--- license: cc-by-sa-4.0 size_categories: - n<1K task_categories: - graph-ml pretty_name: 2D quasistatic non-linear structural mechanics solutions tags: - physics learning - geometry learning configs: - config_name: default data_files: - split: all_samples path: data/all_samples-* dataset_info: description: legal: owner: Safran license: cc-by-sa-4.0 data_production: type: simulation physics: 2D quasistatic non-linear structural mechanics, small deformations, plane strain split: test: - 500 - 501 - 502 - 503 - 504 - 505 - 506 - 507 - 508 - 509 - 510 - 511 - 512 - 513 - 514 - 515 - 516 - 517 - 518 - 519 - 520 - 521 - 522 - 523 - 524 - 525 - 526 - 527 - 528 - 529 - 530 - 531 - 532 - 533 - 534 - 535 - 536 - 537 - 538 - 539 - 540 - 541 - 542 - 543 - 544 - 545 - 546 - 547 - 548 - 549 - 550 - 551 - 552 - 553 - 554 - 555 - 556 - 557 - 558 - 559 - 560 - 561 - 562 - 563 - 564 - 565 - 566 - 567 - 568 - 569 - 570 - 571 - 572 - 573 - 574 - 575 - 576 - 577 - 578 - 579 - 580 - 581 - 582 - 583 - 584 - 585 - 586 - 587 - 588 - 589 - 590 - 591 - 592 - 593 - 594 - 595 - 596 - 597 - 598 - 599 - 600 - 601 - 602 - 603 - 604 - 605 - 606 - 607 - 608 - 609 - 610 - 611 - 612 - 613 - 614 - 615 - 616 - 617 - 618 - 619 - 620 - 621 - 622 - 623 - 624 - 625 - 626 - 627 - 628 - 629 - 630 - 631 - 632 - 633 - 634 - 635 - 636 - 637 - 638 - 639 - 640 - 641 - 642 - 643 - 644 - 645 - 646 - 647 - 648 - 649 - 650 - 651 - 652 - 653 - 654 - 655 - 656 - 657 - 658 - 659 - 660 - 661 - 662 - 663 - 664 - 665 - 666 - 667 - 668 - 669 - 670 - 671 - 672 - 673 - 674 - 675 - 676 - 677 - 678 - 679 - 680 - 681 - 682 - 683 - 684 - 685 - 686 - 687 - 688 - 689 - 690 - 691 - 692 - 693 - 694 - 695 - 696 - 697 - 698 - 699 OOD: - 700 - 701 train_8: - 35 - 95 - 188 - 210 - 312 - 322 - 401 - 408 train_16: - 17 - 35 - 64 - 95 - 170 - 174 - 184 - 188 - 210 - 267 - 290 - 312 - 322 - 401 - 408 - 496 train_32: - 12 - 17 - 19 - 35 - 64 - 92 - 95 - 99 - 144 - 148 - 159 - 170 - 171 - 174 - 184 - 188 - 206 - 210 - 267 - 290 - 312 - 322 - 364 - 371 - 395 - 400 - 401 - 403 - 408 - 436 - 481 - 496 train_64: - 4 - 12 - 17 - 19 - 22 - 24 - 35 - 40 - 53 - 64 - 78 - 86 - 92 - 95 - 99 - 109 - 114 - 138 - 144 - 148 - 156 - 157 - 159 - 168 - 170 - 171 - 172 - 174 - 179 - 184 - 188 - 195 - 206 - 207 - 210 - 226 - 233 - 256 - 267 - 279 - 287 - 290 - 299 - 302 - 312 - 322 - 327 - 343 - 351 - 364 - 371 - 395 - 400 - 401 - 403 - 405 - 408 - 409 - 436 - 446 - 465 - 469 - 481 - 496 train_125: - 0 - 4 - 8 - 12 - 16 - 17 - 19 - 22 - 24 - 33 - 34 - 35 - 36 - 37 - 39 - 40 - 46 - 49 - 51 - 53 - 63 - 64 - 74 - 78 - 86 - 89 - 92 - 94 - 95 - 99 - 100 - 109 - 114 - 138 - 139 - 144 - 148 - 151 - 156 - 157 - 159 - 163 - 168 - 170 - 171 - 172 - 174 - 179 - 183 - 184 - 188 - 189 - 195 - 201 - 206 - 207 - 210 - 212 - 216 - 220 - 225 - 226 - 228 - 230 - 233 - 241 - 255 - 256 - 262 - 267 - 268 - 275 - 277 - 279 - 287 - 289 - 290 - 296 - 299 - 300 - 301 - 302 - 311 - 312 - 314 - 318 - 322 - 327 - 329 - 341 - 343 - 347 - 348 - 351 - 364 - 371 - 379 - 385 - 387 - 390 - 392 - 394 - 395 - 400 - 401 - 403 - 405 - 407 - 408 - 409 - 421 - 422 - 431 - 436 - 440 - 444 - 446 - 456 - 465 - 466 - 469 - 470 - 471 - 481 - 496 train_250: - 0 - 4 - 5 - 8 - 9 - 11 - 12 - 16 - 17 - 19 - 21 - 22 - 24 - 32 - 33 - 34 - 35 - 36 - 37 - 39 - 40 - 41 - 42 - 45 - 46 - 47 - 49 - 51 - 53 - 58 - 59 - 63 - 64 - 67 - 68 - 74 - 76 - 78 - 81 - 83 - 86 - 87 - 88 - 89 - 90 - 92 - 94 - 95 - 96 - 99 - 100 - 101 - 