
A Prompt-Engineered Large Language Model, Deep Learning Workflow
for Materials Classification

Siyu Liu, Tongqi Wen,∗ A. S. L. Subrahmanyam Pattamatta, and David J. Srolovitz†
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China

(Dated: February 1, 2024)

With the advent of ChatGPT, large language models (LLMs) have demonstrated considerable progress across
a wide array of domains. Owing to the extensive number of parameters and training data in LLMs, these
models inherently encompass an expansive and comprehensive materials knowledge database, far exceeding
the capabilities of individual researcher. Nonetheless, devising methods to harness the knowledge embedded
within LLMs for the design and discovery of novel materials remains a formidable challenge. In this study,
we introduce a general approach for addressing materials classification problems, which incorporates LLMs,
prompt engineering, and deep learning algorithms. Utilizing a dataset of metallic glasses as a case study, our
methodology achieved an improvement of up to 463% in prediction accuracy compared to conventional classi-
fication models. These findings underscore the potential of leveraging textual knowledge generated by LLMs
for materials especially with sparse datasets, thereby promoting innovation in materials discovery and design.

The concept of “AI for Materials” refers to the utilization of
artificial intelligence (AI) techniques, such as machine learn-
ing (ML), deep learning (DL), and the increasingly preva-
lent large language models (LLMs), to design novel materi-
als or investigate the composition-structure-property relation-
ships in different materials [1–4]. Significant strides have
been achieved in fields such as biomaterials [5, 6] and organic
materials [7, 8], which can be attributed to the relatively uni-
form representation of organic molecules [9] and the availabil-
ity of numerous high-quality datasets [10]. However, for in-
organic materials, particularly those with large compositional
space (element types > 4), the application of AI presents a
more complex challenge. This complexity arises due to fac-
tors such as the scarcity of experimental data [4], diverse prop-
erties of inorganic materials, complicated crystal structures,
potential existence of intermediate phases (e.g. intermetallics
in alloys), and defects including vacancies, dislocations, and
grain boundaries [11, 12]. Contrasting with organic molecules
that can be modeled with neural networks, multi-component
inorganic materials often involve the amalgamation of vari-
ous phases and defects or even the formation of new phases,
presenting an ongoing challenge in the structural representa-
tion [13, 14]. Although large-scale databases such as the Ma-
terials Project [15], ICSD [16], and AFLOW [17] exist, data
pertinent to specific tasks such as the relationships between
composition and mechanical properties in alloys and struc-
tural stability of two-dimensional materials are often sparse
and dispersed across different datasets, complicating the as-
sembly of substantial databases for training purposes. Fur-
thermore, input features can vary across datasets, sometimes
necessitating manual feature construction based on domain
knowledge [18]. Collectively, these issues hinder the appli-
cation of AI in the realm of inorganic materials, subsequently
impeding the discovery and design of new materials.

The advancement of LLMs, particularly with the advent of
ChatGPT, has sparked a surge of interest in distilling knowl-

∗ tongqwen@hku.hk
† srol@hku.hk

edge from these models through prompt engineering [19–
21]. Notable examples include constructing scientific ques-
tion answering knowledge bases using LLMs [22], transfer-
ring knowledge from large to small models via in-context
learning [23], and training materials-specific LLMs [24, 25].
Given the expanding capabilities of LLMs and the growing
volume of trained data, it is conceivable to consider these
models as encyclopedia resources for materials science, en-
abling the extraction of text-based knowledge [26]. As shown
in the upper part of Fig. 1, this approach addresses some chal-
lenges associated with data collection and feature extraction in
conventional processes. By representing all content in textual
format, the generated data becomes universally applicable, of-
fering a versatile solution for materials science research.

Therefore, we have established a universal workflow for
material text feature-label classification using textual data
generated by LLMs, as illustrated in the lower part of Fig. 1.
The workflow is structured as follows: (i) define the mate-
rial classification problem to be addressed; (ii) design prompts
via prompt engineering to distill knowledge from LLMs and
store it as textual data; (iii) fine-tune a bidirectional encoder
representations transformers (BERT) [27] model (commonly
employed in natural language processing) to train on the tex-
tual data-label pairs; (iv) apply the model to explore new ma-
terials or study composition-structure-property relationships.
In an example problem involving the classification of 5,577
metallic glasses (MGs) with experimental datasets labeling
the MG forming categories (bulk MG, ribbon, or non-ribbon),
a BERT model trained with optimized prompts and position
embedding methods achieved up to a 48% increase in clas-
sification accuracy compared to traditional ML models. The
classification models obtained from our workflow achieved an
overall accuracy of 97.7%. For the classification of bulk MGs
(BMGs) with the smallest sample number (∼11% of the en-
tire dataset), the accuracy improved by up to 463% compared
to traditional ML models. These results underscore the su-
periority of our workflow in addressing material classification
problems and this workflow can be extended to various ma-
terial applications. Additionally, tremendous potential of “AI
for Materials” is revealed, grounded in natural language pro-
cessing and prompt engineering.

ar
X

iv
:2

40
1.

17
78

8v
1

 [
co

nd
-m

at
.m

tr
l-

sc
i]

 3
1

Ja
n

20
24

mailto:tongqwen@hku.hk
mailto:srol@hku.hk

2

FIG. 1. Comparison between traditional and future-oriented general deep learning workflows. The general workflow consists of generating
textual data from prompt-engineered large language models and training deep learning models.

Text-based materials
classification workflow

Our material classification workflow comprises the four-tier
structure depicted within the blue box in Fig. 1, and is read-
ily adaptable to various material classification problems. Ini-
tially, researchers are required to undertake fundamental data
collection and delineate the prediction objectives and cate-
gories, such as determining whether a material exhibits sta-
bility, corrosion resistance, or favorable optoelectronic trans-
mission properties.

Secondly, the inputs for ML models in conventional work-
flows typically comprise material properties obtained through
experiments or theoretical calculations, demanding substan-
tial expertise as well as experimental or simulation efforts.
Different researchers may select varying property features,
leading to multiple datasets for the same problem [28]. How-
ever, training numerical-based ML models on the combination
of different datasets often fails due to inconsistencies in input

feature vectors. Furthermore, the number of datasets for spe-
cific niche tasks in materials science research is quite small
(< several hundreds), negligible compared to the millions of
samples in classical computer science fields like ImageNet
dataset [29]. For example, in the field of alloys, the dataset for
fracture and impact toughness of high-entropy alloys contains
only 154 data points [30], the fatigue database of complex
metallic alloys consists of merely 272 data points [31], and
the dataset of mechanical properties of high-entropy alloys
has ∼370 data points [32]. These limitations hinder the ap-
plication of ML in alloys. In our workflow, we employ textual
inputs generated by LLMs, offering the advantage of eliminat-
ing the need for manual feature extraction. Moreover, LLMs
can output content relevant to specific problems in materials
science with customized prompts. As LLMs possess consid-
erably more parameters than traditional ML models, they can
generate a richer and more diversified knowledge base.

Furthermore, within our workflow, the classification BERT
model employs the attention mechanism for self-instruct

3

learning, enabling automatic feature extraction. Different pre-
trained models can be utilized for corresponding downstream
tasks. Models based on the attention mechanism are not lim-
ited to text input but also applicable to areas like image recog-
nition [33] and molecular structure identification [34]. These
features allow our workflow to seamlessly support the com-
bination of different datasets and multimodal expansion, ad-
dressing the issue of insufficient datasets for specific material
problems often encountered in traditional methods.

Finally, the material classification models trained through
our workflow can be utilized in numerous downstream tasks,
such as discovering new materials across different categories,
conducting interpretability analysis to extract composition-
structure-property relationships of materials, and even fine-
tuning models to achieve excellent results in other classifi-
cation tasks. Our workflow represents a novel and general
approach for material sciences by constructing large-scale
databases from prompt-engineered LLMs and training general
DL models to expedite materials discovery. We showcase the
efficiency and accuracy of the workflow by using the classifi-
cation problem of MGs as an example.

Application: metallic glasses classification

MGs are amorphous materials typically composed of a
combination of metal and other elements [35]. They are
renowned for superior engineering performance, including
high strength, high thermal stability, and excellent corrosion
resistance [36]. Despite ongoing efforts to discover MGs
with enhanced comprehensive performance, their formabil-
ity remains a complex and challenging problem in materi-
als science. Predicting the glass formability is also diffi-
cult for atomistic simulations, due to the large size and long
timescale (unattainable by first-principles calculations) and
the absence of accurate interatomic potentials for molecu-
lar dynamics simulations. Moreover, MGs have an exten-
sive compositional space, often comprising three or more el-
ements, rendering the experimental search for new applicable
MGs a time-consuming process [37, 38].

