|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import SCHEMA_TO_FEATURES, TASK_TO_SCHEMA, Tasks |
|
|
|
|
|
_CITATION = r"""\ |
|
@article{oco2015witchebelles, |
|
author = {Oco, Nathaniel and Fajutagana, Raymart and Lim, Christine Mae and Mi{\~n}on, Judi Diane and Morano, Julie-Ann and Tinoco, Ryan Christian}, |
|
title = {Witchebelles Anata Magcharot kay Mudra na Nagsusuba si Akech: Developing a Rule-based Unidirectional Beki Lingo to Filipino Translator}, |
|
journal = {Journal of Sciences, Technology and Arts Research}, |
|
volume = {1}, |
|
number = {1}, |
|
year = {2015} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["fil"] |
|
_DATASETNAME = "filipino_gay_lang" |
|
_DESCRIPTION = """\ |
|
The dataset contains 4000+ Filipino tweets in gay language or lingo also called swardspeak in slang terminology. |
|
The tweet dataset was collected from February 2013 to November 2014 using the following commonly used gay words as filters: jinet ("hot"), ditey ("here"), imbyerna ("annoying"), etc. |
|
The original paper makes use of the corpus to develop a gay language translator to understand the meaning of phrases using gay words in Filipino. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/imperialite/Philippine-Languages-Online-Corpora/tree/master/Tweets/Gay%20language" |
|
_LICENSE = "CC-BY-SA 4.0" |
|
_URLS = { |
|
"gl_01": "https://github.com/imperialite/Philippine-Languages-Online-Corpora/raw/master/Tweets/Gay%20language/gl%20-%2001.xlsx", |
|
"gl_02": "https://github.com/imperialite/Philippine-Languages-Online-Corpora/raw/master/Tweets/Gay%20language/gl%20-%2002.xlsx", |
|
"gl_03": "https://github.com/imperialite/Philippine-Languages-Online-Corpora/raw/master/Tweets/Gay%20language/gl%20-%2003.xlsx", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class FilipinoGayLangDataset(datasets.GeneratorBasedBuilder): |
|
"""This dataset contains 4000+ Filipino tweets in gay lingo/Beki/Swardspeak.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower() |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features({"index": datasets.Value("string"), "text": datasets.Value("string")}) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = SCHEMA_TO_FEATURES[self.SEACROWD_SCHEMA_NAME.upper()] |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
data_files = { |
|
"gl_01": Path(dl_manager.download(_URLS["gl_01"])), |
|
"gl_02": Path(dl_manager.download(_URLS["gl_02"])), |
|
"gl_03": Path(dl_manager.download(_URLS["gl_03"])), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": [data_files["gl_01"], data_files["gl_02"], data_files["gl_03"]], "split": "train"}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
df = pd.concat((pd.read_excel(file) for file in filepath), ignore_index=True).reset_index() |
|
|
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
ex = {"index": str(row.index), "text": row.message} |
|
yield row.index, ex |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
for row in df.itertuples(): |
|
ex = {"id": str(row.index), "text": row.message} |
|
yield row.index, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|