Datasets:
Upload 34 files
Browse files- decoding.py +1006 -0
- generate_robust_hp.py +212 -0
- jiwer/.github/workflows/pythonpackage.yml +63 -0
- jiwer/.github/workflows/pythonpublish.yml +33 -0
- jiwer/.gitignore +28 -0
- jiwer/.mailmap +6 -0
- jiwer/LICENSE +201 -0
- jiwer/README.md +55 -0
- jiwer/docs/cli.md +29 -0
- jiwer/docs/gen_ref_pages.py +28 -0
- jiwer/docs/index.md +31 -0
- jiwer/docs/requirements.txt +5 -0
- jiwer/docs/usage.md +111 -0
- jiwer/jiwer/__init__.py +7 -0
- jiwer/jiwer/__pycache__/__init__.cpython-38.pyc +0 -0
- jiwer/jiwer/__pycache__/alignment.cpython-38.pyc +0 -0
- jiwer/jiwer/__pycache__/measures.cpython-38.pyc +0 -0
- jiwer/jiwer/__pycache__/process.cpython-38.pyc +0 -0
- jiwer/jiwer/__pycache__/transformations.cpython-38.pyc +0 -0
- jiwer/jiwer/__pycache__/transforms.cpython-38.pyc +0 -0
- jiwer/jiwer/alignment.py +185 -0
- jiwer/jiwer/cli.py +133 -0
- jiwer/jiwer/measures.py +488 -0
- jiwer/jiwer/process.py +525 -0
- jiwer/jiwer/transformations.py +128 -0
- jiwer/jiwer/transforms.py +620 -0
- jiwer/mkdocs.yml +47 -0
- jiwer/pyproject.toml +27 -0
- jiwer/tests/__init__.py +0 -0
- jiwer/tests/test_alignment.py +225 -0
- jiwer/tests/test_cer.py +135 -0
- jiwer/tests/test_measures.py +410 -0
- jiwer/tests/test_speed.py +24 -0
- jiwer/tests/test_transforms.py +337 -0
decoding.py
ADDED
@@ -0,0 +1,1006 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass, field
|
2 |
+
from typing import Dict, List, Tuple, Iterable, Optional, Sequence, Union, TYPE_CHECKING
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import Tensor
|
8 |
+
from torch.distributions import Categorical
|
9 |
+
|
10 |
+
from .audio import CHUNK_LENGTH
|
11 |
+
from .tokenizer import Tokenizer, get_tokenizer
|
12 |
+
from .utils import compression_ratio
|
13 |
+
|
14 |
+
if TYPE_CHECKING:
|
15 |
+
from .model import Whisper
|
16 |
+
|
17 |
+
|
18 |
+
@torch.no_grad()
|
19 |
+
def detect_language(model: "Whisper", mel: Tensor, tokenizer: Tokenizer = None) -> Tuple[Tensor, List[dict]]:
|
20 |
+
"""
|
21 |
+
Detect the spoken language in the audio, and return them as list of strings, along with the ids
|
22 |
+
of the most probable language tokens and the probability distribution over all language tokens.
|
23 |
+
This is performed outside the main decode loop in order to not interfere with kv-caching.
|
24 |
+
|
25 |
+
Returns
|
26 |
+
-------
|
27 |
+
language_tokens : Tensor, shape = (n_audio,)
|
28 |
+
ids of the most probable language tokens, which appears after the startoftranscript token.
|
29 |
+
language_probs : List[Dict[str, float]], length = n_audio
|
30 |
+
list of dictionaries containing the probability distribution over all languages.
|
31 |
+
"""
|
32 |
+
if tokenizer is None:
|
33 |
+
tokenizer = get_tokenizer(model.is_multilingual)
|
34 |
+
if tokenizer.language is None or tokenizer.language_token not in tokenizer.sot_sequence:
|
35 |
+
raise ValueError(f"This model doesn't have language tokens so it can't perform lang id")
|
36 |
+
|
37 |
+
single = mel.ndim == 2
|
38 |
+
if single:
|
39 |
+
mel = mel.unsqueeze(0)
|
40 |
+
|
41 |
+
# skip encoder forward pass if already-encoded audio features were given
|
42 |
+
if mel.shape[-2:] != (model.dims.n_audio_ctx, model.dims.n_audio_state):
|
43 |
+
mel = model.encoder(mel)
|
44 |
+
|
45 |
+
# forward pass using a single token, startoftranscript
|
46 |
+
n_audio = mel.shape[0]
|
47 |
+
x = torch.tensor([[tokenizer.sot]] * n_audio).to(mel.device) # [n_audio, 1]
|
48 |
+
logits = model.logits(x, mel)[:, 0]
|
49 |
+
|
50 |
+
# collect detected languages; suppress all non-language tokens
|
51 |
+
mask = torch.ones(logits.shape[-1], dtype=torch.bool)
|
52 |
+
mask[list(tokenizer.all_language_tokens)] = False
|
53 |
+
logits[:, mask] = -np.inf
|
54 |
+
language_tokens = logits.argmax(dim=-1)
|
55 |
+
language_token_probs = logits.softmax(dim=-1).cpu()
|
56 |
+
language_probs = [
|
57 |
+
{
|
58 |
+
c: language_token_probs[i, j].item()
|
59 |
+
for j, c in zip(tokenizer.all_language_tokens, tokenizer.all_language_codes)
|
60 |
+
}
|
61 |
+
for i in range(n_audio)
|
62 |
+
]
|
63 |
+
|
64 |
+
if single:
|
65 |
+
language_tokens = language_tokens[0]
|
66 |
+
language_probs = language_probs[0]
|
67 |
+
|
68 |
+
return language_tokens, language_probs
|
69 |
+
|
70 |
+
|
71 |
+
@dataclass(frozen=True)
|
72 |
+
class DecodingOptions:
|
73 |
+
task: str = "transcribe" # whether to perform X->X "transcribe" or X->English "translate"
|
74 |
+
language: Optional[str] = None # language that the audio is in; uses detected language if None
|
75 |
+
|
76 |
+
# sampling-related options
|
77 |
+
temperature: float = 0.0
|
78 |
+
sample_len: Optional[int] = None # maximum number of tokens to sample
|
79 |
+
best_of: Optional[int] = None # number of independent samples to collect, when t > 0
|
80 |
+
beam_size: Optional[int] = None # number of beams in beam search, when t == 0
|
81 |
+
patience: Optional[float] = None # patience in beam search (https://arxiv.org/abs/2204.05424)
|
82 |
+
|
83 |
+
# options for ranking generations (either beams or best-of-N samples)
|
84 |
+
length_penalty: Optional[float] = None # "alpha" in Google NMT, None defaults to length norm
|
85 |
+
|
86 |
+
# prompt, prefix, and token suppression
|
87 |
+
prompt: Optional[Union[str, List[int]]] = None # text or tokens for the previous context
|
88 |
+
prefix: Optional[Union[str, List[int]]] = None # text or tokens to prefix the current context
|
89 |
+
suppress_blank: bool = True # this will suppress blank outputs
|
90 |
+
|
91 |
+
# list of tokens ids (or comma-separated token ids) to suppress
|
92 |
+
# "-1" will suppress a set of symbols as defined in `tokenizer.non_speech_tokens()`
|
93 |
+
suppress_tokens: Optional[Union[str, Iterable[int]]] = "-1"
|
94 |
+
|
95 |
+
# timestamp sampling options
|
96 |
+
without_timestamps: bool = False # use <|notimestamps|> to sample text tokens only
|
97 |
+
max_initial_timestamp: Optional[float] = 1.0 # the initial timestamp cannot be later than this
|
98 |
+
|
99 |
+
# implementation details
|
100 |
+
fp16: bool = True # use fp16 for most of the calculation
|
101 |
+
|
102 |
+
|
103 |
+
@dataclass(frozen=True)
|
104 |
+
class DecodingResult:
|
105 |
+
audio_features: Tensor
|
106 |
+
language: str
|
107 |
+
language_probs: Optional[Dict[str, float]] = None
|
108 |
+
tokens: List[int] = field(default_factory=list)
|
109 |
+
text: str = ""
|
110 |
+
avg_logprob: float = np.nan
|
111 |
+
no_speech_prob: float = np.nan
|
112 |
+
temperature: float = np.nan
|
113 |
+
compression_ratio: float = np.nan
|
114 |
+
|
115 |
+
|
116 |
+
class Inference:
|
117 |
+
def logits(self, tokens: Tensor, audio_features: Tensor) -> Tensor:
|
118 |
+
"""Perform a forward pass on the decoder and return per-token logits"""
|
119 |
+
raise NotImplementedError
|
120 |
+
|
121 |
+
def rearrange_kv_cache(self, source_indices) -> None:
|
122 |
+
"""Update the key-value cache according to the updated beams"""
|
123 |
+
raise NotImplementedError
|
124 |
+
|
125 |
+
def cleanup_caching(self) -> None:
|
126 |
+
"""Clean up any resources or hooks after decoding is finished"""
|
127 |
+
pass
|
128 |
+
|
129 |
+
|
130 |
+
class PyTorchInference(Inference):
|
131 |
+
def __init__(self, model: "Whisper", initial_token_length: int):
|
132 |
+
self.model: "Whisper" = model
|
133 |
+
self.initial_token_length = initial_token_length
|
134 |
+
self.kv_cache = {}
|
135 |
+
self.hooks = []
|
136 |
+
|
137 |
+
def logits(self, tokens: Tensor, audio_features: Tensor) -> Tensor:
|
138 |
+
if not self.kv_cache:
|
139 |
+
self.kv_cache, self.hooks = self.model.install_kv_cache_hooks()
|
140 |
+
|
141 |
+
if tokens.shape[-1] > self.initial_token_length:
|
142 |
+
# only need to use the last token except in the first forward pass
|
143 |
+
tokens = tokens[:, -1:]
|
144 |
+
|
145 |
+
return self.model.decoder(tokens, audio_features, kv_cache=self.kv_cache)
|
146 |
+
|
147 |
+
def cleanup_caching(self):
|
148 |
+
for hook in self.hooks:
|
149 |
+
hook.remove()
|
150 |
+
|
151 |
+
self.kv_cache = {}
|
152 |
+
self.hooks = []
|
153 |
+
|
154 |
+
def rearrange_kv_cache(self, source_indices):
|
155 |
+
for module, tensor in self.kv_cache.items():
|
156 |
+
# update the key/value cache to contain the selected sequences
|
157 |
+
self.kv_cache[module] = tensor[source_indices].detach()
|
158 |
+
|
159 |
+
|
160 |
+
class SequenceRanker:
|
161 |
+
def rank(self, tokens: List[List[Tensor]], sum_logprobs: List[List[float]]) -> List[int]:
|
162 |
+
"""
|
163 |
+
Given a list of groups of samples and their cumulative log probabilities,
|
164 |
+
return the indices of the samples in each group to select as the final result
|
165 |
+
"""
|
166 |
+
raise NotImplementedError
|
167 |
+
|
168 |
+
|
169 |
+
class MaximumLikelihoodRanker(SequenceRanker):
|
170 |
+
"""
|
171 |
+
Select the sample with the highest log probabilities, penalized using either
|
172 |
+
a simple length normalization or Google NMT paper's length penalty
|
173 |
+
"""
|
174 |
+
|
175 |
+
def __init__(self, length_penalty: Optional[float]):
|
176 |
+
self.length_penalty = length_penalty
|
177 |
+
|
178 |
+
def rank(self, tokens: List[List[Tensor]], sum_logprobs: List[List[float]]):
|
179 |
+
def scores(logprobs, lengths):
|
180 |
+
result = []
|
181 |
+
for logprob, length in zip(logprobs, lengths):
|
182 |
+
if self.length_penalty is None:
|
183 |
+
penalty = length
|
184 |
+
else:
|
185 |
+
# from the Google NMT paper
|
186 |
+
penalty = ((5 + length) / 6) ** self.length_penalty
|
187 |
+
result.append(logprob / penalty)
|
188 |
+
return result
|
189 |
+
|
190 |
+
# get the sequence with the highest score
|
191 |
+
lengths = [[len(t) for t in s] for s in tokens]
|
192 |
+
return [np.argmax(scores(p, l)) for p, l in zip(sum_logprobs, lengths)]
|
193 |
+
|
194 |
+
|
195 |
+
class TokenDecoder:
|
196 |
+
def reset(self):
|
197 |
+
"""Initialize any stateful variables for decoding a new sequence"""
|
198 |
+
|
199 |
+
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
|
200 |
+
"""Specify how to select the next token, based on the current trace and logits
|
201 |
+
|
202 |
+
Parameters
|
203 |
+
----------
|
204 |
+
tokens : Tensor, shape = (n_batch, current_sequence_length)
|
205 |
+
all tokens in the context so far, including the prefix and sot_sequence tokens
|
206 |
+
|
207 |
+
logits : Tensor, shape = (n_batch, vocab_size)
|
208 |
+
per-token logits of the probability distribution at the current step
|
209 |
+
|
210 |
+
sum_logprobs : Tensor, shape = (n_batch)
|
211 |
+
cumulative log probabilities for each sequence
|
212 |
+
|
213 |
+
Returns
|
214 |
+
-------
|
215 |
+
tokens : Tensor, shape = (n_batch, current_sequence_length + 1)
|
216 |
+
the tokens, appended with the selected next token
|
217 |
+
|
218 |
+
completed : bool
|
219 |
+
True if all sequences has reached the end of text
|
220 |
+
|
221 |
+
"""
|
222 |
+
raise NotImplementedError
|
223 |
+
|
224 |
+
def finalize(
|
225 |
+
self, tokens: Tensor, sum_logprobs: Tensor
|
226 |
+
) -> Tuple[Sequence[Sequence[Tensor]], List[List[float]]]:
|
227 |
+
"""Finalize search and return the final candidate sequences
|
228 |
+
|
229 |
+
Parameters
|
230 |
+
----------
|
231 |
+
tokens : Tensor, shape = (n_audio, n_group, current_sequence_length)
|
232 |
+
all tokens in the context so far, including the prefix and sot_sequence
|
233 |
+
|
234 |
+
sum_logprobs : Tensor, shape = (n_audio, n_group)
|
235 |
+
cumulative log probabilities for each sequence
|
236 |
+
|
237 |
+
Returns
|
238 |
+
-------
|
239 |
+
tokens : Sequence[Sequence[Tensor]], length = n_audio
|
240 |
+
sequence of Tensors containing candidate token sequences, for each audio input
|
241 |
+
|
242 |
+
sum_logprobs : List[List[float]], length = n_audio
|
243 |
+
sequence of cumulative log probabilities corresponding to the above
|
244 |
+
|
245 |
+
"""
|
246 |
+
raise NotImplementedError
|
247 |
+
|
248 |
+
|
249 |
+
class GreedyDecoder(TokenDecoder):
|
250 |
+
def __init__(self, temperature: float, eot: int):
|
251 |
+
self.temperature = temperature
|
252 |
+
self.eot = eot
|
253 |
+
|
254 |
+
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
|
255 |
+
temperature = self.temperature
|
256 |
+
if temperature == 0:
|
257 |
+
next_tokens = logits.argmax(dim=-1)
|
258 |
+
else:
|
259 |
+
next_tokens = Categorical(logits=logits / temperature).sample()
|
260 |
+
|
261 |
+
logprobs = F.log_softmax(logits.float(), dim=-1)
|
262 |
+
current_logprobs = logprobs[torch.arange(logprobs.shape[0]), next_tokens]
|
263 |
+
sum_logprobs += current_logprobs * (tokens[:, -1] != self.eot)
|
264 |
+
|
265 |
+
next_tokens[tokens[:, -1] == self.eot] = self.eot
|
266 |
+
tokens = torch.cat([tokens, next_tokens[:, None]], dim=-1)
|
267 |
+
|
268 |
+
completed = (tokens[:, -1] == self.eot).all()
|
269 |
+
return tokens, completed
|
270 |
+
|
271 |
+
def finalize(self, tokens: Tensor, sum_logprobs: Tensor):
|
272 |
+
# make sure each sequence has at least one EOT token at the end
|
273 |
+
tokens = F.pad(tokens, (0, 1), value=self.eot)
|
274 |
+
return tokens, sum_logprobs.tolist()
|
275 |
+
|
276 |
+
|
277 |
+
class BeamSearchDecoder(TokenDecoder):
|
278 |
+
def __init__(self, beam_size: int, eot: int, inference: Inference, patience: Optional[float] = None):
|
279 |
+
self.beam_size = beam_size
|
280 |
+
self.eot = eot
|
281 |
+
self.inference = inference
|
282 |
+
self.patience = patience or 1.0
|
283 |
+
self.max_candidates: int = round(beam_size * self.patience)
|
284 |
+
self.finished_sequences = None
|
285 |
+
|
286 |
+
assert self.max_candidates > 0, f"Invalid beam size ({beam_size}) or patience ({patience})"
|
287 |
+
|
288 |
+
def reset(self):
|
289 |
+
self.finished_sequences = None
|
290 |
+
|
291 |
+
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
|
292 |
+
if tokens.shape[0] % self.beam_size != 0:
|
293 |
+
raise ValueError(f"{tokens.shape}[0] % {self.beam_size} != 0")
|
294 |
+
|
295 |
+
n_audio = tokens.shape[0] // self.beam_size
|
296 |
+
if self.finished_sequences is None: # for the first update
|
297 |
+
self.finished_sequences = [{} for _ in range(n_audio)]
|
298 |
+
|
299 |
+
logprobs = F.log_softmax(logits.float(), dim=-1)
|
300 |
+
next_tokens, source_indices, finished_sequences = [], [], []
|
301 |
+
for i in range(n_audio):
|
302 |
+
scores, sources, finished = {}, {}, {}
|
303 |
+
|
304 |
+
# STEP 1: calculate the cumulative log probabilities for possible candidates
|
305 |
+
for j in range(self.beam_size):
|
306 |
+
idx = i * self.beam_size + j
|
307 |
+
prefix = tokens[idx].tolist()
|
308 |
+
for logprob, token in zip(*logprobs[idx].topk(self.beam_size + 1)):
|
309 |
+
new_logprob = (sum_logprobs[idx] + logprob).item()
|
310 |
+
sequence = tuple(prefix + [token.item()])
|
311 |
+
scores[sequence] = new_logprob
|
312 |
+
sources[sequence] = idx
|
313 |
+
|
314 |
+
# STEP 2: rank the candidates and keep the top beam_size sequences for each audio
|
315 |
+
saved = 0
|
316 |
+
for sequence in sorted(scores, key=scores.get, reverse=True):
|
317 |
+
if sequence[-1] == self.eot:
|
318 |
+
finished[sequence] = scores[sequence]
|
319 |
+
else:
|
320 |
+
sum_logprobs[len(next_tokens)] = scores[sequence]
|
321 |
+
next_tokens.append(sequence)
|
322 |
+
source_indices.append(sources[sequence])
|
323 |
+
|
324 |
+
saved += 1
|
325 |
+
if saved == self.beam_size:
|
326 |
+
break
|
327 |
+
|
328 |
+
finished_sequences.append(finished)
|
329 |
+
|
330 |
+
tokens = torch.tensor(next_tokens, device=tokens.device)
|
331 |
+
self.inference.rearrange_kv_cache(source_indices)
|
332 |
+
|
333 |
+
# add newly finished sequences to self.finished_sequences
|
334 |
+
assert len(self.finished_sequences) == len(finished_sequences)
|
335 |
+
for previously_finished, newly_finished in zip(self.finished_sequences, finished_sequences):
|
336 |
+
for seq in sorted(newly_finished, key=newly_finished.get, reverse=True):
|
337 |
+
if len(previously_finished) >= self.max_candidates:
|
338 |
+
break # the candidate list is full
|
339 |
+
previously_finished[seq] = newly_finished[seq]
|
340 |
+
|
341 |
+
# mark as completed if all audio has enough number of samples
|
342 |
+
completed = all(
|
343 |
+
len(sequences) >= self.max_candidates for sequences in self.finished_sequences
|
344 |
+
)
|
345 |
+
return tokens, completed
|
346 |
+
|
347 |
+
def finalize(self, preceding_tokens: Tensor, sum_logprobs: Tensor):
|
348 |
+
# collect all finished sequences, including patience, and add unfinished ones if not enough
|
349 |
+
sum_logprobs = sum_logprobs.cpu()
|
350 |
+
for i, sequences in enumerate(self.finished_sequences):
|
351 |
+
if len(sequences) < self.beam_size: # when not enough sequences are finished
|
352 |
+
for j in list(np.argsort(sum_logprobs[i]))[::-1]:
|
353 |
+
sequence = preceding_tokens[i, j].tolist() + [self.eot]
|
354 |
+
sequences[tuple(sequence)] = sum_logprobs[i][j].item()
|
355 |
+
if len(sequences) >= self.beam_size:
|
356 |
+
break
|
357 |
+
|
358 |
+
# print(f'self.finished_sequences = {self.finished_sequences}')
|
359 |
+
|
360 |
+
tokens: List[List[Tensor]] = [
|
361 |
+
[torch.tensor(seq) for seq in sequences.keys()] for sequences in self.finished_sequences
|
362 |
+
]
|
363 |
+
sum_logprobs: List[List[float]] = [
|
364 |
+
list(sequences.values()) for sequences in self.finished_sequences
|
365 |
+
]
|
366 |
+
return tokens, sum_logprobs
|
367 |
+
|
368 |
+
|
369 |
+
class LogitFilter:
|
370 |
+
def apply(self, logits: Tensor, tokens: Tensor) -> None:
|
371 |
+
"""Apply any filtering or masking to logits in-place
|
372 |
+
|
373 |
+
Parameters
|
374 |
+
----------
|
375 |
+
logits : Tensor, shape = (n_batch, vocab_size)
|
376 |
+
per-token logits of the probability distribution at the current step
|
377 |
+
|
378 |
+
tokens : Tensor, shape = (n_batch, current_sequence_length)
|
379 |
+
all tokens in the context so far, including the prefix and sot_sequence tokens
|
380 |
+
|
381 |
+
"""
|
382 |
+
raise NotImplementedError
|
383 |
+
|
384 |
+
|
385 |
+
class SuppressBlank(LogitFilter):
|
386 |
+
def __init__(self, tokenizer: Tokenizer, sample_begin: int):
|
387 |
+
self.tokenizer = tokenizer
|
388 |
+
self.sample_begin = sample_begin
|
389 |
+
|
390 |
+
def apply(self, logits: Tensor, tokens: Tensor):
|
391 |
+
if tokens.shape[1] == self.sample_begin:
|
392 |
+
logits[:, self.tokenizer.encode(" ") + [self.tokenizer.eot]] = -np.inf
|
393 |
+
|
394 |
+
|
395 |
+
class SuppressTokens(LogitFilter):
|
396 |
+
def __init__(self, suppress_tokens: Sequence[int]):
|
397 |
+
self.suppress_tokens = list(suppress_tokens)
|
398 |
+
|
399 |
+
def apply(self, logits: Tensor, tokens: Tensor):
|
400 |
+
logits[:, self.suppress_tokens] = -np.inf
|
401 |
+
|
402 |
+
|
403 |
+
class ApplyTimestampRules(LogitFilter):
|
404 |
+
def __init__(
|
405 |
+
self, tokenizer: Tokenizer, sample_begin: int, max_initial_timestamp_index: Optional[int]
|
406 |
+
):
|
407 |
+
self.tokenizer = tokenizer
|
408 |
+
self.sample_begin = sample_begin
|
409 |
+
self.max_initial_timestamp_index = max_initial_timestamp_index
|
410 |
+
|
411 |
+
def apply(self, logits: Tensor, tokens: Tensor):
|
412 |
+
# suppress <|notimestamps|> which is handled by without_timestamps
|
413 |
+
if self.tokenizer.no_timestamps is not None:
|
414 |
+
logits[:, self.tokenizer.no_timestamps] = -np.inf
|
415 |
+
|
416 |
+
# timestamps have to appear in pairs, except directly before EOT; mask logits accordingly
|
417 |
+
for k in range(tokens.shape[0]):
|
418 |
+
seq = [t for t in tokens[k, self.sample_begin :].tolist()]
|
419 |
+
last_was_timestamp = len(seq) >= 1 and seq[-1] >= self.tokenizer.timestamp_begin
|
420 |
+
penultimate_was_timestamp = len(seq) < 2 or seq[-2] >= self.tokenizer.timestamp_begin
|
421 |
+
|
422 |
+
if last_was_timestamp:
|
423 |
+
if penultimate_was_timestamp: # has to be non-timestamp
|
424 |
+
logits[k, self.tokenizer.timestamp_begin :] = -np.inf
|
425 |
+
else: # cannot be normal text tokens
|
426 |
+
logits[k, : self.tokenizer.eot] = -np.inf
|
427 |
+
|
428 |
+
# apply the `max_initial_timestamp` option
|
429 |
+
if tokens.shape[1] == self.sample_begin and self.max_initial_timestamp_index is not None:
|
430 |
+
last_allowed = self.tokenizer.timestamp_begin + self.max_initial_timestamp_index
|
431 |
+
logits[:, last_allowed + 1 :] = -np.inf
|
432 |
+
|
433 |
+
# if sum of probability over timestamps is above any other token, sample timestamp
|
434 |
+
logprobs = F.log_softmax(logits.float(), dim=-1)
|
435 |
+
for k in range(tokens.shape[0]):
|
436 |
+
timestamp_logprob = logprobs[k, self.tokenizer.timestamp_begin :].logsumexp(dim=-1)
|
437 |
+
max_text_token_logprob = logprobs[k, : self.tokenizer.timestamp_begin].max()
|
438 |
+
if timestamp_logprob > max_text_token_logprob:
|
439 |
+
logits[k, : self.tokenizer.timestamp_begin] = -np.inf
|
440 |
+
|
441 |
+
|
442 |
+
class DecodingTask:
|
443 |
+
inference: Inference
|
444 |
+
sequence_ranker: SequenceRanker
|
445 |
+
decoder: TokenDecoder
|
446 |
+
logit_filters: List[LogitFilter]
|
447 |
+
|
448 |
+
def __init__(self, model: "Whisper", options: DecodingOptions):
|
449 |
+
self.model = model
|
450 |
+
|
451 |
+
language = options.language or "en"
|
452 |
+
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=options.task)
|
453 |
+
self.tokenizer: Tokenizer = tokenizer
|
454 |
+
self.options: DecodingOptions = self._verify_options(options)
|
455 |
+
|
456 |
+
self.n_group: int = options.beam_size or options.best_of or 1
|
457 |
+
self.n_ctx: int = model.dims.n_text_ctx
|
458 |
+
self.sample_len: int = options.sample_len or model.dims.n_text_ctx // 2
|
459 |
+
|
460 |
+
self.sot_sequence: Tuple[int] = tokenizer.sot_sequence
|
461 |
+
if self.options.without_timestamps:
|
462 |
+
self.sot_sequence = tokenizer.sot_sequence_including_notimestamps
|
463 |
+
|
464 |
+
self.initial_tokens: Tuple[int] = self._get_initial_tokens()
|
465 |
+
self.sample_begin: int = len(self.initial_tokens)
|
466 |
+
self.sot_index: int = self.initial_tokens.index(tokenizer.sot)
|
467 |
+
|
468 |
+
# inference: implements the forward pass through the decoder, including kv caching
|
469 |
+
self.inference = PyTorchInference(model, len(self.initial_tokens))
|
470 |
+
|
471 |
+
# sequence ranker: implements how to rank a group of sampled sequences
|
472 |
+
self.sequence_ranker = MaximumLikelihoodRanker(options.length_penalty)
|
