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Abstract 

Materials language processing (MLP) is one of the key facilitators of materials science 

research, as it enables the extraction of structured information from massive materials science 

literature. Prior works suggested high-performance MLP models for text classification, 

named entity recognition (NER), and extractive question answering (QA), which require 

complex model architecture, exhaustive fine-tuning and a large number of human-labelled 

datasets. In this study, we develop generative pretrained transformer (GPT)-enabled pipelines 

where the complex architectures of prior MLP models are replaced with strategic designs of 

prompt engineering. First, we develop a GPT-enabled document classification method for 

screening relevant documents, achieving comparable accuracy and reliability compared to 

prior models, with only small dataset. Secondly, for NER task, we design an entity-centric 

prompts, and learning few-shot of them improved the performance on most of entities in 

three open datasets. Finally, we develop an GPT-enabled extractive QA model, which 

provides improved performance and shows the possibility of automatically correcting 

annotations. While our findings confirm the potential of GPT-enabled MLP models as well as 

their value in terms of reliability and practicability, our scientific methods and systematic 

approach are applicable to any materials science domain to accelerate the information 

extraction of scientific literature.  
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Introduction 

Materials language processing (MLP) has emerged as a powerful tool in the realm of 

materials science research that aims to facilitate the extraction of valuable information from 

the scientific literature and the construction of a knowledge base 1, 2. MLP leverages natural 

language processing (NLP) techniques to analyse and understand the language used in 

materials science texts, enabling the identification of key materials and properties and their 

relationships 3-6. Despite significant advancements in MLP, challenges remain that hinder its 

practical applicability and performance. One key challenge lies in the availability of labelled 

datasets for training machine-learning models, as creating such datasets can be time-

consuming and labour-intensive 4. Additionally, fine-tuning pretrained large language models 

(LLMs) for knowledge-intensive MLP requires a large amount of training data to achieve 

satisfactory performance, limiting their effectiveness in scenarios with limited labelled data. 

In this study, we propose a pipeline that employs the power of a generative pretrained 

transformer (GPT) 7 for solving MLP tasks. GPT is a state-of-the-art LLM that has 

demonstrated remarkable performance in various NLP tasks, such as text generation, 

translation, and comprehension. We aim to address the limitations of existing models and 

improve the practical applicability and performance of knowledge-intensive MLP tasks by 

employing the generative model. Our study focuses on three key MLP tasks: text 

classification, named entity recognition (NER), and extractive question answering (QA).  

First, we present a document-classification method that leverages the strengths of zero-shot 

(without training data) and few-shot (with few training data) learning models, which show 

promising performance even with limited training data. This approach demonstrates the 

potential to achieve high accuracy in filtering relevant documents without fine-tuning based 

on a large-scale dataset. Furthermore, we propose an entity-centric prompt engineering 

method for NER, the performance of which surpasses that of previous fine-tuned models on 

multiple datasets. By carefully constructing prompts that guide the GPT model towards 

recognising and tagging materials-related entities, we enhance the accuracy and efficiency of 

entity recognition in materials science texts. Finally, we introduce a GPT-enabled extractive 

QA model that demonstrates improved performance in providing precise and informative 

answers to questions related to materials science. By fine-tuning the GPT model on materials-
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science-specific QA data, we enhance its ability to comprehend and extract relevant 

information from the scientific literature. 

Through our experiments and evaluations, we validate the effectiveness of GPT-enabled 

MLP models, analysing their cost, reliability, and accuracy to advance materials science 

research. Furthermore, we discuss the implications of GPT-enabled models for practical 

tasks, such as entity tagging and annotation evaluation, shedding light on the efficacy and 

practicality of this approach. In summary, our research presents a significant advancement in 

MLP through the integration of GPT models. By leveraging the capabilities of GPT, we aim 

to overcome limitations in its practical applicability and performance, opening new avenues 

for extracting knowledge from materials science literature. 

 

Results  

Workflow of GPT-enabled materials language processing pipeline 

Fig. 1 presents an overview of our GPT-enabled MLP pipeline, which uses the embedding 

module and prompt–completion module of GPT-series models for text classification, NER, 

and extractive QA.  

