
ar
X

iv
:2

40
1.

17
45

9v
1

 [
cs

.C
R

]
 3

0
Ja

n
20

24

A Preliminary Study on Using Large Language

Models in Software Pentesting

Kumar Shashwat

University of South Florida

kshashwat@usf.edu

Francis Hahn

University of South Florida

fhahn@usf.edu

Xinming Ou

University of South Florida

xou@usf.edu

Dmitry Goldgof

University of South Florida

goldgof@usf.edu

Lawrence Hall

University of South Florida

lohall@usf.edu

Jay Ligatti

University of South Florida

ligatti@usf.edu

S. Raj Rajagopalan

Resideo

siva.rajagopalan@resideo.com

Armin Ziaie Tabari

CipherArmor

tabari@Cipherarmor.com

Abstract—Large language models (LLM) are perceived to
offer promising potentials for automating security tasks, such
as those found in security operation centers (SOCs). As a first
step towards evaluating this perceived potential, we investigate
the use of LLMs in software pentesting, where the main task
is to automatically identify software security vulnerabilities in
source code. We hypothesize that an LLM-based AI agent can
be improved over time for a specific security task as human
operators interact with it. Such improvement can be made, as a
first step, by engineering prompts fed to the LLM based on the
responses produced, to include relevant contexts and structures so
that the model provides more accurate results. Such engineering
efforts become sustainable if the prompts that are engineered
to produce better results on current tasks, also produce better
results on future unknown tasks. To examine this hypothesis,
we utilize the OWASP Benchmark Project 1.2 which contains
2,740 hand-crafted source code test cases containing various
types of vulnerabilities. We divide the test cases into training
and testing data, where we engineer the prompts based on the
training data (only), and evaluate the final system on the testing
data. We compare the AI agent’s performance on the testing
data against the performance of the agent without the prompt
engineering. We also compare the AI agent’s results against those
from SonarQube, a widely used static code analyzer for security
testing. We built and tested multiple versions of the AI agent
using different off-the-shelf LLMs – Google’s Gemini-pro, as
well as OpenAI’s GPT-3.5-Turbo and GPT-4-Turbo (with both
chat completion and assistant APIs). The results show that using
LLMs is a viable approach to build an AI agent for software
pentesting that can improve through repeated use and prompt
engineering.

I. INTRODUCTION

Large language models (LLMs) have made massive ad-

vancements in recent years. It has been hoped that LLMs can

play a pivotal role in automating cyber security operations,

denting the asymmetric advantages enjoyed by adversaries.

LLMs have demonstrated human-like reasoning capabilities

that are likely useful for analyzing security events, such as

those found in a security operations center (SOC). Companies

are racing to embrace LLMs in security service offerings, e.g.,

Microsoft’s Security Co-pilot 1. However, there is currently

very little information available regarding how these systems

1https://www.microsoft.com/en-us/security/business/ai-machine-learning/microsoft-security-copilot

are designed and very little evidence regarding the effective-

ness of using LLMs in the security domain. Recently, using

LLMs in security pentesting has attracted some interest [2],

[3]. Using LLMs in pentesting shares many similarities using

LLMs in SOC operations. Both need to address the large

amounts of false alarms, and the ability of “hunting” for

attacks/vulnerabilities that are not readily reported by existing

tools. The reasoning involved in these security operations is

often nuanced and context-relevant. It is hard to build a one-

size-fit-all tool that can handle all situations, and thus human

involvement is needed for the reasoning to move forward and

for making a final decision. The challenge is that human’s

brains, while more capable handling the nuanced situations

than a computer program, are bandwidth-limited and can easily

succumb to burnout [7] from repeated tasks with similar

structures. Unlike a traditional computer program, an LLM

can be trained on large amounts of data and produce responses

to queries (prompts) that often times demonstrate the type of

nuanced reasoning capability of a human brain. Thus using

LLMs in these security tasks has the potential to automate

those tasks that are hard to automate using traditional computer

programs.

In this paper we evaluate the viability of using LLMs in

software pentesting. In the software development life cycle,

pentesting is often considered one of the last steps [9]. The de-

velopment team and the pentesting team often work separately

– remotely or in different locations, which adds a barrier to

communication between them. Given the workload of a regular

pentester it is hard for them to go through the code files line

by line and craft a software pentesting plan curated just for

a specific codebase. They often end up testing things that are

limited to their information and expertise. Software pentesters

use a number of tools for checking program source code and

identifying vulnerabilities, such as Fortify2 and SonarQube3.

