File size: 5,408 Bytes
d8c4ab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
from datasets.download.download_manager import DownloadManager

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """
@article{hidayatullah2023corpus,
  title={Corpus creation and language identification for code-mixed Indonesian-Javanese-English Tweets},
  author={Hidayatullah, Ahmad Fathan and Apong, Rosyzie Anna and Lai, Daphne TC and Qazi, Atika},
  journal={PeerJ Computer Science},
  volume={9},
  pages={e1312},
  year={2023},
  publisher={PeerJ Inc.}
}
"""

_LOCAL = False
_LANGUAGES = ["ind", "jav", "eng"]
_DATASETNAME = "ijelid"
_DESCRIPTION = """\
This is a code-mixed Indonesian-Javanese-English dataset for token-level
language identification. We named this dataset as IJELID
(Indonesian-Javanese-English Language Identification). This dataset contains
tweets that have been tokenized with the corresponding token and its language
label. There are seven language labels in the dataset, namely: ID (Indonesian)JV
(Javanese), EN (English), MIX_ID_EN (mixed Indonesian-English), MIX_ID_JV (mixed
Indonesian-Javanese), MIX_JV_EN (mixed Javanese-English), OTH (Other).
"""

_HOMEPAGE = "https://github.com/fathanick/Code-mixed-Indonesian-Javanese-English-Twitter-Data"
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
_URLS = {
    "train": "https://raw.githubusercontent.com/fathanick/Code-mixed-Indonesian-Javanese-English-Twitter-Data/main/train.tsv",
    "dev": "https://raw.githubusercontent.com/fathanick/Code-mixed-Indonesian-Javanese-English-Twitter-Data/main/val.tsv",
    "test": "https://raw.githubusercontent.com/fathanick/Code-mixed-Indonesian-Javanese-English-Twitter-Data/main/test.tsv",
}

_SUPPORTED_TASKS = [Tasks.TOKEN_LEVEL_LANGUAGE_IDENTIFICATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class IJELIDDataset(datasets.GeneratorBasedBuilder):
    """IJELID dataset from https://github.com/fathanick/Code-mixed-Indonesian-Javanese-English-Twitter-Data"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    SEACROWD_SCHEMA_NAME = "seq_label"
    LABEL_CLASSES = ["ID", "JV", "EN", "MIX_ID_EN", "MIX_ID_JV", "MIX_JV_EN", "OTH"]

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=_DATASETNAME,
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
            version=SEACROWD_VERSION,
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
            subset_id=_DATASETNAME,
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        # No specific schema for the source, so for consistency,
        # I will use the same schema with SEACrowd
        features = schemas.seq_label_features(self.LABEL_CLASSES)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        data_files = {
            "train": Path(dl_manager.download_and_extract(_URLS["train"])),
            "dev": Path(dl_manager.download_and_extract(_URLS["dev"])),
            "test": Path(dl_manager.download_and_extract(_URLS["test"])),
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": data_files["train"], "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": data_files["dev"], "split": "dev"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_files["test"], "split": "test"},
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yield examples as (key, example) tuples"""
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            labels = []
            for line in f:
                if line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "labels": labels,
                        }
                        guid += 1
                        tokens = []
                        labels = []
                else:
                    # IJELID TSV are separated by \t
                    token, label = line.split("\t")
                    tokens.append(token)
                    labels.append(label.rstrip())

            # Last example
            if tokens:
                yield guid, {
                    "id": str(guid),
                    "tokens": tokens,
                    "labels": labels,
                }