Text classification 

Text classification, a fundamental task in NLP, involves categorising textual data into 

predefined classes or categories8 (MLP task descriptions in Supporting Information). Text 

classification in materials science has been actively used for filtering valid documents from 

the retrieval results of search engines or identifying paragraphs containing information of 

interest 6, 9, 10. For example, some researchers have attempted to classify the abstracts of 

battery-related papers from the results of searching with keywords such as ‘battery’ or 

‘battery materials’, which is the starting point of extracting battery-device information from 

the literature 11. Furthermore, paragraph-level classification models have been developed to 

find paragraphs of interest using a statistical model such as Latent Dirichlet allocation or 

machine-learning models such as random forest or BERT classifier 9, 12, 13, e.g., for solid-state 

synthesis, gold-nanoparticle synthesis, multiclass of solution synthesis.  
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Battery-materials-related paper classification. Some researchers have attempted to 

construct a battery database using NLP techniques applied to research papers11. The authors 

reported a dataset specifically designed for categorising papers relevant to battery research. 

Specifically, there are 46,663 labelled datasets for which the labels are battery or non-battery 

are publicly available (Fig S1.a). They annotated a substantial amount of data and created a 

classification model with complex structure by using multiple BERT-based models. Despite 

the reported SOTA performance is an accuracy of 97.5%, precision of 96.6%, and recall of 

99.5%, such models require extensive training data and complex structures, and thus, we 

attempted to develop a simple, GPT-enabled model that can achieve high performance using 

only a small dataset. Specifically, we tested zero-shot learning and few-shot learning models 

based on GPT 3.5 for this classification task.  

Zero-shot learning with embedding 14 allows models to make predictions or perform tasks 

without fine-tuning with human-labelled data. The zero-shot model works based on the 

embedding value of a given text, which is provided by GPT embedding modules. Using the 

distance between a given paragraph and predefined labels in the embedding space, which 

numerically represent their semantic similarity, paragraphs are classified with labels. For 

example, if one uses the model to classify an unseen text with the label of either “batteries” 

or “solar cells”, the model will calculate the distance between the embedding value of the 

text and that of ‘batteries’ or ‘solar cells’, selecting the label with higher similarity in the 

embedding space.  

Below are the results of the zero-shot text classification model using the text-embedding-ada-

002 model of GPT (Fig 2.a). First, we tested the original label pair of the dataset 11, that is, 

“battery” vs. “non-battery” (‘original labels’ of Fig 2.a). The performance of the existing 

label-based model was low, with an accuracy and precision of 63.2%, because the difference 

between the embedding value of “battery” and that of “non-battery” was small, indicating 

that the model judges the two labels to be semantically similar. The model tended to predict 

most of the observations to have positive labels (recall ≈100%), as most of the papers in the 

dataset were collected through a keyword-based search, directly referring to the word 

“battery”. Considering that the True label should indicate battery-related papers and the False 

label would result in the complementary dataset, we designed the label pair as “battery 

materials” vs. “diverse domains” (‘crude labels’ of Fig 2.a). We successfully improved the 
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performance, achieving an accuracy of 87.3%, precision of 84.5%, and recall of 97.9%, by 

specifying the meaning of the false label.  

To further reduce the number of false positives, we designed the labels in an explicit manner, 

i.e., “battery materials” vs. “medical and psychological research” (‘designated labels’ of Fig 

2.a). Here, the false label was selected from the results of randomly sampled papers from the 

non-battery set. Interestingly, we obtained slightly improved performance (accuracy, recall, 

and precision of 91.0%, 88.6%, and 98.3%). We were able to achieve even higher 

performance (ACC: 93.0, PRE: 90.8, REC: 98.9) if the labels were made even more verbose: 

“papers related to battery energy materials” vs. “medical and psychological research” 

(‘verbose labels’ of Fig 2.a). Although these values are relatively lower than those of the 

SOTA model, it is noteworthy that acceptable text-classification performance was achieved 

without exhaustive human labelling, as the proposed model is based on zero-shot learning 

with embeddings. To summarize, we confirmed that selecting labels that well represent the 

valid paper set (“battery”) and the complement (“non-battery”) is a key determinant in 

improving the performance of zero-shot learning. These results imply that classifying a 

specific set among the paper data set in materials science can be achieved without labelling 

with zero-shot methods if a proper label corresponding to a representative embedding value 

for each category is selected. 