473 |
+
|
474 |
+
# decoder: implements how to select the next tokens, given the autoregressive distribution
|
475 |
+
if options.beam_size is not None:
|
476 |
+
self.decoder = BeamSearchDecoder(
|
477 |
+
options.beam_size, tokenizer.eot, self.inference, options.patience
|
478 |
+
)
|
479 |
+
else:
|
480 |
+
self.decoder = GreedyDecoder(options.temperature, tokenizer.eot)
|
481 |
+
|
482 |
+
# logit filters: applies various rules to suppress or penalize certain tokens
|
483 |
+
self.logit_filters = []
|
484 |
+
if self.options.suppress_blank:
|
485 |
+
self.logit_filters.append(SuppressBlank(self.tokenizer, self.sample_begin))
|
486 |
+
if self.options.suppress_tokens:
|
487 |
+
self.logit_filters.append(SuppressTokens(self._get_suppress_tokens()))
|
488 |
+
if not options.without_timestamps:
|
489 |
+
precision = CHUNK_LENGTH / model.dims.n_audio_ctx # usually 0.02 seconds
|
490 |
+
max_initial_timestamp_index = None
|
491 |
+
if options.max_initial_timestamp:
|
492 |
+
max_initial_timestamp_index = round(self.options.max_initial_timestamp / precision)
|
493 |
+
self.logit_filters.append(
|
494 |
+
ApplyTimestampRules(tokenizer, self.sample_begin, max_initial_timestamp_index)
|
495 |
+
)
|
496 |
+
|
497 |
+
def _verify_options(self, options: DecodingOptions) -> DecodingOptions:
|
498 |
+
if options.beam_size is not None and options.best_of is not None:
|
499 |
+
raise ValueError("beam_size and best_of can't be given together")
|
500 |
+
if options.temperature == 0:
|
501 |
+
if options.best_of is not None:
|
502 |
+
raise ValueError("best_of with greedy sampling (T=0) is not compatible")
|
503 |
+
if options.patience is not None and options.beam_size is None:
|
504 |
+
raise ValueError("patience requires beam_size to be given")
|
505 |
+
if options.length_penalty is not None and not (0 <= options.length_penalty <= 1):
|
506 |
+
raise ValueError("length_penalty (alpha) should be a value between 0 and 1")
|
507 |
+
|
508 |
+
return options
|
509 |
+
|
510 |
+
def _get_initial_tokens(self) -> Tuple[int]:
|
511 |
+
tokens = list(self.sot_sequence)
|
512 |
+
prefix = self.options.prefix
|
513 |
+
prompt = self.options.prompt
|
514 |
+
|
515 |
+
if prefix:
|
516 |
+
prefix_tokens = (
|
517 |
+
self.tokenizer.encode(" " + prefix.strip()) if isinstance(prefix, str) else prefix
|
518 |
+
)
|
519 |
+
if self.sample_len is not None:
|
520 |
+
max_prefix_len = self.n_ctx // 2 - self.sample_len
|
521 |
+
prefix_tokens = prefix_tokens[-max_prefix_len:]
|
522 |
+
tokens = tokens + prefix_tokens
|
523 |
+
|
524 |
+
if prompt:
|
525 |
+
prompt_tokens = (
|
526 |
+
self.tokenizer.encode(" " + prompt.strip()) if isinstance(prompt, str) else prompt
|
527 |
+
)
|
528 |
+
tokens = [self.tokenizer.sot_prev] + prompt_tokens[-(self.n_ctx // 2 - 1) :] + tokens
|
529 |
+
|
530 |
+
return tuple(tokens)
|
531 |
+
|
532 |
+
def _get_suppress_tokens(self) -> Tuple[int]:
|
533 |
+
suppress_tokens = self.options.suppress_tokens
|
534 |
+
|
535 |
+
if isinstance(suppress_tokens, str):
|
536 |
+
suppress_tokens = [int(t) for t in suppress_tokens.split(",")]
|
537 |
+
|
538 |
+
if -1 in suppress_tokens:
|
539 |
+
suppress_tokens = [t for t in suppress_tokens if t >= 0]
|
540 |
+
suppress_tokens.extend(self.tokenizer.non_speech_tokens)
|
541 |
+
elif suppress_tokens is None or len(suppress_tokens) == 0:
|
542 |
+
suppress_tokens = [] # interpret empty string as an empty list
|
543 |
+
else:
|
544 |
+
assert isinstance(suppress_tokens, list), "suppress_tokens must be a list"
|
545 |
+
|
546 |
+
suppress_tokens.extend(
|
547 |
+
[self.tokenizer.sot, self.tokenizer.sot_prev, self.tokenizer.sot_lm]
|
548 |
+
)
|
549 |
+
if self.tokenizer.no_speech is not None:
|
550 |
+
# no-speech probability is collected separately
|
551 |
+
suppress_tokens.append(self.tokenizer.no_speech)
|
552 |
+
|
553 |
+
return tuple(sorted(set(suppress_tokens)))
|
554 |
+
|
555 |
+
def _get_audio_features(self, mel: Tensor):
|
556 |
+
if self.options.fp16:
|
557 |
+
mel = mel.half()
|
558 |
+
|
559 |
+
if mel.shape[-2:] == (self.model.dims.n_audio_ctx, self.model.dims.n_audio_state):
|
560 |
+
# encoded audio features are given; skip audio encoding
|
561 |
+
audio_features = mel
|
562 |
+
else:
|
563 |
+
audio_features = self.model.encoder(mel)
|
564 |
+
|
565 |
+
if audio_features.dtype != (torch.float16 if self.options.fp16 else torch.float32):
|
566 |
+
return TypeError(f"audio_features has an incorrect dtype: {audio_features.dtype}")
|
567 |
+
|
568 |
+
return audio_features
|
569 |
+
|
570 |
+
def _detect_language(self, audio_features: Tensor, tokens: Tensor):
|
571 |
+
languages = [self.options.language] * audio_features.shape[0]
|
572 |
+
lang_probs = None
|
573 |
+
|
574 |
+
if self.options.language is None or self.options.task == "lang_id":
|
575 |
+
lang_tokens, lang_probs = self.model.detect_language(audio_features, self.tokenizer)
|
576 |
+
languages = [max(probs, key=probs.get) for probs in lang_probs]
|
577 |
+
if self.options.language is None:
|
578 |
+
tokens[:, self.sot_index + 1] = lang_tokens # write language tokens
|
579 |
+
|
580 |
+
return languages, lang_probs
|
581 |
+
|
582 |
+
def _main_loop(self, audio_features: Tensor, tokens: Tensor):
|
583 |
+
assert audio_features.shape[0] == tokens.shape[0]
|
584 |
+
n_batch = tokens.shape[0]
|
585 |
+
sum_logprobs: Tensor = torch.zeros(n_batch, device=audio_features.device)
|
586 |
+
no_speech_probs = [np.nan] * n_batch
|
587 |
+
|
588 |
+
try:
|
589 |
+
for i in range(self.sample_len):
|
590 |
+
logits = self.inference.logits(tokens, audio_features)
|
591 |
+
|
592 |
+
if i == 0 and self.tokenizer.no_speech is not None: # save no_speech_probs
|
593 |
+
probs_at_sot = logits[:, self.sot_index].float().softmax(dim=-1)
|
594 |
+
no_speech_probs = probs_at_sot[:, self.tokenizer.no_speech].tolist()
|
595 |
+
|
596 |
+
# now we need to consider the logits at the last token only
|
597 |
+
logits = logits[:, -1]
|
598 |
+
|
599 |
+
# apply the logit filters, e.g. for suppressing or applying penalty to
|
600 |
+
for logit_filter in self.logit_filters:
|
601 |
+
logit_filter.apply(logits, tokens)
|
602 |
+
|
603 |
+
# expand the tokens tensor with the selected next tokens
|
604 |
+
tokens, completed = self.decoder.update(tokens, logits, sum_logprobs)
|
605 |
+
|
606 |
+
if completed or tokens.shape[-1] > self.n_ctx:
|
607 |
+
break
|
608 |
+
finally:
|
609 |
+
self.inference.cleanup_caching()
|
610 |
+
|
611 |
+
return tokens, sum_logprobs, no_speech_probs
|
612 |
+
|
613 |
+
@torch.no_grad()
|
614 |
+
def run(self, mel: Tensor) -> List[DecodingResult]:
|
615 |
+
self.decoder.reset()
|
616 |
+
tokenizer: Tokenizer = self.tokenizer
|
617 |
+
n_audio: int = mel.shape[0]
|
618 |
+
|
619 |
+
audio_features: Tensor = self._get_audio_features(mel) # encoder forward pass
|
620 |
+
tokens: Tensor = torch.tensor([self.initial_tokens]).repeat(n_audio, 1)
|
621 |
+
|
622 |
+
# detect language if requested, overwriting the language token
|
623 |
+
languages, language_probs = self._detect_language(audio_features, tokens)
|
624 |
+
if self.options.task == "lang_id":
|
625 |
+
return [
|
626 |
+
DecodingResult(
|
627 |
+
audio_features=features, language=language, language_probs=probs
|
628 |
+
)
|
629 |
+
for features, language, probs in zip(
|
630 |
+
audio_features, languages, language_probs
|
631 |
+
)
|
632 |
+
]
|
633 |
+
|
634 |
+
# repeat text tensors by the group size, for beam search or best-of-n sampling
|
635 |
+
audio_features = audio_features.repeat_interleave(self.n_group, dim=0)
|
636 |
+
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
|
637 |
+
|
638 |
+
# call the main sampling loop
|
639 |
+
# print(audio_features.shape, tokens.shape) # torch.Size([1, 1500, 1280]) torch.Size([50, 3])
|
640 |
+
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
|
641 |
+
|
642 |
+
# reshape the tensors to have (n_audio, n_group) as the first two dimensions
|
643 |
+
audio_features = audio_features[:: self.n_group]
|
644 |
+
no_speech_probs = no_speech_probs[:: self.n_group]
|
645 |
+
assert audio_features.shape[0] == len(no_speech_probs) == n_audio
|
646 |
+
|
647 |
+
tokens = tokens.reshape(n_audio, self.n_group, -1)
|
648 |
+
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group)
|
649 |
+
|
650 |
+
# get the final candidates for each group, and slice between the first sampled token and EOT
|
651 |
+
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs)
|
652 |
+
tokens: List[List[Tensor]] = [
|
653 |
+
[t[self.sample_begin: (t == tokenizer.eot).nonzero()[0, 0]] for t in s]
|
654 |
+
for s in tokens
|
655 |
+
]
|
656 |
+
|
657 |
+
# select the top-ranked sample in each group
|
658 |
+
selected = self.sequence_ranker.rank(tokens, sum_logprobs)
|
659 |
+
tokens: List[List[int]] = [t[i].tolist() for i, t in zip(selected, tokens)]
|
660 |
+
texts: List[str] = [tokenizer.decode(t).strip() for t in tokens]
|
661 |
+
|
662 |
+
sum_logprobs: List[float] = [lp[i] for i, lp in zip(selected, sum_logprobs)]
|
663 |
+
avg_logprobs: List[float] = [
|
664 |
+
lp / (len(t) + 1) for t, lp in zip(tokens, sum_logprobs)
|
665 |
+
]
|
666 |
+
|
667 |
+
fields = (
|
668 |
+
texts,
|
669 |
+
languages,
|
670 |
+
tokens,
|
671 |
+
audio_features,
|
672 |
+
avg_logprobs,
|
673 |
+
no_speech_probs,
|
674 |
+
)
|
675 |
+
if len(set(map(len, fields))) != 1:
|
676 |
+
raise RuntimeError(f"inconsistent result lengths: {list(map(len, fields))}")
|
677 |
+
|
678 |
+
return [
|
679 |
+
DecodingResult(
|
680 |
+
audio_features=features,
|
681 |
+
language=language,
|
682 |
+
tokens=tokens,
|
683 |
+
text=text,
|
684 |
+
avg_logprob=avg_logprob,
|
685 |
+
no_speech_prob=no_speech_prob,
|
686 |
+
temperature=self.options.temperature,
|
687 |
+
compression_ratio=compression_ratio(text),
|
688 |
+
)
|
689 |
+
for text, language, tokens, features, avg_logprob, no_speech_prob in zip(
|
690 |
+
*fields
|
691 |
+
)
|
692 |
+
]
|
693 |
+
|
694 |
+
@torch.no_grad()
|
695 |
+
def run1(self, mel: Tensor) -> List[DecodingResult]:
|
696 |
+
self.decoder.reset()
|
697 |
+
tokenizer: Tokenizer = self.tokenizer
|
698 |
+
n_audio: int = mel.shape[0]
|
699 |
+
|
700 |
+
audio_features: Tensor = self._get_audio_features(mel) # encoder forward pass
|
701 |
+
tokens: Tensor = torch.tensor([self.initial_tokens]).repeat(n_audio, 1)
|
702 |
+
|
703 |
+
# detect language if requested, overwriting the language token
|
704 |
+
languages, language_probs = self._detect_language(audio_features, tokens)
|
705 |
+
if self.options.task == "lang_id":
|
706 |
+
return [
|
707 |
+
DecodingResult(audio_features=features, language=language, language_probs=probs)
|
708 |
+
for features, language, probs in zip(audio_features, languages, language_probs)
|
709 |
+
]
|
710 |
+
|
711 |
+
# repeat the audio & text tensors by the group size, for beam search or best-of-n sampling
|
712 |
+
audio_features = audio_features.repeat_interleave(self.n_group, dim=0)
|
713 |
+
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
|
714 |
+
|
715 |
+
# call the main sampling loop
|
716 |
+
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
|
717 |
+
|
718 |
+
# reshape the tensors to have (n_audio, n_group) as the first two dimensions
|
719 |
+
audio_features = audio_features[:: self.n_group]
|
720 |
+
no_speech_probs = no_speech_probs[:: self.n_group]
|
721 |
+
assert audio_features.shape[0] == len(no_speech_probs) == n_audio
|
722 |
+
|
723 |
+
tokens = tokens.reshape(n_audio, self.n_group, -1)
|
724 |
+
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group)
|
725 |
+
|
726 |
+
# get the final candidates for each group, and slice between the first sampled token and EOT
|
727 |
+
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs)
|
728 |
+
tokens: List[List[Tensor]] = [
|
729 |
+
[t[self.sample_begin : (t == tokenizer.eot).nonzero()[0, 0]] for t in s] for s in tokens
|
730 |
+
]
|
731 |
+
|
732 |
+
# select the top-ranked sample in each group
|
733 |
+
# selected = self.sequence_ranker.rank(tokens, sum_logprobs)
|
734 |
+
# print(f'selected = {selected}\n')
|
735 |
+
|
736 |
+
tokens = [[i.tolist() for i in t] for t in tokens]
|
737 |
+
avg_logprobs: List[float] = [[ilp / (len(it) + 1) for it, ilp in zip(t, lp)] for t, lp in zip(tokens, sum_logprobs)]
|
738 |
+
texts = [[tokenizer.decode(i).strip() for i in t] for t in tokens]
|
739 |
+
|
740 |
+
# print(f'tokens = {tokens}')
|
741 |
+
# print(f'avg_logprobs = {avg_logprobs}')
|
742 |
+
# print(f'texts = {texts}')
|
743 |
+
|
744 |
+
import heapq
|
745 |
+
top50_list = [heapq.nlargest(50, range(len(a)), a.__getitem__) for a in avg_logprobs]
|
746 |
+
# print(f'top50_list = {top50_list}')
|
747 |
+
|
748 |
+
texts = [[text[i] for i in top50] for text, top50 in zip(texts, top50_list)]
|
749 |
+
|
750 |
+
return texts
|
751 |
+
|
752 |
+
@torch.no_grad()
|
753 |
+
def run_wer(self, mel: Tensor) -> List[DecodingResult]:
|
754 |
+
self.decoder.reset()
|
755 |
+
tokenizer: Tokenizer = self.tokenizer
|
756 |
+
n_audio: int = mel.shape[0]
|
757 |
+
|
758 |
+
audio_features: Tensor = self._get_audio_features(mel) # encoder forward pass
|
759 |
+
tokens: Tensor = torch.tensor([self.initial_tokens]).repeat(n_audio, 1)
|
760 |
+
|
761 |
+
# detect language if requested, overwriting the language token
|
762 |
+
languages, language_probs = self._detect_language(audio_features, tokens)
|
763 |
+
if self.options.task == "lang_id":
|
764 |
+
return [
|
765 |
+
DecodingResult(audio_features=features, language=language, language_probs=probs)
|
766 |
+
for features, language, probs in zip(audio_features, languages, language_probs)
|
767 |
+
]
|
768 |
+
|
769 |
+
# repeat the audio & text tensors by the group size, for beam search or best-of-n sampling
|
770 |
+
audio_features = audio_features.repeat_interleave(self.n_group, dim=0)
|
771 |
+
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
|
772 |
+
|
773 |
+
# call the main sampling loop
|
774 |
+
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
|
775 |
+
|
776 |
+
# reshape the tensors to have (n_audio, n_group) as the first two dimensions
|
777 |
+
audio_features = audio_features[:: self.n_group]
|
778 |
+
no_speech_probs = no_speech_probs[:: self.n_group]
|
779 |
+
assert audio_features.shape[0] == len(no_speech_probs) == n_audio
|
780 |
+
|
781 |
+
tokens = tokens.reshape(n_audio, self.n_group, -1)
|
782 |
+
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group)
|
783 |
+
|
784 |
+
# get the final candidates for each group, and slice between the first sampled token and EOT
|
785 |
+
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs)
|
786 |
+
tokens: List[List[Tensor]] = [
|
787 |
+
[t[self.sample_begin: (t == tokenizer.eot).nonzero()[0, 0]] for t in s] for s in tokens
|
788 |
+
]
|
789 |
+
|
790 |
+
# select the top-ranked sample in each group
|
791 |
+
# selected = self.sequence_ranker.rank(tokens, sum_logprobs)
|
792 |
+
# print(f'selected = {selected}\n')
|
793 |
+
|
794 |
+
tokens = [[i.tolist() for i in t] for t in tokens]
|
795 |
+
avg_logprobs: List[float] = [[ilp / (len(it) + 1) for it, ilp in zip(t, lp)] for t, lp in
|
796 |
+
zip(tokens, sum_logprobs)]
|
797 |
+
texts = [[tokenizer.decode(i).strip() for i in t] for t in tokens]
|
798 |
+
|
799 |
+
# print(f'tokens = {tokens}')
|
800 |
+
# print(f'avg_logprobs = {avg_logprobs}')
|
801 |
+
# print(f'texts = {texts}')
|
802 |
+
|
803 |
+
import heapq
|
804 |
+
top5_list = [heapq.nlargest(5, range(len(a)), a.__getitem__) for a in avg_logprobs]
|
805 |
+
# print(f'top5_list = {top5_list}')
|
806 |
+
|
807 |
+
texts = [[text[i] for i in top5] for text, top5 in zip(texts, top5_list)]
|
808 |
+
|
809 |
+
return texts
|
810 |
+
|
811 |
+
@torch.no_grad()
|
812 |
+
def run_score(self, mel: Tensor) -> List[DecodingResult]:
|
813 |
+
self.decoder.reset()
|
814 |
+
tokenizer: Tokenizer = self.tokenizer
|
815 |
+
n_audio: int = mel.shape[0]
|
816 |
+
|
817 |
+
audio_features: Tensor = self._get_audio_features(mel) # encoder forward pass
|
818 |
+
tokens: Tensor = torch.tensor([self.initial_tokens]).repeat(n_audio, 1)
|
819 |
+
|
820 |
+
# detect language if requested, overwriting the language token
|
821 |
+
languages, language_probs = self._detect_language(audio_features, tokens)
|
822 |
+
if self.options.task == "lang_id":
|
823 |
+
return [
|
824 |
+
DecodingResult(audio_features=features, language=language, language_probs=probs)
|
825 |
+
for features, language, probs in zip(audio_features, languages, language_probs)
|
826 |
+
]
|
827 |
+
|
828 |
+
# repeat the audio & text tensors by the group size, for beam search or best-of-n sampling
|
829 |
+
audio_features = audio_features.repeat_interleave(self.n_group, dim=0)
|
830 |
+
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
|
831 |
+
|
832 |
+
# call the main sampling loop
|
833 |
+
tokens, sum_logprobs, no_speech_probs = self._main_loop(audio_features, tokens)
|
834 |
+
|
835 |
+
# reshape the tensors to have (n_audio, n_group) as the first two dimensions
|
836 |
+
audio_features = audio_features[:: self.n_group]
|
837 |
+
no_speech_probs = no_speech_probs[:: self.n_group]
|
838 |
+
assert audio_features.shape[0] == len(no_speech_probs) == n_audio
|
839 |
+
|
840 |
+
tokens = tokens.reshape(n_audio, self.n_group, -1)
|
841 |
+
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group)
|
842 |
+
|
843 |
+
# get the final candidates for each group, and slice between the first sampled token and EOT
|
844 |
+
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs)
|
845 |
+
tokens: List[List[Tensor]] = [
|
846 |
+
[t[self.sample_begin: (t == tokenizer.eot).nonzero()[0, 0]] for t in s] for s in tokens
|
847 |
+
]
|
848 |
+
|
849 |
+
# select the top-ranked sample in each group
|
850 |
+
# selected = self.sequence_ranker.rank(tokens, sum_logprobs)
|
851 |
+
# print(f'selected = {selected}\n')
|
852 |
+
|
853 |
+
tokens = [[i.tolist() for i in t] for t in tokens]
|
854 |
+
avg_logprobs: List[float] = [[ilp / (len(it) + 1) for it, ilp in zip(t, lp)] for t, lp in
|
855 |
+
zip(tokens, sum_logprobs)]
|
856 |
+
texts = [[tokenizer.decode(i).strip() for i in t] for t in tokens]
|
857 |
+
|
858 |
+
# print(f'tokens = {tokens}')
|
859 |
+
# print(f'avg_logprobs = {avg_logprobs}')
|
860 |
+
# print(f'texts = {texts}')
|
861 |
+
|
862 |
+
import heapq
|
863 |
+
top50_list = [heapq.nlargest(80, range(len(a)), a.__getitem__) for a in avg_logprobs]
|
864 |
+
# print(f'top50_list = {top50_list}')
|
865 |
+
|
866 |
+
texts = [[text[i] for i in top50] for text, top50 in zip(texts, top50_list)]
|
867 |
+
scores = [[score[i] for i in top50] for score, top50 in zip(avg_logprobs, top50_list)]
|
868 |
+
|
869 |
+
return texts, scores
|
870 |
+
|
871 |
+
@torch.no_grad()
|
872 |
+
def decode(
|
873 |
+
model: "Whisper",
|
874 |
+
mel: Tensor,
|
875 |
+
options: DecodingOptions = DecodingOptions(),
|
876 |
+
**kwargs,
|
877 |
+
) -> Union[DecodingResult, List[DecodingResult]]:
|
878 |
+
"""
|
879 |
+
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s).
|
880 |
+
|
881 |
+
Parameters
|
882 |
+
----------
|
883 |
+
model: Whisper
|
884 |
+
the Whisper model instance
|
885 |
+
|
886 |
+
mel: torch.Tensor, shape = (80, 3000) or (*, 80, 3000)
|
887 |
+
A tensor containing the Mel spectrogram(s)
|
888 |
+
|
889 |
+
options: DecodingOptions
|
890 |
+
A dataclass that contains all necessary options for decoding 30-second segments
|
891 |
+
|
892 |
+
Returns
|
893 |
+
-------
|
894 |
+
result: Union[DecodingResult, List[DecodingResult]]
|
895 |
+
The result(s) of decoding contained in `DecodingResult` dataclass instance(s)
|
896 |
+
"""
|
897 |
+
if single := mel.ndim == 2:
|
898 |
+
mel = mel.unsqueeze(0)
|
899 |
+
|
900 |
+
if kwargs:
|
901 |
+
options = replace(options, **kwargs)
|
902 |
+
|
903 |
+
result = DecodingTask(model, options).run(mel)
|
904 |
+
|
905 |
+
return result[0] if single else result
|
906 |
+
|
907 |
+
@torch.no_grad()
|
908 |
+
def decode1(model: "Whisper", mel: Tensor, options: DecodingOptions = DecodingOptions()) -> Union[DecodingResult, List[DecodingResult]]:
|
909 |
+
"""
|
910 |
+
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s).
|
911 |
+
|
912 |
+
Parameters
|
913 |
+
----------
|
914 |
+
model: Whisper
|
915 |
+
the Whisper model instance
|
916 |
+
|
917 |
+
mel: torch.Tensor, shape = (80, 3000) or (*, 80, 3000)
|
918 |
+
A tensor containing the Mel spectrogram(s)
|
919 |
+
|
920 |
+
options: DecodingOptions
|
921 |
+
A dataclass that contains all necessary options for decoding 30-second segments
|
922 |
+
|
923 |
+
Returns
|
924 |
+
-------
|
925 |
+
result: Union[DecodingResult, List[DecodingResult]]
|
926 |
+
The result(s) of decoding contained in `DecodingResult` dataclass instance(s)
|
927 |
+
"""
|
928 |
+
single = mel.ndim == 2
|
929 |
+
if single:
|
930 |
+
mel = mel.unsqueeze(0)
|
931 |
+
|
932 |
+
result = DecodingTask(model, options).run1(mel)
|
933 |
+
|
934 |
+
if single:
|
935 |
+
result = result[0]
|
936 |
+
|
937 |
+
return result
|
938 |
+
|
939 |
+
|
940 |
+
@torch.no_grad()
|
941 |
+
def decode_wer(model: "Whisper", mel: Tensor, options: DecodingOptions = DecodingOptions()) -> Union[
|
942 |
+
DecodingResult, List[DecodingResult]]:
|
943 |
+
"""
|
944 |
+
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s).
|
945 |
+
|
946 |
+
Parameters
|
947 |
+
----------
|
948 |
+
model: Whisper
|
949 |
+
the Whisper model instance
|
950 |
+
|
951 |
+
mel: torch.Tensor, shape = (80, 3000) or (*, 80, 3000)
|
952 |
+
A tensor containing the Mel spectrogram(s)
|
953 |
+
|
954 |
+
options: DecodingOptions
|
955 |
+
A dataclass that contains all necessary options for decoding 30-second segments
|
956 |
+
|
957 |
+
Returns
|
958 |
+
-------
|
959 |
+
result: Union[DecodingResult, List[DecodingResult]]
|
960 |
+
The result(s) of decoding contained in `DecodingResult` dataclass instance(s)
|
961 |
+
"""
|
962 |
+
single = mel.ndim == 2
|
963 |
+
if single:
|
964 |
+
mel = mel.unsqueeze(0)
|
965 |
+
|
966 |
+
result = DecodingTask(model, options).run_wer(mel)
|
967 |
+
|
968 |
+
if single:
|
969 |
+
result = result[0]
|
970 |
+
|
971 |
+
return result
|
972 |
+
|
973 |
+
|
974 |
+
@torch.no_grad()
|
975 |
+
def decode_score(model: "Whisper", mel: Tensor, options: DecodingOptions = DecodingOptions()) -> Union[
|
976 |
+
DecodingResult, List[DecodingResult]]:
|
977 |
+
"""
|
978 |
+
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s).
