import csv from pathlib import Path from typing import Dict, List, Tuple import datasets from datasets.download.download_manager import DownloadManager from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = r""" @inproceedings{cruz-etal-2020-localization, title = "Localization of Fake News Detection via Multitask Transfer Learning", author = "Cruz, Jan Christian Blaise and Tan, Julianne Agatha and Cheng, Charibeth", editor = "Calzolari, Nicoletta and B{\'e}chet, Fr{\'e}d{\'e}ric and Blache, Philippe and Choukri, Khalid and Cieri, Christopher and Declerck, Thierry and Goggi, Sara and Isahara, Hitoshi and Maegaard, Bente and Mariani, Joseph and Mazo, H{\'e}l{\`e}ne and Moreno, Asuncion and Odijk, Jan and Piperidis, Stelios", booktitle = "Proceedings of the Twelfth Language Resources and Evaluation Conference", month = may, year = "2020", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2020.lrec-1.316", pages = "2596--2604", language = "English", ISBN = "979-10-95546-34-4", } """ _LOCAL = False _LANGUAGES = ["fil"] _DATASETNAME = "fakenews_ph" _DESCRIPTION = """\ Fake news articles were sourced from online sites that were tagged as fake news sites by the non-profit independent media fact-checking organization Verafiles and the National Union of Journalists in the Philippines (NUJP). Real news articles were sourced from mainstream news websites in the Philippines, including Pilipino Star Ngayon, Abante, and Bandera. """ _HOMEPAGE = "https://github.com/jcblaisecruz02/Tagalog-fake-news" _LICENSE = Licenses.GPL_3_0.value _URL = "https://s3.us-east-2.amazonaws.com/blaisecruz.com/datasets/fakenews/fakenews.zip" _SUPPORTED_TASKS = [Tasks.HOAX_NEWS_CLASSIFICATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class FakeNewsFilipinoDataset(datasets.GeneratorBasedBuilder): """Fake News Filipino Dataset from https://huggingface.co/datasets/fake_news_filipino""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) SEACROWD_SCHEMA_NAME = "text" LABEL_CLASSES = ["0", "1"] BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=_DATASETNAME, ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=_DATASETNAME, ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "article": datasets.Value("string"), "label": datasets.features.ClassLabel(names=self.LABEL_CLASSES), } ) elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": features = schemas.text_features(self.LABEL_CLASSES) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: """Return SplitGenerators.""" data_dir = Path(dl_manager.download_and_extract(_URL)) train_path = data_dir / "fakenews" / "full.csv" return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path, "split": "train"}, ) ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yield examples as (key, example) tuples""" with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader( csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True, ) next(csv_reader) for id_, row in enumerate(csv_reader): label, article = row if self.config.schema == "source": yield id_, {"label": label, "article": article} if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": yield id_, {"id": id_, "label": label, "text": article}