These tools often report a large number of findings that turn

out to be false alarms. Large numbers of false alarms lead

to pentester fatigue, and eventually ignoring code analyzer’s

2https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
3https://www.sonarsource.com/lp/products/sonarqube/static-code-analysis/

http://arxiv.org/abs/2401.17459v1
https://www.microsoft.com/en-us/security/business/ai-machine-learning/microsoft-security-copilot
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer

output altogether. It would be ideal if these automated tools

can “learn from” the pentesters as to why certain findings

are false alarms, and use the learned knowledge to refine

future output for the pentesters. This would only be possible

for a traditional computer program if the developer of the

tool is involved in its usage and modify the tool based on

the observed deficiencies. However this is unrealistic since

developers of tools and the tools’ users (pentesters) work under

quite different constraints and paces. The feedback loop from

users to developers and back to users (revised tool) is too long

to produce any practical impact. LLMs, on the other hand,

can be “trained” on the fly in various ways. One approach

is through providing more prompts that offer the needed

knowledge and context, so that the same LLM model can

produce responses that match better with users’ expectations.

This may lead to a dynamic AI security agent that can adapt

to the specific usage environment and become more efficient

as it interacts with the human user.

To evaluate this hypothesis, we built a number of AI agents

using OpenAI’s GPT models [1], [6] and Google’s Gemini

model [8]. Specifically, we used the LLMs GPT-3.5-Turbo,

GPT-4-Turbo, and Gemini-pro. For the GPT models, we built

two agents for each model, one using the Chat Completions

API4 and the other using the Assistants API5. We designed

prompts for these LLMs and feed the program source code

to them. We then ask a question to the LLMs about what

vulnerabilities are present in the source code and the location

(line number) of the vulnerability. We use the test cases

published in the OWASP Benchmark Project6 to evaluate the

accuracy of these AI agents. The benchmark contains 2740

Java programs with a variety of vulnerabilities such as SQL

injection, cross-site scripting, weak hashing algorithm, and so

on. We compare the results against SonarQube which is a

widely tool used in software industry for checking software

source code for vulnerabilities. SonarQube also performs

better on the OWASP benchmark than the majority of other

static software pentesting tools. To examine the capability for

the AI agent to be improved through prompt engineering, we

divided the benchmark’s test cases into training and testing

set. The prompts used in the agents are augmented based

on observing the agents’ responses on the training set. The

goal of augmenting the prompts is to add guidance specific

to the category of the task the LLM is currently trying to

accomplish so that higher accuracy can be achieved. The new

prompts are then tested on the testing set, which has never been

seen during the prompt engineering process. We compare the

performance of the AI agents using the original base prompts,

and the agents using the augmented prompts. We observed the

following.

1) Without prompt engineering, the LLMs’ accuracy is

either below or on par with that of SonarQube.

2) With prompt engineering, GPT-4-Turbo using the Assis-

4https://platform.openai.com/docs/guides/text-generation
5https://platform.openai.com/docs/assistants/overview
6https://owasp.org/www-project-benchmark/

tants API demonstrated substantial improvements on the

accuracy, outperforming or being on par with SonarQube

in most of the vulnerability categories.

These results show that there is a viable path for using LLM

to build an AI agent that can be constantly improved through

prompt engineering driven by usage. We further compared the

cases where an LLM model performs differently. The analysis

shows that a key reason why LLMs cannot perform better is

the insufficient understanding of program code flow.

II. BACKGROUND

A. Software Pentesting

Software pentesting’s goal is to identify security vulner-

abilities in program code. It is widely used as part of a

company’s secure software development life cycle [4]. Tools

used in software pentesting are divided into two categories:

static application security testing (SAST) tools and dynamic

application security testing (DAST) tools. The work described

in this paper focuses on SAST only.

