Datasets:

Sub-tasks:
extractive-qa
Languages:
Spanish
ArXiv:
License:
File size: 7,743 Bytes
6df3a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bef3b3f
6df3a2d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
---
annotations_creators:
- expert-generated
language_creators:
- found
languages:
- es
licenses:
- cc-by-sa-4.0
multilinguality:
- monolingual
pretty_name: Spanish Question Answering Corpus (SQAC)
size_categories:
- unknown
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa

---

# SQAC (Spanish Question-Answering Corpus): An extractive QA dataset for the Spanish language

## BibTeX  citation

```bibtex
@article{DBLP:journals/corr/abs-2107-07253,
  author    = {Asier Guti{\'{e}}rrez{-}Fandi{\~{n}}o and
               Jordi Armengol{-}Estap{\'{e}} and
               Marc P{\`{a}}mies and
               Joan Llop{-}Palao and
               Joaqu{\'{\i}}n Silveira{-}Ocampo and
               Casimiro Pio Carrino and
               Aitor Gonzalez{-}Agirre and
               Carme Armentano{-}Oller and
               Carlos Rodr{\'{\i}}guez Penagos and
               Marta Villegas},
  title     = {Spanish Language Models},
  journal   = {CoRR},
  volume    = {abs/2107.07253},
  year      = {2021},
  url       = {https://arxiv.org/abs/2107.07253},
  archivePrefix = {arXiv},
  eprint    = {2107.07253},
  timestamp = {Wed, 21 Jul 2021 15:55:35 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2107-07253.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

See the pre-print version of our paper for further details: https://arxiv.org/abs/2107.07253

<!-- ## Digital Object Identifier (DOI) and access to dataset files --> 


## Introduction

This dataset contains 6,247 contexts and 18,817 questions with their answers, 1 to 5 for each fragment.

The sources of the contexts are:
* Encyclopedic articles from [Wikipedia in Spanish](https://es.wikipedia.org/), used under [CC-by-sa licence](https://creativecommons.org/licenses/by-sa/3.0/legalcode). 
* News from [Wikinews in Spanish](https://es.wikinews.org/), used under [CC-by licence](https://creativecommons.org/licenses/by/2.5/). 
* Text from the Spanish corpus [AnCora](http://clic.ub.edu/corpus/en), which is a mix from diferent newswire and literature sources, used under [CC-by licence](https://creativecommons.org/licenses/by/4.0/legalcode). 

This dataset can be used to build extractive-QA.

### Supported Tasks and Leaderboards

Extractive-QA

### Languages

ES - Spanish

### Directory structure

* README.md
* dev.json
* test.json
* train.json
* sqac.py

## Dataset Structure

### Data Instances

JSON files

### Data Fields

Follows (Rajpurkar, Pranav et al., 2016) for squad v1 datasets. (see below for full reference).
We added a field "source" with the source of the context.

### Example
<pre>
{
  "data": [
    {
      "paragraphs": [
        {
          "context": "Al cogote, y fumando como una cafetera. Ah!, no era él, éramos todos nosotros. Luego llegó Billie Holiday. Bajo el epígrafe Arte, la noche temática, pasaron la vida de la única cantante del universo que no es su voz, sino su alma lo que se escucha cuando interpreta. Gata golpeada por el mundo, pateada, violada, enganchada a todos los paraísos artificiales del planeta, jamás encontró el Edén. El Edén lo encontramos nosotros cuando, al concluir la sesión de la tele, pusimos en la doméstica cadena de sonido el mítico Last Recording, su última grabación (marzo de 1959), con la orquesta de Ray Ellis y el piano de Hank Jones. Se estaba muriendo Lady Day, y no obstante, mientras moría, su alma cantaba, Baby, won't you please come home. O sea, niño, criatura, amor, vuelve, a casa por favor.",
          "qas": [
            {
              "question": "¿Quién se incorporó a la reunión más adelante?",
              "id": "c5429572-64b8-4c5d-9553-826f867b07be",
              "answers": [
                {
                  "answer_start": 91,
                  "text": "Billie Holiday"
                }
              ]
            },
            
            ...
            
            ]
        }
      ],
      "title": "P_129_20010702_&_P_154_20010102_&_P_108_20000301_c_&_P_108_20000601_d",
      "source": "ancora"
    },
    ...
  ]
}

</pre>

### Data Splits

- train
- development
- test

## Content analysis

### Number of articles, paragraphs and questions

* Number of articles: 3,834
* Number of contexts: 6,247
* Number of questions: 18,817
* Questions/context: 3.01
* Number of sentences: 48,026
* Sentences/context: 7.70

### Number of tokens

* Total tokens in context: 1,561,616
* Tokens/context 250.30
* Total tokens in questions: 203,235
* Tokens in questions/questions: 10.80
* Tokens in questions/tokens in context: 0.13
* Total tokens in answers: 90,307
* Tokens in answers/answers: 4.80
* Tokens in answers/tokens in context: 0.06

### Lexical variation

46.38 of the words in the Question can be found in the Context.

### Question type 

| Question | Count | % |
|----------|-------:|---:|
| qué | 6,381 | 33.91 % |
| quién/es | 2,952 | 15.69 % |
| cuál/es | 2,034 | 10.81 % |
| cómo | 1,949 | 10.36 % |
| dónde | 1,856 | 9.86 % |
| cuándo | 1,639 | 8.71 % |
| cuánto | 1,311 | 6.97 % |
| cuántos | 495 |2.63 % |
| adónde | 100 | 0.53 % |
| cuánta | 49 | 0.26 % |
| no question mark | 43 | 0.23 % |
| cuántas | 19 | 0.10 % |


## Dataset Creation

### Methodology

6,247 contexts were randomly chosen from the three corpus described below. We commisioned the creation of between 1 and 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 [Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)](http://arxiv.org/abs/1606.05250). In total, 18,817 pairs of a question and an extracted fragment that contains the answer were created.


### Curation Rationale

For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines. We also created another QA dataset with Wikipedia to ensure thematic and stylistic variety.

### Source Data

- Spanish Wikipedia: https://es.wikipedia.org
- Spanish Wikinews: https://es.wikinews.org/
- AnCora corpus: http://clic.ub.edu/corpus/en

#### Initial Data Collection and Normalization

The source data are scraped articles from the Spanish Wikipedia site, Wikinews site and from AnCora corpus.

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

We commissioned the creation of 1 to 5 questions for each context, following an adaptation of the guidelines from SQUAD 1.0 [Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)](http://arxiv.org/abs/1606.05250).


#### Who are the annotators?

Native language speakers.

### Dataset Curators

Carlos Rodríguez and Carme Armentano, from BSC-CNS.

### Personal and Sensitive Information

No personal or sensitive information included.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Contact

Carlos Rodríguez-Penagos ([email protected]) and Carme Armentano-Oller ([email protected])

## Funding
This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.

## License

<a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/"><img alt="Attribution-ShareAlike 4.0 International License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a><br />This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>.