import json import argparse from nltk.translate.bleu_score import sentence_bleu parser = argparse.ArgumentParser() parser.add_argument("--category", required=True, type=str, choices=["chemistry", "physics"]) parser.add_argument("--file", required=True, type=str) args = parser.parse_args() with open(args.file, 'r') as reader: data = json.load(reader) def extract_float(pred_str): flag = False answer_str = "" for s in pred_str: if (s >= "0" and s <= "9") or s == ".": answer_str += s if flag == False: flag = True else: if flag == True: break if len(answer_str) == 0 or answer_str == ".": return 0 if answer_str[-1] == ".": answer_str = answer_str[:-1] return float(answer_str) def split_IUPAC_name(name_str): special_strs = [",", "[", "]", "-", "(", ")"] name_list = [name_str] for special_str in special_strs: new_name_list = [] for name in name_list: name_split = name.split(special_str) name_split = [s for s in name_split if len(s) != 0] new_name_list += name_split name_list = new_name_list.copy() return name_list if args.category == "chemistry": bleu_scores = [] mse_scores = [] acc_cnt = 0 for d in data: if f"{d['answer'][0]}".lower() in d["pred"]: acc_cnt += 1 if "What is the SMILES expression of " in d["question"]: answer = [a for a in d["answer"][0].lower()] pred_split = d["pred"].split(" ") max_bleu = 0 for pred in pred_split: pred = [a for a in pred.lower()] reference = [answer] score = sentence_bleu(reference, pred, weights=(0.25, 0.25, 0.25, 0.25)) if score > max_bleu: max_bleu = score bleu_scores.append(max_bleu) elif "What is the molecular formula of" in d["question"]: answer = [a for a in d["answer"][0].lower()] pred_split = d["pred"].split(" ") max_bleu = 0 for pred in pred_split: pred = [a for a in pred.lower()] reference = [answer] score = sentence_bleu(reference, pred, weights=(0.25, 0.25, 0.25, 0.25)) if score > max_bleu: max_bleu = score bleu_scores.append(max_bleu) elif "What is the molecular weight of " in d["question"]: answer = float(d["answer"][0]) min_mse = 1e10 pred_split = d["pred"].split(" ") for pred in pred_split: pred = extract_float(pred) if pred == 0: continue mse = (pred - answer) ** 2 if mse < min_mse: min_mse = mse if min_mse != 1e10: mse_scores.append(min_mse) elif "How many atoms are there in" in d["question"]: answer = float(d["answer"][0]) min_mse = 1e10 pred_split = d["pred"].split(" ") for pred in pred_split: pred = extract_float(pred) if pred == 0: continue mse = (pred - answer) ** 2 if mse < min_mse: min_mse = mse if min_mse != 1e10: mse_scores.append(min_mse) elif "What is the name of" in d["question"]: answer = split_IUPAC_name(d["answer"][0].strip().lower()) pred_split = d["pred"].split(" ") max_bleu = 0 for pred in pred_split: pred = split_IUPAC_name(pred.strip().lower()) reference = [answer] score = sentence_bleu(reference, pred, weights=(0.25, 0.25, 0.25, 0.25)) if score > max_bleu: max_bleu = score bleu_scores.append(max_bleu) print("blue: ", sum(bleu_scores) / len(bleu_scores)) print("mse: ", sum(mse_scores) / len(mse_scores)) print("EM: ", acc_cnt / len(data)) else: acc_cnt = 0 for d in data: if len(d["pred"]) == 0: continue if d["answer"][0].lower() == d["pred"][0].lower(): acc_cnt += 1 print(acc_cnt/len(data))