Next, the improved performance of few-shot text classification models is demonstrated in Fig 

2.b. In few-shot learning models, we provide the selected number of labelled data to the 

model. We tested 2-way 1-shot and 2-way 5-shot models, which means that there are two 

labels and one/five labelled data for each label are granted to the models. The example 

prompt is given in Fig 2.c. The 2-way 1-shot models resulted in an accuracy of 95.7%, which 

indicates that providing just one example for each category has a significant effect on the 

prediction. Furthermore, increasing the number of examples leads to improved performance, 

where the accuracy, precision, and recall are 96.1%, 95.0%, and 99.1%. Finally, we used the 

fine-tuning module of the GPT-3 davinci model with 1,000 prompt–completion examples. 

The fine-tuning model performs a general binary classification of texts by learning the 

examples while no longer using the embeddings of the labels, in contrast to few-shot 

learning. In our test, the fine-tuning model yielded high performance, that is, an accuracy of 

96.6%, precision of 95.8%, and recall of 98.9%, which are close to those of the SOTA model. 
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Here, we emphasise that the GPT-enabled models can achieve acceptable performance even 

with the small number of datasets, although they slightly underperformed the BERT-based 

model trained with a large dataset. 

In addition to the accuracy, we investigated the reliability of our GPT-based models and the 

SOTA models in terms of calibration. The reliability can be evaluated by measuring the 

expected calibration error (ECE) score 15. The ECE score assesses the calibration of 

probabilistic predictions of models and is calculated as follows: 

ECE =∑
|𝐵𝑚|

𝑛
|𝑎𝑐𝑐(𝐵𝑚) − 𝑐𝑜𝑛𝑓(𝐵𝑚)|

𝑀

𝑚=1
, 

where the dataset is divided into M interval bins based on confidence, and 𝐵𝑚 is the set of 

indices of samples of which the confidence scores fall into each interval, while 𝑎𝑐𝑐(𝐵𝑚) and 

𝑐𝑜𝑛𝑓(𝐵𝑚) are the average accuracy and confidence for each bin, respectively.  

A lower ECE score indicates that the model's predictions are closer to being well-calibrated, 

ensuring that the confidence of a model in its prediction is similar to the actual accuracy of 

the model 16. The log probabilities of GPT-enabled models were used to compare the 

accuracy and confidence. The ECE score of the SOTA (batteryBERT-cased) model is 0.03, 

whereas those of the 2-way 1-shot model, 2-way 5-shot model, and fine-tuned model were 

0.05, 0.07, and 0.07, respectively. Considering a well-calibrated model typically exhibits an 

ECE of less than 0.1, we conclude that our GPT-enabled text classification models provide 

high performance in terms of both accuracy and reliability with less cost. The lowest ECE 

score of the SOTA model shows that the BERT classifier fine-tuned for the given task was 

well-trained and not overconfident, potentially owing to the large and unbiased training set. 

The GPT-enabled models also show acceptable reliability scores, which is encouraging when 

considering the amount of training data or training costs required. In summary, we expect the 

GPT-enabled text-classification models to be valuable tools for materials scientists with less 

machine-learning knowledge while providing high accuracy and reliability comparable to 

BERT-based fine-tuned models. 
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Named entity recognition 

NER is one of the representative NLP techniques for information extraction 17. NER aims to 

identify and classify named entities within text (MLP task descriptions in Supporting 

Information).  Here, named entities refer to real-world objects such as persons, organisations, 

locations, dates, and quantities 18. In materials science, many researchers have developed 

NER models for extracting structured summary-level data from unstructured text. For 

example, domain-specific pretrained language models such as SciBERT 19, MatBERT 5, 

MatSciBERT 2, and MaterialsBERT 20 were used to extract specialised information from 

materials science literature, thereby extracting entities on solid-state materials, doping, gold 

nanoparticles (AuNPs), polymers, electrocatalytic CO2 reduction, and solid oxide fuel cells 

from a large number of papers 5, 6, 20, 21. In this work, we used the three publicly available 

datasets, which include human-labelled entities on solid-state materials, doped materials, and 

AuNPs, to compare the performance of our GPT-enabled models and prior ones. 

