import os from pathlib import Path from typing import List import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks, Licenses _CITATION = """\ @article{FrogStorytelling, author="Moeljadi, David", title="Usage of Indonesian Possessive Verbal Predicates : A Statistical Analysis Based on Storytelling Survey", journal="Tokyo University Linguistic Papers", ISSN="1345-8663", publisher="東京大学大学院人文社会系研究科・文学部言語学研究室", year="2014", month="sep", volume="35", number="", pages="155-176", URL="https://ci.nii.ac.jp/naid/120005525793/en/", DOI="info:doi/10.15083/00027472", } """ _DATASETNAME = "id_frog_story" _DESCRIPTION = """\ Indonesian Frog Storytelling Corpus Indonesian written and spoken corpus, based on the twenty-eight pictures. (http://compling.hss.ntu.edu.sg/who/david/corpus/pictures.pdf) """ _HOMEPAGE = "https://github.com/matbahasa/corpus-frog-storytelling" _LANGUAGES = ["ind"] _LICENSE = Licenses.CC_BY_SA_4_0.value _LOCAL = False _URLS = { _DATASETNAME: "https://github.com/matbahasa/corpus-frog-storytelling/archive/refs/heads/master.zip", } _SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class IdFrogStory(datasets.GeneratorBasedBuilder): """IdFrogStory contains 13 spoken datasets and 11 written datasets""" BUILDER_CONFIGS = [ SEACrowdConfig( name="id_frog_story_source", version=datasets.Version(_SOURCE_VERSION), description="IdFrogStory source schema", schema="source", subset_id="id_frog_story", ), SEACrowdConfig( name="id_frog_story_seacrowd_ssp", version=datasets.Version(_SEACROWD_VERSION), description="IdFrogStory Nusantara schema", schema="seacrowd_ssp", subset_id="id_frog_story", ), ] DEFAULT_CONFIG_NAME = "id_frog_story_source" def _info(self): if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "text": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_ssp": features = schemas.self_supervised_pretraining.features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: urls = _URLS[_DATASETNAME] base_path = Path(dl_manager.download_and_extract(urls)) / "corpus-frog-storytelling-master" / "data" spoken_path = base_path / "spoken" written_path = base_path / "written" data = [] for spoken_file_name in sorted(os.listdir(spoken_path)): spoken_file_path = spoken_path / spoken_file_name if os.path.isfile(spoken_file_path): with open(spoken_file_path, "r") as fspoken: data.extend(fspoken.read().strip("\n").split("\n\n")) for written_file_name in sorted(os.listdir(written_path)): written_file_path = written_path / written_file_name if os.path.isfile(written_file_path): with open(written_file_path, "r") as fwritten: data.extend(fwritten.read().strip("\n").split("\n\n")) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data": data, "split": "train", }, ), ] def _generate_examples(self, data: List, split: str): if self.config.schema == "source": for index, row in enumerate(data): ex = { "id": index, "text": row } yield index, ex elif self.config.schema == "seacrowd_ssp": for index, row in enumerate(data): ex = { "id": index, "text": row } yield index, ex else: raise ValueError(f"Invalid config: {self.config.name}")