|
979 |
+
|
980 |
+
Parameters
|
981 |
+
----------
|
982 |
+
model: Whisper
|
983 |
+
the Whisper model instance
|
984 |
+
|
985 |
+
mel: torch.Tensor, shape = (80, 3000) or (*, 80, 3000)
|
986 |
+
A tensor containing the Mel spectrogram(s)
|
987 |
+
|
988 |
+
options: DecodingOptions
|
989 |
+
A dataclass that contains all necessary options for decoding 30-second segments
|
990 |
+
|
991 |
+
Returns
|
992 |
+
-------
|
993 |
+
result: Union[DecodingResult, List[DecodingResult]]
|
994 |
+
The result(s) of decoding contained in `DecodingResult` dataclass instance(s)
|
995 |
+
"""
|
996 |
+
single = mel.ndim == 2
|
997 |
+
if single:
|
998 |
+
mel = mel.unsqueeze(0)
|
999 |
+
|
1000 |
+
texts, scores = DecodingTask(model, options).run_score(mel)
|
1001 |
+
|
1002 |
+
if single:
|
1003 |
+
texts = texts[0]
|
1004 |
+
scores = scores[0]
|
1005 |
+
|
1006 |
+
return texts, scores
|
generate_robust_hp.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
import re
|
3 |
+
import sys
|
4 |
+
import os, random, copy
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import pandas as pd
|
8 |
+
import torchaudio
|
9 |
+
from tqdm.notebook import tqdm
|
10 |
+
import collections, json
|
11 |
+
import editdistance
|
12 |
+
from whisper.normalizers import EnglishTextNormalizer
|
13 |
+
from argparse import ArgumentParser
|
14 |
+
from num2words import num2words
|
15 |
+
sys.path.append('/home3/huyuchen/pytorch_workplace/jiwer')
|
16 |
+
from jiwer import wer_embdiff
|
17 |
+
import fasttext
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
from pathlib import Path
|
20 |
+
from typing import Optional
|
21 |
+
from sentencepiece import SentencePieceProcessor, SentencePieceTrainer
|
22 |
+
from sentence_transformers import SentenceTransformer
|
23 |
+
from argparse import ArgumentParser
|
24 |
+
from evaluate import load
|
25 |
+
from lit_gpt.tokenizer import Tokenizer
|
26 |
+
eval_wer = load("wer")
|
27 |
+
normalizer = EnglishTextNormalizer()
|
28 |
+
|
29 |
+
checkpoint_dir = Path('/home3/huyuchen/pytorch_workplace/wgpt/checkpoints/Llama-2-7b-hf')
|
30 |
+
tokenizer = Tokenizer(checkpoint_dir)
|
31 |
+
|
32 |
+
sbert_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
33 |
+
|
34 |
+
|
35 |
+
def calculate_wer(all_hypo, all_refer):
|
36 |
+
return eval_wer.compute(predictions=all_hypo, references=all_refer)
|
37 |
+
|
38 |
+
def word_emb_diff(reference, hypothesis):
|
39 |
+
output, edit_ops = wer_embdiff(reference, hypothesis)
|
40 |
+
ref_words, hypo_words = output.references[0], output.hypotheses[0]
|
41 |
+
|
42 |
+
emb_diffs = []
|
43 |
+
for op in edit_ops:
|
44 |
+
if op.tag == 'replace':
|
45 |
+
ref_word, hypo_word = ref_words[op.src_pos], hypo_words[op.dest_pos]
|
46 |
+
elif op.tag == 'delete':
|
47 |
+
ref_word, hypo_word = ref_words[op.src_pos], None
|
48 |
+
elif op.tag == 'insert':
|
49 |
+
ref_word, hypo_word = None, hypo_words[op.dest_pos]
|
50 |
+
else:
|
51 |
+
continue
|
52 |
+
|
53 |
+
ref_emb = torch.from_numpy(sbert_model.encode([ref_word])[0]) if ref_word else torch.zeros([384])
|
54 |
+
hypo_emb = torch.from_numpy(sbert_model.encode([hypo_word])[0]) if hypo_word else torch.zeros([384])
|
55 |
+
|
56 |
+
emb_diff = ref_emb - hypo_emb
|
57 |
+
emb_diffs.append(emb_diff)
|
58 |
+
|
59 |
+
# print('word', hypo_emb.mean(), ref_emb.mean(), emb_diff.mean())
|
60 |
+
|
61 |
+
if len(emb_diffs) == 0:
|
62 |
+
return torch.zeros([384])
|
63 |
+
else:
|
64 |
+
return torch.stack(emb_diffs, dim=0).mean(dim=0)
|
65 |
+
|
66 |
+
def sent_emb_diff(reference, hypothesis):
|
67 |
+
embeddings = sbert_model.encode([reference, hypothesis])
|
68 |
+
ref_emb, hypo_emb = torch.from_numpy(embeddings[0]), torch.from_numpy(embeddings[1])
|
69 |
+
emb_diff = ref_emb - hypo_emb
|
70 |
+
# print('sentence', hypo_emb.mean(), ref_emb.mean(), emb_diff.mean())
|
71 |
+
|
72 |
+
return emb_diff
|
73 |
+
|
74 |
+
def generate_prompt(input1, input2):
|
75 |
+
return (
|
76 |
+
f"Below is the best-hypotheses transcribed from speech recognition system. Please try to revise it using the words which are only included into other-hypothesis, and write the response for the true transcription.\n\n### Best-hypothesis:\n{input1}\n\n### Other-hypothesis:\n{input2}\n\n### Response:\n"
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
81 |
+
model = whisper.load_model('large-v2')
|
82 |
+
|
83 |
+
f_noisy_wav = open(f'noisy_wav.scp', 'r')
|
84 |
+
f_clean_wav = open(f'clean_wav.scp', 'r')
|
85 |
+
f_text = open(f'text', 'r')
|
86 |
+
|
87 |
+
id = 0
|
88 |
+
pt_file = []
|
89 |
+
all_hypo, all_refer = [], []
|
90 |
+
for line in f_noisy_wav.readlines():
|
91 |
+
utt_id, audio_path = line.strip().split()[0], line.strip().split()[1]
|
92 |
+
clean_line = f_clean_wav.readline()
|
93 |
+
clean_utt_id, clean_audio_path = clean_line.strip().split()[0], clean_line.strip().split()[1]
|
94 |
+
assert clean_utt_id == utt_id, (line, clean_line)
|
95 |
+
gt = ' '.join(f_text.readline().strip().split()[1:])
|
96 |
+
audio = whisper.load_audio(audio_path)
|
97 |
+
audio = whisper.pad_or_trim(audio)
|
98 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
99 |
+
options = whisper.DecodingOptions(language='en', beam_size=50)
|
100 |
+
texts, confidences = whisper.decode_score(model, mel, options)
|
101 |
+
|
102 |
+
## noisy audio feats
|
103 |
+
audio_features = model.encoder(mel.unsqueeze(0))[0]
|
104 |
+
|
105 |
+
## clean audio feats
|
106 |
+
clean_audio = whisper.load_audio(clean_audio_path)
|
107 |
+
clean_audio = whisper.pad_or_trim(clean_audio)
|
108 |
+
clean_mel = whisper.log_mel_spectrogram(clean_audio).to(model.device)
|
109 |
+
clean_audio_features = model.encoder(clean_mel.unsqueeze(0))[0]
|
110 |
+
|
111 |
+
input, score = [], []
|
112 |
+
for text, confidence in zip(texts, confidences):
|
113 |
+
if len(input) < 5 and len(text) > 0 and text not in input:
|
114 |
+
input.append(text)
|
115 |
+
score.append(confidence)
|
116 |
+
|
117 |
+
# print('before', input, score, len(input))
|
118 |
+
|
119 |
+
if len(input) < 5:
|
120 |
+
options = whisper.DecodingOptions(language='en', temperature=1.2)
|
121 |
+
for _ in range(5 - len(input)):
|
122 |
+
result = whisper.decode(model, mel, options)
|
123 |
+
text, condidence = result.text, result.avg_logprob
|
124 |
+
if text in input:
|
125 |
+
continue
|
126 |
+
inserted = False
|
127 |
+
for i in range(len(input)):
|
128 |
+
if condidence > score[i]:
|
129 |
+
input.insert(i, text)
|
130 |
+
score.insert(i, condidence)
|
131 |
+
inserted = True
|
132 |
+
break
|
133 |
+
if not inserted:
|
134 |
+
input.append(text)
|
135 |
+
score.append(condidence)
|
136 |
+
|
137 |
+
# print('after ', input, score, len(input))
|
138 |
+
|
139 |
+
if len(input) < 5:
|
140 |
+
num_to_add = 5 - len(input)
|
141 |
+
for _ in range(num_to_add):
|
142 |
+
rand_id = random.randint(0, len(input) - 1)
|
143 |
+
rep_input, rep_score = copy.deepcopy(input[rand_id]), copy.deepcopy(score[rand_id])
|
144 |
+
input.insert(rand_id + 1, rep_input)
|
145 |
+
score.insert(rand_id + 1, rep_score)
|
146 |
+
|
147 |
+
for i in range(len(input)):
|
148 |
+
try:
|
149 |
+
text = normalizer(input[i])
|
150 |
+
text = re.sub(r"[-+]?\d*\.?\d+|\d+%?", lambda m: num2words(m.group()), text).replace('%', ' percent')
|
151 |
+
except Exception:
|
152 |
+
text = normalizer(input[i])
|
153 |
+
print(f'input exception: {text}')
|
154 |
+
input[i] = text if len(text) > 0 else '<UNK>'
|
155 |
+
|
156 |
+
try:
|
157 |
+
output = normalizer(gt)
|
158 |
+
output = re.sub(r"[-+]?\d*\.?\d+|\d+%?", lambda m: num2words(m.group()), output).replace('%', ' percent')
|
159 |
+
except Exception:
|
160 |
+
output = normalizer(gt)
|
161 |
+
print(f'output exception: {output}')
|
162 |
+
output = output if len(output) > 0 else '<UNK>'
|
163 |
+
|
164 |
+
cur_wer = calculate_wer([input[0]], [output])
|
165 |
+
|
166 |
+
# calculate emb diff
|
167 |
+
we_diffs, se_diffs = [], []
|
168 |
+
for i in range(5):
|
169 |
+
for j in range(i + 1, 5):
|
170 |
+
we_diffs.append(word_emb_diff(input[i], input[j]))
|
171 |
+
se_diffs.append(sent_emb_diff(input[i], input[j]))
|
172 |
+
|
173 |
+
we_diff = torch.stack(we_diffs, dim=0) # [10, 384]
|
174 |
+
se_diff = torch.stack(se_diffs, dim=0) # [10, 384]
|
175 |
+
emb_diff = torch.cat([we_diff, se_diff], dim=0) # [20, 384]
|
176 |
+
|
177 |
+
# generate ids
|
178 |
+
input1 = input[0] + '.'
|
179 |
+
input2 = '. '.join(input[1:]) + '.'
|
180 |
+
|
181 |
+
full_prompt = generate_prompt(input1, input2)
|
182 |
+
full_prompt_and_response = full_prompt + output
|
183 |
+
encoded_full_prompt = tokenizer.encode(full_prompt, max_length=1024)
|
184 |
+
encoded_full_prompt_and_response = tokenizer.encode(full_prompt_and_response, eos=True, max_length=1024)
|
185 |
+
|
186 |
+
labels = encoded_full_prompt_and_response.clone()
|
187 |
+
labels[: len(encoded_full_prompt)] = -1
|
188 |
+
|
189 |
+
|
190 |
+
data = {"id": utt_id, "input_ids": encoded_full_prompt_and_response, "input_ids_no_response": encoded_full_prompt, "labels": labels,
|
191 |
+
"input": input, 'ground_truth': output, "am_score": score, 'emb_diff': emb_diff, 'audio_features': noisy_audio_features,
|
192 |
+
'clean_audio_features': clean_audio_features}
|
193 |
+
|
194 |
+
pt_file.append(data)
|
195 |
+
|
196 |
+
# calculate wer
|
197 |
+
id += 1
|
198 |
+
print(f'utterance {id}: wer = {cur_wer}, confidence = {score[0]}')
|
199 |
+
all_hypo.append(input[0])
|
200 |
+
all_refer.append(output)
|
201 |
+
|
202 |
+
|
203 |
+
torch.save(pt_file, f'/home3/huyuchen/pytorch_workplace/wllama/hypo_paradise_v2/train_rats.pt')
|
204 |
+
|
205 |
+
|
206 |
+
f_noisy_wav.close()
|
207 |
+
f_clean_wav.close()
|
208 |
+
f_text.close()
|
209 |
+
|
210 |
+
all_wer = calculate_wer(all_hypo, all_refer)
|
211 |
+
print(f'all wer = {all_wer}')
|
212 |
+
|
jiwer/.github/workflows/pythonpackage.yml
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
|
2 |
+
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions
|
3 |
+
|
4 |
+
name: Python package
|
5 |
+
|
6 |
+
on:
|
7 |
+
push:
|
8 |
+
branches: [ master ]
|
9 |
+
pull_request:
|
10 |
+
branches: [ master ]
|
11 |
+
|
12 |
+
jobs:
|
13 |
+
style:
|
14 |
+
runs-on: ubuntu-latest
|
15 |
+
strategy:
|
16 |
+
matrix:
|
17 |
+
python-version: [3.7]
|
18 |
+
|
19 |
+
steps:
|
20 |
+
- uses: actions/checkout@v3
|
21 |
+
- name: Set up Python ${{ matrix.python-version }}
|
22 |
+
uses: actions/setup-python@v4
|
23 |
+
with:
|
24 |
+
python-version: ${{ matrix.python-version }}
|
25 |
+
- name: Install Poetry
|
26 |
+
uses: snok/install-poetry@v1
|
27 |
+
- name: Setup dependencies
|
28 |
+
run: |
|
29 |
+
poetry update
|
30 |
+
poetry install
|
31 |
+
- name: Lint with flake8
|
32 |
+
run: |
|
33 |
+
# stop the build if there are Python syntax errors or undefined names
|
34 |
+
poetry run flake8 jiwer --count --select=E9,F63,F7,F82 --show-source --statistics
|
35 |
+
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
|
36 |
+
poetry run flake8 jiwer --count --exit-zero --max-complexity=10 --max-line-length=88 --statistics
|
37 |
+
- name: Check formatting with black
|
38 |
+
run: |
|
39 |
+
poetry run black . --check
|
40 |
+
|
41 |
+
build:
|
42 |
+
runs-on: ubuntu-latest
|
43 |
+
strategy:
|
44 |
+
matrix:
|
45 |
+
python-version: ["3.7", "3.8", "3.9", "3.10", "3.11"]
|
46 |
+
|
47 |
+
steps:
|
48 |
+
- uses: actions/checkout@v3
|
49 |
+
- name: Set up Python ${{ matrix.python-version }}
|
50 |
+
uses: actions/setup-python@v4
|
51 |
+
with:
|
52 |
+
python-version: ${{ matrix.python-version }}
|
53 |
+
- name: Install Poetry
|
54 |
+
uses: snok/install-poetry@v1
|
55 |
+
- name: Install dependencies
|
56 |
+
run: |
|
57 |
+
poetry run python -m pip install --upgrade pip
|
58 |
+
poetry update
|
59 |
+
poetry install
|
60 |
+
- name: Test with pytest
|
61 |
+
run: |
|
62 |
+
poetry run python --version
|
63 |
+
poetry run pytest
|
jiwer/.github/workflows/pythonpublish.yml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This workflows will upload a Python Package using Twine when a release is created
|
2 |
+
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
|
3 |
+
|
4 |
+
name: Upload Python Package
|
5 |
+
|
6 |
+
on:
|
7 |
+
release:
|
8 |
+
types: [created]
|
9 |
+
|
10 |
+
jobs:
|
11 |
+
deploy:
|
12 |
+
|
13 |
+
runs-on: ubuntu-latest
|
14 |
+
|
15 |
+
steps:
|
16 |
+
- uses: actions/checkout@v3
|
17 |
+
- name: Set up Python
|
18 |
+
uses: actions/setup-python@v4
|
19 |
+
with:
|
20 |
+
python-version: '3.x'
|
21 |
+
- name: Install Poetry
|
22 |
+
uses: snok/install-poetry@v1
|
23 |
+
- name: Install dependencies
|
24 |
+
run: |
|
25 |
+
poetry run python -m pip install --upgrade pip
|
26 |
+
poetry update
|
27 |
+
poetry install
|
28 |
+
- name: Build and publish
|
29 |
+
env:
|
30 |
+
POETRY_HTTP_BASIC_PYPI_USERNAME: ${{ secrets.PYPI_USERNAME }}
|
31 |
+
POETRY_PYPI_TOKEN_PYPI: ${{ secrets.PYPI_API_TOKEN }}
|
32 |
+
run: |
|
33 |
+
poetry publish --build
|
jiwer/.gitignore
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Compiled python modules.
|
2 |
+
*.pyc
|
3 |
+
|
4 |
+
# Setuptools distribution folder.
|
5 |
+
/dist/
|
6 |
+
|
7 |
+
# Python egg metadata, regenerated from source files by setuptools.
|
8 |
+
/*.egg-info
|
9 |
+
|
10 |
+
# playground directory for running local debug code
|
11 |
+
playground
|
12 |
+
|
13 |
+
# poetry .lock file
|
14 |
+
poetry.lock
|
15 |
+
|
16 |
+
# idea specific folders
|
17 |
+
.idea
|
18 |
+
.vscode
|
19 |
+
|
20 |
+
# virtual environments
|
21 |
+
venv
|
22 |
+
.venv
|
23 |
+
|
24 |
+
# cache folders
|
25 |
+
.pytest_cache
|
26 |
+
.benchmarks
|
27 |
+
/docs/site/
|
28 |
+
/site/
|
jiwer/.mailmap
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mail map file
|
2 |
+
# for cleaner output of e.g. `git shortlog -nes`
|
3 |
+
|
4 |
+
Nik Vaessen <[email protected]>
|
5 |
+
Nik Vaessen <[email protected]> <[email protected]>
|
6 |
+
Bart van Andel <[email protected]>
|
jiwer/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2018 8x8, Inc.
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
jiwer/README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# JiWER
|
2 |
+
|
3 |
+
JiWER is a simple and fast python package to evaluate an automatic speech recognition system.
|
4 |
+
It supports the following measures:
|
5 |
+
|
6 |
+
1. word error rate (WER)
|
7 |
+
2. match error rate (MER)
|
8 |
+
3. word information lost (WIL)
|
9 |
+
4. word information preserved (WIP)
|
10 |
+
5. character error rate (CER)
|
11 |
+
|
12 |
+
These measures are computed with the use of the minimum-edit distance between one or more reference and hypothesis sentences.
|
13 |
+
The minimum-edit distance is calculated using [RapidFuzz](https://github.com/maxbachmann/RapidFuzz), which uses C++ under the hood, and is therefore faster than a pure python implementation.
|
14 |
+
|
15 |
+
## Documentation
|
16 |
+
|
17 |
+
For further info, see the documentation at [jitsi.github.io/jiwer](https://jitsi.github.io/jiwer).
|
18 |
+
|
19 |
+
## Installation
|
20 |
+
|
21 |
+
You should be able to install this package using [poetry](https://python-poetry.org/docs/):
|
22 |
+
|
23 |
+
```
|
24 |
+
$ poetry add jiwer
|
25 |
+
```
|
26 |
+
|
27 |
+
Or, if you prefer old-fashioned pip and you're using Python >= `3.7`:
|
28 |
+
|
29 |
+
```bash
|
30 |
+
$ pip install jiwer
|
31 |
+
```
|
32 |
+
|
33 |
+
## Usage
|
34 |
+
|
35 |
+
The most simple use-case is computing the word error rate between two strings:
|
36 |
+
|
37 |
+
```python
|
38 |
+
from jiwer import wer
|
39 |
+
|
40 |
+
reference = "hello world"
|
41 |
+
hypothesis = "hello duck"
|
42 |
+
|
43 |
+
error = wer(reference, hypothesis)
|
44 |
+
```
|
45 |
+
|
46 |
+
## Licence
|
47 |
+
|
48 |
+
The jiwer package is released under the `Apache License, Version 2.0` licence by [8x8](https://www.8x8.com/).
|
49 |
+
|
50 |
+
For further information, see [`LICENCE`](./LICENSE).
|
51 |
+
|
52 |
+
## Reference
|
53 |
+
|
54 |
+
_For a comparison between WER, MER and WIL, see: \
|
55 |
+
Morris, Andrew & Maier, Viktoria & Green, Phil. (2004). [From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.](https://www.researchgate.net/publication/221478089_From_WER_and_RIL_to_MER_and_WIL_improved_evaluation_measures_for_connected_speech_recognition)_
|
jiwer/docs/cli.md
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
JiWER provides a simple CLI, which should be available after installation.
|
3 |
+
|
4 |
+
For details, see `jiwer --help`.
|
5 |
+
|
6 |
+
```text
|
7 |
+
$ jiwer --help
|
8 |
+
Usage: jiwer [OPTIONS]
|
9 |
+
|
10 |
+
JiWER is a python tool for computing the word-error-rate of ASR systems. To
|
11 |
+
use this CLI, store the reference and hypothesis sentences in a text file,
|
12 |
+
where each sentence is delimited by a new-line character. The text files are
|
13 |
+
expected to have an equal number of lines, unless the `-g` flag is used. The
|
14 |
+
`-g` flag joins computation of the WER by doing a global minimal alignment.
|
15 |
+
|
16 |
+
Options:
|
17 |
+
-r, --reference PATH Path to new-line delimited text file of reference
|
18 |
+
sentences. [required]
|
19 |
+
-h, --hypothesis PATH Path to new-line delimited text file of hypothesis
|
20 |
+
sentences. [required]
|
21 |
+
-c, --cer Compute CER instead of WER.
|
22 |
+
-a, --align Print alignment of each sentence.
|
23 |
+
-g, --global Apply a global minimal alignment between reference
|
24 |
+
and hypothesis sentences before computing the WER.
|
25 |
+
--help Show this message and exit.
|
26 |
+
```
|
27 |
+
|
28 |
+
Note that the CLI does not support a custom pre-processing (as described below). Any pre-processing
|
29 |
+
should be done on the text files manually before calling JiWER when using the CLI.
|
jiwer/docs/gen_ref_pages.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Generate the code reference pages and navigation."""
|
2 |
+
|
3 |
+
from pathlib import Path
|
4 |
+
import mkdocs_gen_files
|
5 |
+
|
6 |
+
nav = mkdocs_gen_files.Nav()
|
7 |
+
|
8 |
+
for path in sorted(Path("jiwer").rglob("*.py")):
|
9 |
+
doc_path = path.relative_to("jiwer").with_suffix(".md")
|
10 |
+
full_doc_path = Path("reference", doc_path)
|
11 |
+
|
12 |
+
module_path = path.relative_to("jiwer").with_suffix("")
|
13 |
+
parts = list(module_path.parts)
|
14 |
+
|
15 |
+
if parts[-1] == "__init__" or parts[-1] == "cli":
|
16 |
+
continue
|
17 |
+
|
18 |
+
nav[parts] = doc_path.as_posix()
|
19 |
+
|
20 |
+
with mkdocs_gen_files.open(full_doc_path, "w") as fd:
|
21 |
+
identifier = ".".join(parts)
|
22 |
+
print("::: " + identifier, file=fd)
|
23 |
+
|
24 |
+
mkdocs_gen_files.set_edit_path(full_doc_path, path)
|
25 |
+
|
26 |
+
|
27 |
+
with mkdocs_gen_files.open("reference/SUMMARY.md", "w") as nav_file:
|
28 |
+
nav_file.writelines(nav.build_literate_nav())
|
jiwer/docs/index.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# JiWER
|
2 |
+
|
3 |
+
JiWER is a simple and fast python package to evaluate an automatic speech recognition system.
|
4 |
+
It supports the following measures:
|
5 |
+
|
6 |
+
1. word error rate (WER)
|
7 |
+
2. match error rate (MER)
|
8 |
+
3. word information lost (WIL)
|
9 |
+
4. word information preserved (WIP)
|
10 |
+
5. character error rate (CER)
|
11 |
+
|
12 |
+
These measures are computed with the use of the minimum-edit distance between one or more reference and hypothesis sentences.
|
13 |
+
The minimum-edit distance is calculated using [RapidFuzz](https://github.com/maxbachmann/RapidFuzz), which uses C++ under the hood, and is therefore faster than a pure python implementation.
|
14 |
+
|
15 |
+
# Installation
|
16 |
+
|
17 |
+
You should be able to install this package using [poetry](https://python-poetry.org/docs/):
|
18 |
+
|
19 |
+
```
|
20 |
+
$ poetry add jiwer
|
21 |
+
```
|
22 |
+
|
23 |
+
Or, if you prefer old-fashioned pip and you're using Python >= `3.7`:
|
24 |
+
|
25 |
+
```bash
|
26 |
+
$ pip install jiwer
|
27 |
+
```
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
jiwer/docs/requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mkdocs==1.4.2
|
2 |
+
mkdocstrings[python]==0.20.0
|
3 |
+
mkdocs-gen-files==0.4.0
|
4 |
+
mkdocs-literate-nav==0.6.0
|
5 |
+
mkdocs-material==9.1.3
|
jiwer/docs/usage.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Usage
|
2 |
+
|
3 |
+
The most simple use-case is computing the word error rate between two strings:
|
4 |
+
|
5 |
+
```python
|
6 |
+
from jiwer import wer
|
7 |
+
|
8 |
+
reference = "hello world"
|
9 |
+
hypothesis = "hello duck"
|
10 |
+
|
11 |
+
error = wer(reference, hypothesis)
|
12 |
+
```
|
13 |
+
|
14 |
+
Similarly, to get other measures:
|
15 |
+
|
16 |
+
```python
|
17 |
+
import jiwer
|
18 |
+
|
19 |
+
reference = "hello world"
|
20 |
+
hypothesis = "hello duck"
|
21 |
+
|
22 |
+
wer = jiwer.wer(reference, hypothesis)
|
23 |
+
mer = jiwer.mer(reference, hypothesis)
|
24 |
+
wil = jiwer.wil(reference, hypothesis)
|
25 |
+
|
26 |
+
# faster, because `compute_measures` only needs to perform the heavy lifting once:
|
27 |
+
output = jiwer.process_words(reference, hypothesis)
|
28 |
+
wer = output.wer
|
29 |
+
mer = output.mer
|
30 |
+
wil = output.wil
|
31 |
+
```
|
32 |
+
|
33 |
+
You can also compute the WER over multiple sentences:
|
34 |
+
|
35 |
+
```python
|
36 |
+
from jiwer import wer
|
37 |
+
|
38 |
+
reference = ["hello world", "i like monthy python"]
|
39 |
+
hypothesis = ["hello duck", "i like python"]
|
40 |
+
|
41 |
+
error = wer(reference, hypothesis)
|
42 |
+
```
|
43 |
+
|
44 |
+
We also provide the character error rate:
|
45 |
+
|
46 |
+
```python
|
47 |
+
import jiwer
|
48 |
+
|
49 |
+
reference = ["i can spell", "i hope"]
|
50 |
+
hypothesis = ["i kan cpell", "i hop"]
|
51 |
+
|
52 |
+
error = jiwer.cer(reference, hypothesis)
|
53 |
+
|
54 |
+
# if you also want the alignment
|
55 |
+
output = jiwer.process_characters(reference, hypothesis)
|
56 |
+
error = output.cer
|
57 |
+
```
|
58 |
+
|
59 |
+
# Alignment
|
60 |
+
|
61 |
+
With `jiwer.process_words`, you also get the alignment between the reference and hypothesis.
|
62 |
+
|
63 |
+
We provide the alignment as a list of `(op, ref_start_idx, ref_idx_end, hyp_idx_start, hyp_idx_end)`, where `op` is one of
|
64 |
+
`equal`, `replace`, `delete`, or `insert`.
|
65 |
+
|
66 |
+
This looks like the following:
|
67 |
+
|
68 |
+
```python3
|
69 |
+
import jiwer
|
70 |
+
|
71 |
+
out = jiwer.process_words("short one here", "shoe order one")
|
72 |
+
print(out.alignments)
|
73 |
+
# [[[AlignmentChunk(type='insert', ref_start_idx=0, ref_end_idx=0, hyp_start_idx=0, hyp_end_idx=1), ...]]
|
74 |
+
```
|
75 |
+
|
76 |
+
To visualize the alignment, you can use `jiwer.visualize_alignment()`
|
77 |
+
|
78 |
+
For example:
|
79 |
+
|
80 |
+
```python3
|
81 |
+
import jiwer
|
82 |
+
|
83 |
+
out = jiwer.process_words(
|
84 |
+
["short one here", "quite a bit of longer sentence"],
|
85 |
+
["shoe order one", "quite bit of an even longest sentence here"],
|
86 |
+
)
|
87 |
+
|
88 |
+
print(jiwer.visualize_alignment(out))
|
89 |
+
```
|
90 |
+
Gives the following output
|
91 |
+
```text
|
92 |
+
sentence 1
|
93 |
+
REF: **** short one here
|
94 |
+
HYP: shoe order one ****
|
95 |
+
I S D
|
96 |
+
|
97 |
+
sentence 2
|
98 |
+
REF: quite a bit of ** **** longer sentence ****
|
99 |
+
HYP: quite * bit of an even longest sentence here
|
100 |
+
D I I S I
|
101 |
+
|
102 |
+
number of sentences: 2
|
103 |
+
substitutions=2 deletions=2 insertions=4 hits=5
|
104 |
+
|
105 |
+
mer=61.54%
|
106 |
+
wil=74.75%
|
107 |
+
wip=25.25%
|
108 |
+
wer=88.89%
|
109 |
+
```
|
110 |
+
|
111 |
+
Note that it also possible to visualize the character-level alignment, simply use the output of `jiwer.process_characters()` instead.
