|
import csv |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = r""" |
|
@inproceedings{cruz-etal-2020-localization, |
|
title = "Localization of Fake News Detection via Multitask Transfer Learning", |
|
author = "Cruz, Jan Christian Blaise and |
|
Tan, Julianne Agatha and |
|
Cheng, Charibeth", |
|
editor = "Calzolari, Nicoletta and |
|
B{\'e}chet, Fr{\'e}d{\'e}ric and |
|
Blache, Philippe and |
|
Choukri, Khalid and |
|
Cieri, Christopher and |
|
Declerck, Thierry and |
|
Goggi, Sara and |
|
Isahara, Hitoshi and |
|
Maegaard, Bente and |
|
Mariani, Joseph and |
|
Mazo, H{\'e}l{\`e}ne and |
|
Moreno, Asuncion and |
|
Odijk, Jan and |
|
Piperidis, Stelios", |
|
booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference", |
|
month = may, |
|
year = "2020", |
|
address = "Marseille, France", |
|
publisher = "European Language Resources Association", |
|
url = "https://aclanthology.org/2020.lrec-1.316", |
|
pages = "2596--2604", |
|
language = "English", |
|
ISBN = "979-10-95546-34-4", |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["fil"] |
|
_DATASETNAME = "fakenews_ph" |
|
_DESCRIPTION = """\ |
|
Fake news articles were sourced from online sites that were tagged as fake |
|
news sites by the non-profit independent media fact-checking organization |
|
Verafiles and the National Union of Journalists in the Philippines (NUJP). |
|
Real news articles were sourced from mainstream news websites in the |
|
Philippines, including Pilipino Star Ngayon, Abante, and Bandera. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/jcblaisecruz02/Tagalog-fake-news" |
|
_LICENSE = Licenses.GPL_3_0.value |
|
_URL = "https://s3.us-east-2.amazonaws.com/blaisecruz.com/datasets/fakenews/fakenews.zip" |
|
|
|
_SUPPORTED_TASKS = [Tasks.HOAX_NEWS_CLASSIFICATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class FakeNewsFilipinoDataset(datasets.GeneratorBasedBuilder): |
|
"""Fake News Filipino Dataset from https://huggingface.co/datasets/fake_news_filipino""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "text" |
|
LABEL_CLASSES = ["0", "1"] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"article": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=self.LABEL_CLASSES), |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text_features(self.LABEL_CLASSES) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Return SplitGenerators.""" |
|
data_dir = Path(dl_manager.download_and_extract(_URL)) |
|
train_path = data_dir / "fakenews" / "full.csv" |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": train_path, "split": "train"}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yield examples as (key, example) tuples""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, |
|
quotechar='"', |
|
delimiter=",", |
|
quoting=csv.QUOTE_ALL, |
|
skipinitialspace=True, |
|
) |
|
next(csv_reader) |
|
for id_, row in enumerate(csv_reader): |
|
label, article = row |
|
if self.config.schema == "source": |
|
yield id_, {"label": label, "article": article} |
|
if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
yield id_, {"id": id_, "label": label, "text": article} |
|
|