|
import datasets |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {Small htr examples images}, |
|
author={Gabriel Borg}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Demo dataset for the htr demo. |
|
""" |
|
_HOMEPAGE = "https://huggingface.co/datasets/Riksarkivet/test_images_demo" |
|
|
|
_LICENSE = "" |
|
|
|
_REPO = "https://huggingface.co/datasets/Riksarkivet/test_images_demo" |
|
|
|
class ExampleImages(datasets.GeneratorBasedBuilder): |
|
"""Small sample of image-text pairs""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
'text': datasets.Value("string"), |
|
'image': datasets.Image(), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
images_archive = dl_manager.download(f"{_REPO}/resolve/main/images.tar.gz") |
|
metadata_path = dl_manager.download(f"{_REPO}/resolve/main/images.txt") |
|
image_iters = dl_manager.iter_archive(images_archive) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": image_iters, |
|
"metadata_path": metadata_path |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, images, metadata_path): |
|
"""Generate images and text.""" |
|
with open(metadata_path, encoding="utf-8") as f: |
|
metadata_list = f.read().split("\n") |
|
for idx, (img_obj, meta_txt) in enumerate(zip(images, metadata_list)): |
|
filepath, image = img_obj |
|
|
|
text_value = meta_txt.split("= ")[-1].strip() |
|
|
|
yield idx, { |
|
"image": {"path": filepath, "bytes": image.read()}, |
|
"text": text_value, |
|
} |