import datasets _CITATION = """\ @inproceedings{siripragada-etal-2020-multilingual, title = "A Multilingual Parallel Corpora Collection Effort for {I}ndian Languages", author = "Siripragada, Shashank and Philip, Jerin and Namboodiri, Vinay P. and Jawahar, C V", booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference", month = may, year = "2020", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2020.lrec-1.462", pages = "3743--3751", language = "English", ISBN = "979-10-95546-34-4", } @article{2020, title={Revisiting Low Resource Status of Indian Languages in Machine Translation}, url={http://dx.doi.org/10.1145/3430984.3431026}, DOI={10.1145/3430984.3431026}, journal={8th ACM IKDD CODS and 26th COMAD}, publisher={ACM}, author={Philip, Jerin and Siripragada, Shashank and Namboodiri, Vinay P. and Jawahar, C. V.}, year={2020}, month={Dec} } """ _DESCRIPTION = """\ Sentence aligned parallel corpus between 11 Indian Languages, crawled and extracted from the press information bureau website. """ _HOMEPAGE = "http://preon.iiit.ac.in/~jerin/bhasha/" _LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International" _URL = { "0.0.0": "http://preon.iiit.ac.in/~jerin/resources/datasets/pib-v0.tar", "1.3.0": "http://preon.iiit.ac.in/~jerin/resources/datasets/pib_v1.3.tar.gz", } _ROOT_DIR = { "0.0.0": "pib", "1.3.0": "pib-v1.3", } _LanguagePairs = [ "or-ur", "ml-or", "bn-ta", "gu-mr", "hi-or", "en-or", "mr-ur", "en-ta", "hi-ta", "bn-en", "bn-or", "ml-ta", "gu-ur", "bn-ml", "ml-pa", "en-pa", "bn-hi", "hi-pa", "gu-te", "pa-ta", "hi-ml", "or-te", "en-ml", "en-hi", "bn-pa", "mr-te", "mr-pa", "bn-te", "gu-hi", "ta-ur", "te-ur", "or-pa", "gu-ml", "gu-pa", "hi-te", "en-te", "ml-te", "pa-ur", "hi-ur", "mr-or", "en-ur", "ml-ur", "bn-mr", "gu-ta", "pa-te", "bn-gu", "bn-ur", "ml-mr", "or-ta", "ta-te", "gu-or", "en-gu", "hi-mr", "mr-ta", "en-mr" "as-or", ] class PibConfig(datasets.BuilderConfig): """BuilderConfig for PIB""" def __init__(self, language_pair, version=datasets.Version("1.3.0"), **kwargs): super().__init__(version=version, **kwargs) """ Args: language_pair: language pair, you want to load **kwargs: keyword arguments forwarded to super. """ self.src, self.tgt = language_pair.split("-") class Pib(datasets.GeneratorBasedBuilder): """This new dataset is the large scale sentence aligned corpus in 11 Indian languages, viz. CVIT-PIB corpus that is the largest multilingual corpus available for Indian languages. """ BUILDER_CONFIG_CLASS = PibConfig BUILDER_CONFIGS = [PibConfig(name=pair, description=_DESCRIPTION, language_pair=pair) for pair in _LanguagePairs] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( {"translation": datasets.features.Translation(languages=[self.config.src, self.config.tgt])} ), supervised_keys=(self.config.src, self.config.tgt), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): archive = dl_manager.download(_URL[str(self.config.version)]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "archive": dl_manager.iter_archive(archive), }, ), ] def _generate_examples(self, archive): root_dir = _ROOT_DIR[str(self.config.version)] data_dir = f"{root_dir}/{self.config.src}-{self.config.tgt}" src = tgt = None for path, file in archive: if data_dir in path: if f"{data_dir}/train.{self.config.src}" in path: src = file.read().decode("utf-8").split("\n")[:-1] if f"{data_dir}/train.{self.config.tgt}" in path: tgt = file.read().decode("utf-8").split("\n")[:-1] if src and tgt: break for idx, (s, t) in enumerate(zip(src, tgt)): yield idx, {"translation": {self.config.src: s, self.config.tgt: t}}