
1

A Chain of AI-based Solutions for Resolving
FQNs and Fixing Syntax Errors in Partial Code

Qing Huang, Jiahui Zhu, Zhenchang Xing, Huan Jin, Changjing Wang, Xiwei Xu

Abstract—API documentation, technical blogs and programming Q&A sites contain numerous partial code that can be reused in
programming tasks, but often these code are uncompilable due to unresolved names and syntax errors. To facilitate partial code reuse,
we propose the Partial Code Reuse Chain (PCR-Chain) for resolving fully-qualified names (FQNs) and fixing last-mile syntax errors in
partial code based on a giant large language model (LLM) like ChatGPT. Methodologically, PCR-Chain is backed up by the underlying
global-level prompt architecture (which combines three design ideas: hierarchical task breakdown, prompt composition, and a mix of
prompt-based AI and non-AI units) and the local-level prompt design. Technically, we propose PCR-Chain, which employs in-context
learning rather than symbolic, costly training methods. Experimental results demonstrate that in dynamically-typed languages (Python),
PCR-Chain outperforms current state-of-the-art (SOTA) 5% accuracy like RING. For statically-type languages (Java), our approach
achieves high accuracy of 80.5% in resolving both non-FQNs and last-mile syntax errors, surpassing SOTA methods (RING) that can
only address last-mile syntax errors. The correct execution of the unit, module, and PCR-Chain demonstrates the effectiveness of the
prompt design, composition, and architecture and opens up possibilities for building software engineering tools based on LLMs,
replacing traditional program analysis methods.

✦

1 INTRODUCTION

PARTIAL code from sources like API documentation and
Q&A site is commonly reused in programming tasks

[1]–[6]. However, a recent study analyzing 491,906 posts on
Stack Overflow found that over 90% of the partial code is
uncompilable [7] due to non-fully qualified names (non-
FQNs) [8]–[12], and last-mile syntax errors [13] such as
unbalanced parentheses, missing commas. This presents a
significant challenge for developers, limiting the usefulness
of partial code and wasting time and effort.

The Java code in Fig. 1-a contains non-fully qualified
names (non-FQNs) and last-mile syntax errors that pre-
vent it from compiling correctly. For example, the use of
“StringUtils” on line 6 is a non-FQN that cannot be resolved
by the compiler, resulting in a “cannot find symbol” error.
In addition, the comma error on line 4 is a last-mile syn-
tax error that causes an “unexpected token” error during
compilation. These errors collectively prevent the code from
running as intended.

When working with partial code, developers typically
perform two manual steps to repair it: FQN inference (to
infer missing fully qualified names) and syntax error fix
(to check and correct last-mile syntax errors). However, this
process can be time-consuming and error-prone, resulting in
inefficiencies during the development process. To address
this issue, many partial program analysis techniques are
proposed, including dictionary lookup strategies based on

• Q. Huang, J. Zhu, C. Wang are with School of Computer Information
Engineering, Jiangxi Normal University, China.

• H. Jin is with Jiangxi University of Technology’s School of Information
Engineering, China.

• Q. Huang and J. Zhu are co-first authors, C. Wang is the corresponding
author (wcj@jxnu.edu.cn)

• Z. Xing is with Australian National University, Australia.
• X. Xu is with Data61, CSIRO.

a symbolic knowledge base [14], [15] to infer FQNs of non-
FQN types, and symbolic-based approaches [16]–[19] to fix
syntax errors. However, these methods may encounter out-
of-vocabulary (OOV) failures, requiring extensive domain-
specific knowledge.

Unlike symbolic-based approaches, which have finite
knowledge, recent studies [20]–[23] propose treating code
as text and training large language models (LLMs) on near-
infinite code text. These LLM-based approaches, such as
CodeBERT [24], CodeT5 [25], Copilot [26], can effectively re-
duce out-of-vocabulary (OOV) failures. For example, some
researchers have used LLM-based approaches to infer FQNs
of non-FQN types [8] and fix last-mile syntax errors [27].
However, these approaches are typically heavyweight su-
pervised learning, requiring large amounts of data and
computing resources for efficient model training and gra-
dient updating. In contrast, in-context learning (ICL) is a
lightweight unsupervised approach proposed by Brown et
al. [28] that prompts LLMs to learn from a few examples
of specific downstream tasks in context and complete those
tasks by mimicking those examples [29]–[32], without gradi-
ent updates [33]–[35]. Inspired by this, we consider leverag-
ing LLMs’ ICL capability to make partial code compileable.

However, directly asking LLMs to make partial code
compilable is challenging, as LLMs may only fix some syn-
tax errors but not infer FQNs of non-FQN types. Since LLMs
are language models, both FQNs and non-FQNs represent
correct type names from the point of view of language
features, so LLMs may still consider code with non-FQNs
to have no compilation errors in the absence of importing
packages. However, this is incorrect. Even if code has no
syntax errors, it still may not compile because it contains
non-FQNs. As shown in Fig. 1-A, when directly querying
the LLM with the prompt “make this code compilable”, the
LLM still responds with uncompilable code.

Instead of directly querying LLMs in one step to make

ar
X

iv
:2

30
6.

11
98

1v
1

 [
cs

.S
E

]
 2

1
Ju

n
20

23

2

1 public class Main {
2 public static void main(String[] args) {
3 String[] fruits = { "Apple", "Banana", "Orange" };
4 for (int i = 0; i < fruits.length, i++) {
5 String fruit = fruits[i];
6 String capFruit = StringUtils.capitalize(fruit);
7 System.out.println("Fruit " + i + ": " + capFruit);}}}

Uncompilable Code

Step1 Simplename
 Extraction

Step3 FQN Supplement

FQNs
org.apache.commons.lang3.StringUtils

（c）

（a）

Simple names
StringUtils

Step4 Error
Judgement

+1 import org.apache.commons.lang3.StringUtils;
 2 public class Main {
 3 public static void main(String[] args) {
 4 String[] fruits = { "Apple", "Banana", "Orange" };
 5 for (int i = 0; i < fruits.length, i++) {
 6 String fruit = fruits[i];
 7 String capitalizedFruit = StringUtils.capitalize(fruit);
 8 System.out.println("Fruit " + i + ": " + capitalizedFruit);}}}

Step2 Simplename to FQN

example.java:4: error: ';' expected
 for (int i = 0; i < fruits.length, i++) {
 ^

// The error message is indicating that there is a syntax
error on line 4. It's expecting a semicolon (;) but instead
found a comma (,).
// To fix the problem, the comma should be replaced
with a semicolon.