Various ML methods [39] have been employed to classify
MGs; however, these methods often rely on manually calcu-
lated or carefully designed material features. The inconsis-
tency of designed features and datasets across different ML
models necessitates researchers to recalculate those features
each time when utilizing other models. In the worst-case
scenario, certain features rely on experimental calculations,
rendering a MG dataset applicable to one model but not an-
other. In this regard, we leveraged the experimental dataset
of MGs by [40] and applied it to the proposed workflow here.
The dataset compiled by [40] consists of 8,415 alloy com-
positions with their corresponding MG forming categories.
The alloy compositions were classified into three categories
based on the critical cooling rate (Rc): BMG (Rc < 103 K/s),
ribbon (103 K/s < Rc < 106 K/s), and non-ribbon (NR,
Rc > 106 K/s). The glass formability is then BMG > rib-
bon > NR. From this dataset, 5,577 alloy compositions with
only a single glass-forming category were selected as input

dataset, with 80% of them being train set while the rest be-
ing test set. As shown in Fig. 2a, a customized version of
the general workflow was developed for the given input data.
The blue arrows indicate the training process, which involves
expanding the alloy compositions into textual data using an
LLM. Subsequently, a DL model is trained on the textual data
from the training set for MG classification. Finally, the anal-
ysis of efficiency and accuracy and model interpretation are
performed using textual data from the test set. These three
main steps are illustrated in Fig. 2b. The green arrows indi-
cate the application stages of the model. For an unexplored
alloy composition, the workflow can determine the MG cate-
gory (BMG, ribbon, or NR) within seconds.

In the first step, we drew inspiration from a previous design
of metal-organic framework prompt engineering [25] and de-
signed a prompt called “MetalPrompt” to generate textual de-
scriptions for various alloy compositions. Fig. 3 illustrates the
design concept of our “MetalPrompt”. The schematic text for
the input query of the LLM is on the left and consists of three
main components: the prompt section, the one-shot example
section, and the input section. The prompt section aims to en-
able the LLM to focus on generating domain-specific knowl-
edge while minimizing hallucination. The one-shot example
section is designed to ensure a consistent output structure and
incorporate the information of interest. In the output, we focus
on three levels of information: alloy composition (atomic per-
cent of each element), elements (thermodynamic properties
of each element), and alloy physical and chemical properties.
The input section ensures that the task description is simple
and interchangeable, thus preventing the model output from
being disrupted by irrelevant information. In terms of over-
all structure, we have added some emphasis symbols such as
“\\” at the beginning and end of the paragraph, as well as
“\%composition\%” symbols for compositions, guiding the
model to recognize critical information and structural layering
in the input [41]. Supplementary Figs. S1-S3 show the output
without “MetalPrompt” in different LLMs, and the output text
structure is inconsistent and exhibits hallucinations. Supple-
mentary Figs. S4 and S5 compare the prompt baseline and ML
models, as well as show the effects of using different prompt
methods. In both comparisons, our “MetalPrompt” demon-
strates the best performance.

Next, we trained a MGs BERT (MgBERT) classification
model that combines self-instruct learning and supervised
classification. DL models for natural language processing typ-
ically require a vast number of fitting parameters, necessitat-
ing the selection of a suitable pre-trained model as the base
model. MgBERT is fine-tuned based on MatSciBERT (a pre-
trained model based on materials science texts) [42]. Figs. 4a,
b display a comparison of different pre-trained BERT models,
with MatSciBERT achieving the best results in classification
accuracy and model loss on the test set. However, MatSciB-
ERT can only accept inputs of up to 512 tokens, while our
text data has a maximum length of 859 when converted to
tokens. Consequently, we designed a dynamically resizable
embedding layer called “MgBERT Embedding” to meet the
requirements of input scalability. This embedding layer can
assign weights based on layers and proportions according to

4

FIG. 2. Application of our workflow for the classification of metallic glasses. (a) Schematic for the customized workflow, from known alloy
composition to the discovery of new metallic glasses. (b) Three essential steps in the customized workflow, including the conversion of alloy
composition to textual data, training of classification models, and the discovery and interpretation of new metallic glasses.

LLM Output

[ANSWER BEGIN]

Composition Information:

[Ag20Al25La55 consists of 20% Silver, 25% Aluminium, and 55% Lanthanum].

Element Information:

[START ELEMENT INFORMATION]

…

…

…

…

[END ELEMENT INFORMATION]

Alloy Information:…

[ANSWER END]

Prompt:
\Instruction: You're an alloy materials scientist. I need you to help me write a
brief description for the following alloys. Your answer must have scientific basis.
Please don't deceive me and do not describe uncertain matters. If you are not
clear about the information in this section, please say I do not know. The content
needs to be relevant to the structure and properties of alloys. The composition
of the alloy is marked with \%Composition\%.\

One-shot Example:
\Example Task: Please write a description for alloy composition
\%Al35Ni5Zr60\%. \

\Answer Format and Requirement: [ANSWER BEGIN] Composition Information:
[Al35Ni5Zr60 consists of 35% Aluminum, 5% Nickel, and 60% Zirconium].
Element Information: [Please write down some properties of each element in
the alloy. For specific numerical values of properties, please write down the
most reliable value. If there is a metal radius, the radius of the element is
described using the metal radius; otherwise, the covalent radius is used. The
International System of units of numerical value must also be provided.] [START
ELEMENT INFORMATION] Element: The name of one element in alloy Element
Radius: Melting Point: Boiling Point: Density: Hardness: Electrical Conductivity:
Thermal Conductivity: Magnetic Susceptibility: Ionization Energy:
Electronegativity: [END ELEMENT INFORMATION] Alloy Information: [Please
write down the possible properties of the combination of elements in this alloy.
Please don't write down crystal structure if you are not 100% sure what it is.]
[ANSWER END]\

Input:
\Task: Please write a description for alloy composition \%Ag20Al25La55\%. \

MetalPrompt Engineering

Consistent and structured input and output

Considered Features

Domain knowledge distillation
and hallucination reduction

Output reliability control with
one-shot example reinforcement

Simple and replaceable task description

FIG. 3. Schematic of “MetalPrompt” for generating textual data with prompt engineering. The left part depicts the schematic text for the input
query of the large language model. The sections enclosed within brackets of different colors (on the right) represent diverse features considered
in prompt engineering.

the preset length of the new token, building upon the em-
bedding weights trained by MatSciBERT. This approach gen-
erates new position embedding that can support longer text
inputs and circumvent time-consuming weight initialization
training. This new position embedding layer (in Fig. 4c) is
utilized for tokenizing the input text of the model. From
the comparison of results in Figs. 4g and h, our MgBERT
embedding Method 3 (Fig. 4f) exhibits higher accuracy and
lower train set loss, compared to the embedding layer method
in Fig. 4d, which uses newly initialized weights, and that in
Fig. 4e, which only employs pre-trained weights to cover the

first 512 embedded positions. For different pre-trained mod-
els trained on the same text data (Figs. 4i, j), our MgBERT
has the best performance in training set loss, training set clas-
sification accuracy, and test set classification accuracy. No-
tably, for alloy data in the test set that our model has never en-
countered before, our model achieved an accuracy of 88.5%,
an improvement of 9% compared to Longformer, and an im-
provement of 4% compared to the best performing MatSciB-
ERT. The detailed classification results can be observed in
the confusion matrix in Supplementary Fig. S6. These find-
ings showcase the success of our improvement in embedding

5

FIG. 4. Performance comparisons and architecture of MgBERT. a, b, performance comparison of various pre-trained models. c, fundamental
architecture of the MgBERT model and schematic diagram of the working principle of MgBERT position embedding. d, e, f, three distinct
position embedding methods. g, h, performance comparison of different embedding techniques. i, j, performance comparison between
MgBERT and other pre-trained models.

structure, as it simultaneously supports longer input text and
enhances accuracy. To examine the effectiveness of the en-
tire workflow, we trained a baseline model based on logistic
regression (LR) using the training set, as well as a support
vector machine (SVM) model and a gradient boosting deci-
sion tree (GBDT) model. Then, we conducted tests on the
test set and compared the classification performance of dif-
ferent methods (Fig. 5). For the default three-class problem,
our workflow achieved a maximum accuracy increase of 48%
across the entire dataset and a peak enhancement of 32% on
the test set. Even more astonishing is our performance with re-

spect to identifying BMGs, as shown in Fig. 5b. For this task,
our accuracy soared by up to 463% on the entire dataset and
by as much as 307% on the test set. Considering that BMGs
constitute only ∼11% of our dataset, these results highlight
the remarkable capability of our text-based material classifi-
cation workflow in accurately recognizing patterns in data-
scarce scenarios, surpassing traditional ML models.