B. OWASP Benchmark

Vulnerability Area True Positive False Positive Total

Command Injection 126 125 251

Weak Cryptography 130 116 246

Weak Hashing 129 107 236

LDAP Injection 27 32 59

Path Traversal 133 135 268

Secure Cookie Flag 36 31 67

SQL Injection 272 232 504

Trust Boundary Violation 83 43 126

Weak Randomness 218 275 493

XPATH Injection 15 20 35

Cross-Site Scripting 246 209 455

Total 1415 1325 2740

TABLE I: OWASP Benchmark v1.2 Test Cases

The OWASP Benchmark is a Java test suite for evaluating

automated software vulnerability detection tools, including

both SAST and DAST. We used the test cases in v1.2, which

is a fully executable web application. The benchmark consists

of 2740 test cases, each of which is a separate webpage inside

the web app. All the vulnerabilities present in the benchmark

are fully exploitable. The benchmark organizes the test cases

based on the type of vulnerability present in the code. Each

test case has either zero or one vulnerability present. Ground

truth is given for each test case – true positive (vulnerability

present) or false positive (vulnerability not present). Table I

shows the distribution of test cases across vulnerability types

and ground truth.

2

https://platform.openai.com/docs/assistants/overview

C. SonarQube

SonarQube is a widely used SAST tool in industry. In this

work we used the SonarQube Community Edition7 test results

present inside the benchmark and compared them against the

LLMs’ results.

D. Large Language Models Used

Shorthand Name Model Name API Used

GPT-3.5-Turbo gpt-3.5-turbo ChatCompletion

GPT-4-Turbo gpt-4-1106-preview ChatCompletion

Gemini-Pro gemini-pro google-generativeai

GPT-3.5-Turbo Assis-
tant

gpt-3.5-turbo AssistantsAPI

GPT-4-Turbo
Assistant

gpt-4-1106-preview AssistantsAPI

TABLE II: LLMs Used in the Research

We used three LLMs: Google’s Gemini Pro [8], OpenAI’s

GPT-3.5-Turbo [1], and GPT-4-Turbo [6]. For each GPT model

OpenAI provides two versions of APIs to interact with the

models: the Chat Completions API and the Assistants API. In

the paper we use a shorthand name to refer to a combination

of LLM model and API used in the AI agent (Table II).

III. PROMPT ENGINEERING

We divide the test cases in the OWASP Benchmark into a

training set and a testing set. The division is done randomly

within each vulnerability category, to have 20% of the test

cases in each category in the training, and the rest in testing.

Only the code in the training set was seen in the prompt

engineering process.

A. Base Prompts

The goal of the base prompt is to provide just enough guidance

and context to the LLM to accurately portray the knowledge

and direction an entry level software penetration tester would

have when analyzing code. This can be seen in the format of

the prompt where it provides a role

“You are a security code analysis tool. Your job

is to find security vulnerabilities in the code ...”,

it also provides additional mandates that model how one would

perform due diligence when working in the field such as,

“Double check your report.” and “Only report something

... if you are 100 percent confident ... ”. We also provide

in the base prompt, working directives which explain what to

look for and when to report,

“Look at the following code and tell me what

vulnerabilities are present in it if any.”

and at the end of the prompt we go on to provide the types

of vulnerabilities present and how to report them.

7https://docs.sonarsource.com/sonarqube/latest/

You are a security code analysis tool. Your job is to find

security vulnerabilities in the code with minimum noise.

Double check what your report. Only report something

as a vulnerability if you are 100 percent confident that

it can be exploited now or in the near future. Look the

following code and tell me what vulnerabilities are present

in it if any. Mention the type of the vulnerability as one

of the following: cmdi for Command Injection, crypto

for Weak Cryptography, hash for Weak Hashing, ldapi

for LDAP Injection, pathtraver for Path Traversal, secure-

cookie for Secure Cookie Flag, sqli for SQL Injection,

trustbound for Trust Boundary Violation, weakrand for

Weak Randomness, xpathi for XPATH Injection, xss for

Cross-site scripting, none for None of these vulnerabilities.

CODE GOES HERE. All output must be in CSV for-

mat. You should output the category of the vulnerability

from the above mentioned list. The line number of vuln

and the reason. Don’t output the header for CSV. Eg:

weakhash,51,MD5 hash function is used for hashing. MD5

is a weak hashing algorithm.

Fig. 1: Base Prompt

B. LLM Errors on Benchmark Cases under Base Prompts

After going through the prompt training set, we noticed

that the cases where LLMs tend to make mistakes are false

positives and that they can be broadly classified into two types.

