|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
from nusacrowd.utils.constants import Tasks |
|
from nusacrowd.utils import schemas |
|
|
|
import datasets |
|
import json |
|
|
|
from nusacrowd.utils.configs import NusantaraConfig |
|
|
|
_CITATION = """\ |
|
@inproceedings{mahendra-etal-2018-cross, |
|
title = "Cross-Lingual and Supervised Learning Approach for {I}ndonesian Word Sense Disambiguation Task", |
|
author = "Mahendra, Rahmad and |
|
Septiantri, Heninggar and |
|
Wibowo, Haryo Akbarianto and |
|
Manurung, Ruli and |
|
Adriani, Mirna", |
|
booktitle = "Proceedings of the 9th Global Wordnet Conference", |
|
month = jan, |
|
year = "2018", |
|
address = "Nanyang Technological University (NTU), Singapore", |
|
publisher = "Global Wordnet Association", |
|
url = "https://aclanthology.org/2018.gwc-1.28", |
|
pages = "245--250", |
|
abstract = "Ambiguity is a problem we frequently face in Natural Language Processing. Word Sense Disambiguation (WSD) is a task to determine the correct sense of an ambiguous word. However, research in WSD for Indonesian is still rare to find. The availability of English-Indonesian parallel corpora and WordNet for both languages can be used as training data for WSD by applying Cross-Lingual WSD method. This training data is used as an input to build a model using supervised machine learning algorithms. Our research also examines the use of Word Embedding features to build the WSD model.", |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "indonesian_wsd" |
|
|
|
_DESCRIPTION = """\ |
|
Word Sense Disambiguation (WSD) is a task to determine the correct sense of an ambiguous word. |
|
The training data was collected from news websites and manually annotated. The words in training data were processed using the morphological analysis to obtain lemma. |
|
The features being used were some words around the target word (including the words before and after the target word), the nearest verb from the |
|
target word, the transitive verb around the target word, and the document context. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/rmahendra/Indonesian-WSD" |
|
|
|
_LICENSE = "Unknown" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/rmahendra/Indonesian-WSD/raw/master/dataset-clwsd-ina.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.WORD_SENSE_DISAMBIGUATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_NUSANTARA_VERSION = "1.0.0" |
|
|
|
_LABELS = [ |
|
{ |
|
"name": "atas", |
|
"file_ext": "" |
|
}, |
|
{ |
|
"name": "perdana", |
|
"file_ext": ".tab" |
|
}, |
|
{ |
|
"name": "alam", |
|
"file_ext": ".tab" |
|
}, |
|
{ |
|
"name": "dasar", |
|
"file_ext": ".tab" |
|
}, |
|
{ |
|
"name": "anggur", |
|
"file_ext": ".tab" |
|
}, |
|
{ |
|
"name": "kayu", |
|
"file_ext": "" |
|
} |
|
] |
|
|
|
class IndonesianWSD(datasets.GeneratorBasedBuilder): |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
NusantaraConfig( |
|
name="indonesian_wsd_source", |
|
version=SOURCE_VERSION, |
|
description="Indonesian WSD source schema", |
|
schema="source", |
|
subset_id="indonesian_wsd", |
|
), |
|
NusantaraConfig( |
|
name="indonesian_wsd_nusantara_t2t", |
|
version=NUSANTARA_VERSION, |
|
description="Indonesian WSD Nusantara schema", |
|
schema="nusantara_t2t", |
|
subset_id="indonesian_wsd", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indonesian_wsd_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "nusantara_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
data_dir = os.path.join(data_dir, "dataset") |
|
|
|
datas = [] |
|
|
|
for label in _LABELS: |
|
file_name = f"{label['name']}_t01" |
|
if label["file_ext"] != "": |
|
file_name = f"{file_name}{label['file_ext']}" |
|
|
|
parsed_data = self._parse_file(os.path.join(data_dir, file_name)) |
|
datas = datas + parsed_data |
|
|
|
path_dumped_file = os.path.join(data_dir, "data.json") |
|
|
|
with open(path_dumped_file, 'w') as f: |
|
f.write(json.dumps(datas)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": path_dumped_file, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
data = json.load(open(filepath, "r")) |
|
|
|
if self.config.schema == "source": |
|
key = 0 |
|
for each_data in data: |
|
example = { |
|
"label": each_data["sense_id"], |
|
"text": each_data["text"] |
|
} |
|
yield key, example |
|
key+=1 |
|
|
|
elif self.config.schema == "nusantara_t2t": |
|
key = 0 |
|
for each_data in data: |
|
example = { |
|
"id": str(key+1), |
|
"text_1": each_data["sense_id"], |
|
"text_1_name": "label", |
|
"text_2": each_data["text"], |
|
"text_2_name": "text" |
|
} |
|
yield key, example |
|
key+=1 |
|
|
|
def _parse_file(self, file_path): |
|
parsed_lines = open(file_path, "r").readlines() |
|
data = [] |
|
for line in parsed_lines: |
|
if len(line.strip()) > 0: |
|
_, sense_id, text = line[:-1].split("\t") |
|
data.append({ |
|
"sense_id": sense_id, |
|
"text": text |
|
}) |
|
return data |
|
|
|
|
|
|