|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
from urllib.parse import urljoin |
|
|
|
import datasets |
|
from pyarrow import parquet as pq |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks, Licenses |
|
|
|
_CITATION = """\ |
|
@article{nguyen2023culturax, |
|
author = {Thuat Nguyen and Chien Van Nguyen and Viet Dac Lai and Hieu Man and Nghia Trung Ngo and Franck Dernoncourt and Ryan A. Rossi and Thien Huu Nguyen}, |
|
title = {CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages}, |
|
journal = {arXiv preprint arXiv:2309.09400}, |
|
year = {2023}, |
|
url = {https://arxiv.org/abs/2309.09400}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "culturax" |
|
_DESCRIPTION = """\ |
|
CulturaX is a comprehensive multilingual dataset comprising 6.3 trillion tokens across 167 |
|
languages, designed for large language model development. It incorporates an advanced |
|
cleaning and deduplication process, including language identification and fuzzy |
|
deduplication with MinHash, to ensure high-quality data for model training. The dataset, |
|
which spans 16TB in parquet format and 27TB when unpacked, is a combination of the latest |
|
mC4 and OSCAR corpora, emphasizing non-English languages to support multilingual model |
|
training. For data cleaning validation, CulturaX employs a SentencePiece tokenizer and |
|
KenLM language models, utilizing recent Wikipedia dumps for perplexity scoring. |
|
Before using this dataloader, please accept the acknowledgement at https://huggingface.co/datasets/uonlp/CulturaX and use huggingface-cli login for authentication. |
|
""" |
|
|
|
_LOCAL=False |
|
_LANGUAGES = ["ind", "jav", "khm", "lao", "tgl", "min", "mya", "sun", "tha", "vie", "zlm", "ceb", "war", "cbk", "bcl"] |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/uonlp/CulturaX" |
|
_LICENSE = f"""{Licenses.OTHERS.value} | \ |
|
The licence terms for CulturaX strictly follows those of mC4 and OSCAR. \ |
|
Please refer to both below licenses when using this dataset. \ |
|
- mC4 license: https://huggingface.co/datasets/allenai/c4#license \ |
|
- OSCAR license: https://huggingface.co/datasets/oscar-corpus/OSCAR-2301#licensing-information \ |
|
""" |
|
_BASE_URL = "https://huggingface.co/datasets/uonlp/CulturaX/resolve/main/{lang}/" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class CulturaXDataset(datasets.GeneratorBasedBuilder): |
|
"""CulturaX subset for SEA languages.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "ssp" |
|
SUBSETS = ["id", "jv", "km", "lo", "tl", "min", "my", "su", "th", "vi", "ms", "ceb", "war", "cbk", "bcl"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} {subset} source schema", |
|
schema="source", |
|
subset_id=subset, |
|
) |
|
for subset in SUBSETS |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{subset}_seacrowd_ssp", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} {subset} SEACrowd schema", |
|
schema="seacrowd_ssp", |
|
subset_id=subset, |
|
) |
|
for subset in SUBSETS |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_jv_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"timestamp": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"source": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.ssp_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
base_path = _BASE_URL.format(lang=self.config.name.split("_")[1]) |
|
|
|
checksum_url = urljoin(base_path, "checksum.sha256") |
|
checksum_path = Path(dl_manager.download(checksum_url)) |
|
with open(checksum_path, encoding="utf-8") as f: |
|
filenames = [line.split()[1] for line in f if line] |
|
data_urls = [urljoin(base_path, filename) for filename in filenames] |
|
|
|
data_paths = list(map(Path, dl_manager.download([url for url in data_urls if url.endswith(".parquet")]))) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": data_paths, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepaths: [Path], split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples. |
|
|
|
Iterate over row groups in each filepaths, then yield each row as an example. |
|
""" |
|
key = 0 |
|
for filepath in filepaths: |
|
with open(filepath, "rb") as f: |
|
pf = pq.ParquetFile(f) |
|
for row_group in range(pf.num_row_groups): |
|
df = pf.read_row_group(row_group).to_pandas() |
|
for row in df.itertuples(): |
|
if self.config.schema == "source": |
|
yield key, { |
|
"text": row.text, |
|
"timestamp": row.timestamp, |
|
"url": row.url, |
|
"source": row.source, |
|
} |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
yield key, { |
|
"id": str(key), |
|
"text": row.text, |
|
} |
|
key += 1 |
|
|