DL models are often considered to lack algorithmic trans-
parency [43]. Language models such as BERT typically have
hundreds of millions of parameters [27], making it challeng-
ing to provide detailed explanations of the model at the al-

6

FIG. 5. Comparison of classification accuracy between our workflow and traditional machine learning models. a, comparison in classifying
all category tasks. b, comparison in classifying bulk metallic glasses.

gorithmic level. Here, we utilized the local interpretable
model agnostic interpretations (LIME) [44] method to ana-
lyze from an input-output perspective. We selected text data
of alloy compositions Cu55Zr42.5Ga2.5 (classified as BMG),
Ag20Al25La55 (classified as ribbon), and Al40Mn25Si35 (clas-
sified as NR) as three examples. Fig. 6a and Supplemen-
tary Fig. S7 illustrate that alloy composition is the primary
contributing factor to these classification results, consistent
with the classical Inoue rule [45] and high-throughput exper-
iment results [46]. According to Inoue’s rule, components
of an alloy introduce varying atomic size differences, alter-
ing the internal dense random packing structure. Moreover,
the model has extracted some elemental property information.
For example, “Melting” refers to the melting point, which is
one of the critical criteria for determining the formation of
MGs [47]. Additionally, “745” is the ionization energy of cop-
per, which could affect the interatomic forces within the alloy
and thereby influence MG formation. Furthermore, “2477”
represents the boiling point of gallium, and the polymer-like
thermoplastic behavior observed in MGs is thought to be re-
lated to boiling points [48], also connected to the formation
of functional MGs. These findings indicate that our text clas-
sification model can perform self-instruct learning and auto-
matically extract features from a given text. Building on this
foundation, in contrast to traditional ML models that rely on
manually designed features as input, our text-based workflow
enables models to accept raw text as input. This flexibility al-
lows for rapid transfer and recycling of pre-trained model pa-
rameters between different materials classification tasks. We
also visualized the attention scores within the classification
model and the model extracts features based on three distinct
patterns (Fig. 6b). This process ensures that after 12 layers
of training, the output [CLS] (classify) token possesses suf-
ficient information for classification. Since we use the value
of the [CLS] token from the final layer to make judgments in
the classification layer, Fig. 6c visualizes the emphasis placed
on different sections of the text. The results suggest that the
composition and alloy layers have garnered significant atten-
tion. A possible explanation is that key tokens within these
two layers have captured essential features from the input text.
Consequently, the [CLS] token can achieve accurate classifi-
cation results by focusing on those specific token positions.

These findings demonstrate that the classification MgBERT
model, generated by our general workflow, has the abilities
of dynamic feature extraction, modeling inter-word relation-
ships, hierarchical representation learning, and bidirectional
context understanding, which may be potential indications for
good classification performance.

Discussion

We emphasize that classification cannot be successfully
achieved using direct questioning alone (as seen in Supple-
mentary Figs. S8-S10). Therefore, as part of our workflow,
we designed a BERT-based classification model to categorize
materials using text generated by the LLM. In practice, em-
ploying a classification model is a necessary step at this junc-
ture, as directly querying the LLM yielded a ∼0 accuracy rate.

The general workflow here offers a novel approach to ad-
dress a significant challenge in “AI for material science”,
where datasets are often small. By utilizing a pre-trained
BERT model, such as MatSciBERT optimized for material
science, we can fine-tune it (pre-trained model) with textual
data from prompt-engineered LLM to achieve high accuracy
in classification problem (up to 99.0% for the entire dataset).

We propose a general approach for materials classification
and demonstrate its efficiency in an example case of the clas-
sification problem in MGs. Our general workflow can be ap-
plied to any type of material applications, provided that la-
beled material samples are available. The findings point to-
wards a future where the integration of advanced language
models and domain-specific fine-tuning could revolutionize
the material classification process, especially in cases with
sparse data. We envision that LLMs may eventually serve as
“world models” [49], encapsulating knowledge across diverse
materials and domains. Consequently, such models based on
text for classification, prediction, or even generating new ma-
terials will become potential tools for addressing challenges in
material design. A sufficiently robust LLM could potentially
provide desired classification outcomes directly through ap-
propriate prompting and significantly streamline the process
of materials discovery and design.

7

FIG. 6. Interpretability for classification deep learning model. a, contribution of input text to the classification results, with the outward-facing
bar on the polar axis representing a positive contribution and the opposite direction signifying a negative contribution. b, c, Attention-level
analysis. b, attention score flow diagram across different layers and heads. The model has 12 layers, each with 12 heads, and each head is
a neural network. Both input/output for each head consist of 768 tokens. Different colors represent different layers, while lines represent
connections between input and output tokens of each head. Line thickness suggests the attention score: a larger attention score implies that
the output token focuses more on the input token at a specific position. Three modes on the right represent typical patterns of output token
information extraction from input tokens. The pooling mode demonstrates input information aggregation to the same output token, the context
mode shows input aggregation to the output token at “position-1” (token 2 to 1), and the direct mode indicates direct input transfer to the output
token at the same position. The output from 12 heads in each layer is concatenated and passed to the next layer, enabling the extraction and
transfer of crucial input text information to the final classifier. c, attention pooling diagram of the final attention layer of MgBERT. To facilitate
differentiation, the input text is divided into three text layers. Blue: composition layer consisting of tokens before “element information” in
the input text. Orange: element layer comprising tokens before “alloy information”. Yellow: alloy layer containing the remaining tokens. The
number on the left indicates the last attention layer’s [CLS] (classify) token attention to various text layers.

8

Methods

Data processing for metallic glasses dataset

In processing the dataset for metallic glasses, we curated
our initial compilation of 8,415 entries by excluding alloys
comprising multiple categories. This refinement resulted in
a dataset encompassing 5,577 single-class alloys, along with
their respective classifications. The aim was to construct
an unambiguous dataset, thereby facilitating the accuracy of
analysis and model training.

To implement prompt engineering, we harnessed the capa-
bilities of the langchain library. We designed prompts with
varying templates in advance, establishing a “Composition”
variable to dynamically cycle through the list of alloy compo-
sitions. This approach enabled us to systematically generate
textual data in a large scale, ensuring consistency and effi-
ciency in our data preparation workflow.

For the ingestion of data into the MgBERT model, we di-
vided the 5,577 data points into a training and test set at a ratio
of 80:20. This arrangement yielded 4,460 entries for train-
ing constituting 80% of the dataset, and 1,117 entries for test-
ing purposes. It was imperative that the MgBERT model was
trained comprehensively, indicating that the data allocation is
reasonable.

Regarding the evaluation of datasets, while the MgBERT
model was assessed using the designated test set, the machine
learning models underwent evaluation using a different ap-
proach because they can not receive textual data. We em-
ployed the Matminer and Pymatgen tools to convert the chem-
ical formulas of alloys into “composition features” as defined
within Matminer’s framework. However, it is noteworthy that
three entries failed to transform correctly. Consequently, the
test set for evaluation purposes comprised of 1,116 entries,
reducing the overall dataset to 5,574 records. Compared to
MgBERT, there were three fewer data sets, which had little
impact on accuracy comparison.

Large language model and prompt engineering

In this work, we used the Google Gemini-pro large lan-
guage model, which is currently free and surpasses human
experts in massive multi-task language understanding [50].
As discussed earlier, our research harnesses the automated or-
chestration capabilities of the langchain library to script the
bulk generation of prompts and textual data. This scripting
forms an integral part of a generic workflow and offers a high
degree of adaptability. The prompt templates we have devel-
oped are not rigid constructs; rather, they are designed to be
inherently flexible, allowing for arbitrary modifications tai-
lored to the specific demands and objectives of researchers.
This level of customization is critical in the context of ma-
terials science where the nuances of the subject matter can
vary significantly from one study to another. The ability to
fine-tune prompts to align with particular research questions
or datasets ensures that the language model can be effectively

leveraged to generate effective and contextually relevant tex-
tual data outputs.

Our investigation sought to demonstrate the effectiveness of
prompt engineering by creating a range of alternative prompt
templates to act as comparative benchmarks. These templates
comprised one that integrated a chain-of-thoughts (CoT) ap-
proach with a few-shot learning paradigm (denoted as “few-
shot with CoT”), another that depended exclusively on few-
shot learning examples (denoted as “few-shot”), a third that
was based on zero-shot learning scenarios (denoted as “direct
inquiry”), and our custom-designed “MetalPrompt” from our
established workflow. By leveraging these diverse templates,
we crafted specific prompts that were subsequently employed
to interrogate the Gemini-pro model. The underlying ratio-
nale for this varied prompt strategy was to gather and juxta-
pose the accuracy metrics derived from different prompting
methodologies.

