File size: 19,052 Bytes
7bbafbf 20b3af9 79dcd2f 7bbafbf 20b3af9 b5932c7 20b3af9 e583cc1 02d785d 20b3af9 150bf99 79dcd2f 1fb5001 79dcd2f 2830d57 79be127 78d26d7 693ad5a 78d26d7 79dcd2f 150bf99 8cd0123 150bf99 79dcd2f 8cd0123 78d26d7 b7002b7 79dcd2f b7002b7 79dcd2f 1fb5001 f388a23 1fb5001 f388a23 78d26d7 79dcd2f 79be127 79dcd2f 79be127 0bbbdda 0e5e6e6 0bbbdda e28c634 0e5e6e6 79dcd2f 693ad5a 67c0490 693ad5a 67c0490 78d26d7 b385871 e28c634 78d26d7 b385871 7bbafbf b7f1fc1 7bbafbf b576501 3350e50 b576501 59ff169 b576501 7bbafbf b7f1fc1 816b5f8 b7f1fc1 7bbafbf b7f1fc1 7bbafbf e583cc1 b7f1fc1 816b5f8 b7f1fc1 7bbafbf 816b5f8 7bbafbf e583cc1 7bbafbf 816b5f8 7bbafbf 816b5f8 7bbafbf 816b5f8 7bbafbf 1c61c67 7bbafbf b576501 7bbafbf 816b5f8 7bbafbf 1c61c67 7bbafbf b7f1fc1 816b5f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
---
language: en
license: cc-by-4.0
size_categories:
- 100k<n<1M
pretty_name: 'Microbiome Immunity Project: Protein Universe'
config_names:
- rosetta_high_quality_models
- rosetta_low_quality_models
- dmpfold_high_quality_models
- dmpfold_low_quality_models
- rosetta_high_quality_function_predictions
- rosetta_low_quality_function_predictions
- dmpfold_high_quality_function_predictions
- dmpfold_low_quality_function_predictions
tags:
- chemistry
- biology
dataset_summary: ~200,000 predicted structures for diverse protein sequences from
1,003 representative genomes across the microbial tree of life and annotate them
functionally on a per-residue basis.
dataset_description: Large-scale structure prediction on representative protein domains
from the Genomic Encyclopedia of Bacteria and Archaea (GEBA1003) reference genome
database across the microbial tree of life. From a non-redundant GEBA1003 gene catalog
protein sequences without matches to any structural databases and which produced
multiple-sequence alignments of N_eff > 16 and all putative novel domains between
40 and 200 residues were extracted. For each sequence 20,000 Rosetta de novo models
and up to 5 DMPfold models were generated. The initial output dataset (MIP_raw)
of about 240,000 models were curated to high-quality models comprising about 75%
of the original dataset (MIP_curated). Functional annotations of the entire dataset
were created using structure-based Graph Convolutional Network embeddings from DeepFRI.
acknowledgements: We kindly acknowledge the support of the IBM World Community Grid
team (Caitlin Larkin, Juan A Hindo, Al Seippel, Erika Tuttle, Jonathan D Armstrong,
Kevin Reed, Ray Johnson, and Viktors Berstis), and the community of 790,000 volunteers
who donated 140,661 computational years since Aug 2017 of their computer time over
the course of the project. This research was also supported in part by PLGrid Infrastructure
(to PS). The authors thank Hera Vlamakis and Damian Plichta from the Broad Institute
for helpful discussions. The work was supported by the Flatiron Institute as part
of the Simons Foundation to J.K.L., P.D.R., V.G., D.B., C.C., A.P., N.C., I.F.,
and R.B. This research was also supported by grants NAWA PPN/PPO/2018/1/00014 to
P.S. and T.K., PLGrid to P.S., and NIH - DK043351 to T.V. and R.J.X.
repo: https://github.com/microbiome-immunity-project/protein_universe
citation_bibtex: "@article{KoehlerLeman2023,\n title = {Sequence-structure-function\
\ relationships in the microbial protein universe},\n volume = {14},\n ISSN =\
\ {2041-1723},\n url = {http://dx.doi.org/10.1038/s41467-023-37896-w},\n DOI =\
\ {10.1038/s41467-023-37896-w},\n number = {1},\n journal = {Nature Communications},\n\
\ publisher = {Springer Science and Business Media LLC},\n author = {Koehler Leman,\
\ Julia and Szczerbiak, Pawel and Renfrew, P. Douglas and Gligorijevic, Vladimir\
\ and Berenberg, Daniel and Vatanen, Tommi and Taylor, Bryn C. and Chandler,\
\ Chris and Janssen, Stefan and Pataki, Andras and Carriero, Nick and Fisk,\
\ Ian and Xavier, Ramnik J. and Knight, Rob and Bonneau, Richard and Kosciolek,\
\ Tomasz},\n year = {2023},\n month = apr\n}"
citation_apa: Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V.,
Berenberg, D., Vatanen, T., Taylor, B. C., Janssen, S., Pataki, A., Carriero, N.,
Fisk, I., Xavier, R. J., Knight, R., Bonneau, R., Kosciolek, T. (2023). Sequence-structure-function
relationships in the microbial protein universe. Nature Communications, 14(1), 2351.