|
jiwer/jiwer/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .measures import *
|
2 |
+
from .transforms import *
|
3 |
+
from .transformations import *
|
4 |
+
from .alignment import *
|
5 |
+
from .process import *
|
6 |
+
|
7 |
+
name = "jiwer"
|
jiwer/jiwer/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (281 Bytes). View file
|
|
jiwer/jiwer/__pycache__/alignment.cpython-38.pyc
ADDED
Binary file (4.97 kB). View file
|
|
jiwer/jiwer/__pycache__/measures.cpython-38.pyc
ADDED
Binary file (11.2 kB). View file
|
|
jiwer/jiwer/__pycache__/process.cpython-38.pyc
ADDED
Binary file (12.2 kB). View file
|
|
jiwer/jiwer/__pycache__/transformations.cpython-38.pyc
ADDED
Binary file (1.19 kB). View file
|
|
jiwer/jiwer/__pycache__/transforms.cpython-38.pyc
ADDED
Binary file (21.8 kB). View file
|
|
jiwer/jiwer/alignment.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# JiWER - Jitsi Word Error Rate
|
3 |
+
#
|
4 |
+
# Copyright @ 2018 - present 8x8, Inc.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
#
|
18 |
+
|
19 |
+
"""
|
20 |
+
Utility method to visualize the alignment between one or more reference and hypothesis
|
21 |
+
pairs.
|
22 |
+
"""
|
23 |
+
|
24 |
+
from typing import Dict, List, Tuple, Union
|
25 |
+
|
26 |
+
|
27 |
+
from jiwer.process import CharacterOutput, WordOutput, AlignmentChunk
|
28 |
+
|
29 |
+
__all__ = ["visualize_alignment"]
|
30 |
+
|
31 |
+
|
32 |
+
def visualize_alignment(
|
33 |
+
output: Union[WordOutput, CharacterOutput],
|
34 |
+
show_measures: bool = True,
|
35 |
+
skip_correct: bool = True,
|
36 |
+
) -> str:
|
37 |
+
"""
|
38 |
+
Visualize the output of [jiwer.process_words][process.process_words] and
|
39 |
+
[jiwer.process_characters][process.process_characters]. The visualization
|
40 |
+
shows the alignment between each processed reference and hypothesis pair.
|
41 |
+
If `show_measures=True`, the output string will also contain all measures in the
|
42 |
+
output.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
output: The processed output of reference and hypothesis pair(s).
|
46 |
+
show_measures: If enabled, the visualization will include measures like the WER
|
47 |
+
or CER
|
48 |
+
skip_correct: If enabled, the visualization will exclude correct reference and hypothesis pairs
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
(str): The visualization as a string
|
52 |
+
|
53 |
+
Example:
|
54 |
+
This code snippet
|
55 |
+
```python
|
56 |
+
import jiwer
|
57 |
+
|
58 |
+
out = jiwer.process_words(
|
59 |
+
["short one here", "quite a bit of longer sentence"],
|
60 |
+
["shoe order one", "quite bit of an even longest sentence here"],
|
61 |
+
)
|
62 |
+
|
63 |
+
print(jiwer.visualize_alignment(out))
|
64 |
+
```
|
65 |
+
will produce this visualization:
|
66 |
+
```txt
|
67 |
+
sentence 1
|
68 |
+
REF: # short one here
|
69 |
+
HYP: shoe order one *
|
70 |
+
I S D
|
71 |
+
|
72 |
+
sentence 2
|
73 |
+
REF: quite a bit of # # longer sentence #
|
74 |
+
HYP: quite * bit of an even longest sentence here
|
75 |
+
D I I S I
|
76 |
+
|
77 |
+
number of sentences: 2
|
78 |
+
substitutions=2 deletions=2 insertions=4 hits=5
|
79 |
+
|
80 |
+
mer=61.54%
|
81 |
+
wil=74.75%
|
82 |
+
wip=25.25%
|
83 |
+
wer=88.89%
|
84 |
+
```
|
85 |
+
|
86 |
+
When `show_measures=False`, only the alignment will be printed:
|
87 |
+
|
88 |
+
```txt
|
89 |
+
sentence 1
|
90 |
+
REF: # short one here
|
91 |
+
HYP: shoe order one *
|
92 |
+
I S D
|
93 |
+
|
94 |
+
sentence 2
|
95 |
+
REF: quite a bit of # # longer sentence #
|
96 |
+
HYP: quite * bit of an even longest sentence here
|
97 |
+
D I I S I
|
98 |
+
```
|
99 |
+
"""
|
100 |
+
references = output.references
|
101 |
+
hypothesis = output.hypotheses
|
102 |
+
alignment = output.alignments
|
103 |
+
is_cer = isinstance(output, CharacterOutput)
|
104 |
+
|
105 |
+
final_str = ""
|
106 |
+
for idx, (gt, hp, chunks) in enumerate(zip(references, hypothesis, alignment)):
|
107 |
+
if skip_correct and len(chunks) == 1 and chunks[0].type == "equal":
|
108 |
+
continue
|
109 |
+
|
110 |
+
final_str += f"sentence {idx+1}\n"
|
111 |
+
final_str += _construct_comparison_string(
|
112 |
+
gt, hp, chunks, include_space_seperator=not is_cer
|
113 |
+
)
|
114 |
+
final_str += "\n"
|
115 |
+
|
116 |
+
if show_measures:
|
117 |
+
final_str += f"number of sentences: {len(alignment)}\n"
|
118 |
+
final_str += f"substitutions={output.substitutions} "
|
119 |
+
final_str += f"deletions={output.deletions} "
|
120 |
+
final_str += f"insertions={output.insertions} "
|
121 |
+
final_str += f"hits={output.hits}\n"
|
122 |
+
|
123 |
+
if is_cer:
|
124 |
+
final_str += f"\ncer={output.cer*100:.2f}%\n"
|
125 |
+
else:
|
126 |
+
final_str += f"\nmer={output.mer*100:.2f}%"
|
127 |
+
final_str += f"\nwil={output.wil*100:.2f}%"
|
128 |
+
final_str += f"\nwip={output.wip*100:.2f}%"
|
129 |
+
final_str += f"\nwer={output.wer*100:.2f}%\n"
|
130 |
+
else:
|
131 |
+
# remove last newline
|
132 |
+
final_str = final_str[:-1]
|
133 |
+
|
134 |
+
return final_str
|
135 |
+
|
136 |
+
|
137 |
+
def _construct_comparison_string(
|
138 |
+
reference: List[str],
|
139 |
+
hypothesis: List[str],
|
140 |
+
ops: List[AlignmentChunk],
|
141 |
+
include_space_seperator: bool = False,
|
142 |
+
) -> str:
|
143 |
+
ref_str = "REF: "
|
144 |
+
hyp_str = "HYP: "
|
145 |
+
op_str = " "
|
146 |
+
|
147 |
+
for op in ops:
|
148 |
+
if op.type == "equal" or op.type == "substitute":
|
149 |
+
ref = reference[op.ref_start_idx : op.ref_end_idx]
|
150 |
+
hyp = hypothesis[op.hyp_start_idx : op.hyp_end_idx]
|
151 |
+
op_char = " " if op.type == "equal" else "s"
|
152 |
+
elif op.type == "delete":
|
153 |
+
ref = reference[op.ref_start_idx : op.ref_end_idx]
|
154 |
+
hyp = ["*" for _ in range(len(ref))]
|
155 |
+
op_char = "d"
|
156 |
+
elif op.type == "insert":
|
157 |
+
hyp = hypothesis[op.hyp_start_idx : op.hyp_end_idx]
|
158 |
+
ref = ["*" for _ in range(len(hyp))]
|
159 |
+
op_char = "i"
|
160 |
+
else:
|
161 |
+
raise ValueError(f"unparseable op name={op.type}")
|
162 |
+
|
163 |
+
op_chars = [op_char for _ in range(len(ref))]
|
164 |
+
for rf, hp, c in zip(ref, hyp, op_chars):
|
165 |
+
str_len = max(len(rf), len(hp), len(c))
|
166 |
+
|
167 |
+
if rf == "*":
|
168 |
+
rf = "".join(["*"] * str_len)
|
169 |
+
elif hp == "*":
|
170 |
+
hp = "".join(["*"] * str_len)
|
171 |
+
|
172 |
+
ref_str += f"{rf:>{str_len}}"
|
173 |
+
hyp_str += f"{hp:>{str_len}}"
|
174 |
+
op_str += f"{c.upper():>{str_len}}"
|
175 |
+
|
176 |
+
if include_space_seperator:
|
177 |
+
ref_str += " "
|
178 |
+
hyp_str += " "
|
179 |
+
op_str += " "
|
180 |
+
|
181 |
+
if include_space_seperator:
|
182 |
+
# remove last space
|
183 |
+
return f"{ref_str[:-1]}\n{hyp_str[:-1]}\n{op_str[:-1]}\n"
|
184 |
+
else:
|
185 |
+
return f"{ref_str}\n{hyp_str}\n{op_str}\n"
|
jiwer/jiwer/cli.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# JiWER - Jitsi Word Error Rate
|
3 |
+
#
|
4 |
+
# Copyright @ 2018 - present 8x8, Inc.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
#
|
18 |
+
|
19 |
+
"""
|
20 |
+
Provide a simple CLI wrapper for JiWER. The CLI does not support custom transforms.
|
21 |
+
"""
|
22 |
+
|
23 |
+
import click
|
24 |
+
import pathlib
|
25 |
+
|
26 |
+
import jiwer
|
27 |
+
|
28 |
+
|
29 |
+
@click.command()
|
30 |
+
@click.option(
|
31 |
+
"-r",
|
32 |
+
"--reference",
|
33 |
+
"reference_file",
|
34 |
+
type=pathlib.Path,
|
35 |
+
required=True,
|
36 |
+
help="Path to new-line delimited text file of reference sentences.",
|
37 |
+
)
|
38 |
+
@click.option(
|
39 |
+
"-h",
|
40 |
+
"--hypothesis",
|
41 |
+
"hypothesis_file",
|
42 |
+
type=pathlib.Path,
|
43 |
+
required=True,
|
44 |
+
help="Path to new-line delimited text file of hypothesis sentences.",
|
45 |
+
)
|
46 |
+
@click.option(
|
47 |
+
"--cer",
|
48 |
+
"-c",
|
49 |
+
"compute_cer",
|
50 |
+
is_flag=True,
|
51 |
+
default=False,
|
52 |
+
help="Compute CER instead of WER.",
|
53 |
+
)
|
54 |
+
@click.option(
|
55 |
+
"--align",
|
56 |
+
"-a",
|
57 |
+
"show_alignment",
|
58 |
+
is_flag=True,
|
59 |
+
default=False,
|
60 |
+
help="Print alignment of each sentence.",
|
61 |
+
)
|
62 |
+
@click.option(
|
63 |
+
"--global",
|
64 |
+
"-g",
|
65 |
+
"global_alignment",
|
66 |
+
is_flag=True,
|
67 |
+
default=False,
|
68 |
+
help="Apply a global minimal alignment between reference and hypothesis sentences "
|
69 |
+
"before computing the WER.",
|
70 |
+
)
|
71 |
+
def cli(
|
72 |
+
reference_file: pathlib.Path,
|
73 |
+
hypothesis_file: pathlib.Path,
|
74 |
+
compute_cer: bool,
|
75 |
+
show_alignment: bool,
|
76 |
+
global_alignment: bool,
|
77 |
+
):
|
78 |
+
"""
|
79 |
+
JiWER is a python tool for computing the word-error-rate of ASR systems. To use
|
80 |
+
this CLI, store the reference and hypothesis sentences in a text file, where
|
81 |
+
each sentence is delimited by a new-line character.
|
82 |
+
The text files are expected to have an equal number of lines, unless the `-g` flag
|
83 |
+
is used. The `-g` flag joins computation of the WER by doing a global minimal
|
84 |
+
alignment.
|
85 |
+
|
86 |
+
"""
|
87 |
+
with reference_file.open("r") as f:
|
88 |
+
reference_sentences = [
|
89 |
+
ln.strip() for ln in f.readlines() if len(ln.strip()) > 1
|
90 |
+
]
|
91 |
+
|
92 |
+
with hypothesis_file.open("r") as f:
|
93 |
+
hypothesis_sentences = [
|
94 |
+
ln.strip() for ln in f.readlines() if len(ln.strip()) > 1
|
95 |
+
]
|
96 |
+
|
97 |
+
if not global_alignment and len(reference_sentences) != len(hypothesis_sentences):
|
98 |
+
raise ValueError(
|
99 |
+
f"Number of sentences does not match. "
|
100 |
+
f"{reference_file} contains {len(reference_sentences)} lines."
|
101 |
+
f"{hypothesis_file} contains {len(hypothesis_sentences)} lines."
|
102 |
+
)
|
103 |
+
|
104 |
+
if global_alignment and compute_cer:
|
105 |
+
raise ValueError("--global and --cer are mutually exclusive.")
|
106 |
+
|
107 |
+
if compute_cer:
|
108 |
+
out = jiwer.process_characters(
|
109 |
+
reference_sentences,
|
110 |
+
hypothesis_sentences,
|
111 |
+
)
|
112 |
+
else:
|
113 |
+
if global_alignment:
|
114 |
+
out = jiwer.process_words(
|
115 |
+
reference_sentences,
|
116 |
+
hypothesis_sentences,
|
117 |
+
reference_transform=jiwer.wer_contiguous,
|
118 |
+
hypothesis_transform=jiwer.wer_contiguous,
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
out = jiwer.process_words(reference_sentences, hypothesis_sentences)
|
122 |
+
|
123 |
+
if show_alignment:
|
124 |
+
print(jiwer.visualize_alignment(out, show_measures=True))
|
125 |
+
else:
|
126 |
+
if compute_cer:
|
127 |
+
print(out.cer)
|
128 |
+
else:
|
129 |
+
print(out.wer)
|
130 |
+
|
131 |
+
|
132 |
+
if __name__ == "__main__":
|
133 |
+
cli()
|
jiwer/jiwer/measures.py
ADDED
@@ -0,0 +1,488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# JiWER - Jitsi Word Error Rate
|
3 |
+
#
|
4 |
+
# Copyright @ 2018 - present 8x8, Inc.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
#
|
18 |
+
|
19 |
+
"""
|
20 |
+
Convenience methods for calculating a number of similarity error
|
21 |
+
measures between a reference and hypothesis sentence.
|
22 |
+
These measures are
|
23 |
+
commonly used to measure the performance for an automatic speech recognition
|
24 |
+
(ASR) system.
|
25 |
+
|
26 |
+
The following measures are implemented:
|
27 |
+
|
28 |
+
- Word Error Rate (WER), which is where this library got its name from. This
|
29 |
+
has long been (and arguably still is) the de facto standard for computing
|
30 |
+
ASR performance.
|
31 |
+
- Match Error Rate (MER)
|
32 |
+
- Word Information Lost (WIL)
|
33 |
+
- Word Information Preserved (WIP)
|
34 |
+
- Character Error Rate (CER)
|
35 |
+
|
36 |
+
Note that these functions merely call
|
37 |
+
[jiwer.process_words][process.process_words] and
|
38 |
+
[jiwer.process_characters][process.process_characters].
|
39 |
+
It is more efficient to call `process_words` or `process_characters` and access the
|
40 |
+
results from the
|
41 |
+
[jiwer.WordOutput][process.WordOutput] and
|
42 |
+
[jiwer.CharacterOutput][process.CharacterOutput]
|
43 |
+
classes.
|
44 |
+
"""
|
45 |
+
import warnings
|
46 |
+
|
47 |
+
from typing import List, Union, Dict, Any
|
48 |
+
|
49 |
+
from jiwer import transforms as tr
|
50 |
+
from jiwer.transformations import wer_default, cer_default
|
51 |
+
from jiwer.process import process_words, process_words_embdiff, process_characters
|
52 |
+
|
53 |
+
__all__ = [
|
54 |
+
"wer",
|
55 |
+
"wer_embdiff",
|
56 |
+
"mer",
|
57 |
+
"wil",
|
58 |
+
"wip",
|
59 |
+
"cer",
|
60 |
+
"compute_measures",
|
61 |
+
]
|
62 |
+
|
63 |
+
########################################################################################
|
64 |
+
# Implementation of the WER method and co, exposed publicly
|
65 |
+
|
66 |
+
|
67 |
+
def wer(
|
68 |
+
reference: Union[str, List[str]] = None,
|
69 |
+
hypothesis: Union[str, List[str]] = None,
|
70 |
+
reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
71 |
+
hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
72 |
+
truth: Union[str, List[str]] = None,
|
73 |
+
truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
|
74 |
+
) -> float:
|
75 |
+
"""
|
76 |
+
Calculate the word error rate (WER) between one or more reference and
|
77 |
+
hypothesis sentences.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
reference: The reference sentence(s)
|
81 |
+
hypothesis: The hypothesis sentence(s)
|
82 |
+
reference_transform: The transformation(s) to apply to the reference string(s)
|
83 |
+
hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
|
84 |
+
truth: Deprecated, renamed to `reference`
|
85 |
+
truth_transform: Deprecated, renamed to `reference_transform`
|
86 |
+
|
87 |
+
Deprecated:
|
88 |
+
Arguments `truth` and `truth_transform` have been renamed to respectively
|
89 |
+
`reference` and `reference_transform`. Therefore, the keyword arguments
|
90 |
+
`truth` and `truth_transform` will be removed in the next release.
|
91 |
+
At the same time, `reference` and `reference_transform` will lose their
|
92 |
+
default value.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
(float): The word error rate of the given reference and
|
96 |
+
hypothesis sentence(s).
|
97 |
+
"""
|
98 |
+
(
|
99 |
+
reference,
|
100 |
+
hypothesis,
|
101 |
+
reference_transform,
|
102 |
+
hypothesis_transform,
|
103 |
+
) = _deprecate_truth(
|
104 |
+
reference=reference,
|
105 |
+
hypothesis=hypothesis,
|
106 |
+
truth=truth,
|
107 |
+
reference_transform=reference_transform,
|
108 |
+
truth_transform=truth_transform,
|
109 |
+
hypothesis_transform=hypothesis_transform,
|
110 |
+
)
|
111 |
+
|
112 |
+
output = process_words(
|
113 |
+
reference, hypothesis, reference_transform, hypothesis_transform
|
114 |
+
)
|
115 |
+
return output.wer
|
116 |
+
|
117 |
+
def wer_embdiff(
|
118 |
+
reference: Union[str, List[str]] = None,
|
119 |
+
hypothesis: Union[str, List[str]] = None,
|
120 |
+
reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
121 |
+
hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
122 |
+
truth: Union[str, List[str]] = None,
|
123 |
+
truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
|
124 |
+
) -> float:
|
125 |
+
"""
|
126 |
+
Calculate the word error rate (WER) between one or more reference and
|
127 |
+
hypothesis sentences.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
reference: The reference sentence(s)
|
131 |
+
hypothesis: The hypothesis sentence(s)
|
132 |
+
reference_transform: The transformation(s) to apply to the reference string(s)
|
133 |
+
hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
|
134 |
+
truth: Deprecated, renamed to `reference`
|
135 |
+
truth_transform: Deprecated, renamed to `reference_transform`
|
136 |
+
|
137 |
+
Deprecated:
|
138 |
+
Arguments `truth` and `truth_transform` have been renamed to respectively
|
139 |
+
`reference` and `reference_transform`. Therefore, the keyword arguments
|
140 |
+
`truth` and `truth_transform` will be removed in the next release.
|
141 |
+
At the same time, `reference` and `reference_transform` will lose their
|
142 |
+
default value.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
(float): The word error rate of the given reference and
|
146 |
+
hypothesis sentence(s).
|
147 |
+
"""
|
148 |
+
(
|
149 |
+
reference,
|
150 |
+
hypothesis,
|
151 |
+
reference_transform,
|
152 |
+
hypothesis_transform,
|
153 |
+
) = _deprecate_truth(
|
154 |
+
reference=reference,
|
155 |
+
hypothesis=hypothesis,
|
156 |
+
truth=truth,
|
157 |
+
reference_transform=reference_transform,
|
158 |
+
truth_transform=truth_transform,
|
159 |
+
hypothesis_transform=hypothesis_transform,
|
160 |
+
)
|
161 |
+
|
162 |
+
output, edit_ops = process_words_embdiff(
|
163 |
+
reference, hypothesis, reference_transform, hypothesis_transform
|
164 |
+
)
|
165 |
+
return output, edit_ops
|
166 |
+
|
167 |
+
|
168 |
+
def mer(
|
169 |
+
reference: Union[str, List[str]] = None,
|
170 |
+
hypothesis: Union[str, List[str]] = None,
|
171 |
+
reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
172 |
+
hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
173 |
+
truth: Union[str, List[str]] = None,
|
174 |
+
truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
|
175 |
+
) -> float:
|
176 |
+
"""
|
177 |
+
Calculate the match error rate (MER) between one or more reference and
|
178 |
+
hypothesis sentences.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
reference: The reference sentence(s)
|
182 |
+
hypothesis: The hypothesis sentence(s)
|
183 |
+
reference_transform: The transformation(s) to apply to the reference string(s)
|
184 |
+
hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
|
185 |
+
truth: Deprecated, renamed to `reference`
|
186 |
+
truth_transform: Deprecated, renamed to `reference_transform`
|
187 |
+
|
188 |
+
Deprecated:
|
189 |
+
Arguments `truth` and `truth_transform` have been renamed to respectively
|
190 |
+
`reference` and `reference_transform`. Therefore, the keyword arguments
|
191 |
+
`truth` and `truth_transform` will be removed in the next release.
|
192 |
+
At the same time, `reference` and `reference_transform` will lose their
|
193 |
+
default value.
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
(float): The match error rate of the given reference and
|
197 |
+
hypothesis sentence(s).
|
198 |
+
"""
|
199 |
+
(
|
200 |
+
reference,
|
201 |
+
hypothesis,
|
202 |
+
reference_transform,
|
203 |
+
hypothesis_transform,
|
204 |
+
) = _deprecate_truth(
|
205 |
+
reference=reference,
|
206 |
+
hypothesis=hypothesis,
|
207 |
+
truth=truth,
|
208 |
+
reference_transform=reference_transform,
|
209 |
+
truth_transform=truth_transform,
|
210 |
+
hypothesis_transform=hypothesis_transform,
|
211 |
+
)
|
212 |
+
|
213 |
+
output = process_words(
|
214 |
+
reference, hypothesis, reference_transform, hypothesis_transform
|
215 |
+
)
|
216 |
+
|
217 |
+
return output.mer
|
218 |
+
|
219 |
+
|
220 |
+
def wip(
|
221 |
+
reference: Union[str, List[str]] = None,
|
222 |
+
hypothesis: Union[str, List[str]] = None,
|
223 |
+
reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
224 |
+
hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
225 |
+
truth: Union[str, List[str]] = None,
|
226 |
+
truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
|
227 |
+
) -> float:
|
228 |
+
"""
|
229 |
+
Calculate the word information preserved (WIP) between one or more reference and
|
230 |
+
hypothesis sentences.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
reference: The reference sentence(s)
|
234 |
+
hypothesis: The hypothesis sentence(s)
|
235 |
+
reference_transform: The transformation(s) to apply to the reference string(s)
|
236 |
+
hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
|
237 |
+
truth: Deprecated, renamed to `reference`
|
238 |
+
truth_transform: Deprecated, renamed to `reference_transform`
|
239 |
+
|
240 |
+
Deprecated:
|
241 |
+
Arguments `truth` and `truth_transform` have been renamed to respectively
|
242 |
+
`reference` and `reference_transform`. Therefore, the keyword arguments
|
243 |
+
`truth` and `truth_transform` will be removed in the next release.
|
244 |
+
At the same time, `reference` and `reference_transform` will lose their
|
245 |
+
default value.
|
246 |
+
|
247 |
+
Returns:
|
248 |
+
(float): The word information preserved of the given reference and
|
249 |
+
hypothesis sentence(s).
|
250 |
+
"""
|
251 |
+
(
|
252 |
+
reference,
|
253 |
+
hypothesis,
|
254 |
+
reference_transform,
|
255 |
+
hypothesis_transform,
|
256 |
+
) = _deprecate_truth(
|
257 |
+
reference=reference,
|
258 |
+
hypothesis=hypothesis,
|
259 |
+
truth=truth,
|
260 |
+
reference_transform=reference_transform,
|
261 |
+
truth_transform=truth_transform,
|
262 |
+
hypothesis_transform=hypothesis_transform,
|
263 |
+
)
|
264 |
+
|
265 |
+
output = process_words(
|
266 |
+
reference, hypothesis, reference_transform, hypothesis_transform
|
267 |
+
)
|
268 |
+
|
269 |
+
return output.wip
|
270 |
+
|
271 |
+
|
272 |
+
def wil(
|
273 |
+
reference: Union[str, List[str]] = None,
|
274 |
+
hypothesis: Union[str, List[str]] = None,
|
275 |
+
reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
276 |
+
hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
277 |
+
truth: Union[str, List[str]] = None,
|
278 |
+
truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
|
279 |
+
) -> float:
|
280 |
+
"""
|
281 |
+
Calculate the word information lost (WIL) between one or more reference and
|
282 |
+
hypothesis sentences.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
reference: The reference sentence(s)
|
286 |
+
hypothesis: The hypothesis sentence(s)
|
287 |
+
reference_transform: The transformation(s) to apply to the reference string(s)
|
288 |
+
hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
|
289 |
+
truth: Deprecated, renamed to `reference`
|
290 |
+
truth_transform: Deprecated, renamed to `reference_transform`
|
291 |
+
|
292 |
+
Deprecated:
|
293 |
+
Arguments `truth` and `truth_transform` have been renamed to respectively
|
294 |
+
`reference` and `reference_transform`. Therefore, the keyword arguments
|
295 |
+
`truth` and `truth_transform` will be removed in the next release.
|
296 |
+
At the same time, `reference` and `reference_transform` will lose their
|
297 |
+
default value.
|
298 |
+
|
299 |
+
Returns:
|
300 |
+
(float): The word information lost of the given reference and
|
301 |
+
hypothesis sentence(s).
|
302 |
+
"""
|
303 |
+
(
|
304 |
+
reference,
|
305 |
+
hypothesis,
|
306 |
+
reference_transform,
|
307 |
+
hypothesis_transform,
|
308 |
+
) = _deprecate_truth(
|
309 |
+
reference=reference,
|
310 |
+
hypothesis=hypothesis,
|
311 |
+
truth=truth,
|
312 |
+
reference_transform=reference_transform,
|
313 |
+
truth_transform=truth_transform,
|
314 |
+
hypothesis_transform=hypothesis_transform,
|
315 |
+
)
|
316 |
+
|
317 |
+
output = process_words(
|
318 |
+
reference, hypothesis, reference_transform, hypothesis_transform
|
319 |
+
)
|
320 |
+
|
321 |
+
return output.wil
|
322 |
+
|
323 |
+
|
324 |
+
########################################################################################
|
325 |
+
# deprecated method 'compute_measures'
|
326 |
+
|
327 |
+
|
328 |
+
def compute_measures(
|
329 |
+
truth: Union[str, List[str]],
|
330 |
+
hypothesis: Union[str, List[str]],
|
331 |
+
truth_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
332 |
+
hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
333 |
+
) -> Dict[str, Any]:
|
334 |
+
"""
|
335 |
+
Efficiently computes all measures using only one function call.
|
336 |
+
|
337 |
+
Deprecated:
|
338 |
+
Deprecated method. Superseded by [jiwer.process_words][process.process_words].
|
339 |
+
This method will be removed on next release.
|
340 |
+
|
341 |
+
Args:
|
342 |
+
truth: The reference sentence(s)
|
343 |
+
hypothesis: The hypothesis sentence(s)
|
344 |
+
truth_transform: The transformation(s) to apply to the reference string(s)
|
345 |
+
hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
|
346 |
+
|
347 |
+
Returns:
|
348 |
+
(dict): A dictionary containing key-value pairs for all measures.
|
349 |
+
|
350 |
+
"""
|
351 |
+
warnings.warn(
|
352 |
+
DeprecationWarning(
|
353 |
+
"jiwer.compute_measures() is deprecated. Please use jiwer.process_words()."
