AliShahroor
commited on
Commit
•
f9af6f0
1
Parent(s):
efee33c
add readme
Browse files
README.md
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
task_categories:
|
4 |
+
- text-classification
|
5 |
+
language:
|
6 |
+
- hi
|
7 |
+
tags:
|
8 |
+
- Social Media
|
9 |
+
- News Media
|
10 |
+
- Sentiment
|
11 |
+
- Stance
|
12 |
+
- Emotion
|
13 |
+
pretty_name: "LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content -- Hindi"
|
14 |
+
size_categories:
|
15 |
+
- 10K<n<100K
|
16 |
+
dataset_info:
|
17 |
+
- config_name: Sentiment Analysis
|
18 |
+
splits:
|
19 |
+
- name: train
|
20 |
+
num_examples: 10039
|
21 |
+
- name: dev
|
22 |
+
num_examples: 1258
|
23 |
+
- name: test
|
24 |
+
num_examples: 1259
|
25 |
+
- config_name: MC_Hinglish1
|
26 |
+
splits:
|
27 |
+
- name: train
|
28 |
+
num_examples: 5177
|
29 |
+
- name: dev
|
30 |
+
num_examples: 2219
|
31 |
+
- name: test
|
32 |
+
num_examples: 1000
|
33 |
+
- config_name: Offensive Speech Detection
|
34 |
+
splits:
|
35 |
+
- name: train
|
36 |
+
num_examples: 2172
|
37 |
+
- name: dev
|
38 |
+
num_examples: 318
|
39 |
+
- name: test
|
40 |
+
num_examples: 636
|
41 |
+
- config_name: xlsum
|
42 |
+
splits:
|
43 |
+
- name: train
|
44 |
+
num_examples: 70754
|
45 |
+
- name: dev
|
46 |
+
num_examples: 8847
|
47 |
+
- name: test
|
48 |
+
num_examples: 8847
|
49 |
+
- config_name: Hindi-Hostility-Detection-CONSTRAINT-2021
|
50 |
+
splits:
|
51 |
+
- name: train
|
52 |
+
num_examples: 5718
|
53 |
+
- name: dev
|
54 |
+
num_examples: 811
|
55 |
+
- name: test
|
56 |
+
num_examples: 1651
|
57 |
+
- config_name: hate-speech-detection
|
58 |
+
splits:
|
59 |
+
- name: train
|
60 |
+
num_examples: 3327
|
61 |
+
- name: dev
|
62 |
+
num_examples: 476
|
63 |
+
- name: test
|
64 |
+
num_examples: 951
|
65 |
+
- config_name: fake-news
|
66 |
+
splits:
|
67 |
+
- name: train
|
68 |
+
num_examples: 8393
|
69 |
+
- name: dev
|
70 |
+
num_examples: 1417
|
71 |
+
- name: test
|
72 |
+
num_examples: 2743
|
73 |
+
- config_name: Natural Language Inference
|
74 |
+
splits:
|
75 |
+
- name: train
|
76 |
+
num_examples: 1251
|
77 |
+
- name: dev
|
78 |
+
num_examples: 537
|
79 |
+
- name: test
|
80 |
+
num_examples: 447
|
81 |
+
configs:
|
82 |
+
- config_name: Sentiment Analysis
|
83 |
+
data_files:
|
84 |
+
- split: test
|
85 |
+
path: Sentiment Analysis/test.json
|
86 |
+
- split: dev
|
87 |
+
path: Sentiment Analysis/dev.json
|
88 |
+
- split: train
|
89 |
+
path: Sentiment Analysis/train.json
|
90 |
+
- config_name: MC_Hinglish1
|
91 |
+
data_files:
|
92 |
+
- split: test
|
93 |
+
path: MC_Hinglish1/test.json
|
94 |
+
- split: dev
|
95 |
+
path: MC_Hinglish1/dev.json
|
96 |
+
- split: train
|
97 |
+
path: MC_Hinglish1/train.json
|
98 |
+
- config_name: Offensive Speech Detection
|
99 |
+
data_files:
|
100 |
+
- split: test
|
101 |
+
path: Offensive Speech Detection/test.json
|
102 |
+
- split: dev
|
103 |
+
path: Offensive Speech Detection/dev.json
|
104 |
+
- split: train
|
105 |
+
path: Offensive Speech Detection/train.json
|
106 |
+
- config_name: xlsum
|
107 |
+
data_files:
|
108 |
+
- split: test
|
109 |
+
path: xlsum/test.json
|
110 |
+
- split: dev
|
111 |
+
path: xlsum/dev.json
|
112 |
+
- split: train
|
113 |
+
path: xlsum/train.json
|
114 |
+
- config_name: Hindi-Hostility-Detection-CONSTRAINT-2021
|
115 |
+
data_files:
|
116 |
+
- split: test
|
117 |
+
path: Hindi-Hostility-Detection-CONSTRAINT-2021/test.json
|
118 |
+
- split: dev
|
119 |
+
path: Hindi-Hostility-Detection-CONSTRAINT-2021/dev.json
|
120 |
+
- split: train
|
121 |
+
path: Hindi-Hostility-Detection-CONSTRAINT-2021/train.json
|
122 |
+
- config_name: hate-speech-detection
|
123 |
+
data_files:
|
124 |
+
- split: test
|
125 |
+
path: hate-speech-detection/test.json
|
126 |
+
- split: dev
|
127 |
+
path: hate-speech-detection/dev.json
|
128 |
+
- split: train
|
129 |
+
path: hate-speech-detection/train.json
|
130 |
+
- config_name: fake-news
|
131 |
+
data_files:
|
132 |
+
- split: test
|
133 |
+
path: fake-news/test.json
|
134 |
+
- split: dev
|
135 |
+
path: fake-news/dev.json
|
136 |
+
- split: train
|
137 |
+
path: fake-news/train.json
|
138 |
+
- config_name: Natural Language Inference
|
139 |
+
data_files:
|
140 |
+
- split: test
|
141 |
+
path: Natural Language Inference/test.json
|
142 |
+
- split: dev
|
143 |
+
path: Natural Language Inference/dev.json
|
144 |
+
- split: train
|
145 |
+
path: Natural Language Inference/train.json
|
146 |
+
---
|
147 |
+
|
148 |
+
# LlamaLens: Specialized Multilingual LLM Dataset
|
149 |
+
|
150 |
+
## Overview
|
151 |
+
|
152 |
+
LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 19 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
|
153 |
+
|
154 |
+
<p align="center"> <img src="https://huggingface.co/datasets/QCRI/LlamaLens-Arabic/resolve/main/capablities_tasks_datasets.png" style="width: 40%;" id="title-icon"> </p>
|
155 |
+
|
156 |
+
## LlamaLens
|
157 |
+
|
158 |
+
This repo includes scripts needed to run our full pipeline, including data preprocessing and sampling, instruction dataset creation, model fine-tuning, inference and evaluation.