doi:10.1038/s41467-023-37896-w
configs:
- config_name: dmpfold_high_quality_function_predictions
data_files:
- split: train
path: dmpfold_high_quality_function_predictions/data/train-*
- config_name: dmpfold_high_quality_models
data_files:
- split: train
path: dmpfold_high_quality_models/data/train-*
- config_name: dmpfold_low_quality_function_predictions
data_files:
- split: train
path: dmpfold_low_quality_function_predictions/data/train-*
- config_name: dmpfold_low_quality_models
data_files:
- split: train
path: dmpfold_low_quality_models/data/train-*
- config_name: rosetta_high_quality_function_predictions
data_files:
- split: train
path: rosetta_high_quality_function_predictions/data/train-*
- config_name: rosetta_high_quality_models
data_files:
- split: train
path: rosetta_high_quality_models/data/train-*
- config_name: rosetta_low_quality_function_predictions
data_files:
- split: train
path: rosetta_low_quality_function_predictions/data/train-*
- config_name: rosetta_low_quality_models
data_files:
- split: train
path: rosetta_low_quality_models/data/train-*
dataset_info:
- config_name: dmpfold_high_quality_function_predictions
features:
- name: id
dtype: large_string
- name: term_id
dtype: large_string
- name: term_name
dtype: large_string
- name: Y_hat
dtype: float64
splits:
- name: train
num_bytes: 105506959131
num_examples: 1287483255
download_size: 37331993547
dataset_size: 105506959131
- config_name: dmpfold_high_quality_models
features:
- name: id
dtype: string
- name: pdb
dtype: string
splits:
- name: train
num_bytes: 11207993089
num_examples: 203878
download_size: 4371437931
dataset_size: 11207993089
- config_name: dmpfold_low_quality_function_predictions
features:
- name: id
dtype: large_string
- name: term_id
dtype: large_string
- name: term_name
dtype: large_string
- name: Y_hat
dtype: float64
splits:
- name: train
num_bytes: 19642861371
num_examples: 239698455
download_size: 6947138509
dataset_size: 19642861371
- config_name: dmpfold_low_quality_models
splits:
- name: train
- config_name: rosetta_high_quality_function_predictions
features:
- name: id
dtype: large_string
- name: term_id
dtype: large_string
- name: term_name
dtype: large_string
- name: Y_hat
dtype: float64
splits:
- name: train
num_bytes: 109228840707
num_examples: 1332900735
download_size: 38646102125
dataset_size: 109228840707
- config_name: rosetta_high_quality_models
features:
- name: id
dtype: string
- name: pdb
dtype: string
- name: Filter_Stage2_aBefore
dtype: float64
- name: Filter_Stage2_bQuarter
dtype: float64
- name: Filter_Stage2_cHalf
dtype: float64
- name: Filter_Stage2_dEnd
dtype: float64
- name: clashes_bb
dtype: float64
- name: clashes_total
dtype: float64
- name: score
dtype: float64
- name: silent_score
dtype: float64
- name: time
dtype: float64
splits:
- name: train
num_bytes: 26605117078
num_examples: 211069
download_size: 9111917125
dataset_size: 26605117078
- config_name: rosetta_low_quality_function_predictions
features:
- name: id
dtype: large_string
- name: term_id
dtype: string
- name: term_name
dtype: large_string
- name: Y_hat
dtype: float64
splits:
- name: train
num_bytes: 16920360882
num_examples: 217071810
download_size: 6294592566
dataset_size: 16920360882
- config_name: rosetta_low_quality_models
features:
- name: id
dtype: string
- name: pdb
dtype: string
- name: Filter_Stage2_aBefore
dtype: float64
- name: Filter_Stage2_bQuarter
dtype: float64
- name: Filter_Stage2_cHalf
dtype: float64
- name: Filter_Stage2_dEnd
dtype: float64
- name: clashes_bb
dtype: float64
- name: clashes_total
dtype: float64
- name: score
dtype: float64
- name: silent_score
dtype: float64
- name: time
dtype: float64
splits:
- name: train
num_bytes: 5140214262
num_examples: 34374
download_size: 1763765951
dataset_size: 5140214262
---
# Microbiome Immunity Project: Protein Universe
~200,000 predicted structures for diverse protein sequences from 1,003
representative genomes across the microbial tree of life and annotate
them functionally on a per-residue basis.