|
354 |
+
)
|
355 |
+
)
|
356 |
+
|
357 |
+
output = process_words(
|
358 |
+
reference=truth,
|
359 |
+
hypothesis=hypothesis,
|
360 |
+
reference_transform=truth_transform,
|
361 |
+
hypothesis_transform=hypothesis_transform,
|
362 |
+
)
|
363 |
+
|
364 |
+
return {
|
365 |
+
"wer": output.wer,
|
366 |
+
"mer": output.mer,
|
367 |
+
"wil": output.wil,
|
368 |
+
"wip": output.wip,
|
369 |
+
"hits": output.hits,
|
370 |
+
"substitutions": output.substitutions,
|
371 |
+
"deletions": output.deletions,
|
372 |
+
"insertions": output.insertions,
|
373 |
+
"ops": output.alignments,
|
374 |
+
"truth": output.references,
|
375 |
+
"hypothesis": output.hypotheses,
|
376 |
+
}
|
377 |
+
|
378 |
+
|
379 |
+
########################################################################################
|
380 |
+
# Implementation of character-error-rate, exposed publicly
|
381 |
+
|
382 |
+
|
383 |
+
def cer(
|
384 |
+
reference: Union[str, List[str]] = None,
|
385 |
+
hypothesis: Union[str, List[str]] = None,
|
386 |
+
reference_transform: Union[tr.Compose, tr.AbstractTransform] = cer_default,
|
387 |
+
hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = cer_default,
|
388 |
+
return_dict: bool = False,
|
389 |
+
truth: Union[str, List[str]] = None,
|
390 |
+
truth_transform: Union[tr.Compose, tr.AbstractTransform] = None,
|
391 |
+
) -> Union[float, Dict[str, Any]]:
|
392 |
+
"""
|
393 |
+
Calculate the character error rate (CER) between one or more reference and
|
394 |
+
hypothesis sentences.
|
395 |
+
|
396 |
+
Args:
|
397 |
+
reference: The reference sentence(s)
|
398 |
+
hypothesis: The hypothesis sentence(s)
|
399 |
+
reference_transform: The transformation(s) to apply to the reference string(s)
|
400 |
+
hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
|
401 |
+
return_dict: Deprecated option to return the more results in a dict instead of
|
402 |
+
returning only the cer as a single float value
|
403 |
+
truth: Deprecated, renamed to `reference`
|
404 |
+
truth_transform: Deprecated, renamed to `reference_transform`
|
405 |
+
|
406 |
+
Deprecated:
|
407 |
+
Argument `return_dict` will be deprecated. Please use
|
408 |
+
[jiwer.process_characters][process.process_characters] instead.
|
409 |
+
|
410 |
+
Arguments `truth` and `truth_transform` have been renamed to respectively
|
411 |
+
`reference` and `reference_transform`. Therefore, the keyword arguments
|
412 |
+
`truth` and `truth_transform` will be removed in the next release.
|
413 |
+
At the same time, `reference` and `reference_transform` will lose their
|
414 |
+
default value.
|
415 |
+
|
416 |
+
Returns:
|
417 |
+
(float): The character error rate of the given reference and hypothesis
|
418 |
+
sentence(s).
|
419 |
+
"""
|
420 |
+
(
|
421 |
+
reference,
|
422 |
+
hypothesis,
|
423 |
+
reference_transform,
|
424 |
+
hypothesis_transform,
|
425 |
+
) = _deprecate_truth(
|
426 |
+
reference=reference,
|
427 |
+
hypothesis=hypothesis,
|
428 |
+
truth=truth,
|
429 |
+
reference_transform=reference_transform,
|
430 |
+
truth_transform=truth_transform,
|
431 |
+
hypothesis_transform=hypothesis_transform,
|
432 |
+
)
|
433 |
+
|
434 |
+
output = process_characters(
|
435 |
+
reference, hypothesis, reference_transform, hypothesis_transform
|
436 |
+
)
|
437 |
+
|
438 |
+
if return_dict:
|
439 |
+
warnings.warn(
|
440 |
+
DeprecationWarning(
|
441 |
+
"`return_dict` is deprecated, "
|
442 |
+
"please use jiwer.process_characters() instead."
|
443 |
+
)
|
444 |
+
)
|
445 |
+
return {
|
446 |
+
"cer": output.cer,
|
447 |
+
"hits": output.hits,
|
448 |
+
"substitutions": output.substitutions,
|
449 |
+
"deletions": output.deletions,
|
450 |
+
"insertions": output.insertions,
|
451 |
+
}
|
452 |
+
else:
|
453 |
+
return output.cer
|
454 |
+
|
455 |
+
|
456 |
+
def _deprecate_truth(
|
457 |
+
reference: Union[str, List[str]],
|
458 |
+
hypothesis: Union[str, List[str]],
|
459 |
+
truth: Union[str, List[str]],
|
460 |
+
reference_transform: Union[tr.Compose, tr.AbstractTransform],
|
461 |
+
hypothesis_transform: Union[tr.Compose, tr.AbstractTransform],
|
462 |
+
truth_transform: Union[tr.Compose, tr.AbstractTransform],
|
463 |
+
):
|
464 |
+
if truth is not None:
|
465 |
+
warnings.warn(
|
466 |
+
DeprecationWarning(
|
467 |
+
"keyword argument `truth` is deprecated, please use `reference`."
|
468 |
+
)
|
469 |
+
)
|
470 |
+
if reference is not None:
|
471 |
+
raise ValueError("cannot give `reference` and `truth`")
|
472 |
+
reference = truth
|
473 |
+
if truth_transform is not None:
|
474 |
+
warnings.warn(
|
475 |
+
DeprecationWarning(
|
476 |
+
"keyword argument `truth_transform` is deprecated, "
|
477 |
+
"please use `reference_transform`."
|
478 |
+
)
|
479 |
+
)
|
480 |
+
reference_transform = truth_transform
|
481 |
+
|
482 |
+
if reference is None or hypothesis is None:
|
483 |
+
raise ValueError(
|
484 |
+
"detected default values for reference or hypothesis arguments, "
|
485 |
+
"please provide actual string or list of strings"
|
486 |
+
)
|
487 |
+
|
488 |
+
return reference, hypothesis, reference_transform, hypothesis_transform
|
jiwer/jiwer/process.py
ADDED
@@ -0,0 +1,525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# JiWER - Jitsi Word Error Rate
|
3 |
+
#
|
4 |
+
# Copyright @ 2018 - present 8x8, Inc.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
#
|
18 |
+
|
19 |
+
"""
|
20 |
+
The core algorithm(s) for processing a one or more reference and hypothesis sentences
|
21 |
+
so that measures can be computed and an alignment can be visualized.
|
22 |
+
"""
|
23 |
+
|
24 |
+
from dataclasses import dataclass
|
25 |
+
|
26 |
+
from typing import Any, List, Union
|
27 |
+
from itertools import chain
|
28 |
+
|
29 |
+
import rapidfuzz
|
30 |
+
|
31 |
+
from rapidfuzz.distance import Opcodes
|
32 |
+
|
33 |
+
from jiwer import transforms as tr
|
34 |
+
from jiwer.transformations import wer_default, cer_default
|
35 |
+
|
36 |
+
|
37 |
+
__all__ = [
|
38 |
+
"AlignmentChunk",
|
39 |
+
"WordOutput",
|
40 |
+
"CharacterOutput",
|
41 |
+
"process_words",
|
42 |
+
"process_words_embdiff",
|
43 |
+
"process_characters",
|
44 |
+
]
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class AlignmentChunk:
|
49 |
+
"""
|
50 |
+
Define an alignment between two subsequence of the reference and hypothesis.
|
51 |
+
|
52 |
+
Attributes:
|
53 |
+
type: one of `equal`, `substitute`, `insert`, or `delete`
|
54 |
+
ref_start_idx: the start index of the reference subsequence
|
55 |
+
ref_end_idx: the end index of the reference subsequence
|
56 |
+
hyp_start_idx: the start index of the hypothesis subsequence
|
57 |
+
hyp_end_idx: the end index of the hypothesis subsequence
|
58 |
+
"""
|
59 |
+
|
60 |
+
type: str
|
61 |
+
|
62 |
+
ref_start_idx: int
|
63 |
+
ref_end_idx: int
|
64 |
+
|
65 |
+
hyp_start_idx: int
|
66 |
+
hyp_end_idx: int
|
67 |
+
|
68 |
+
def __post_init__(self):
|
69 |
+
if self.type not in ["replace", "insert", "delete", "equal", "substitute"]:
|
70 |
+
raise ValueError("")
|
71 |
+
|
72 |
+
# rapidfuzz uses replace instead of substitute... For consistency, we change it
|
73 |
+
if self.type == "replace":
|
74 |
+
self.type = "substitute"
|
75 |
+
|
76 |
+
if self.ref_start_idx > self.ref_end_idx:
|
77 |
+
raise ValueError(
|
78 |
+
f"ref_start_idx={self.ref_start_idx} "
|
79 |
+
f"is larger "
|
80 |
+
f"than ref_end_idx={self.ref_end_idx}"
|
81 |
+
)
|
82 |
+
if self.hyp_start_idx > self.hyp_end_idx:
|
83 |
+
raise ValueError(
|
84 |
+
f"hyp_start_idx={self.hyp_start_idx} "
|
85 |
+
f"is larger "
|
86 |
+
f"than hyp_end_idx={self.hyp_end_idx}"
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
@dataclass
|
91 |
+
class WordOutput:
|
92 |
+
"""
|
93 |
+
The output of calculating the word-level levenshtein distance between one or more
|
94 |
+
reference and hypothesis sentence(s).
|
95 |
+
|
96 |
+
Attributes:
|
97 |
+
references: The reference sentences
|
98 |
+
hypotheses: The hypothesis sentences
|
99 |
+
alignments: The alignment between reference and hypothesis sentences
|
100 |
+
wer: The word error rate
|
101 |
+
mer: The match error rate
|
102 |
+
wil: The word information lost measure
|
103 |
+
wip: The word information preserved measure
|
104 |
+
hits: The number of correct words between reference and hypothesis sentences
|
105 |
+
substitutions: The number of substitutions required to transform hypothesis
|
106 |
+
sentences to reference sentences
|
107 |
+
insertions: The number of insertions required to transform hypothesis
|
108 |
+
sentences to reference sentences
|
109 |
+
deletions: The number of deletions required to transform hypothesis
|
110 |
+
sentences to reference sentences
|
111 |
+
|
112 |
+
"""
|
113 |
+
|
114 |
+
# processed input data
|
115 |
+
references: List[List[str]]
|
116 |
+
hypotheses: List[List[str]]
|
117 |
+
|
118 |
+
# alignment
|
119 |
+
alignments: List[List[AlignmentChunk]]
|
120 |
+
|
121 |
+
# measures
|
122 |
+
wer: float
|
123 |
+
mer: float
|
124 |
+
wil: float
|
125 |
+
wip: float
|
126 |
+
|
127 |
+
# stats
|
128 |
+
hits: int
|
129 |
+
substitutions: int
|
130 |
+
insertions: int
|
131 |
+
deletions: int
|
132 |
+
|
133 |
+
|
134 |
+
def process_words(
|
135 |
+
reference: Union[str, List[str]],
|
136 |
+
hypothesis: Union[str, List[str]],
|
137 |
+
reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
138 |
+
hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
139 |
+
) -> WordOutput:
|
140 |
+
"""
|
141 |
+
Compute the word-level levenshtein distance and alignment between one or more
|
142 |
+
reference and hypothesis sentences. Based on the result, multiple measures
|
143 |
+
can be computed, such as the word error rate.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
reference: The reference sentence(s)
|
147 |
+
hypothesis: The hypothesis sentence(s)
|
148 |
+
reference_transform: The transformation(s) to apply to the reference string(s)
|
149 |
+
hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
(WordOutput): The processed reference and hypothesis sentences
|
153 |
+
"""
|
154 |
+
# validate input type
|
155 |
+
if isinstance(reference, str):
|
156 |
+
reference = [reference]
|
157 |
+
if isinstance(hypothesis, str):
|
158 |
+
hypothesis = [hypothesis]
|
159 |
+
if any(len(t) == 0 for t in reference):
|
160 |
+
raise ValueError("one or more references are empty strings")
|
161 |
+
|
162 |
+
# pre-process reference and hypothesis by applying transforms
|
163 |
+
ref_transformed = _apply_transform(
|
164 |
+
reference, reference_transform, is_reference=True
|
165 |
+
)
|
166 |
+
hyp_transformed = _apply_transform(
|
167 |
+
hypothesis, hypothesis_transform, is_reference=False
|
168 |
+
)
|
169 |
+
|
170 |
+
if len(ref_transformed) != len(hyp_transformed):
|
171 |
+
raise ValueError(
|
172 |
+
"After applying the transforms on the reference and hypothesis sentences, "
|
173 |
+
f"their lengths must match. "
|
174 |
+
f"Instead got {len(ref_transformed)} reference and "
|
175 |
+
f"{len(hyp_transformed)} hypothesis sentences."
|
176 |
+
)
|
177 |
+
|
178 |
+
# Change each word into a unique character in order to compute
|
179 |
+
# word-level levenshtein distance
|
180 |
+
ref_as_chars, hyp_as_chars = _word2char(ref_transformed, hyp_transformed)
|
181 |
+
|
182 |
+
# keep track of total hits, substitutions, deletions and insertions
|
183 |
+
# across all input sentences
|
184 |
+
num_hits, num_substitutions, num_deletions, num_insertions = 0, 0, 0, 0
|
185 |
+
|
186 |
+
# also keep track of the total number of words in the reference and hypothesis
|
187 |
+
num_rf_words, num_hp_words = 0, 0
|
188 |
+
|
189 |
+
# anf finally, keep track of the alignment between each reference and hypothesis
|
190 |
+
alignments = []
|
191 |
+
|
192 |
+
for reference_sentence, hypothesis_sentence in zip(ref_as_chars, hyp_as_chars):
|
193 |
+
# Get the required edit operations to transform reference into hypothesis
|
194 |
+
edit_ops = rapidfuzz.distance.Levenshtein.editops(
|
195 |
+
reference_sentence, hypothesis_sentence
|
196 |
+
)
|
197 |
+
|
198 |
+
# count the number of edits of each type
|
199 |
+
substitutions = sum(1 if op.tag == "replace" else 0 for op in edit_ops)
|
200 |
+
deletions = sum(1 if op.tag == "delete" else 0 for op in edit_ops)
|
201 |
+
insertions = sum(1 if op.tag == "insert" else 0 for op in edit_ops)
|
202 |
+
hits = len(reference_sentence) - (substitutions + deletions)
|
203 |
+
|
204 |
+
# update state
|
205 |
+
num_hits += hits
|
206 |
+
num_substitutions += substitutions
|
207 |
+
num_deletions += deletions
|
208 |
+
num_insertions += insertions
|
209 |
+
num_rf_words += len(reference_sentence)
|
210 |
+
num_hp_words += len(hypothesis_sentence)
|
211 |
+
alignments.append(
|
212 |
+
[
|
213 |
+
AlignmentChunk(
|
214 |
+
type=op.tag,
|
215 |
+
ref_start_idx=op.src_start,
|
216 |
+
ref_end_idx=op.src_end,
|
217 |
+
hyp_start_idx=op.dest_start,
|
218 |
+
hyp_end_idx=op.dest_end,
|
219 |
+
)
|
220 |
+
for op in Opcodes.from_editops(edit_ops)
|
221 |
+
]
|
222 |
+
)
|
223 |
+
|
224 |
+
# Compute all measures
|
225 |
+
S, D, I, H = num_substitutions, num_deletions, num_insertions, num_hits
|
226 |
+
|
227 |
+
wer = float(S + D + I) / float(H + S + D)
|
228 |
+
mer = float(S + D + I) / float(H + S + D + I)
|
229 |
+
wip = (
|
230 |
+
(float(H) / num_rf_words) * (float(H) / num_hp_words)
|
231 |
+
if num_hp_words >= 1
|
232 |
+
else 0
|
233 |
+
)
|
234 |
+
wil = 1 - wip
|
235 |
+
|
236 |
+
# return all output
|
237 |
+
return WordOutput(
|
238 |
+
references=ref_transformed,
|
239 |
+
hypotheses=hyp_transformed,
|
240 |
+
alignments=alignments,
|
241 |
+
wer=wer,
|
242 |
+
mer=mer,
|
243 |
+
wil=wil,
|
244 |
+
wip=wip,
|
245 |
+
hits=num_hits,
|
246 |
+
substitutions=num_substitutions,
|
247 |
+
insertions=num_insertions,
|
248 |
+
deletions=num_deletions,
|
249 |
+
)
|
250 |
+
|
251 |
+
def process_words_embdiff(
|
252 |
+
reference: Union[str, List[str]],
|
253 |
+
hypothesis: Union[str, List[str]],
|
254 |
+
reference_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
255 |
+
hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = wer_default,
|
256 |
+
) -> WordOutput:
|
257 |
+
"""
|
258 |
+
Compute the word-level levenshtein distance and alignment between one or more
|
259 |
+
reference and hypothesis sentences. Based on the result, multiple measures
|
260 |
+
can be computed, such as the word error rate.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
reference: The reference sentence(s)
|
264 |
+
hypothesis: The hypothesis sentence(s)
|
265 |
+
reference_transform: The transformation(s) to apply to the reference string(s)
|
266 |
+
hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
|
267 |
+
|
268 |
+
Returns:
|
269 |
+
(WordOutput): The processed reference and hypothesis sentences
|
270 |
+
"""
|
271 |
+
# validate input type
|
272 |
+
if isinstance(reference, str):
|
273 |
+
reference = [reference]
|
274 |
+
if isinstance(hypothesis, str):
|
275 |
+
hypothesis = [hypothesis]
|
276 |
+
if any(len(t) == 0 for t in reference):
|
277 |
+
raise ValueError("one or more references are empty strings")
|
278 |
+
|
279 |
+
# pre-process reference and hypothesis by applying transforms
|
280 |
+
ref_transformed = _apply_transform(
|
281 |
+
reference, reference_transform, is_reference=True
|
282 |
+
)
|
283 |
+
hyp_transformed = _apply_transform(
|
284 |
+
hypothesis, hypothesis_transform, is_reference=False
|
285 |
+
)
|
286 |
+
|
287 |
+
if len(ref_transformed) != len(hyp_transformed):
|
288 |
+
raise ValueError(
|
289 |
+
"After applying the transforms on the reference and hypothesis sentences, "
|
290 |
+
f"their lengths must match. "
|
291 |
+
f"Instead got {len(ref_transformed)} reference and "
|
292 |
+
f"{len(hyp_transformed)} hypothesis sentences."
|
293 |
+
)
|
294 |
+
|
295 |
+
# Change each word into a unique character in order to compute
|
296 |
+
# word-level levenshtein distance
|
297 |
+
ref_as_chars, hyp_as_chars = _word2char(ref_transformed, hyp_transformed)
|
298 |
+
|
299 |
+
# keep track of total hits, substitutions, deletions and insertions
|
300 |
+
# across all input sentences
|
301 |
+
num_hits, num_substitutions, num_deletions, num_insertions = 0, 0, 0, 0
|
302 |
+
|
303 |
+
# also keep track of the total number of words in the reference and hypothesis
|
304 |
+
num_rf_words, num_hp_words = 0, 0
|
305 |
+
|
306 |
+
# anf finally, keep track of the alignment between each reference and hypothesis
|
307 |
+
alignments = []
|
308 |
+
|
309 |
+
for reference_sentence, hypothesis_sentence in zip(ref_as_chars, hyp_as_chars):
|
310 |
+
# Get the required edit operations to transform reference into hypothesis
|
311 |
+
edit_ops = rapidfuzz.distance.Levenshtein.editops(
|
312 |
+
reference_sentence, hypothesis_sentence
|
313 |
+
)
|
314 |
+
|
315 |
+
# count the number of edits of each type
|
316 |
+
substitutions = sum(1 if op.tag == "replace" else 0 for op in edit_ops)
|
317 |
+
deletions = sum(1 if op.tag == "delete" else 0 for op in edit_ops)
|
318 |
+
insertions = sum(1 if op.tag == "insert" else 0 for op in edit_ops)
|
319 |
+
hits = len(reference_sentence) - (substitutions + deletions)
|
320 |
+
|
321 |
+
# update state
|
322 |
+
num_hits += hits
|
323 |
+
num_substitutions += substitutions
|
324 |
+
num_deletions += deletions
|
325 |
+
num_insertions += insertions
|
326 |
+
num_rf_words += len(reference_sentence)
|
327 |
+
num_hp_words += len(hypothesis_sentence)
|
328 |
+
alignments.append(
|
329 |
+
[
|
330 |
+
AlignmentChunk(
|
331 |
+
type=op.tag,
|
332 |
+
ref_start_idx=op.src_start,
|
333 |
+
ref_end_idx=op.src_end,
|
334 |
+
hyp_start_idx=op.dest_start,
|
335 |
+
hyp_end_idx=op.dest_end,
|
336 |
+
)
|
337 |
+
for op in Opcodes.from_editops(edit_ops)
|
338 |
+
]
|
339 |
+
)
|
340 |
+
|
341 |
+
# Compute all measures
|
342 |
+
S, D, I, H = num_substitutions, num_deletions, num_insertions, num_hits
|
343 |
+
|
344 |
+
wer = float(S + D + I) / float(H + S + D)
|
345 |
+
mer = float(S + D + I) / float(H + S + D + I)
|
346 |
+
wip = (
|
347 |
+
(float(H) / num_rf_words) * (float(H) / num_hp_words)
|
348 |
+
if num_hp_words >= 1
|
349 |
+
else 0
|
350 |
+
)
|
351 |
+
wil = 1 - wip
|
352 |
+
|
353 |
+
# return all output
|
354 |
+
return WordOutput(
|
355 |
+
references=ref_transformed,
|
356 |
+
hypotheses=hyp_transformed,
|
357 |
+
alignments=alignments,
|
358 |
+
wer=wer,
|
359 |
+
mer=mer,
|
360 |
+
wil=wil,
|
361 |
+
wip=wip,
|
362 |
+
hits=num_hits,
|
363 |
+
substitutions=num_substitutions,
|
364 |
+
insertions=num_insertions,
|
365 |
+
deletions=num_deletions,
|
366 |
+
), edit_ops
|
367 |
+
|
368 |
+
|
369 |
+
########################################################################################
|
370 |
+
# Implementation of character error rate
|
371 |
+
|
372 |
+
|
373 |
+
@dataclass
|
374 |
+
class CharacterOutput:
|
375 |
+
"""
|
376 |
+
The output of calculating the character-level levenshtein distance between one or
|
377 |
+
more reference and hypothesis sentence(s).
|
378 |
+
|
379 |
+
Attributes:
|
380 |
+
references: The reference sentences
|
381 |
+
hypotheses: The hypothesis sentences
|
382 |
+
alignments: The alignment between reference and hypothesis sentences
|
383 |
+
cer: The character error rate
|
384 |
+
hits: The number of correct characters between reference and hypothesis
|
385 |
+
sentences
|
386 |
+
substitutions: The number of substitutions required to transform hypothesis
|
387 |
+
sentences to reference sentences
|
388 |
+
insertions: The number of insertions required to transform hypothesis
|
389 |
+
sentences to reference sentences
|
390 |
+
deletions: The number of deletions required to transform hypothesis
|
391 |
+
sentences to reference sentences
|
392 |
+
"""
|
393 |
+
|
394 |
+
# processed input data
|
395 |
+
references: List[List[str]]
|
396 |
+
hypotheses: List[List[str]]
|
397 |
+
|
398 |
+
# alignment
|
399 |
+
alignments: List[List[AlignmentChunk]]
|
400 |
+
|
401 |
+
# measures
|
402 |
+
cer: float
|
403 |
+
|
404 |
+
# stats
|
405 |
+
hits: int
|
406 |
+
substitutions: int
|
407 |
+
insertions: int
|
408 |
+
deletions: int
|
409 |
+
|
410 |
+
|
411 |
+
def process_characters(
|
412 |
+
reference: Union[str, List[str]],
|
413 |
+
hypothesis: Union[str, List[str]],
|
414 |
+
reference_transform: Union[tr.Compose, tr.AbstractTransform] = cer_default,
|
415 |
+
hypothesis_transform: Union[tr.Compose, tr.AbstractTransform] = cer_default,
|
416 |
+
) -> CharacterOutput:
|
417 |
+
"""
|
418 |
+
Compute the character-level levenshtein distance and alignment between one or more
|
419 |
+
reference and hypothesis sentences. Based on the result, the character error rate
|
420 |
+
can be computed.
|
421 |
+
|
422 |
+
Note that the by default this method includes space (` `) as a
|
423 |
+
character over which the error rate is computed. If this is not desired, the
|
424 |
+
reference and hypothesis transform need to be modified.
|
425 |
+
|
426 |
+
Args:
|
427 |
+
reference: The reference sentence(s)
|
428 |
+
hypothesis: The hypothesis sentence(s)
|
429 |
+
reference_transform: The transformation(s) to apply to the reference string(s)
|
430 |
+
hypothesis_transform: The transformation(s) to apply to the hypothesis string(s)
|
431 |
+
|
432 |
+
Returns:
|
433 |
+
(CharacterOutput): The processed reference and hypothesis sentences.
|
434 |
+
|
435 |
+
"""
|
436 |
+
# make sure the transforms end with tr.ReduceToListOfListOfChars(),
|
437 |
+
|
438 |
+
# it's the same as word processing, just every word is of length 1
|
439 |
+
result = process_words(
|
440 |
+
reference, hypothesis, reference_transform, hypothesis_transform
|
441 |
+
)
|
442 |
+
|
443 |
+
return CharacterOutput(
|
444 |
+
references=result.references,
|
445 |
+
hypotheses=result.hypotheses,
|
446 |
+
alignments=result.alignments,
|
447 |
+
cer=result.wer,
|
448 |
+
hits=result.hits,
|
449 |
+
substitutions=result.substitutions,
|
450 |
+
insertions=result.insertions,
|
451 |
+
deletions=result.deletions,
|
452 |
+
)
|
453 |
+
|
454 |
+
|
455 |
+
################################################################################
|
456 |
+
# Implementation of helper methods
|
457 |
+
|
458 |
+
|
459 |
+
def _apply_transform(
|
460 |
+
sentence: Union[str, List[str]],
|
461 |
+
transform: Union[tr.Compose, tr.AbstractTransform],
|
462 |
+
is_reference: bool,
|
463 |
+
):
|
464 |
+
# Apply transforms. The transforms should collapse input to a
|
465 |
+
# list with lists of words
|
466 |
+
transformed_sentence = transform(sentence)
|
467 |
+
|
468 |
+
# Validate the output is a list containing lists of strings
|
469 |
+
if is_reference:
|
470 |
+
if not _is_list_of_list_of_strings(
|
471 |
+
transformed_sentence, require_non_empty_lists=True
|
472 |
+
):
|
473 |
+
raise ValueError(
|
474 |
+
"After applying the transformation, each reference should be a "
|
475 |
+
"non-empty list of strings, with each string being a single word."
|
476 |
+
)
|
477 |
+
else:
|
478 |
+
if not _is_list_of_list_of_strings(
|
479 |
+
transformed_sentence, require_non_empty_lists=False
|
480 |
+
):
|
481 |
+
raise ValueError(
|
482 |
+
"After applying the transformation, each hypothesis should be a "
|
483 |
+
"list of strings, with each string being a single word."
|
484 |
+
)
|
485 |
+
|
486 |
+
return transformed_sentence
|
487 |
+
|
488 |
+
|
489 |
+
def _is_list_of_list_of_strings(x: Any, require_non_empty_lists: bool):
|
490 |
+
if not isinstance(x, list):
|
491 |
+
return False
|
492 |
+
|
493 |
+
for e in x:
|
494 |
+
if not isinstance(e, list):
|
495 |
+
return False
|
496 |
+
|
497 |
+
if require_non_empty_lists and len(e) == 0:
|
498 |
+
return False
|
499 |
+
|
500 |
+
if not all([isinstance(s, str) for s in e]):
|
501 |
+
return False
|
502 |
+
|
503 |
+
return True
|
504 |
+
|
505 |
+
|
506 |
+
def _word2char(reference: List[List[str]], hypothesis: List[List[str]]):
|
507 |
+
# tokenize each word into an integer
|
508 |
+
vocabulary = set(chain(*reference, *hypothesis))
|
509 |
+
|
510 |
+
if "" in vocabulary:
|
511 |
+
raise ValueError(
|
512 |
+
"Empty strings cannot be a word. "
|
513 |
+
"Please ensure that the given transform removes empty strings."