MgBERT training and evaluation

Here we used MatSciBERT as the basic model and imple-
mented a subsequent classifier function with MgBERT em-
bedding to build MgBERT. Accuracy and cross entropy are
used to evaluate the effectiveness of the model. For the clas-
sification principle of MgBERT, we used the value of [CLS]
token in the last layer of the attention section of MgBERT as
the output to aggregate the information of the entire model.
Then, through a classifier, we compress the value of the token
into a vector of length 3, and label 0 as BMG, 1 as Ribbon,
and 2 as Non-ribbon. Then we calculate the maximum posi-
tion of the output vector value and locate it to the final clas-
sification result. The overall expenses associated with devel-
oping MgBERT comprise ∼$46 USD for training on Nvidia
V100 (∼30 hours and ∼$1.53 USD per hour) and ∼$1.5 USD
for ∼1.89 million input and ∼2.14 million output tokens (ac-
cording to the official pricing of Gemini-pro on January 29,
2024). Upon applying MgBERT for inference on 1,000 dif-
ferent compositions, the cost is as low as ∼$0.3 USD. This
cost-effective nature of training and implementing MgBERT
enables researchers to adopt this general approach across var-
ious materials.

Interpretability method

To elucidate the relationship between input and output, we
used the LIME (local interpretable model agnostic explana-
tions) technique, which is widely used to explain the predic-
tions of machine learning models by constructing the relation-
ship function via interpolation sampling. Here we displayed
the top 25 important features and performed 1,000 interpo-
lation samples for function fitting. Although our parameters
were initially set to select the top 50 features, due to visual-
ization constraints, we chose the top 25 features for display.

For the explanation at the attention level, we used the
bertviz library to complete the attention score flow diagram
for 12 layers and 12 attention heads. To attribute the impor-

9

tance of the [CLS] token in the final attention layer, we first
averaged the attention score of the 12 attention heads in the
last layer. Then, we divided the input text words into three
layers based on their positions, namely, composition, element,
and alloy layer. To evaluate the importance of each layer,
we calculated the sum of attention scores within that layer,
weighted by the token length ratio, and then divided by the
total token length.

Data availability

The method section provides the models and algorithms
employed in this study, while specific parameter implemen-
tations can be found in the supplementary notes in supple-
mentary information. The data used in this work is avail-
able in the supplementary data, including the metallic glasses
dataset, alloy description files generated by large language
model Gemini-pro, MgBERT classification model training
logs, and data used for figure plotting.

Code availability

All the codes used in the paper will be made available on
GitHub upon the acceptance of manuscript, and these codes
can also be acquired upon reasonable requests.

References

References 1-50 are for the main text.

[1] S. G. Louie, Y.-H. Chan, F. H. da Jornada, Z. Li, and D. Y. Qiu,
Discovering and understanding materials through computation,
Nature Materials 20, 728 (2021).

[2] A. Merchant, S. Batzner, S. S. Schoenholz, M. Aykol,
G. Cheon, and E. D. Cubuk, Scaling deep learning for mate-
rials discovery, Nature 624, 80 (2023).

[3] J. Li, K. Lim, H. Yang, Z. Ren, S. Raghavan, P.-Y. Chen,
T. Buonassisi, and X. Wang, Ai applications through the whole
life cycle of material discovery, Matter 3, 393 (2020).

[4] D. Raabe, J. R. Mianroodi, and J. Neugebauer, Accelerating
the design of compositionally complex materials via physics-
informed artificial intelligence, Nature Computational Science
3, 873 (2023).

[5] D. F. Nippa, K. Atz, R. Hohler, A. T. Müller, A. Marx,
C. Bartelmus, G. Wuitschik, I. Marzuoli, V. Jost, J. Wol-
fard, et al., Enabling late-stage drug diversification by high-
throughput experimentation with geometric deep learning, Na-
ture Chemistry , 1 (2023).

[6] A. Tropsha, O. Isayev, A. Varnek, G. Schneider, and
A. Cherkasov, Integrating qsar modelling and deep learning in
drug discovery: the emergence of deep qsar, Nature Reviews
Drug Discovery , 1 (2023).

[7] T. Weiss, E. Mayo Yanes, S. Chakraborty, L. Cosmo, A. M.
Bronstein, and R. Gershoni-Poranne, Guided diffusion for in-
verse molecular design, Nature Computational Science 3, 873
(2023).

[8] F. Noé, A. Tkatchenko, K.-R. Müller, and C. Clementi, Ma-
chine learning for molecular simulation, Annual review of
physical chemistry 71, 361 (2020).

[9] D. S. Wigh, J. M. Goodman, and A. A. Lapkin, A review of
molecular representation in the age of machine learning, Wiley
Interdisciplinary Reviews: Computational Molecular Science
12, e1603 (2022).

[10] K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza,
R. Cohn, C. W. Park, A. Choudhary, A. Agrawal, S. J. Billinge,
et al., Recent advances and applications of deep learning meth-
ods in materials science, npj Computational Materials 8, 59
(2022).

[11] E. R. Antoniuk, G. Cheon, G. Wang, D. Bernstein, W. Cai, and
E. J. Reed, Predicting the synthesizability of crystalline inor-
ganic materials from the data of known material compositions,
npj Computational Materials 9, 155 (2023).

[12] J. Noh, G. H. Gu, S. Kim, and Y. Jung, Machine-enabled inverse
design of inorganic solid materials: promises and challenges,
Chemical Science 11, 4871 (2020).

[13] H. Xiao, R. Li, X. Shi, Y. Chen, L. Zhu, X. Chen, and L. Wang,
An invertible, invariant crystal representation for inverse design
of solid-state materials using generative deep learning, Nature
Communications 14, 7027 (2023).

[14] D. Steinberger, H. Song, and S. Sandfeld, Machine learning-
based classification of dislocation microstructures, Frontiers in
Materials 6, 141 (2019).

[15] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and
K. A. Persson, Commentary: The Materials Project: A materi-
als genome approach to accelerating materials innovation, APL
Materials 1, 011002 (2013).

[16] D. Zagorac, H. Müller, S. Ruehl, J. Zagorac, and S. Rehme, Re-
cent developments in the Inorganic Crystal Structure Database:
theoretical crystal structure data and related features, Journal of
Applied Crystallography 52, 918 (2019).

[17] S. Curtarolo, W. Setyawan, G. L. Hart, M. Jahnatek, R. V. Chep-
ulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J.
Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, Aflow:
An automatic framework for high-throughput materials discov-
ery, Computational Materials Science 58, 218 (2012).

[18] T.-S. Vu, M.-Q. Ha, D.-N. Nguyen, V.-C. Nguyen, Y. Abe,
T. Tran, H. Tran, H. Kino, T. Miyake, K. Tsuda, et al., Towards
understanding structure–property relations in materials with in-
terpretable deep learning, npj Computational Materials 9, 215
(2023).

[19] A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutier-
rez, T. F. Tan, and D. S. W. Ting, Large language models in
medicine, Nature medicine 29, 1930 (2023).

[20] E. Kasneci, K. Seßler, S. Küchemann, M. Bannert, D. De-
mentieva, F. Fischer, U. Gasser, G. Groh, S. Günnemann,
E. Hüllermeier, et al., Chatgpt for good? on opportunities and
challenges of large language models for education, Learning
and individual differences 103, 102274 (2023).

[21] B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog,
M. P. Kumar, E. Dupont, F. J. Ruiz, J. S. Ellenberg, P. Wang,
O. Fawzi, et al., Mathematical discoveries from program search
with large language models, Nature 625, 468 (2023).

[22] J. Pereira, R. Fidalgo, R. Lotufo, and R. Nogueira, Visconde:
Multi-document qa with gpt-3 and neural reranking, in Euro-
pean Conference on Information Retrieval (Springer, 2023) pp.
534–543.