 

Solid-state materials entity recognition. The solid-state materials dataset includes 

annotations on the following categories: inorganic materials (MAT), symmetry/phase labels 

(SPL), sample descriptors (DSC), material properties (PRO), material applications (APL), 

synthesis methods (SMT), and characterisation methods (CMT) 21. For example, MAT 

indicates inorganics solid/alloy materials or non-gaseous elements such as ‘BaTiO3,’ ‘titania,’ 

or ‘Fe’. SPL indicates the name for crystal structures and phases such as ‘tetragonal’ or a 

symmetry label such as ‘Pbnm’ (Fig. S1.b).  

Because the fine-tuning model requires prompt–completion examples as a training set, the 

NER datasets are pre-processed as follows: the annotations for each category are marked with 

the special tokens 22, and then, the raw text and marked text are used as the prompt and 

completion, respectively. For example, if the input text is “LiCoO2 and LiFePO4 are used as 

cathodes of secondary batteries”, the prompt–completion pair can be generated. The prompt 

is the same as the input text, and the completion for each category is as follows: 

MAT model → Completion: “LiCoO2 and LiFePO4 are used as cathodes of secondary 

batteries” / completion: “@@LiCoO2## and @@LiFePO4## are used as cathodes of 

secondary batteries.” 
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APL model → Completion: “LiCoO2 and LiFePO4 are used as cathodes of secondary 

batteries” / completion: “LiCoO2 and LiFePO4 are used as @@cathodes of secondary 

batteries##.” 

One of the examples used in the training set is shown in Fig 3.d. After pre-processing, we 

tested fine-tuning modules of GPT-3 such as davinci models. The performance of our GPT-

enabled NER models was compared with that of the SOTA model in terms of recall, 

precision, and F1 score. Fig 3.a shows that the GPT model exhibits a higher recall value in 

the categories of CMT, SMT, and SPL and a slightly lower value in the categories of DSC, 

MAT, and PRO compared to the SOTA model. However, for the F1 score, our GPT-based 

model outperforms the SOTA model for all categories because of the superior precision of 

the GPT-enabled model (Fig. 3b–c). The high precision of the GPT-enabled model can be 

attributed to the generative nature of GPT models, which allows coherent and contextually 

appropriate output to be generated.  

 

Doped materials recognition. The doped materials entity dataset 5 annotates the base 

material (BASEMAT), the doping agent (DOPANT), and quantities associated with the 

doped material such as the doping density or the charge carrier density (DOPMODQ), with 

specific examples provided in Fig. S1.b. The SOTA model for this dataset had F1 scores of 

72, 82, and 62 for BASEMANT, DOPANT, and DOPMODQ, respectively. We analysed this 

dataset using fine-tuning modules of GPT-3 such as the davinci model. The prompt–

completion sets were constructed similarly to the previous NER task. As reported in Fig 4.a, 

the fine-tuning GPT-3 davinci model showed high precision of 93.4, 95.6, and 92.7 for the 

three categories, BASEMAT, DOPANT, and DOPMODQ, respectively, while yielding 

relatively lower recall of 62.0, 64.4, and 59.4, respectively (Fig 4.a). These results imply that 

the doped materials entity dataset may have diverse entities for each category but that there is 

not enough data for training to cover the diversity. In addition, the GPT-based model’s F1 

scores of 74.6, 77.0, and 72.4 surpassed or closely approached those of the SOTA model 

(matBERT-uncased), which were recorded as 72, 82, and 62, respectively (Fig 4.b). 

