Update README.md
Browse files
README.md
CHANGED
@@ -246,6 +246,8 @@ them functionally on a per-residue basis.
|
|
246 |
|
247 |
## Quickstart Usage
|
248 |
|
|
|
|
|
249 |
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
|
250 |
First, from the command line install the `datasets` library
|
251 |
|
@@ -259,70 +261,54 @@ Optionally set the cache directory, e.g.
|
|
259 |
then, from within python load the datasets library
|
260 |
|
261 |
>>> import datasets
|
|
|
|
|
262 |
|
263 |
-
|
264 |
|
265 |
>>> dataset_tag = "rosetta_high_quality"
|
266 |
>>> dataset_models = datasets.load_dataset(
|
267 |
path = "RosettaCommons/MIP",
|
268 |
name = f"{dataset_tag}_models",
|
269 |
-
data_dir = f"{dataset_tag}_models")
|
270 |
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββ| 54/54 [00:00<00:00, 441.70it/s]
|
271 |
Downloading data: 100%|βββββββββββββββββββββββββββββββββββββββββββ| 54/54 [01:34<00:00, 1.74s/files]
|
272 |
Generating train split: 100%|βββββββββββββββββββββββ| 211069/211069 [01:41<00:00, 2085.54 examples/s]
|
273 |
Loading dataset shards: 100%|βββββββββββββββββββββββββββββββββββββββ| 48/48 [00:00<00:00, 211.74it/s]
|
274 |
|
275 |
-
and
|
276 |
|
277 |
>>> dataset_models
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
num_rows: 211069
|
282 |
-
})
|
283 |
})
|
284 |
|
285 |
-
|
286 |
-
and generates a sequence for the backbone. The `frame2seq` can be installed using `pip` from the command line:
|
287 |
-
|
288 |
-
$ pip install frame2seq
|
289 |
-
|
290 |
-
Then used from within python:
|
291 |
|
292 |
-
>>>
|
293 |
-
>>>
|
294 |
-
>>>
|
295 |
-
pdb_file = "target.pdb",
|
296 |
-
chain_id = "A",
|
297 |
-
temperature = 1,
|
298 |
-
num_samples = 5000)
|
299 |
|
300 |
-
|
301 |
-
|
302 |
-
>>> for pdb in dataset_models.data['train'].column('pdb'):
|
303 |
-
pdb.str
|
304 |
-
print(f"Predicting sequences for id = {row$id}")
|
305 |
-
pdb = row$pdb
|
306 |
-
|
307 |
|
308 |
>>> dataset_function_prediction = datasets.load_dataset(
|
309 |
path = "RosettaCommons/MIP",
|
310 |
name = f"{dataset_tag}_function_predictions",
|
311 |
-
data_dir = f"{dataset_tag}_function_predictions")
|
312 |
Downloading readme: 100%|ββββββββββββββββββββββββββββββββββββββββ| 15.4k/15.4k [00:00<00:00, 264kB/s]
|
313 |
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββ| 219/219 [00:00<00:00, 1375.51it/s]
|
314 |
Downloading data: 100%|βββββββββββββββββββββββββββββββββββββββββ| 219/219 [13:04<00:00, 3.58s/files]
|
315 |
Generating train split: 100%|ββββββββββββ| 1332900735/1332900735 [13:11<00:00, 1684288.89 examples/s]
|
316 |
Loading dataset shards: 100%|ββββββββββββββββββββββββββββββββββββββ| 219/219 [01:22<00:00, 2.66it/s]
|
317 |
|
318 |
-
this loads the `>1.3B` function predictions
|
319 |
The predictions are stored in long format, but can be easily converted to a wide format using pandas:
|
320 |
|
321 |
-
>>> dataset_function_prediction
|
322 |
-
|
323 |
>>> import pandas
|
324 |
>>> dataset_function_prediction_wide = pandas.pivot(
|
325 |
-
dataset_function_prediction.data
|
326 |
columns = "term_id",
|
327 |
index = "id",
|
328 |
values = "Y_hat")
|
@@ -380,28 +366,13 @@ protein structure databases such as the EBI AlphaFold database because it consis
|
|
380 |
proteins from Archaea and Bacteria, whose protein sequences are generally shorter
|
381 |
than Eukaryotic.
