Upload armeme_loader.py with huggingface_hub
Browse files- armeme_loader.py +69 -0
armeme_loader.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import datasets
|
4 |
+
from datasets import Dataset, DatasetDict, load_dataset, Features, Value, Image, ClassLabel
|
5 |
+
|
6 |
+
|
7 |
+
# Define the paths to your dataset
|
8 |
+
image_root_dir = "./"
|
9 |
+
train_jsonl_file_path = "arabic_memes_categorization_train.jsonl"
|
10 |
+
dev_jsonl_file_path = "arabic_memes_categorization_dev.jsonl"
|
11 |
+
test_jsonl_file_path = "arabic_memes_categorization_test.jsonl"
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
# Function to load each dataset split
|
16 |
+
def load_armeme_split(jsonl_file_path, image_root_dir):
|
17 |
+
texts = []
|
18 |
+
images = []
|
19 |
+
ids=[]
|
20 |
+
class_labels=[]
|
21 |
+
image_file_paths = []
|
22 |
+
|
23 |
+
# Load JSONL file
|
24 |
+
with open(jsonl_file_path, 'r') as f:
|
25 |
+
for line in f:
|
26 |
+
item = json.loads(line)
|
27 |
+
ids.append(item['id'])
|
28 |
+
texts.append(item['text'])
|
29 |
+
image_file_path = os.path.join(image_root_dir, item['img_path'])
|
30 |
+
images.append(image_file_path)
|
31 |
+
image_file_paths.append(image_file_path)
|
32 |
+
class_labels.append(item['class_label'])
|
33 |
+
|
34 |
+
# Create a dictionary to match the dataset structure
|
35 |
+
data_dict = {
|
36 |
+
'id':ids,
|
37 |
+
'text': texts,
|
38 |
+
'image': images,
|
39 |
+
'img_path': image_file_paths,
|
40 |
+
'class_label': class_labels
|
41 |
+
}
|
42 |
+
|
43 |
+
# Define the features
|
44 |
+
features = Features({
|
45 |
+
'id': Value('string'),
|
46 |
+
'text': Value('string'),
|
47 |
+
'image': Image(),
|
48 |
+
'img_path': Value('string'),
|
49 |
+
'class_label': ClassLabel(names=['not_propaganda','propaganda','not-meme','other'])
|
50 |
+
})
|
51 |
+
|
52 |
+
# Create a Hugging Face dataset from the dictionary
|
53 |
+
dataset = Dataset.from_dict(data_dict, features=features)
|
54 |
+
return dataset
|
55 |
+
|
56 |
+
# Load each split
|
57 |
+
train_dataset = load_armeme_split(train_jsonl_file_path, image_root_dir)
|
58 |
+
dev_dataset = load_armeme_split(dev_jsonl_file_path, image_root_dir)
|
59 |
+
test_dataset = load_armeme_split(test_jsonl_file_path, image_root_dir)
|
60 |
+
|
61 |
+
# Create a DatasetDict
|
62 |
+
dataset_dict = DatasetDict({
|
63 |
+
'train': train_dataset,
|
64 |
+
'dev': dev_dataset,
|
65 |
+
'test': test_dataset
|
66 |
+
})
|
67 |
+
|
68 |
+
# Push the dataset to Hugging Face Hub
|
69 |
+
dataset_dict.push_to_hub("QCRI/ArMeme")
|