File size: 19,052 Bytes
7bbafbf
 
 
20b3af9
 
 
79dcd2f
 
 
 
 
 
 
 
 
7bbafbf
 
 
20b3af9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5932c7
20b3af9
 
 
 
 
 
 
 
 
 
 
e583cc1
02d785d
 
 
20b3af9
150bf99
 
 
 
79dcd2f
 
 
 
1fb5001
 
 
 
79dcd2f
 
 
 
2830d57
 
 
79be127
78d26d7
 
 
 
693ad5a
 
 
 
78d26d7
 
 
 
79dcd2f
 
150bf99
 
8cd0123
 
 
 
 
 
150bf99
79dcd2f
 
8cd0123
 
 
 
78d26d7
b7002b7
 
 
 
 
79dcd2f
 
b7002b7
 
 
 
79dcd2f
1fb5001
 
f388a23
 
 
 
 
 
1fb5001
 
 
f388a23
 
 
 
78d26d7
79dcd2f
 
 
79be127
 
 
 
 
 
 
 
 
79dcd2f
 
79be127
 
 
 
0bbbdda
0e5e6e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bbbdda
e28c634
0e5e6e6
 
 
 
79dcd2f
693ad5a
 
67c0490
 
 
 
 
 
693ad5a
 
 
67c0490
 
 
 
78d26d7
b385871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e28c634
78d26d7
b385871
 
 
 
7bbafbf
b7f1fc1
 
 
 
7bbafbf
b576501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3350e50
 
 
 
b576501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59ff169
 
b576501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bbafbf
 
 
b7f1fc1
 
 
 
 
 
 
 
 
816b5f8
 
 
 
 
 
b7f1fc1
 
 
 
 
 
 
 
 
 
 
 
 
 
7bbafbf
b7f1fc1
7bbafbf
e583cc1
b7f1fc1
 
 
 
 
 
816b5f8
b7f1fc1
7bbafbf
 
816b5f8
 
 
 
 
7bbafbf
 
e583cc1
7bbafbf
816b5f8
7bbafbf
 
 
816b5f8
 
 
7bbafbf
 
816b5f8
 
 
 
 
 
7bbafbf
 
 
 
1c61c67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bbafbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b576501
 
 
 
7bbafbf
 
 
 
816b5f8
7bbafbf
1c61c67
 
 
 
 
 
 
 
 
 
 
 