103 - 105 - 106 - 109 - 110 - 111 - 112 - 114 - 116 - 122 - 125 - 126 - 127 - 128 - 130 - 131 - 136 - 137 - 138 - 139 - 144 - 146 - 147 - 148 - 151 - 152 - 156 - 157 - 159 - 162 - 163 - 166 - 168 - 170 - 171 - 172 - 173 - 174 - 179 - 180 - 183 - 184 - 188 - 189 - 195 - 199 - 201 - 204 - 205 - 206 - 207 - 208 - 210 - 211 - 212 - 213 - 214 - 216 - 218 - 220 - 222 - 223 - 225 - 226 - 227 - 228 - 230 - 231 - 233 - 236 - 241 - 242 - 245 - 248 - 251 - 252 - 255 - 256 - 257 - 258 - 259 - 261 - 262 - 264 - 267 - 268 - 272 - 275 - 277 - 279 - 280 - 282 - 283 - 285 - 286 - 287 - 289 - 290 - 291 - 294 - 295 - 296 - 299 - 300 - 301 - 302 - 307 - 309 - 311 - 312 - 313 - 314 - 315 - 316 - 318 - 322 - 324 - 327 - 329 - 331 - 332 - 340 - 341 - 343 - 344 - 347 - 348 - 350 - 351 - 355 - 358 - 364 - 366 - 367 - 371 - 372 - 374 - 375 - 376 - 377 - 379 - 385 - 387 - 388 - 390 - 392 - 394 - 395 - 396 - 397 - 399 - 400 - 401 - 402 - 403 - 404 - 405 - 407 - 408 - 409 - 411 - 412 - 413 - 418 - 419 - 421 - 422 - 424 - 426 - 431 - 436 - 438 - 439 - 440 - 442 - 444 - 445 - 446 - 448 - 451 - 455 - 456 - 457 - 458 - 465 - 466 - 468 - 469 - 470 - 471 - 473 - 474 - 475 - 476 - 477 - 481 - 491 - 496 train_500: - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50 - 51 - 52 - 53 - 54 - 55 - 56 - 57 - 58 - 59 - 60 - 61 - 62 - 63 - 64 - 65 - 66 - 67 - 68 - 69 - 70 - 71 - 72 - 73 - 74 - 75 - 76 - 77 - 78 - 79 - 80 - 81 - 82 - 83 - 84 - 85 - 86 - 87 - 88 - 89 - 90 - 91 - 92 - 93 - 94 - 95 - 96 - 97 - 98 - 99 - 100 - 101 - 102 - 103 - 104 - 105 - 106 - 107 - 108 - 109 - 110 - 111 - 112 - 113 - 114 - 115 - 116 - 117 - 118 - 119 - 120 - 121 - 122 - 123 - 124 - 125 - 126 - 127 - 128 - 129 - 130 - 131 - 132 - 133 - 134 - 135 - 136 - 137 - 138 - 139 - 140 - 141 - 142 - 143 - 144 - 145 - 146 - 147 - 148 - 149 - 150 - 151 - 152 - 153 - 154 - 155 - 156 - 157 - 158 - 159 - 160 - 161 - 162 - 163 - 164 - 165 - 166 - 167 - 168 - 169 - 170 - 171 - 172 - 173 - 174 - 175 - 176 - 177 - 178 - 179 - 180 - 181 - 182 - 183 - 184 - 185 - 186 - 187 - 188 - 189 - 190 - 191 - 192 - 193 - 194 - 195 - 196 - 197 - 198 - 199 - 200 - 201 - 202 - 203 - 204 - 205 - 206 - 207 - 208 - 209 - 210 - 211 - 212 - 213 - 214 - 215 - 216 - 217 - 218 - 219 - 220 - 221 - 222 - 223 - 224 - 225 - 226 - 227 - 228 - 229 - 230 - 231 - 232 - 233 - 234 - 235 - 236 - 237 - 238 - 239 - 240 - 241 - 242 - 243 - 244 - 245 - 246 - 247 - 248 - 249 - 250 - 251 - 252 - 253 - 254 - 255 - 256 - 257 - 258 - 259 - 260 - 261 - 262 - 263 - 264 - 265 - 266 - 267 - 268 - 269 - 270 - 271 - 272 - 273 - 274 - 275 - 276 - 277 - 278 - 279 - 280 - 281 - 282 - 283 - 284 - 285 - 286 - 287 - 288 - 289 - 290 - 291 - 292 - 293 - 294 - 295 - 296 - 297 - 298 - 299 - 300 - 301 - 302 - 303 - 304 - 305 - 306 - 307 - 308 - 309 - 310 - 311 - 312 - 313 - 314 - 315 - 316 - 317 - 318 - 319 - 320 - 321 - 322 - 323 - 324 - 325 - 326 - 327 - 328 - 329 - 330 - 331 - 332 - 333 - 334 - 335 - 336 - 337 - 338 - 339 - 340 - 341 - 342 - 343 - 344 - 345 - 346 - 347 - 348 - 349 - 350 - 351 - 352 - 353 - 354 - 355 - 356 - 357 - 358 - 359 - 360 - 361 - 362 - 363 - 364 - 365 - 366 - 367 - 368 - 369 - 370 - 371 - 372 - 373 - 374 - 375 - 376 - 377 - 378 - 379 - 380 - 381 - 382 - 383 - 384 - 385 - 386 - 387 - 388 - 389 - 390 - 391 - 392 - 393 - 394 - 395 - 396 - 397 - 398 - 399 - 400 - 401 - 402 - 403 - 404 - 405 - 406 - 407 - 408 - 409 - 410 - 411 - 412 - 413 - 414 - 415 - 416 - 417 - 418 - 419 - 420 - 421 - 