File size: 5,697 Bytes
43acc61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.sea_datasets.alt_burmese_treebank.utils.alt_burmese_treebank_utils import extract_data
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@article{
10.1145/3373268,
author = {Ding, Chenchen and Yee, Sann Su Su and Pa, Win Pa and Soe, Khin Mar and Utiyama, Masao and Sumita, Eiichiro},
title = {A Burmese (Myanmar) Treebank: Guideline and Analysis},
year = {2020},
issue_date = {May 2020},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {19},
number = {3},
issn = {2375-4699},
url = {https://doi.org/10.1145/3373268},
doi = {10.1145/3373268},
abstract = {A 20,000-sentence Burmese (Myanmar) treebank on news articles has been released under a CC BY-NC-SA license.\
Complete phrase structure annotation was developed for each sentence from the morphologically annotated data\
prepared in previous work of Ding et al. [1]. As the final result of the Burmese component in the Asian\
Language Treebank Project, this is the first large-scale, open-access treebank for the Burmese language.\
The annotation details and features of this treebank are presented.\
},
journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},
month = {jan},
articleno = {40},
numpages = {13},
keywords = {Burmese (Myanmar), phrase structure, treebank}
}
"""
_DATASETNAME = "alt_burmese_treebank"
_DESCRIPTION = """\
A 20,000-sentence Burmese (Myanmar) treebank on news articles containing complete phrase structure annotation.\
As the final result of the Burmese component in the Asian Language Treebank Project, this is the first large-scale,\
open-access treebank for the Burmese language.
"""
_HOMEPAGE = "https://zenodo.org/records/3463010"
_LANGUAGES = ["mya"]
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
_LOCAL = False
_URLS = {
_DATASETNAME: "https://zenodo.org/records/3463010/files/my-alt-190530.zip?download=1",
}
_SUPPORTED_TASKS = [Tasks.CONSTITUENCY_PARSING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class AltBurmeseTreebank(datasets.GeneratorBasedBuilder):
"""A 20,000-sentence Burmese (Myanmar) treebank on news articles containing complete phrase structure annotation.\
As the final result of the Burmese component in the Asian Language Treebank Project, this is the first large-scale,\
open-access treebank for the Burmese language."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_tree",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_tree",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string")})
elif self.config.schema == "seacrowd_tree":
features = schemas.tree_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "my-alt-190530/data"),
"split": "train",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
with open(filepath, "r") as f:
for idx, line in enumerate(f):
example = {"id": line.split("\t")[0], "text": line.split("\t")[1]}
yield idx, example
elif self.config.schema == "seacrowd_tree":
with open(filepath, "r") as f:
for idx, line in enumerate(f):
example = extract_data(line)
yield idx, example
|