1) Code Flow: In this type, the program being vulnerable

or not depends upon code flow and the LLM cannot reason

about the code flow correctly. Table III shows two simplified

examples of false positives from the benchmark. Both were

marked incorrectly by GPT-4-Turbo, and correctly by GPT-4-

Turbo Assistant. Under Benchmark #02669, we can see that

the value of bar is always going to be the string “safe3”,

thus the user-provided parameter param never gets injected in

the bar variable and the code is not vulnerable. In Benchmark

#007238, we can see the value of bar is always going to be

the string “safe”, and the user parameter will not be injected.

2) Use of weak algorithms: In this type the program being

vulnerable or not depends upon whether it uses a weak

algorithm, and the LLM fails to determine that the algorithm

is actually not weak. Table IV shows two simplified examples

from the benchmark, which again are false positive. Under

Benchmark #00443, “AES/GCM/NOPADDING” is not a weak

algorithm. In Benchmark #00640, the “getProperty” func-

tion tries to read the property “hashAlg2” from a file and

if the operation fails it falls back to “SHA-5”. The value of

“hashAlg2” as stored in the file is SHA-256, not a weak

hashing algorithm. Since the LLM is not given the file’s

content it is unable to determine what hashing algorithm is

used. The value of hashAlg2 is supplied in the augmented

prompt as shown in Table V.

3

https://docs.sonarsource.com/sonarqube/latest/

Pathtraver: Benchmark #02669 Command Line Injection: Benchmark #00738

S t r i n g b a r = ‘ ‘ s a f e 1 ’ ’ ;
L i s t<S t r i n g> v a l u e s L i s t = new A r r a y L i s t <>() ;
v a l u e s L i s t . add (‘ ‘ s a f e 2 ’ ’) ;
v a l u e s L i s t . add (param) ;
v a l u e s L i s t . add (‘ ‘ s a f e 3 ’ ’) ;
v a l u e s L i s t . remove (0) ;
b a r = v a l u e s L i s t . g e t (1) ;

S t r i n g b a r ;
i n t num = 8 6 ;
b a r = ((7 * 4 2) − num > 200) ? ‘ ‘ s a f e ’ ’ :

param ;

TABLE III: Code Flow

Weak Cryptography: Benchmark #00443 Weak Hashing: Benchmark #00640

j a v a x . c r y p t o . C ipher c = j a v a x . c r y p t o . C ipher .
g e t I n s t a n c e (‘ ‘AES /GCM/NOPADDING’ ’)

S t r i n g a l g o r i t h m = benchmarkprops .
g e t P r o p e r t y (‘ ‘ hashAlg2 ’ ’ , ‘ ‘SHA5 ’ ’) ;

TABLE IV: Weak Algorithms

C. Augmenting Prompts

Each error made by LLM falls into one of the two categories

as discussed above. Prompts are added to correct these errors

based on the category they belong to. Weak Cryptography,

Weak Hashing, and Weak Randomness fall in the “Use of

Weak Algorithms” category. Command Injection, LDAP Injec-

tion, Path Traversal, Secure Cookie Flag, SQL Injection, Trust

Boundary Violation, XPATH Injection, Cross-site scripting fall

in the “Code Flow” category. The added prompts are listed in

Table V.

IV. EXPERIMENTATION AND EVALUATION

For evaluation and experimentation purposes, we used the

OWASP software testing suite version 1.2. The suite contains

2740 source files designed with a single vulnerability from

the 11 categories as listed in Table I. In order to generate

the augmented prompts for each vulnerability, we divided the

dataset into a 20:80 split of the entire set of data. We only

looked at the 20% of the source files to generate the augmented

prompts and tested the performance of those prompts on the

80% of the data. This experimentation strategy models a real-

world scenario where a pentester would look at the pentesting

tool’s result and understand some reported findings are false

positives. The pentester then extrapolates the causes of the

mistake and provide additional guidance to the LLM in the

form of added prompts. Next time when a new program

is analyzed, the augmented prompts avoid making the same

errors. In our study two types of experiments were performed.

1) Our first experiment was performed using Figure 1 as

base prompt with limited information about the context

of the types of vulnerabilities present. We only provided

the categories of vulnerabilities to ensure that the for-

matting of the LLM’s output fits the scoring engine.

2) For the second experiment we appended the added

prompt from Table V for each vulnerability category.

The augmented prompts contained specific detailed

guidance pertaining to each category, based on the

observation from the training data.