 

AuNPs entity recognition. The AuNPs entity dataset annotates the descriptive entities (DES) 

and the morphological entities (MOR) 12, where DES includes ‘dumbbell-like’ or ‘spherical’ 
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and MOR includes noun phrases such as ‘nanoparticles’ or ‘AuNRs’. More specific examples 

are provided in Fig. S1.c. The SOTA model for this dataset is reported as the matBERT-

based model whose F1 scores for DES and MOR are 0.67 and 0.92, respectively5. 

We used the few-shot learning 23 of the GPT-3.5 model (text-davinci-003) for the AuNPs 

entities dataset. Similar to the previous NER task, we designed the prompt to randomly select 

the three ground-truth examples (pair of text and the text with named entities) from the 

training set when extracting the named entities from the given text in the test set (random 

retrieval). These simple methods yield high recall performance of 63% and 97% for the DES 

and MOR categories, respectively. Here, it is noteworthy that prompts with the ground-truth 

examples can provide improved results on DES and MOR entity recognition, considering the 

recall values of 52% and 64% reported in prior works 12 (Fig. S2). However, the F1 score of 

this few-shot learning model was lower than that of the SOTA model (‘random retrieval’ of 

Fig 4.c). Furthermore, we tested the effect of adding a phrase that directly specifies the task 

to the existing prompt; e.g., “The task is to extract the descriptive entities of materials in the 

given text” (‘task-informed random retrieval’ of Fig 4.c). The example prompt is shown in 

Fig 4.d. Some performance improvements, namely a 1%–2% increase in recall and a 6%–

11% increase in precision, were observed.  

Finally, to more elaborately perform the few-shot learning, “similar” ground-truth examples 

to each test set, that is, the examples for which the document embedding value are similar to 

that of each test set, were selected for the NER extraction in the test set (‘kNN retrieval’ of 

Fig 4.c). Interestingly, compared to the performance of the previous method (i.e., task-

informed random retrieval), we confirmed that the recall value of the kNN method was the 

same or slightly lower and that the precision increased by 15%–20%. Particularly, the recall 

of DES was relatively low compared to its precision, which indicates that providing similar 

ground-truth examples enables more tight recognition of DES entities. In addition, the recall 

of MOR is relatively higher than the precision, implying that giving k-nearest examples 

results in the recognition of more permissive MOR entities (Fig S2). In summary, we 

confirmed the potential of the few-shot NER model through GPT prompt engineering and 

found that providing similar examples rather than randomly sampled examples and informing 

tasks had a significant effect on performance improvement. In terms of the F1 score, few-shot 

learning with the GPT-3.5 (text-davinci-003) model results in comparable MOR entity 



11 

 

recognition performance as that of the SOTA model and improved DES recognition 

performance (Fig 4.c). 

 

Extractive question answering 

Extractive QA is a type of QA system that retrieves answers directly from a given passage of 

text rather than generating answers based on external knowledge or language understanding 

24 (MLP task descriptions in Supporting Information). In materials science, the extractive QA 

task has received less attention as its purpose is similar to the NER task for information 

extraction, although battery-device-related QA models have been proposed 11. Nevertheless, 

by enabling accurate information retrieval, advancing research in the field, enhancing search 

engines, and contributing to various domains within materials science, extractive QA holds 

the potential for significant impact. 

 

Battery-device-related question answering. This dataset 11 consists of questions, contexts, 

and answers, and the questions are related to the principal components of battery systems, 

i.e., “What is the anode?”, “What is the cathode?”, and “What is the electrolyte?”. The 

publicly available dataset includes 427 annotations, although the authors stated they made 

272 manually labelled annotations. Unfortunately, we found redundant or incorrect 

annotations, e.g., when there is no mention of the anode in the given context, the question is 

about the anode and the answer is about the cathode. In the end, we refined the given dataset 

into 331 QA data.  

Next, we reproduced the results of prior QA models including the SOTA model, 

BatteryBERT (cased), to compare the performances between our GPT-enabled models and 

prior models with the same measure. The performances of the models were newly evaluated 

with the average values of token-level precision and recall, which are usually used in QA 

model evaluation. In this way, the prior models were re-evaluated, and the SOTA model 

turned out to be batteryBERT (cased), identical to that reported (Fig 5.a). 