 
7bbafbf
 
b7f1fc1
816b5f8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
---
language: en
license: cc-by-4.0
size_categories:
- 100k<n<1M
pretty_name: 'Microbiome Immunity Project: Protein Universe'
config_names:
- rosetta_high_quality_models
- rosetta_low_quality_models
- dmpfold_high_quality_models
- dmpfold_low_quality_models
- rosetta_high_quality_function_predictions
- rosetta_low_quality_function_predictions
- dmpfold_high_quality_function_predictions
- dmpfold_low_quality_function_predictions
tags:
- chemistry
- biology
dataset_summary: ~200,000 predicted structures for diverse protein sequences from
  1,003 representative genomes across the microbial tree of life and annotate them
  functionally on a per-residue basis.
dataset_description: Large-scale structure prediction on representative protein domains
  from the Genomic Encyclopedia of Bacteria and Archaea (GEBA1003) reference genome
  database across the microbial tree of life. From a non-redundant GEBA1003 gene catalog
  protein sequences without matches to any structural databases and which produced
  multiple-sequence alignments of N_eff > 16 and all putative novel domains between
  40 and 200 residues were extracted. For each sequence 20,000 Rosetta de novo models
  and up to 5 DMPfold models were generated. The initial output dataset (MIP_raw)
  of about 240,000 models were curated to high-quality models comprising about 75%
  of the original dataset (MIP_curated). Functional annotations of the entire dataset
  were created using structure-based Graph Convolutional Network embeddings from DeepFRI.
acknowledgements: We kindly acknowledge the support of the IBM World Community Grid
  team (Caitlin Larkin, Juan A Hindo, Al Seippel, Erika Tuttle, Jonathan D Armstrong,
  Kevin Reed, Ray Johnson, and Viktors Berstis), and the community of 790,000 volunteers
  who donated 140,661 computational years since Aug 2017 of their computer time over
  the course of the project. This research was also supported in part by PLGrid Infrastructure
  (to PS). The authors thank Hera Vlamakis and Damian Plichta from the Broad Institute
  for helpful discussions. The work was supported by the Flatiron Institute as part
  of the Simons Foundation to J.K.L., P.D.R., V.G., D.B., C.C., A.P., N.C., I.F.,
  and R.B. This research was also supported by grants NAWA PPN/PPO/2018/1/00014 to
  P.S. and T.K., PLGrid to P.S., and NIH - DK043351 to T.V. and R.J.X.
repo: https://github.com/microbiome-immunity-project/protein_universe
citation_bibtex: "@article{KoehlerLeman2023,\n  title = {Sequence-structure-function\
  \ relationships in the microbial protein universe},\n  volume = {14},\n  ISSN =\
  \ {2041-1723},\n  url = {http://dx.doi.org/10.1038/s41467-023-37896-w},\n  DOI =\
  \ {10.1038/s41467-023-37896-w},\n  number = {1},\n  journal = {Nature Communications},\n\
  \  publisher = {Springer Science and Business Media LLC},\n  author = {Koehler Leman,\
  \  Julia and Szczerbiak,  Pawel and Renfrew,  P. Douglas and Gligorijevic,  Vladimir\
  \ and Berenberg,  Daniel and Vatanen,  Tommi and Taylor,  Bryn C. and Chandler,\
  \  Chris and Janssen,  Stefan and Pataki,  Andras and Carriero,  Nick and Fisk,\
  \  Ian and Xavier,  Ramnik J. and Knight,  Rob and Bonneau,  Richard and Kosciolek,\
  \  Tomasz},\n  year = {2023},\n  month = apr\n}"
citation_apa: Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V.,
  Berenberg, D., Vatanen, T., Taylor, B. C., Janssen, S., Pataki, A., Carriero, N.,
  Fisk, I., Xavier, R. J., Knight, R., Bonneau, R., Kosciolek, T. (2023). Sequence-structure-function
  relationships in the microbial protein universe. Nature Communications, 14(1), 2351.
  doi:10.1038/s41467-023-37896-w
configs:
- config_name: dmpfold_high_quality_function_predictions
  data_files:
  - split: train
    path: dmpfold_high_quality_function_predictions/data/train-*
- config_name: dmpfold_high_quality_models
  data_files:
  - split: train
    path: dmpfold_high_quality_models/data/train-*
- config_name: dmpfold_low_quality_function_predictions
  data_files:
