File size: 4,033 Bytes
c815130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import (DEFAULT_NUSANTARA_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Tasks)
_DATASETNAME = "indo_puisi"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_NUSANTARA_VIEW_NAME
_CITATION = """
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DESCRIPTION = """\
Puisi is an Indonesian poetic form. The dataset was collected by scraping various websites. It contains 7223 Indonesian puisi along with the title and author.
"""
_HOMEPAGE = "https://github.com/ilhamfp/puisi-pantun-generator"
_LICENSE = "Creative Commons Attribution Share-Alike 4.0 International"
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
_URLS = {
"train": "https://raw.githubusercontent.com/ilhamfp/puisi-pantun-generator/main/data/puisi.csv",
}
class IndoPuisi(datasets.GeneratorBasedBuilder):
"""IndoPuisi contains 7223 Indonesian puisi along with the title and author."""
BUILDER_CONFIGS = (
NusantaraConfig(
name="indo_puisi_source",
version=_SOURCE_VERSION,
description="Indo puisi source schema",
schema="source",
subset_id="indo_puisi",
),
NusantaraConfig(
name="indo_puisi_nusantara_ssp",
version=_NUSANTARA_VERSION,
description="Indo puisi Nusantara schema",
schema="nusantara_ssp",
subset_id="indo_puisi",
),
)
DEFAULT_CONFIG_NAME = "indo_puisi_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"puisi": datasets.Value("string"),
"title": datasets.Value("string"),
"author": datasets.Value("string"),
"puisi_with_header": datasets.Value("string"),
}
)
elif self.config.schema == "nusantara_ssp":
features = schemas.self_supervised_pretraining.features
else:
raise ValueError(f"Invalid config schema: {self.config.schema}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
train_csv_path = Path(dl_manager.download(_URLS["train"]))
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": train_csv_path},
),
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
if self.config.schema != "source" and self.config.schema != "nusantara_ssp":
raise ValueError(f"Invalid config schema: {self.config.schema}")
df = pd.read_csv(filepath).reset_index()
if self.config.name == "indo_puisi_source":
for row in df.itertuples():
ex = {
"id": str(row.index),
"puisi": str(row.puisi).rstrip(),
"title": row.title,
"author": row.author,
"puisi_with_header": str(row.puisi_with_header).rstrip(),
}
yield row.index, ex
elif self.config.name == "indo_puisi_nusantara_ssp":
for row in df.itertuples():
ex = {"id": str(row.index), "text": str(row.puisi).rstrip()}
yield row.index, ex
|