We tested the zero-shot QA model using the text-davinci-003 model of GPT-3.5, yielding a 

precision of 60.92%, recall of 79.96%, and F1 score of 69.15%. These relatively low 

performance values can be derived from the domain-specific dataset, from which it is 
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difficult for a vanilla model to find the answer from the given scientific literature text. 

Therefore, we added a task-informing phrase such as ‘The task is to extract answers from the 

given text.’ to the existing prompt consisting of the question, context, and answer. 

Surprisingly, we observed an increase in performance, particularly in precision, which 

increased from 60.92% to 72.89%. By specifying that the task was to extract rather than 

generate answers, the accuracy of the answers appeared to increase. Next, we tested a fine-

tuning module of GPT-3 models such as davinci. We achieved higher performance with an 

F1 score of 88.21% (compared to that of 74.48% for the SOTA model). 

In addition to the improved performance, we were able to examine the possibility of 

correcting the existing annotations with our GPT-based models. As mentioned earlier, we 

modified and used the open QA data set. Here, in addition to removing duplicates or deleting 

unanswered data, finding data with incorrect answers was based on the results of the GPT 

model (Fig 5.c). For example, there is an incorrect question–answer pair: the anode materials 

are not mentioned in the given context and ‘nano-meshed’ is mentioned as the cathode 

material; however, the annotated question is ‘what is the anode material?’, and the 

corresponding answer is ‘nano-meshed’. For this case, most BERT-based models yield the 

answer ‘nano-meshed’ similar to the annotation, whereas the GPT models provide the answer 

‘the anode is not mentioned in the given text’. In addition, there were annotations that could 

increase the confusion of the model by making each question–answer pair for the answer in 

which the two tokens were combined by OR. For example, GPT models answered “sulfur or 

air cathode”, but the original annotations annotate ‘sulfur’ and ‘air’ as different answers. 

Discussion 

This work presents a GPT-enabled pipeline for MLP tasks, providing guidelines for text 

classification, NER, and extractive QA. Through an empirical study, we demonstrated the 

advantages and disadvantages of GPT models in MLP tasks compared to the prior fine-tuned 

models based on BERT (Concluding remarks in Supporting Information). We note the 

potential limitations and inherent characteristics of GPT-enabled MLP models, which 

materials scientists should consider when analysing literature using GPT models. First, 

considering that GPT series models are autoregressive and generative, the additional step of 

examining whether the results are faithful to the original text would be necessary in MLP 

tasks, particularly information-extraction tasks 25. In contrast, general MLP models based on 
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fine-tuned LLMs do not provide unexpected prediction values because they are classified into 

predefined categories through cross entropy function. Similarly, given that GPT is a closed 

model that does not disclose the training details and the response generated carries an 

encoded opinion, the results are likely to be overconfident and influenced by the biases in the 

given training data 26. Therefore, it is necessary to evaluate the reliability as well as accuracy 

of the results when using GPT-guided results for the subsequent analysis. Finally, the GPT-

enabled model would face challenges in more domain-specific, complex, and challenging 

tasks (e.g., relation extraction, event detection, and event extraction) than those presented in 

this study, as it is difficult to explain the tasks in the prompt. For example, extracting the 

relations of entities would be challenging as it is necessary to explain well the complicated 

patterns or relationships as text, which are inferred through black-box models in general NLP 

models 27. Nonetheless, GPT models will be effective MLP tools by allowing material 

scientists to more easily analyse literature effectively without knowledge of the complex 

architecture of existing NLP models. As LLM technologies advance, creating quality prompts 

that consist of specific and clear task descriptions, appropriate input text for the task, and 

consistently labelled results (i.e., classification categories) will become more important for 

materials scientists. 