  - split: train
    path: dmpfold_low_quality_function_predictions/data/train-*
- config_name: dmpfold_low_quality_models
  data_files:
  - split: train
    path: dmpfold_low_quality_models/data/train-*
- config_name: rosetta_high_quality_function_predictions
  data_files:
  - split: train
    path: rosetta_high_quality_function_predictions/data/train-*
- config_name: rosetta_high_quality_models
  data_files:
  - split: train
    path: rosetta_high_quality_models/data/train-*
- config_name: rosetta_low_quality_function_predictions
  data_files:
  - split: train
    path: rosetta_low_quality_function_predictions/data/train-*
- config_name: rosetta_low_quality_models
  data_files:
  - split: train
    path: rosetta_low_quality_models/data/train-*
dataset_info:
- config_name: dmpfold_high_quality_function_predictions
  features:
  - name: id
    dtype: large_string
  - name: term_id
    dtype: large_string
  - name: term_name
    dtype: large_string
  - name: Y_hat
    dtype: float64
  splits:
  - name: train
    num_bytes: 105506959131
    num_examples: 1287483255
  download_size: 37331993547
  dataset_size: 105506959131
- config_name: dmpfold_high_quality_models
  features:
  - name: id
    dtype: string
  - name: pdb
    dtype: string
  splits:
  - name: train
    num_bytes: 11207993089
    num_examples: 203878
  download_size: 4371437931
  dataset_size: 11207993089
- config_name: dmpfold_low_quality_function_predictions
  features:
  - name: id
    dtype: large_string
  - name: term_id
    dtype: large_string
  - name: term_name
    dtype: large_string
  - name: Y_hat
    dtype: float64
  splits:
  - name: train
    num_bytes: 19642861371
    num_examples: 239698455
  download_size: 6947138509
  dataset_size: 19642861371
- config_name: dmpfold_low_quality_models
  splits:
  - name: train
- config_name: rosetta_high_quality_function_predictions
  features:
  - name: id
    dtype: large_string
  - name: term_id
    dtype: large_string
  - name: term_name
    dtype: large_string
  - name: Y_hat
    dtype: float64
  splits:
  - name: train
    num_bytes: 109228840707
    num_examples: 1332900735
  download_size: 38646102125
  dataset_size: 109228840707
- config_name: rosetta_high_quality_models
  features:
  - name: id
    dtype: string
  - name: pdb
    dtype: string
  - name: Filter_Stage2_aBefore
    dtype: float64
  - name: Filter_Stage2_bQuarter
    dtype: float64
  - name: Filter_Stage2_cHalf
    dtype: float64
  - name: Filter_Stage2_dEnd
    dtype: float64
  - name: clashes_bb
    dtype: float64
  - name: clashes_total
    dtype: float64
  - name: score
    dtype: float64
  - name: silent_score
    dtype: float64
  - name: time
    dtype: float64
  splits:
  - name: train
    num_bytes: 26605117078
    num_examples: 211069
  download_size: 9111917125
  dataset_size: 26605117078
- config_name: rosetta_low_quality_function_predictions
  features:
  - name: id
    dtype: large_string
  - name: term_id
    dtype: string
  - name: term_name
    dtype: large_string
  - name: Y_hat
    dtype: float64
  splits:
  - name: train
    num_bytes: 16920360882
    num_examples: 217071810
  download_size: 6294592566
  dataset_size: 16920360882
- config_name: rosetta_low_quality_models
  features:
  - name: id
    dtype: string
  - name: pdb
    dtype: string
  - name: Filter_Stage2_aBefore
    dtype: float64
  - name: Filter_Stage2_bQuarter
    dtype: float64
  - name: Filter_Stage2_cHalf
    dtype: float64
  - name: Filter_Stage2_dEnd
    dtype: float64
  - name: clashes_bb
    dtype: float64
  - name: clashes_total
    dtype: float64
  - name: score
    dtype: float64
  - name: silent_score
    dtype: float64
  - name: time
    dtype: float64
  splits:
  - name: train
    num_bytes: 5140214262
    num_examples: 34374
  download_size: 1763765951
  dataset_size: 5140214262
---
# Microbiome Immunity Project: Protein Universe
~200,000 predicted structures for diverse protein sequences from 1,003
representative genomes across the microbial tree of life and annotate
them functionally on a per-residue basis.