|
514 |
+
)
|
515 |
+
|
516 |
+
word2char = dict(zip(vocabulary, range(len(vocabulary))))
|
517 |
+
|
518 |
+
reference_chars = [
|
519 |
+
"".join([chr(word2char[w]) for w in sentence]) for sentence in reference
|
520 |
+
]
|
521 |
+
hypothesis_chars = [
|
522 |
+
"".join([chr(word2char[w]) for w in sentence]) for sentence in hypothesis
|
523 |
+
]
|
524 |
+
|
525 |
+
return reference_chars, hypothesis_chars
|
jiwer/jiwer/transformations.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# JiWER - Jitsi Word Error Rate
|
3 |
+
#
|
4 |
+
# Copyright @ 2018 - present 8x8, Inc.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
|
18 |
+
"""
|
19 |
+
This file is intended to provide the default transformation which need
|
20 |
+
to be applied to input text in order to compute the WER (or similar measures).
|
21 |
+
|
22 |
+
It also implements some alternative transformations which might be
|
23 |
+
useful in specific use cases.
|
24 |
+
"""
|
25 |
+
|
26 |
+
import jiwer.transforms as tr
|
27 |
+
|
28 |
+
__all__ = [
|
29 |
+
"wer_default",
|
30 |
+
"wer_contiguous",
|
31 |
+
"wer_standardize",
|
32 |
+
"wer_standardize_contiguous",
|
33 |
+
"cer_default",
|
34 |
+
"cer_contiguous",
|
35 |
+
]
|
36 |
+
|
37 |
+
########################################################################################
|
38 |
+
# implement transformations for WER (and accompanying measures)
|
39 |
+
|
40 |
+
wer_default = tr.Compose(
|
41 |
+
[
|
42 |
+
tr.RemoveMultipleSpaces(),
|
43 |
+
tr.Strip(),
|
44 |
+
tr.ReduceToListOfListOfWords(),
|
45 |
+
]
|
46 |
+
)
|
47 |
+
"""
|
48 |
+
This is the default transformation when using `proces_words`. Each input string will
|
49 |
+
have its leading and tailing white space removed.
|
50 |
+
Thereafter multiple spaces between words are also removed.
|
51 |
+
Then each string is transformed into a list with lists of strings, where each string
|
52 |
+
is a single word.
|
53 |
+
"""
|
54 |
+
|
55 |
+
wer_contiguous = tr.Compose(
|
56 |
+
[
|
57 |
+
tr.RemoveMultipleSpaces(),
|
58 |
+
tr.Strip(),
|
59 |
+
tr.ReduceToSingleSentence(),
|
60 |
+
tr.ReduceToListOfListOfWords(),
|
61 |
+
]
|
62 |
+
)
|
63 |
+
"""
|
64 |
+
This is can be used instead of `wer_default` when the number of reference and hypothesis
|
65 |
+
sentences differ.
|
66 |
+
"""
|
67 |
+
|
68 |
+
wer_standardize = tr.Compose(
|
69 |
+
[
|
70 |
+
tr.ToLowerCase(),
|
71 |
+
tr.ExpandCommonEnglishContractions(),
|
72 |
+
tr.RemoveKaldiNonWords(),
|
73 |
+
tr.RemoveWhiteSpace(replace_by_space=True),
|
74 |
+
tr.RemoveMultipleSpaces(),
|
75 |
+
tr.Strip(),
|
76 |
+
tr.ReduceToListOfListOfWords(),
|
77 |
+
]
|
78 |
+
)
|
79 |
+
"""
|
80 |
+
This transform attempts to standardize the strings by setting all characters to lower
|
81 |
+
case, expanding common contractions, and removing non-words. Then the default operations
|
82 |
+
are applied.
|
83 |
+
"""
|
84 |
+
|
85 |
+
wer_standardize_contiguous = tr.Compose(
|
86 |
+
[
|
87 |
+
tr.ToLowerCase(),
|
88 |
+
tr.ExpandCommonEnglishContractions(),
|
89 |
+
tr.RemoveKaldiNonWords(),
|
90 |
+
tr.RemoveWhiteSpace(replace_by_space=True),
|
91 |
+
tr.RemoveMultipleSpaces(),
|
92 |
+
tr.Strip(),
|
93 |
+
tr.ReduceToSingleSentence(),
|
94 |
+
tr.ReduceToListOfListOfWords(),
|
95 |
+
]
|
96 |
+
)
|
97 |
+
"""
|
98 |
+
This is the same as `wer_standize`, but this version can be usd when the number of
|
99 |
+
reference and hypothesis sentences differ.
|
100 |
+
"""
|
101 |
+
|
102 |
+
########################################################################################
|
103 |
+
# implement transformations for CER
|
104 |
+
|
105 |
+
|
106 |
+
cer_default = tr.Compose(
|
107 |
+
[
|
108 |
+
tr.Strip(),
|
109 |
+
tr.ReduceToListOfListOfChars(),
|
110 |
+
]
|
111 |
+
)
|
112 |
+
"""
|
113 |
+
This is the default transformation when using `process_characters`. Each input string
|
114 |
+
will have its leading and tailing white space removed. Then each string is
|
115 |
+
transformed into a list with lists of strings, where each string is a single character.
|
116 |
+
"""
|
117 |
+
|
118 |
+
cer_contiguous = tr.Compose(
|
119 |
+
[
|
120 |
+
tr.Strip(),
|
121 |
+
tr.ReduceToSingleSentence(),
|
122 |
+
tr.ReduceToListOfListOfChars(),
|
123 |
+
]
|
124 |
+
)
|
125 |
+
"""
|
126 |
+
This can used instead of `cer_default` when the number of reference and hypothesis
|
127 |
+
sentences differ.
|
128 |
+
"""
|
jiwer/jiwer/transforms.py
ADDED
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# JiWER - Jitsi Word Error Rate
|
3 |
+
#
|
4 |
+
# Copyright @ 2018 - present 8x8, Inc.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
#
|
18 |
+
|
19 |
+
"""
|
20 |
+
This file implements the building blocks for transforming a collection
|
21 |
+
of input strings to the desired format in order to calculate the WER of CER.
|
22 |
+
|
23 |
+
In principle, for word error rate calculations, every string of a sentence needs to be
|
24 |
+
collapsed into a list of strings, where each string is a *single* word.
|
25 |
+
This is done with [transforms.ReduceToListOfListOfWords][].
|
26 |
+
A composition of multiple transformations must therefore *always* end with
|
27 |
+
[transforms.ReduceToListOfListOfWords][].
|
28 |
+
|
29 |
+
For the character error rate, every string of a sentence also needs to be collapsed into
|
30 |
+
a list of strings, but here each string is a *single* character.
|
31 |
+
This is done with [transforms.ReduceToListOfListOfChars][]. Similarly, a
|
32 |
+
composition of multiple transformations must therefore also always end with
|
33 |
+
[transforms.ReduceToListOfListOfChars][].
|
34 |
+
"""
|
35 |
+
|
36 |
+
import sys
|
37 |
+
import functools
|
38 |
+
import re
|
39 |
+
import string
|
40 |
+
import unicodedata
|
41 |
+
|
42 |
+
from typing import Union, List, Mapping
|
43 |
+
|
44 |
+
|
45 |
+
__all__ = [
|
46 |
+
"AbstractTransform",
|
47 |
+
"Compose",
|
48 |
+
"ExpandCommonEnglishContractions",
|
49 |
+
"RemoveEmptyStrings",
|
50 |
+
"ReduceToListOfListOfWords",
|
51 |
+
"ReduceToListOfListOfChars",
|
52 |
+
"ReduceToSingleSentence",
|
53 |
+
"RemoveKaldiNonWords",
|
54 |
+
"RemoveMultipleSpaces",
|
55 |
+
"RemovePunctuation",
|
56 |
+
"RemoveSpecificWords",
|
57 |
+
"RemoveWhiteSpace",
|
58 |
+
"Strip",
|
59 |
+
"SubstituteRegexes",
|
60 |
+
"SubstituteWords",
|
61 |
+
"ToLowerCase",
|
62 |
+
"ToUpperCase",
|
63 |
+
]
|
64 |
+
|
65 |
+
|
66 |
+
class AbstractTransform(object):
|
67 |
+
"""
|
68 |
+
The base class of a Transform.
|
69 |
+
"""
|
70 |
+
|
71 |
+
def __call__(self, sentences: Union[str, List[str]]):
|
72 |
+
"""
|
73 |
+
Transforms one or more strings.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
sentences: The strings to transform.
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
(Union[str, List[str]]): The transformed strings.
|
80 |
+
|
81 |
+
"""
|
82 |
+
if isinstance(sentences, str):
|
83 |
+
return self.process_string(sentences)
|
84 |
+
elif isinstance(sentences, list):
|
85 |
+
return self.process_list(sentences)
|
86 |
+
else:
|
87 |
+
raise ValueError(
|
88 |
+
"input {} was expected to be a string or list of strings".format(
|
89 |
+
sentences
|
90 |
+
)
|
91 |
+
)
|
92 |
+
|
93 |
+
def process_string(self, s: str):
|
94 |
+
raise NotImplementedError()
|
95 |
+
|
96 |
+
def process_list(self, inp: List[str]):
|
97 |
+
return [self.process_string(s) for s in inp]
|
98 |
+
|
99 |
+
|
100 |
+
class Compose(object):
|
101 |
+
"""
|
102 |
+
Chain multiple transformations back-to-back to create a pipeline combining multiple
|
103 |
+
transformations.
|
104 |
+
|
105 |
+
Note that each transformation needs to end with either `ReduceToListOfListOfWords`
|
106 |
+
or `ReduceToListOfListOfChars`, depending on whether word error rate,
|
107 |
+
or character error rate is desired.
|
108 |
+
|
109 |
+
Example:
|
110 |
+
```python3
|
111 |
+
import jiwer
|
112 |
+
|
113 |
+
jiwer.Compose([
|
114 |
+
jiwer.RemoveMultipleSpaces(),
|
115 |
+
jiwer.ReduceToListOfListOfWords()
|
116 |
+
])
|
117 |
+
```
|
118 |
+
"""
|
119 |
+
|
120 |
+
def __init__(self, transforms: List[AbstractTransform]):
|
121 |
+
"""
|
122 |
+
|
123 |
+
Args:
|
124 |
+
transforms: The list of transformations to chain.
|
125 |
+
"""
|
126 |
+
self.transforms = transforms
|
127 |
+
|
128 |
+
def __call__(self, text):
|
129 |
+
for tr in self.transforms:
|
130 |
+
text = tr(text)
|
131 |
+
|
132 |
+
return text
|
133 |
+
|
134 |
+
|
135 |
+
class BaseRemoveTransform(AbstractTransform):
|
136 |
+
def __init__(self, tokens_to_remove: List[str], replace_token=""):
|
137 |
+
self.tokens_to_remove = tokens_to_remove
|
138 |
+
self.replace_token = replace_token
|
139 |
+
|
140 |
+
def process_string(self, s: str):
|
141 |
+
for w in self.tokens_to_remove:
|
142 |
+
s = s.replace(w, self.replace_token)
|
143 |
+
|
144 |
+
return s
|
145 |
+
|
146 |
+
def process_list(self, inp: List[str]):
|
147 |
+
return [self.process_string(s) for s in inp]
|
148 |
+
|
149 |
+
|
150 |
+
class ReduceToListOfListOfWords(AbstractTransform):
|
151 |
+
"""
|
152 |
+
Transforms a single input sentence, or a list of input sentences, into
|
153 |
+
a list with lists of words, which is the expected format for calculating the
|
154 |
+
edit operations between two input sentences on a word-level.
|
155 |
+
|
156 |
+
A sentence is assumed to be a string, where words are delimited by a token
|
157 |
+
(such as ` `, space). Each string is expected to contain only a single sentence.
|
158 |
+
Empty strings (no output) are removed for the list.
|
159 |
+
|
160 |
+
Example:
|
161 |
+
```python
|
162 |
+
import jiwer
|
163 |
+
|
164 |
+
sentences = ["hi", "this is an example"]
|
165 |
+
|
166 |
+
print(jiwer.ReduceToListOfListOfWords()(sentences))
|
167 |
+
# prints: [['hi'], ['this', 'is', 'an, 'example']]
|
168 |
+
```
|
169 |
+
"""
|
170 |
+
|
171 |
+
def __init__(self, word_delimiter: str = " "):
|
172 |
+
"""
|
173 |
+
Args:
|
174 |
+
word_delimiter: the character which delimits words. Default is ` ` (space).
|
175 |
+
"""
|
176 |
+
self.word_delimiter = word_delimiter
|
177 |
+
|
178 |
+
def process_string(self, s: str):
|
179 |
+
return [[w for w in s.split(self.word_delimiter) if len(w) >= 1]]
|
180 |
+
|
181 |
+
def process_list(self, inp: List[str]):
|
182 |
+
sentence_collection = []
|
183 |
+
|
184 |
+
for sentence in inp:
|
185 |
+
list_of_words = self.process_string(sentence)[0]
|
186 |
+
|
187 |
+
sentence_collection.append(list_of_words)
|
188 |
+
|
189 |
+
if len(sentence_collection) == 0:
|
190 |
+
return [[]]
|
191 |
+
|
192 |
+
return sentence_collection
|
193 |
+
|
194 |
+
|
195 |
+
class ReduceToListOfListOfChars(AbstractTransform):
|
196 |
+
"""
|
197 |
+
Transforms a single input sentence, or a list of input sentences, into
|
198 |
+
a list with lists of characters, which is the expected format for calculating the
|
199 |
+
edit operations between two input sentences on a character-level.
|
200 |
+
|
201 |
+
A sentence is assumed to be a string. Each string is expected to contain only a
|
202 |
+
single sentence.
|
203 |
+
|
204 |
+
Example:
|
205 |
+
```python
|
206 |
+
import jiwer
|
207 |
+
|
208 |
+
sentences = ["hi", "this is an example"]
|
209 |
+
|
210 |
+
print(jiwer.ReduceToListOfListOfChars()(sentences))
|
211 |
+
# prints: [['h', 'i'], ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', 'n', ' ', 'e', 'x', 'a', 'm', 'p', 'l', 'e']]
|
212 |
+
```
|
213 |
+
"""
|
214 |
+
|
215 |
+
def process_string(self, s: str):
|
216 |
+
return [[w for w in s]]
|
217 |
+
|
218 |
+
def process_list(self, inp: List[str]):
|
219 |
+
sentence_collection = []
|
220 |
+
|
221 |
+
for sentence in inp:
|
222 |
+
list_of_words = self.process_string(sentence)[0]
|
223 |
+
|
224 |
+
sentence_collection.append(list_of_words)
|
225 |
+
|
226 |
+
if len(sentence_collection) == 0:
|
227 |
+
return [[]]
|
228 |
+
|
229 |
+
return sentence_collection
|
230 |
+
|
231 |
+
|
232 |
+
class ReduceToSingleSentence(AbstractTransform):
|
233 |
+
"""
|
234 |
+
Transforms multiple sentences into a single sentence.
|
235 |
+
This operation can be useful when the number of reference and hypothesis sentences
|
236 |
+
differ, and you want to do a minimal alignment over these lists.
|
237 |
+
Note that this creates an invariance: `wer([a, b], [a, b])` might not be equal to
|
238 |
+
`wer([b, a], [b, a])`.
|
239 |
+
|
240 |
+
Example:
|
241 |
+
```python3
|
242 |
+
import jiwer
|
243 |
+
|
244 |
+
sentences = ["hi", "this is an example"]
|
245 |
+
|
246 |
+
print(jiwer.ReduceToSingleSentence()(sentences))
|
247 |
+
# prints: ['hi this is an example']
|
248 |
+
```
|
249 |
+
"""
|
250 |
+
|
251 |
+
def __init__(self, word_delimiter: str = " "):
|
252 |
+
"""
|
253 |
+
:param word_delimiter: the character which delimits words. Default is ` ` (space).
|
254 |
+
"""
|
255 |
+
self.word_delimiter = word_delimiter
|
256 |
+
|
257 |
+
def process_string(self, s: str):
|
258 |
+
return s
|
259 |
+
|
260 |
+
def process_list(self, inp: List[str]):
|
261 |
+
filtered_inp = [i for i in inp if len(i) >= 1]
|
262 |
+
|
263 |
+
if len(filtered_inp) == 0:
|
264 |
+
return []
|
265 |
+
else:
|
266 |
+
return ["{}".format(self.word_delimiter).join(filtered_inp)]
|
267 |
+
|
268 |
+
|
269 |
+
class SubstituteRegexes(AbstractTransform):
|
270 |
+
"""
|
271 |
+
Transform strings by substituting substrings matching regex expressions into
|
272 |
+
another substring.
|
273 |
+
|
274 |
+
Example:
|
275 |
+
```python
|
276 |
+
import jiwer
|
277 |
+
|
278 |
+
sentences = ["is the world doomed or loved?", "edibles are allegedly cultivated"]
|
279 |
+
|
280 |
+
# note: the regex string "\b(\w+)ed\b", matches every word ending in 'ed',
|
281 |
+
# and "\1" stands for the first group ('\w+). It therefore removes 'ed' in every match.
|
282 |
+
print(jiwer.SubstituteRegexes({r"doom": r"sacr", r"\b(\w+)ed\b": r"\1"})(sentences))
|
283 |
+
|
284 |
+
# prints: ["is the world sacr or lov?", "edibles are allegedly cultivat"]
|
285 |
+
```
|
286 |
+
"""
|
287 |
+
|
288 |
+
def __init__(self, substitutions: Mapping[str, str]):
|
289 |
+
"""
|
290 |
+
|
291 |
+
Args:
|
292 |
+
substitutions: a mapping of regex expressions to replacement strings.
|
293 |
+
"""
|
294 |
+
self.substitutions = substitutions
|
295 |
+
|
296 |
+
def process_string(self, s: str):
|
297 |
+
for key, value in self.substitutions.items():
|
298 |
+
s = re.sub(key, value, s)
|
299 |
+
|
300 |
+
return s
|
301 |
+
|
302 |
+
|
303 |
+
class SubstituteWords(AbstractTransform):
|
304 |
+
"""
|
305 |
+
This transform can be used to replace a word into another word.
|
306 |
+
Note that the whole word is matched. If the word you're attempting to substitute
|
307 |
+
is a substring of another word it will not be affected.
|
308 |
+
For example, if you're substituting `foo` into `bar`, the word `foobar` will NOT
|
309 |
+
be substituted into `barbar`.
|
310 |
+
|
311 |
+
Example:
|
312 |
+
```python
|
313 |
+
import jiwer
|
314 |
+
|
315 |
+
sentences = ["you're pretty", "your book", "foobar"]
|
316 |
+
|
317 |
+
print(jiwer.SubstituteWords({"pretty": "awesome", "you": "i", "'re": " am", 'foo': 'bar'})(sentences))
|
318 |
+
|
319 |
+
# prints: ["i am awesome", "your book", "foobar"]
|
320 |
+
```
|
321 |
+
|
322 |
+
"""
|
323 |
+
|
324 |
+
def __init__(self, substitutions: Mapping[str, str]):
|
325 |
+
"""
|
326 |
+
Args:
|
327 |
+
substitutions: A mapping of words to replacement words.
|
328 |
+
"""
|
329 |
+
self.substitutions = substitutions
|
330 |
+
|
331 |
+
def process_string(self, s: str):
|
332 |
+
for key, value in self.substitutions.items():
|
333 |
+
s = re.sub(r"\b{}\b".format(re.escape(key)), value, s)
|
334 |
+
|
335 |
+
return s
|
336 |
+
|
337 |
+
|
338 |
+
class RemoveSpecificWords(SubstituteWords):
|
339 |
+
"""
|
340 |
+
Can be used to filter out certain words.
|
341 |
+
As words are replaced with a ` ` character, make sure to that
|
342 |
+
`RemoveMultipleSpaces`, `Strip()` and `RemoveEmptyStrings` are present
|
343 |
+
in the composition _after_ `RemoveSpecificWords`.
|
344 |
+
|
345 |
+
Example:
|
346 |
+
```python
|
347 |
+
import jiwer
|
348 |
+
|
349 |
+
sentences = ["yhe awesome", "the apple is not a pear", "yhe"]
|
350 |
+
|
351 |
+
print(jiwer.RemoveSpecificWords(["yhe", "the", "a"])(sentences))
|
352 |
+
# prints: [' awesome', ' apple is not pear', ' ']
|
353 |
+
# note the extra spaces
|
354 |
+
```
|
355 |
+
"""
|
356 |
+
|
357 |
+
def __init__(self, words_to_remove: List[str]):
|
358 |
+
"""
|
359 |
+
Args:
|
360 |
+
words_to_remove: List of words to remove.
|
361 |
+
"""
|
362 |
+
mapping = {word: " " for word in words_to_remove}
|
363 |
+
|
364 |
+
super().__init__(mapping)
|
365 |
+
|
366 |
+
|
367 |
+
class RemoveWhiteSpace(BaseRemoveTransform):
|
368 |
+
"""
|
369 |
+
This transform filters out white space characters.
|
370 |
+
Note that by default space (` `) is also removed, which will make it impossible to
|
371 |
+
split a sentence into a list of words by using `ReduceToListOfListOfWords` or
|
372 |
+
`ReduceToSingleSentence`.
|
373 |
+
This can be prevented by replacing all whitespace with the space character.
|
374 |
+
If so, make sure that `jiwer.RemoveMultipleSpaces`,
|
375 |
+
`Strip()` and `RemoveEmptyStrings` are present in the composition _after_
|
376 |
+
`RemoveWhiteSpace`.
|
377 |
+
|
378 |
+
Example:
|
379 |
+
```python
|
380 |
+
import jiwer
|
381 |
+
|
382 |
+
sentences = ["this is an example", "hello world\t"]
|
383 |
+
|
384 |
+
print(jiwer.RemoveWhiteSpace()(sentences))
|
385 |
+
# prints: ["thisisanexample", "helloworld"]
|
386 |
+
|
387 |
+
print(jiwer.RemoveWhiteSpace(replace_by_space=True)(sentences))
|
388 |
+
# prints: ["this is an example", "hello world "]
|
389 |
+
# note the trailing spaces
|
390 |
+
```
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(self, replace_by_space: bool = False):
|
394 |
+
"""
|
395 |
+
|
396 |
+
Args:
|
397 |
+
replace_by_space: every white space character is replaced with a space (` `)
|
398 |
+
"""
|
399 |
+
characters = [c for c in string.whitespace]
|
400 |
+
|
401 |
+
if replace_by_space:
|
402 |
+
replace_token = " "
|
403 |
+
else:
|
404 |
+
replace_token = ""
|
405 |
+
|
406 |
+
super().__init__(characters, replace_token=replace_token)
|
407 |
+
|
408 |
+
|
409 |
+
@functools.lru_cache(1)
|
410 |
+
def _get_punctuation_characters():
|
411 |
+
"""Compute the punctuation characters only once and memoize."""
|
412 |
+
codepoints = range(sys.maxunicode + 1)
|
413 |
+
punctuation = set(
|
414 |
+
chr(i) for i in codepoints if unicodedata.category(chr(i)).startswith("P")
|
415 |
+
)
|
416 |
+
return punctuation
|
417 |
+
|
418 |
+
|
419 |
+
class RemovePunctuation(BaseRemoveTransform):
|
420 |
+
"""
|
421 |
+
This transform filters out punctuation. The punctuation characters are defined as
|
422 |
+
all unicode characters whose category name starts with `P`.
|
423 |
+
See [here](https://www.unicode.org/reports/tr44/#General_Category_Values) for more
|
424 |
+
information.
|
425 |
+
Example:
|
426 |
+
```python
|
427 |
+
import jiwer
|
428 |
+
|
429 |
+
sentences = ["this is an example!", "hello. goodbye"]
|
430 |
+
|
431 |
+
print(jiwer.RemovePunctuation()(sentences))
|
432 |
+
# prints: ['this is an example', "hello goodbye"]
|
433 |
+
```
|
434 |
+
"""
|
435 |
+
|
436 |
+
def __init__(self):
|
437 |
+
punctuation_characters = _get_punctuation_characters()
|
438 |
+
super().__init__(punctuation_characters)
|
439 |
+
|
440 |
+
|
441 |
+
class RemoveMultipleSpaces(AbstractTransform):
|
442 |
+
"""
|
443 |
+
Filter out multiple spaces between words.
|
444 |
+
|
445 |
+
Example:
|
446 |
+
```python
|
447 |
+
import jiwer
|
448 |
+
|
449 |
+
sentences = ["this is an example ", " hello goodbye ", " "]
|
450 |
+
|
451 |
+
print(jiwer.RemoveMultipleSpaces()(sentences))
|
452 |
+
# prints: ['this is an example ', " hello goodbye ", " "]
|
453 |
+
# note that there are still trailing spaces
|
454 |
+
```
|
455 |
+
|
456 |
+
"""
|
457 |
+
|
458 |
+
def process_string(self, s: str):
|
459 |
+
return re.sub(r"\s\s+", " ", s)
|
460 |
+
|
461 |
+
def process_list(self, inp: List[str]):
|
462 |
+
return [self.process_string(s) for s in inp]
|
463 |
+
|
464 |
+
|
465 |
+
class Strip(AbstractTransform):
|
466 |
+
"""
|
467 |
+
Removes all leading and trailing spaces.
|
468 |
+
|
469 |
+
Example:
|
470 |
+
```python
|
471 |
+
import jiwer
|
472 |
+
|
473 |
+
sentences = [" this is an example ", " hello goodbye ", " "]
|
474 |
+
|
475 |
+
print(jiwer.Strip()(sentences))
|
476 |
+
# prints: ['this is an example', "hello goodbye", ""]
|
477 |
+
# note that there is an empty string left behind which might need to be cleaned up
|
478 |
+
```
|
479 |
+
"""
|
480 |
+
|
481 |
+
def process_string(self, s: str):
|
482 |
+
return s.strip()
|
483 |
+
|
484 |
+
|
485 |
+
class RemoveEmptyStrings(AbstractTransform):
|
486 |
+
"""
|
487 |
+
Remove empty strings from a list of strings.
|
488 |
+
|
489 |
+
Example:
|
490 |
+
```python
|
491 |
+
import jiwer
|
492 |
+
|
493 |
+
sentences = ["", "this is an example", " ", " "]
|
494 |
+
|
495 |
+
print(jiwer.RemoveEmptyStrings()(sentences))
|
496 |
+
# prints: ['this is an example']
|
497 |
+
```
|
498 |
+
"""
|
499 |
+
|
500 |
+
def process_string(self, s: str):
|
501 |
+
return s.strip()
|
502 |
+
|
503 |
+
def process_list(self, inp: List[str]):
|
504 |
+
return [s for s in inp if self.process_string(s) != ""]
|
505 |
+
|
506 |
+
|
507 |
+
class ExpandCommonEnglishContractions(AbstractTransform):
|
508 |
+
"""
|
509 |
+
Replace common contractions such as `let's` to `let us`.
|
510 |
+
|
511 |
+
Currently, this method will perform the following replacements. Note that `␣` is
|
512 |
+
used to indicate a space (` `) to get around markdown rendering constrains.
|
513 |
+
|
514 |
+
| Contraction | transformed into |
|
515 |
+
| ------------- |:----------------:|
|
516 |
+
| `won't` | `␣will not` |
|
517 |
+
| `can't` | `␣can not` |
|
518 |
+
| `let's` | `␣let us` |
|
519 |
+
| `n't` | `␣not` |
|
520 |
+
| `'re` | `␣are` |
|
521 |
+
| `'s` | `␣is` |
|
522 |
+
| `'d` | `␣would` |
|
523 |
+
| `'ll` | `␣will` |
|
524 |
+
| `'t` | `␣not` |
|
525 |
+
| `'ve` | `␣have` |
|
526 |
+
| `'m` | `␣am` |
|
527 |
+
|
528 |
+
Example:
|
529 |
+
```python
|
530 |
+
import jiwer
|
531 |
+
|
532 |
+
sentences = ["she'll make sure you can't make it", "let's party!"]