Step5 Error Message Enhance

 1 public class Main {
 2 public static void main(String[] args) {
 3 String[] fruits = { "Apple", "Banana", "Orange" };
 4 for (int i = 0; i < fruits.length; i++) {
 5 String fruit = fruits[i];
 6 String capitalizedFruit = StringUtils.capitalize(fruit);
 7 System.out.println("Fruit " + i + ": " + capitalizedFruit);}}}

// make this code compilable
A Direct Fix

B AI Chain

Step6 Code Fix

+1 import org.apache.commons.lang3.StringUtils;
 2 public class Main {
 3 public static void main(String[] args) {
 4 String[] fruits = { "Apple", "Banana", "Orange" };
 5 for (int i = 0; i < fruits.length; i++) {
 6 String fruit = fruits[i];
 7 String capitalizedFruit = StringUtils.capitalize(fruit);
 8 System.out.println("Fruit " + i + ": " + capitalizedFruit);}}}

（b）

（d）

（e）

（f）

（g）

Fig. 1: Fix errors directly vs. fix errors with AI Chain

partial code compilable, a more effective approach is to
design a chain of thought (CoT) with multiple steps [36]–
[38]. As shown in Fig. 1-B, this CoT consists of two main
parts: FQN Inference and Syntax Error Fix. The FQN In-
ference is further divided into three steps: Simplename
Extraction, Simplename to FQN, and FQN Supplement.
These steps comprehensively infer FQNs for simple names
in the code. The Syntax Error Fix is decomposed into three
steps: Error Judgement, Error Message Enhance, and Code
Fix. Together, these steps enhance the error messages and
provide solutions for fixing the code, thus resolving syntax
errors. Overall, the CoT includes six key steps that make it
an effective solution for making partial code compilable.

However, this CoT still has limitations due to its single
prompt implementation, which can lead to error accumula-
tion and an “epic” prompt with too many responsibilities.
This can lead to errors and difficulties in controlling and
improving the prompts. To overcome these limitations, we
adopt the principle of single responsibility in software engi-
neering and decompose the CoT into an AI chain, with each
step corresponding to a separate AI unit. We develop an
effective prompt for each AI unit, which performs a separate
LLM call. As shown in Fig. 1-B, this AI chain can interact
with LLM step by step, thus solving both non-FQN and
last-mile syntax error.

We evaluate the effectiveness of our approach, Partial
Code Reuse Chain (PCR-Chain), through a series of experi-
ments. We first test the accuracy of each Unit and Module,
with units achieving accuracy rates ranging from 92.1% to

95.7%, indicating the effectiveness of prompt design. We
also verify the accuracy of our key modules, FQN Inference
and Syntax Error Fix, achieving rates of 80.5% and 98%,
respectively.

We then compare PCR-Chain to state-of-the-art (SOTA)
methods such as BIFI [39], CURE [27] and RING [40], in both
dynamically-typed (Python) and statically-typed (Java) pro-
gramming languages. In Python, PCR-Chain outperforms
SOTA LLM-based methods such as BIFI by 13.7% accuracy
and ICL-based methods such as RING by 5%. In Java,
our approach accurately solves both non-FQNs and last-
mile syntax errors with an accuracy of 80.5%, while SOTA
methods such as CURE and RING could only solve the
latter. We also conduct an ablation experiment to investigate
the effectiveness of our AI Chain design principles and
find that our design was reasonable. Besides, we explore
the sensitivity of our approach to prompt forms and find
that our method’s accuracy remains stable under different
prompt types.

From our study, we derive three AI chain design prin-
ciples, including hierarchical task decomposition, unit com-
position, and a combination of AI and non-AI units, that can
serve as guidelines for future software engineering projects.

This paper makes the following contributions:

• To the best of our knowledge, we are the first to propose
the prompt architecture, which combines three global
design ideas: hierarchical task breakdown, prompt
composition, and a mix of prompt-based AI and non-AI
units, rather than a simple AI chain.

3

PCR-Chain

FQN Inference Syntax Error Fix

Simplename
Extraction

Simplename to
FQN

FQN
Supplement

Error Message
Enhance Code FixError Judgement

AI Unit

Non-AI Unit

Label:

layer1

layer2

layer3

Code with
FQNs

Error code
snippet

Repaired code
snippet

withError code
snippet

Repaired code
snippet

without error

error

Fig. 2: Overall Framework of PCR-Chain

• Instead of creating an “epic” prompt to implement CoT,
we split the CoT into an AI chain, with each step
corresponding to a separate AI unit, making the design
of the AI chain more reasonable and easier to optimize
and control.

• We stand on the giant LLM’s shoulder and use
a lightweight in-context learning method to resolve
FQNs and fix syntax errors in partial code.

• The successful completion of the unit, module, and
PCR-Chain demonstrates the efficacy of the prompt
design, composition, and architecture, to resolve FQNs
and fix last-mile syntax errors.

2 APPROACH
Partial code reuse can be a difficult task due to non-FQNs
and last-mile syntax errors. Non-FQNs arise when program
entities lack declarations, while last-mile syntax errors occur
due to minor mistakes like missing commas or unbalanced
parentheses. To address these challenges, we propose a new
approach called the Partial Code Reuse Chain (PCR-Chain).
Our approach leverages the vast amount of code knowl-
edge obtained during the training of large language models
(LLMs) like ChatGPT1. PCR-Chain is designed to simulate
the human thought process by breaking down the task of
making partial code compilable into single-responsibility
sub-problems and designing functional units. These units
are then connected in a serial or conditional structure to
interact with the underlying LLM. Unlike fine-tuning LLM,
which requires significant effort in data gathering, prepro-
cessing, annotation, and model training, PCR-Chain only
needs to consider task characteristics, data properties, and
information flow, utilizing the capabilities of ChatGPT.

2.1 Hierarchical Task Breakdown
As the code contains multiple errors (i.e., non-FQNs and
last-mile syntax errors), it is not easy for LLM to resolve
all errors in single LLM call. As shown in Fig. 1-A, when
using a single instruction “make this code compilable” to
call a single LLM, it only fixes the last-mile syntax error,
but not fixes the non-FQN error. To address this issue, we
need to make the instruction more informative and break

1. https://openai.com/blog/introducing-chatgpt-and-whisper-apis

it down into several sub-instructions, each executed by a
separate LLM call, to solve the code error step by step, as
shown in Fig. 1-B. To facilitate a reasonable decomposition,
we re-analyze the code in Fig. 1(a) and identify that the issue
of partial code reuse can be divided into two sub-modules:
the first sub-module is FQN Inference, and the second sub-
module is Syntax Error Fix (see Fig. 2-layer 2).

2.2 Hierarchical Module Decomposition
In the overall framework of PCR-Chain, as shown in Fig. 2-
layer 3, the functional units are classified into two cate-
gories: AI units that utilize fuzzy reasoning based on LLM,
and non-AI units that follow pre-defined rules or logic.
The design of these modules/units adheres to two impor-
tant software engineering principles, namely separation of
concerns and single responsibility, and employs a modular
design structure.

Two key modules in the PCR-Chain approach are the
FQN Inference module and the Syntax Error Fix module.

The FQN Inference module is responsible for identify-
ing simple names in the code and inferring them as fully
qualified names (FQNs), then completing the FQNs in the
code. This module consists of two AI units, namely Simple
Extraction and Simple to FQN, and a non-AI unit called FQN
Supplement. To accomplish this task, the FQN Inference
module first extracts simple names from the code using
the Simple Extraction unit. It then infers the FQNs of the
simple names using the Simple to FQN unit, then combining
the inferred FQNs with the original code using the FQN
Supplement unit.

On the other hand, the Syntax Error Fix module aims to
enhance error messages and fix syntax errors in code. This
module comprises two AI units, Error Message Enhance and
Code Fix, as well as a non-AI unit called Error Judgement.
The Error Judgement unit employs a compiler to assess
whether there are any errors in the code, and if so, retrieves
the error messages for the code. The Error Message Enhance
unit enhances the error messages and offers solutions for
fixing them. Finally, the Code Fix unit leverages the enhanced
error messages to rectify the syntax errors in the code.

