|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
EVI is a challenging spoken multilingual dataset with 5,506 dialogues in English, Polish, and French |
|
that can be used for benchmarking and developing knowledge-based enrolment, identification, and identification |
|
for spoken dialogue systems. |
|
""" |
|
|
|
|
|
import csv |
|
from datetime import datetime |
|
import json |
|
import os |
|
import warnings |
|
|
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{Spithourakis2022evi, |
|
author = {Georgios P. Spithourakis and Ivan Vuli\'{c} and Micha\l{} Lis and I\~{n}igo Casanueva and Pawe\l{} Budzianowski}, |
|
title = {{EVI}: Multilingual Spoken Dialogue Tasks and Dataset for Knowledge-Based Enrolment, Verification, and Identification}, |
|
year = {2022}, |
|
note = {Data available at https://github.com/PolyAI-LDN/evi-paper}, |
|
url = {https://arxiv.org/abs/2204.13496}, |
|
booktitle = {Findings of NAACL (publication pending)} |
|
} |
|
""" |
|
|
|
_ALL_CONFIGS = sorted([ |
|
"en-GB", "fr-FR", "pl-PL" |
|
]) |
|
|
|
_LANGS = sorted(["en", "fr", "pl"]) |
|
|
|
_DESCRIPTION = """ |
|
EVI is a challenging spoken multilingual dataset with 5,506 dialogues in English, Polish, and French |
|
that can be used for benchmarking and developing knowledge-based enrolment, identification, and identification |
|
for spoken dialogue systems. |
|
""" |
|
|
|
_LICENSE = "CC-BY-4.0" |
|
|
|
_HOMEPAGE = "https://github.com/PolyAI-LDN/evi-paper" |
|
|
|
_BASE_URL = "https://huggingface.co/datasets/PolyAI/evi/resolve/main/data" |
|
|
|
_TEXTS_URL = { |
|
lang: os.path.join(_BASE_URL, f"dialogues.{lang.split('-')[0]}.tsv") for lang in _LANGS |
|
} |
|
|
|
_RECORDS_URL = { |
|
lang: os.path.join(_BASE_URL, f"records.{lang.split('-')[0]}.csv") for lang in _LANGS |
|
} |
|
|
|
_BROKEN_URL = { |
|
"en": os.path.join(_BASE_URL, "broken_en.txt") |
|
} |
|
|
|
_AUDIO_DATA_URL = "https://poly-public-data.s3.eu-west-2.amazonaws.com/evi-paper/audios.zip" |
|
|
|
_VERSION = datasets.Version("0.0.1", "") |
|
|
|
|
|
class EviConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for EVI""" |
|
|
|
def __init__( |
|
self, name, *args, **kwargs |
|
): |
|
super().__init__(name=name, *args, **kwargs) |
|
self.languages = _LANGS if name == "all" else [name.split("-")[0]] |
|
|
|
|
|
class Evi(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 512 |
|
BUILDER_CONFIGS = [EviConfig(name) for name in _ALL_CONFIGS + ["all"]] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"language": datasets.ClassLabel(names=_LANGS), |
|
"audio": datasets.Audio(sampling_rate=8_000), |
|
"asr_transcription": datasets.Value("string"), |
|
"dialogue_id": datasets.Value("string"), |
|
"speaker_id": datasets.Value("string"), |
|
"turn_id": datasets.Value("int32"), |
|
"target_profile_id": datasets.Value("string"), |
|
"asr_nbest": datasets.Sequence(datasets.Value("string")), |
|
"path": datasets.Value("string"), |
|
"postcode": datasets.Value("string"), |
|
"name": datasets.Value("string"), |
|
"dob": datasets.Value("date64"), |
|
"name_first": datasets.Value("string"), |
|
"name_last": datasets.Value("string"), |
|
"sex": datasets.ClassLabel(names=["F", "M"]), |
|
"email": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
version=_VERSION, |
|
description=_DESCRIPTION, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
features=features, |
|
homepage=_HOMEPAGE |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
langs = self.config.languages |
|
lang2records_urls = { |
|
lang: _RECORDS_URL[lang] for lang in langs |
|
} |
|
lang2text_urls = { |
|
lang: _TEXTS_URL[lang] for lang in langs |
|
} |
|
|
|
records_paths = dl_manager.download_and_extract(lang2records_urls) |
|
text_paths = dl_manager.download_and_extract(lang2text_urls) |
|
audio_data_path = dl_manager.download_and_extract(_AUDIO_DATA_URL) |
|
|
|
broken_path = dl_manager.download_and_extract(_BROKEN_URL["en"]) if "en" in langs else None |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"audio_data_path": audio_data_path, |
|
"text_paths": text_paths, |
|
"records_paths": records_paths, |
|
"broken_path": broken_path |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, audio_data_path, text_paths, records_paths, broken_path=None): |
|
if broken_path: |
|
with open(broken_path, encoding="utf-8") as f: |
|
broken_samples = set([line.strip() for line in f]) |
|
else: |
|
broken_samples = None |
|
|
|
for lang, text_path in text_paths.items(): |
|
|
|
records_path = records_paths[lang] |
|
records = dict() |
|
with open(records_path, encoding="utf-8") as fin: |
|
records_reader = csv.DictReader( |
|
fin, delimiter=",", skipinitialspace=True |
|
) |
|
for row in records_reader: |
|
records[row["scenario_id"]] = row |
|
records[row["scenario_id"]]["dob"] = datetime.strptime(row["dob"], "%Y-%m-%d") |
|
_ = records[row["scenario_id"]].pop("scenario_id") |
|
|
|
with open(text_path, encoding="utf-8") as fin: |
|
texts_reader = csv.DictReader( |
|
fin, delimiter="\t", skipinitialspace=True |
|
) |
|
for dictrow in texts_reader: |
|
dialogue_id = dictrow["dialogue_id"] |
|
turn_id = dictrow["turn_num"] |
|
file_path = os.path.join( |
|
"audios", |
|
lang, |
|
dialogue_id, |
|
f'{turn_id}.wav' |
|
) |
|
full_path = os.path.join(audio_data_path, file_path) |
|
if broken_samples and file_path in broken_samples: |
|
warnings.warn(f"{full_path} is broken, skipping it.") |
|
continue |
|
if not os.path.isfile(full_path): |
|
warnings.warn(f"{full_path} not found, skipping it.") |
|
continue |
|
|
|
target_profile_id = dictrow["scenario_id"] |
|
if target_profile_id not in records: |
|
warnings.warn( |
|
f""" |
|
Record with scenario_id {target_profile_id} not found, ignoring this dialogue. |
|
Full dialogue info: {dictrow} |
|
""" |
|
) |
|
continue |
|
|
|
yield file_path, { |
|
"language": lang, |
|
"audio": str(full_path), |
|
"dialogue_id": dialogue_id, |
|
"speaker_id": dictrow["speaker_id"], |
|
"turn_id": turn_id, |
|
"target_profile_id": target_profile_id, |
|
"asr_transcription": dictrow["transcription"], |
|
"asr_nbest": json.loads(dictrow["nbest"]), |
|
"path": file_path, |
|
**records[target_profile_id] |
|
} |
|
|