|
import json |
|
from typing import List |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """ |
|
RuSpellGold is a benchmark of 1711 sentence pairs |
|
dedicated to a problem of automatic spelling correction in Russian language. |
|
The dataset is gathered from five different domains including news, Russian classic literature, |
|
social media texts, open web and strategic documents. |
|
It has been passed through two-stage manual labeling process with native speakers as annotators |
|
to correct spelling violation and preserve original style of text at the same time. |
|
""" |
|
|
|
_LICENSE = "apache-2.0" |
|
|
|
|
|
class RuSpellGoldConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for RuFacts.""" |
|
|
|
def __init__(self, data_urls, features, **kwargs): |
|
"""BuilderConfig for RuFacts. |
|
Args: |
|
features: *list[string]*, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
data_urls: *dict[string]*, urls to download the zip file from. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(RuFactsConfig, self).__init__(version=datasets.Version("0.0.1"), **kwargs) |
|
self.data_urls = data_urls |
|
self.features = features |
|
|
|
|
|
class RuSpellGold(datasets.GeneratorBasedBuilder): |
|
"""RuFacts dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
RuFactsConfig( |
|
name="raw", |
|
data_urls={ |
|
"train": "raw/train.json", |
|
"validation": "raw/validation.json", |
|
"test": "raw/test.json", |
|
}, |
|
features=["idx", "evidence", "claim", "label"], |
|
), |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
features = { |
|
"idx": datasets.Value("int64"), |
|
"evidence": datasets.Value("string"), |
|
"claim": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=["consistent", "inconsistent"]), |
|
} |
|
return datasets.DatasetInfo( |
|
features=datasets.Features(features), |
|
description=_DESCRIPTION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
urls_to_download = self.config.data_urls |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": downloaded_files["train"], |
|
"split": datasets.Split.TRAIN, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": downloaded_files["validation"], |
|
"split": datasets.Split.VALIDATION, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": downloaded_files["test"], |
|
"split": datasets.Split.TEST, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file, split): |
|
with open(data_file, encoding="utf-8") as f: |
|
key = 0 |
|
for line in f: |
|
row = json.loads(line) |
|
|
|
example = {feature: row[feature] for feature in self.config.features} |
|
yield key, example |
|
|
|
key += 1 |
|
|