test_dataset / test_dataset.py
RossVermouth's picture
Update test_dataset.py
8f507c3
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""chensu test animal classification dataset with images of cats and dogs"""
import os
import datasets
from datasets import load_dataset
from datasets.tasks import ImageClassification
_HOMEPAGE = "https://oss.console.aliyun.com/bucket/oss-cn-beijing/340788/object"
_CITATION = """\
@ONLINE {
author="chensu"
}
"""
_DESCRIPTION = """\
This is a test dataset used to demonstrate the process of creating a hugging face dataset
"""
_URLS = {
"train": "https://340788.oss-cn-beijing.aliyuncs.com/train.zip",
"test": "https://340788.oss-cn-beijing.aliyuncs.com/test.zip",
}
_NAMES = ["cat", "dog"]
class TestDataset(datasets.GeneratorBasedBuilder):
"""Test classification dataset."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image_file_path": datasets.Value("string"),
"image": datasets.Image(),
"labels": datasets.features.ClassLabel(names=_NAMES),
}
),
supervised_keys=("image", "labels"),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[ImageClassification(image_column="image", label_column="labels")],
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": dl_manager.iter_files([data_files["train"]]),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"files": dl_manager.iter_files([data_files["test"]]),
},
),
]
def _generate_examples(self, files):
for i, path in enumerate(files):
file_name = os.path.basename(path)
if file_name.endswith(".jpeg"):
yield i, {
"image_file_path": path,
"image": path,
"labels": os.path.basename(os.path.dirname(path)).lower(),
}