from pathlib import Path from typing import Dict, List, Tuple import datasets from datasets.download.download_manager import DownloadManager from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """ @article{hidayatullah2023corpus, title={Corpus creation and language identification for code-mixed Indonesian-Javanese-English Tweets}, author={Hidayatullah, Ahmad Fathan and Apong, Rosyzie Anna and Lai, Daphne TC and Qazi, Atika}, journal={PeerJ Computer Science}, volume={9}, pages={e1312}, year={2023}, publisher={PeerJ Inc.} } """ _LOCAL = False _LANGUAGES = ["ind", "jav", "eng"] _DATASETNAME = "ijelid" _DESCRIPTION = """\ This is a code-mixed Indonesian-Javanese-English dataset for token-level language identification. We named this dataset as IJELID (Indonesian-Javanese-English Language Identification). This dataset contains tweets that have been tokenized with the corresponding token and its language label. There are seven language labels in the dataset, namely: ID (Indonesian)JV (Javanese), EN (English), MIX_ID_EN (mixed Indonesian-English), MIX_ID_JV (mixed Indonesian-Javanese), MIX_JV_EN (mixed Javanese-English), OTH (Other). """ _HOMEPAGE = "https://github.com/fathanick/Code-mixed-Indonesian-Javanese-English-Twitter-Data" _LICENSE = Licenses.CC_BY_NC_SA_4_0.value _URLS = { "train": "https://raw.githubusercontent.com/fathanick/Code-mixed-Indonesian-Javanese-English-Twitter-Data/main/train.tsv", "dev": "https://raw.githubusercontent.com/fathanick/Code-mixed-Indonesian-Javanese-English-Twitter-Data/main/val.tsv", "test": "https://raw.githubusercontent.com/fathanick/Code-mixed-Indonesian-Javanese-English-Twitter-Data/main/test.tsv", } _SUPPORTED_TASKS = [Tasks.TOKEN_LEVEL_LANGUAGE_IDENTIFICATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class IJELIDDataset(datasets.GeneratorBasedBuilder): """IJELID dataset from https://github.com/fathanick/Code-mixed-Indonesian-Javanese-English-Twitter-Data""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) SEACROWD_SCHEMA_NAME = "seq_label" LABEL_CLASSES = ["ID", "JV", "EN", "MIX_ID_EN", "MIX_ID_JV", "MIX_JV_EN", "OTH"] BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=_DATASETNAME, ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=_DATASETNAME, ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: # No specific schema for the source, so for consistency, # I will use the same schema with SEACrowd features = schemas.seq_label_features(self.LABEL_CLASSES) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" data_files = { "train": Path(dl_manager.download_and_extract(_URLS["train"])), "dev": Path(dl_manager.download_and_extract(_URLS["dev"])), "test": Path(dl_manager.download_and_extract(_URLS["test"])), } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"], "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"], "split": "dev"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"], "split": "test"}, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yield examples as (key, example) tuples""" with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] labels = [] for line in f: if line == "" or line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "labels": labels, } guid += 1 tokens = [] labels = [] else: # IJELID TSV are separated by \t token, label = line.split("\t") tokens.append(token) labels.append(label.rstrip()) # Last example if tokens: yield guid, { "id": str(guid), "tokens": tokens, "labels": labels, }