Datasets:

Languages:
Indonesian
ArXiv:
License:
id_frog_story / id_frog_story.py
holylovenia's picture
Upload id_frog_story.py with huggingface_hub
a5859f0
raw
history blame
4.54 kB
import os
from pathlib import Path
from typing import List
import datasets
from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks
_CITATION = """\
@article{FrogStorytelling,
author="Moeljadi, David",
title="Usage of Indonesian Possessive Verbal Predicates : A Statistical Analysis Based on Storytelling Survey",
journal="Tokyo University Linguistic Papers",
ISSN="1345-8663",
publisher="東京大学大学院人文社会系研究科・文学部言語学研究室",
year="2014",
month="sep",
volume="35",
number="",
pages="155-176",
URL="https://ci.nii.ac.jp/naid/120005525793/en/",
DOI="info:doi/10.15083/00027472",
}
"""
_DATASETNAME = "id_frog_story"
_DESCRIPTION = """\
Indonesian Frog Storytelling Corpus
Indonesian written and spoken corpus, based on the twenty-eight pictures. (http://compling.hss.ntu.edu.sg/who/david/corpus/pictures.pdf)
"""
_HOMEPAGE = "https://github.com/matbahasa/corpus-frog-storytelling"
_LANGUAGES = ["ind"]
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"
_LOCAL = False
_URLS = {
_DATASETNAME: "https://github.com/matbahasa/corpus-frog-storytelling/archive/refs/heads/master.zip",
}
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
class IdFrogStory(datasets.GeneratorBasedBuilder):
"""IdFrogStory contains 13 spoken datasets and 11 written datasets"""
BUILDER_CONFIGS = [
NusantaraConfig(
name="id_frog_story_source",
version=datasets.Version(_SOURCE_VERSION),
description="IdFrogStory source schema",
schema="source",
subset_id="id_frog_story",
),
NusantaraConfig(
name="id_frog_story_nusantara_ssp",
version=datasets.Version(_NUSANTARA_VERSION),
description="IdFrogStory Nusantara schema",
schema="nusantara_ssp",
subset_id="id_frog_story",
),
]
DEFAULT_CONFIG_NAME = "id_frog_story_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"text": datasets.Value("string"),
}
)
elif self.config.schema == "nusantara_ssp":
features = schemas.self_supervised_pretraining.features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
base_path = Path(dl_manager.download_and_extract(urls)) / "corpus-frog-storytelling-master" / "data"
spoken_path = base_path / "spoken"
written_path = base_path / "written"
data = []
for spoken_file_name in sorted(os.listdir(spoken_path)):
spoken_file_path = spoken_path / spoken_file_name
if os.path.isfile(spoken_file_path):
with open(spoken_file_path, "r") as fspoken:
data.extend(fspoken.read().strip("\n").split("\n\n"))
for written_file_name in sorted(os.listdir(written_path)):
written_file_path = written_path / written_file_name
if os.path.isfile(written_file_path):
with open(written_file_path, "r") as fwritten:
data.extend(fwritten.read().strip("\n").split("\n\n"))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data": data,
"split": "train",
},
),
]
def _generate_examples(self, data: List, split: str):
if self.config.schema == "source":
for index, row in enumerate(data):
ex = {
"id": index,
"text": row
}
yield index, ex
elif self.config.schema == "nusantara_ssp":
for index, row in enumerate(data):
ex = {
"id": index,
"text": row
}
yield index, ex
else:
raise ValueError(f"Invalid config: {self.config.name}")