Datasets:

Modalities:
Text
Languages:
Spanish
Libraries:
Datasets
License:
File size: 2,928 Bytes
bc8d20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86cccb
bc8d20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Loading script for the TeCla dataset.
import json
import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """

            """

_DESCRIPTION = """
                   WikiCAT: Text Classification Spanish dataset from the Viquipedia

               """

_HOMEPAGE = """   """

# TODO: upload datasets to github
_URL = "https://huggingface.co/datasets/crodri/WikiCAT_esv2/main/"
_TRAINING_FILE = "hftrain_esv5.json"
_DEV_FILE = "hfeval_esv5.json"
#_TEST_FILE = "test.json"


class wikiCAT_esConfig(datasets.BuilderConfig):
    """ Builder config for the Topicat dataset """

    def __init__(self, **kwargs):
        """BuilderConfig for wikiCAT_es.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(wikiCAT_esConfig, self).__init__(**kwargs)


class wikiCAT_es(datasets.GeneratorBasedBuilder):
    """ wikiCAT_es Dataset """

    BUILDER_CONFIGS = [
        wikiCAT_esConfig(
            name="wikiCAT_es",
            version=datasets.Version("1.1.0"),
            description="wikiCAT_es",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "label": datasets.features.ClassLabel
                        (names= ['Religión', 'Entretenimiento', 'Música', 'Ciencia_y_Tecnología', 'Política', 'Economía', 'Matemáticas', 'Humanidades', 'Deporte', 'Derecho', 'Historia', 'Filosofía']
                    ),
                }
            ),
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
            "dev": f"{_URL}{_DEV_FILE}",
#            "test": f"{_URL}{_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
#            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            wikiCAT_es = json.load(f)
            for id_, article in enumerate(wikiCAT_es["data"]):
                text = article["sentence"]
                label = article["label"]
                yield id_, {
                    "text": text,
                    "label": label,
                }