 

Methods 

 

Prompt engineering 

We used the python library openai to implement the GPT-enabled MLP pipeline. We mainly 

used the prompt–completion module of GPT models for training examples for text 

classification, NER, or extractive QA. Given a sufficient dataset of prompt–completion pairs, 

a fine-tuning module of GPT-3 models such as davinci or curie can be used. The prompt–

completion pairs are lists of independent and identically distributed training examples 

concatenated together with one test input. Otherwise, for few-shot learning, which makes the 

prompt consisting of the task-informing phrase, several examples and the input of interest, 

can be alternatives. Here, which examples to provide is important in designing effective few-

shot learning. Similar examples can be obtained by calculating the cosine similarity between 

the training set for each test set.  
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Regarding the preparation of prompt–completion examples, we suggest some guidelines. 

Suffix characters in the prompt such as ‘ →’ are required to clarify to the fine-tuned model 

where the completion should begin. In addition, suffix characters in the prompt such as 

‘ \n\n###\n\n’ are required to specify the end of the prediction. This is important when a 

trained model decides on the end of its prediction for a given input, given that GPT is one of 

the autoregressive models that continuously predicts the following text from the preceding 

text. That is, in prediction, the same suffix should be placed at the end of the input. In 

addition, prefix characters are usually unnecessary as the prompt and completion are 

distinguished. Rather than using the prefix characters, simply starting the completion with a 

whitespace character would produce better results due to the tokenisation of GPT models. In 

addition, this method can be economical as it reduces the number of unnecessary tokens in 

the GPT model, where fees are charged based on the number of tokens. We note that the 

maximum number of tokens in a single prompt–completion is 4097, and thus, counting 

tokens is important for effective prompt engineering; e.g., we used the python library titoken 

to test the tokenizer of GPT series models. 

 

GPT model usage guidelines 

After pre-processing, the splitting process of train, validation, and test set proceeds, and the 

dataset is divided by using the random seed and ratio used in previous studies. In the fine-

tuning of GPT models, there are some hyperparameters such as the base model, batch size, 

number of epochs, learning rate multiplier, and prompt loss weight. The base models for 

which fine-tuning is available are GPT-3 models such as ‘ada’, ‘babbage’, ‘curie’, and 

‘davinci’, which can be tested using the web service provided by OpenAI 

(https://gpttools.com/comparisontool). For a simple prompt–completion task such as zero-

shot learning and few-shot learning, GPT-3.5 models such as ‘text-davinci-003’ can be used. 

The batch size can be dynamically configured and its maximum is 256; however, we 

recommend 1% or 0.2% of the training set. The learning rate multiplier adjusts the models’ 

weights during training, and a high learning rate leads to a sub-optimal solution, whereas a 

low one causes the model to converge too slowly or find a local minimum. The default values 

are 0.05–0.2 depending on the batch size, and we set the learning rate multiplier as 0.01. The 

prompt loss weight is the weight to use for loss on the prompt tokens, which should be 
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reduced when prompts are relatively long to the corresponding completions to avoid giving 

undue priority to prompt learning over the completion learning. We set the prompt loss 

weight as 0.01.  

With the fine-tuned GPT models, we can infer the completion for a given unseen dataset that 

ends with the pre-defined suffix. Here, some parameters such as the temperature, maximum 

number of tokens, and top P can be determined according to the purpose of analysis. First, 

temperature determines the randomness of the completion generated by the model, ranging 

from 0 to 1. For example, higher temperature leads to more randomness in the generated 

output, which can be useful for exploring creative or new completions (e.g., generative QA). 

In addition, lower temperature leads to more focused and deterministic generations, which is 

appropriate to obtain more common and probable results, potentially sacrificing novelty. We 

set the temperature as 0, as our MLP tasks concern the extraction of information rather than 

the creation of new tokens. The maximum number of tokens determines how many tokens to 

generate in the completion. If the ideal completion is longer than the maximum number, the 

completion result may be truncated; thus, we recommend setting this hyperparameter to the 

maximum number of tokens of completions in the training set (e.g., 256 in our cases). In 

practice, the reason the GPT model stops producing results is ideally because a suffix has 

been found; however, it could be that the maximum length is exceeded. The top P is a 

hyperparameter about the top-p sampling, i.e., nucleus sampling, where the model selects the 

next word based on the most likely candidates, limited to a dynamic subset determined by a 

probability threshold (p). This parameter promotes diversity in generated text while allowing 

control over randomness.  