[23] D. Chen, S. Song, Q. Yu, Z. Li, W. Wang, F. Xiong, and B. Tang,
Grimoire is all you need for enhancing large language models
(2024), arXiv:2401.03385.

https://doi.org/10.1038/s41563-021-01015-1
https://doi.org/10.1038/s41586-023-06735-9
https://doi.org/10.1016/j.matt.2020.06.011
https://doi.org/10.1038/s43588-023-00532-0
https://doi.org/10.1038/s43588-023-00532-0
https://doi.org/10.1038/s41557-023-01360-5
https://doi.org/10.1038/s41557-023-01360-5
https://doi.org/10.1038/s41573-023-00832-0
https://doi.org/10.1038/s41573-023-00832-0
https://doi.org/10.1038/s43588-023-00532-0
https://doi.org/10.1038/s43588-023-00532-0
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1002/wcms.1603
https://doi.org/10.1002/wcms.1603
https://doi.org/10.1002/wcms.1603
https://doi.org/10.1038/s41524-022-00734-6
https://doi.org/10.1038/s41524-022-00734-6
https://doi.org/10.1038/s41524-023-01114-4
https://doi.org/10.1039/D0SC00594K
https://doi.org/10.1038/s41467-023-42870-7
https://doi.org/10.1038/s41467-023-42870-7
https://doi.org/10.3389/fmats.2019.00141
https://doi.org/10.3389/fmats.2019.00141
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://doi.org/10.1107/S160057671900997X
https://doi.org/10.1107/S160057671900997X
https://doi.org/https://doi.org/10.1016/j.commatsci.2012.02.005
https://doi.org/10.1038/s41524-023-01163-9
https://doi.org/10.1038/s41524-023-01163-9
https://doi.org/10.1038/s41591-023-02448-8
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.1038/s41586-023-06924-6
https://doi.org/10.1007/978-3-031-28238-6_44
https://doi.org/10.1007/978-3-031-28238-6_44
https://doi.org/10.48550/arXiv.2401.03385
https://arxiv.org/abs/2401.03385

10

[24] T. Xie, Y. Wa, W. Huang, Y. Zhou, Y. Liu, Q. Linghu, S. Wang,
C. Kit, C. Grazian, and B. Hoex, Large language models as
master key: Unlocking the secrets of materials science with gpt
(2023), arXiv:2304.02213.

[25] Z. Zheng, O. Zhang, C. Borgs, J. T. Chayes, and O. M. Yaghi,
Chatgpt chemistry assistant for text mining and the prediction
of mof synthesis, Journal of the American Chemical Society
145, 18048 (2023).

[26] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen,
O. Sainz, E. Agirre, I. Heintz, and D. Roth, Recent advances
in natural language processing via large pre-trained language
models: A survey, ACM Computing Surveys 56, 1 (2023).

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-
training of deep bidirectional transformers for language under-
standing (2018), arXiv:1810.04805.

[28] D. Morgan and R. Jacobs, Opportunities and challenges for ma-
chine learning in materials science, Annual Review of Materials
Research 50, 71 (2020).

[29] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
Imagenet: A large-scale hierarchical image database, in 2009
IEEE conference on computer vision and pattern recognition
(Ieee, 2009) pp. 248–255.

[30] X. Fan, S. Chen, B. Steingrimsson, Q. Xiong, W. Li, and P. K.
Liaw, Dataset for fracture and impact toughness of high-entropy
alloys, Scientific Data 10, 37 (2023).

[31] Z. Zhang, H. Tang, and Z. Xu, Fatigue database of complex
metallic alloys, Scientific Data 10, 447 (2023).

[32] S. Gorsse, M. Nguyen, O. N. Senkov, and D. B. Miracle,
Database on the mechanical properties of high entropy alloys
and complex concentrated alloys, Data in brief 21, 2664 (2018).

[33] X. Li, X. Hu, X. Chen, J. Fan, Z. Zhao, J. Wu, H. Wang, and
Q. Dai, Spatial redundancy transformer for self-supervised flu-
orescence image denoising, Nature Computational Science 3,
1067 (2023).

[34] G. Zhou, Z. Gao, Q. Ding, H. Zheng, H. Xu, Z. Wei, L. Zhang,
and G. Ke, Uni-mol: a universal 3d molecular representation
learning framework (2023).

[35] A. K. Varshneya and J. C. Mauro, Chapter 1 - introduction, in
Fundamentals of Inorganic Glasses (Third Edition), edited by
A. K. Varshneya and J. C. Mauro (Elsevier, 2019) third edition
ed., pp. 1–18.

[36] Q. Halim, N. A. N. Mohamed, M. R. M. Rejab, W. N. W. A.
Naim, and Q. Ma, Metallic glass properties, processing method
and development perspective: a review, The International Jour-
nal of Advanced Manufacturing Technology 112, 1231 (2021).

[37] G. Liu, S. Sohn, C. S. O’Hern, A. C. Gilbert, and J. Schroers,
Effective subgrouping enhances machine learning prediction in
complex materials science phenomena: Inoue’s subgrouping in
discovering bulk metallic glasses, Acta Materialia 265, 119590
(2023).

[38] Y. Li, S. Zhao, Y. Liu, P. Gong, and J. Schroers, How many bulk
metallic glasses are there?, ACS combinatorial science 19, 687
(2017).

[39] Z. Zhou, Y. Shang, and Y. Yang, A critical review of the
machine learning guided design of metallic glasses for supe-
rior glass-forming ability, Journal of Materials Informatics 2, 1
(2022).

[40] L. Ward, S. C. O’Keeffe, J. Stevick, G. R. Jelbert, M. Aykol,
and C. Wolverton, A machine learning approach for engineer-
ing bulk metallic glass alloys, Acta Materialia 159, 102 (2018).

[41] A. D. Rodriguez, K. R. Dearstyne, and J. Cleland-Huang,
Prompts matter: Insights and strategies for prompt engineer-
ing in automated software traceability, in 2023 IEEE 31st In-
ternational Requirements Engineering Conference Workshops

(REW) (IEEE, 2023) pp. 455–464.
[42] T. Gupta, M. Zaki, N. A. Krishnan, and Mausam, Matscibert:

A materials domain language model for text mining and infor-
mation extraction, npj Computational Materials 8, 102 (2022).

[43] S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne,
M. Alzantot, F. Cerutti, M. Srivastava, A. Preece, S. Julier,
R. M. Rao, et al., Interpretability of deep learning models: A
survey of results, in 2017 IEEE smartworld, ubiquitous intel-
ligence & computing, advanced & trusted computed, scalable
computing & communications, cloud & big data computing, In-
ternet of people and smart city innovation (IEEE, 2017) pp. 1–
6.

[44] M. T. Ribeiro, S. Singh, and C. Guestrin, ”Why Should I Trust
You?”: Explaining the Predictions of Any Classifier (2016),
arXiv:1602.04938.

[45] A. Inoue, Stabilization of metallic supercooled liquid and bulk
amorphous alloys, Acta materialia 48, 279 (2000).

[46] F. Ren, L. Ward, T. Williams, K. J. Laws, C. Wolverton,
J. Hattrick-Simpers, and A. Mehta, Accelerated discovery of
metallic glasses through iteration of machine learning and high-
throughput experiments, Science advances 4, eaaq1566 (2018).

[47] W. Johnson, J. Na, and M. Demetriou, Quantifying the origin
of metallic glass formation, Nature communications 7, 10313
(2016).

[48] W. Wang, Bulk metallic glasses with functional physical prop-
erties, Advanced Materials 21, 4524 (2009).

[49] A. Dawid and Y. LeCun, Introduction to latent variable energy-
based models: A path towards autonomous machine intelli-
gence (2023), arXiv:2306.02572.

[50] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika,
D. Song, and J. Steinhardt, Measuring massive multitask lan-
guage understanding (2021), arXiv:2009.03300.

[51] I. A. Joiner, Chapter 1 - artificial intelligence: Ai is nearby, in
Emerging Library Technologies, Chandos Information Profes-
sional Series, edited by I. A. Joiner (Chandos Publishing, 2018)
pp. 1–22.

[52] Z. Niu, G. Zhong, and H. Yu, A review on the attention mecha-
nism of deep learning, Neurocomputing 452, 48 (2021).

[53] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia,
E. Chi, Q. Le, and D. Zhou, Chain-of-thought prompting elicits
reasoning in large language models (2023), arXiv:2201.11903.

[54] P. P. Ray, Chatgpt: A comprehensive review on background,
applications, key challenges, bias, ethics, limitations and future
scope, Internet of Things and Cyber-Physical Systems 3, 121
(2023).

[55] J. M. Helm, A. M. Swiergosz, H. S. Haeberle, J. M. Karnuta,
J. L. Schaffer, V. E. Krebs, A. I. Spitzer, and P. N. Ramkumar,
Machine learning and artificial intelligence: definitions, appli-
cations, and future directions, Current reviews in musculoskele-
tal medicine 13, 69 (2020).

[56] F. Almeida and G. Xexeo, Word embeddings: A survey (2023),
arXiv:1901.09069.

[57] A. Zheng and A. Casari, Feature Engineering for Machine
Learning: Principles and Techniques for Data Scientists, 1st
ed. (O’Reilly Media, Inc., 2018).

