Datasets:

Languages:
Indonesian
ArXiv:
License:
File size: 5,873 Bytes
74bdb2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import datasets
import pandas as pd

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@article{wibowo2023copal,
  title={COPAL-ID: Indonesian Language Reasoning with Local Culture and Nuances},
  author={Wibowo, Haryo Akbarianto and Fuadi, Erland Hilman and Nityasya, Made Nindyatama and Prasojo, Radityo Eko and Aji, Alham Fikri},
  journal={arXiv preprint arXiv:2311.01012},
  year={2023}
}
"""
_DATASETNAME = "copal"

_DESCRIPTION = """\
COPAL is a novel Indonesian language common sense reasoning dataset. Unlike the previous Indonesian COPA dataset (XCOPA-ID), COPAL-ID incorporates Indonesian local and cultural nuances,
providing a more natural portrayal of day-to-day causal reasoning within the Indonesian cultural sphere.
Professionally written by natives from scratch, COPAL-ID is more fluent and free from awkward phrases, unlike the translated XCOPA-ID.
Additionally, COPAL-ID is presented in both standard Indonesian and Jakartan Indonesian–a commonly used dialect.
It consists of premise, choice1, choice2, question, and label, similar to the COPA dataset.
"""

_HOMEPAGE = "https://huggingface.co/datasets/haryoaw/COPAL"

_LICENSE = Licenses.CC_BY_SA_4_0.value

_URLS = {"test": "https://huggingface.co/datasets/haryoaw/COPAL/resolve/main/test_copal.csv?download=true", "test_colloquial": "https://huggingface.co/datasets/haryoaw/COPAL/resolve/main/test_copal_colloquial.csv?download=true"}

_SUPPORTED_TASKS = [Tasks.COMMONSENSE_REASONING]

_LOCAL = False
_LANGUAGES = ["ind"]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class COPAL(datasets.GeneratorBasedBuilder):

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description="COPAL test source schema",
            schema="source",
            subset_id="copal",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_colloquial_source",
            version=SOURCE_VERSION,
            description="COPAL test colloquial source schema",
            schema="source",
            subset_id="copal",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_qa",
            version=SEACROWD_VERSION,
            description="COPAL test seacrowd schema",
            schema="seacrowd_qa",
            subset_id="copal",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_colloquial_seacrowd_qa",
            version=SEACROWD_VERSION,
            description="COPAL test colloquial seacrowd schema",
            schema="seacrowd_qa",
            subset_id="copal",
        ),
    ]

    DEFAULT_CONFIG_NAME = "copal_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "premise": datasets.Value("string"),
                    "choice1": datasets.Value("string"),
                    "choice2": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "idx": datasets.Value("int64"),
                    "label": datasets.Value("int64"),
                    "terminology": datasets.Value("int64"),
                    "culture": datasets.Value("int64"),
                    "language": datasets.Value("int64"),
                }
            )
        elif self.config.schema == "seacrowd_qa":
            features = schemas.qa_features
            features["meta"] = {"terminology": datasets.Value("int64"), "culture": datasets.Value("int64"), "language": datasets.Value("int64")}

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLS)
        if "colloquial" in self.config.name:
            data_url = data_dir["test_colloquial"]
        else:
            data_url = data_dir["test"]
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_url},
            ),
        ]

    def _generate_examples(self, filepath):
        df = pd.read_csv(filepath, sep=",", header="infer").reset_index()
        if self.config.schema == "source":
            for row in df.itertuples():
                entry = {
                    "premise": row.premise,
                    "choice1": row.choice1,
                    "choice2": row.choice2,
                    "question": row.question,
                    "idx": row.idx,
                    "label": row.label,
                    "terminology": row.Terminology,
                    "culture": row.Culture,
                    "language": row.Language,
                }
                yield row.index, entry

        elif self.config.schema == "seacrowd_qa":
            for row in df.itertuples():
                entry = {
                    "id": row.idx,
                    "question_id": str(row.idx),
                    "document_id": str(row.idx),
                    "question": row.question,
                    "type": "multiple_choice",
                    "choices": [row.choice1, row.choice2],
                    "context": row.premise,
                    "answer": [row.choice1 if row.label == 0 else row.choice2],
                    "meta": {"terminology": row.Terminology, "culture": row.Culture, "language": row.Language},
                }
                yield row.index, entry
        else:
            raise ValueError(f"Invalid config: {self.config.name}")