File size: 6,409 Bytes
93a5b6e 6eb0910 93a5b6e 6eb0910 93a5b6e 6eb0910 93a5b6e 6eb0910 93a5b6e 6eb0910 93a5b6e 6eb0910 93a5b6e 6eb0910 93a5b6e 6eb0910 93a5b6e 6eb0910 93a5b6e 6eb0910 93a5b6e 6eb0910 93a5b6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
from pathlib import Path
from typing import Dict, List, Tuple
from seacrowd.utils.constants import Tasks
from seacrowd.utils import schemas
import datasets
import json
from seacrowd.utils.configs import SEACrowdConfig
_CITATION = """\
@inproceedings{mahendra-etal-2018-cross,
title = "Cross-Lingual and Supervised Learning Approach for {I}ndonesian Word Sense Disambiguation Task",
author = "Mahendra, Rahmad and
Septiantri, Heninggar and
Wibowo, Haryo Akbarianto and
Manurung, Ruli and
Adriani, Mirna",
booktitle = "Proceedings of the 9th Global Wordnet Conference",
month = jan,
year = "2018",
address = "Nanyang Technological University (NTU), Singapore",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2018.gwc-1.28",
pages = "245--250",
abstract = "Ambiguity is a problem we frequently face in Natural Language Processing. Word Sense Disambiguation (WSD) is a task to determine the correct sense of an ambiguous word. However, research in WSD for Indonesian is still rare to find. The availability of English-Indonesian parallel corpora and WordNet for both languages can be used as training data for WSD by applying Cross-Lingual WSD method. This training data is used as an input to build a model using supervised machine learning algorithms. Our research also examines the use of Word Embedding features to build the WSD model.",
}
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "id_wsd"
_DESCRIPTION = """\
Word Sense Disambiguation (WSD) is a task to determine the correct sense of an ambiguous word.
The training data was collected from news websites and manually annotated. The words in training data were processed using the morphological analysis to obtain lemma.
The features being used were some words around the target word (including the words before and after the target word), the nearest verb from the
target word, the transitive verb around the target word, and the document context.
"""
_HOMEPAGE = "https://github.com/rmahendra/Indonesian-WSD"
_LICENSE = "Unknown"
_URLS = {
_DATASETNAME: "https://github.com/rmahendra/Indonesian-WSD/raw/master/dataset-clwsd-ina.zip",
}
_SUPPORTED_TASKS = [Tasks.WORD_SENSE_DISAMBIGUATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_LABELS = [
{
"name": "atas",
"file_ext": ""
},
{
"name": "perdana",
"file_ext": ".tab"
},
{
"name": "alam",
"file_ext": ".tab"
},
{
"name": "dasar",
"file_ext": ".tab"
},
{
"name": "anggur",
"file_ext": ".tab"
},
{
"name": "kayu",
"file_ext": ""
}
]
class IndonesianWSD(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="id_wsd_source",
version=SOURCE_VERSION,
description="Indonesian WSD source schema",
schema="source",
subset_id="id_wsd",
),
SEACrowdConfig(
name="id_wsd_seacrowd_t2t",
version=SEACROWD_VERSION,
description="Indonesian WSD Nusantara schema",
schema="seacrowd_t2t",
subset_id="id_wsd",
),
]
DEFAULT_CONFIG_NAME = "indonesian_wsd_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
data_dir = os.path.join(data_dir, "dataset")
datas = []
for label in _LABELS:
file_name = f"{label['name']}_t01"
if label["file_ext"] != "":
file_name = f"{file_name}{label['file_ext']}"
parsed_data = self._parse_file(os.path.join(data_dir, file_name))
datas = datas + parsed_data
path_dumped_file = os.path.join(data_dir, "data.json")
with open(path_dumped_file, 'w') as f:
f.write(json.dumps(datas))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": path_dumped_file,
"split": "train",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
data = json.load(open(filepath, "r"))
if self.config.schema == "source":
key = 0
for each_data in data:
example = {
"label": each_data["sense_id"],
"text": each_data["text"]
}
yield key, example
key+=1
elif self.config.schema == "seacrowd_t2t":
key = 0
for each_data in data:
example = {
"id": str(key+1),
"text_1": each_data["sense_id"],
"text_1_name": "label",
"text_2": each_data["text"],
"text_2_name": "text"
}
yield key, example
key+=1
def _parse_file(self, file_path):
parsed_lines = open(file_path, "r").readlines()
data = []
for line in parsed_lines:
if len(line.strip()) > 0:
_, sense_id, text = line[:-1].split("\t")
data.append({
"sense_id": sense_id,
"text": text
})
return data
|