2.3 Prompt Design for AI-Units
The AI units in PCR-Chain are designed to activate LLMs
for downstream tasks. There are two methods for imple-

https://openai.com/blog/introducing-chatgpt-and-whisper-apis

4

Simplename Extraction

Task description:
// Extract the simple name from the code

Example-1:

Example-5:
···

// Code:
public class Main {
 public static void main(String[] args) {
 String[] fruits = { "Apple", "Banana", "Orange" };
 for (int i = 0; i < fruits.length, i++) {
 String fruit = fruits[i];
 String capFruit = StringUtils.capitalize(fruit);
 System.out.println("Fruit " + i + ": " + capFruit);}}}

// Simple names:
StringUtils

Input: {{error code snippet}} Output: {{simple names}}

Simplename to FQN

Task description:
// Convert the simplename to FQN

Example-1:

Example-5:
···

// Simple names:
StringUtils

// FQNs:
org.apache.commons.lang3.StringUtils

Input: {{code and simple names}} Output: {{FQNs}}

// Code:
···
String capFruit = StringUtils.capitalize(fruit);
···

Error Message Enhance
Task description:
// Plain English explanation of why does running the
//above code cause an error and how to fix the problem

Example-1:

Example-5:
···

// Error Message Explanation
// The error message is indicating that there is a
syntax error on line 4. It's expecting a semicolon (;)
but instead found a comma (,).
// To fix the problem, the comma should be replaced
with a semicolon.

// Code：
···
for (int i = 0; i < fruits.length, i++) {
···
Error Message：
example.java:4: error: ';' expected
 for (int i = 0; i < fruits.length, i++) {
 ^

Input: {{code and errormsg}} Output: {{errormsg explanation}}

Code Fix

Task description:

// Fix errors in code based on error message explanation
Example-1:

Example-5:···

// Fixed Code:
···
for (int i = 0; i < fruits.length; i++) {
···

//Code：
···
for (int i = 0; i < fruits.length, i++) {
···

//Error Message explanation：
// The error message is indicating that there is a
syntax error on line 4. It's expecting a semicolon
(;) but instead found a comma (,).
// To fix the problem, the comma should be
replaced with a semicolon.

Input: {{code and errormsg explain}} Output: {{Fixed code}}

(a) (b)

(c) (d)

Fig. 3: All AI units design in approach

menting this: supervised fine-tuning and in-context learn-
ing. Supervised fine-tuning involves adjusting the weights
of the LLMs using a labeled dataset that is specific to
the task. On the other hand, in-context learning involves
conditioning the LLMs on a task description along with
some examples of the task, even if it is an unseen one.
While both methods have their own benefits, in-context
learning is more straightforward to adopt as it only requires
a task instruction along with zero or several examples. In
contrast, fine-tuning requires collecting data and making

updates to the model, which can be more time-consuming
and resource-intensive.

Taking all of these factors into account, our AI units are
developed using in-context learning. This approach allows
for simpler implementation while still providing effective
and efficient performance on a wide range of tasks.

An empirical study [11] found that descriptions and
examples are critical for in-context learning. To standardize
our prompt design, we develop a generic template that
includes a task description and input-output examples. The

5

Simplename Extraction unit serves as an example of the
template’s structure, as shown in Fig. 3(a). The template
includes a task description (e.g., “Extract the simple names
in the code”), followed by five input-output examples (e.g.,
Input: “...String capFruit = StringUtils.capitalize(fruit)...”, Out-
put: “StringUtils”). After being provided with a code, the
LLM extracts the simple names in the code.

Noted that in this work, we pre-select five examples
that are used for all AI units. While the model adaptability
generally increases with more examples [11], Min et al. [41]
have shown that additional examples beyond four results in
limited increase in accuracy.

In the following sections, we describe the prompt de-
signs for each of the four units in the PCR-Chain approach.

2.3.1 Simplename Extraction Unit
This AI unit is responsible for extracting the simple names
from the given code. To prompt the LLM to perform this
task, a generic template is used, as shown in Fig. 3(a), with
a task description of “Extract the simple names in the code”,
five input-output examples, and a placeholder to input the
code to be extracted simple names.

2.3.2 Simplename to FQN Unit
This AI unit is responsible for inferring the simple names to
FQNs. To prompt the LLM to perform this task, a generic
template is used, as shown in Fig. 3(b), with a task de-
scription of “Convert the simplename to FQN”, five input-
output examples, and a placeholder to input the code and
simplenames to convert to FQNs.

2.3.3 Error Message Enhance Unit
This AI unit is responsible for enhancing the error message
from compiler. To prompt the LLM to perform this task,
a generic template is used, as shown in Fig. 3(c), with a
task description of “Plain English explanation of why does
running the above code cause an error and how to fix the
problem”, five input-output examples, and a placeholder to
input the code and corresponding error message.

2.3.4 Code Fix Unit
This AI unit is responsible for fixing errors based on error
message explanation. To prompt the LLM to perform this
task, a generic template is used, as shown in Fig. 3(d),
with a task description of “Fix errors in code based on
error message explanation”, five input-output examples,
and a placeholder to input the code and error message
explanation.

2.4 Running Example
To illustrate how the different units work together and how
the data is transformed among them, we present an example
using a Java code that contains a non-FQN error and a
last-mile syntax error, as shown in Fig. 1(a). To start, the
Java code is input into the Simplename Extraction unit, which
identifies the simple names and extracts them. The output
of this unit is shown in Fig. 1(b). Next, the code and simple
names are fed into the Simplename to FQN unit, which infers
the FQNs for the identified simple names. The output of this
unit is shown in Fig. 1(c). Subsequently, the code and FQNs

will be input into the FQN Supplement unit, it will combine
code and FQNs. The output of this unit is shown in fig 1(d).
Then, the code with FQNs is input into the Error Judgement
unit, which utilizes a compiler to detect errors and provide
error messages. The output of this unit is shown in Fig. 1(e).
After that, the code and corresponding error message are
input into the Error Message Enhance unit, which provides
plain English explanations of why the code produces the
error and how to fix the problem. The output of this unit
is shown in Fig. 1(f). Finally, the code and the explanation
of the error message are input into the Code Fix unit, which
fixes the errors and outputs the error-free code, as shown in
Fig. 1(g).

3 EXPERIMENTS SETUP

In this section, we present our research questions (RQs) that
evaluate the effectiveness of our approach. Additionally, we
describe our experimental setup, including data prepara-
tion, baselines, and evaluation metrics.

3.1 Research Questions
We conducted the following research questions to evaluate
PCR-Chain’s performance in partial code reuse.

• RQ1: What is the quality of each unit or module in PCR-
Chain?

• RQ2: How well does PCR-Chain perform in partial code
reuse?

• RQ3: How effective are the AI Chain and error message
enhance strategies employed in PCR-Chain?

• RQ4: How sensitive are the prompts in PCR-Chain to
different forms?

3.2 Data Preparation
To evaluate the performance of our approach, we collect two
distinct datasets: one for Python and one for Java. For the
Python dataset, we randomly select 200 syntactically invalid
code snippets from the dataset used by the state-of-the-art
syntax repair tool for Python, BIFI [39]. These code snippets
were collected from real GitHub repositories.

For the Java dataset, we first crawl 30,000 posts from
Stack Overflow that are tagged with “java”, and collect the
highest up-voted answer from each post. Then we extract
Java code by identifying the text between the code block
HTML tags, i.e., <pre><code>, and identify code with
errors using a compiler. We manually filter out 200 error
codes that have non-Fully Qualified Names (FQNs) and last-
mile syntax errors.

