Create phrase_retrieval.py
Browse files- phrase_retrieval.py +144 -0
phrase_retrieval.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""PiC: A Phrase-in-Context Dataset for Phrase Understanding and Semantic Search."""
|
18 |
+
|
19 |
+
|
20 |
+
import json
|
21 |
+
import os.path
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
from datasets.tasks import QuestionAnsweringExtractive
|
25 |
+
|
26 |
+
|
27 |
+
logger = datasets.logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
_CITATION = """\
|
31 |
+
|
32 |
+
"""
|
33 |
+
|
34 |
+
_DESCRIPTION = """\
|
35 |
+
|
36 |
+
"""
|
37 |
+
|
38 |
+
_HOMEPAGE = ""
|
39 |
+
|
40 |
+
_LICENSE = "CC-BY-4.0"
|
41 |
+
|
42 |
+
_URL = "https://auburn.edu/~tmp0038/PiC/"
|
43 |
+
_SPLITS = {
|
44 |
+
"train": "train-v1.0.json",
|
45 |
+
"dev": "dev-v1.0.json",
|
46 |
+
"test": "test-v1.0.json",
|
47 |
+
}
|
48 |
+
|
49 |
+
_PR_PASS = "PR-pass"
|
50 |
+
_PR_PAGE = "PR-page"
|
51 |
+
|
52 |
+
|
53 |
+
class PiCConfig(datasets.BuilderConfig):
|
54 |
+
"""BuilderConfig for Phrase Retrieval in PiC."""
|
55 |
+
|
56 |
+
def __init__(self, **kwargs):
|
57 |
+
"""BuilderConfig for Phrase Retrieval in PiC.
|
58 |
+
Args:
|
59 |
+
**kwargs: keyword arguments forwarded to super.
|
60 |
+
"""
|
61 |
+
super(PiCConfig, self).__init__(**kwargs)
|
62 |
+
|
63 |
+
|
64 |
+
class PhraseRetrieval(datasets.GeneratorBasedBuilder):
|
65 |
+
"""Phrase Retrieval in PiC dataset. Version 1.0."""
|
66 |
+
|
67 |
+
BUILDER_CONFIGS = [PiCConfig(
|
68 |
+
name=_PR_PASS,
|
69 |
+
version=datasets.Version("1.0.0"),
|
70 |
+
description="The PiC Dataset for Phrase Retrieval at short passage level (~11 sentences)"
|
71 |
+
),
|
72 |
+
PiCConfig(
|
73 |
+
name=_PR_PAGE,
|
74 |
+
version=datasets.Version("1.0.0"),
|
75 |
+
description="The PiC Dataset for Phrase Retrieval at Wiki page level"
|
76 |
+
),
|
77 |
+
]
|
78 |
+
|
79 |
+
def _info(self):
|
80 |
+
return datasets.DatasetInfo(
|
81 |
+
description=_DESCRIPTION,
|
82 |
+
features=datasets.Features(
|
83 |
+
{
|
84 |
+
"id": datasets.Value("string"),
|
85 |
+
"title": datasets.Value("string"),
|
86 |
+
"context": datasets.Value("string"),
|
87 |
+
"question": datasets.Value("string"),
|
88 |
+
"answers": datasets.features.Sequence(
|
89 |
+
{
|
90 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
91 |
+
"answer_start": datasets.Sequence(datasets.Value("int32")),
|
92 |
+
}
|
93 |
+
),
|
94 |
+
}
|
95 |
+
),
|
96 |
+
# No default supervised_keys (as we have to pass both question and context as input).
|
97 |
+
supervised_keys=None,
|
98 |
+
homepage=_HOMEPAGE,
|
99 |
+
license=_LICENSE,
|
100 |
+
citation=_CITATION,
|
101 |
+
task_templates=[
|
102 |
+
QuestionAnsweringExtractive(
|
103 |
+
question_column="question", context_column="context", answers_column="answers"
|
104 |
+
)
|
105 |
+
],
|
106 |
+
)
|
107 |
+
|
108 |
+
def _split_generators(self, dl_manager):
|
109 |
+
|
110 |
+
urls_to_download = {
|
111 |
+
"train": os.path.join(_URL, self.config.name, _SPLITS["train"]),
|
112 |
+
"dev": os.path.join(_URL, self.config.name, _SPLITS["dev"]),
|
113 |
+
"test": os.path.join(_URL, self.config.name, _SPLITS["test"])
|
114 |
+
}
|
115 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
116 |
+
|
117 |
+
return [
|
118 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
119 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
120 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
121 |
+
]
|
122 |
+
|
123 |
+
def _generate_examples(self, filepath):
|
124 |
+
"""This function returns the examples in the raw (text) form."""
|
125 |
+
logger.info("generating examples from = %s", filepath)
|
126 |
+
key = 0
|
127 |
+
with open(filepath, encoding="utf-8") as f:
|
128 |
+
pic_pr = json.load(f)
|
129 |
+
for example in pic_pr["data"]:
|
130 |
+
title = example.get("title", "")
|
131 |
+
|
132 |
+
# Features currently used are "context", "question", and "answers".
|
133 |
+
# Others are extracted here for the ease of future expansions.
|
134 |
+
yield key, {
|
135 |
+
"title": title,
|
136 |
+
"context": example["context"],
|
137 |
+
"question": example["question"],
|
138 |
+
"id": example["id"],
|
139 |
+
"answers": {
|
140 |
+
"answer_start": example["answers"]["answer_start"],
|
141 |
+
"text": example["answers"]["text"],
|
142 |
+
},
|
143 |
+
}
|
144 |
+
key += 1
|