from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks) _DATASETNAME = "indo_puisi" _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME _CITATION = """ """ _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = False _DESCRIPTION = """\ Puisi is an Indonesian poetic form. The dataset was collected by scraping various websites. It contains 7223 Indonesian puisi along with the title and author. """ _HOMEPAGE = "https://github.com/ilhamfp/puisi-pantun-generator" _LICENSE = "Creative Commons Attribution Share-Alike 4.0 International" _SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" _URLS = { "train": "https://raw.githubusercontent.com/ilhamfp/puisi-pantun-generator/main/data/puisi.csv", } class IndoPuisi(datasets.GeneratorBasedBuilder): """IndoPuisi contains 7223 Indonesian puisi along with the title and author.""" BUILDER_CONFIGS = ( SEACrowdConfig( name="indo_puisi_source", version=_SOURCE_VERSION, description="Indo puisi source schema", schema="source", subset_id="indo_puisi", ), SEACrowdConfig( name="indo_puisi_seacrowd_ssp", version=_SEACROWD_VERSION, description="Indo puisi Nusantara schema", schema="seacrowd_ssp", subset_id="indo_puisi", ), ) DEFAULT_CONFIG_NAME = "indo_puisi_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "puisi": datasets.Value("string"), "title": datasets.Value("string"), "author": datasets.Value("string"), "puisi_with_header": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_ssp": features = schemas.self_supervised_pretraining.features else: raise ValueError(f"Invalid config schema: {self.config.schema}") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" train_csv_path = Path(dl_manager.download(_URLS["train"])) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_csv_path}, ), ] def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: if self.config.schema != "source" and self.config.schema != "seacrowd_ssp": raise ValueError(f"Invalid config schema: {self.config.schema}") df = pd.read_csv(filepath).reset_index() if self.config.name == "indo_puisi_source": for row in df.itertuples(): ex = { "id": str(row.index), "puisi": str(row.puisi).rstrip(), "title": row.title, "author": row.author, "puisi_with_header": str(row.puisi_with_header).rstrip(), } yield row.index, ex elif self.config.name == "indo_puisi_seacrowd_ssp": for row in df.itertuples(): ex = {"id": str(row.index), "text": str(row.puisi).rstrip()} yield row.index, ex