## Quickstart Usage
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
First, from the command line install the `datasets` library
$ pip install datasets
Optionally set the cache directory, e.g.
$ HF_HOME=${HOME}/.cache/huggingface/
$ export HF_HOME
then, from within python load the datasets library
>>> import datasets
and load one of the `MPI` model, e.g.,
>>> dataset_tag = "rosetta_high_quality"
>>> dataset_models = datasets.load_dataset(
path = "RosettaCommons/MIP",
name = f"{dataset_tag}_models",
data_dir = f"{dataset_tag}_models")
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββ| 54/54 [00:00<00:00, 441.70it/s]
Downloading data: 100%|βββββββββββββββββββββββββββββββββββββββββββ| 54/54 [01:34<00:00, 1.74s/files]
Generating train split: 100%|βββββββββββββββββββββββ| 211069/211069 [01:41<00:00, 2085.54 examples/s]
Loading dataset shards: 100%|βββββββββββββββββββββββββββββββββββββββ| 48/48 [00:00<00:00, 211.74it/s]
and inspecting the loaded dataset
>>> dataset_models
DatasetDict({
train: Dataset({
features: ['id', 'pdb', 'Filter_Stage2_aBefore', 'Filter_Stage2_bQuarter', 'Filter_Stage2_cHalf', 'Filter_Stage2_dEnd', 'clashes_bb', 'clashes_total', 'score', 'silent_score', 'time'],
num_rows: 211069
})
})
many structure-based pipelines expect a `.pdb` file as input. For example, `frame2seq` takes in a structure
and generates a sequence for the backbone. The `frame2seq` can be installed using `pip` from the command line:
$ pip install frame2seq
Then used from within python:
>>> from frame2seq import Frame2seqRunner
>>> runner = Frame2seqRunner()
>>> runner.design(
pdb_file = "target.pdb",
chain_id = "A",
temperature = 1,
num_samples = 5000)
To run `frame2seq` on each MIP target,
>>> for pdb in dataset_models.data['train'].column('pdb'):
pdb.str
print(f"Predicting sequences for id = {row$id}")
pdb = row$pdb
>>> dataset_function_prediction = datasets.load_dataset(
path = "RosettaCommons/MIP",
name = f"{dataset_tag}_function_predictions",
data_dir = f"{dataset_tag}_function_predictions")
Downloading readme: 100%|ββββββββββββββββββββββββββββββββββββββββ| 15.4k/15.4k [00:00<00:00, 264kB/s]
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββ| 219/219 [00:00<00:00, 1375.51it/s]
Downloading data: 100%|βββββββββββββββββββββββββββββββββββββββββ| 219/219 [13:04<00:00, 3.58s/files]
Generating train split: 100%|ββββββββββββ| 1332900735/1332900735 [13:11<00:00, 1684288.89 examples/s]
Loading dataset shards: 100%|ββββββββββββββββββββββββββββββββββββββ| 219/219 [01:22<00:00, 2.66it/s]
this loads the `>1.3B` function predictions (xxx targets x yyyy terms from the GO and EC ontologies).
The predictions are stored in long format, but can be easily converted to a wide format using pandas:
>>> dataset_function_prediction
>>> import pandas
>>> dataset_function_prediction_wide = pandas.pivot(
dataset_function_prediction.data['train'].select(['id', 'term_id', 'Y_hat']).to_pandas()
columns = "term_id",
index = "id",
values = "Y_hat")
>>> dataset_function_prediction_wide[1:3, 1:3]
## Dataset Details
### Dataset Description
Large-scale structure prediction on representative protein domains from
the Genomic Encyclopedia of Bacteria and Archaea (GEBA1003) reference
genome database across the microbial tree of life. From a non-redundant
GEBA1003 gene catalog protein sequences without matches to any structural databases
and which produced multiple-sequence alignments of N_eff > 16 and all
putative novel domains between 40 and 200 residues were extracted.