The augmented prompts provide more context to the base

prompt by telling the LLM what is considered a vulnerability

with respect to the codebase. For example: under Weak

Hashing where we direct the LLM to consider only SHA1

and MD5 to be weak hashing algorithms, variables such as

hashAlg1 and hashAlg2 are to be MD5 and SHA-256

respectively.

We compare the various LLM models’ performance along

side with the performance of SonarQube, an open-source

platform used for continuous code inspection and analysis.

All LLM models are provided the same base prompt and

augmented prompts. In Table VI, the accuracy percentage is

calculated by total number of correctly predicted cases (either

true positive or false positive) divided by the total number of

cases on the testing data. The results show that for the GPT-

4-Turbo model using the Assistants API, the accuracy of the

AI agent outperforms that of SonarQube under the augmented

prompts, for most of the vulnerability categories. We also see

a consistent improvement of accuracy under the augmented

model over the base model, for this combination of LLM

model and API. This result indicates that GPT-4-Turbo using

Assistants API provides a viable path towards using LLMs

in software pentesting. In the next section we provide more

detailed discussions on the results.

V. DISCUSSION

As shown in Table VI, we can see that the augmented

prompts do not always increase performace. However, the

4

Vulnerability Prompt

Command Injection Before reporting cmdi, carefully look at the value that is being supplied to arglist variable. If the arglist value contains a
constant string not containing the param then there is no cmdi vunerability.

Weak Cryptography Only DES/CBC/PKCS5Padding is considered a weak crypto algorithm. cryptoAlg1 is DES/ECB/PKCS5Padding and hashAlg2
is AES/CCM/NoPadding. Consider that benchmark file is always read successfully.

Weak Hashing Only SHA1 and MD5 are considered weak hashing algorithms. hashAlg1 is MD5 and hashAlg2 is SHA-256. Consider that
benchmark file is always read successfully.

LDAP Injection Before reporting ldapi, carefully look at the filter for the ldap client. If the user provided parameter can’t be injected into
the filter then there is no ldapi security vulnerability.

Path Traversal Before reporting pathtraver, carefully look at the bar value that is being injected in the filename variable. If user provided
parameter isn’t being injected in the filename parameter then there then there is no vulnerability.

Secure Cookie Flag Before reporting securecookie, carefully look at the bar value that is being supplied to the cookie. If user provided parameter
isn’t being injected in the cookie then there then there is no securecookie vulnerability.

SQL Injection Before reporting sqli, carefully look at the bar value that is being injected in the sql query. If user provided parameter isn’t
being injected in the sql query then there then there is no vulnerability. For this codebase, SQL queries without the use of
PreparedStatement can be safe from SQL Injection.

Trust Boundary Violation Before reporting trustbound, carefully look at the value that is being supplied to request.getSession().putValue(var, ”ANY
NUMBER”); If the var value contains a constant string not containing the param then there is no vunerability.

Weak Randomness The use of java.util.Random means a weak cryptography vulnerability is present. For this code base the use of
java.security.SecureRandom(”SHA1PRNG”) implies a strong cryptography is used.

XPATH Injection Before reporting xpathi, carefully look at the value that is being supplied to the expression which is fed to nodelist.If the
expression value contains a constant string not containing the param then there is no xpathi vunerability.

Cross-Site Scripting Before reporting xss, carefully look at the bar variable that is specified to response.getWriter function. If the bar variable
contains a constant string not containing the param then there is no xss vunerability.

TABLE V: Added Prompts

augmented prompts perform better for at least one LLM in

each category. We rate each LLM based on two criterias:

1) Ability to learn from augmented prompts

2) Overall performance in each category

A. GPT-3.5-Turbo

GPT-3.5-Turbo with ChatCompletion generally had the

poorest accuracy compared with the other LLMs for the base

prompt. It showed a significant jump in performance with aug-

mented prompts in most categories. However, the augmented

prompts did not yield better results for Path Traversal, SQL

Injection, Weak Randomness, and XPATH Injection.

B. GPT-4-Turbo

GPT-4-Turbo with ChatCompletion showed a noticable in-

crease in performance from GPT-3.5-Turbo in all categories

except for Weak Randomness among the base prompts. Perfor-

mance for the augmented prompts out performed SonarQube

but stayed relatively within the same performance range as the

augmented prompts of GPT-3.5-Turbo.