In summary, we prepare two distinct datasets:
• Python dataset: 200 error Python code that all contain

last-mile syntax issues.
• Java dataset: 200 error Java code that all contain non-

FQNs and last-mile syntax issues.

3.3 Baselines
To evaluate the effectiveness of PCR-Chain’s overall design
and module designs, we compare it with the state-of-the-art
methods that reuse partial code. These methods fall into two
main approaches: LLM-based and ICL-based.

6

（a）

PCR-Chain-D

Task description:

// make this code compilable

Example-1:

Example-5:
···

// Error Code:
public class Main {
 public static void main(String[] args) {
 String[] fruits = { "Apple", "Banana", "Orange" };
 for (int i = 0; i < fruits.length, i++) {
 String fruit = fruits[i];
 String capFruit = StringUtils.capitalize(fruit);
 System.out.println("Fruit " + i + ": " + capFruit);}}}

// Fixed Code:
import org.apache.commons.lang3.StringUtils;
public class Main {
 public static void main(String[] args) {
 String[] fruits = { "Apple", "Banana", "Orange" };
 for (int i = 0; i < fruits.length; i++) {
 String fruit = fruits[i];
 String capFruit = StringUtils.capitalize(fruit);
 System.out.println("Fruit " + i + ": " + capFruit);}}}

Input: {{error code snippet}} Output: {{Fixed Code}}

PCR-Chain-CoT

Task description:
// 1. Extract the simple names in the code
// 2. Convert the simplename to FQN
// 3. Plain English explanation of why does running the above
// code cause an error and how to fix the problem
// 4. Fix errors in code based on error message explanation

Example-1:

Example-5:
···

// Error Code:
public class Main {
 public static void main(String[] args) {
 String[] fruits = { "Apple", "Banana", "Orange" };
 for (int i = 0; i < fruits.length, i++) {
 String fruit = fruits[i];
 String capFruit = StringUtils.capitalize(fruit);
 System.out.println("Fruit " + i + ": " + capFruit);}}}
// Fixed Code:
import org.apache.commons.lang3.StringUtils;
public class Main {
 public static void main(String[] args) {
 String[] fruits = { "Apple", "Banana", "Orange" };
 for (int i = 0; i < fruits.length; i++) {
 String fruit = fruits[i];
 String capFruit = StringUtils.capitalize(fruit);
 System.out.println("Fruit " + i + ": " + capFruit);}}}

Input: {{error code snippet}} Output: {{Fixed Code}}

（b）

Fig. 4: Consult LLM directly (PCR-D) and consult LLM based on CoT (PCR-CoT)

For Python, we compare PCR-Chain with BIFI [39], an
LLM-based SOTA method, and RING [40], an ICL-based
SOTA method. In Java, we compare PCR-Chain with CURE,
an LLM-based SOTA method, and RING. We modified the
examples in RING’s prompt to be compatible with Java,
making it possible to apply it to Java code.

To conduct the evaluation, we obtain the code for BIFI2

and CURE3 from their respective GitHub repositories, as
they are both state-of-the-art methods for reusing partial
code in Python and Java, respectively. BIFI is implemented
using an LLM-based approach in Python, while CURE is
implemented in Java using the same approach. However,
RING does not release its code, so we reproduce it as
accurately as possible.

To gain a better understanding of the mechanism behind
the PCR-Chain, we conduct an ablation study by designing
three variants:
• PCR-D (see Fig. 4(a)), which directly calls the LLM to

generate the PCR of the Java code.
• PCR-CoT (see Fig. 4(b)), a single-prompting approach

that describes all steps in one chunk of prompt text and
completes a single generative pass.

• PCR-Chainw/oEME , a multiple-prompting approach that
does not enhance the error message from compiler, that is

2. https://github.com/michiyasunaga/BIFI
3. https://github.com/lin-tan/CURE

without error message enhance (EME).
We conduct several experiments to evaluate different

aspects of our approach. First, we compare the effective-
ness of two different designs: PCR-D and PCR-CoT. Next,
we compare PCR-CoT with PCR-Chain to evaluate the
effectiveness of our AI chain design. Finally, we evaluate
the effectiveness of our error message enhancement (EME)
strategy by comparing PCR-Chainw/oEME with PCR-Chain.

3.4 Evaluation Metrics

In our study, we use different metrics to evaluate the effec-
tiveness of our approach for RQs.

For RQ1, we measure the quality of units and modules
using the accuracy metric.

For RQ2, RQ3, and RQ4, we use three metrics to evaluate
the effectiveness of our approach. These metrics are:

• Number of resolved non-FQNs: This metric counts the
code snippets that no longer contain non-FQNs after
applying our approach.

• Number of resolved last-mile syntax errors: This metric
counts the code snippets that no longer contain last-
mile syntax errors after applying our approach.

• Total number of all resolved: This metric counts all the
resolved non-FQNs and last-mile syntax errors com-
bined.

https://github.com/michiyasunaga/BIFI
https://github.com/lin-tan/CURE

7

4 EXPERIMENTAL RESULTS

In this section, we explore four research questions to evalu-
ate and discuss the performance of our method.

4.1 RQ1: What is the quality of each unit or module in
PCR-Chain?

4.1.1 Motivation

The CoT approach is a widely adopted method that ad-
vocates for breaking down complex tasks into smaller and
more manageable steps. However, relying solely on a single
“epic” prompt in CoT-based methods can limit their effec-
tiveness and lead to errors accumulating. To address this
limitation, we develop an AI chain that consists of explicit
sub-steps, with each step corresponding to a separate AI
unit or non-AI unit. In this RQ, we investigate whether each
AI unit and module in our approach can effectively ensure
the accuracy of partial code reuse.

4.1.2 Methodology

To evaluate the effectiveness of each AI unit and module in
PCR-Chain on Java dataset, we first need to obtain ground-
truth data. To do so, we enlist the help of two computer
science postgraduate students to manually fix unresolved
symbols in the Java dataset based on information present
in the posts, such as mentioned APIs and API links. One
annotator perform the fixing, while the other validate the
fixed code. Any disagreements are discussed and resolved.

Once we had the FQNs for non-FQN types in the Java
dataset, we could evaluate the Simplename Extraction unit
and Simplename to FQN unit by comparing their outputs
with the ground-truth. We consider an exact match to be
correct. For the Error Message Enhance unit, we do not
evaluate the accuracy, as our approach allows this unit to be
noisy. As long as some relevant and correct error message
explanation is inferred, the subsequent Code Fix unit could
make repairs.

Regarding the Code Fix unit, we consider an output as
correct if the code snippet is free of any last-mile syntax er-
rors. The results are presented in Table 1, and more detailed
information can be found in Section 3.4.

4.1.3 Result Analysis

The second column of Table 1 presents the accuracy of each
unit. Specifically, the Simplename Extraction unit of the FQN
Inference Module correctly predicts 95.7% (815 out of 851)
of the simple names in the 200 code snippets, while the
Simplename to FQN unit infers 92.1% (781 out of 851) of the
corresponding FQNs. In contrast, for the Syntax Error Fix
Module, the Code Fix unit accurately fixes 98% (196 out of
200) of the code snippets that contain last-mile syntax errors.

