
|
for pred in pred_split: |
|
pred = extract_float(pred) |
|
if pred == 0: |
|
continue |
|
mse = (pred - answer) ** 2 |
|
if mse < min_mse: |
|
min_mse = mse |
|
if min_mse != 1e10: |
|
mse_scores.append(min_mse) |
|
elif "How many atoms are there in" in d["question"]: |
|
answer = float(d["answer"][0]) |
|
min_mse = 1e10 |
|
pred_split = d["pred"].split(" ") |
|
for pred in pred_split: |
|
pred = extract_float(pred) |
|
if pred == 0: |
|
continue |
|
mse = (pred - answer) ** 2 |
|
if mse < min_mse: |
|
min_mse = mse |
|
if min_mse != 1e10: |
|
mse_scores.append(min_mse) |
|
elif "What is the name of" in d["question"]: |
|
answer = split_IUPAC_name(d["answer"][0].strip().lower()) |
|
pred_split = d["pred"].split(" ") |
|
max_bleu = 0 |
|
for pred in pred_split: |
|
pred = split_IUPAC_name(pred.strip().lower()) |
|
reference = [answer] |
|
score = sentence_bleu(reference, pred, weights=(0.25, 0.25, 0.25, 0.25)) |
|
if score > max_bleu: |
|
max_bleu = score |
|
bleu_scores.append(max_bleu) |
|
|
|
print("blue: ", sum(bleu_scores) / len(bleu_scores)) |
|
print("mse: ", sum(mse_scores) / len(mse_scores)) |
|
print("EM: ", acc_cnt / len(data)) |
|
else: |
|
acc_cnt = 0 |
|
for d in data: |
|
if len(d["pred"]) == 0: |
|
continue |
|
if d["answer"][0].lower() == d["pred"][0].lower(): |
|
acc_cnt += 1 |
|
print(acc_cnt/len(data)) |
|
|