## Quickstart Usage

Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
First, from the command line install the `datasets` library

    $ pip install datasets

Optionally set the cache directory, e.g.

    $ HF_HOME=${HOME}/.cache/huggingface/
    $ export HF_HOME

then, from within python load the datasets library

    >>> import datasets
   
and load one of the `MPI` model, e.g.,

    >>> dataset_tag = "rosetta_high_quality"
    >>> dataset_models = datasets.load_dataset(
      path = "RosettaCommons/MIP",
      name = f"{dataset_tag}_models",
      data_dir = f"{dataset_tag}_models")
    Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 54/54 [00:00<00:00, 441.70it/s]
    Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 54/54 [01:34<00:00,  1.74s/files]
    Generating train split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 211069/211069 [01:41<00:00, 2085.54 examples/s]
    Loading dataset shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 48/48 [00:00<00:00, 211.74it/s]

and inspecting the loaded dataset

    >>> dataset_models
    DatasetDict({
        train: Dataset({
            features: ['id', 'pdb', 'Filter_Stage2_aBefore', 'Filter_Stage2_bQuarter', 'Filter_Stage2_cHalf', 'Filter_Stage2_dEnd', 'clashes_bb', 'clashes_total', 'score', 'silent_score', 'time'],
            num_rows: 211069
        })
    })

many structure-based pipelines expect a `.pdb` file as input. For example, `frame2seq` takes in a structure
and generates a sequence for the backbone. The `frame2seq` can be installed using `pip` from the command line:

    $ pip install frame2seq

Then used from within python:

    >>> from frame2seq import Frame2seqRunner
    >>> runner = Frame2seqRunner()
    >>> runner.design(
      pdb_file = "target.pdb",
      chain_id = "A",
      temperature = 1,
      num_samples = 5000)

To run `frame2seq` on each MIP target, 

    >>> for pdb in dataset_models.data['train'].column('pdb'):
      pdb.str
      print(f"Predicting sequences for id = {row$id}")
      pdb = row$pdb
      

    >>> dataset_function_prediction = datasets.load_dataset(
      path = "RosettaCommons/MIP",
      name = f"{dataset_tag}_function_predictions",
      data_dir = f"{dataset_tag}_function_predictions")
    Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 15.4k/15.4k [00:00<00:00, 264kB/s]
    Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 219/219 [00:00<00:00, 1375.51it/s]
    Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 219/219 [13:04<00:00,  3.58s/files]
    Generating train split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1332900735/1332900735 [13:11<00:00, 1684288.89 examples/s]
    Loading dataset shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 219/219 [01:22<00:00,  2.66it/s]

this loads the `>1.3B` function predictions (xxx targets x yyyy terms from the GO and EC ontologies).
The predictions are stored in long format, but can be easily converted to a wide format using pandas:

    >>> dataset_function_prediction

    >>> import pandas
    >>> dataset_function_prediction_wide = pandas.pivot(
      dataset_function_prediction.data['train'].select(['id', 'term_id', 'Y_hat']).to_pandas()
      columns = "term_id",
      index = "id",
      values = "Y_hat")
    >>> dataset_function_prediction_wide[1:3, 1:3]

## Dataset Details

### Dataset Description
Large-scale structure prediction on representative protein domains from
the Genomic Encyclopedia of Bacteria and Archaea (GEBA1003) reference
genome database across the microbial tree of life. From a non-redundant
GEBA1003 gene catalog protein sequences without matches to any structural databases
and which produced multiple-sequence alignments of N_eff > 16 and all
putative novel domains between 40 and 200 residues were extracted.
For each sequence 20,000 Rosetta de novo models and up to 5 DMPfold models
were generated. The initial output dataset (MIP_raw) of about 240,000
models were curated to high-quality models comprising about 75% of the
original dataset (MIP_curated): Models were filtered out if (1) Rosetta
models had >60% coil content or DMPFold models with >80% coil content,
(2) the averaging the pairwise TM-scores of the 10 lowest-scoring models
was less than 0.4, and (3) if the Rosetta and DMPfold models had TM-score
less than 0.5. Functional annotations of the entire dataset were
created using structure-based Graph Convolutional Network
embeddings from DeepFRI.