|
159 |
+
|
160 |
+
### Features
|
161 |
+
|
162 |
+
- Multilingual support (Arabic, English, Hindi)
|
163 |
+
- 19 NLP tasks with 52 datasets
|
164 |
+
- Optimized for news and social media content analysis
|
165 |
+
|
166 |
+
## 📂 Dataset Overview
|
167 |
+
|
168 |
+
### Hindi Datasets
|
169 |
+
|
170 |
+
| **Task** | **Dataset** | **# Labels** | **# Train** | **# Test** | **# Dev** |
|
171 |
+
| -------------------------- | ----------------------------------------- | ------------ | ----------- | ---------- | --------- |
|
172 |
+
| Cyberbullying | MC-Hinglish1.0 | 7 | 7,400 | 1,000 | 2,119 |
|
173 |
+
| Factuality | fake-news | 2 | 8,393 | 2,743 | 1,417 |
|
174 |
+
| Hate Speech | hate-speech-detection | 2 | 3,327 | 951 | 476 |
|
175 |
+
| Hate Speech | Hindi-Hostility-Detection-CONSTRAINT-2021 | 15 | 5,718 | 1,651 | 811 |
|
176 |
+
| Natural Language Inference | Natural Language Inference | 2 | 1,251 | 447 | 537 |
|
177 |
+
| Summarization | xlsum | -- | 70,754 | 8,847 | 8,847 |
|
178 |
+
| Offensive Speech | Offensive Speech Detection | 3 | 2,172 | 636 | 318 |
|
179 |
+
| Sentiment | Sentiment Analysis | 3 | 10,039 | 1,259 | 1,258 |
|
180 |
+
|
181 |
+
---
|
182 |
+
|
183 |
+
## File Format
|
184 |
+
|
185 |
+
Each JSONL file in the dataset follows a structured format with the following fields:
|
186 |
+
|
187 |
+
- `id`: Unique identifier for each data entry.
|
188 |
+
- `original_id`: Identifier from the original dataset, if available.
|
189 |
+
- `input`: The original text that needs to be analyzed.
|
190 |
+
- `output`: The label assigned to the text after analysis.
|
191 |
+
- `dataset`: Name of the dataset the entry belongs.
|
192 |
+
- `task`: The specific task type.
|
193 |
+
- `lang`: The language of the input text.
|
194 |
+
- `instructions`: A brief set of instructions describing how the text should be labeled.
|
195 |
+
- `text`: A formatted structure including instructions and response for the task in a conversation format between the system, user, and assistant, showing the decision process.
|
196 |
+
|
197 |
+
**Example entry in JSONL file:**
|
198 |
+
|
199 |
+
```
|
200 |
+
{
|
201 |
+
"id": "2b1878df-5a4f-4f74-bcd8-e38e1c3c7cf6",
|
202 |
+
"original_id": null,
|
203 |
+
"input": "sub गंदा है पर धंधा है ये . .",
|
204 |
+
"output": "neutral",
|
205 |
+
"dataset": "Sentiment Analysis",
|
206 |
+
"task": "Sentiment",
|
207 |
+
"lang": "hi",
|
208 |
+
"instruction": "Identify the sentiment in the text and label it as positive, negative, or neutral. Return only the label without any explanation, justification or additional text."
|
209 |
+
}
|
210 |
+
```
|
211 |
+
|
212 |
+
## 📢 Citation
|
213 |
+
|
214 |
+
If you use this dataset, please cite our [paper](https://arxiv.org/pdf/2410.15308):
|
215 |
+
|
216 |
+
```
|
217 |
+
@article{kmainasi2024llamalensspecializedmultilingualllm,
|
218 |
+
title={LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content},
|
219 |
+
author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Maram Hasanain and Sahinur Rahman Laskar and Naeemul Hassan and Firoj Alam},
|
220 |
+
year={2024},
|
221 |
+
journal={arXiv preprint arXiv:2410.15308},
|
222 |
+
volume={},
|
223 |
+
number={},
|
224 |
+
pages={},
|
225 |
+
url={https://arxiv.org/abs/2410.15308},
|
226 |
+
eprint={2410.15308},
|
227 |
+
archivePrefix={arXiv},
|
228 |
+
primaryClass={cs.CL}
|
229 |
+
}
|
230 |
+
```
|