For each sequence 20,000 Rosetta de novo models and up to 5 DMPfold models
were generated. The initial output dataset (MIP_raw) of about 240,000
models were curated to high-quality models comprising about 75% of the
original dataset (MIP_curated): Models were filtered out if (1) Rosetta
models had >60% coil content or DMPFold models with >80% coil content,
(2) the averaging the pairwise TM-scores of the 10 lowest-scoring models
was less than 0.4, and (3) if the Rosetta and DMPfold models had TM-score
less than 0.5. Functional annotations of the entire dataset were
created using structure-based Graph Convolutional Network
embeddings from DeepFRI.
- **Acknowledgements:**
We kindly acknowledge the support of the IBM World Community Grid team
(Caitlin Larkin, Juan A Hindo, Al Seippel, Erika Tuttle, Jonathan D Armstrong,
Kevin Reed, Ray Johnson, and Viktors Berstis), and the community of 790,000
volunteers who donated 140,661 computational years since Aug 2017 of their
computer time over the course of the project. This research was also
supported in part by PLGrid Infrastructure (to PS). The authors thank Hera
Vlamakis and Damian Plichta from the Broad Institute for helpful discussions.
The work was supported by the Flatiron Institute as part of the Simons Foundation
to J.K.L., P.D.R., V.G., D.B., C.C., A.P., N.C., I.F., and R.B. This research
was also supported by grants NAWA PPN/PPO/2018/1/00014 to P.S. and T.K.,
PLGrid to P.S., and NIH - DK043351 to T.V. and R.J.X.
- **License:** cc-by-4.0
### Dataset Sources
- **Repository:** https://github.com/microbiome-immunity-project/protein_universe
- **Paper:**
Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V., Berenberg,
D., Vatanen, T., β¦ Kosciolek, T. (2023). Sequence-structure-function relationships
in the microbial protein universe. Nature Communications, 14(1), 2351.
doi:10.1038/s41467-023-37896-w
- **Zenodo Repository:** https://doi.org/10.5281/zenodo.6611431
## Uses
Exploration of sequence-structure-function relationship in naturally ocurring proteins.
The MIP database is complementary to and distinct from the other large-scale predicted
protein structure databases such as the EBI AlphaFold database because it consists of
proteins from Archaea and Bacteria, whose protein sequences are generally shorter
than Eukaryotic.
### Direct Use
This dataset could be used to train representation models of protein structure
-
### Out-of-Scope Use
While this dataset has been curated for quality, in some cases the predicted structures
may not represent physically realistic conformations. Thus caution much be used when using
it as training data for protein structure prediction and design.
## Dataset Structure
microbiome_immunity_project_dataset
dataset
dmpfold_high_quality_function_predictions
DeepFRI_MIP_<chunk-index>_<gene-ontology-prefix>_pred_scores.json.gz
dmpfold_high_quality_models
MIP_<MIP-ID>.pdb.gz.pdb.gz
### Source Data
Sequences were obtained from the Genomic Encyclopedia of Bacteria and Archaea
([GEBA1003](https://genome.jgi.doe.gov/portal/geba1003/geba1003.info.html)) reference
genome database across the microbial tree of life:
> **1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life**
> We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria
> and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space.
> These genomes double the number of existing type strains and expand their overall phylogenetic
> diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal
> a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes
> recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their
> phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally
> validate a divergent phenazine cluster with potential new chemical structure and antimicrobial activity.
> This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate
> sequence space is still far from saturated, and future endeavors in this direction will continue to be a
> valuable resource for scientific discovery.
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
{{ data_collection_and_processing_section | default("[More Information Needed]", true)}}
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
{{ source_data_producers_section | default("[More Information Needed]", true)}}
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
{{ bias_risks_limitations | default("[More Information Needed]", true)}}
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
{{ bias_recommendations | default("Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.", true)}}
## Citation
@article{KoehlerLeman2023,
title = {Sequence-structure-function relationships in the microbial protein universe},
volume = {14},
ISSN = {2041-1723},
url = {http://dx.doi.org/10.1038/s41467-023-37896-w},
DOI = {10.1038/s41467-023-37896-w},
number = {1},
journal = {Nature Communications},
publisher = {Springer Science and Business Media LLC},
author = {Koehler Leman, Julia and Szczerbiak, Pawel and Renfrew, P. Douglas and Gligorijevic, Vladimir and Berenberg, Daniel and Vatanen, Tommi and Taylor, Bryn C. and Chandler, Chris and Janssen, Stefan and Pataki, Andras and Carriero, Nick and Fisk, Ian and Xavier, Ramnik J. and Knight, Rob and Bonneau, Richard and Kosciolek, Tomasz},
year = {2023},
month = apr
}
## Dataset Card Authors
Matthew O'Meara ([email protected]) |