The accuracy of each module is shown in the fourth
column of Table 1. For the FQN Inference module, it takes
in 200 code snippets and outputs 161 code snippets without
any non-FQNs, resulting in an accuracy of 80.5%. On the
other hand, for the Syntax Error Fix module, it takes in 200
code snippets and outputs 196 code snippets that are free of
last-mile syntax errors, achieving an accuracy of 98%.

TABLE 1: The Quality of AI Units and Modules

AI unit Acc Module Acc
Simplename Extraction 0.957 FQN Inference 0.805Simplename to FQN 0.921

Code Fix 0.980 Syntax Error 0.980

The high accuracy of the units confirms the usefulness of the
prompt design and lays the foundation for high-quality modules.
The successful execution of modules shows the value of prompt
composition in linking units to achieve superior outcomes for
higher-level tasks.

4.2 RQ2: How well does PCR-Chain perform in partial
code reuse?

4.2.1 Motivation
Our objective is to evaluate the effectiveness of our method
in terms of partial code reuse and compare it with the SOTA
methods such as BIFI [39], CURE [27] and RING [40] in
both dynamically-typed (Python) and statically-typed (Java)
programming languages.

For Python, we will compare our method with two
SOTA methods, RING (ICL-based) and BIFI (LLM-based).
Similarly, for Java, we will compare our method with two
SOTA methods, RING (ICL-based) and CURE (LLM-based).

To evaluate the performance of these methods, we will
use three metrics: the number of resolved non-FQNs, the
number of resolved last-mile syntax errors, and the total
number of all resolved, which refers to all non-FQNs and
last-mile syntax errors that are resolved.

4.2.2 Methodology
We evaluate the performance of PCR-Chain, BIFI, and RING
on the Python dataset, and PCR-Chain, CURE, and RING
on the Java dataset. The results are presented in Table 2 and
more detailed information can be found in Section 3.4.

4.2.3 Result Analysis
Our evaluation demonstrates that our method is effec-
tive in addressing partial code reuse in both dynamically-
typed (Python) and statically-typed (Java) programming
languages.

For Python, we fix the last-mile syntax errors included
in the Code. As shown in Table 2, our method outperforms
all baselines, with an accuracy of 99% in resolving 198
last-mile syntax errors. Notably, our accuracy is about 5%
and 13.7% higher than RING and BIFI, respectively. This
demonstrates that there is sufficient syntax knowledge in
LLM to efficiently address last-mile syntax errors.

For Java, we address both non-FQNs and last-mile syn-
tax errors simultaneously, achieving an accuracy of 80.5%.
As shown in Table 2, compared with RING and CURE, our
method can effectively solve both non-FQNs and last-mile
syntax errors, while RING and CURE only address the latter.
This difference in performance can be attributed to the fact
that RING and CURE directly ask LLMs to make partial
code compilable, which can be a challenging task. However,
LLMs may only fix some syntax errors and struggle to infer
FQNs for non-FQN types.

8

Since LLMs are language models, both FQNs and non-
FQNs represent correct type names from the point of view of
language features. This can lead LLMs to mistakenly regard
code with non-FQNs as compilable, even if it contains errors
due to non-imported packages. However, in reality, such
code may fail to compile despite having no syntax errors,
precisely because it includes non-FQNs.

As shown in Fig. 1-A, when directly querying the
LLM with the prompt “make this code compilable”,
the LLM still responds with uncompilable code. In
contrast, our method interacts with LLMs step-by-step
using the AI chain, thus allowing us to effectively
address both non-FQNs and last-mile syntax errors.

Standing on the shoulder of LLM for partial code reuse, PCR-
Chain effectively resolves FQNs and fixes last-mile syntax
errors. Each AI unit in the AI Chain follows the principle of
single responsibility and can interact with LLMs separately to
effectively reuse partial code.

4.3 RQ3: How effective are the AI Chain and error mes-
sage enhance strategies employed in PCR-Chain?

4.3.1 Motivation

CoT can alleviate the challenge posed by directly relying on
LLMs, such as the challenge of LLMs mistakenly regarding
code with non-FQNs as compilable. However, CoT-based
approaches face difficulties in control and optimization due
to the “epic” cues with excessive accountability. To solve this
problem, we design an AI chain that facilitates step-by-step
interaction with the LLM to effectively tackle both non-FQN
and last-mile syntax errors.

In this RQ, we aim to investigate two aspects of our
approach. Firstly, we would like to explore whether our
AI chain design can effectively interact with LLMs, thus
enhancing the robustness of our approach. Secondly, we
would like to investigate whether the error message enhance
strategy could enhance the effectiveness of our AI chain.

4.3.2 Methodology

We set up three approach variants (PCR-D, PCR-CoT, and
PCR-Chainw/oEME). Two scenarios (PCR-D vs. PCR-CoT,
PCR-CoT vs. PCR-Chain) are used to evaluate the effec-
tiveness of the AI chain. The last one scenario (PCR-
Chainw/oEME vs. PCR-Chain) is used to evaluate the ef-
fectiveness of error message enhance strategy. The results
are presented in Table 3, and more detailed information can
be found in Section 3.4.

4.3.3 Result Analysis

The experimental results are presented in Table 3. For PCR-
D, both the number of resolved non-FQNs and resolved
last-mile syntax errors are fewer than PCR-CoT. This is
because when directly asking LLMs to make code compi-
lable, LLMs may mistakenly regard code with non-FQNs
as compilable, even if it has missing imported packages. As
shown in Fig. 1-A, when directly querying the LLM with the
prompt “make this code compilable”, the LLM still responds
with uncompilable code. However, the CoT-based prompt is
more informative than PCR-D’s prompt.

PCR-CoT shows fewer number of resolved non-FQNs
and resolved last-mile syntax errors compared to PCR-
Chain. This highlights the superiority of our AI chain de-
sign over CoT’s single-prompting approach, which uses
an “epic” prompt with hard-to-control behavior and error
accumulation.

In contrast, PCR-Chain breaks down the CoT into sepa-
rate AI units, allowing step-by-step interaction with LLMs
for partial code reuse. The last two rows of the Table 3
demonstrate that the error message enhancement strategy
improves PCR-Chain’s effectiveness in reusing partial code.
Compared with directly asking the LLM to achieve code reuse,
our AI chain design that interacts with the LLM can effectively
improve the response reliability of the LLM. Our error message
enhancement strategy can reuse partial code more effectively.

4.4 RQ4: How sensitive are the prompts in PCR-Chain
to different forms?
4.4.1 Motivation
To further explore the impact of prompt forms on results, we
investigate the task description, demonstration examples,
and content representation of the prompt.

4.4.2 Methodology
To investigate the impact of task description, we explore
prompts with and without task descriptions. Additionally,
we examine the impact of the order of demonstration ex-
amples, considering different orders such as order, reverse
order, and fixed order based on cosine similarity between
the prompt’s input and the examples.

For content representation, we focus on the format of
representation, whether it is in natural language or a semi-
structured form using specific tags. For example, the prompt
can be expressed as either “Task Description: Extract the simple
name from the code.” in natural language form or as “<Task
Description> Extract the simple name from the code</Task
Description>.” in a semi-structured form. We use the Java
dataset in this RQ.

Before conducting our experiments, we define a basic
configuration based on our intuition of what options would
be most effective for PCR-Chain. The basic configuration in-
cludes a task description, example prompts in a fixed order,
and the use of natural language form in the prompt. We
then create variant configurations by changing one factor at
a time (task description, order of demonstration examples,
content representation), while keeping the other two factors
the same as in the basic configuration.