|
382 |
|
383 |
-
### Direct Use
|
384 |
-
This dataset could be used to train representation models of protein structure
|
385 |
-
|
386 |
-
-
|
387 |
-
|
388 |
-
|
389 |
### Out-of-Scope Use
|
390 |
While this dataset has been curated for quality, in some cases the predicted structures
|
391 |
may not represent physically realistic conformations. Thus caution much be used when using
|
392 |
it as training data for protein structure prediction and design.
|
393 |
|
394 |
-
## Dataset Structure
|
395 |
-
microbiome_immunity_project_dataset
|
396 |
-
dataset
|
397 |
-
dmpfold_high_quality_function_predictions
|
398 |
-
DeepFRI_MIP_<chunk-index>_<gene-ontology-prefix>_pred_scores.json.gz
|
399 |
-
dmpfold_high_quality_models
|
400 |
-
MIP_<MIP-ID>.pdb.gz.pdb.gz
|
401 |
-
|
402 |
|
403 |
### Source Data
|
404 |
-
|
405 |
Sequences were obtained from the Genomic Encyclopedia of Bacteria and Archaea
|
406 |
([GEBA1003](https://genome.jgi.doe.gov/portal/geba1003/geba1003.info.html)) reference
|
407 |
genome database across the microbial tree of life:
|
@@ -419,35 +390,6 @@ genome database across the microbial tree of life:
|
|
419 |
> sequence space is still far from saturated, and future endeavors in this direction will continue to be a
|
420 |
> valuable resource for scientific discovery.
|
421 |
|
422 |
-
#### Data Collection and Processing
|
423 |
-
|
424 |
-
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
|
425 |
-
|
426 |
-
{{ data_collection_and_processing_section | default("[More Information Needed]", true)}}
|
427 |
-
|
428 |
-
#### Who are the source data producers?
|
429 |
-
|
430 |
-
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
|
431 |
-
|
432 |
-
{{ source_data_producers_section | default("[More Information Needed]", true)}}
|
433 |
-
|
434 |
-
|
435 |
-
## Bias, Risks, and Limitations
|
436 |
-
|
437 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
438 |
-
|
439 |
-
{{ bias_risks_limitations | default("[More Information Needed]", true)}}
|
440 |
-
|
441 |
-
### Recommendations
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
448 |
-
|
449 |
-
{{ bias_recommendations | default("Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.", true)}}
|
450 |
-
|
451 |
## Citation
|
452 |
|
453 |
@article{KoehlerLeman2023,
|
@@ -464,7 +406,5 @@ genome database across the microbial tree of life:
|
|
464 |
month = apr
|
465 |
}
|
466 |
|
467 |
-
|
468 |
-
|
469 |
## Dataset Card Authors
|
470 |
Matthew O'Meara ([email protected])
|
|
|
246 |
|
247 |
## Quickstart Usage
|
248 |
|
249 |
+
### Install HuggingFace Datasets package
|
250 |
+
|
251 |
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
|
252 |
First, from the command line install the `datasets` library
|
253 |
|
|
|
261 |
then, from within python load the datasets library
|
262 |
|
263 |
>>> import datasets
|
264 |
+
|
265 |
+
### Load model datasets
|
266 |
|
267 |
+
To load one of the `MPI` model datasets, use `datasets.load_dataset(...)`:
|
268 |
|
269 |
>>> dataset_tag = "rosetta_high_quality"
|
270 |
>>> dataset_models = datasets.load_dataset(
|
271 |
path = "RosettaCommons/MIP",
|
272 |
name = f"{dataset_tag}_models",
|
273 |
+
data_dir = f"{dataset_tag}_models")['train']
|
274 |
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββ| 54/54 [00:00<00:00, 441.70it/s]
|
275 |
Downloading data: 100%|βββββββββββββββββββββββββββββββββββββββββββ| 54/54 [01:34<00:00, 1.74s/files]
|
276 |
Generating train split: 100%|βββββββββββββββββββββββ| 211069/211069 [01:41<00:00, 2085.54 examples/s]
|
277 |
Loading dataset shards: 100%|βββββββββββββββββββββββββββββββββββββββ| 48/48 [00:00<00:00, 211.74it/s]
|
278 |
|
279 |
+
and the dataset is loaded as a `datasets.arrow_dataset.Dataset`
|
280 |
|
281 |
>>> dataset_models
|
282 |
+
Dataset({
|
283 |
+
features: ['id', 'pdb', 'Filter_Stage2_aBefore', 'Filter_Stage2_bQuarter', 'Filter_Stage2_cHalf', 'Filter_Stage2_dEnd', 'clashes_bb', 'clashes_total', 'score', 'silent_score', 'time'],
|
284 |
+
num_rows: 211069
|
|
|
|
|
285 |
})
|
286 |
|
287 |
+
which is a column oriented format that can be accessed directly, converted in to a `pandas.DataFrame`, or `parquet` format, e.g.