422 - 423 - 424 - 425 - 426 - 427 - 428 - 429 - 430 - 431 - 432 - 433 - 434 - 435 - 436 - 437 - 438 - 439 - 440 - 441 - 442 - 443 - 444 - 445 - 446 - 447 - 448 - 449 - 450 - 451 - 452 - 453 - 454 - 455 - 456 - 457 - 458 - 459 - 460 - 461 - 462 - 463 - 464 - 465 - 466 - 467 - 468 - 469 - 470 - 471 - 472 - 473 - 474 - 475 - 476 - 477 - 478 - 479 - 480 - 481 - 482 - 483 - 484 - 485 - 486 - 487 - 488 - 489 - 490 - 491 - 492 - 493 - 494 - 495 - 496 - 497 - 498 - 499 task: regression in_scalars_names: - P - p1 - p2 - p3 - p4 - p5 out_scalars_names: - max_von_mises - max_q - max_U2_top - max_sig22_top in_timeseries_names: [] out_timeseries_names: [] in_fields_names: [] out_fields_names: - U1 - U2 - q - sig11 - sig22 - sig12 in_meshes_names: - /Base_2_2/Zone out_meshes_names: [] features: - name: sample dtype: binary splits: - name: all_samples num_bytes: 3571624 num_examples: 4 download_size: 1705231 dataset_size: 3571624 --- # Dataset Card ![image/png](https://i.ibb.co/Js062hF/preview.png) This dataset contains a single huggingface split, named 'all_samples'. The samples contains a single huggingface feature, named called "sample". Samples are instances of [plaid.containers.sample.Sample](https://plaid-lib.readthedocs.io/en/latest/autoapi/plaid/containers/sample/index.html#plaid.containers.sample.Sample). Mesh objects included in samples follow the [CGNS](https://cgns.github.io/) standard, and can be converted in [Muscat.Containers.Mesh.Mesh](https://muscat.readthedocs.io/en/latest/_source/Muscat.Containers.Mesh.html#Muscat.Containers.Mesh.Mesh). Example of commands: ```python import pickle from datasets import load_dataset from plaid.containers.sample import Sample # Load the dataset dataset = load_dataset("chanel/dataset", split="all_samples") # Get the first sample of the first split split_names = list(dataset.description["split"].keys()) ids_split_0 = dataset.description["split"][split_names[0]] sample_0_split_0 = dataset[ids_split_0[0]]["sample"] plaid_sample = Sample.model_validate(pickle.loads(sample_0_split_0)) print("type(plaid_sample) =", type(plaid_sample)) print("plaid_sample =", plaid_sample) # Get a field from the sample field_names = plaid_sample.get_field_names() field = plaid_sample.get_field(field_names[0]) print("field_names[0] =", field_names[0]) print("field.shape =", field.shape) # Get the mesh and convert it to Muscat from Muscat.Bridges import CGNSBridge CGNS_tree = plaid_sample.get_mesh() mesh = CGNSBridge.CGNSToMesh(CGNS_tree) print(mesh) ``` ## Dataset Details ### Dataset Description This dataset contains 2D quasistatic non-linear structural mechanics solutions, under geometrical variations. A description is provided in the [MMGP paper ](https://arxiv.org/pdf/2305.12871) Sections 4.1 and A.2. The variablity in the samples are 6 input scalars and the geometry (mesh). Outputs of interest are 4 scalars and 6 fields. Seven nested training sets of sizes 8 to 500 are provided, with complete input-output data. A testing set of size 200, as well as two out-of-distribution samples, are provided, for which outputs are not provided. Dataset created using the [PLAID](https://plaid-lib.readthedocs.io/) library and datamodel. - **Language:** [PLAID](https://plaid-lib.readthedocs.io/) - **License:** cc-by-sa-4.0 - **Owner:** Safran ### Dataset Sources - **Repository:** [Zenodo](https://zenodo.org/records/10124594) - **Paper:** [arxiv](https://arxiv.org/pdf/2305.12871)