 

Performance evaluation 

We evaluated the performance of text classification, NER, and QA models using different 

measures. The fine-tuning module provides the results of accuracy, actually the exact-

matching accuracy. Therefore, post-processing of the prediction results was required to 

compare the performance of our GPT-based models and the reported SOTA models. For the 

text classification, the predictions refer to one of the pre-defined categories. By comparing 

the category mentioned in each prediction and the ground truth, the accuracy, precision, and 

recall can be measured. For the NER, the performance such as the precision and recall can be 
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measured by comparing the index of ground-truth entities and predicted entities. Here, the 

performance can be evaluated strictly by using an exact-matching method, where both the 

start index and end index of the ground-truth answer and prediction result match. The 

boundaries of named entities are likely to be subjective or ambiguous in practice, and thus, 

we recommend the boundary-relaxation method to generously evaluate the performance, 

where a case that either the start or end index is correct is considered as a true positive 28. For 

the extractive QA, the performance is evaluated by measuring the precision and recall for 

each answer at the token level and averaging them. Similar to the NER performance, the 

answers are evaluated by measuring the number of tokens overlapping the actual correct 

answers.  
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Figures 

 

 

 

Fig. 1. Workflow of GPT-enabled MLP pipeline. In this work, we suggest the use of 

GPT-series models for three representative MLP tasks (text classification, NER, and QA) 

using publicly available datasets. The datasets, with a large number of human-labelled 

annotations, are used as ground-truth examples of MLP tasks, i.e., valid documents, named 

entities, and answers. We compare the performance of our GPT-based models with that of 

the state-of-the-art (SOTA) model, discuss the availability of our results as annotation 

correction, and investigate the reliability of the models in terms of calibration. Specifically, 

the proposed GPT-enabled MLP pipeline analyses text information of materials science 

literature using the embedding module and prompt–completion module of GPT series 

models.  
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Fig. 2. Results of GPT-enabled text classification models. (A) Results of zero-shot 

learning with GPT embedding. The accuracy, precision, and recall are reported. (B) 

Comparison of zero-shot learning, few-shot learning, and fine-tuning results. The 

horizontal and vertical axes are the precision and recall of each model, respectively. The 

node colour and size are based on the rank of accuracy and the dataset size, respectively. 

(C) Example of prompt engineering for 2-way 1-shot learning, where the task description, 

one example for each category, and input abstract are given. 
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Fig. 3. Performance of GPT-enabled NER models on solid-state materials compared 

to the SOTA model (matBERT-uncased). The proposed models are based on fine-tuning 

modules based on prompt–completion examples. (A–C) Comparison of recall, precision, 

and F1 score between our GPT-enabled model and the SOTA model for each category. (D) 

Example of prompt–completion for MAT entity recognition. 
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Fig. 4. Performance of GPT-enabled NER models on doped materials and AuNPs, 

compared to the SOTA model. (A) Doped materials entity recognition performance of 

fine-tuning of GPT 3 (davinci), (B) doped materials entity recognition performance (F1 

score) comparison between SOTA (matBERT-uncased) and fine-tuning of GPT 3 davinci, 

(C) AuNPs entity recognition performance (F1-score) comparisons between GPT 3.5 

davinci (random retrieval, task-informed random retrieval, kNN retrieval) and SOTA 

(matBERT-uncased) model, (D) Example of prompt for DES entity recognition (task 

informed random retrieval). 
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Fig. 5. Performance of GPT-enabled QA model. (A) Reproduced results of BERT-based 

model performances, (B) comparison between the SOTA and GPT-3 fine-tuning model 

(davinci), (C) correction of wrong annotations in QA dataset, and prediction result 

comparison of each model. Here, the difference in the cased/uncased version of the BERT 

series model is the processing of capitalisation of tokens or accent markers, which 

influenced the size of vocabulary, pre-processing, and training cost. 

 