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
+
>>> dataset_models.data.column('pdb')
|
290 |
+
>>> dataset_models.to_pandas()
|
291 |
+
>>> dataset_models.to_parquet("dataset.parquet")
|
|
|
|
|
|
|
|
|
292 |
|
293 |
+
### Load Function Predictions
|
294 |
+
Function predictions are generated using `DeepFRI` across
|
|
|
|
|
|
|
|
|
|
|
295 |
|
296 |
>>> dataset_function_prediction = datasets.load_dataset(
|
297 |
path = "RosettaCommons/MIP",
|
298 |
name = f"{dataset_tag}_function_predictions",
|
299 |
+
data_dir = f"{dataset_tag}_function_predictions")['train']
|
300 |
Downloading readme: 100%|ββββββββββββββββββββββββββββββββββββββββ| 15.4k/15.4k [00:00<00:00, 264kB/s]
|
301 |
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββ| 219/219 [00:00<00:00, 1375.51it/s]
|
302 |
Downloading data: 100%|βββββββββββββββββββββββββββββββββββββββββ| 219/219 [13:04<00:00, 3.58s/files]
|
303 |
Generating train split: 100%|ββββββββββββ| 1332900735/1332900735 [13:11<00:00, 1684288.89 examples/s]
|
304 |
Loading dataset shards: 100%|ββββββββββββββββββββββββββββββββββββββ| 219/219 [01:22<00:00, 2.66it/s]
|
305 |
|
306 |
+
this loads the `>1.3B` function predictions for all 211069 targets for the GO and EC ontology terms.
|
307 |
The predictions are stored in long format, but can be easily converted to a wide format using pandas:
|
308 |
|
|
|
|
|
309 |
>>> import pandas
|
310 |
>>> dataset_function_prediction_wide = pandas.pivot(
|
311 |
+
dataset_function_prediction.data.select(['id', 'term_id', 'Y_hat']).to_pandas(),
|
312 |
columns = "term_id",
|
313 |
index = "id",
|
314 |
values = "Y_hat")
|
|
|
366 |
proteins from Archaea and Bacteria, whose protein sequences are generally shorter
|
367 |
than Eukaryotic.
|
368 |
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
### Out-of-Scope Use
|
370 |
While this dataset has been curated for quality, in some cases the predicted structures
|
371 |
may not represent physically realistic conformations. Thus caution much be used when using
|
372 |
it as training data for protein structure prediction and design.
|
373 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
### Source Data
|
|
|
376 |
Sequences were obtained from the Genomic Encyclopedia of Bacteria and Archaea
|
377 |
([GEBA1003](https://genome.jgi.doe.gov/portal/geba1003/geba1003.info.html)) reference
|
378 |
genome database across the microbial tree of life:
|
|
|
390 |
> sequence space is still far from saturated, and future endeavors in this direction will continue to be a
|
391 |
> valuable resource for scientific discovery.
|
392 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
## Citation
|
394 |
|
395 |
@article{KoehlerLeman2023,
|
|
|
406 |
month = apr
|
407 |
}
|
408 |
|
|
|
|
|
409 |
## Dataset Card Authors
|
410 |
Matthew O'Meara ([email protected])
|