[58] D. Svozil, V. Kvasnicka, and J. Pospichal, Introduction to multi-
layer feed-forward neural networks, Chemometrics and intelli-
gent laboratory systems 39, 43 (1997).

[59] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, Generalizing from
a few examples: A survey on few-shot learning, ACM Comput.
Surv. 53, 1 (2020).

[60] A. Natekin and A. Knoll, Gradient boosting machines, a tuto-
rial, Frontiers in neurorobotics 7, 21 (2013).

https://doi.org/10.48550/arXiv.2304.02213
https://doi.org/10.48550/arXiv.2304.02213
https://arxiv.org/abs/2304.02213
https://doi.org/10.1021/jacs.3c05819
https://doi.org/10.1021/jacs.3c05819
https://doi.org/10.1145/3605943
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1146/annurev-matsci-070218-010015
https://doi.org/10.1146/annurev-matsci-070218-010015
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1038/s41597-022-01911-4
https://doi.org/10.1038/s41597-023-02354-1
https://doi.org/10.1016/j.dib.2018.11.111
https://doi.org/10.1038/s43588-023-00568-2
https://doi.org/10.1038/s43588-023-00568-2
https://doi.org/https://doi.org/10.26434/chemrxiv-2022-jjm0j-v4
https://doi.org/https://doi.org/10.26434/chemrxiv-2022-jjm0j-v4
https://doi.org/https://doi.org/10.1016/B978-0-12-816225-5.00001-8
https://doi.org/10.1007/s00170-020-06515-z
https://doi.org/10.1007/s00170-020-06515-z
https://doi.org/10.1016/j.actamat.2023.119590
https://doi.org/10.1016/j.actamat.2023.119590
https://doi.org/10.1021/acscombsci.7b00048
https://doi.org/10.1021/acscombsci.7b00048
https://doi.org/10.20517/jmi.2021.12
https://doi.org/10.20517/jmi.2021.12
https://doi.org/10.1016/j.actamat.2018.08.002
https://doi.org/10.48550/arXiv.2308.00229
https://doi.org/10.48550/arXiv.2308.00229
https://doi.org/10.48550/arXiv.2308.00229
https://doi.org/10.1038/s41524-022-00784-w
https://doi.org/10.1109/UIC-ATC.2017.8397411
https://doi.org/10.1109/UIC-ATC.2017.8397411
https://doi.org/10.1109/UIC-ATC.2017.8397411
https://doi.org/10.1109/UIC-ATC.2017.8397411
https://doi.org/10.48550/arXiv.1602.04938
https://doi.org/10.48550/arXiv.1602.04938
https://arxiv.org/abs/1602.04938
https://doi.org/10.1016/S1359-6454(99)00300-6
https://doi.org/10.1126/sciadv.aaq1566
https://doi.org/10.1038/ncomms10313
https://doi.org/10.1038/ncomms10313
https://doi.org/10.1002/adma.200901053
https://doi.org/10.48550/arXiv.2306.02572
https://doi.org/10.48550/arXiv.2306.02572
https://doi.org/10.48550/arXiv.2306.02572
https://arxiv.org/abs/2306.02572
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2009.03300
https://arxiv.org/abs/2009.03300
https://doi.org/10.1016/B978-0-08-102253-5.00002-2
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2201.11903
https://arxiv.org/abs/2201.11903
https://doi.org/10.1016/j.iotcps.2023.04.003
https://doi.org/10.1016/j.iotcps.2023.04.003
https://doi.org/10.1007/s12178-020-09600-8
https://doi.org/10.1007/s12178-020-09600-8
https://doi.org/10.48550/arXiv.1901.09069
https://arxiv.org/abs/1901.09069
https://doi.org/10.1016/S0169-7439(97)00061-0
https://doi.org/10.1016/S0169-7439(97)00061-0
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252
https://doi.org/10.3389/fnbot.2013.00021

11

[61] L. Yang and A. Shami, On hyperparameter optimization of ma-
chine learning algorithms: Theory and practice, Neurocomput-
ing 415, 295 (2020).

[62] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun,
J. Xu, L. Li, and Z. Sui, A survey on in-context learning (2023),
arXiv:2301.00234.

[63] J. Gou, B. Yu, S. J. Maybank, and D. Tao, Knowledge distilla-
tion: A survey, International Journal of Computer Vision 129,
1789 (2021).

[64] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, Language models are few-shot learners (2020),
arXiv:2005.14165.

[65] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang,
E. Zhao, Y. Zhang, Y. Chen, L. Wang, A. T. Luu, W. Bi, F. Shi,
and S. Shi, Siren’s song in the ai ocean: A survey on hallucina-
tion in large language models (2023), arXiv:2309.01219.

[66] S. Menard, Applied logistic regression analysis, 106 (Sage,
2002).

[67] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu,
Y. Yao, A. Zhang, L. Zhang, W. Han, M. Huang, Q. Jin, Y. Lan,
Y. Liu, Z. Liu, Z. Lu, X. Qiu, R. Song, J. Tang, J.-R. Wen,
J. Yuan, W. X. Zhao, and J. Zhu, Pre-trained models: Past,
present and future (2021), arXiv:2106.07139.

[68] Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi,
and H. Hajishirzi, Self-instruct: Aligning language models with
self-generated instructions (2023), arXiv:2212.10560.

[69] L. Antonelli, M. R. Guarracino, L. Maddalena, and M. Sangio-
vanni, Integrating imaging and omics data: a review, Biomedi-
cal Signal Processing and Control 52, 264 (2019).

[70] S. Suthaharan, Support vector machine, in Machine Learning
Models and Algorithms for Big Data Classification: Thinking
with Examples for Effective Learning (Springer US, Boston,
MA, 2016) pp. 207–235.

[71] T. Kudo and J. Richardson, Sentencepiece: A simple and lan-
guage independent subword tokenizer and detokenizer for neu-
ral text processing (2018).

[72] S. J. Pan and Q. Yang, A survey on transfer learning, IEEE
Transactions on knowledge and data engineering 22, 1345
(2009).

[73] J. Tal, Chapter 14 - sample size, in Strategy and Statistics in
Clinical Trials, edited by J. Tal (Academic Press, Boston, 2011)
pp. 229–244.

[74] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig,
Pre-train, prompt, and predict: A systematic survey of prompt-
ing methods in natural language processing, ACM Computing
Surveys 55, 1 (2023).

[75] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and
Y. Cao, React: Synergizing reasoning and acting in language
models (2023), arXiv:2210.03629.

[76] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, H. Kttler, M. Lewis, W. tau Yih, T. Rocktaschel,
S. Riedel, and D. Kiela, Retrieval-augmented generation for
knowledge-intensive nlp tasks (2021), arXiv:2005.11401.

[77] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, Attention is all you need
(2023), arXiv:1706.03762.

[78] I. Beltagy, M. E. Peters, and A. Cohan, Longformer: The long-
document transformer (2020), arXiv:2004.05150.

[79] cohere docs, Top-k and top-p,
https://docs.cohere.com/docs/
controlling-generation-with-top-k-top-p
(accessed on January 29, 2024).

[80] cohere docs, Temperature, https://docs.cohere.com/
docs/temperature (accessed on January 29, 2024).

Acknowledgments

This work is supported by Research Grants Council, Hong
Kong SAR through the Collaborative Research Fund (C1005-
19G) and General Research Fund (17210723). T.W. ac-
knowledges additional support by The University of Hong
Kong (HKU) via seed funds (2201100392, 2309100163).
S.P. acknowledges additional support by HKU via seed fund
(2309100201). We acknowledge helpful discussions with
Prof. Yi Ma at HKU and Simon Zhai at UC Berkeley.

Competing interests

The authors declare no competing interests.

Supplementary Information

Supplementary Notes
Supplementary Figures S1-15
Supplementary Tables S1-2
References (51-80)

https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.48550/arXiv.2301.00234
https://arxiv.org/abs/2301.00234
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.48550/arXiv.2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2309.01219
https://doi.org/10.48550/arXiv.2309.01219
https://arxiv.org/abs/2309.01219
https://doi.org/10.48550/arXiv.2106.07139
https://doi.org/10.48550/arXiv.2106.07139
https://arxiv.org/abs/2106.07139
https://doi.org/10.48550/arXiv.2212.10560
https://doi.org/10.48550/arXiv.2212.10560
https://arxiv.org/abs/2212.10560
https://doi.org/10.1016/j.bspc.2019.04.032
https://doi.org/10.1016/j.bspc.2019.04.032
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.1007/978-1-4899-7641-3_9
https://doi.org/10.48550/arXiv.1808.06226
https://doi.org/10.48550/arXiv.1808.06226
https://doi.org/10.48550/arXiv.1808.06226
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1016/B978-0-12-386909-8.00015-5
https://doi.org/10.1016/B978-0-12-386909-8.00015-5
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.48550/arXiv.2210.03629
https://doi.org/10.48550/arXiv.2210.03629
https://arxiv.org/abs/2210.03629
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2005.11401
https://arxiv.org/abs/2005.11401
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/arXiv.2004.05150
https://doi.org/10.48550/arXiv.2004.05150
https://arxiv.org/abs/2004.05150
https://docs.cohere.com/docs/controlling-generation-with-top-k-top-p
https://docs.cohere.com/docs/controlling-generation-with-top-k-top-p
https://docs.cohere.com/docs/temperature
https://docs.cohere.com/docs/temperature

Supplementary Information for
A Prompt-Engineered Large Language Model, Deep Learning Workflow

for Materials Classification

Siyu Liu et al.