C. Gemini-Pro

Gemini-Pro showed consistent performance between the

base and augmented prompts for most categories and matches

the capabilities of the GPT-3.5-Turbo and GPT-4-Turbo mod-

els with ChatCompletion. It is also noted that Gemini-Pro

had the highest performance among all of the experiments in

the Trustboundary category with 71% accuracy for the base

prompt and 70% accuracy for the augmented prompts.

D. GPT-3.5-Turbo-Assistant

GPT-3.5-Turbo with the Assistant API showed similar re-

sults to GPT-3.5-Turbo with ChatCompletion and Gemini-Pro.

However, there were a few instances where the base prompts

outperformed all previous tests. The augmented prompts

showed a similar behavior as with the previous models, but

overall increased performance was seen with this model and

API pairing. However, with this experiment we saw a unique

occurence where the augmented prompt had three cases of

lower performance in the augmented prompts, in particular for

the SQL Injection, Weak Randomness, and XPATH Injection

categories.

E. GPT-4-Turbo-Assistant

GPT-4-Turbo with the Assistant API showed the best per-

formance among all of the LLMs and API pairings, aside

from Trustboundary where Gemini-Pro performed the best in

testing. The base prompts showed a significant increase in

performance across all categories aside from Trustboundary

and LDAP injections which had comparable performance to

the GPT-3.5-Turbo and Assistant API pairing. The augmented

prompts showed similar behavior to all other experiments

with regards to showing improvements to performance from

base to augmented prompts. This came with an exception

Secure Cookie Flag category where the GPT-4-Turbo with

Assistant API showed similar results of lower performance

in the augmented prompts as with the GPT-3.5-Turbo and

Assistant API pairing.

5

Vulnerability SonarQube Prompt GPT-3.5-
Turbo

GPT-4-Turbo Gemini Pro GPT-3.5-
Turbo
Assistant

GPT-4-Turbo
Assistant

Command Line Injection 49.8%
Base 38.2% 49.2% 50.2% 53.8% 70.3%

Augmented 49.2% 47.7% 50.2% 50.2% 74.3%

Weak Cryptography 89.0%
Base 28.0% 50.0% 53.0% 46.5% 74.5%

Augmented 53.0% 52.5% 53.5% 54.5% 89.7%

Weak Hashing 83.0%
Base 32.6% 51.5% 32.9% 44.5% 71.8%

Augmented 54.2% 55.3% 53.7% 50.0% 85.1%

LDAP Injection 54.2%
Base 11.8% 42.5% 44.6% 53.1% 51.0%

Augmented 42.5% 40.4% 44.6% 51.0% 57.4%

Path Traversal 100%
Base 50.3% 48.5% 50.0% 56.7% 62.6%

Augmented 49.0% 47.6% 49.5% 53.0% 70.5%

Secure Cookie Flag 46.2%
Base 46.2% 52.8% 56.6% 64.5% 94.3%

Augmented 54.7% 52.8% 54.7% 41.1% 84.9%

SQL Injection 50.4%
Base 52.7% 53.9% 54.4% 51.0% 62.4%

Augmented 50.7% 51.4% 54.9% 45.0% 67.8%

Trust Boundary Violation 34.1%
Base 34.1% 54.0% 71.0% 45.0% 56.0%

Augmented 61.0% 66.0% 70.0% 42.1% 53.0%

Weak Randomness 100%
Base 44.8% 39.6% 43.0% 55.4% 93.1%

Augmented 40.9% 40.9% 42.7% 47.2% 98.7%

XPATH Injection 57.1%
Base 45.7% 40.7% 40.7% 33.3% 59.2%

Augmented 45.7% 40.7% 40.7% 14.8% 74.0%

Cross-Site Scripting 45.9%
Base 45.4% 50.6% 58.4% 52.1% 78.7%

Augmented 50.1% 49.5% 55.0% 53.6% 76.0%

TABLE VI: Experimentation Results

F. On Evaluation Strategy

In our evaluation we used the same prompts for all the

LLMs. In reality it makes more sense to adopt a more tailored

approach, where prompts are engineered based on the specific

LLM’s responses and the improvements seen. A single one-

size-fit-all process for prompt engineering, while removing

human bias in the evaluation process, does not reflect how

LLMs are used and tailored. A more human-centered approach

for evaluation could potentially address this limitation.