4.4.3 Result Analysis
The results reveal that including a task description improves
the LLM’s understanding of tasks, as there were two fewer
effective code reuses observed without a task description
compared to with a task description.

The order of demonstration examples significantly im-
pacts the LLM’s effectiveness. Presenting the most similar
example first (i.e., with the most similar example farthest
from the prompt’s input) resulted in the worst accuracy,
with 153 out of 200 codes reused, while presenting the
most dissimilar example first (i.e., with the most similar
example closest to the prompt’s input) led to the best

9

TABLE 2: Evaluations Results of Multiple Languages (“-” means this error do not contain in this dataset)

Dataset Approach Resolved Non-FQNs Resolved Last-mile Syntax Errors All Resolved

Python
RING - 188 188
BIFI - 174 174
PCR - 198 198

Java
RING 0 188 0
CURE 0 137 0
PCR 161 196 161

TABLE 3: Ablation Results of PCR-Chain Variants (“-” means this error do not contain in this dataset)

Strategies Dataset Resolved Non-FQNs Resolved Last-mile Syntax Errors All Resolved

PCR-Chain Java 161 196 161
Python - 198 198

PCR-D Java 101 188 101
Python - 188 188

PCR-CoT Java 141 190 141
Python - 190 190

PCR-Chainw/oEME
Java 146 190 146

Python - 180 180

TABLE 4: Results of Sensitivity of Prompt (+/-Value Against The Basic Config)

Factor Variant Resolved Non-FQNs
Resolved Last-mile

Syntax Errors All Resolved

Basic Config 161 196 161
Task Description Not Provided -2 -3 -2

Order of Demonstration Examples Similar First -8 -4 -8
Dissimilar First +1 +1 +1

Content Representation Semi-Structured -8 -2 -8

accuracy, with 162 out of 200 codes reused. This indicates
that the LLM is highly influenced by the example closest
to the prompt’s input.The results of content representation
experiment shows that using natural language prompts
reuses 8 more code snippets than using semi-structured
forms. This highlights the importance of natural language
over semi-structured forms in promoting effective code
reuse. While semi-structured forms may improve prompt
organization and clarity, they weaken the LLM’s learn-
ing ability. In contrast, natural language prompts facili-
tate better learning and enhance the LLM’s effectiveness.

Although studies [42]–[44] show LLMs are sensitive to prompt
factors, our approach remains overall stable in reusing partial
code in face of variant prompt factors. Our intuition of the
effectiveness of factor variants largely holds, except for prompt
order of demonstration example. This indicates the necessity to
combine intuition and empirical evidences in prompt design.

5 DISCUSSION
In this section, we summarize the principles of AI chain and
prompt design patterns, and also discuss potential threats
to validity.

5.1 Prompt Engineering Principles

Our experiments highlight the importance of improving
the reliability of LLM responses through the design of an

informative CoT and the creation of an effective AI chain
with multiple single-responsibility, composable steps.

In designing an AI chain, we propose three principles:

• Hierarchical Task Breakdown: Breaking down a prob-
lem into modules, submodules, and further breaking
them down into functional units, facilitating a struc-
tured problem-solving approach.

• Unit Composition: Connecting functional units in a
specific structure enables cohesive functioning of the
AI chain and achieves optimal results.

• Mixing of AI Units and non-AI Units: Designing logic
functional units as non-AI units, and utilizing the LLM
for fuzzy logic functional units through prompt design.

We believe that prompt engineering will play a crucial
role in the future of problem-solving. The principles offer
valuable guidance for designing AI chains and maximiz-
ing the potential of LLM-based paradigms for effective
problem-solving.

5.2 Threats to Validity

Our method faces both internal and external threats. An
internal threat is the potential inconsistency in the manually
labeled ground-truth data in the Java dataset. To mitigate
this, we employ two annotators to label simultaneously
and measure the consistency of the results using the Kappa
coefficient. A high Kappa coefficient (all coefficients above
80%) indicates the reliability of the annotation results.

10

In terms of external threats, our research on partial
code reuse has focused on the Java and Python. However,
to expand the universality of our approach, we plan to
investigate code reuse in niche languages such as smart
contract code.

Compared to traditional code reuse methods that require
expertise in program analysis and significant engineering
and maintenance efforts for different languages and their
versions, our method offers greater adaptability. Adapting
our approach to other languages mainly involves substitut-
ing the language type in the prompt examples.

The emergence of new large-scale LLMs, such as GPT-
4 [45], [46], may impact our method. Although we are
currently on the waitlist for access to GPT-4, we eagerly
anticipate using it in the future to validate the effectiveness
and universality of our approach.

6 RELATED WORK

Partial code reuse is a common practice among developers,
involving the copying and pasting of code snippets from
online resources like Stack Overflow into Integrated De-
velopment Environments (IDEs). However, unresolved type
and last-mile syntax errors often hinder the compilation of
partial code. To address these issues, several related works
have been conducted in recent years.

TABLE 5: Method Comparison

Non-FQN
Last-mile

Syntax Error Approach-Based

SNR [14] " % Symbolic-Based
Sumit [19] % " Symbolic-Based
Huang [8] " % LLM-Based
CURE [27] % " LLM-Based
RING [40] % " ICL-Based
PCR-Chain " " CoT-Based

Table 5 presents a comparison of different methods for
resolving non-fully qualified name (non-FQN) errors and
fixing last-mile syntax errors.

Symbolic-based methods like SNR [14] and Sumit [19]
are commonly used to resolve non-fully qualified name
(non-FQN) errors or fix last-mile syntax errors. However,
these methods may encounter out-of-vocabulary (OOV) fail-
ures and require significant engineering effort to develop
and program analysis/fix experience.

Built on source code naturalness, recent approaches have
overcome these by training or fine-tuning a LLM. For ex-
ample, Huang et al. [8]utilize the prompt-tuned LLM to
resolve types, and CURE [27] use a LLM fine-tuned by an
automated program repair task to fix syntax errors. How-
ever, LLM-based methods typically require a large amount
of data and computing resources to train efficient models.
Instead, Brown et al. [28] propose a more lightweight ap-
proach called in-context learning (ICL).

ICL is a novel paradigm that allows foundation models
to adapt to new tasks without extensive training or updates.
Instead of relying on gradient updates [33]–[35], ICL uti-
lizes zero- or few-shot prompts for task adaptation. This
paradigm has been successfully applied in range of software
engineering tasks, such as testing [47], code generation [48],

and GUI automation [49]. RING [40] used an ICL-based
method to fix last-mile syntax errors, avoiding the need to
train or fine-tune a LLM. However, this approach does not
address non-FQN errors.

Our method, PCR-Chain, differs from RING by not di-
rectly querying the LLM with simple prompts like “make
this code compilable.” Instead, we leverage the idea of
CoT to address both non-FQN and last-mile syntax errors.
However, existing CoT approaches only provide simple
instructions like “let’s do something step by step.” which
cannot handle complex tasks. In contrast, our approach is
based on an AI chain [36], [50], [51] that interacts with the
model to reuse partial code. While the idea of an AI chain
has been explored for writing assistants [36], our AI chain
involves complex task analysis and data flow for domain-
specific partial code reuse.