1

1 Supplementary Notes

1.1 Glossary

• Artificial Intelligence: artificial intelligence (AI) refers to the development of computer systems capable of performing
tasks that typically require human intelligence, including visual perception, decision-making, and language comprehen-
sion [51].

• Attention: a mechanism enabling models to focus on specific parts of the input sequence during processing, allowing
them to weigh the significance of different words when generating output. This attention mechanism assists in capturing
long-range dependencies and enhancing performance in various natural language processing (NLP) tasks [52].

• BERT: Bidirectional Encoder Representations from Transformers, a widely used pre-trained language model [27].

• Chain-of-thoughts: a prompt engineering method that enhances complex reasoning capabilities by adding intermediate
reasoning steps to the text input for the model [53].

• ChatGPT: Chat Generative Pre-trained Transformer, developed by OpenAI, is a chatbot and a sibling model to Instruct-
GPT, trained to follow instructions in a prompt and deliver detailed responses [54].

• Cross Entropy Loss: a performance indicator measuring classification models, also known as log loss, with lower values
indicating better predictive performance.

• Deep Learning: deep learning (DL) is an AI technology emulating the neural network structure of the human brain,
learning and training via multi-level neurons for complex data analysis and processing [55].

• Embedding: an NLP technique that maps a high-dimensional space, with a dimensionality equal to the total number of
words, to a much lower-dimensional continuous vector space, assigning each word or phrase a vector in the real number
domain [56].

• Feature Engineering: the process of selecting, transforming, and creating new features from raw data to improve ma-
chine leanring (ML) model performance. It involves identification of relevant and informative input variables and their
preparation for accurate predictions or classifications [57].

• Feed Forward: refers to a deep learning framework, also known as a multi-layer perceptron (MLP), that defines a mapping
y = f(x : θ) , and learns the value of parameter θ to achieve the best function approximation [58].

• Few-shot Learning: a ML approach where models are trained to make accurate predictions with limited examples per
class [59].

• Gemini: Google’s multimodal large language model (LLM), the first to outperform human experts on MMLU (Massive
Multitask Language Understanding), a popular method for testing AI models’ knowledge and problem-solving abilities.

• Gradient Boosting Decision Tree (GBDT): also known as Gradient Boosting Machines (GBM), is a popular ensemble
learning method combining decision trees with gradient boosting. GBDT continuously fits new models for more accurate
estimates of response variables. The principle behind this algorithm is to construct new base learners that maximizes
correlation with the negative gradient of the ensemble’s loss function [60].

• Hyperparameters: external configuration variables input in advance to manage the training of ML models [61].

• In-context Learning: refers to enhancing LLM performance using a few examples provided in the input context [62].

• ImageNet: an image database organized according to the WordNet hierarchy (currently only nouns), with each hierarchy
node represented by hundreds of thousands of images [29].

• Knowledge Distillation: refers to extracting knowledge from larger deep neural networks into smaller networks [63].

• Large Language Model: large language model (LLM) is a kind of DL model trained on large amounts of text data to
learn statistical patterns of natural language [64].

• LLM Hallucination: occurs when LLMs generate content deviating from user input, contradicting previously generated
context, or inconsistent with established world knowledge [65].

2

• Logistic Regression: a supervised learning algorithm utilizing logistic functions to estimate label probabilities [66].

• Machine Learning: machine learning (ML) demonstrates the experiential ‘learning’ associated with human intelligence,
along with the ability to enhance its analyses through using computational algorithms [55].

• Multi-head Attention: represents multiple attention modules within a single attention layer of the model, allowing for
different focus on various parts of a sequence.

• Pre-trained Model: a model trained on a large corpus of data and can be fine-tuned to solve various tasks [67].

• Prompt Engineering: a method to generate textual data from LLMs by embedding task descriptions in the input, effec-
tively conveying specific parameters to the model as part of a problem statement [54].

• Self-instruct Learning: a method for improving the instruction-following capabilities of pre-trained language models by
bootstrapping off their own generations [68].

• Supervised Classification: a ML task where the goal is to categorize input data into predefined classes or categories based
on labeled training examples [69].

• Support Vector Machine: a supervised learning algorithm for classification and regression tasks that identifies the optimal
boundary (hyperplane) separating data points of different classes [70].

• Tokenization: the process of converting text into smaller structural markers, called tokens. The tool used to handle this
process is known as a tokenizer [71].

• Transfer Learning: a ML technique employing a pre-trained model as the starting point for a new related task, instead of
training a model from scratch. It allows for different domains, tasks, and distributions in training and testing [72].

1.2 Workflow details

1.2.1 Data processing of metallic glasses dataset

As mentioned in the “Methods” section, our initial dataset consists of 5,577 samples. To train different BERT models, it
is necessary to divide it into a training and a test set. We employed a stratified sampling method for this purpose, ensuring a
representative and balanced representation of the different subgroups [73], which enhances the quality and reliability of sample.
Based on the overall 80:20 split ratio for the training and test sets, we have performed non-repetitive stratified sampling on three
alloy data categories. In the end, we obtained a training set with 4,460 samples and a test set with 1,117 samples, maintaining
the 80:20 ratio for each category.

It should be noted that this section aims to establish the relationship between alloy composition and labels. The textual data
generated through Gemini-pro is used to train different BERT classification models. The data obtained in this section is stored
in the “original data” folder, with the data format shown in Table S1.

1.2.2 Prompt design and textual data generation

Upon acquiring the alloy composition data, we proceeded with prompt design. Prompt engineering is a prominent direction in
the field of LLMs and is considered a method that significantly improve data generation effectiveness for LLMs [74]. Techniques
such as few-shot learning [53], CoT [53], synergizing reasoning and acting (ReAct) [75], and retrieval-augmented generation
(RAG) [76] are deemed effective prompt engineering methods. Due to the additional knowledge sources required for the latter
two methods, we tested direct inquiry, few-shot, and CoT, and compared them with our MetalPrompt. Figs. S8, S9, and S10
are templates for three benchmark methods, while Fig. S4 shows the comparison results. Our “MetalPrompt” achieved the best
performance.

For the prompt inquiry setting with the LLM, we used Top-K = 1 and Temperature = 0 as default parameters. As shown in
Fig. S11 and Fig. S12, a smaller Top-K and lower temperature indicate more reliable model output. Top-K = 1 implies that the
model will perform greedy decoding and select the most probable value. Unless specifically explained, the parameters of the
language model mentioned below are consistent with these settings.

Using the above parameter settings and “MetalPrompt” as the input template, we generated textual data for 5,577 alloy
compositions. The replacement of alloy elements in the template was assisted by the langchain library. Simultaneously, based
on the alloy composition category relationship of the original training and test dataset, we labeled the generated textual data with

3

the same category. This dataset is used for training the classification model below, with the partitioning of training and testing
sets consistent with the original data.

1.2.3 MgBERT training and evaluation

BERT model and attention mechanism: BERT, introduced by Google researchers in 2018 [27], is a pre-training language
representation method that significantly impacted the field of NLP. Traditional language models analyzed text data unidirection-
ally, either from left to right or right to left, limiting their understanding of language context. BERT, employing the Transformer
architecture, processes each word concerning all other words in a sentence, rather than sequentially. Owing to its state-of-the-art
results in numerous tasks, BERT was selected as the foundation for our classification model.