- **Acknowledgements:**
  We kindly acknowledge the support of the IBM World Community Grid team
  (Caitlin Larkin, Juan A Hindo, Al Seippel, Erika Tuttle, Jonathan D Armstrong,
  Kevin Reed, Ray Johnson, and Viktors Berstis), and the community of 790,000
  volunteers who donated 140,661 computational years since Aug 2017 of their
  computer time over the course of the project. This research was also
  supported in part by PLGrid Infrastructure (to PS). The authors thank Hera
  Vlamakis and Damian Plichta from the Broad Institute for helpful discussions.
  The work was supported by the Flatiron Institute as part of the Simons Foundation
  to J.K.L., P.D.R., V.G., D.B., C.C., A.P., N.C., I.F., and R.B. This research
  was also supported by grants NAWA PPN/PPO/2018/1/00014 to P.S. and T.K.,
  PLGrid to P.S., and NIH - DK043351 to T.V. and R.J.X.

- **License:** cc-by-4.0

### Dataset Sources
- **Repository:** https://github.com/microbiome-immunity-project/protein_universe
- **Paper:**
  Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V., Berenberg,
  D., Vatanen, T., … Kosciolek, T. (2023). Sequence-structure-function relationships
  in the microbial protein universe. Nature Communications, 14(1), 2351.
  doi:10.1038/s41467-023-37896-w
- **Zenodo Repository:** https://doi.org/10.5281/zenodo.6611431


## Uses
Exploration of sequence-structure-function relationship in naturally ocurring proteins.
The MIP database is complementary to and distinct from the other large-scale predicted
protein structure databases such as the EBI AlphaFold database because it consists of
proteins from Archaea and Bacteria, whose protein sequences are generally shorter
than Eukaryotic.

### Direct Use
This dataset could be used to train representation models of protein structure

-


### Out-of-Scope Use
While this dataset has been curated for quality, in some cases the predicted structures
may not represent physically realistic conformations. Thus caution much be used when using
it as training data for protein structure prediction and design.

## Dataset Structure
    microbiome_immunity_project_dataset
      dataset
        dmpfold_high_quality_function_predictions
          DeepFRI_MIP_<chunk-index>_<gene-ontology-prefix>_pred_scores.json.gz
        dmpfold_high_quality_models
          MIP_<MIP-ID>.pdb.gz.pdb.gz


### Source Data

Sequences were obtained from the Genomic Encyclopedia of Bacteria and Archaea
([GEBA1003](https://genome.jgi.doe.gov/portal/geba1003/geba1003.info.html)) reference
genome database across the microbial tree of life:

> **1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life**
> We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria
> and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space.
> These genomes double the number of existing type strains and expand their overall phylogenetic
> diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal
> a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes
> recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their
> phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally
> validate a divergent phenazine cluster with potential new chemical structure and antimicrobial activity.
> This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate
> sequence space is still far from saturated, and future endeavors in this direction will continue to be a
> valuable resource for scientific discovery.

#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

{{ data_collection_and_processing_section | default("[More Information Needed]", true)}}

#### Who are the source data producers?

<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->

{{ source_data_producers_section | default("[More Information Needed]", true)}}


## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

{{ bias_risks_limitations | default("[More Information Needed]", true)}}

### Recommendations


    


<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

{{ bias_recommendations | default("Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.", true)}}

## Citation

    @article{KoehlerLeman2023,
      title = {Sequence-structure-function relationships in the microbial protein universe},
      volume = {14},
      ISSN = {2041-1723},
      url = {http://dx.doi.org/10.1038/s41467-023-37896-w},
      DOI = {10.1038/s41467-023-37896-w},
      number = {1},
      journal = {Nature Communications},
      publisher = {Springer Science and Business Media LLC},
      author = {Koehler Leman,  Julia and Szczerbiak,  Pawel and Renfrew,  P. Douglas and Gligorijevic,  Vladimir and Berenberg,  Daniel and Vatanen,  Tommi and Taylor,  Bryn C. and Chandler,  Chris and Janssen,  Stefan and Pataki,  Andras and Carriero,  Nick and Fisk,  Ian and Xavier,  Ramnik J. and Knight,  Rob and Bonneau,  Richard and Kosciolek,  Tomasz},
      year = {2023},
      month = apr
    }



## Dataset Card Authors
Matthew O'Meara ([email protected])