7 CONCLUSION AND FUTURE WORK
In this paper, we propose a novel approach for partial
code reuse that utilizes the vast amount of code knowledge
stored in LLMs. Our approach involves a CoT consisting
of six steps, including Simplename Extraction, Simplename
to FQN, FQN Supplement, Error Judgement, Error Message
Enhance, and Code Fix.

To adhere to the single responsibility principle, we
decompose the CoT into an AI chain and supplement it
with effective prompt instructions. Our approach outper-
forms traditional LLM-based methods and the original CoT
method in terms of code reuse rates. With the lower cost of
building LLM-based partial code reuse tools compared to
traditional symbolic-based approaches, our method offers
a new LLM-based alternative for software engineering tool
development.

Our approach provides a practical and cost-effective so-
lution for software engineering tools, reducing the need for
extensive engineering and maintenance work. We also intro-
duce practical principles for using just-in-time engineering
and AI chains in SE tasks, demonstrating the potential of
LLM4SE. By leveraging the underlying model, we can focus
on identifying the problems that AI needs to solve, rather
than investing in data collection, labeling, model training,
or program analysis. Our code and data package can be
found here.4

8 ACKNOWLEDGEMENTS

The work is supported by National Nature Science Founda-
tion of China (Nos. 62262031), and Science and Technology
Key Project of Education Department of Jiangxi Province
GJJ2200302, GJJ2200303, GJJ2200304, GJJ210307).

REFERENCES

[1] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R
Klemmer. Example-centric programming: integrating web search
into the development environment. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 513–522,
2010. 1

4. https://github.com/SE-qinghuang/A-Chain-of-AI-based-
Solutions-for-Resolving-FQNs-and-Fixing-Syntax-Errors-in-Partial-
Code

https://github.com/SE-qinghuang/A-Chain-of-AI-based-Solutions-for-Resolving-FQNs-and-Fixing-Syntax-Errors-in-Partial-Code
https://github.com/SE-qinghuang/A-Chain-of-AI-based-Solutions-for-Resolving-FQNs-and-Fixing-Syntax-Errors-in-Partial-Code
https://github.com/SE-qinghuang/A-Chain-of-AI-based-Solutions-for-Resolving-FQNs-and-Fixing-Syntax-Errors-in-Partial-Code

11

[2] Margaret-Anne Storey, Leif Singer, Brendan Cleary, Fernando
Figueira Filho, and Alexey Zagalsky. The (r) evolution of social
media in software engineering. Future of software engineering
proceedings, pages 100–116, 2014. 1

[3] Ke Mao, Licia Capra, Mark Harman, and Yue Jia. A survey of the
use of crowdsourcing in software engineering. Journal of Systems
and Software, 126:57–84, 2017. 1

[4] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, and Michele Lanza. Mining stackoverflow to turn the
ide into a self-confident programming prompter. In Proceedings
of the 11th working conference on mining software repositories, pages
102–111, 2014. 1

[5] Le An, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol. Stack
overflow: A code laundering platform? In 2017 IEEE 24th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 283–293. IEEE, 2017. 1

[6] Di Yang, Pedro Martins, Vaibhav Saini, and Cristina Lopes. Stack
overflow in github: any snippets there? In 2017 IEEE/ACM 14th In-
ternational Conference on Mining Software Repositories (MSR), pages
280–290. IEEE, 2017. 1

[7] Valerio Terragni, Yepang Liu, and Shing-Chi Cheung. Csnippex:
automated synthesis of compilable code snippets from q&a sites.
In Proceedings of the 25th international symposium on software testing
and analysis, pages 118–129, 2016. 1

[8] Qing Huang, Zhiqiang Yuan, Zhenchang Xing, Xiwei Xu, Liming
Zhu, and Qinghua Lu. Prompt-tuned code language model as
a neural knowledge base for type inference in statically-typed
partial code. arXiv preprint arXiv:2208.05361, 2022. 1, 5, 6

[9] Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Lingx-
iao Jiang, and David Lo. Semantic patches for java program
transformation (experience report). In 33rd European Conference
on Object-Oriented Programming (ECOOP 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2019. 1

[10] CM Khaled Saifullah, Muhammad Asaduzzaman, and Chanchal K
Roy. Learning from examples to find fully qualified names of api
elements in code snippets. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 243–254.
IEEE, 2019. 1

[11] Qing Huang, Dianshu Liao, Zhenchang Xing, Zhiqiang Yuan,
Qinghua Lu, Xiwei Xu, and Jiaxing Lu. Se factual knowledge in
frozen giant code model: A study on fqn and its retrieval, 2022. 1,
2.3

[12] Qing Huang, Zhiqiang Yuan, Zhenchang Xing, Zhengkang Zuo,
Changjing Wang, and Xin Xia. 1+1>2: Programming know-
what and know-how knowledge fusion, semantic enrichment and
coherent application. ArXiv, abs/2207.05560, 2022. 1

[13] Rohan Bavishi, Harshit Joshi, José Cambronero, Anna Fariha,
Sumit Gulwani, Vu Le, Ivan Radiček, and Ashish Tiwari. Neu-
rosymbolic repair for low-code formula languages. Proceedings of
the ACM on Programming Languages, 6(OOPSLA2):1093–1122, 2022.
1

[14] Yiwen Dong, Tianxiao Gu, Yongqiang Tian, and Chengnian Sun.
Snr: constraint-based type inference for incomplete java code snip-
pets. In Proceedings of the 44th International Conference on Software
Engineering, pages 1982–1993, 2022. 1, 5, 6

[15] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes.
Live api documentation. In Proceedings of the 36th international
conference on software engineering, pages 643–652, 2014. 1

[16] Vidroha Debroy and W Eric Wong. Using mutation to automati-
cally suggest fixes for faulty programs. In 2010 Third International
Conference on Software Testing, Verification and Validation, pages 65–
74. IEEE, 2010. 1

[17] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr
Polozov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn
Hartmann. Learning syntactic program transformations from
examples. In 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE), pages 404–415. IEEE, 2017. 1

[18] Ke Wang, Rishabh Singh, and Zhendong Su. Search, align, and
repair: data-driven feedback generation for introductory program-
ming exercises. In Proceedings of the 39th ACM SIGPLAN conference
on programming language design and implementation, pages 481–495,
2018. 1

[19] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. Automated
clustering and program repair for introductory programming
assignments. ACM SIGPLAN Notices, 53(4):465–480, 2018. 1, 5,
6

[20] Premkumar T. Devanbu. On the naturalness of software. 2012
34th International Conference on Software Engineering (ICSE), pages
837–847, 2012. 1

[21] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and
Charles Sutton. A survey of machine learning for big code and
naturalness. ACM Computing Surveys (CSUR), 51:1 – 37, 2018. 1

[22] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng
Tu, Alberto Bacchelli, and Premkumar Devanbu. On the” nat-
uralness” of buggy code. In Proceedings of the 38th International
Conference on Software Engineering, pages 428–439, 2016. 1

[23] Ahmed Khanfir, Matthieu Jimenez, Mike Papadakis, and Yves Le
Traon. Codebert-nt: code naturalness via codebert. arXiv preprint
arXiv:2208.06042, 2022. 1

[24] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng
Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang,
and Ming Zhou. Codebert: A pre-trained model for programming
and natural languages. ArXiv, abs/2002.08155, 2020. 1

[25] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi.
Codet5: Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021. 1