|
533 |
+
|
534 |
+
print(jiwer.ExpandCommonEnglishContractions()(sentences))
|
535 |
+
# prints: ["she will make sure you can not make it", "let us party!"]
|
536 |
+
```
|
537 |
+
|
538 |
+
"""
|
539 |
+
|
540 |
+
def process_string(self, s: str):
|
541 |
+
# definitely a non exhaustive list
|
542 |
+
|
543 |
+
# specific words
|
544 |
+
s = re.sub(r"won't", "will not", s)
|
545 |
+
s = re.sub(r"can\'t", "can not", s)
|
546 |
+
s = re.sub(r"let\'s", "let us", s)
|
547 |
+
|
548 |
+
# general attachments
|
549 |
+
s = re.sub(r"n\'t", " not", s)
|
550 |
+
s = re.sub(r"\'re", " are", s)
|
551 |
+
s = re.sub(r"\'s", " is", s)
|
552 |
+
s = re.sub(r"\'d", " would", s)
|
553 |
+
s = re.sub(r"\'ll", " will", s)
|
554 |
+
s = re.sub(r"\'t", " not", s)
|
555 |
+
s = re.sub(r"\'ve", " have", s)
|
556 |
+
s = re.sub(r"\'m", " am", s)
|
557 |
+
|
558 |
+
return s
|
559 |
+
|
560 |
+
|
561 |
+
class ToLowerCase(AbstractTransform):
|
562 |
+
"""
|
563 |
+
Convert every character into lowercase.
|
564 |
+
Example:
|
565 |
+
```python
|
566 |
+
import jiwer
|
567 |
+
|
568 |
+
sentences = ["You're PRETTY"]
|
569 |
+
|
570 |
+
print(jiwer.ToLowerCase()(sentences))
|
571 |
+
|
572 |
+
# prints: ["you're pretty"]
|
573 |
+
```
|
574 |
+
"""
|
575 |
+
|
576 |
+
def process_string(self, s: str):
|
577 |
+
return s.lower()
|
578 |
+
|
579 |
+
|
580 |
+
class ToUpperCase(AbstractTransform):
|
581 |
+
"""
|
582 |
+
Convert every character to uppercase.
|
583 |
+
|
584 |
+
Example:
|
585 |
+
```python
|
586 |
+
import jiwer
|
587 |
+
|
588 |
+
sentences = ["You're amazing"]
|
589 |
+
|
590 |
+
print(jiwer.ToUpperCase()(sentences))
|
591 |
+
|
592 |
+
# prints: ["YOU'RE AMAZING"]
|
593 |
+
```
|
594 |
+
"""
|
595 |
+
|
596 |
+
def process_string(self, s: str):
|
597 |
+
return s.upper()
|
598 |
+
|
599 |
+
|
600 |
+
class RemoveKaldiNonWords(AbstractTransform):
|
601 |
+
"""
|
602 |
+
Remove any word between `[]` and `<>`. This can be useful when working
|
603 |
+
with hypotheses from the Kaldi project, which can output non-words such as
|
604 |
+
`[laugh]` and `<unk>`.
|
605 |
+
|
606 |
+
Example:
|
607 |
+
```python
|
608 |
+
import jiwer
|
609 |
+
|
610 |
+
sentences = ["you <unk> like [laugh]"]
|
611 |
+
|
612 |
+
print(jiwer.RemoveKaldiNonWords()(sentences))
|
613 |
+
|
614 |
+
# prints: ["you like "]
|
615 |
+
# note the extra spaces
|
616 |
+
```
|
617 |
+
"""
|
618 |
+
|
619 |
+
def process_string(self, s: str):
|
620 |
+
return re.sub(r"[<\[][^>\]]*[>\]]", "", s)
|
jiwer/mkdocs.yml
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
site_name: "jiwer"
|
2 |
+
site_description: "Documentation for jiwer."
|
3 |
+
site_url: "https://jitsi.github.io/jiwer/"
|
4 |
+
repo_url: "https://github.com/jitsi/jiwer"
|
5 |
+
edit_uri: "blob/master/docs/"
|
6 |
+
repo_name: "jitsi/jiwer"
|
7 |
+
site_dir: "site"
|
8 |
+
|
9 |
+
theme:
|
10 |
+
name: "material"
|
11 |
+
features:
|
12 |
+
- content.code.annotate
|
13 |
+
- navigation.tabs
|
14 |
+
- navigation.tabs.sticky
|
15 |
+
- navigation.top
|
16 |
+
|
17 |
+
plugins:
|
18 |
+
- mkdocstrings:
|
19 |
+
handlers:
|
20 |
+
python:
|
21 |
+
paths: [jiwer]
|
22 |
+
options:
|
23 |
+
separate_signature: true
|
24 |
+
show_root_heading: true
|
25 |
+
show_root_members_full_path: false
|
26 |
+
- search
|
27 |
+
- gen-files:
|
28 |
+
scripts:
|
29 |
+
- docs/gen_ref_pages.py
|
30 |
+
- literate-nav:
|
31 |
+
nav_file: SUMMARY.md
|
32 |
+
- autorefs
|
33 |
+
|
34 |
+
nav:
|
35 |
+
- jiwer: index.md
|
36 |
+
- Usage: usage.md
|
37 |
+
- Command-line interface: cli.md
|
38 |
+
- API reference: reference/
|
39 |
+
|
40 |
+
markdown_extensions:
|
41 |
+
- toc:
|
42 |
+
permalink: "#"
|
43 |
+
- pymdownx.superfences
|
44 |
+
|
45 |
+
watch:
|
46 |
+
- docs
|
47 |
+
- jiwer
|
jiwer/pyproject.toml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "jiwer"
|
3 |
+
version = "3.0.2"
|
4 |
+
description = "Evaluate your speech-to-text system with similarity measures such as word error rate (WER)"
|
5 |
+
authors = ["Nik Vaessen <[email protected]>"]
|
6 |
+
readme = "README.md"
|
7 |
+
license = "Apache-2.0"
|
8 |
+
repository = "https://github.com/jitsi/jiwer"
|
9 |
+
include = ["LICENCE"]
|
10 |
+
|
11 |
+
[tool.poetry.dependencies]
|
12 |
+
python = "^3.7"
|
13 |
+
rapidfuzz = "2.13.7"
|
14 |
+
click = "^8.1.3"
|
15 |
+
|
16 |
+
[tool.poetry.group.dev.dependencies]
|
17 |
+
black = "^22.8.0"
|
18 |
+
pytest = "7.1.3"
|
19 |
+
pytest-benchmark = "^3.4.1"
|
20 |
+
flake8 = "5.0.4"
|
21 |
+
|
22 |
+
[tool.poetry.scripts]
|
23 |
+
jiwer = "jiwer.cli:cli"
|
24 |
+
|
25 |
+
[build-system]
|
26 |
+
requires = ["poetry-core>=1.0.0"]
|
27 |
+
build-backend = "poetry.core.masonry.api"
|
jiwer/tests/__init__.py
ADDED
File without changes
|
jiwer/tests/test_alignment.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
import jiwer
|
3 |
+
|
4 |
+
|
5 |
+
class TestAlignmentVisualizationWords(unittest.TestCase):
|
6 |
+
def test_insertion(self):
|
7 |
+
correct_alignment = (
|
8 |
+
"sentence 1\n"
|
9 |
+
"REF: this is a ****\n"
|
10 |
+
"HYP: this is a test\n"
|
11 |
+
" I\n"
|
12 |
+
)
|
13 |
+
alignment = jiwer.visualize_alignment(
|
14 |
+
jiwer.process_words("this is a", "this is a test"), show_measures=False
|
15 |
+
)
|
16 |
+
self.assertEqual(alignment, correct_alignment)
|
17 |
+
|
18 |
+
pass
|
19 |
+
|
20 |
+
def test_deletion(self):
|
21 |
+
correct_alignment = (
|
22 |
+
"sentence 1\n"
|
23 |
+
"REF: this is a test\n"
|
24 |
+
"HYP: this is a ****\n"
|
25 |
+
" D\n"
|
26 |
+
)
|
27 |
+
alignment = jiwer.visualize_alignment(
|
28 |
+
jiwer.process_words("this is a test", "this is a"), show_measures=False
|
29 |
+
)
|
30 |
+
self.assertEqual(alignment, correct_alignment)
|
31 |
+
|
32 |
+
def test_substitution(self):
|
33 |
+
correct_alignment = (
|
34 |
+
"sentence 1\n"
|
35 |
+
"REF: this is a test\n"
|
36 |
+
"HYP: this was a test\n"
|
37 |
+
" S \n"
|
38 |
+
)
|
39 |
+
alignment = jiwer.visualize_alignment(
|
40 |
+
jiwer.process_words("this is a test", "this was a test"),
|
41 |
+
show_measures=False,
|
42 |
+
)
|
43 |
+
self.assertEqual(alignment, correct_alignment)
|
44 |
+
|
45 |
+
def test_all_three(self):
|
46 |
+
correct_alignment = (
|
47 |
+
"sentence 1\n"
|
48 |
+
"REF: this is a ***** test of skill\n"
|
49 |
+
"HYP: this was a messy test ** *****\n"
|
50 |
+
" S I D D\n"
|
51 |
+
)
|
52 |
+
alignment = jiwer.visualize_alignment(
|
53 |
+
jiwer.process_words("this is a test of skill", "this was a messy test"),
|
54 |
+
show_measures=False,
|
55 |
+
)
|
56 |
+
self.assertEqual(alignment, correct_alignment)
|
57 |
+
|
58 |
+
def test_show_measures(self):
|
59 |
+
correct_alignment = (
|
60 |
+
"sentence 1\n"
|
61 |
+
"REF: this test will have a high word error rate\n"
|
62 |
+
"HYP: no it will not * **** **** ***** ****\n"
|
63 |
+
" S S S D D D D D\n"
|
64 |
+
"\n"
|
65 |
+
"number of sentences: 1\n"
|
66 |
+
"substitutions=3 deletions=5 insertions=0 hits=1\n"
|
67 |
+
"\n"
|
68 |
+
"mer=88.89%\n"
|
69 |
+
"wil=97.22%\n"
|
70 |
+
"wip=2.78%\n"
|
71 |
+
"wer=88.89%\n"
|
72 |
+
)
|
73 |
+
alignment = jiwer.visualize_alignment(
|
74 |
+
jiwer.process_words(
|
75 |
+
"this test will have a high word error rate", "no it will not"
|
76 |
+
),
|
77 |
+
show_measures=True,
|
78 |
+
)
|
79 |
+
self.assertEqual(alignment, correct_alignment)
|
80 |
+
|
81 |
+
def test_empty_hypothesis(self):
|
82 |
+
correct_alignment = "sentence 1\n" "REF: empty\n" "HYP: *****\n" " D\n"
|
83 |
+
alignment = jiwer.visualize_alignment(
|
84 |
+
jiwer.process_words("empty", ""), show_measures=False
|
85 |
+
)
|
86 |
+
self.assertEqual(alignment, correct_alignment)
|
87 |
+
|
88 |
+
def test_multiple_sentences(self):
|
89 |
+
correct_alignment = (
|
90 |
+
"sentence 1\n"
|
91 |
+
"REF: one\n"
|
92 |
+
"HYP: 1\n"
|
93 |
+
" S\n"
|
94 |
+
"\n"
|
95 |
+
"sentence 2\n"
|
96 |
+
"REF: two\n"
|
97 |
+
"HYP: 2\n"
|
98 |
+
" S\n"
|
99 |
+
)
|
100 |
+
alignment = jiwer.visualize_alignment(
|
101 |
+
jiwer.process_words(["one", "two"], ["1", "2"]),
|
102 |
+
show_measures=False,
|
103 |
+
)
|
104 |
+
self.assertEqual(alignment, correct_alignment)
|
105 |
+
|
106 |
+
def test_skip_correct(self):
|
107 |
+
correct_alignment = (
|
108 |
+
"sentence 2\n"
|
109 |
+
"REF: one\n"
|
110 |
+
"HYP: 1\n"
|
111 |
+
" S\n"
|
112 |
+
"\n"
|
113 |
+
"sentence 3\n"
|
114 |
+
"REF: two\n"
|
115 |
+
"HYP: 2\n"
|
116 |
+
" S\n"
|
117 |
+
)
|
118 |
+
alignment = jiwer.visualize_alignment(
|
119 |
+
jiwer.process_words(
|
120 |
+
["perfect", "one", "two", "three"], ["perfect", "1", "2", "three"]
|
121 |
+
),
|
122 |
+
show_measures=False,
|
123 |
+
)
|
124 |
+
self.assertEqual(alignment, correct_alignment)
|
125 |
+
|
126 |
+
|
127 |
+
class TestAlignmentVisualizationCharacters(unittest.TestCase):
|
128 |
+
def test_insertion(self):
|
129 |
+
correct_alignment = (
|
130 |
+
"sentence 1\n"
|
131 |
+
"REF: this is a*****\n"
|
132 |
+
"HYP: this is a test\n"
|
133 |
+
" IIIII\n"
|
134 |
+
)
|
135 |
+
alignment = jiwer.visualize_alignment(
|
136 |
+
jiwer.process_characters("this is a", "this is a test"), show_measures=False
|
137 |
+
)
|
138 |
+
self.assertEqual(alignment, correct_alignment)
|
139 |
+
|
140 |
+
pass
|
141 |
+
|
142 |
+
def test_deletion(self):
|
143 |
+
correct_alignment = (
|
144 |
+
"sentence 1\n"
|
145 |
+
"REF: this is a test\n"
|
146 |
+
"HYP: this is a*****\n"
|
147 |
+
" DDDDD\n"
|
148 |
+
)
|
149 |
+
alignment = jiwer.visualize_alignment(
|
150 |
+
jiwer.process_characters("this is a test", "this is a"), show_measures=False
|
151 |
+
)
|
152 |
+
self.assertEqual(alignment, correct_alignment)
|
153 |
+
|
154 |
+
def test_substitution(self):
|
155 |
+
correct_alignment = (
|
156 |
+
"sentence 1\n"
|
157 |
+
"REF: this is a test\n"
|
158 |
+
"HYP: this iz a test\n"
|
159 |
+
" S \n"
|
160 |
+
)
|
161 |
+
alignment = jiwer.visualize_alignment(
|
162 |
+
jiwer.process_characters("this is a test", "this iz a test"),
|
163 |
+
show_measures=False,
|
164 |
+
)
|
165 |
+
self.assertEqual(alignment, correct_alignment)
|
166 |
+
|
167 |
+
def test_all_three(self):
|
168 |
+
correct_alignment = (
|
169 |
+
"sentence 1\n"
|
170 |
+
"REF: this *is a tes*t of skill\n"
|
171 |
+
"HYP: this was a messy te*st***\n"
|
172 |
+
" IS S IS SSD SDDD\n"
|
173 |
+
)
|
174 |
+
alignment = jiwer.visualize_alignment(
|
175 |
+
jiwer.process_characters(
|
176 |
+
"this is a test of skill", "this was a messy test"
|
177 |
+
),
|
178 |
+
show_measures=False,
|
179 |
+
)
|
180 |
+
self.assertEqual(alignment, correct_alignment)
|
181 |
+
|
182 |
+
def test_show_measures(self):
|
183 |
+
correct_alignment = (
|
184 |
+
"sentence 1\n"
|
185 |
+
"REF: this test will have a high word error rate\n"
|
186 |
+
"HYP: no** i**t will n*************o***********t*\n"
|
187 |
+
" SSDD SDD SDDDDDDDDDDDDD DDDDDDDDDDD D\n"
|
188 |
+
"\n"
|
189 |
+
"number of sentences: 1\n"
|
190 |
+
"substitutions=4 deletions=29 insertions=0 hits=10\n"
|
191 |
+
"\n"
|
192 |
+
"cer=76.74%\n"
|
193 |
+
)
|
194 |
+
alignment = jiwer.visualize_alignment(
|
195 |
+
jiwer.process_characters(
|
196 |
+
"this test will have a high word error rate", "no it will not"
|
197 |
+
),
|
198 |
+
show_measures=True,
|
199 |
+
)
|
200 |
+
self.assertEqual(alignment, correct_alignment)
|
201 |
+
|
202 |
+
def test_empty_hypothesis(self):
|
203 |
+
correct_alignment = "sentence 1\n" "REF: empty\n" "HYP: *****\n" " DDDDD\n"
|
204 |
+
alignment = jiwer.visualize_alignment(
|
205 |
+
jiwer.process_characters("empty", ""), show_measures=False
|
206 |
+
)
|
207 |
+
self.assertEqual(alignment, correct_alignment)
|
208 |
+
|
209 |
+
def test_multiple_sentences(self):
|
210 |
+
correct_alignment = (
|
211 |
+
"sentence 1\n"
|
212 |
+
"REF: one\n"
|
213 |
+
"HYP: 1**\n"
|
214 |
+
" SDD\n"
|
215 |
+
"\n"
|
216 |
+
"sentence 2\n"
|
217 |
+
"REF: two\n"
|
218 |
+
"HYP: 2**\n"
|
219 |
+
" SDD\n"
|
220 |
+
)
|
221 |
+
alignment = jiwer.visualize_alignment(
|
222 |
+
jiwer.process_characters(["one", "two"], ["1", "2"]),
|
223 |
+
show_measures=False,
|
224 |
+
)
|
225 |
+
self.assertEqual(alignment, correct_alignment)
|
jiwer/tests/test_cer.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
import jiwer
|
5 |
+
|
6 |
+
from .test_measures import assert_dict_almost_equal
|
7 |
+
|
8 |
+
|
9 |
+
class TestCERInputMethods(unittest.TestCase):
|
10 |
+
def test_input_ref_string_hyp_string(self):
|
11 |
+
cases = [
|
12 |
+
("This is a test", "This is a test", 0 / 14),
|
13 |
+
("This is a test", "", 14 / 14),
|
14 |
+
("This is a test", "This test", 5 / 14),
|
15 |
+
]
|
16 |
+
|
17 |
+
self._apply_test_on(cases)
|
18 |
+
|
19 |
+
def test_input_ref_string_hyp_list(self):
|
20 |
+
cases = [
|
21 |
+
("This is a test", ["This is a test"], 0 / 14),
|
22 |
+
("This is a test", [""], 14 / 14),
|
23 |
+
("This is a test", ["This test"], 5 / 14),
|
24 |
+
]
|
25 |
+
|
26 |
+
self._apply_test_on(cases)
|
27 |
+
|
28 |
+
def test_input_ref_list_hyp_string(self):
|
29 |
+
cases = [
|
30 |
+
(["This is a test"], "This is a test", 0 / 14),
|
31 |
+
(["This is a test"], "", 14 / 14),
|
32 |
+
(["This is a test"], "This test", 5 / 14),
|
33 |
+
]
|
34 |
+
|
35 |
+
self._apply_test_on(cases)
|
36 |
+
|
37 |
+
def test_input_ref_list_hyp_list(self):
|
38 |
+
cases = [
|
39 |
+
(["This is a test"], ["This is a test"], 0 / 14),
|
40 |
+
(["This is a test"], [""], 14 / 14),
|
41 |
+
(["This is a test"], ["This test"], 5 / 14),
|
42 |
+
]
|
43 |
+
|
44 |
+
self._apply_test_on(cases)
|
45 |
+
|
46 |
+
def test_fail_on_different_sentence_length(self):
|
47 |
+
def callback():
|
48 |
+
jiwer.cer(["hello", "this", "sentence", "is fractured"], ["this sentence"])
|
49 |
+
|
50 |
+
self.assertRaises(ValueError, callback)
|
51 |
+
|
52 |
+
def test_fail_on_empty_reference(self):
|
53 |
+
def callback():
|
54 |
+
jiwer.cer("", "test")
|
55 |
+
|
56 |
+
self.assertRaises(ValueError, callback)
|
57 |
+
|
58 |
+
def test_known_values(self):
|
59 |
+
# Taken from the "From WER and RIL to MER and WIL" paper, for link see README.md
|
60 |
+
cases = [
|
61 |
+
(
|
62 |
+
"X",
|
63 |
+
"X",
|
64 |
+
0,
|
65 |
+
),
|
66 |
+
(
|
67 |
+
"X",
|
68 |
+
"X X Y Y",
|
69 |
+
6,
|
70 |
+
),
|
71 |
+
(
|
72 |
+
"X Y X",
|
73 |
+
"X Z",
|
74 |
+
3 / 5,
|
75 |
+
),
|
76 |
+
(
|
77 |
+
"X",
|
78 |
+
"Y",
|
79 |
+
1,
|
80 |
+
),
|
81 |
+
(
|
82 |
+
"X",
|
83 |
+
"Y Z",
|
84 |
+
3,
|
85 |
+
),
|
86 |
+
]
|
87 |
+
|
88 |
+
self._apply_test_on(cases)
|
89 |
+
|
90 |
+
def test_permutations_invariance(self):
|
91 |
+
cases = [
|
92 |
+
(
|
93 |
+
["i", "am i good"],
|
94 |
+
["i am", "i good"],
|
95 |
+
0.6,
|
96 |
+
),
|
97 |
+
(
|
98 |
+
["am i good", "i"],
|
99 |
+
[
|
100 |
+
"i good",
|
101 |
+
"i am",
|
102 |
+
],
|
103 |
+
0.6,
|
104 |
+
),
|
105 |
+
]
|
106 |
+
|
107 |
+
self._apply_test_on(cases)
|
108 |
+
|
109 |
+
def test_return_dict(self):
|
110 |
+
# TODO: remove unit test once deprecated
|
111 |
+
with pytest.deprecated_call():
|
112 |
+
return_dict = jiwer.cer(
|
113 |
+
["i", "am i good"], ["i am", "y good"], return_dict=True
|
114 |
+
)
|
115 |
+
|
116 |
+
assert_dict_almost_equal(
|
117 |
+
self,
|
118 |
+
return_dict,
|
119 |
+
{
|
120 |
+
"cer": 0.7,
|
121 |
+
"hits": 6,
|
122 |
+
"substitutions": 1,
|
123 |
+
"deletions": 3,
|
124 |
+
"insertions": 3,
|
125 |
+
},
|
126 |
+
delta=1e-16,
|
127 |
+
)
|
128 |
+
|
129 |
+
def _apply_test_on(self, cases):
|
130 |
+
for ref, hyp, correct_cer in cases:
|
131 |
+
cer = jiwer.cer(reference=ref, hypothesis=hyp)
|
132 |
+
|
133 |
+
self.assertTrue(isinstance(cer, float))
|
134 |
+
if isinstance(cer, float):
|
135 |
+
self.assertAlmostEqual(cer, correct_cer, delta=1e-16)
|
jiwer/tests/test_measures.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
import jiwer
|
6 |
+
|
7 |
+
|
8 |
+
def all_m(wer, mer, wil):
|
9 |
+
return {
|
10 |
+
"wer": wer,
|
11 |
+
"mer": mer,
|
12 |
+
"wip": 1 - wil,
|
13 |
+
"wil": wil,
|
14 |
+
}
|
15 |
+
|
16 |
+
|
17 |
+
def to_measure_dict(x: jiwer.WordOutput):
|
18 |
+
return {"wer": x.wer, "mer": x.mer, "wip": x.wip, "wil": x.wil}
|
19 |
+
|
20 |
+
|
21 |
+
def assert_dict_almost_equal(
|
22 |
+
test_case: unittest.TestCase, a, b, places=None, msg=None, delta=None
|
23 |
+
):
|
24 |
+
test_case.assertIsInstance(a, dict)
|
25 |
+
test_case.assertIsInstance(b, dict)
|
26 |
+
test_case.assertEqual(set(a.keys()), set(b.keys()))
|
27 |
+
|
28 |
+
for k in a.keys():
|
29 |
+
test_case.assertAlmostEqual(a[k], b[k], places=places, msg=msg, delta=delta)
|
30 |
+
|
31 |
+
|
32 |
+
class TestMeasuresContiguousSentencesTransform(unittest.TestCase):
|
33 |
+
def test_input_ref_string_hyp_string(self):
|
34 |
+
cases = [
|
35 |
+
("This is a test", "This is a test", all_m(0, 0, 0)),
|
36 |
+
("This is a test", "", all_m(1, 1, 1)),
|
37 |
+
("This is a test", "This test", all_m(0.5, 0.5, 0.5)),
|
38 |
+
]
|
39 |
+
|
40 |
+
self._apply_test_on(cases)
|
41 |
+
|
42 |
+
def test_input_ref_string_hyp_list(self):
|
43 |
+
cases = [
|
44 |
+
("This is a test", ["This is a test"], all_m(0, 0, 0)),
|
45 |
+
("This is a test", [""], all_m(1, 1, 1)),
|
46 |
+
("This is a test", ["This test"], all_m(0.5, 0.5, 0.5)),
|
47 |
+
]
|
48 |
+
|
49 |
+
self._apply_test_on(cases)
|
50 |
+
|
51 |
+
def test_input_ref_list_hyp_string(self):
|
52 |
+
cases = [
|
53 |
+
(["This is a test"], "This is a test", all_m(0, 0, 0)),
|
54 |
+
(["This is a test"], "", all_m(1, 1, 1)),
|
55 |
+
(["This is a test"], "This test", all_m(0.5, 0.5, 0.5)),
|
56 |
+
]
|
57 |
+
|
58 |
+
self._apply_test_on(cases)
|
59 |
+
|
60 |
+
def test_input_ref_list_hyp_list(self):
|
61 |
+
cases = [
|
62 |
+
(["This is a test"], ["This is a test"], all_m(0, 0, 0)),
|
63 |
+
(["This is a test"], [""], all_m(1, 1, 1)),
|
64 |
+
(["This is a test"], ["This test"], all_m(0.5, 0.5, 0.5)),
|
65 |
+
]
|
66 |
+
|
67 |
+
self._apply_test_on(cases)
|
68 |
+
|
69 |
+
def test_different_sentence_length_equal_type(self):
|
70 |
+
cases = [
|
71 |
+
(
|
72 |
+
["hello", "this", "sentence", "is fractured"],
|
73 |
+
["this sentence"],
|
74 |
+
all_m(0.6, 0.6, 0.6),
|
75 |
+
),
|
76 |
+
(
|
77 |
+
"i am a short ground truth",
|
78 |
+
"i am a considerably longer and very much incorrect hypothesis",
|
79 |
+
all_m(7 / 6, 0.7, 0.85),
|
80 |
+
),
|
81 |
+
]
|
82 |
+
|
83 |
+
self._apply_test_on(cases)
|
84 |
+
|
85 |
+
def test_different_sentence_length_unequaL_type(self):
|
86 |
+
reference = [
|
87 |
+
"i like monthy python",
|
88 |
+
"what do you mean african or european swallow",
|
89 |
+
]
|
90 |
+
hypothesis = ["i like", "python", "what you mean", "or swallow"]
|
91 |
+
x = jiwer.process_words(
|
92 |
+
reference,
|
93 |
+
hypothesis,
|
94 |
+
reference_transform=jiwer.transformations.wer_contiguous,
|
95 |
+
hypothesis_transform=jiwer.transformations.wer_contiguous,
|
96 |
+
)
|
97 |
+
x_dict = to_measure_dict(x)
|
98 |
+
|
99 |
+
# is equivalent to
|
100 |
+
|
101 |
+
reference = "i like monthy python what do you mean african or european swallow"
|
102 |
+
hypothesis = "i like python what you mean or swallow"
|
103 |
+
y = jiwer.process_words(
|
104 |
+
reference,
|
105 |
+
hypothesis,
|
106 |
+
reference_transform=jiwer.transformations.wer_contiguous,
|
107 |
+
hypothesis_transform=jiwer.transformations.wer_contiguous,
|
108 |
+
)
|
109 |
+
y_dict = to_measure_dict(y)
|
110 |
+
|
111 |
+
assert_dict_almost_equal(self, x_dict, y_dict, delta=1e-9)
|
112 |
+
|
113 |
+