VI. RELATED WORK

Deng et al. [2] presented PentestGPT, an LLM-based AI

agent to faciliate penetration testing. The authors created sep-

arate GPT sessions focusing on macroscopic and microscopic

sub tasks to address the memory loss problem. It also adopts

attack trees to guide the multiple GPT sessions towards the

goals of the pentesting. PentestGPT does not address the

question of whether the engineered prompts can be effective

on new pentesting tasks that have not been seen before.

Happe and Cito [3] discussed the vision of using LLMs in

pentesting. A prototype AgentGPT was constructed that can

help a pentester elevate privilege on a local host. There is

no systematic study on the effectiveness of AgentGPT and

no details were given about the prompts used or the prompt

engineering process. In addition to presenting a vision of using

LLM in software pentesting, our work conducted a prelimi-

nary study on the efficacy of LLM in this domain, through

experimentations on a well established benchmark. Our use

of prompt engineering is similar to the work by Espeje et

al. [5] which discusses various methods of prompt engineering

and how they can be used to improve the performance of

LLMs by categorizing the prompts in various formats and

then augmenting original proposals with higher performing

prompts to test the extent of the generation cabilities of the

LLMs. They use these methods of prompt engineering to test

the performance of the LLMs abilities for inductive reasoning,

deductive reasoning, mathematical reasoning, and multi-hop

reasoning.

VII. CONCLUSION

We present preliminary experimentation study on using

LLMs in software pentesting. Our results show that through

prompt engineering, an LLM can improve its accuracy over

usage, and its accuracy is on par or surpassed SonarQube, a

widely used static software pentesting.

ACKNOWLEDGMENT

This work was partially supported by the National Science

Foundation under award no. 2235102, and Office of Naval

6

Research under award no. N00014-23-1-2538. Any opinions,

findings and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect

the views of the above funding agencies.

REFERENCES

[1] Tom B. Brown, Benjamin Mann, and et al. Language models are few-shot
learners. arXiv, 2023.

[2] Gelei Deng, Yi Liu, Vı́ctor Mayoral-Vilches, Peng Liu, Yuekang Li,
Yuan Xu, Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass.
PentestGPT: An LLM-empowered automatic penetration testing tool.
arXiv, 2023.

[3] Andreas Happe and Jürgen Cito. Getting pwn’d by AI: Penetration
testing with large language models. In Proceedings of the 31st ACM

Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, ESEC/FSE 2023, page 2082–2086,
San Francisco, CA, USA, 2023.

[4] Michael Howard and Steve Lipner. The security development Lifecycle,
volume 8. Microsoft Press Redmond, 2006.

[5] Jessica López Espejel, El Hassane Ettifouri, Mahaman Sanoussi Yahaya
Alassan, El Mehdi Chouham, and Walid Dahhane. GPT-3.5, GPT-4,
or BARD? evaluating LLMs reasoning ability in zero-shot setting and
performance boosting through prompts, 2023.

[6] OpenAI*. GPT-4 technical report. arXiv, 2023.
[7] Sathya Chandran Sundaramurthy, Alexandru G Bardas, Jacob Case,

Xinming Ou, Michael Wesch, John McHugh, and S Raj Rajagopalan. A
human capital model for mitigating security analyst burnout. In Eleventh

Symposium On Usable Privacy and Security (SOUPS 2015), pages 347–
359, 2015.

[8] Google Gemini Team. Gemini: A family of highly capable multimodal
models. arXiv, 2023.

[9] Anwesh Tuladhar, Daniel Lende, Jay Ligatti, and Xinming Ou. An
analysis of the role of situated learning in starting a security culture in a
software company. USENIX, 2021.

7

	Introduction
	Background
	Software Pentesting
	OWASP Benchmark
	SonarQube
	Large Language Models Used

	Prompt Engineering
	Base Prompts
	LLM Errors on Benchmark Cases under Base Prompts
	Code Flow
	Use of weak algorithms

	Augmenting Prompts

	Experimentation and Evaluation
	Discussion
	GPT-3.5-Turbo
	GPT-4-Turbo
	Gemini-Pro
	GPT-3.5-Turbo-Assistant
	GPT-4-Turbo-Assistant
	On Evaluation Strategy

	Related Work
	Conclusion
	References