[26] ”github copilot. your ai pair programmer” [online]. avail-
able:https://copilot.github.com/. 1

[27] Nan Jiang, Thibaud Lutellier, and Lin Tan. Cure: Code-aware
neural machine translation for automatic program repair. In 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), pages 1161–1173. IEEE, 2021. 1, 4.2.1, 5, 6

[28] Tom Brown, Benjamin Mann, Amanda Ryder, et al. Language
models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020. 1, 6

[29] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence
Carin, and Weizhu Chen. What makes good in-context examples
for gpt-3? arXiv preprint arXiv:2101.06804, 2021. 1

[30] Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Ha-
jishirzi. Metaicl: Learning to learn in context. arXiv preprint
arXiv:2110.15943, 2021. 1

[31] Stephanie CY Chan, Adam Santoro, Andrew K Lampinen, Jane X
Wang, Aaditya Singh, Pierre H Richemond, Jay McClelland, and
Felix Hill. Data distributional properties drive emergent in-context
learning in transformers. arXiv preprint arXiv:2205.05055, 2022. 1

[32] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis,
Hannaneh Hajishirzi, and Luke Zettlemoyer. Rethinking the role
of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022. 1

[33] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al.
Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020. 1, 6

[34] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. Language models are unsupervised multitask
learners. 2019. 1, 6

[35] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage models are few-shot learners. ArXiv, abs/2005.14165, 2020.
1, 6

[36] Tongshuang Wu, Michael Terry, and Carrie Jun Cai. Ai chains:
Transparent and controllable human-ai interaction by chaining
large language model prompts. In CHI Conference on Human Factors
in Computing Systems, pages 1–22, 2022. 1, 6

[37] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H.
Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou.
Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Repre-
sentations, 2023. 1

[38] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma,
Ed Chi, Quoc Le, and Denny Zhou. Chain of thought prompt-
ing elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022. 1

[39] Michihiro Yasunaga and Percy Liang. Break-it-fix-it: Unsupervised
learning for program repair. In International Conference on Machine
Learning, pages 11941–11952. PMLR, 2021. 1, 3.2, 3.3, 4.2.1

12

[40] Harshit Joshi, José Cambronero, Sumit Gulwani, Vu Le, Ivan
Radicek, and Gust Verbruggen. Repair is nearly generation: Multi-
lingual program repair with llms. arXiv preprint arXiv:2208.11640,
2022. 1, 3.3, 4.2.1, 5, 6

[41] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis,
Hannaneh Hajishirzi, and Luke Zettlemoyer. Rethinking the role
of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 11048–11064, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguis-
tics. 2.3

[42] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-
trained language models better few-shot learners. arXiv preprint
arXiv:2012.15723, 2020. 4.4.3

[43] Ning Ding, Yulin Chen, Xu Han, Guangwei Xu, Pengjun Xie,
Hai-Tao Zheng, Zhiyuan Liu, Juanzi Li, and Hong-Gee Kim.
Prompt-learning for fine-grained entity typing. arXiv preprint
arXiv:2108.10604, 2021. 4.4.3

[44] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh.
Calibrate before use: Improving few-shot performance of language
models. In International Conference on Machine Learning, pages
12697–12706. PMLR, 2021. 4.4.3

[45] Harsha Nori, Nicholas King, Scott Mayer McKinney, Dean Carig-
nan, and Eric Horvitz. Capabilities of gpt-4 on medical challenge
problems. arXiv preprint arXiv:2303.13375, 2023. 5.2

[46] Qing Lyu, Josh Tan, Mike E Zapadka, Janardhana Ponnatapuram,
Chuang Niu, Ge Wang, and Christopher T Whitlow. Translating
radiology reports into plain language using chatgpt and gpt-4 with
prompt learning: Promising results, limitations, and potential.
arXiv preprint arXiv:2303.09038, 2023. 5.2

[47] Bei Chen, Fengji Zhang, A. Nguyen, Daoguang Zan, Zeqi Lin,
Jian-Guang Lou, and Weizhu Chen. Codet: Code generation with
generated tests. ICLR, 2023. 6

[48] Antonio Mastropaolo, Luca Pascarella, Emanuela Guglielmi, Mat-
teo Ciniselli, Simone Scalabrino, Rocco Oliveto, and Gabriele
Bavota. On the robustness of code generation techniques: An
empirical study on github copilot. 2023. 6

[49] Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che, Yuekai Huang,
Jun Hu, and Qing Wang. Fill in the blank: Context-aware au-
tomated text input generation for mobile gui testing. ArXiv,
abs/2212.04732, 2022. 6

[50] Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Ale-
jandra Molina, Michael Terry, and Carrie J Cai. Promptchainer:
Chaining large language model prompts through visual program-
ming. In CHI Conference on Human Factors in Computing Systems
Extended Abstracts, pages 1–10, 2022. 6

[51] Hai Dang, Lukas Mecke, Florian Lehmann, Sven Goller, and
Daniel Buschek. How to prompt? opportunities and challenges
of zero-and few-shot learning for human-ai interaction in creative
applications of generative models. arXiv preprint arXiv:2209.01390,
2022. 6

QING HUANG is an Associate Pro-
fessor in the School of Computer and
Information Engineering, Jiangxi Nor-
mal University. His research interests
are software engineering and knowledge
graph.

Jiahui Zhu is a first-year graduate stu-
dent in the School of Computer and
Information Engineering, Jiangxi Nor-
mal University. His research interests are
software engineering and program re-
pair.

Zhenchang Xing is an Associate Profes-
sor in the Research School of Computer
Science, Australian National University.
His research areas are software engineer-
ing, applied data analytics, and human-
computer interaction.

Huan Jin is currently an associate pro-
fessor at Jiangxi University of Technol-
ogy’s School of Information Engineer-
ing. Her research interests are in data
mining and service-oriented software
engineering.

Changjing Wang is a Professor in the
School of Computer and Information
Engineering, Jiangxi Normal University,
China. His research interests are Web
service and formal method.

Xiwei Xu is a Senior Research Scientist
with Architecture& Analytics Platforms
Team, Data61, CSIRO. She is also a Con-
joint Lecturer with UNSW. She started
working on blockchain since 2015. Her
main research interest is software archi-
tecture. She also does research in the ar-
eas of service computing, business pro-
cess, and cloud computing and depend-
ability.

	Introduction
	APPROACH
	Hierarchical Task Breakdown
	Hierarchical Module Decomposition
	Prompt Design for AI-Units
	Simplename Extraction Unit
	Simplename to FQN Unit
	Error Message Enhance Unit
	Code Fix Unit

	Running Example

	Experiments Setup
	Research Questions
	Data Preparation
	Baselines
	Evaluation Metrics

	EXPERIMENTAL RESULTS
	RQ1: What is the quality of each unit or module in PCR-Chain?
	Motivation
	Methodology
	Result Analysis

	RQ2: How well does PCR-Chain perform in partial code reuse?
	Motivation
	Methodology
	Result Analysis

	RQ3: How effective are the AI Chain and error message enhance strategies employed in PCR-Chain?
	Motivation
	Methodology
	Result Analysis

	RQ4: How sensitive are the prompts in PCR-Chain to different forms?
	Motivation
	Methodology
	Result Analysis

	DISCUSSION
	Prompt Engineering Principles
	Threats to Validity

	Related Work
	CONCLUSION AND FUTURE WORK
	Acknowledgements
	References