Fig. 4c in the main text shows the basic BERT architecture, comprising data pre-processing, input encoding, model training,
post-processing, and output results. During data processing, tokenizers divide sentences or words into individual tokens, such
as marking “for example” as “for” and “example”. Then, as demonstrated in Fig. S13, the encoding method transforms pre-
processed text data into the input representation of the model. For instance, “for” is converted to a vector [00..1..00]. Model
training is crucial to BERT, as it uses multi-head attention to extract essential features from input embeddings. Attention
mechanisms enhance model performance in NLP and other sequence data processing tasks by focusing on the most relevant
parts of the input sequence. Models can learn to assign various attention weights to input information from different positions,
concentrating on crucial aspects when processing input sequences. This mechanism allows the model to capture long-distance
dependencies and important patterns in sequences more effectively, thus improving its performance in processing sequence
data [77]. Fig. S14 shows a schematic diagram of the operation of the attention mechanism. Multi-head attention, compared
to a single module, employs multiple attention modules in the same calculation, extracting different feature information. The
calculation formula for attention score is as follows:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (S1)

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O (S2)

Where headi = Attention(QWiQ,KWiK , V WiV).
In Equation S1,

√
dk refers to the queries and dimension keys. Q, K, and V refer to the input query, key, and value,

respectively. softmax refers to the softmax function.
Pre-trained models selection: We compared three pre-trained models based on BERT, including the basic BERT model [27],

Longformer supporting longer input text lengths [78], and MatSciBERT trained on materials science texts [42].
All models employ default parameter settings; however, to expedite calculations, the maximum input length for Longformer

is limited to 1200 tokens, while other models have a default maximum length of 512. To ensure reproducibility, the random
seed is fixed at 42. All models are trained using cross-entropy loss and optimized with the Adam optimizer for parameters. All
training was conducted on a 32G Nvidia V100. Table S2 presents the basic hyperparameters for model training. Due to its larger
embedding layer requiring more graphics memory, Longformer has a slightly smaller batch size.

MgBERT embedding and training: Upon the training of MgBERT, we found that the file with the longest tokens is
’Fe68.3C6.9Si2.5B6.7P8.8Cr2.2Mo2.5Al2.1.txt’ with 859 tokens, and 300 files have more than 512 tokens. Our basic model,
MatSciBERT, only supports inputs with a maximum token length of 512. Considering the potential inconsistency in text input
length for different materials and scalability requirements, we designed a variable-length MgBERT position embedding layer
that does not necessitate complete retraining. The following Algorithm 1 is a pseudocode representation of its principle.

For the comparison of three embedding methods, we ran 16 epochs with a learning rate of 3e-5 and a batch size of 26. In
Figs. 4g, h of the main text, only the first 15 epochs are displayed due to the loss output retaining the first three decimal places.
In the 16th epoch, some models exhibit training set loss < 0.001. The complete training information can be found in the “train
log” folder.

For the final MgBERT model, we continued training with the highest classification accuracy model weight of Method 3 at a
learning rate of 2e-5 and compared it to the case with 1e-5. The highest accuracy of 88.5% was achieved when the learning rate
was 2e-5 and the epoch was 4. We utilized the model weights trained under these parameters as the final MgBERT model.

Model evaluation: During the model evaluation stage, we compared some ML models, with their concepts outlined in the
“Glossary” section. Model implementation is based on the “scikit-learn” software and employs its default hyperparameters for
training. The random seed is fixed at 42 for reproducibility. The training and test set rely on stratified sampling, as described in
the “Methods” section of the main text.

4

Algorithm 1 MgBERT Position Embedding
1: Input: New maximum position embedding n, Current position embeddings E
2: Output: Resized position embeddings Enew

3: Set Enew = Embedding(n,E.size(1))
4: Set l = E.shape[0]
5: Set L = ⌈n/l⌉
6: if l > n then
7: Set Enew.weight = E[: n].detach()
8: else
9: for i ∈ [0, L− 1] do

10: if i == 0 then
11: Set Enew.weight[: l] = E.detach()
12: else if i > 0 and i < L− 1 then
13: Set Enew.weight[i ∗ l : (i+ 1) ∗ l] = E.detach()
14: else
15: Set Enew.weight[i ∗ l :] = E.detach()[: (n− i ∗ l)]
16: end if
17: end for
18: end if
19: return Enew

1.2.4 Model interpretability

We used the LIME model [44] for model interpretation. LIME utilizes a trained local surrogate model to explain individual
predictions. For a black-box model of interest, LIME samples around the instance of interest and collects perturbed instances
along with their black-box model predictions. A local interpretable model (e.g. linear regression, decision tree) is then trained
on this new dataset to approximate the behavior of the black-box model locally. Fig. S15 from [44] shows its working principle,
wherein the dashed line is a trained linear model used to explain the black-box model with complex boundaries in the red and
blue part of the graph. The hyperparameters we set here is to perform 1,000 samples and filter the top 50 contributing features.
Considering the maximum token length does not exceed 900, this choice is reasonable under the limitation of computational
rate, as the training time increases exponentially with the increase of sampling times.

Additionally, we visualized the attention score of the [CLS] (classify) token in the last layer. Different attention scores
represent the degree of importance that a specific token places on other tokens, with larger attention scores indicating higher
importance. The classifier processes the value of the last layer’s [CLS] token, compressing this 768-dimensional vector into
three dimensions. Each dimension represents the probability of different categories. Therefore, calculating the focus on the
previous layer assists in interpreting the model.

5

2 Supplementary figures

FIG. S1. Gemini-pro outputs without using “MetalPrompt”.

6

FIG. S2. GPT4-turbo outputs without using “MetalPrompt”.

7

FIG. S3. llama2 outputs without using “MetalPrompt”.

8

FIG. S4. Comparison of accuracy of different prompt methods. ‘direct inquiry’ refers to directly requesting LLM metallic glass classification
results without using a prompt. ‘few-shot’ involves using alloy composition and its classification results as input samples in a prompt for an
LLM and inquiring about the classification results for other specific alloy compositions. ‘few-shot with CoT’ not only adds examples of alloy
composition and categories, but also integrates some thought processes into the prompt.

FIG. S5. Accuracy comparison between prompt baseline model and machine learning models. The logistic regression serves as our baseline
model, SVM denotes the support vector machine model, and GBDT refers to the gradient boosting decision tree model.

9

FIG. S6. Confusion matrix for MgBERT classification results. The x-axis refers the model prediction of the alloy composition belonging to a
particular metallic glass category, while the y-axis indicates the actual category of the alloy composition. For example, the ‘616’ in the upper
left corner signifies that there are 616 components classified as metallic glasses, which MgBERT also predicts to be metallic glasses.

10

FIG. S7. Contribution of input text for non-ribbon type alloy Al40Mn25Si35 to output classification results. A positive value means that the
word has a positive contribution to the model’s prediction that the component is non-ribbon, and vice versa.

11

FIG. S8. Prompt template for direct inquiry.

12

FIG. S9. Prompt template for few-shot method.

13

FIG. S10. Prompt template for few-shot with CoT method.

14

FIG. S11. Tuning the Top-K setting [79]. The value of K represents the model’s selection of the first k words with the highest likelihood
of being the output. Decreasing the hyperparameter “Top-K” results in a narrower model selection, focusing on candidate words with higher
probabilities. This figure is from [79].

FIG. S12. Tuning the temperature setting [80]. Similar to the “Top-K”, a lower value of the hyperparameter temperature implies that the model
will favor words with higher probabilities as output. This figure is from [80].

15

FIG. S13. BERT input representation. The input embeddings are the sum of the token embeddings, the segment embeddings and the position
embeddings [27]. This figure is from [27].

(a) (b)

FIG. S14. Schematic diagram of attention mechanism. a, Scaled dot-product attention. b, Multi-head attention consists of multiple attention
layers running in parallel [77]. This figure is from [77].

16

FIG. S15. A simple example of LIME [44]. The gray dashed line is a linear interpreter identified by LIME, used to distinguish the positive and
negative contributions of sample features to the output of the black box model (i.e. our model). The symbols in the figure correspond to data
points generated by LIME’s perturbation sampling, while the red and blue areas denote the complex decision areas of the black box model.
This figure is from [44].

3 Supplementary Tables

TABLE S1. Format of raw data.

glass forming category composition

Ribbon Ag20Al25La55
BMG Cu55Zr42.5Ga2.5
NR Ag6Ce8Cu86
... ...

TABLE S2. Hyperparameters of model training.

model name hyperparameters

BERT Epoch: 8; Learning rate: 3e-5; Batch size: 26
longformer Epoch: 8; Learning rate: 3e-5; Batch size: 12
MatSciBERT Epoch: 8; Learning rate: 3e-5; Batch size: 26

17

	A Prompt-Engineered Large Language Model, Deep Learning Workflow for Materials Classification
	Abstract
	Supplementary Notes
	Glossary
	Workflow details
	Data processing of metallic glasses dataset
	Prompt design and textual data generation
	MgBERT training and evaluation
	Model interpretability

	Supplementary figures
	Supplementary Tables