def test_fail_on_empty_reference(self):
|
114 |
+
for method in [
|
115 |
+
jiwer.wer,
|
116 |
+
jiwer.wil,
|
117 |
+
jiwer.wip,
|
118 |
+
jiwer.mer,
|
119 |
+
jiwer.compute_measures,
|
120 |
+
]:
|
121 |
+
|
122 |
+
def callback():
|
123 |
+
method("", "test")
|
124 |
+
|
125 |
+
self.assertRaises(ValueError, callback)
|
126 |
+
|
127 |
+
def test_known_values(self):
|
128 |
+
# Taken from the "From WER and RIL to MER and WIL" paper, for link see README.md
|
129 |
+
cases = [
|
130 |
+
(
|
131 |
+
"X",
|
132 |
+
"X",
|
133 |
+
all_m(0, 0, 0),
|
134 |
+
),
|
135 |
+
(
|
136 |
+
"X",
|
137 |
+
"X X Y Y",
|
138 |
+
all_m(3, 0.75, 0.75),
|
139 |
+
),
|
140 |
+
(
|
141 |
+
"X Y X",
|
142 |
+
"X Z",
|
143 |
+
all_m(2 / 3, 2 / 3, 5 / 6),
|
144 |
+
),
|
145 |
+
(
|
146 |
+
"X",
|
147 |
+
"Y",
|
148 |
+
all_m(1, 1, 1),
|
149 |
+
),
|
150 |
+
(
|
151 |
+
"X",
|
152 |
+
"Y Z",
|
153 |
+
all_m(2, 1, 1),
|
154 |
+
),
|
155 |
+
]
|
156 |
+
|
157 |
+
self._apply_test_on(cases)
|
158 |
+
|
159 |
+
def test_permutations_variance(self):
|
160 |
+
cases = [
|
161 |
+
(
|
162 |
+
["i", "am i good"],
|
163 |
+
["i am", "i good"],
|
164 |
+
all_m(0.0, 0.0, 0),
|
165 |
+
),
|
166 |
+
(
|
167 |
+
["am i good", "i"],
|
168 |
+
[
|
169 |
+
"i good",
|
170 |
+
"i am",
|
171 |
+
],
|
172 |
+
all_m(0.5, 0.4, 7 / 16),
|
173 |
+
),
|
174 |
+
]
|
175 |
+
|
176 |
+
self._apply_test_on(cases)
|
177 |
+
|
178 |
+
def _apply_test_on(self, cases):
|
179 |
+
for ref, hyp, correct_measures in cases:
|
180 |
+
output = jiwer.process_words(
|
181 |
+
reference=ref,
|
182 |
+
hypothesis=hyp,
|
183 |
+
reference_transform=jiwer.transformations.wer_contiguous,
|
184 |
+
hypothesis_transform=jiwer.transformations.wer_contiguous,
|
185 |
+
)
|
186 |
+
output_dict = to_measure_dict(output)
|
187 |
+
|
188 |
+
assert_dict_almost_equal(self, output_dict, correct_measures, delta=1e-16)
|
189 |
+
|
190 |
+
|
191 |
+
class TestMeasuresDefaultTransform(unittest.TestCase):
|
192 |
+
def test_input_gt_string_h_string(self):
|
193 |
+
cases = [
|
194 |
+
("This is a test", "This is a test", all_m(0, 0, 0)),
|
195 |
+
("This is a test", "", all_m(1, 1, 1)),
|
196 |
+
("This is a test", "This test", all_m(0.5, 0.5, 0.5)),
|
197 |
+
]
|
198 |
+
|
199 |
+
self._apply_test_on(cases)
|
200 |
+
|
201 |
+
def test_input_gt_string_h_list(self):
|
202 |
+
cases = [
|
203 |
+
("This is a test", ["This is a test"], all_m(0, 0, 0)),
|
204 |
+
("This is a test", [""], all_m(1, 1, 1)),
|
205 |
+
("This is a test", ["This test"], all_m(0.5, 0.5, 0.5)),
|
206 |
+
]
|
207 |
+
|
208 |
+
self._apply_test_on(cases)
|
209 |
+
|
210 |
+
def test_input_gt_list_h_string(self):
|
211 |
+
cases = [
|
212 |
+
(["This is a test"], "This is a test", all_m(0, 0, 0)),
|
213 |
+
(["This is a test"], "", all_m(1, 1, 1)),
|
214 |
+
(["This is a test"], "This test", all_m(0.5, 0.5, 0.5)),
|
215 |
+
]
|
216 |
+
|
217 |
+
self._apply_test_on(cases)
|
218 |
+
|
219 |
+
def test_input_gt_list_h_list(self):
|
220 |
+
cases = [
|
221 |
+
(["This is a test"], ["This is a test"], all_m(0, 0, 0)),
|
222 |
+
(["This is a test"], [""], all_m(1, 1, 1)),
|
223 |
+
(["This is a test"], ["This test"], all_m(0.5, 0.5, 0.5)),
|
224 |
+
]
|
225 |
+
|
226 |
+
self._apply_test_on(cases)
|
227 |
+
|
228 |
+
def test_fail_on_different_sentence_length(self):
|
229 |
+
for method in [
|
230 |
+
jiwer.process_words,
|
231 |
+
jiwer.wer,
|
232 |
+
jiwer.wil,
|
233 |
+
jiwer.wip,
|
234 |
+
jiwer.mer,
|
235 |
+
jiwer.compute_measures,
|
236 |
+
]:
|
237 |
+
|
238 |
+
def callback():
|
239 |
+
method(["hello", "this", "sentence", "is fractured"], ["this sentence"])
|
240 |
+
|
241 |
+
self.assertRaises(ValueError, callback)
|
242 |
+
|
243 |
+
def test_fail_on_empty_reference(self):
|
244 |
+
for method in [
|
245 |
+
jiwer.process_words,
|
246 |
+
jiwer.wer,
|
247 |
+
jiwer.wil,
|
248 |
+
jiwer.wip,
|
249 |
+
jiwer.mer,
|
250 |
+
jiwer.compute_measures,
|
251 |
+
]:
|
252 |
+
|
253 |
+
def callback():
|
254 |
+
method("", "test")
|
255 |
+
|
256 |
+
self.assertRaises(ValueError, callback)
|
257 |
+
|
258 |
+
def test_known_values(self):
|
259 |
+
# Taken from the "From WER and RIL to MER and WIL" paper, for link see README.md
|
260 |
+
cases = [
|
261 |
+
(
|
262 |
+
"X",
|
263 |
+
"X",
|
264 |
+
all_m(0, 0, 0),
|
265 |
+
),
|
266 |
+
(
|
267 |
+
"X",
|
268 |
+
"X X Y Y",
|
269 |
+
all_m(3, 0.75, 0.75),
|
270 |
+
),
|
271 |
+
(
|
272 |
+
"X Y X",
|
273 |
+
"X Z",
|
274 |
+
all_m(2 / 3, 2 / 3, 5 / 6),
|
275 |
+
),
|
276 |
+
(
|
277 |
+
"X",
|
278 |
+
"Y",
|
279 |
+
all_m(1, 1, 1),
|
280 |
+
),
|
281 |
+
(
|
282 |
+
"X",
|
283 |
+
"Y Z",
|
284 |
+
all_m(2, 1, 1),
|
285 |
+
),
|
286 |
+
]
|
287 |
+
|
288 |
+
self._apply_test_on(cases)
|
289 |
+
|
290 |
+
def test_permutations_invariance(self):
|
291 |
+
cases = [
|
292 |
+
(
|
293 |
+
["i", "am i good"],
|
294 |
+
["i am", "i good"],
|
295 |
+
all_m(0.5, 0.4, 7 / 16),
|
296 |
+
),
|
297 |
+
(
|
298 |
+
["am i good", "i"],
|
299 |
+
[
|
300 |
+
"i good",
|
301 |
+
"i am",
|
302 |
+
],
|
303 |
+
all_m(0.5, 0.4, 7 / 16),
|
304 |
+
),
|
305 |
+
]
|
306 |
+
|
307 |
+
self._apply_test_on(cases)
|
308 |
+
|
309 |
+
def _apply_test_on(self, cases):
|
310 |
+
for ref, hyp, correct_measures in cases:
|
311 |
+
output = jiwer.process_words(reference=ref, hypothesis=hyp)
|
312 |
+
output_dict = to_measure_dict(output)
|
313 |
+
|
314 |
+
assert_dict_almost_equal(self, output_dict, correct_measures, delta=1e-16)
|
315 |
+
|
316 |
+
with pytest.deprecated_call():
|
317 |
+
output = jiwer.compute_measures(truth=ref, hypothesis=hyp)
|
318 |
+
output_dict = {
|
319 |
+
"wer": output["wer"],
|
320 |
+
"mer": output["mer"],
|
321 |
+
"wil": output["wil"],
|
322 |
+
"wip": output["wip"],
|
323 |
+
}
|
324 |
+
assert_dict_almost_equal(
|
325 |
+
self, output_dict, correct_measures, delta=1e-16
|
326 |
+
)
|
327 |
+
|
328 |
+
self._apply_test_deprecated_truth(cases)
|
329 |
+
|
330 |
+
def _apply_test_deprecated_truth(self, cases):
|
331 |
+
with pytest.deprecated_call():
|
332 |
+
for ref, hyp, correct_measures in cases:
|
333 |
+
output_dict = {}
|
334 |
+
for key, method in [
|
335 |
+
("wer", jiwer.wer),
|
336 |
+
("mer", jiwer.mer),
|
337 |
+
("wil", jiwer.wil),
|
338 |
+
("wip", jiwer.wip),
|
339 |
+
]:
|
340 |
+
output = method(truth=ref, hypothesis=hyp)
|
341 |
+
output_dict[key] = output
|
342 |
+
|
343 |
+
assert_dict_almost_equal(
|
344 |
+
self, output_dict, correct_measures, delta=1e-16
|
345 |
+
)
|
346 |
+
|
347 |
+
def test_deprecated_truth_and_ref(self):
|
348 |
+
for key, method in [
|
349 |
+
("wer", jiwer.wer),
|
350 |
+
("mer", jiwer.mer),
|
351 |
+
("wil", jiwer.wil),
|
352 |
+
("wip", jiwer.wip),
|
353 |
+
("cer", jiwer.cer),
|
354 |
+
]:
|
355 |
+
with pytest.raises(ValueError):
|
356 |
+
method(truth="ref", reference="truth", hypothesis="huh")
|
357 |
+
method()
|
358 |
+
method(truth="only truth")
|
359 |
+
method(reference="only ref")
|
360 |
+
method(hypothesis="only hypothesis")
|
361 |
+
|
362 |
+
def test_deprecated_truth_and_ref_with_transform(self):
|
363 |
+
wer_transform = jiwer.Compose(
|
364 |
+
[
|
365 |
+
jiwer.ToLowerCase(),
|
366 |
+
jiwer.RemoveMultipleSpaces(),
|
367 |
+
jiwer.Strip(),
|
368 |
+
jiwer.ReduceToListOfListOfWords(),
|
369 |
+
]
|
370 |
+
)
|
371 |
+
cer_transform = jiwer.Compose(
|
372 |
+
[
|
373 |
+
jiwer.ToLowerCase(),
|
374 |
+
jiwer.RemoveMultipleSpaces(),
|
375 |
+
jiwer.Strip(),
|
376 |
+
jiwer.ReduceToListOfListOfChars(),
|
377 |
+
]
|
378 |
+
)
|
379 |
+
|
380 |
+
for key, method in [
|
381 |
+
("wer", jiwer.wer),
|
382 |
+
("mer", jiwer.mer),
|
383 |
+
("wil", jiwer.wil),
|
384 |
+
("wip", jiwer.wip),
|
385 |
+
("cer", jiwer.cer),
|
386 |
+
]:
|
387 |
+
if key == "cer":
|
388 |
+
tr = cer_transform
|
389 |
+
else:
|
390 |
+
tr = wer_transform
|
391 |
+
|
392 |
+
result = method(
|
393 |
+
truth="This is a short Sentence with a few Words with upper and Lower cases",
|
394 |
+
hypothesis="His is a short Sentence with a few Words with upper and Lower cases",
|
395 |
+
truth_transform=tr,
|
396 |
+
hypothesis_transform=tr,
|
397 |
+
)
|
398 |
+
result_same = method(
|
399 |
+
reference="This is a short Sentence with a few Words with upper and Lower cases",
|
400 |
+
hypothesis="His is a short Sentence with a few Words with upper and Lower cases",
|
401 |
+
reference_transform=tr,
|
402 |
+
hypothesis_transform=tr,
|
403 |
+
)
|
404 |
+
self.assertAlmostEqual(result, result_same)
|
405 |
+
|
406 |
+
|
407 |
+
def test_deprecate_compute_measures():
|
408 |
+
# TODO: remove once deprecated
|
409 |
+
with pytest.deprecated_call():
|
410 |
+
jiwer.compute_measures("no more", "compute_measures")
|
jiwer/tests/test_speed.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from jiwer import wer
|
2 |
+
|
3 |
+
|
4 |
+
def perform_computation(num_sentences):
|
5 |
+
truth = ["this is a speed test" for _ in range(0, num_sentences)]
|
6 |
+
hypo = ["this is not a speed test" for _ in range(0, num_sentences)]
|
7 |
+
|
8 |
+
wer(truth, hypo)
|
9 |
+
|
10 |
+
|
11 |
+
def test_speed_n1(benchmark):
|
12 |
+
benchmark(perform_computation, 1)
|
13 |
+
|
14 |
+
|
15 |
+
def test_speed_n10(benchmark):
|
16 |
+
benchmark(perform_computation, 10)
|
17 |
+
|
18 |
+
|
19 |
+
def test_speed_n100(benchmark):
|
20 |
+
benchmark(perform_computation, 100)
|
21 |
+
|
22 |
+
|
23 |
+
def test_speed_n1000(benchmark):
|
24 |
+
benchmark(perform_computation, 1000)
|
jiwer/tests/test_transforms.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
|
3 |
+
from jiwer.transforms import *
|
4 |
+
from jiwer.transforms import ReduceToListOfListOfChars
|
5 |
+
|
6 |
+
|
7 |
+
def _apply_test_on(self: unittest.TestCase, tr, cases):
|
8 |
+
for inp, outp in cases:
|
9 |
+
self.assertEqual(outp, tr(inp))
|
10 |
+
|
11 |
+
|
12 |
+
class TestReduceToSingleSentence(unittest.TestCase):
|
13 |
+
def test_normal(self):
|
14 |
+
cases = [
|
15 |
+
("this is a test", "this is a test"),
|
16 |
+
("", ""),
|
17 |
+
(["this is one", "is two"], ["this is one is two"]),
|
18 |
+
(["one", "two", "three", "", "five six"], ["one two three five six"]),
|
19 |
+
([""], []),
|
20 |
+
]
|
21 |
+
|
22 |
+
_apply_test_on(self, ReduceToSingleSentence(), cases)
|
23 |
+
|
24 |
+
def test_delimiter(self):
|
25 |
+
cases = [
|
26 |
+
("this_is_a_test", "this_is_a_test"),
|
27 |
+
("", ""),
|
28 |
+
(["this_is_one", "is_two"], ["this_is_one_is_two"]),
|
29 |
+
(["one", "two", "three", "", "five_six"], ["one_two_three_five_six"]),
|
30 |
+
([""], []),
|
31 |
+
]
|
32 |
+
|
33 |
+
_apply_test_on(self, ReduceToSingleSentence("_"), cases)
|
34 |
+
|
35 |
+
|
36 |
+
class TestReduceToListOfListOfWords(unittest.TestCase):
|
37 |
+
def test_normal(self):
|
38 |
+
cases = [
|
39 |
+
("this is a test", [["this", "is", "a", "test"]]),
|
40 |
+
("", [[]]),
|
41 |
+
(["this is one", "is two"], [["this", "is", "one"], ["is", "two"]]),
|
42 |
+
(
|
43 |
+
["one", "two", "three", "", "five six"],
|
44 |
+
[["one"], ["two"], ["three"], [], ["five", "six"]],
|
45 |
+
),
|
46 |
+
([], [[]]),
|
47 |
+
([""], [[]]),
|
48 |
+
(["", "", ""], [[], [], []]),
|
49 |
+
]
|
50 |
+
|
51 |
+
_apply_test_on(self, ReduceToListOfListOfWords(), cases)
|
52 |
+
|
53 |
+
def test_delimiter(self):
|
54 |
+
cases = [
|
55 |
+
("this_is_a_test", [["this", "is", "a", "test"]]),
|
56 |
+
("", [[]]),
|
57 |
+
(["this_is_one", "is_two"], [["this", "is", "one"], ["is", "two"]]),
|
58 |
+
(
|
59 |
+
["one", "two", "three", "", "five_six"],
|
60 |
+
[["one"], ["two"], ["three"], [], ["five", "six"]],
|
61 |
+
),
|
62 |
+
([], [[]]),
|
63 |
+
([""], [[]]),
|
64 |
+
(["", "", ""], [[], [], []]),
|
65 |
+
]
|
66 |
+
|
67 |
+
_apply_test_on(self, ReduceToListOfListOfWords("_"), cases)
|
68 |
+
|
69 |
+
|
70 |
+
class TestReduceToListOfListOfChars(unittest.TestCase):
|
71 |
+
def test_normal(self):
|
72 |
+
cases = [
|
73 |
+
(
|
74 |
+
"this is a test",
|
75 |
+
[
|
76 |
+
[
|
77 |
+
"t",
|
78 |
+
"h",
|
79 |
+
"i",
|
80 |
+
"s",
|
81 |
+
" ",
|
82 |
+
"i",
|
83 |
+
"s",
|
84 |
+
" ",
|
85 |
+
"a",
|
86 |
+
" ",
|
87 |
+
"t",
|
88 |
+
"e",
|
89 |
+
"s",
|
90 |
+
"t",
|
91 |
+
]
|
92 |
+
],
|
93 |
+
),
|
94 |
+
("", [[]]),
|
95 |
+
(
|
96 |
+
["this is one", "is two"],
|
97 |
+
[
|
98 |
+
["t", "h", "i", "s", " ", "i", "s", " ", "o", "n", "e"],
|
99 |
+
["i", "s", " ", "t", "w", "o"],
|
100 |
+
],
|
101 |
+
),
|
102 |
+
(
|
103 |
+
["one", "two", "three", "", "five six"],
|
104 |
+
[
|
105 |
+
["o", "n", "e"],
|
106 |
+
["t", "w", "o"],
|
107 |
+
["t", "h", "r", "e", "e"],
|
108 |
+
[],
|
109 |
+
["f", "i", "v", "e", " ", "s", "i", "x"],
|
110 |
+
],
|
111 |
+
),
|
112 |
+
([], [[]]),
|
113 |
+
([""], [[]]),
|
114 |
+
(["", "", ""], [[], [], []]),
|
115 |
+
]
|
116 |
+
|
117 |
+
_apply_test_on(self, ReduceToListOfListOfChars(), cases)
|
118 |
+
|
119 |
+
def test_delimiter(self):
|
120 |
+
cases = [
|
121 |
+
(
|
122 |
+
"this_is_a_test",
|
123 |
+
[
|
124 |
+
[
|
125 |
+
"t",
|
126 |
+
"h",
|
127 |
+
"i",
|
128 |
+
"s",
|
129 |
+
"_",
|
130 |
+
"i",
|
131 |
+
"s",
|
132 |
+
"_",
|
133 |
+
"a",
|
134 |
+
"_",
|
135 |
+
"t",
|
136 |
+
"e",
|
137 |
+
"s",
|
138 |
+
"t",
|
139 |
+
]
|
140 |
+
],
|
141 |
+
),
|
142 |
+
("", [[]]),
|
143 |
+
(
|
144 |
+
["this_is_one", "is_two"],
|
145 |
+
[
|
146 |
+
["t", "h", "i", "s", "_", "i", "s", "_", "o", "n", "e"],
|
147 |
+
["i", "s", "_", "t", "w", "o"],
|
148 |
+
],
|
149 |
+
),
|
150 |
+
(
|
151 |
+
["one", "two", "three", "", "five_six"],
|
152 |
+
[
|
153 |
+
["o", "n", "e"],
|
154 |
+
["t", "w", "o"],
|
155 |
+
["t", "h", "r", "e", "e"],
|
156 |
+
[],
|
157 |
+
["f", "i", "v", "e", "_", "s", "i", "x"],
|
158 |
+
],
|
159 |
+
),
|
160 |
+
([], [[]]),
|
161 |
+
([""], [[]]),
|
162 |
+
(["", "", ""], [[], [], []]),
|
163 |
+
]
|
164 |
+
|
165 |
+
_apply_test_on(self, ReduceToListOfListOfChars(), cases)
|
166 |
+
|
167 |
+
|
168 |
+
class TestRemoveSpecificWords(unittest.TestCase):
|
169 |
+
def test_normal(self):
|
170 |
+
cases = [
|
171 |
+
(["yhe about that bug"], [" about that bug"]),
|
172 |
+
(["yeah about that bug"], [" about that bug"]),
|
173 |
+
(["one bug"], ["one bug"]),
|
174 |
+
(["yhe", "about", "bug"], [" ", "about", "bug"]),
|
175 |
+
(["yeah", "about", "bug"], [" ", "about", "bug"]),
|
176 |
+
(["one", "bug"], ["one", "bug"]),
|
177 |
+
(["yhe about bug"], [" about bug"]),
|
178 |
+
(["yeah about bug"], [" about bug"]),
|
179 |
+
(["about bug yhe"], ["about bug "]),
|
180 |
+
(["one bug"], ["one bug"]),
|
181 |
+
(["he asked a helpful question"], [" asked helpful question"]),
|
182 |
+
(["normal sentence"], ["normal sentence"]),
|
183 |
+
(["yhe awesome", " awesome"]),
|
184 |
+
(["the apple is not a pear", " apple is not pear"]),
|
185 |
+
(["yhe", " "]),
|
186 |
+
]
|
187 |
+
|
188 |
+
_apply_test_on(
|
189 |
+
self, RemoveSpecificWords(["yhe", "yeah", "a", "he", "the"]), cases
|
190 |
+
)
|
191 |
+
|
192 |
+
|
193 |
+
class TestRemoveWhiteSpace(unittest.TestCase):
|
194 |
+
def test_normal(self):
|
195 |
+
cases = [
|
196 |
+
(["this is an example", "thisisanexample"]),
|
197 |
+
(["hello\tworld\n\r", "helloworld"]),
|
198 |
+
]
|
199 |
+
|
200 |
+
_apply_test_on(self, RemoveWhiteSpace(), cases)
|
201 |
+
|
202 |
+
def test_replace_by_space(self):
|
203 |
+
cases = [
|
204 |
+
(["this is an example", "this is an example"]),
|
205 |
+
(["hello\tworld\n\r", "hello world "]),
|
206 |
+
]
|
207 |
+
|
208 |
+
_apply_test_on(self, RemoveWhiteSpace(replace_by_space=True), cases)
|
209 |
+
|
210 |
+
|
211 |
+
class TestRemovePunctuation(unittest.TestCase):
|
212 |
+
def test_normal(self):
|
213 |
+
cases = [
|
214 |
+
(["this is an example!", "this is an example"]),
|
215 |
+
(["hello. goodbye", "hello goodbye"]),
|
216 |
+
(["this sentence has no punctuation", "this sentence has no punctuation"]),
|
217 |
+
]
|
218 |
+
|
219 |
+
_apply_test_on(self, RemovePunctuation(), cases)
|
220 |
+
|
221 |
+
def test_non_ascii_punctuation(self):
|
222 |
+
cases = [
|
223 |
+
(["word༆’'", "word"]),
|
224 |
+
(["‘no’", "no"]),
|
225 |
+
(["“yes”", "yes"]),
|
226 |
+
]
|
227 |
+
|
228 |
+
_apply_test_on(self, RemovePunctuation(), cases)
|
229 |
+
|
230 |
+
|
231 |
+
class TestRemoveMultipleSpaces(unittest.TestCase):
|
232 |
+
def test_normal(self):
|
233 |
+
cases = [
|
234 |
+
(["this is an example "], ["this is an example "]),
|
235 |
+
([" hello goodbye "], [" hello goodbye "]),
|
236 |
+
([" "], [" "]),
|
237 |
+
]
|
238 |
+
|
239 |
+
_apply_test_on(self, RemoveMultipleSpaces(), cases)
|
240 |
+
|
241 |
+
pass
|
242 |
+
|
243 |
+
|
244 |
+
class TestSubstituteWords(unittest.TestCase):
|
245 |
+
def test_normal(self):
|
246 |
+
cases = [
|
247 |
+
(["you're pretty"], ["i am awesome"]),
|
248 |
+
(["your book"], ["your book"]),
|
249 |
+
(["foobar"], ["foobar"]),
|
250 |
+
]
|
251 |
+
|
252 |
+
_apply_test_on(
|
253 |
+
self,
|
254 |
+
SubstituteWords(
|
255 |
+
{"pretty": "awesome", "you": "i", "'re": " am", "foo": "bar"}
|
256 |
+
),
|
257 |
+
cases,
|
258 |
+
)
|
259 |
+
|
260 |
+
|
261 |
+
class TestSubstituteRegexes(unittest.TestCase):
|
262 |
+
def test_normal(self):
|
263 |
+
cases = [
|
264 |
+
(["is the world doomed or loved?"], ["is the world sacr or lov?"]),
|
265 |
+
(["the sun is loved"], ["the sun is lov"]),
|
266 |
+
(["edibles are allegedly cultivated"], ["edibles are allegedly cultivat"]),
|
267 |
+
]
|
268 |
+
|
269 |
+
_apply_test_on(
|
270 |
+
self,
|
271 |
+
SubstituteRegexes({r"doom": r"sacr", r"\b(\w+)ed\b": r"\1"}),
|
272 |
+
cases,
|
273 |
+
)
|
274 |
+
|
275 |
+
|
276 |
+
class TestStrip(unittest.TestCase):
|
277 |
+
def test_normal(self):
|
278 |
+
cases = [
|
279 |
+
([" this is an example "], ["this is an example"]),
|
280 |
+
([" hello goodbye "], ["hello goodbye"]),
|
281 |
+
([" "], [""]),
|
282 |
+
([" "], [""]),
|
283 |
+
]
|
284 |
+
|
285 |
+
_apply_test_on(self, Strip(), cases)
|
286 |
+
|
287 |
+
|
288 |
+
class TestRemoveEmptyStrings(unittest.TestCase):
|
289 |
+
def test_normal(self):
|
290 |
+
cases = [
|
291 |
+
([""], []),
|
292 |
+
(["this is an example"], ["this is an example"]),
|
293 |
+
([" "], []),
|
294 |
+
([" "], []),
|
295 |
+
]
|
296 |
+
|
297 |
+
_apply_test_on(self, RemoveEmptyStrings(), cases)
|
298 |
+
|
299 |
+
|
300 |
+
class TestExpandCommonEnglishContractions(unittest.TestCase):
|
301 |
+
def test_normal(self):
|
302 |
+
cases = [
|
303 |
+
(
|
304 |
+
["she'll make sure you can't make it"],
|
305 |
+
["she will make sure you can not make it"],
|
306 |
+
),
|
307 |
+
(["let's party!"], ["let us party!"]),
|
308 |
+
]
|
309 |
+
|
310 |
+
_apply_test_on(self, ExpandCommonEnglishContractions(), cases)
|
311 |
+
|
312 |
+
|
313 |
+
class TestToLowerCase(unittest.TestCase):
|
314 |
+
def test_normal(self):
|
315 |
+
cases = [
|
316 |
+
(["You're PRETTY"], ["you're pretty"]),
|
317 |
+
]
|
318 |
+
|
319 |
+
_apply_test_on(self, ToLowerCase(), cases)
|
320 |
+
|
321 |
+
|
322 |
+
class TestToUpperCase(unittest.TestCase):
|
323 |
+
def test_normal(self):
|
324 |
+
cases = [
|
325 |
+
(["You're amazing"], ["YOU'RE AMAZING"]),
|
326 |
+
]
|
327 |
+
|
328 |
+
_apply_test_on(self, ToUpperCase(), cases)
|
329 |
+
|
330 |
+
|
331 |
+
class TestRemoveKaldiNonWords(unittest.TestCase):
|
332 |
+
def test_normal(self):
|
333 |
+
cases = [
|
334 |
+
(["you <unk> like [laugh]"], ["you like "]),
|
335 |
+
]
|
336 |
+
|
337 |
+
_apply_test_on(self, RemoveKaldiNonWords(), cases)
|