--- language: - en dataset_info: features: - name: text dtype: string - name: metadata struct: - name: pile_set_name sequence: string - name: id dtype: int64 splits: - name: train num_bytes: 64095383 num_examples: 40338 download_size: 39795200 dataset_size: 64095383 configs: - config_name: default data_files: - split: train path: data/train-* --- # Description This dataset is a sampled subset of the [Pile](https://huggingface.co/datasets/EleutherAI/pile) dataset. We used [DSIR](https://github.com/p-lambda/dsir) a data selection tool with importance resampling for subsampling. The subset sample distribution is: ```json { 'Pile-CC': 19767, 'OpenWebText2': 12424, 'FreeLaw': 3752, 'USPTO Backgrounds': 1055, 'Wikipedia (en)': 813, 'PubMed Central': 576, 'PubMed Abstracts': 499, 'BookCorpus2': 285, 'Books3': 266, 'Gutenberg (PG-19)': 228, 'StackExchange': 184, 'PhilPapers': 112, 'YoutubeSubtitles': 91, 'OpenSubtitles': 75, 'ArXiv': 56, 'NIH ExPorter': 47, 'Enron Emails': 39, 'HackerNews': 29, 'Github': 28, 'EuroParl': 12 } ``` The dataset contains ~100M words of text. This can be checked with: ```python from datasets import load_dataset ds = load_dataset("PatrickHaller/dsir-pile-10M-words") count = 0 for row in ds["train"]: count += len(row["text"].split(" ")) print(count) # Out: 9999894 ```